WO2005071405A1 - 膜タンパク質分析用平面脂質二重膜の形成方法とその装置 - Google Patents

膜タンパク質分析用平面脂質二重膜の形成方法とその装置 Download PDF

Info

Publication number
WO2005071405A1
WO2005071405A1 PCT/JP2005/000558 JP2005000558W WO2005071405A1 WO 2005071405 A1 WO2005071405 A1 WO 2005071405A1 JP 2005000558 W JP2005000558 W JP 2005000558W WO 2005071405 A1 WO2005071405 A1 WO 2005071405A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
lipid bilayer
forming
planar lipid
membrane protein
Prior art date
Application number
PCT/JP2005/000558
Other languages
English (en)
French (fr)
Inventor
Shoji Takeuchi
Hiroaki Suzuki
Hiroyuki Noji
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to US10/586,331 priority Critical patent/US8039247B2/en
Priority to EP05703795A priority patent/EP1712909B1/en
Priority to JP2005517241A priority patent/JP4213160B2/ja
Publication of WO2005071405A1 publication Critical patent/WO2005071405A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5088Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above confining liquids at a location by surface tension, e.g. virtual wells on plates, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00599Solution-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0472Diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip

Definitions

  • the present invention relates to a method and an apparatus for forming a planar lipid bilayer for membrane protein analysis used in fields such as biotechnology, biochip, membrane protein analysis, drug screening, and biosensors. .
  • a typical conventional method for preparing a planar lipid bilayer membrane for analysis of a membrane protein such as an ion channel includes a brushing method and an LB method (Longmuir-Blodgette method).
  • a flat lipid bilayer membrane is formed in a small hole of about several hundred microns in a Teflon (registered trademark) sheet or the like in a chamber filled with a buffer.
  • the latter method uses a lipid monolayer formed on the surface of the liquid to gradually raise the solution surface in the chambers on both sides of the Teflon (registered trademark) sheet.
  • FIG. 1 is a schematic diagram showing a method of forming a planar lipid bilayer membrane by the LB method.
  • 1 is a Teflon (registered trademark) sheet
  • 2 is a small hole opened in the Teflon (registered trademark) sheet
  • 3 is a solution in which a lipid monomolecular film 4 is formed on the surface
  • 5 Is a buffer solution, which is formed by gradually raising the surface of the solution 3 in the chamber 1 on both sides of the Teflon (registered trademark) sheet 1 so as to form a planar lipid bilayer membrane 6.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 02-35941
  • Patent Document 2 Japanese Patent Application Laid-Open No. 05-253467
  • Patent Document 3 JP-A-07-241512
  • Patent Document 4 Japanese Patent Publication No. 2002-505007
  • Patent Document 5 Japanese Patent Application Publication No. 2003-511679
  • Patent Document 6 Japanese Patent Application No. 2003-329667
  • Non-Patent Document 1 H. Zhu et al., "Global Analysis of Protein Activities Using Proteome Chips", Science, Vol. 293, pp. 2101-2105, 2001.
  • Non-Patent Document 2 B. Alberts et al., "Molecular Biology of the Cell; 4th Ed.,” Garland Science, 2002.
  • Non-Patent Document 3 C. Miller, ed., “Ion Channel Reconstitution,” Plenum Press, 1986.
  • Non-Patent Document 4 T. Ide and T. Yanagida, "An Artificial Lipid Bilayer For med on an Agarose— Coated Glass for simultaneous Electrical and Optical Measurement of Single Ion Channels," Biochem. Biophys. Res. Comm., 265, pp .595-599, 1999.
  • Non-Patent Document 5 T. Ide, Y. Takeuchi and T. Yanagida, "Development of an Experimental Apparatus for simultaneous Observation of Optical and Electrical signals from; single Ion Channels," Single Molecule s, 3 (1), pp. 33 -42, 2002.
  • Non-Patent Document 6 J.T.Groves, N. Ulman, and S.G.Boxer, "Micropatterning Fluid Lipid Bilayers on Solid Supports," Science, Vol. 275, pp. 651 -653.
  • Patent Document 7 M. Mayer et al., "Microfabricated Teflon Membranes for Low—Noise Recording of Ion Channels in Planar Lipid Bilayers," Biophys. J., Vol. 85, pp. 2684—2695, 2003.
  • Patent Document 8 Fertig et al., "Microstructured Glass Chip for Ion—Channel Electrophysiology,” Phys. Rev. E, Vol. 64, 040901 (R), 2001.
  • Non-patent Document 9 Hiroaki Suzuki, Hiroyuki Noji, Takeuchi Shoji. Biophysics, Vol. 43, SUPPLEMEN T 1 S118, B374, August 2003
  • both of the above-mentioned forming methods require a large chamber of about several cm, and a large dead volume makes microscopic observation impossible.
  • a plurality of small holes are provided in a flow channel by these methods and a plurality of planar lipid bilayers are formed simultaneously, adjacent small holes (flat lipid bilayers) are connected to each other in a buffer in the flow channel. It is difficult to measure individual electrophysiology because it is electrically conducted by the liquid.
  • the number of planar lipid bilayers that can be formed at one time is basically one, and it is impossible to perform multi-channel analysis.
  • formation of a planar lipid bilayer membrane by these methods requires skillful craftsmanship and poor reproducibility.
  • the present inventors have already formed the first and second micro flow channels, flowed the lipid solution to the second microphone flow channel, and controlled the lipid solution to obtain a flat surface.
  • a method and an apparatus for forming an artificial lipid membrane for forming a lipid bilayer membrane are proposed! / (R).
  • the first microchannel is filled with a buffer solution (aqueous solution)
  • the second microchannel having pores is filled with the lipid solution
  • the second microchannel is filled with the lipid solution.
  • the lipid solution is drained by injecting air into the microchannel of. At this time, a part of the lipid solution remains on the interface of the buffer solution in the pores.
  • the buffer solution is injected into the second micro flow path, extruding air, and replacing the air with the buffer solution. Then, a planar lipid bilayer is formed in the pore.
  • the present invention provides a method for forming a planar lipid bilayer membrane array for membrane protein analysis, which can reduce the size of the apparatus, is simple, and enables multichannel analysis. It is intended to provide the device.
  • the present invention provides:
  • a microfluidic channel below a horizontal partition having pores is filled with a buffer solution, and a chamber is formed corresponding to the pores of the partition.
  • a reservoir groove is provided on the partition wall in the chamber 1 and a small amount of lipid solution is dropped on a small hole filled with the buffer solution to form a thin lipid solution layer. It is characterized in that a buffer solution is added dropwise to form a planar lipid bilayer membrane.
  • the ribosome (lipid bilayer) containing the target membrane protein incorporated in the buffer solution (A spherical vesicle of a membrane) is put in advance, fused with the planar lipid bilayer membrane, and the membrane protein is incorporated into the planar lipid bilayer membrane.
  • the method for forming a planar lipid bilayer membrane for analyzing a membrane protein according to the above [4] is characterized in that the plurality of chambers are formed in an array.
  • a ribosome containing a heterologous protein is provided to each of the chambers to obtain various types of ribosomes. It is characterized in that simultaneous measurement of proteins can be performed simultaneously.
  • the method may include the step of reacting a plurality of types of reagents or a plurality of types of proteins in each of the individual chambers.
  • the feature is to enable simultaneous measurement of reaction and binding at once.
  • each of the chambers is controlled to have a different temperature to contain a heterogeneous protein. It is characterized by providing liposomes to enable simultaneous measurement of proteins with different temperatures at once.
  • a substrate In the apparatus for forming a planar lipid bilayer membrane for analyzing a membrane protein, a substrate, a partition provided on the substrate in parallel with the substrate, and a partition between the substrate and the partition are formed.
  • a chamber having a microchannel, a small hole formed in the partition wall, and a liquid reservoir formed around the small hole; and a microinjection in which a lipid solution and a buffer solution are dropped into the chamber from above. It is characterized by having a device.
  • the apparatus for forming a planar lipid bilayer membrane for analyzing a membrane protein according to the above [9], further comprising: a first thin film electrode formed on the substrate corresponding to the chamber; And a second thin-film electrode disposed near the reservoir groove.
  • the apparatus for forming a planar lipid bilayer membrane for membrane protein analysis according to the above [9] or [10]
  • the partition is provided with a passage communicating with the reservoir groove in order to control the thickness of the lipid solution layer.
  • the small hole may have a taper whose diameter decreases as a downward force is directed upward.
  • the partition walls become a silicon substrate, and the pores are formed by etching the silicon substrate. It is characterized by doing.
  • FIG. 1 is a schematic view showing a conventional method for forming a planar lipid bilayer membrane by the LB method.
  • FIG. 2 is a schematic diagram of an apparatus for forming a planar lipid bilayer membrane according to a first embodiment of the present invention.
  • FIG. 3 is a schematic view showing a lipid solution according to the present invention.
  • FIG. 4 is a schematic view of an apparatus for forming a planar lipid bilayer membrane according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing incorporation of a membrane protein into a planar lipid bilayer using the ribosome according to the present invention.
  • FIG. 6 is a schematic view of an apparatus for forming a planar lipid bilayer membrane according to a third embodiment of the present invention.
  • FIG. 7 is a schematic view of an apparatus for forming a planar lipid bilayer membrane according to a fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a manufacturing process of a gel array chip of the apparatus for forming a planar lipid bilayer membrane according to the fourth embodiment of the present invention.
  • FIG. 9 is a partially enlarged plan view of an apparatus for forming an array of planar lipid bilayer membranes according to a fourth embodiment of the present invention.
  • FIG. 10 is a perspective view of a microinjection apparatus of an apparatus for forming an array of planar lipid bilayer membranes according to a fifth embodiment of the present invention.
  • a buffer solution is filled in a microchannel below a horizontal partition wall having a small hole, and a chamber formed corresponding to the small hole of the partition wall and a partition wall in the chamber 1 are formed.
  • a reservoir groove is provided, a small amount of lipid solution is dropped on a small hole filled with the buffer solution, a thin lipid solution layer is formed, and the buffer solution is dropped from the upper part of the chamber to a flat lipid bilayer membrane.
  • the amount of the lipid solution can be precisely controlled and injected, and a planar lipid bilayer membrane can be easily formed (reconstituted) with good reproducibility.
  • FIG. 2 is a schematic view of an apparatus for forming a planar lipid bilayer membrane showing a first embodiment of the present invention
  • FIG. 3 is a schematic view showing a lipid solution.
  • 11 is a glass substrate
  • 12 is a microchannel
  • 13 is a partition
  • 14 is a small hole (opening portion) formed in the partition 13
  • 15 is a liquid reservoir formed on the partition 13.
  • the groove, 17 is a chamber constituted by a well
  • 18 is a buffer solution filled in the microchannel 12 and the small hole (opening portion) 14
  • 19 is a microinjection device (microinjector)
  • 20 is a microinjection
  • a lipid solution dropped from the device 19 is a lipid solution layer
  • 22 is a fine drop for dropping a buffer solution.
  • 23 is a buffer solution dropped from the microinjection device 22, and 24 is a planar lipid bilayer.
  • this planar lipid bilayer formation (reconstitution) apparatus has a structure in which the microchannel 12 and the chamber 17 are separated by the partition wall 13 having small holes (opening portions) 14. Take.
  • the microchannel 12 and the small holes 14 are filled with a buffer solution 18 (KC1 or an aqueous solution).
  • a buffer solution 18 KC1 or an aqueous solution.
  • the interface of the buffer solution 18 stops at the small holes (opening portions) 14 due to the surface tension.
  • a taper 13A is used so that the diameter of the small holes (opening portions) 14 becomes smaller from downward to upward. The small holes 14 are formed.
  • a lipid solution 20 is dropped into the small holes (opening portions) 14 using a microinjector 19. At this time, since the excess lipid solution 20 flows into the reservoir groove 15 provided around the small hole (opening portion) 14, a film of the lipid solution 20 remaining at the interface of the buffer solution 18 (lipid solution layer 21) Becomes sufficiently thin (submicrometer).
  • the microchannel 12 and the small hole 14 are filled with the buffer solution 18, (2) a small amount of the lipid solution 20 is dropped, and (3) the buffer solution 23 is When dripped, the layer of lipid solution 20 (lipid solution layer 21) spontaneously becomes a planar lipid bilayer 24.
  • the lipid solution (decane) 20 has a hydrophilic group 20A and a hydrophobic group 20B, and as shown in FIG. In this manner, the hydrophobic groups 20B are aligned with the hydrophobic groups 20B inside, and the hydrophobic groups 20B are engaged with each other and bonded to each other to form the planar lipid bilayer membrane 24.
  • FIG. 4 is a schematic diagram of an apparatus for forming a planar lipid bilayer membrane according to a second embodiment of the present invention.
  • the first thin-film electrode 25 and the partition 13 in the chamber 117 formed by the well 16 are formed on the glass substrate 11 of the microchannel 12. Up Then, a second thin film electrode 26 is formed. That is, since the independent thin-film electrodes 25 and 26 are arranged in the chamber 17 constituted by the well 16, the membrane potential and the current can be measured.
  • a spherical vesicle composed of the same lipid bilayer is used.
  • a ribosome 31 containing alamethicin 32 which is a kind of a channel protein, is prepared, mixed with the buffer solution 23 as droplets, and dropped onto the planar lipid bilayer 24.
  • ribosomes 31 contact planar lipid bilayer 24, they spontaneously fuse, and aramethicin 32 is incorporated into planar lipid bilayer 24.
  • the present inventors succeeded in incorporating aramethicin into a planar lipid bilayer by fusing ribosomes containing aramethicin to a planar lipid bilayer formed by the conventional planar lipid bilayer method. .
  • This aramethicin is a channel-like peptide that is always in an open state.
  • the membrane current was measured with the injection of a buffer solution containing the aramethicin, and the fusion of the membrane protein (peptide) was confirmed.
  • FIG. 6 is a schematic diagram of an apparatus for forming a planar lipid bilayer membrane according to a third embodiment of the present invention.
  • a passage 12 A communicating with the reservoir groove 15 is formed so that the thickness of the lipid solution layer 21 remaining on the interface of the buffer solution 18 can be controlled.
  • excess lipid solution 20 is sucked from the passage 12A communicating with the reservoir groove 15.
  • the reservoir groove The thickness of the lipid solution layer 21 formed by pushing back the lipid solution 20 from the passage 12A communicating with 15 can be increased.
  • FIG. 7 is a schematic view of an apparatus for forming a planar lipid bilayer membrane according to a fourth embodiment of the present invention
  • FIG. 7 (a) is a perspective view showing an upper surface where one chamber is arranged in an array.
  • Figure 7 (b) It is sectional drawing of a L array chip.
  • 41 is a glass substrate
  • 42 is a microchannel
  • 43 is a partition wall also having a silicon force
  • 44 is a small hole formed by etching the partition wall 43 having a silicon force
  • 45 is a small hole thereof.
  • a reservoir groove formed around 44, 47 is a chamber formed by a well 46, 48 is a buffer solution filled in the microchannel 42 and the small hole 44, 49 is a planar lipid bilayer membrane, 50 is its Noffer solution dropped on the planar lipid bilayer membrane 49, 51 is the first thin film electrode placed on the glass substrate 41 and below the small hole 44, 52 is formed on the outer periphery of the reservoir groove 45
  • the second thin-film electrode 53 is a power supply with an ammeter disposed between the first thin-film electrode 51 and the second thin-film electrode 52.
  • the partition 43 may be made of mechanically processed acrylic plastic instead of silicon.
  • the chambers 47 are arranged in an array defined by the pegs 46.
  • a ribosome containing a heterologous membrane protein is provided to each of the chambers 47, so that various types of membrane proteins can be simultaneously measured simultaneously. That is, a heterogeneous membrane protein is incorporated into each of a plurality of planar lipid bilayers configured in an array according to the present embodiment using a microinjector for reagents, and simultaneous electrical measurement in multiple channels is performed. For example, after incorporating membrane proteins A and B into separate planar lipid bilayers, if a reagent that suppresses or activates one of the membrane proteins is given through the flow channel, membrane protein A and B B produces a different electrical signal. Furthermore, another signal can be obtained by flowing a reagent having another effect. In this manner, how and how a membrane protein reacts to which reagent can be simultaneously measured with high sensitivity.
  • the measurement system using the planar lipid bilayer membrane according to the present invention includes a planar lipid membrane chip, a membrane protein (ribosome) injecting device, a syringe pump for injecting a reagent, and a weak membrane current ′ voltage.
  • a planar lipid bilayer membrane is formed in an array according to the present invention, and a ribosome containing a target membrane protein is provided thereto by a microinjector.
  • the membrane current and voltage when various reagents are supplied from the microchannel are measured by the thin-film electrode, and the signal amplified by the amplifier is taken into the computer.
  • the output signal is analyzed on a computer In addition, identification and functional analysis of each membrane protein can be performed.
  • the individual chambers in the array may be controlled at different temperatures to provide ribosomes containing different types of proteins, and the proteins having different temperatures may be measured simultaneously and collectively.
  • a heating device (not shown) is provided for each chamber.
  • FIG. 8 is a cross-sectional view of a process for manufacturing a well array chip of an apparatus for forming a planar lipid bilayer membrane according to a fourth embodiment of the present invention.
  • an oxide film 62 is formed on the upper and lower surfaces of a silicon substrate 61.
  • the oxide film 62 is patterned and subjected to reactive ion etching to form fine holes (width 50-100 m, depth 200 m). Form 63.
  • a microchannel 64 and a small hole 65 are formed by TMAH (tetramethylammonium hydroxide) etching.
  • a reservoir groove 66 is formed around the small hole 65 by etching the silicon oxide film 62 and the silicon substrate 61.
  • FIG. 9 is a partially enlarged plan view of an apparatus for forming a planar lipid bilayer membrane in an array showing a fourth embodiment of the present invention, and FIG. 9 (a) shows the chip in an array. (b) is the enlarged view.
  • a square moat-shaped liquid sump groove 66 is formed around the small hole 65, and an upper electrode 70 is formed around the square moat-shaped liquid sump groove 66. Then, SU8 holes 71 are formed so as to partition each chamber!
  • the size of the central small hole 65 is 200 ⁇ m, and the size of the well 71 is 900 ⁇ m.
  • the size of the sump groove 66 is 500 ⁇ m and the depth is 40 ⁇ m, and the capacity of the sump groove 66 is 8 nl (8 nanoliter).
  • the upper electrode 70 is electrically separated for each individual chamber, and the lower electrode 68 is common.
  • FIG. 10 is a perspective view of a micro-injection apparatus of an apparatus for forming a planar lipid bilayer membrane in an array according to a fifth embodiment of the present invention.
  • 81-89 are the nozzles of the micro-injection device corresponding to each chamber of the P-array chip 92
  • 90 is the nozzle 81-89 of the micro-injection device in each chamber of the P-array chip 92.
  • the cover is integrated for positioning.
  • Reference numeral 91 denotes an engaging member which engages with the array chip 92 for positioning.
  • the force bar 90 is mounted on a Pell array chip 92 to measure by drying the planar lipid bilayer membrane. It can also alleviate the obstacles.
  • the nozzles 81-89 of the micro-injection device corresponding to each chamber are appropriately connected.
  • a substrate In the apparatus for forming a planar lipid bilayer membrane for membrane protein analysis, a substrate, a partition provided on the substrate in parallel with the substrate, and a partition between the substrate and the partition are formed.
  • a chamber provided with a microchannel, a small hole formed in the partition wall, and a reservoir groove formed around the small hole is provided, and a fine injection device (microinjector) is provided in the chamber from above.
  • the amount of the lipid solution can be controlled and injected precisely, and a planar lipid bilayer membrane can be easily formed (reconstituted) with good reproducibility.
  • the present invention is suitable for biotechnology, biochips, membrane protein analysis, drug screening, and biosensors.
  • Ultrasensitive membrane protein analyzer Ultrasensitive multi-channel drug discovery screening device, ultrasensitive Applicable to ion sensors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 装置を小型化するとともに、簡便であり、多チャンネル化を図ることができる膜タンパク質分析用平面脂質二重膜の形成方法とその装置を提供する。  小孔14を有する水平の隔壁13の下側のマイクロ流路12にバッファ溶液18を満たし、前記隔壁13の小孔14に対応して形成されるチャンバー17とこのチャンバー17内に液だめ溝15を備え、前記バッファ溶液18で満たした小孔14上に微量の脂質溶液20を滴下し、薄い脂質溶液層21を形成し、前記チャンバー17に上部よりバッファ溶液23を滴下し、平面脂質二重膜24を形成する。

Description

明 細 書
膜タンパク質分析用平面脂質二重膜の形成方法とその装置
技術分野
[0001] 本発明は、バイオテクノロジー、バイオチップ、膜タンパク質分析、創薬スクリーニン グ、バイオセンサーなどの分野に用いられる膜タンパク質分析用平面脂質二重膜の 形成方法とその装置に関するものである。
背景技術
[0002] イオンチャンネル等膜タンパク質分析のための平面脂質二重膜作製の代表的な従 来方法として、はけ塗り法や LB法 (Longmuir~Blodgette法)が挙げられる。両者と も、バッファを満たしたチャンバ一内でテフロン (登録商標)シートなどに開けた数百ミ クロン程度の小孔に、平面脂質二重膜を形成する方法であるが、前者は脂質溶液を はけで小孔に塗る方法、後者は、液体表面に脂質の単分子膜が形成されることを利 用して、テフロン (登録商標)シートの両側のチャンバ一の溶液表面を徐々に上昇させ ることによって平面脂質二重膜を形成する方法である。
[0003] 図 1はその LB法による平面脂質二重膜形成法を示す模式図である。
[0004] この図において、 1はテフロン (登録商標)シート、 2はそのテフロン (登録商標)シート 1に開口された小孔、 3は表面に脂質の単分子膜 4が形成される溶液、 5はバッファ 溶液であり、テフロン (登録商標)シート 1の両側のチャンバ一の溶液 3表面を徐々に 上昇させることによって平面脂質二重膜 6を形成するようにして 、る。
特許文献 1:特開平 02— 35941号公報
特許文献 2:特開平 05— 253467号公報
特許文献 3:特開平 07— 241512号公報
特許文献 4:特表 2002-505007号公報
特許文献 5:特表 2003— 511679号公報
特許文献 6:特願 2003 - 329667号
非特許文献 1 : H. Zhu et al. , "Global Analysis of Protein Activities U sing Proteome Chips", Science, Vol. 293, pp. 2101—2105, 2001. 非特許文献 2 : B. Alberts et al. , "Molecular Biology of the Cell; 4th E d. , "Garland Science, 2002.
非特許文献 3 : C. Miller, ed. , "Ion Channel Reconstitution, "Plenum Pre ss, 1986.
非特許文献 4: T. Ide and T. Yanagida, "An Artificial Lipid Bilayer For med on an Agarose— Coated Glass for simultaneous Electrical and Optical Measurement of Single Ion Channels, "Biochem. Biophys. Res. Comm. , 265, pp. 595-599, 1999.
非特許文献 5 : T. Ide, Y. Takeuchi and T. Yanagida, "Development of a n Experimental Apparatus for simultaneous Observation of Optical and Electrical signals from ; single Ion Channels, "Single Molecule s, 3 (1) , pp. 33-42, 2002.
非特許文献 6 :J. T. Groves, N. Ulman, and S. G. Boxer, "Micropatterning Fluid Lipid Bilayers on Solid Supports, "Science, Vol. 275, pp. 651 -653.
特許文献 7 : M. Mayer et al. , "Microfabricated Teflon Membranes fo r Low— Noise Recording of Ion Channels in Planar Lipid Bilayers, " Biophys. J. , Vol. 85, pp. 2684—2695, 2003.
特許文献 8 : Fertig et al. , "Microstructured Glass Chip for Ion— Cha nnel Electrophysiology, "Phys. Rev. E, Vol. 64, 040901 (R) , 2001. 非特許文献 9 :鈴木宏明,野地博行,竹内昌治.生物物理, 43卷, SUPPLEMEN T 1 S118頁 B374, 2003年 8月
発明の開示
し力しながら、上記した両形成方法とも、数 cm程度の大きなチャンバ一が必要であ り、デッドボリュームが大きぐ顕微鏡観察も不可能である。また、これらの方法により 流路内に複数の小孔を設けて、複数の平面脂質二重膜を同時に形成した場合、隣 り合う小孔 (平面脂質二重膜)同士は流路中のバッファ液により電気的に導通してい るため、個々の電気生理計測を行うことは難しい。 [0006] また、一度に形成できる平面脂質二重膜は基本的に一つであり、分析の多チャン ネルィ匕は不可能である。さらに、これらの形成方法で平面脂質二重膜を形成するに は職人的熟練を要し、再現性にも乏しい。
[0007] そこで、本願発明者らは既に、第 1及び第 2のマイクロ流路を形成して、第 2のマイク 口流路へ脂質溶液を流して、その脂質溶液を制御することにより、平面脂質二重膜を 形成する人工脂質膜の形成方法及びその装置を提案して!/、る (上記特許文献 6)。
[0008] これによれば、まず、第 1のマイクロ流路にバッファ溶液 (水溶液)を満たし、次に、 小孔を有する第 2のマイクロ流路に脂質溶液を満たし、次に、この第 2のマイクロ流路 に空気を注入することにより脂質溶液を排出する。このとき小孔のバッファ溶液の界 面には脂質溶液の一部が残留する。次に、第 2のマイクロ流路にバッファ溶液が注入 されて空気を押し出し、空気をバッファ溶液に置換する。すると小孔には平面脂質二 重膜が形成される。
[0009] し力しながら、この方法によれば、平面脂質二重膜の形成工数が多くなり、複雑で あり、また、平面脂質二重膜の膜厚の制御が難しい。
[0010] また、近年、マルチチャンバ一に複数種類の試薬や、複数種類のタンパク質を供給 してそれらの反応 ·結合を計測することが要請されており、従来は、この要請に応えら れて 、な 、のが現状である。
[0011] 本発明は、上記状況に鑑みて、装置を小型化するとともに、簡便であり、分析の多 チャンネルィ匕を図ることができる膜タンパク質分析用平面脂質二重膜アレイの形成方 法とその装置を提供することを目的とする。
[0012] 本発明は、上記目的を達成するために、
〔1〕膜タンパク質分析用平面脂質二重膜の形成方法において、小孔を有する水平 の隔壁の下側のマイクロ流路にバッファ溶液を満たし、前記隔壁の小孔に対応して 形成されるチャンバ一とこのチャンバ一内の前記隔壁上に液だめ溝を備え、前記バ ッファ溶液で満たした小孔上に微量の脂質溶液を滴下し、薄 ヽ脂質溶液層を形成し 、前記チャンバ一に上部よりバッファ溶液を滴下し、平面脂質二重膜を形成すること を特徴とする。
[0013] 〔2〕上記〔1〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にぉ 、て、前 記薄 ヽ脂質溶液層の膜厚を制御することを特徴とする。
[0014] 〔3〕上記〔1〕又は〔2〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にお V、て、前記バッファ溶液に目的の膜タンパク質を組み込んだリボソーム (脂質二重膜 の球形べシクル)をいれておき、前記平面脂質二重膜と融合させ、前記膜タンパク質 を前記平面脂質二重膜に組み込むことを特徴とする。
[0015] 〔4〕上記〔1〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にぉ 、て、前 記チャンバ一を一体的に複数個形成することを特徴とする。
[0016] [5]上記〔4〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にぉ 、て、前 記複数個のチャンバ一をアレイ状に形成することを特徴とする。
[0017] 〔6〕上記〔4〕又は〔5〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にお いて、前記個々のチャンバ一に異種のタンパク質を含むリボソームを与え、多種類の タンパク質を一括して同時計測できるようにすることを特徴とする。
[0018] 〔7〕上記〔4〕又は〔5〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にお いて、前記個々のチャンバ一における複数種類の試薬や、複数種類のタンパク質と の反応 ·結合を一括して同時計測できるようにすることを特徴とする。
[0019] 〔8〕上記〔4〕又は〔5〕記載の膜タンパク質分析用平面脂質二重膜の形成方法にお いて、個々のチャンバ一を温度の異なるように制御して異種のタンパク質を含むリポ ソームを与え、温度の異なるタンパク質を一括して同時計測できるようにすることを特 徴とする。
[0020] 〔9〕膜タンパク質分析用平面脂質二重膜の形成装置において、基板と、この基板と 平行に、この基板上に設けられる隔壁と、前記基板と前記隔壁との間に形成されるマ イクロ流路と、前記隔壁に形成される小孔と、この小孔の周囲に形成される液だめ溝 を備えるチャンバ一と、このチャンバ一に上部より脂質溶液及びバッファ溶液を滴下 する微小注入装置を具備することを特徴とする。
[0021] 〔10〕上記〔9〕記載の膜タンパク質分析用平面脂質二重膜の形成装置において、 さら〖こ、前記チャンバ一に対応する前記基板上に形成される第 1の薄膜電極と、前記 液だめ溝の近傍に配置される第 2の薄膜電極とを具備することを特徴とする。
[0022] 〔11〕上記〔9〕又は〔10〕記載の膜タンパク質分析用平面脂質二重膜の形成装置に ぉ 、て、前記脂質溶液層の膜厚を制御するために前記隔壁に前記液だめ溝に連通 する通路を具備することを特徴とする。
[0023] 〔12〕上記〔9〕又は〔10〕記載の膜タンパク質分析用平面脂質二重膜の形成装置に おいて、一体的に形成される複数個のチャンバ一を具備することを特徴とする。
[0024] 〔 13〕上記〔 12〕記載の膜タンパク質分析用平面脂質二重膜の形成装置において、 前記複数個のチャンバ一はアレイ状に配置されることを特徴とする。
[0025] 〔 14〕上記〔 12〕又は〔 13〕記載の膜タンパク質分析用平面脂質二重膜の形成装置 において、前記微小注入装置が各チャンバ一毎に位置決めされるカバーを具備する ことを特徴とする。
[0026] 〔 15〕上記〔 12〕又は〔 13〕記載の膜タンパク質分析用平面脂質二重膜の形成方法 において、前記個々のチャンバ一に異種のタンパク質を含むリボソームを与え、多種 類のタンパク質を一括して同時計測する手段を具備することを特徴とする。
[0027] 〔 16〕上記〔 12〕又は〔 13〕記載の膜タンパク質分析用平面脂質二重膜の形成方法 において、アレイ状の個々のチャンバ一を温度の異なるように制御して異種のタンパ ク質を含むリボソームを与え、温度の異なるタンパク質を一括して同時計測する手段 を具備することを特徴とする。
[0028] 〔17〕上記〔9〕記載の膜タンパク質分析用平面脂質二重膜の形成装置にぉ 、て、 前記小孔は下方力も上方に向力つて径が小さくなるテーパを具備することを特徴とす る。
[0029] 〔18〕上記〔9〕記載の膜タンパク質分析用平面脂質二重膜の形成装置にぉ 、て、 前記隔壁はシリコン基板力 なり、このシリコン基板をエッチングすることにより前記小 孔を形成することを特徴とする。
[0030] 〔19〕上記〔10〕記載の膜タンパク質分析用平面脂質二重膜の形成装置において、 前記第 1の薄膜電極と、前記第 2の薄膜電極との間に電圧を印加し、膜タンパク質の 特性を計測する手段を具備することを特徴とする。
図面の簡単な説明
[0031] [図 1]従来の LB法による平面脂質二重膜形成法を示す模式図である。
[図 2]本発明の第 1実施例を示す平面脂質二重膜の形成装置の模式図である。 [図 3]本発明にカゝかる脂質溶液を示す模式図である。
圆 4]本発明の第 2実施例を示す平面脂質二重膜の形成装置の模式図である。
[図 5]本発明にかかるリボソームを用いた膜タンパク質の平面脂質二重膜への組み込 みを示す図である。
[図 6]本発明の第 3実施例を示す平面脂質二重膜の形成装置の模式図である。
[図 7]本発明の第 4実施例を示す平面脂質二重膜の形成装置の模式図である。
[図 8]本発明の第 4実施例を示す平面脂質二重膜の形成装置のゥエルアレイチップ の製造工程断面図である。
[図 9]本発明の第 4実施例を示すアレイ状の平面脂質二重膜の形成装置の部分拡大 平面図である。
[図 10]本発明の第 5実施例を示すアレイ状の平面脂質二重膜の形成装置の微小注 入装置の斜視図である。
発明を実施するための最良の形態
[0032] 本発明は、小孔を有する水平の隔壁の下側のマイクロ流路にバッファ溶液を満たし 、前記隔壁の小孔に対応して形成されるチャンバ一とこのチャンバ一内の隔壁上に 液だめ溝を備え、前記バッファ溶液で満たした小孔上に微量の脂質溶液を滴下し、 薄い脂質溶液層を形成し、前記チャンバ一に上部よりバッファ溶液を滴下し、平面脂 質二重膜を形成する。よって、精密に脂質溶液の量を制御して注入することができ、 簡便に、再現性よく平面脂質二重膜を形成 (再構成)することができる。
[0033] 以下、本発明の実施の形態について詳細に説明する。
実施例 1
[0034] 図 2は本発明の第 1実施例を示す平面脂質二重膜の形成装置の模式図、図 3は脂 質溶液を示す模式図である。
[0035] 図 2において、 11はガラス基板、 12はマイクロ流路、 13は隔壁、 14はその隔壁 13 に形成される小孔(開口部分)、 15はその隔壁 13上に形成される液だめ溝、 17はゥ エル 16により構成されるチャンバ一、 18はマイクロ流路 12及び小孔(開口部分) 14 に満たされるバッファ液、 19は微小注入装置 (マイクロインジヱクタ)、 20は微小注入 装置 19から滴下される脂質溶液、 21は脂質溶液層、 22はバッファ液を滴下する微 小注入装置(マイクロインジェクタ又はピペット)、 23はこの微小注入装置 22から滴下 されるバッファ液、 24は平面脂質二重膜である。
[0036] この平面脂質二重膜の形成 (再構成)装置は、上述したように、マイクロ流路 12とチ ヤンバー 17が、小孔(開口部分) 14を有する隔壁 13で隔てられている構造をとる。
[0037] そこで、まず、図 2 (a)に示すように、マイクロ流路 12及び小孔 14をバッファ液 18 ( KC1又は水溶液)で満たす。このとき、表面張力によって、ノ ッファ液 18の界面は小 孔(開口部分) 14で止まる。なお、ここでは、ノ ッファ液 18の界面が小孔(開口部分) 14で止まりやすくするために、小孔(開口部分) 14の径が下方から上方に向力つて 小さくなるようなテーパ 13Aを小孔 14に形成するようにしている。
[0038] 次に、図 2 (b)に示すように、微小注入装置 19を用いて脂質溶液 20を小孔(開口 部分) 14に滴下する。このとき、余分な脂質溶液 20は、小孔(開口部分) 14の周囲に 設けられた液だめ溝 15に流れ込むため、バッファ液 18の界面に残留する脂質溶液 20の膜 (脂質溶液層 21)は十分に薄く(サブマイクロメートル)なる。
[0039] 最後に、図 2 (c)に示すように、微小注入装置 22を用いてバッファ液 23をチャンバ 一 17に滴下すると、平面脂質二重膜(lOnm程度) 24が自発的に形成される。
[0040] 上記したように、(1)マイクロ流路 12及び小孔 14をバッファ液 18で満たす、(2)微 量の脂質溶液 20を滴下する、(3)チャンバ一 17にバッファ液 23を滴下すると、脂質 溶液 20の層 (脂質溶液層 21)が自発的に平面脂質二重膜 24となる。
[0041] ここで、図 3 (a)に示すように、脂質溶液 (デカン) 20は親水基 20Aと疎水基 20Bを 有しており、薄膜ィ匕することにより、図 3 (b)に示すように、疎水基 20Bを内側として整 列し、さらに疎水基 20B同士が係合し、互いに結合して平面脂質二重膜 24が形成さ れる。
[0042] そのためには、脂質溶液を極力薄膜化 (nmオーダー)する必要がある。そこで、後 述するように、液だめ溝 15に連通するような膜厚制御手段を講じることができる。 実施例 2
[0043] 図 4は本発明の第 2実施例を示す平面脂質二重膜の形成装置の模式図である。
[0044] この第 2実施例では、上記した第 1実施例に加え、マイクロ流路 12のガラス基板 11 上に第 1の薄膜電極 25と、ゥエル 16により構成されるチャンバ一 17内の隔壁 13上 に第 2の薄膜電極 26を形成する。つまり、ゥエル 16により構成されるチャンバ一 17の 中には独立した薄膜電極 25, 26が配置されているため、膜電位、電流の計測ができ る。
[0045] なお、分析の対象となる膜タンパク質をバッファ液 18の界面に形成された平面脂質 二重膜 24に組み込むには、同じ脂質二重膜からなる球形のべシクル (リボソーム: lip osome)を用いる o
[0046] 図 5に示すように、チャネルタンパク質の一種であるァラメチシン (Alamethicin) 32 を含むリボソーム 31を調製し、それを液滴としてバッファ液 23に混入し平面脂質二重 膜 24に滴下する。リボソーム 31が平面脂質二重膜 24に接触すると、それらは自発 的に融合し、ァラメチシン 32は平面脂質二重膜 24に組み込まれる。本発明者らは、 テストケースとして、従来の平面脂質二重膜法によって形成された平面脂質二重膜 にァラメチシンを含むリボソームを融合させることによってァラメチシンを平面脂質二 重膜に組み込むことに成功した。このァラメチシンは常にオープンの状態であるチヤ ネル状のペプチドであり、これを含むバッファ液の注入に伴い膜電流が計測され、膜 タンパク質 (ペプチド)の融合が確認された。
実施例 3
[0047] 図 6は本発明の第 3実施例を示す平面脂質二重膜の形成装置の模式図である。
[0048] この実施例では、液だめ溝 15に連通する通路 12Aを形成して、ノ ッファ液 18の界 面に残留する脂質溶液層 21の膜厚を制御できるように構成している。つまり、ノ ッフ ァ液 18の界面に残留する脂質溶液 20からなる脂質溶液層 21の膜厚が厚い場合に は、液だめ溝 15に連通する通路 12Aから過剰な脂質溶液 20を吸引することにより、 形成される脂質溶液層 21の膜厚を薄くすることができ、逆にバッファ液 18の界面に 残留する脂質溶液 20からなる脂質溶液層 21の膜厚が薄い場合には、液だめ溝 15 に連通する通路 12Aから脂質溶液 20を押し返すことにより形成される脂質溶液層 2 1の膜厚を厚くすることができる。
実施例 4
[0049] 図 7は本発明の第 4実施例を示す平面脂質二重膜の形成装置の模式図であり、図 7 (a)はそのチャンバ一がアレイ状に配置された上面を示す斜視図、図 7 (b)はその ゥエルアレイチップの断面図である。
[0050] これらの図において、 41はガラス基板、 42はマイクロ流路、 43はシリコン力もなる隔 壁、 44はそのシリコン力 なる隔壁 43がエッチングされて形成される小孔、 45はその 小孔 44の回りに形成される液だめ溝、 47はゥエル 46で形成されるチャンバ一、 48 はマイクロ流路 42及び小孔 44に満たされるバッファ溶液、 49は平面脂質二重膜、 5 0はその平面脂質二重膜 49上に滴下されるノッファ溶液、 51はガラス基板 41上であ つて小孔 44の下部に配置される第 1の薄膜電極、 52は液だめ溝 45の外周に形成さ れる第 2の薄膜電極、 53は第 1の薄膜電極 51と第 2の薄膜電極 52間に配置される 電流計付き電源である。なお、隔壁 43はシリコンに代えて、機械的に加工されたァク リルプラスチックを用いるようにしてもよ!、。
[0051] 上記したように、この実施例では、各チャンバ一 47がゥエル 46で区画されたアレイ 状に配置される。
[0052] したがって、個々のチャンバ一 47に異種の膜タンパク質を含むリボソームを与え、 多種類の膜タンパク質を一括して同時計測することができる。すなわち、試薬の微小 注入装置を用い、本実施例によりアレイ状に構成された複数の平面脂質二重膜各々 へ、異種の膜タンパク質を組み込み、多チャンネルでの同時電気計測を行う。例えば 、膜タンパク質 Aと Bを別個の平面脂質二重膜に組み込んだ後、どちらかの膜タンパ ク質を抑制または活性化させるような試薬を、流路を通して与えた場合、膜タンパク 質 Aと Bでは異なった電気信号が得られる。さらに、別の効果を持つ試薬を流せば、 また別の信号が得られる。このように、膜タンパク質がどの試薬にどのように反応する かを、複数同時に感度よく計測できる。
[0053] 本発明による平面脂質二重膜を用いた計測システムは、図示しないが、平面脂質 膜チップに加え、膜タンパク質 (リボソーム)注入装置、試薬注入用シリンジポンプ、 微弱な膜電流'電圧を増幅するためのアンプ (パッチアンプ)、結果解析用のコンビュ 一タカ なる。はじめに本発明によりアレイ状に平面脂質二重膜を構成し、そこに微 小注入装置により対象となる膜タンパク質を含むリボソームを与える。マイクロ流路か ら、様々な試薬を与えた場合の膜電流 '電圧が薄膜電極により計測され、アンプで増 幅された信号がコンピュータに取り込まれる。出力信号は、コンピュータ上で解析され 、それぞれの膜タンパク質の同定、機能解析を行うことができる。
[0054] また、アレイ状の個々のチャンバ一を温度の異なるように制御して異種のタンパク質 を含むリボソームを与え、温度の異なるタンパク質を一括して同時計測するようにして もよい。その場合にはチャンバ一毎に加熱装置(図示なし)を備えるようにする。
[0055] 図 8は本発明の第 4実施例を示す平面脂質二重膜の形成装置のゥエルアレイチッ プの製造工程断面図である。
[0056] (1)まず、図 8 (a)に示すように、シリコン基板 61の上下面に酸化膜 62を形成する。
[0057] (2)次に、図 8 (b)に示すように、酸ィ匕膜 62をパターユングして反応性イオンエッチ ングにより微小な孔(幅 50— 100 m、深さ 200 m) 63を形成する。
[0058] (3)次に、図 8 (c)に示すように、 TMAH (tetramethylammonium hydroxide) エッチングによりマイクロ流路 64及び小孔 65を形成する。
[0059] (4)次に、図 8 (d)に示すように、小孔 65の回りに液だめ溝 66を酸ィ匕膜 62及びシリ コン基板 61のエッチングにより形成する。
[0060] (5)次に、図 8 (e)に示すように、電気的絶縁のためチップ全体をパリレン C67でコ 一ティングする。
[0061] (6)次に、図 8 (f)に示すように、下部電極 68とガラス基板 69を下側に接着する。上 側には上部電極 (金) 70がパターユングされるとともに、厚さ 40 μ mのレジスト (SU8; 商品名)ゥエル 71が形成される。
[0062] 図 9は本発明の第 4実施例を示すアレイ状の平面脂質二重膜の形成装置の部分 拡大平面図であり、図 9 (a)はそのアレイ状のチップを示し、図 9 (b)はその拡大図で ある。
[0063] これらの図において、小孔 65の回りには 4角形状の堀状の液だめ溝 66が形成され 、その 4角形状の堀状の液だめ溝 66外周には上部電極 70が形成され、各チャンバ 一を区画するように SU8ゥエル 71が形成されて!、る。
[0064] 因みに、この図において、中央の小孔 65のサイズは 200 μ m、ゥエル 71のサイズ は 900 μ mである。液だめ溝 66のサイズは 500 μ mで深さは 40 μ m、液だめ溝 66の 容量は 8nl (8ナノリットル)である。上部電極 70は個々のチャンバ一毎に電気的に分 離されており、下部電極 68は共通となっている。 実施例 5
[0065] 図 10は本発明の第 5実施例を示すアレイ状の平面脂質二重膜の形成装置の微小 注入装置の斜視図である。
[0066] この図において、 81— 89はゥエルアレイチップ 92の各チャンバ一に対応する微小 注入装置のノズル、 90はそれらの微小注入装置のノズル 81— 89をゥエルアレイチッ プ 92の各チャンバ一に位置決めするために一体化されたカバーである。 91はゥエル アレイチップ 92に位置決めするために係合する係合部材である。
[0067] また、膜タンパク質を含むアレイ状の平面脂質二重膜が形成された直後にその力 バー 90をゥエルアレイチップ 92上に装着することにより平面脂質二重膜の乾燥によ る計測への支障を緩和することもできる。
[0068] 計測時には、各チャンバ一毎に対応する微小注入装置のノズル 81— 89から適宜
、 ノッファ溶液を滴下し、ノッファ溶液の乾燥を回避することができる。
[0069] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0070] 以上、本発明によれば、以下のような効果を奏することができる。
[0071] (1)膜タンパク質分析用平面脂質二重膜の形成装置において、基板と、この基板と 平行に、この基板上に設けられる隔壁と、前記基板と前記隔壁との間に形成されるマ イクロ流路と、前記隔壁に形成される小孔と、この小孔の周囲に形成される液だめ溝 を備えるチャンバ一を設け、このチャンバ一に上部より微小注入装置 (マイクロインジ ェクタ)によって、精密に脂質溶液の量を制御して注入することができ、簡便に、再現 性よく平面脂質二重膜を形成 (再構成)することができる。
[0072] (2)アレイ状に配置された小孔およびチャンバ一は、それぞれ計測系として独立し ているため、多種類の計測を同時に一括して行うことができる。そのため、膜タンパク 質分析を高速化することができる。
[0073] (3)計測系および試薬等注入のための流路などもマイクロサイズ(1mm以下)であ るため、デッドボリュームが飛躍的に縮小され、必要な試薬'サンプル量が激減する。
[0074] (4)計測系が微小であるため、外部の電気的ノイズの影響を受け難ぐより精密な 電気的計測が可能となる。 産業上の利用可能性
本発明は、バイオテクノロジー、バイオチップ、膜タンパク質分析、創薬スクリーニン グ、バイオセンサーに適しており、超高感度膜タンパク質分析装置、超高感度'多チ ヤンネル創薬スクリーニング装置、超高感度イオンセンサーに適用可能である。

Claims

請求の範囲
[1] (a)小孔を有する水平の隔壁の下側のマイクロ流路にバッファ溶液を満たし、
(b)前記隔壁の小孔に対応して形成されるチャンバ一と該チャンバ一内の前記隔壁 上に液だめ溝を備え、前記バッファ溶液で満たした小孔上に微量の脂質溶液を滴下 し、薄い脂質溶液層を形成し、
(c)前記チャンバ一に上部よりバッファ溶液を滴下し、平面脂質二重膜を形成するこ とを特徴とする膜タンパク質分析用平面脂質二重膜の形成方法。
[2] 請求項 1記載の膜タンパク質分析用平面脂質二重膜の形成方法において、前記 薄い脂質溶液層の膜厚を制御することを特徴とする膜タンパク質分析用平面脂質二 重膜の形成方法。
[3] 請求項 1又は 2記載の膜タンパク質分析用平面脂質二重膜の形成方法において、 前記バッファ溶液に目的の膜タンパク質を組み込んだリボソーム (脂質二重膜の球形 べシクル)をいれておき、前記平面脂質二重膜と融合させ、前記膜タンパク質を前記 平面脂質二重膜に組み込むことを特徴とする膜タンパク質分析用平面脂質二重膜 の形成方法。
[4] 請求項 1記載の膜タンパク質分析用平面脂質二重膜の形成方法において、前記 チャンバ一を一体的に複数個形成することを特徴とする膜タンパク質分析用平面脂 質二重膜の形成方法。
[5] 請求項 4記載の膜タンパク質分析用平面脂質二重膜の形成方法において、前記 複数個のチャンバ一をアレイ状に形成することを特徴とする膜タンパク質分析用平面 脂質二重膜の形成方法。
[6] 請求項 4又は 5記載の膜タンパク質分析用平面脂質二重膜の形成方法において、 前記個々のチャンバ一に異種のタンパク質を含むリボソームを与え、多種類のタンパ ク質を一括して同時計測できるようにすることを特徴とする膜タンパク質分析用平面 脂質二重膜の形成方法。
[7] 請求項 4又は 5記載の膜タンパク質分析用平面脂質二重膜の形成方法において、 前記個々のチャンバ一における複数種類の試薬や、複数種類のタンパク質との反応 •結合を一括して同時計測できるようにすることを特徴とする膜タンパク質分析用平面 脂質二重膜の形成方法。
[8] 請求項 4又は 5記載の膜タンパク質分析用平面脂質二重膜の形成方法において、 個々のチャンバ一を温度の異なるように制御して異種のタンパク質を含むリボソーム を与え、温度の異なるタンパク質を一括して同時計測できるようにすることを特徴とす る膜タンパク質分析用平面脂質二重膜の形成方法。
[9] (a)基板と、
(b)該基板と平行に、該基板上に設けられる隔壁と、
(c)前記基板と前記隔壁との間に形成されるマイクロ流路と、
(d)前記隔壁に形成される小孔と、該小孔の周囲に形成される液だめ溝を備えるチ ヤンノ一と、
(e)該チャンバ一に上部より脂質溶液及びバッファ溶液を滴下する微小注入装置を 具備することを特徴とする膜タンパク質分析用平面脂質二重膜の形成装置。
[10] 請求項 9記載の膜タンパク質分析用平面脂質二重膜の形成装置において、さらに
、前記チャンバ一に対応する前記基板上に形成される第 1の薄膜電極と、前記液だ め溝の近傍に配置される第 2の薄膜電極とを具備することを特徴とする膜タンパク質 分析用平面脂質二重膜の形成装置。
[11] 請求項 9又は 10記載の膜タンパク質分析用平面脂質二重膜の形成装置において
、前記脂質溶液層の膜厚を制御するために前記隔壁に前記液だめ溝に連通する通 路を具備することを特徴とする膜タンパク質分析用平面脂質二重膜の形成装置。
[12] 請求項 9又は 10記載の膜タンパク質分析用平面脂質二重膜の形成装置において
、一体的に形成される複数個のチャンバ一を具備することを特徴とする膜タンパク質 分析用平面脂質二重膜の形成装置。
[13] 請求項 12記載の膜タンパク質分析用平面脂質二重膜の形成装置において、前記 複数個のチャンバ一はアレイ状に配置されることを特徴とする膜タンパク質分析用平 面脂質二重膜の形成装置。
[14] 請求項 12又は 13記載の膜タンパク質分析用平面脂質二重膜の形成装置におい て、前記微小注入装置が各チャンバ一毎に位置決めされるカバーを具備することを 特徴とする膜タンパク質分析用平面脂質二重膜の形成装置。
[15] 請求項 12又は 13記載の膜タンパク質分析用平面脂質二重膜の形成方法におい て、前記個々のチャンバ一に異種のタンパク質を含むリボソームを与え、多種類のタ ンパク質を一括して同時計測する手段を具備することを特徴とする膜タンパク質分析 用平面脂質二重膜の形成装置。
[16] 請求項 12又は 13記載の膜タンパク質分析用平面脂質二重膜の形成方法におい て、アレイ状の個々のチャンバ一を温度の異なるように制御して異種のタンパク質を 含むリボソームを与え、温度の異なるタンパク質を一括して同時計測する手段を具備 することを特徴とする膜タンパク質分析用平面脂質二重膜の形成装置。
[17] 請求項 9記載の膜タンパク質分析用平面脂質二重膜の形成装置において、前記 小孔は下方力も上方に向力 て径が小さくなるテーパを具備することを特徴とする膜 タンパク質分析用平面脂質二重膜の形成装置。
[18] 請求項 9記載の膜タンパク質分析用平面脂質二重膜の形成装置において、前記 隔壁はシリコン基板力 なり、該シリコン基板をエッチングすることにより前記小孔を形 成することを特徴とする膜タンパク質分析用平面脂質二重膜の形成装置。
[19] 請求項 10記載の膜タンパク質分析用平面脂質二重膜の形成装置において、前記 第 1の薄膜電極と、前記第 2の薄膜電極との間に電圧を印加し、膜タンパク質の特性 を計測する手段を具備することを特徴とする膜タンパク質分析用平面脂質二重膜の 形成装置。
PCT/JP2005/000558 2004-01-21 2005-01-19 膜タンパク質分析用平面脂質二重膜の形成方法とその装置 WO2005071405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/586,331 US8039247B2 (en) 2004-01-21 2005-01-19 Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
EP05703795A EP1712909B1 (en) 2004-01-21 2005-01-19 Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
JP2005517241A JP4213160B2 (ja) 2004-01-21 2005-01-19 膜タンパク質分析用平面脂質二重膜の形成方法とその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-012995 2004-01-21
JP2004012995 2004-01-21

Publications (1)

Publication Number Publication Date
WO2005071405A1 true WO2005071405A1 (ja) 2005-08-04

Family

ID=34805368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000558 WO2005071405A1 (ja) 2004-01-21 2005-01-19 膜タンパク質分析用平面脂質二重膜の形成方法とその装置

Country Status (4)

Country Link
US (1) US8039247B2 (ja)
EP (1) EP1712909B1 (ja)
JP (1) JP4213160B2 (ja)
WO (1) WO2005071405A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248290A (ja) * 2006-03-16 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> マイクロ流路素子
JP2008092824A (ja) * 2006-10-10 2008-04-24 Seiko Instruments Inc 細胞侵襲用プローブ及び該細胞侵襲用プローブを有する細胞侵襲装置、並びに、細部侵襲方法
EP2107040A1 (en) 2008-03-31 2009-10-07 Sony Deutschland Gmbh A method of fabricating a membrane having a tapered pore
WO2010023848A1 (ja) * 2008-08-26 2010-03-04 パナソニック株式会社 人工脂質膜形成方法および人工脂質膜形成装置
JP2010054214A (ja) * 2008-08-26 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 生体分子機能解析用基板、生体分子機能解析用試料体および生体分子機能解析方法
WO2011043008A1 (ja) * 2009-10-07 2011-04-14 パナソニック株式会社 人工脂質膜形成方法
JP2011149868A (ja) * 2010-01-22 2011-08-04 Kanagawa Acad Of Sci & Technol 脂質二重膜、それを形成するために用いられる自己支持性フィルム及びそれを具備するマイクロ流路デバイス
US8062489B2 (en) 2009-10-07 2011-11-22 Panasonic Corporation Method for forming artificial lipid membrane
JP2012081405A (ja) * 2010-10-10 2012-04-26 Kanagawa Acad Of Sci & Technol 脂質二重膜の形成方法及びそのための器具
WO2013002339A1 (ja) * 2011-06-28 2013-01-03 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
JP2013037010A (ja) * 2006-08-29 2013-02-21 Internatl Business Mach Corp <Ibm> 流体のモル浸透圧濃度を測定するためのシステムおよび方法
JP2014021025A (ja) * 2012-07-20 2014-02-03 Hiroshi Sotooka 人工脂質膜形成装置および人工脂質膜形成方法
JP2014161821A (ja) * 2013-02-27 2014-09-08 Univ Of Tokyo 脂質二重膜デバイス、脂質二重膜デバイスアレイ、脂質二重膜デバイス製造装置及び脂質二重膜デバイスの製造方法
WO2015025822A1 (ja) * 2013-08-21 2015-02-26 国立大学法人東京大学 高密度微小チャンバーアレイおよびその製造方法
JP2015080421A (ja) * 2013-10-21 2015-04-27 国立大学法人 東京大学 チャンバー細胞生成方法
JP2019522196A (ja) * 2016-06-27 2019-08-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 二重層形成のための浸透性不均衡法
JP2019526043A (ja) * 2016-06-27 2019-09-12 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ナノポア配列決定セルにおける浸透性不均衡の相殺

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0505971D0 (en) * 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
GB0614835D0 (en) 2006-07-26 2006-09-06 Isis Innovation Formation of bilayers of amphipathic molecules
AU2008217579A1 (en) 2007-02-20 2008-08-28 Oxford Nanopore Technologies Limited Formation of lipid bilayers
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
US9017937B1 (en) 2009-04-10 2015-04-28 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
US9150598B2 (en) * 2011-10-05 2015-10-06 The Regents Of The University Of California Masking apertures enabling automation and solution exchange in sessile bilayers
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
GB201418512D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Electrical device with detachable components
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
WO2020183172A1 (en) 2019-03-12 2020-09-17 Oxford Nanopore Technologies Inc. Nanopore sensing device and methods of operation and of forming it
JP7253198B2 (ja) * 2019-07-23 2023-04-06 日本電信電話株式会社 脂質膜デバイスの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259075A (ja) * 1988-08-26 1990-02-28 Canon Inc 平面膜の形成方法
JP2002508516A (ja) * 1997-12-17 2002-03-19 エコル・ポリテクニック・フェデラル・ドゥ・ロザンヌ(エ・ペー・エフ・エル) ミクロ構造キャリア上における細胞単体および再構成膜系のポジショニングおよび電気生理学的特性決定

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025862A1 (en) * 1993-05-04 1994-11-10 Washington State University Research Foundation Biosensor substrate for mounting bilayer lipid membrane containing a receptor
US7244349B2 (en) * 1997-12-17 2007-07-17 Molecular Devices Corporation Multiaperture sample positioning and analysis system
CA2348002A1 (en) * 1998-10-27 2000-05-04 Malcolm W. Mcgeoch Biological ion channels in nanofabricated detectors
WO2002029402A2 (en) * 2000-10-02 2002-04-11 Sophion Bioscience A/S System for electrophysiological measurements
CN1157411C (zh) * 2001-07-27 2004-07-14 中国科学院上海原子核研究所 衬底介导的膜蛋白在脂双层中的重组方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259075A (ja) * 1988-08-26 1990-02-28 Canon Inc 平面膜の形成方法
JP2002508516A (ja) * 1997-12-17 2002-03-19 エコル・ポリテクニック・フェデラル・ドゥ・ロザンヌ(エ・ペー・エフ・エル) ミクロ構造キャリア上における細胞単体および再構成膜系のポジショニングおよび電気生理学的特性決定

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP1712909A4 *
SUZUKI ET AL: "Micro Ryuro o Mochiita Shishitsu Heimen no Saikosei", KAGAKU TO MICRO NANO SYSTEM KENKYUKAI KOEN YOSHISHU, vol. 8, 2003, pages 61, XP002992134 *
SUZUKI ET AL: "PLANAR LIPID MEMBRANE ARRAY FOR MEMBRANE PROTEIN CHIP", IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, 25 January 2004 (2004-01-25) - 29 January 2004 (2004-01-29), pages 272 - 275, XP002992135 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519794B2 (ja) * 2006-03-16 2010-08-04 日本電信電話株式会社 マイクロ流路素子
JP2007248290A (ja) * 2006-03-16 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> マイクロ流路素子
JP2013037010A (ja) * 2006-08-29 2013-02-21 Internatl Business Mach Corp <Ibm> 流体のモル浸透圧濃度を測定するためのシステムおよび方法
JP2008092824A (ja) * 2006-10-10 2008-04-24 Seiko Instruments Inc 細胞侵襲用プローブ及び該細胞侵襲用プローブを有する細胞侵襲装置、並びに、細部侵襲方法
EP2107040A1 (en) 2008-03-31 2009-10-07 Sony Deutschland Gmbh A method of fabricating a membrane having a tapered pore
JPWO2010023848A1 (ja) * 2008-08-26 2012-01-26 パナソニック株式会社 人工脂質膜形成方法および人工脂質膜形成装置
US7828947B2 (en) 2008-08-26 2010-11-09 Panasonic Corporation Artificial lipid membrane forming method and artificial lipid membrane forming apparatus
JP2010054214A (ja) * 2008-08-26 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 生体分子機能解析用基板、生体分子機能解析用試料体および生体分子機能解析方法
WO2010023848A1 (ja) * 2008-08-26 2010-03-04 パナソニック株式会社 人工脂質膜形成方法および人工脂質膜形成装置
JP4469024B2 (ja) * 2008-08-26 2010-05-26 パナソニック株式会社 人工脂質膜形成方法および人工脂質膜形成装置
WO2011043008A1 (ja) * 2009-10-07 2011-04-14 パナソニック株式会社 人工脂質膜形成方法
JP4717961B2 (ja) * 2009-10-07 2011-07-06 パナソニック株式会社 人工脂質膜形成方法
US8062489B2 (en) 2009-10-07 2011-11-22 Panasonic Corporation Method for forming artificial lipid membrane
JP2011149868A (ja) * 2010-01-22 2011-08-04 Kanagawa Acad Of Sci & Technol 脂質二重膜、それを形成するために用いられる自己支持性フィルム及びそれを具備するマイクロ流路デバイス
JP2012081405A (ja) * 2010-10-10 2012-04-26 Kanagawa Acad Of Sci & Technol 脂質二重膜の形成方法及びそのための器具
JPWO2013002339A1 (ja) * 2011-06-28 2015-02-23 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
WO2013002339A1 (ja) * 2011-06-28 2013-01-03 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
JP2014021025A (ja) * 2012-07-20 2014-02-03 Hiroshi Sotooka 人工脂質膜形成装置および人工脂質膜形成方法
JP2014161821A (ja) * 2013-02-27 2014-09-08 Univ Of Tokyo 脂質二重膜デバイス、脂質二重膜デバイスアレイ、脂質二重膜デバイス製造装置及び脂質二重膜デバイスの製造方法
WO2015025822A1 (ja) * 2013-08-21 2015-02-26 国立大学法人東京大学 高密度微小チャンバーアレイおよびその製造方法
JP2015040754A (ja) * 2013-08-21 2015-03-02 国立大学法人 東京大学 高密度微小チャンバーアレイおよびその製造方法
US10471429B2 (en) 2013-08-21 2019-11-12 The University Of Tokyo High-density microchamber array and manufacturing method thereof
JP2015080421A (ja) * 2013-10-21 2015-04-27 国立大学法人 東京大学 チャンバー細胞生成方法
JP2019522196A (ja) * 2016-06-27 2019-08-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 二重層形成のための浸透性不均衡法
JP2019526043A (ja) * 2016-06-27 2019-09-12 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ナノポア配列決定セルにおける浸透性不均衡の相殺
US10947590B2 (en) 2016-06-27 2021-03-16 Roche Sequencing Solutions, Inc. Counteracting osmotic imbalance in a sequencing cell
US11739380B2 (en) 2016-06-27 2023-08-29 Roche Sequencing Solutions, Inc. Counteracting osmotic imbalance in a sequencing cell

Also Published As

Publication number Publication date
EP1712909A1 (en) 2006-10-18
US8039247B2 (en) 2011-10-18
EP1712909B1 (en) 2012-09-19
EP1712909A4 (en) 2008-11-19
JPWO2005071405A1 (ja) 2009-05-28
US20070161101A1 (en) 2007-07-12
JP4213160B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
WO2005071405A1 (ja) 膜タンパク質分析用平面脂質二重膜の形成方法とその装置
US7563614B2 (en) Systems and methods for rapidly changing the solution environment around sensors
US7470518B2 (en) Systems and method for rapidly changing the solution environment around sensors
US20030104512A1 (en) Biosensors for single cell and multi cell analysis
US8232074B2 (en) Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells
US20090058428A1 (en) Method and device for monitoring and controlling fluid locomotion
US7501279B2 (en) Microwell arrays with nanoholes
US20050196746A1 (en) High-density ion transport measurement biochip devices and methods
US6758961B1 (en) Positioning and electrophysiological characterization of individual cells and reconstituted membrane systems on microstructured carriers
JP4953044B2 (ja) 脂質二重膜の形成方法およびその装置
US8058072B2 (en) Microanalysis measuring apparatus and microanalysis measuring method using the same
US20030180965A1 (en) Micro-fluidic device and method of manufacturing and using the same
US20120040370A1 (en) Systems and methods for rapidly changing the solution environment around sensors
JP3769622B2 (ja) 人工脂質膜の形成方法とそのための脂質平面膜形成装置
US20050009171A1 (en) Device and method for analyzing ion channels in membranes
KR101718951B1 (ko) 생체 분자 농축 장치 및 그 제조방법
KR100644862B1 (ko) 세포 분배 미소유체 칩 및 이를 이용한 패치 클램핑랩온어칩
CA2554376A1 (en) High-density ion transport measurement biochip devices and methods
Folch et al. Microwell arrays with nanoholes
Malmstadt et al. New approaches to lipid bilayer fabrication: microfluidic solvent extraction and hydrogel encapsulation
Han et al. Tutorial on chip-based electrophysiology to assess ion channel function

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517241

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005703795

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005703795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007161101

Country of ref document: US

Ref document number: 10586331

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10586331

Country of ref document: US