WO2010023848A1 - 人工脂質膜形成方法および人工脂質膜形成装置 - Google Patents

人工脂質膜形成方法および人工脂質膜形成装置 Download PDF

Info

Publication number
WO2010023848A1
WO2010023848A1 PCT/JP2009/003971 JP2009003971W WO2010023848A1 WO 2010023848 A1 WO2010023848 A1 WO 2010023848A1 JP 2009003971 W JP2009003971 W JP 2009003971W WO 2010023848 A1 WO2010023848 A1 WO 2010023848A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
thin film
chamber
artificial lipid
lipid
Prior art date
Application number
PCT/JP2009/003971
Other languages
English (en)
French (fr)
Inventor
沖明男
岡弘章
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN200980108607.9A priority Critical patent/CN101971013B/zh
Priority to JP2009552022A priority patent/JP4469024B2/ja
Publication of WO2010023848A1 publication Critical patent/WO2010023848A1/ja
Priority to US12/772,558 priority patent/US7828947B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements

Definitions

  • the present invention relates to a method for forming an artificial lipid membrane used for analysis of membrane proteins including ion channels.
  • the present invention also relates to an artificial lipid membrane forming apparatus suitable for carrying out such a method.
  • ⁇ / RTI> Material transport between the inside and outside of the cell is performed through a transmembrane protein.
  • ion channels cause changes in membrane potential due to ion permeation, and are known to play an important role in information transmission by signal generation such as nerve action potentials, and research has been actively promoted in recent years. Yes.
  • the patch clamp method An indispensable tool for conducting ion channel research is an experimental technique called the patch clamp method, which was developed in 1976 by Neher and Sakmann et al.
  • the tip of a micro glass tube called a patch electrode is first brought into close contact with the cell membrane surface.
  • the potential is fixed in a state in which the micromembrane region at the tip opening is electrically insulated from other regions, and the ion current passing through the ion channel included in the micromembrane region is measured.
  • This method has helped to identify functional elements of channel protein molecules, elucidate their working mechanisms and structures, and brought great innovation in physiological research.
  • the patch clamp method may not be applied even though it is a very effective method in physiological research as described above. For example, this is the case when it is difficult to access anatomically, that is, when analyzing a channel on an organelle or a channel on a microstructure such as a presynaptic membrane.
  • the channel molecule in order to deepen the basic structure of the channel and detailed structure-function correlation research, it is not applicable to the case where it is necessary to conduct an experiment with a simple configuration.
  • the channel molecule must be analyzed in a simple system, that is, a system composed of water, salts, phospholipids, and channels.
  • the planar lipid membrane method has been developed as an effective means when the patch clamp method cannot be applied.
  • the lipid planar membrane method is roughly classified into a bubble spraying method and a bonding method (for example, Non-Patent Document 1).
  • FIG. 18 shows a conventional method for forming an artificial lipid membrane by a bubble spraying method.
  • the container 10 is partitioned by a flat plate 11 made of a resin having a hydrophobic surface such as Teflon (registered trademark), polystyrene, and the space partitioned by the flat plate 11 is filled with the electrolytic solution 12, and the flat plate 11 is opened.
  • a lipid solution 14, that is, a mixed solution of lipid molecules and an organic solvent is applied to the micropores 13 with a pipette 15. Excess organic solvent contained in the lipid solution 14 applied to the micropores 13 is gradually removed along the peripheral edge of the micropores 13. After waiting for about 30 minutes to 3 hours, an artificial lipid membrane is formed.
  • a saturated hydrocarbon such as decane, hexadecane, or hexane is often used as the organic solvent.
  • phospholipid is often used as the lipid.
  • diphytanoyl phosphatidylcholine, glycerol monooleate, etc. are used.
  • FIGS. 19 (a), (b), and (c) show a conventional method for forming an artificial lipid membrane by a bonding method.
  • the container 20 is partitioned by a flat plate 21 made of a resin having a hydrophobic surface such as Teflon (registered trademark) or polystyrene.
  • squalene is applied to the micro holes 22 formed in the flat plate 21 as a pretreatment.
  • the electrolyte solution 23 is added to the one chamber of the container 20 from the injection port 24 so that the level of the electrolyte solution 23 does not exceed the height of the lower end of the microhole 22.
  • a lipid solution that is, a liquid mixture of lipid molecules 25 and an organic solvent is dropped onto the electrolytic solution 23 from above the container 20 and left for several minutes.
  • a lipid monomolecular film is formed at the gas-liquid interface of the electrolytic solution 23.
  • the lipid molecule 25 has a hydrophilic portion and a hydrophobic portion, and is oriented so that the hydrophilic portion of the lipid molecule 25 faces toward the electrolyte solution 23.
  • the electrolyte solution 23 is added from the injection port 24 until the height of the liquid level of the electrolyte solution 23 passes the height of the micropore 22 upper end.
  • the same operation is performed in the other chamber of the container 20. That is, the electrolyte solution 26 is added from the injection port 27 so that the height of the liquid level does not exceed the height of the lower end of the minute hole 22.
  • the lipid solution is added to the electrolyte solution 26 from above the container 20 and left for several minutes. A lipid monomolecular film is formed at the gas-liquid interface of the electrolyte solution 26.
  • the electrolyte solution 26 is added from the injection port 27 until the level of the electrolyte solution 26 passes through the height of the upper end of the minute hole 22.
  • the other lipid monomolecular film is bonded to the lipid monomolecular film previously formed in the micropores 22. As a result, an artificial lipid film is formed in the micropores 22.
  • FIG. 20 shows a conventional artificial lipid film forming apparatus described in Patent Document 1.
  • a first chamber 31 and a second chamber 33 separated from the first chamber by a partition wall 32 are provided.
  • the partition wall 32 includes a first chamber 31 and a second chamber 32.
  • At least one small hole 34 is provided in fluid communication.
  • An artificial lipid film is formed as follows using the artificial lipid film forming apparatus shown in FIG. First, the first chamber 31 is filled with the first aqueous solution, and then the second chamber 33 is filled with the lipid solution. The first aqueous solution and the lipid solution are brought into contact with each other through the small holes 34. Furthermore, the artificial lipid membrane 35 can be formed in the small hole 34 by replacing the lipid solution in the second chamber 33 with the second aqueous solution.
  • This artificial lipid film forming apparatus introduces a third introduction port for introducing a lipid solution into a fine channel, a first electrolytic solution containing a substance such as a biological substance, and a second electrolytic solution into a microchannel. A first inlet and a second inlet are provided. Then, a molecular film is formed on the boundary surface between the first electrolytic solution and the second electrolytic solution.
  • This artificial lipid film forming apparatus forms an artificial lipid film covering micropores formed in a substrate.
  • an artificial lipid membrane is formed by using a pore closing phenomenon with a solvent. That is, the lipid solution is supplied onto the substrate on which the micropores are formed, the substrate is swollen by the solvent, and the membrane is formed in a state where the micropores are closed. Thereafter, the micropores are opened by evaporation of the solvent, and the formed artificial lipid membrane is stretched.
  • a micro flow operation is performed to move the mixed solution or the electrolyte solution at the interface.
  • Japanese Patent Laying-Open No. 2005-098718 page 15, FIG. 5
  • JP 2005-185972 A page 73, FIG. 1
  • Japanese Patent Laying-Open No. 2005-245331 page 14, FIG. 2
  • the conventional artificial lipid membrane device realized on a small chip is complicated and time-consuming.
  • the conventional artificial lipid film forming apparatus is (1) a method of supplying an excess lipid solution once and discharging it, or (2) a method of combining a route for supplying a lipid solution and an electrolyte solution. Adopted. Therefore, as a method for discharging the surplus lipid solution, there are only (1) an external pump, a valve and a flow rate controller, or (2) waiting for the organic solvent in the lipid solution to vaporize and develop. .
  • Patent Document 1 an electrolyte solution and a mixture of lipid molecules and an organic solvent are sequentially fed to a microchannel, so that a liquid feeding means such as a syringe pump, a diaphragm pump, or a peristatic pump provided outside the microchannel.
  • a liquid feeding means such as a syringe pump, a diaphragm pump, or a peristatic pump provided outside the microchannel.
  • Patent Document 2 supplies an electrolytic solution and a lipid solution using a pressurizing means, a flow rate adjusting means, and the like, similar to the artificial lipid film forming apparatus of Patent Document 1.
  • Patent Document 3 is simple because the lipid solution and the electrolyte solution can be supplied by interfacial movement, but the discharge of the lipid solution must wait until the solvent evaporates. Took time.
  • An object of the present invention is to solve the above-mentioned conventional problems and to provide a method and an apparatus for forming an artificial lipid membrane in a simple and short time.
  • An artificial lipid film forming method using an artificial lipid film forming apparatus is A substrate, A first spacer provided at one end of the substrate; A first thin film provided on the substrate via the first spacer; A second spacer provided at one end of the first thin film; A second thin film provided on the first thin film via the second spacer; A cover provided at one end of the second thin film, A first chamber is provided between the substrate and the first thin film, The first thin film includes a first through hole penetrating both surfaces, A second chamber is provided between the first thin film and the second thin film; The second thin film includes a second through hole penetrating both surfaces, The cover is provided with an inlet connected to the second through hole, In plan view, the first through hole overlaps the second through hole, The first chamber is connected to the inlet through the first through hole and the second through hole, The method A first electrolyte injection step of injecting an electrolyte into the first chamber; A lipid solution injecting step of injecting a lipid
  • the present invention also provides: An artificial lipid film forming device,
  • the device is A substrate, A first spacer provided at one end of the substrate; A first thin film provided on the substrate via the first spacer; A second spacer provided at one end of the first thin film; A second thin film provided on the first thin film via the second spacer; A cover provided at one end of the second thin film,
  • a first chamber is provided between the substrate and the first thin film,
  • the first thin film includes a first through hole penetrating both surfaces,
  • a second chamber is provided between the first thin film and the second thin film;
  • the second thin film includes a second through hole penetrating both surfaces,
  • the cover is provided with an inlet connected to the second through hole, In plan view, the first through hole overlaps the second through hole,
  • the first chamber is an artificial lipid membrane forming apparatus connected to the inlet through the first through hole and the second through hole.
  • the first thin film, the first spacer, and the second thin film are integrally formed.
  • the first through hole has the same cross-sectional area as that of the second through hole.
  • the inlet preferably overlaps the first chamber in plan view.
  • the outer peripheral surface of the first chamber preferably has hydrophilicity.
  • the outer peripheral surface of the second chamber is preferably hydrophobic.
  • the outer peripheral surface of the inlet is preferably hydrophilic.
  • At least one of the first chamber and the inlet has an electrode.
  • At least one of the first chamber and the inlet has a sensor.
  • the electrolyte solution in the first electrolyte solution injection step, is preferably injected into the first chamber by capillary action.
  • the lipid solution injecting step in the lipid solution injecting step, is preferably injected into at least one of the first through hole or the second through hole by a capillary phenomenon.
  • the artificial lipid film forming method and the artificial lipid film forming apparatus of the present invention since an appropriate amount of lipid solution can be introduced into the through-hole, there is no need to provide a discharge port for discharging excess lipid solution. There is no need to provide an external pump. Moreover, it is not necessary to wait for a long time until the artificial lipid membrane is formed. As a result, an artificial lipid membrane can be formed in a simpler and shorter time than a conventional artificial lipid membrane forming apparatus.
  • FIG. 1 is a cross-sectional view of an artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is an oblique projection of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is an enlarged view of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged view of the first through hole and the second through hole in Embodiment 1 of the present invention.
  • FIG. 6 is an operation diagram of the artificial lipid film forming apparatus in Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view of an artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is an explanatory diagram of a second electrolyte solution injection step in Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional view and an oblique projection of the artificial lipid film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is an exploded perspective view of the artificial lipid film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view and a perspective view of an artificial lipid film forming apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a cross-sectional view and a perspective view of an artificial lipid film forming apparatus according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view and a perspective view of an artificial lipid film forming apparatus according to Embodiment 5 of the present invention.
  • FIG. 13 is a photomicrograph of an artificial lipid membrane in an example of the present invention.
  • FIG. 14 is a graph showing a transient response of the current flowing through the artificial lipid membrane in the example of the present invention.
  • FIG. 15 is a diagram showing an artificial lipid film forming apparatus in a comparative example.
  • FIG. 16 is a micrograph of the artificial lipid membrane in the comparative example.
  • FIG. 17 is a comparison diagram of the formation rate of artificial lipid membranes.
  • FIG. 18 is a schematic diagram of a conventional artificial lipid film forming apparatus (bubble blowing method).
  • FIG. 19 is a schematic view of a conventional artificial lipid film forming apparatus (bonding method).
  • FIG. 20 is a schematic diagram of a conventional artificial lipid film forming apparatus (Patent Document 1).
  • FIG. 1 to 3 are a cross-sectional view, an exploded perspective view, and an oblique projection view of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention.
  • the artificial lipid film forming apparatus 100 includes a substrate 101.
  • the material of the substrate 101 is most preferably glass.
  • the glass may be soda glass, quartz, borosilicate glass, low-melting glass, photosensitive glass, or the like.
  • the substrate 101 may be another inorganic material such as silicon or aluminum oxide, an organic material such as polyethylene, polypropylene, or vinyl chloride, or another organic material.
  • the material of the substrate 101 may be a combination of a plurality of materials.
  • At least a part of the outer peripheral surface of the substrate 101 preferably has a hydrophilic surface. In order to make at least a part of the outer peripheral surface of the substrate 101 hydrophilic, oxygen plasma treatment may be performed, or coating may be performed with a hydrophilic material. Moreover, you may perform the other hydrophilic process generally known.
  • the substrate 101 is preferably transparent from the viewpoint of optical measurement. In the present invention, the shape of the substrate 101 is not limited.
  • a first spacer 102 is provided on the substrate 101.
  • the material of the first spacer 102 may be an organic material or an inorganic material.
  • the organic material is most preferably Teflon (registered trademark), and may be an organic polymer such as polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, and polydimethylsiloxane. Plastics such as polyethylene, polypropylene, and vinyl chloride may be used.
  • a silicon-based, epoxy-based, or vinyl-based adhesive, a photoresist, a photosensitive organic material including polyimide, or the like may be used.
  • the glass may be soda glass, quartz, borosilicate glass, low melting point glass, or the like.
  • silicon, silicon oxide, aluminum oxide, silicon nitride, or the like may be used.
  • the material of the first spacer 102 may be a combination of a plurality of materials.
  • the outer peripheral surface of the first spacer 102 has a hydrophilic surface.
  • the first spacer 102 is preferably subjected to a hydrophilic treatment.
  • oxygen plasma treatment may be performed, or it may be covered with a hydrophilic material.
  • the shape of the first spacer 102 is not limited. However, in general, the first spacer 102 is provided along the outer periphery of the substrate 101.
  • the first thin film 103 is provided on the first spacer 102. That is, the first spacer 102 is provided between the substrate 101 and the first thin film 103.
  • the material of the first thin film 103 is preferably an organic material.
  • the organic material is most preferably Teflon (registered trademark), but organic polymers such as polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, polydimethylsiloxane, and parylene may be used.
  • organic materials silicon-based, epoxy-based, vinyl-based adhesives, photoresists, photosensitive organic materials including polyimide, and the like may be used.
  • the first thin film 103 is made of an inorganic material such as glass, silicon oxide, and aluminum oxide, and the surface thereof is Teflon (registered trademark), polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, polydimethyl. Cover with organic polymer such as siloxane, parylene, silicon-based, epoxy-based, vinyl-based adhesive, photoresist, photosensitive organic material including polyimide, and self-assembled film (SAM film) including hydrocarbon. Also good.
  • the material of the first thin film 103 may be a combination of a plurality of materials.
  • At least a part of the outer peripheral surface of the first thin film 103 has a hydrophobic surface. This is because the hydrophobic part of the lipid molecule is held by the hydrophobic surface of the first thin film 103, so that the artificial lipid film becomes stable.
  • the thickness of the first thin film 103 is preferably 50 nm to 10 mm, and more preferably 1 ⁇ m to 1 mm.
  • a second spacer 104 is provided on the first thin film 103. That is, the first thin film 103 is provided between the second spacer 104 and the first spacer 102.
  • the material of the second spacer 104 may be an organic material or an inorganic material.
  • the organic material is most preferably Teflon (registered trademark), and may be an organic polymer such as polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, and polydimethylsiloxane. Plastics such as polyethylene, polypropylene, and vinyl chloride may be used.
  • a silicon-based, epoxy-based, or vinyl-based adhesive a photosensitive organic material including a photoresist, polyimide, or the like may be used.
  • the glass may be soda glass, quartz, borosilicate glass, low melting point glass, or the like.
  • silicon, silicon oxide, aluminum oxide, silicon nitride, or the like may be used.
  • the material of the second spacer 104 may be a combination of a plurality of materials. It is preferable that at least a part of the outer peripheral surface of the second spacer 104 has a hydrophilic surface.
  • the second spacer 104 is subjected to a hydrophilic treatment.
  • a hydrophilic treatment In order to make at least a part of the outer peripheral surface of the second spacer 104 hydrophilic, oxygen plasma treatment may be performed, or it may be coated with a hydrophilic material. Moreover, you may perform the other hydrophilic process generally known.
  • the shape of the second spacer 104 is not limited. However, in general, the second spacer 104 is provided along the outer periphery of the substrate 101.
  • the second thin film 105 is provided on the second spacer 104. That is, the second spacer 104 is provided between the second thin film 105 and the first thin film 103.
  • the material of the second thin film 105 is preferably an organic material.
  • the organic material is preferably plastic.
  • the organic material is most preferably Teflon (registered trademark), and may be an organic polymer such as polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, polydimethylsiloxane, and parylene.
  • photosensitive organic materials including silicon-based, epoxy-based, and vinyl-based adhesives, photoresists, and polyimides may be used.
  • the second thin film 105 is made of an inorganic material such as glass, silicon oxide, aluminum oxide, and the surface thereof is Teflon (registered trademark), polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, polydimethylsiloxane. , Organic polymers such as parylene, silicon-based, epoxy-based, vinyl-based adhesives, photoresists, photosensitive organic materials including polyimide, and self-assembled films (SAM films) containing hydrocarbons good.
  • the material of the second thin film 105 may be a combination of a plurality of materials.
  • At least a part of the outer peripheral surface of the second thin film 105 has a hydrophobic surface. This is because the hydrophobic part of the lipid molecule is held by the hydrophobic surface of the second thin film 105, so that the artificial lipid film becomes stable.
  • the thickness of the second thin film 105 is preferably 50 nm to 10 mm, and more preferably 1 ⁇ m to 1 mm.
  • the cover 106 is provided on the second thin film 105. That is, the second thin film 105 is provided between the cover 106 and the second spacer 104.
  • the material of the cover 106 is preferably an organic material.
  • the organic material is preferably polydimethylsiloxane.
  • the organic material may be an organic polymer such as polysulfone, polystyrene, polymethyl methacrylate, polyethylene, polyethylene terephthalate, vinyl chloride, polydimethylsiloxane, or parylene.
  • a photosensitive organic material including a photoresist and polyimide may be used.
  • the cover 106 may be made of an inorganic material such as glass, silicon oxide, or aluminum oxide. At least a part of the outer peripheral surface of the cover 106 preferably has a hydrophilic surface, but may have a hydrophobic surface.
  • the material of the cover 106 may be a combination of a plurality of materials.
  • the cover 106 is preferably transparent from the viewpoint of optical measurement. In the present invention, the shape of the cover 106 is not limited.
  • the first chamber 107 is formed between the substrate 101 and the first thin film 103.
  • the height 114 of the first chamber 107 is preferably 10 nm to 100 mm, and more preferably 10 nm to 1 mm.
  • the width 120 of the first chamber 107 is preferably 10 nm or more and 100 mm or less, and more preferably 1 ⁇ m or more and 5 mm or less.
  • the length 121 of the first chamber 121 is preferably 10 nm to 100 mm, and more preferably 1 ⁇ m to 5 mm.
  • the height 114 of the first chamber 107 may be all the same or different in the first chamber 107.
  • the width 120 of the first chamber 107 and the length 121 of the first chamber 107 may all be the same or different in the first chamber 107.
  • the shape of the first chamber 107 is not limited.
  • the shape of the first chamber 107 is most preferably a rectangular parallelepiped, but may be another shape such as a cylinder or a triangular prism.
  • the first through hole 108 is formed so as to penetrate both surfaces of the first thin film 103.
  • the first through hole 108 is most preferably circular.
  • the first through hole 108 may have another shape such as an ellipse, a square, a rectangle, a rhombus, a hexagon, or a polygon.
  • the diameter 122 of the first through hole 108 is preferably 10 nm or more and 1 mm or less, and more preferably 2 ⁇ m or more and 200 ⁇ m or less.
  • the processing method of the first through hole 108 may be machining such as cutting or punching, lithography, etching, sandblasting, stereolithography, nanoimprinting, or the like.
  • the inner wall of the first through hole 108 is preferably flat, but a groove structure or a concavo-convex structure may be provided.
  • the number of the first through holes 108 is most preferably one, but may be two or more. When two or more first through holes 108 are provided, the shapes of the first through holes 108 may all be the same or different. Further, when two or more first through holes 108 are provided, the diameters 122 of the first through holes 108 may all be the same or different.
  • the second chamber 109 is formed between the first thin film 103 and the second thin film 105.
  • the second chamber 109 is connected to the first chamber 107 through the first through hole 108.
  • the height 115 of the second chamber 109 is preferably 10 nm or more and 1 mm or less, and more preferably 10 nm or more and 10 ⁇ m or less.
  • the width 123 of the second chamber 109 is preferably 10 nm to 100 mm, and more preferably 1 ⁇ m to 5 mm.
  • the length 124 of the second chamber 109 is preferably 10 nm to 100 mm, and more preferably 1 ⁇ m to 5 mm.
  • the height 115 of the second chamber 109 may be all the same or different in the second chamber 109.
  • the lipid solution is preferably injected in one direction.
  • the height decreases in the vicinity of the outer peripheral edges of the first through hole 108 and the second through hole 110, it is preferable because injection of an excessive lipid solution can be suppressed.
  • the width 123 of the second chamber 109 and the length 124 of the second chamber 109 may all be the same or different in the second chamber 109.
  • the shape of the second chamber 109 is not limited.
  • the shape of the second chamber 109 is most preferably a rectangular parallelepiped, but may be another shape such as a cylinder or a triangular prism.
  • a groove structure or an uneven structure may be provided on the inner wall of the second chamber 109.
  • the second through hole 110 is formed so as to penetrate both surfaces of the second thin film 105.
  • the shape of the second through hole 110 is most preferably circular.
  • the shape of the second through hole 110 may be other shapes such as an ellipse, a square, a rectangle, a rhombus, a hexagon, and a polygon.
  • the diameter 125 of the second through hole 110 is preferably 10 nm or more and 1 mm or less, and more preferably 2 ⁇ m or more and 200 ⁇ m or less.
  • the diameter 125 of the second through hole 110 is preferably the same as the diameter 122 of the first through hole 108, but may be different.
  • the processing method of the second through hole 110 may be machining such as cutting or punching, lithography, etching, sand blasting, stereolithography, nanoimprinting, or the like.
  • the inner wall of the second through-hole 110 is preferably flat, but a groove structure or an uneven structure may be provided.
  • the number of the second through holes 110 is most preferably one, but may be two or more. When two or more second through holes 110 are provided, the shapes of the second through holes 110 may all be the same or different. Further, when two or more second through holes 110 are provided, the diameters 125 of the second through holes 110 may all be the same or different.
  • first through hole 108 and the second through hole 110 have the same shape.
  • the shapes of the first through hole 108 and the second through hole 110 will be described in detail below.
  • 4A to 4C are enlarged views of the periphery of the first through hole 108 and the second through hole 110 of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention. 4A to 4C, only the first thin film 103 and the second thin film 105 are shown for ease of explanation.
  • the first through hole 108 and the second through hole 110 are most preferably cylindrical.
  • the first through hole 108 and the second through hole 110 are preferably the same size.
  • the area of the cross section 108 b of the first through hole 108 is preferably substantially equal to the area of the cross section 110 a of the second through hole 110. This is because it is easy to inject a lipid solution.
  • the diameter of the cross section 108b of the first through hole 108 is preferably 10 nm to 1 mm, and more preferably 2 ⁇ m to 200 ⁇ m.
  • the diameter of the cross section 110a of the second through-hole 110 is preferably 10 nm or more and 1 mm or less, and more preferably 2 ⁇ m or more and 200 ⁇ m or less.
  • At least one of the first through hole 108 and the second through hole 110 may be a trapezoidal column.
  • the first through hole 108 and the second through hole 110 may be the same size.
  • the area of the cross section 108 b of the first through hole 108 is preferably substantially equal to the area of the cross section 110 a of the second through hole 110.
  • the area of the cross section 108b of the first through hole 108 is preferably smaller than the area of the cross section 108a of the first through hole 108.
  • the area of the cross section 110 a of the second through hole 110 is preferably smaller than the area of the cross section 110 b of the second through hole 110.
  • the first through hole 108 and the second through hole 110 may be trapezoidal columnar.
  • the area of the cross section 108 b of the first through hole 108 is preferably substantially equal to the area of the cross section 110 a of the second through hole 110.
  • the area of the cross section 108b of the first through hole 108 is preferably larger than the area of the cross section 108a of the first through hole 108.
  • the area of the cross section 110 a of the second through hole 110 is preferably smaller than the area of the cross section 110 b of the second through hole 110.
  • the shapes of the first through hole 108 and the second through hole 110 have been described only for the cylindrical type. However, the same applies to other shapes.
  • first through hole 108 and the second through hole 110 are provided at overlapping positions.
  • the positional relationship between the first through hole 108 and the second through hole 110 will be described in detail below.
  • 5A to 5C show the first through hole 108 and the second through hole of the artificial lipid film forming apparatus according to Embodiment 1 of the present invention, as viewed from the normal direction of the first thin film 103 and the second thin film 105.
  • FIG. 2 is an enlarged view of a hole 110.
  • FIG. 5A to 5C only the first through hole 108 and the second through hole 110 are shown for ease of explanation.
  • first through hole 108 and the second through hole 110 coincide.
  • the shapes of the first through hole 108 and the second through hole 110 are cylindrical.
  • the first through hole 108 and the second through hole 110 may partially overlap each other.
  • FIG. 5B shows that the diameter of the first through hole 108 is smaller than the diameter of the second through hole 110. Note that the diameter of the first through hole 108 may be larger than the diameter of the second through hole 110.
  • the center position of the first through hole 108 may be different from the center position of the second through hole 110.
  • the diameter of the first through hole 108 may be different from the diameter of the second through hole 110.
  • first through holes 108 and second through holes 110 their arrangement may be linear, circumferential, radial, square lattice, triangular lattice, or triangular lattice. It may be a shape.
  • the first opening 111 is formed at one end of the substrate 101 and the first thin film 103. It is preferable that the first projecting portion 191 is formed by changing the position of the end portion of the substrate 101 and the end portion of the first thin film 103 to form the first opening 111.
  • the length 130 of the first projecting portion 191 of the first opening 111 shown in FIG. 3 is preferably 1 mm or more and 10 mm or less.
  • the width 131 of the first projecting portion 191 of the first opening 111 is preferably 1 mm or more and 20 mm or less.
  • the first opening 111 may be flat as shown in FIG. 3 or may have a groove structure or a concavo-convex structure so that liquid can be easily injected.
  • the second opening 112 is formed at one end of the first thin film 103 and the second thin film 105. As shown in FIG. 1, it is preferable that the second projecting portion 192 is formed by changing the position of the end portion of the first thin film 103 and the end portion of the second thin film 105 to form the second opening 112.
  • the length 132 of the second overhanging portion 192 of the second opening 112 shown in FIG. 3 is preferably 1 mm or more and 10 mm or less.
  • the width 133 of the second projecting portion 192 of the second opening 112 is preferably 1 mm or more and 20 mm or less.
  • the second opening 112 may be flat as shown in FIG. 3, or may have a groove structure or a concavo-convex structure so that liquid can be easily injected.
  • the inlet 113 is formed at one end of the cover 106.
  • the inlet 113 is connected to the second chamber 109 through the second through hole 110. As shown in FIG. 1, it is preferably formed so as to penetrate the cover 106.
  • the shape of the inlet 113 is preferably a cylindrical shape, but may be other shapes.
  • the diameter 134 of the injection port 113 is preferably 0.5 mm or more and 2 mm or less.
  • the substrate 101 and the first spacer 102 may be integrated.
  • the first spacer 102 and the first thin film 103 may be integrated.
  • the first thin film 103 and the second spacer 104 may be integrated.
  • the first spacer 102, the first thin film 103, and the second spacer 104 may be integrated.
  • the first thin film 103, the second spacer 104, and the second thin film 105 may be integrated.
  • the second spacer 104 and the second thin film 105 may be integrated.
  • the second thin film 105 and the cover 106 may be integrated.
  • the substrate 101, the first spacer 102, the first thin film 103, the second spacer 104, the second thin film 105, and the cover 106 are preferably bonded after being laminated.
  • Each layer may be adhered using an adhesive, or may be welded by applying heat.
  • Each laminated layer may be sandwiched between two plates and fixed with bolts, or may be joined by other methods.
  • FIG. 6 shows an operation diagram of the artificial lipid film forming apparatus in Embodiment 1 of the present invention.
  • the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIGS. 6A and 6B show the first electrolyte injection process.
  • the first electrolyte 301 is injected into the first chamber 107 from the first opening 111.
  • the first electrolytic solution 301 preferably contains KCl, and more preferably isotonic KCl solution. It is preferable that the 1st electrolyte solution 301 is a physiological condition in a cell.
  • the pH is preferably around 7.
  • a buffer solution such as HEPES may be used.
  • a general solution used in electrophysiological experiments may be used.
  • the Ca 2+ concentration is preferably 10 to 100 nM.
  • a Ca 2+ chelator such as EGTA may be used.
  • the amount of the first electrolytic solution 301 to be injected is most preferably about the same as the volume of the first chamber 107, but may be smaller or larger than the volume of the first chamber 107.
  • the first electrolyte solution injection step it is most preferable to inject the first electrolyte solution 301 into the first chamber 107 by capillary action.
  • the first electrolyte solution 301 may be injected by its own weight or by other methods. You may do it.
  • 6A and 6B show a state in which the first electrolyte solution 301 is injected into the first chamber 107 by capillary action.
  • the first electrolytic solution 301 is sequentially injected from the first opening 111 toward the first through hole 108 as shown in FIG. Then, as shown in FIG. 6B, the inside of the first chamber 107 is filled with the first electrolytic solution 301.
  • the first electrolytic solution 301 When the first electrolytic solution 301 is injected into the first chamber 107 by capillary action, it is preferable that at least a part of the outer peripheral surface of the substrate 101 is subjected to a hydrophilic treatment. Of the outer peripheral surface of the substrate 101, it is preferable that a portion in contact with the first electrolytic solution 301 is subjected to a hydrophilic treatment. Of the outer peripheral surface of the substrate 101, the vicinity of the first through hole 108 is preferably subjected to a hydrophilic treatment.
  • the first electrolyte solution injection step may include a step of detecting that the first electrolyte solution 301 has been injected into the first chamber 107.
  • a step of detecting that the first electrolyte solution 301 has been injected into the first chamber 107 In order to detect that the first electrolytic solution 301 has been injected into the first chamber 107, observation with an optical microscope may be used. A plurality of electrodes may be provided in the first chamber 107, and the electrical conductivity may be measured and detected. You may use the method of detecting presence of other general electrolyte solution.
  • FIG. 6C shows a lipid solution injection process.
  • the lipid solution 302 is injected into the second chamber 109 from the second opening 112.
  • the lipid solution 302 may be injected into the first through hole 108 and the second through hole 110 via the second chamber 109.
  • the lipid solution 302 may be injected into the second through hole 110 via the second chamber 109.
  • the lipid solution 302 is preferably a lipid dispersed in an organic solvent.
  • the lipid is a phospholipid.
  • the lipid may be a glycolipid, a lipolipid, or another lipid.
  • the lipid may be azolectin, other naturally derived lipid, or synthetic lipid. Synthetic lipids are more preferred because they are easy to obtain highly pure and chemically stable. Specifically, it may be phospholipid diphytanoylphosphadylcholine, glycerol monooleate, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, dipalmitoylphosphatidylcholine, or other phospholipids.
  • the fatty acid portion of the lipid molecule is preferably a saturated or unsaturated fatty acid having 10 to 20 carbon atoms. These lipids may be used alone or in combination of two or more.
  • the lipid concentration relative to the organic solvent is preferably 3 to 50 mg / mL, more preferably 4 to 40 mg / mL.
  • the lipid solution 302 may be mixed with a substance that gives the artificial lipid membrane a net surface charge.
  • the surface charge of the artificial lipid membrane is preferably negative.
  • phosphatidylserine, phosphatidylinositol or the like may be mixed.
  • the substance for imparting electric charge to the artificial lipid membrane may be mixed in advance before the lipid solution injection step, or may be mixed after the artificial lipid membrane formation step. In the present invention, the amount of substance for imparting electric charge to the artificial lipid membrane is not limited.
  • the lipid solution 302 may be mixed with biological membrane proteins such as receptors, ion channels, and G proteins, and secreted proteins.
  • the lipid solution 303 may be mixed with a polypeptide such as gramicidin. Only one type of biological membrane protein, secreted protein, polypeptide or the like may be mixed, or a plurality of types may be mixed.
  • Biological membrane proteins, secreted proteins, polypeptides and the like may be mixed in advance before the lipid solution injection step.
  • Biological membrane proteins, secreted proteins, polypeptides and the like may be mixed after the artificial lipid membrane formation step.
  • the biological membrane protein or secreted protein when mixing biological membrane protein or secreted protein after the artificial lipid membrane formation step, the biological membrane protein or secreted protein may be temporarily incorporated into the vesicle, and the vesicle may be fused to the artificial lipid membrane.
  • the mixing technique may be used.
  • the artificial lipid film forming apparatus 100 may be provided with a mechanism for mixing biological membrane proteins, secreted proteins, polypeptides and the like.
  • the lipid solution injection step it is most preferable to inject the lipid solution 302 into the second chamber 109 by capillary action.
  • the lipid solution 302 may be injected into the second chamber 109 by its own weight, or may be injected by other methods.
  • the lipid solution injection step it is preferable to start injection of the lipid solution 302 into the second chamber 109 after the first chamber 107 is filled with the first electrolyte solution 301.
  • the lipid solution injection step may include a step of detecting that the lipid solution 302 has been injected into the second chamber 109.
  • a step of detecting that the lipid solution 302 has been injected into the second chamber 109 In order to detect the completion of the injection of the lipid solution 302 into the second chamber 109, observation with an optical microscope may be used. Other general methods for detecting the presence of organic solvents or lipid solutions may be used.
  • FIG.6 (d) represents a 2nd electrolyte solution injection
  • the second electrolyte solution injection step the second electrolyte solution 303 is injected into the injection port 113.
  • the second electrolytic solution 303 preferably contains KCl, and more preferably isotonic KCl solution. It is preferable that the 2nd electrolyte solution 303 is a physiological condition in a cell.
  • the pH is preferably around 7.
  • a buffer solution such as HEPES may be used.
  • the Ca 2+ concentration is preferably 10 to 100 nM.
  • a Ca 2+ chelator such as EGTA may be used.
  • the amount of the second electrolytic solution 303 to be injected is most preferably about the same as the volume of the inlet 113, but may be smaller or larger than the volume of the inlet 113.
  • the second electrolytic solution 303 may be the same as or different from the first electrolytic solution 301.
  • FIGS. 7A and 7B show how the second electrolytic solution 303 is injected into the injection port 113 in the second electrolytic solution injection step.
  • the inner wall surface of the inlet 113 is disposed so as not to break the membrane of the lipid solution 302 formed in the first through-hole 108 when the second electrolytic solution 303 is dropped into the inlet 113. It is preferable to inject the second electrolytic solution 303 along 113a.
  • the inner wall surface 113a of the inlet 113 is preferably inclined.
  • the inner wall surface 110c of the second through hole 110 is preferably inclined.
  • the inner wall surface 110c of the second through hole 110 may be inclined.
  • the inclination angles of the inner wall surface 113a of the inlet 113 and the inner wall surface 110c of the second through hole 110 may be the same or different.
  • the inner wall surface 113a of the inlet 113 is preferably subjected to a hydrophilic treatment.
  • the inner wall surface 110c of the second through hole 110 is preferably subjected to a hydrophilic treatment.
  • the inner wall surface 113a of the inlet 113 may be flat, or may have a groove structure or a concavo-convex structure so that the second electrolyte solution 303 can be easily injected.
  • the injection of the second electrolyte solution 303 is preferably started after the first through hole 108 and the second through hole 110 are filled with the lipid solution 302.
  • the injection of the second electrolyte solution 303 is preferably started after the second through hole 110 is filled with the lipid solution 302.
  • the second electrolyte solution injection step may include a step of detecting that the second electrolyte solution 303 has been injected into the injection port 113.
  • a step of detecting that the second electrolyte solution 303 has been injected into the injection port 113 In order to detect that the second electrolyte solution 303 has been injected into the injection port 113, observation with an optical microscope may be used. A plurality of electrodes may be provided at the inlet 113 and the electrical conductivity may be measured and detected. You may use the method of detecting presence of other general electrolyte solution.
  • an artificial lipid membrane is formed in the first through hole 108.
  • Artificial lipid membranes may be formed in the first through hole 108 and the second through hole 110.
  • An artificial lipid film may be formed only in the second through hole 110.
  • the artificial lipid membrane is a lipid bilayer membrane.
  • the organic solvent is removed from the thin film of the lipid solution 302 by the weight of the second electrolytic solution 303. Excess organic solvent is preferably removed along the outer peripheral surface of at least one of the first thin film 103 and the second thin film 105. In order to promote the removal of the organic solvent, there is a groove structure, a concavo-convex structure, etc.
  • a structure for controlling the microfluid may be provided on the outer peripheral surface of at least one of the first thin film 103 and the second thin film 105 and in the vicinity of the first through hole 108 and the second through hole 110 . Further, in order to prevent the removal of the organic solvent from proceeding more than necessary, at least one outer peripheral surface of the first thin film 103 and the second thin film 105 and in the vicinity of the first through hole 108 and the second through hole 110, A structure for controlling a microfluid such as a groove structure or an uneven structure may be provided.
  • the artificial lipid film forming step may include a step of detecting the formation of the artificial lipid film. In order to detect the formation of the artificial lipid film, observation with an optical microscope may be used. The absorbance of the artificial lipid membrane may be measured. A plurality of electrodes may be provided in the first chamber 107 and the inlet 113, and the membrane resistance, membrane capacitance, membrane current, etc. of the artificial lipid membrane may be measured, or other electrical characteristics may be measured.
  • the artificial lipid membrane device 100 may be installed and operated in the direction shown in FIG. 1, or may be operated in another direction.
  • the artificial lipid film forming apparatus 100 shown in FIG. 1 may be installed and operated in a direction rotated 90 degrees counterclockwise in the paper.
  • the series of steps from the first electrolyte injection step to the artificial lipid membrane formation step is preferably performed at 20 ° C. or more and 60 ° C. or less, and more preferably 25 ° C. or more and 40 ° C. or less.
  • Analytical devices are used for clinical laboratory analyzers, electrochemical analyzers, gas analyzers, taste analyzers, neurophysiology analyzers, ion channel analyzers, ion channel functional analyzers, drug screening analyzers, biosensing devices, etc. May be.
  • Embodiment 2 (Embodiment 2)
  • the artificial lipid film forming method in Embodiment 2 of the present invention will be described with reference to the drawings.
  • 8 (a) and 8 (b) are a cross-sectional view and an oblique projection view of the artificial lipid film forming apparatus according to the second embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the difference between the present embodiment and the first embodiment is the shape of the inlet 113. Moreover, the difference between this embodiment and Embodiment 1 is a 2nd electrolyte solution injection
  • the artificial lipid film forming apparatus 100 includes a third spacer 201.
  • a cover 106 is provided at one end of the third spacer 201.
  • a third chamber 202 is formed between the second thin film 105 and the cover 106.
  • the height 203 of the third chamber 202 is preferably 10 nm to 100 mm, and more preferably 10 nm to 1 mm.
  • the height 203 of the third chamber 202 may be the same or different in the third chamber 202.
  • FIG. 9 is an exploded perspective view of the artificial lipid film forming apparatus according to Embodiment 2 of the present invention.
  • the width 126 of the third chamber 202 and the length 127 of the third chamber 202 may be the same or different in the third chamber 202.
  • the shape of the third chamber 107 is not limited.
  • the shape of the third chamber 107 is most preferably a rectangular parallelepiped, but may be another shape such as a cylinder or a triangular prism.
  • the width 126 of the third chamber 202 is preferably 10 nm to 100 mm, and more preferably 1 ⁇ m to 5 mm.
  • the length 127 of the third chamber 202 is preferably 10 nm to 100 mm, and more preferably 1 ⁇ m to 5 mm.
  • the inlet 113 is formed at one end of the second thin film 105 and the cover 106. It is preferable that the third projecting portion 193 is formed by changing the positions of the end portions of the second thin film 105 and the cover 106 to serve as the inlet 113.
  • the length 204 of the third projecting portion 193 of the inlet 113 shown in FIG. 8B is preferably 1 mm or more and 10 mm or less.
  • the width 205 of the third projecting portion 193 of the inlet 113 is preferably 1 mm or more and 20 mm or less.
  • the inlet 113 may be flat as shown in FIG. 8B, or may be provided with a groove structure or an uneven structure so that liquid can be easily injected.
  • the second electrolyte solution injection step it is preferable to inject an appropriate amount of the second electrolyte solution 303 from the injection port 113 into the third chamber 202 by capillary action.
  • the second electrolytic solution 303 is injected into the third chamber 202 by capillary action, it is preferable that at least a part of the outer peripheral surface of the cover 106 is subjected to a hydrophilic treatment.
  • the portion in contact with the second electrolytic solution 303 is preferably subjected to a hydrophilic treatment.
  • the vicinity of the second through hole 110 is preferably subjected to a hydrophilic treatment.
  • oxygen plasma treatment may be performed, or a cover may be coated with a hydrophilic material.
  • the artificial lipid membrane device 100 may be installed and operated in the direction shown in FIG. 8A, or may be operated in another direction.
  • the artificial lipid film forming apparatus 100 shown in FIG. 8A may be installed and operated in a direction rotated 90 degrees counterclockwise within the paper surface.
  • the openings are directed in the same direction, (2) when the second electrolyte solution 303 is injected into the third chamber 202, a capillary phenomenon can be used, so that it is easy. As a result, an artificial lipid membrane can be easily formed.
  • Embodiment 3 (Embodiment 3)
  • the artificial lipid film forming method in Embodiment 3 of the present invention will be described with reference to the drawings.
  • 10 (a) and 10 (b) are a cross-sectional view and an oblique projection view of the artificial lipid film forming apparatus according to the third embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the difference between the present embodiment and the first embodiment is the shape of the first opening 111 and the second opening 112.
  • the first opening 111 may be a through hole formed in the first thin film 103, the second thin film 105, and the cover 106.
  • the second opening 112 may be a through-hole formed in the second thin film 105 and the cover 106.
  • the openings are directed in the same direction, (2) the openings and the injection port can be made small, so the solution is difficult to evaporate, and as a result, an artificial lipid membrane is simply formed. it can.
  • Embodiment 4 the artificial lipid film forming method in Embodiment 4 of the present invention will be described with reference to the drawings.
  • FIG. 11 is a cross-sectional view and an oblique projection view of the artificial lipid film forming apparatus according to the fourth embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the difference between the present embodiment and the first embodiment is that an electrode 401 is provided in the first chamber 107 and the inlet 113.
  • the electrode 401 may be one or plural.
  • the electrode 401 is preferably an electrode suitable for electrochemical measurement.
  • a non-polarizable electrode is preferred.
  • the electrode 401 is most preferably an Ag / AgCl electrode, but may be a saturated calomel electrode, a hydrogen electrode, or the like.
  • the electrode 401 may be a metal electrode such as an Ag electrode, a Pt electrode, or an Au electrode, or may be a carbon electrode, a graphite electrode, a carbon nanotube electrode, or the like.
  • the conductance and electric capacity of the artificial lipid membrane may be measured using the electrode 401.
  • the electrode 401 may be used to measure chemical substances such as ions, enzymes, reaction products, and substrates contained in the first electrolytic solution 301 or the second electrolytic solution 303.
  • the electrode shape and size are not limited.
  • the position of the electrode 401 is in the first chamber 107 and the inlet 113 and is provided in the vicinity of the first through hole 108 and the second through hole 110.
  • the electrodes 401a and 401b may be the same electrode or different.
  • a plurality of electrodes may be combined.
  • the electrode 401 may be provided in advance before forming the artificial lipid membrane, or may be provided after forming the artificial lipid membrane.
  • the electrode 401 may be fixed to the artificial lipid film forming apparatus 100 or may be removable.
  • the electrode 401 a provided in the first chamber 107 is preferably formed on the outer peripheral surface of the substrate 101.
  • the electrode 401 b provided at the inlet 113 is preferably formed on the outer peripheral surface of the second thin film 105 or the outer peripheral surface of the cover 106.
  • the amplifier is most preferably a patch clamp amplifier, but an amplifier such as a field effect transistor, bipolar transistor, operational amplifier, or operational amplifier may be connected.
  • the progress and end point of each process until the artificial lipid membrane fat is formed can be detected using the electrode 401.
  • the first electrolyte solution injection step if two electrodes are provided in the first chamber 107 and the electrical conductivity between the two electrodes is measured, it is easily detected that the injection of the first electrolyte solution 301 has been completed. it can.
  • the path for injecting the lipid solution and the path for injecting the electrolyte are provided separately, the electrode immersed in the electrolyte is not contaminated by the lipid solution. Therefore, since no troublesome steps such as protection of the electrode surface and cleaning of the electrode surface are required, an artificial lipid membrane can be easily formed.
  • Embodiment 5 (Embodiment 5)
  • the artificial lipid film forming method in Embodiment 5 of the present invention will be described with reference to the drawings.
  • FIG. 12 is a cross-sectional view and an oblique projection of the artificial lipid film forming apparatus in the fifth embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a sensor 402 is provided in the first chamber 107.
  • the sensor 402 may be provided in advance before forming the artificial lipid film, or may be provided after forming the artificial lipid film.
  • the sensor 402 may be fixed to the artificial lipid film forming apparatus 100 or may be removable.
  • the sensor 402 provided in the first chamber 107 is most preferably formed on the outer peripheral surface of the substrate 101.
  • the senor 402 is most preferably a sensor suitable for electrochemical measurement.
  • the sensor 402 is most preferably an ion electrode or an ion sensitive field effect transistor (ISFET).
  • the ion electrode is preferably a potassium ion electrode, a sodium ion electrode, a calcium ion electrode, a chloride ion electrode or the like. It is preferable to detect potassium ions, sodium ions, calcium ions, chloride ions, etc. with an ion sensitive field effect transistor.
  • the sensor 402 may be an optode, a QCM (Quartz crystal microbalance), a SAW (Surface acoustic wave) sensor, an SPR (Surface plasma resonance), an LSPR (Localized surface plasma microbalance), an organic electrochemical transistor, an enzyme sensor, or the like.
  • a light source or detector for measuring optical properties such as absorbance and reflectance may be provided.
  • the number, shape, and size of the sensor 402 are not limited.
  • the position of the sensor 402 is more preferably provided in the first chamber 107 and in the vicinity of the first through hole 108.
  • the sensor 402 may be provided at the inlet 113.
  • the sensor 402 is preferably formed on the outer peripheral surface of the second thin film 105 or the outer peripheral surface of the cover 106.
  • an electrode 403 may be provided at the inlet 113.
  • the electrode 403 may be provided in advance before forming the artificial lipid membrane, or may be provided after forming the artificial lipid membrane.
  • the electrode 403 may be fixed to the artificial lipid film forming apparatus 100 or may be removable.
  • the electrode 403 is preferably formed on the outer peripheral surface of the second thin film 105 or the outer peripheral surface of the cover 106.
  • the electrode 403 may be provided in the first chamber 107. When the electrode 403 is provided in the first chamber 107, it is most preferably formed on the outer peripheral surface of the substrate 101, and may be formed on the outer peripheral surface of the first thin film 103.
  • the electrode 403 is preferably an electrode suitable for electrochemical measurement.
  • a non-polarizable electrode is preferred.
  • the electrode 403 is most preferably an Ag / AgCl electrode, but may be a saturated calomel electrode, a hydrogen electrode, or the like.
  • the electrode 403 may be a metal electrode such as an Ag electrode, a Pt electrode, or an Au electrode, or may be a carbon electrode, a graphite electrode, a carbon nanotube electrode, or the like.
  • the conductance and electric capacity of the artificial lipid membrane may be measured using the electrode 403.
  • the electrode 403 may be used to measure chemical substances such as ions, enzymes, reaction products, and substrates contained in the first electrolytic solution 301 or the second electrolytic solution 303.
  • the electrode shape and size are not limited.
  • the position of the electrode 403 is more preferably provided in the vicinity of the second through-hole 110 in the inlet 113.
  • the electrode 403 may be used as a reference electrode.
  • the progress and end point of each process until the formation of artificial lipid membrane fat can be detected using the sensor 402.
  • the sensor 402. For example, in the first electrolyte solution injection step, by providing an ion electrode as the sensor 402 in the first chamber 107, it can be easily detected that the injection of the first electrolyte solution 301 is completed.
  • Borosilicate glass was used as the substrate 101.
  • the borosilicate glass was 22 mm ⁇ 22 mm ⁇ 0.17 mm.
  • borosilicate glass was ultrasonically washed with pure water, ethanol, and acetone for 10 minutes each.
  • the outer peripheral surface of the borosilicate glass was hydrophilized with a UV ozone asher. The treatment time was 5 minutes.
  • the first spacer 102, the first thin film 103, the second spacer 104, and the second thin film 105 were Teflon (registered trademark) films having a thickness of 100 ⁇ m.
  • a single Teflon (registered trademark) film was used for the first spacer 102, the first thin film 103, the second spacer 104, and the second thin film 105.
  • the size of the Teflon (registered trademark) film was 20 mm ⁇ 10 mm.
  • One Teflon (registered trademark) film was folded at the center and molded.
  • the cover 106 was made of polydimethylsiloxane (PDMS). Polydimethylsiloxane was formed into a film having a thickness of 0.5 mm, and a through hole having a diameter of 3 mm was formed at a position where the solution could be injected into the second through hole 110.
  • PDMS polydimethylsiloxane
  • the first through hole 108 was formed by a drill so as to penetrate both surfaces of the first thin film 103.
  • the diameter of the first through hole 108 was 200 ⁇ m.
  • the second through hole 110 was formed by a drill so as to penetrate both surfaces of the second thin film 105.
  • the diameter of the second through hole 110 was 200 ⁇ m.
  • the first through hole 108 and the second through hole 110 were simultaneously formed in a state where the first thin film 103 and the second thin film 105 were overlapped in order to suppress displacement.
  • the first through hole 108 and the second through hole 110 are formed after the first through hole 108 and the second through hole 110 are separately formed in the first thin film 103 and the second thin film 105, respectively.
  • the first thin film 103 and the second thin film 105 may be stacked.
  • the first through hole 108 and the second through hole 110 were formed at a position 2 mm from one side of the first thin film 103 and the second thin film 105.
  • the first through hole 108 and the second through hole 110 are preferably formed at a position of 0.5 mm to 3 mm from one side of the first thin film 103 and the second thin film 105.
  • the second opening 112 was provided in the second thin film 105.
  • the second opening 112 was a circular hole having a diameter of 1 mm that penetrated the second thin film 105.
  • the second opening 112 was formed by a drill.
  • the first opening 111 was provided in the first thin film 103 and the second thin film 105.
  • the first opening 111 was a circular hole having a diameter of 1 mm that penetrates the first thin film 103 and the second thin film 105.
  • the first opening 111 was formed by a drill simultaneously with the first thin film 103 and the second thin film 105 overlapped.
  • the substrate 101, the first spacer 102, the first thin film 103, the second spacer 104, the second thin film 105, and the cover 106 were laminated.
  • the substrate 101, the first spacer 102, the first thin film 103, the second spacer 104, the second thin film 105, and the periphery of the cover 106 laminated so as not to leak the solution from the first chamber 107 and the second chamber 109 are bonded by epoxy. Sealed with an agent.
  • the cover 106 was spontaneously adhered to the second thin film 105.
  • the laminated substrate 101, the first spacer 102, the first thin film 103, the second spacer 104, the second thin film 105, and the cover 106 are sandwiched between two polycarbonate plates (36 mm ⁇ 36 mm ⁇ 1 mm), and the polycarbonate plate 4 corners were fixed with bolts.
  • the polycarbonate plate in contact with the cover 106 was provided with one circular hole having a diameter of 9 mm so that the solution could be injected into the first opening 111, the second opening 112, and the injection port 113.
  • the procedure for forming an artificial lipid membrane will be described.
  • the 1st electrolyte solution injection process was performed.
  • a 1M KCl solution was used as the first electrolyte solution 301.
  • the amount of the first electrolytic solution 301 was 1 ⁇ L.
  • the first electrolytic solution 301 was dropped into the first opening 111.
  • the dropped first electrolyte solution 301 was injected into the first chamber 107 by capillary action. Since the inner wall surface of the first chamber 107 was subjected to hydrophilic treatment, the first electrolyte solution 301 could be easily injected.
  • the time required to inject the first electrolytic solution 301 was 1 second or less.
  • the first chamber 107 was filled with the first electrolytic solution except for the first through hole 108 and the region surrounding the first through hole 108. Thereafter, the peripheral region of the first through hole 108 and the first through hole 108 were filled with the first electrolytic solution 301. The state in which the first electrolyte solution 301 was injected into the first chamber 107 was observed with an optical microscope.
  • the lipid solution injection step was performed after the first electrolyte solution injection step.
  • a mixed solution of phospholipid (1,2-diphytanoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids) and an organic solvent (chloroform) was used as the lipid solution 302 .
  • the concentration of the lipid solution 302 was 25 mg / mL.
  • the lipid solution 302 was dropped into the second opening 112.
  • the liquid volume of the lipid solution 302 was 0.4 ⁇ L.
  • the lipid solution 302 was injected into the first through hole 108 and the second through hole 110 via the second chamber 109.
  • the lipid solution 302 was injected by capillary action.
  • the lipid solution 302 could be easily injected.
  • the time required to inject the lipid solution 302 was 1 second or less.
  • the state in which the lipid solution 302 was injected into the first through hole 108 and the second through hole 110 was observed with an optical microscope.
  • the second electrolyte solution injection step was performed after the lipid solution injection step.
  • a 1M KCl solution was used as the second electrolytic solution 303.
  • the amount of the second electrolytic solution 303 was 2 ⁇ L.
  • the second electrolytic solution 303 was dropped into the injection port 113.
  • the second electrolytic solution 303 was injected along the inner wall of the injection port 113.
  • the time required to inject the second electrolyte solution 303 was 1 second or less.
  • the state in which the second electrolyte solution 303 was injected into the injection port 113 was observed visually and with an optical microscope.
  • FIGS. 13A and 13B are micrographs of artificial lipid membranes.
  • FIG. 13B shows the boundary line between the first through-hole 108 and the artificial lipid membrane region 501 in FIG. 13A by a white dotted line.
  • the region 501 appeared darker than the surrounding area. With the passage of time, the area of the region 501 expanded, and it was possible to observe how the artificial lipid membrane was made thinner.
  • an electrode 401a and an electrode 401b were provided in the first opening 111 and the injection port 113, respectively.
  • a patch clamp amplifier (EPC-10, HEKA) was used to measure the electrical characteristics.
  • the electrode 401a was connected to the ground line, and the electrode 401b was connected to the signal line.
  • a pulse voltage of 5 mV and 10 msec was applied to the electrode 401b with respect to the electrode 401a.
  • the transient response of the current flowing through the artificial lipid membrane was recorded.
  • FIG. 14 shows the transient response of the current flowing through the artificial lipid membrane. The transient response was measured by the capacitive membrane current found in artificial lipid membranes.
  • the electrode 401a and the electrode 401b provided in the first opening 111 and the injection port 113 keep the electrode surface clean without touching the lipid solution 302.
  • An artificial lipid membrane could be formed.
  • the electrical properties of the artificial lipid membrane were successfully measured.
  • FIG. 15 shows an artificial lipid film forming apparatus of a comparative example.
  • the first chamber 601 was prepared by opening a circular through hole having a diameter of 1.5 mm in the thin film 602.
  • the first chamber 601 was produced by punching.
  • Polydimethylsiloxane was used as the thin film 602.
  • the size of the thin film 602 was 10 mm ⁇ 10 mm ⁇ 0.5 mm.
  • the through-hole 603 forming the artificial lipid membrane was prepared by opening a circular through-hole having a diameter of 200 ⁇ m in a Teflon (registered trademark) film 604 having a thickness of 100 ⁇ m.
  • the through hole 603 was formed by a drill.
  • the injection port 605 was prepared by opening a circular through hole having a diameter of 1.5 mm in the thin film 606.
  • the inlet 605 was produced by punching.
  • Polydimethylsiloxane was used as the thin film 606.
  • the size of the thin film 606 was 10 mm ⁇ 10 mm ⁇ 0.5 mm.
  • a Teflon (registered trademark) film 604, a thin film 602, and a thin film 606 were laminated on a glass substrate 607.
  • Borosilicate glass was used as the glass substrate 607.
  • the size of the glass substrate 607 was 22 mm ⁇ 22 mm ⁇ 0.17 mm.
  • an electrolytic solution was injected into the first chamber 601 using a micropipette.
  • 1M KCl was used as the electrolyte.
  • the amount of electrolyte injected was 1 ⁇ L.
  • a Teflon (registered trademark) film 604 was laminated on the thin film 602. Excess electrolyte was removed.
  • a thin film 606 was laminated on the Teflon (registered trademark) film 604.
  • the electrolyte solution was inject
  • 1M KCl was used as the electrolyte. The amount of electrolyte injected was 1 ⁇ L.
  • the lipid solution was sprayed to the through-hole 603 using a micropipette.
  • a mixed solution of phospholipid (1,2-diphytanoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids) and an organic solvent (chloroform, Wako Pure Chemical Industries) was used as the lipid solution.
  • the concentration of the lipid solution was 25 mg / mL.
  • FIGS. 16A and 16B are optical micrographs of the artificial lipid membrane in the comparative example.
  • FIG. 16B clearly shows the boundary line between the through hole 603 and the artificial lipid membrane region 608 in FIG. 16A by a white dotted line.
  • the area 608 appeared darker than the surrounding area. It was observed that the area of the region 608 increased with the passage of time, and the artificial lipid membrane became thinner.
  • FIG. 17 is a diagram comparing the formation rates of artificial lipid membranes in the examples of the present invention and comparative examples.
  • the formation rate mentioned here is a numerical value obtained by dividing the number of times that an artificial lipid membrane has been formed by the number of trials and multiplying by 100. Specifically, an attempt was made to form an artificial lipid membrane 10 times each in the examples and comparative examples. As a result, an artificial lipid membrane could be formed at a formation rate of 60% in the examples and 10% in the comparative example. This result shows that an artificial lipid membrane can be formed at a high rate by a simple operation as compared with the conventional example.
  • the artificial lipid membrane can be formed in a shorter time and more simply than the conventional artificial lipid membrane forming method and artificial lipid forming apparatus.
  • artificial lipid membranes incorporating membrane proteins such as ion channels and receptors can be applied to basic structural analysis, functional elucidation of membrane proteins, and membrane protein-membrane protein correlation studies.
  • the present invention not only directly contributes to the above-described research development, but also has potential for industrial application in the medical and pharmaceutical fields such as diagnosis of diseases caused by ion channels and screening for new drug development.
  • it can be applied to biosensors and the like by utilizing the specific molecular recognizability of membrane proteins.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、簡便で短時間に人工脂質膜を形成する方法およびそのような方法の実施に適した人工脂質膜の形成装置を提供することを目的とする。  具体的に、本発明の人工脂質膜形成方法は、基板と、第1スペーサと、第1薄膜と、第2スペーサと、第2薄膜と、カバーを備え、前記基板と前記第1薄膜との間には第1チャンバが備えられ、前記第1薄膜は第1貫通孔を備え、前記第1薄膜と前記第2薄膜の間には第2チャンバが備えられ、前記第2薄膜は第2貫通孔を備え、前記カバーは注入口を備え、前記方法は、前記第1チャンバへ電解液を注入する第1電解液注入工程、前記第1貫通孔または前記第2貫通孔脂質溶液を注入する脂質溶液注入工程、および前記注入口へ電解液を注入して、前記脂質溶液が注入された貫通孔の内部に人工脂質膜を形成するする第2電解液注入工程、を順に包含する。

Description

人工脂質膜形成方法および人工脂質膜形成装置
 本発明は、イオンチャンネルをはじめとする膜タンパク解析に用いられる人工脂質膜の形成方法に関する。また、本発明は、そのような方法の実施に適した人工脂質膜の形成装置に関する。
 細胞内と細胞外の間の物質輸送は膜貫通性タンパクを通じて行われる。なかでもイオンチャンネルはイオンの透過により膜電位の変化を生ずるので、神経の活動電位のような信号発生による情報伝達に重要な役割を果たすことが知られており、近年研究が盛んに進められている。
 イオンチャンネル研究を進める上で不可欠なのがパッチクランプ法と呼ばれる実験手法であり、1976年にNeherとSakmannらによって開発された。パッチクランプ法では、まずパッチ電極と呼ばれる微小ガラス管の先端を細胞膜表面に密着させる。その先端開口部の微小膜領域を電気的に他の領域から絶縁した状態で電位固定し、微小膜領域に含まれるイオンチャンネルを通るイオン電流を計測する。この方法の開発は、チャンネルタンパク分子の機能エレメントの同定、その動作メカニズムや構造解明に役立ち、生理学研究に大きな革新をもたらした。
 しかしながら、パッチクランプ法は上述の通り生理学研究において極めて有効な方法であるにもかかわらず適用できない場合がある。例えば解剖学的にアクセスが困難な場合、すなわち細胞小器官上のチャンネルやシナプス前膜のような微小構造体上のチャンネルを解析する場合が、これに該当する。また、チャンネルの基本構造や詳細な構造機能相関研究を深めるためには単純な構成で実験を行う必要がある場合も適用できない。このときにはチャネル分子を単純な系、つまり水、塩類、リン脂質、チャンネルで構成される系で解析しなければならない。
 これらのようにパッチクランプ法を適用できない時に有効な手段として脂質平面膜法が開発された。脂質平面膜法には大きく分けて、泡吹き付け法と貼り合わせ法がある(たとえば非特許文献1)。
 図18は、泡吹き付け法による従来の人工脂質膜の形成方法を示す。図18において、容器10を、テフロン(登録商標)、ポリスチレンなどの疎水性表面を有する樹脂からなる平板11で仕切り、平板11で仕切られた空間へ電解液12を満たし、平板11に開けられた微小孔13へ、脂質溶液14、つまり脂質分子と有機溶媒との混合液をピペット15で塗布する。微小孔13へ塗布された脂質溶液14に含まれる余剰な有機溶媒は、微小孔13の周辺縁を徐々に伝わって取り除かれる。30分から3時間程度待てば人工脂質膜が形成される。
 人工脂質膜を形成する場合、有機溶媒は飽和炭化水素、例えばデカン、ヘキサデカン、ヘキサンなどが多く用いられる。脂質はリン脂質を用いることが多い。例えば、ジフィタノイルホスファチジルコリン、グリセロルモノオレエイトなどを用いる。
 一方、図19(a)、(b)、(c)は貼り合わせ法による従来の人工脂質膜の形成方法を示す。図19(a)において、容器20は、テフロン(登録商標)、ポリスチレンなどの疎水性表面を有する樹脂からなる平板21で、仕切られている。まず前処理として平板21に開けた微小孔22へ、スクアレンを塗布しておく。容器20の一方のチャンバへ、電解液23の液面の高さが微小孔22下端の高さを越えない程度に、電解液23を注入口24から加える。次に、容器20の上方から電解液23へ、脂質溶液、つまり脂質分子25と有機溶媒との混合液を滴下して数分間放置する。図19(a)に示すように電解液23の気-液界面には脂質単分子膜が形成される。脂質分子25は親水性部と疎水性部を有しており、脂質分子25の親水性部が電解液23の方へ向くように配向する。
 そして図19(b)に示すように、電解液23の液面の高さが微小孔22上端の高さを通過するまで、電解液23を注入口24から加える。
 次に、容器20のもう一方のチャンバにおいて同様の操作を行なう。すなわち、液面の高さが微小孔22下端の高さを越えない程度に、電解液26を注入口27から加える。次に、容器20の上方から電解液26へ、脂質溶液を加えて数分間放置する。電解液26の気-液界面には脂質単分子膜が形成される。そして電解液26の液面の高さが微小孔22上端の高さを通過するまで、電解液26を注入口27から加える。以上の操作を行なうことにより、先に微小孔22に形成された脂質単分子膜にもう一方の脂質単分子膜が貼り合わされる。その結果、微小孔22において人工脂質膜が形成される。
 ところが、上述の2つの方法によって安定で再現性のある人工脂質膜を形成するには、かなりの熟練を要する。より簡便な人工脂質膜を形成する方法として、MEMS(Micro Electro Mechanical Systems)技術や半導体微細加工技術などを利用して小型チップ上に人工脂質膜を形成するという方法が考案された(たとえば特許文献1参照)。
 図20は、特許文献1に記載された従来の人工脂質膜形成装置を示す。図20において、第1の室31と、第1の室から隔壁32より隔離された第2の室33とを設けられ、隔壁32には、第1の室31と第2の室32とを流体的に連通する少なくとも1つの小孔34が設けられている。図20に示す人工脂質膜形成装置を用いて以下のように人工脂質膜が形成される。まず第1の室31を第1水溶液で満たし、続いて第2の室33を脂質溶液で満たす。小孔34を介して第1水溶液と脂質溶液とを接触させる。さらに第2の室33内にある脂質溶液を、第2水溶液へ置換することにより、小孔34において人工脂質膜35を形成できる。
 また、別の人工脂質膜形成装置が特許文献2に開示されている。この人工脂質膜形成装置は、脂質溶液を微細流路に導入する第3の導入口、生体関連物質などの物質を含有する第1の電解液および第2の電解液をマイクロチャンネルにそれぞれ導入する第1の導入口および第2の導入口を備える。そして第1の電解液と第2の電解液との境界面に分子膜を形成する。
 さらに、別の人工脂質膜形成装置が特許文献3に開示されている。この人工脂質膜形成装置は、基板に形成された微小孔を覆って人工脂質膜を形成する。このとき溶媒により微小孔の閉孔現象を利用して人工脂質膜を形成する。すなわち、微小孔が形成された基板上に脂質溶液を供給し、溶媒によって基板が膨潤し、微小孔が閉孔した状態で膜形成を行う。その後、溶媒の蒸発により微小孔を開孔させ、形成された人工脂質膜を引き伸ばす。なお、この人工脂質膜形成装置では、微小フロー操作を行い、混合液や電解液を界面移動させている。
特開2005-098718号公報(第15頁、図5) 特開2005-185972号公報(第73頁、図1) 特開2005-245331号公報(第14頁、図2)
岡田泰伸著「パッチクランプ実験技術法」吉岡書店 1996年9月25日(p.133-139)
 従来の小型チップ上で実現した人工脂質膜装置は、複雑で時間を要するものであった。なぜなら、従来の人工脂質膜形成装置は、(1)いったん過剰な脂質溶液を供給し、それを排出する方法、もしくは、(2)脂質溶液と電解液を供給するための経路を兼用する方法を採用している。そのため、余剰な脂質溶液を排出する方法として、(1)外部ポンプ、バルブや流量調節器を設ける、もしくは、(2)脂質溶液中の有機溶媒が気化や展開するのを待機する、しかなかった。
 たとえば特許文献1では、マイクロチャンネルに電解液、脂質分子と有機溶媒との混合液を順次送液するため、マイクロチャンネルの外部に設けられたシリンジポンプやダイアフラムポンプ、ペリスタティックポンプなどの送液手段を用いていた。
 また、特許文献2で開示されている装置は、特許文献1の人工脂質膜形成装置と同様に、加圧手段、流量調整手段などを用いて電解液や脂質溶液を供給していた。
 さらに、特許文献3で開示されている装置は、脂質溶液と電解液の供給は界面移動で行なうことができるので簡便であるものの、脂質溶液の排出は溶媒が気化するまで待機しなければならず、時間を要した。
 本発明は、前記従来の課題を解決し、簡便で短時間に人工脂質膜を形成する方法および装置を提供することを目的とする。
 前記従来の課題を解決する本発明は、
 人工脂質膜形成装置を用いた人工脂質膜形成方法であって、
 前記装置は、
  基板と、
  前記基板の一端に設けられた第1スペーサと、
  前記第1スペーサを介して前記基板に設けられた第1薄膜と、
  前記第1薄膜の一端に設けられた第2スペーサと、
  前記第2スペーサを介して前記第1薄膜に設けられた第2薄膜と、
  第2薄膜の一端に設けられたカバーと
 を備え、
 前記基板と前記第1薄膜との間には第1チャンバが備えられ、
 前記第1薄膜は両面を貫通する第1貫通孔を備え、
 前記第1薄膜と前記第2薄膜との間には第2チャンバが備えられ、
 前記第2薄膜は両面を貫通する第2貫通孔を備え、
 前記カバーには前記第2貫通孔へ接続する注入口が備えられ、
 平面視において前記第1貫通孔は前記第2貫通孔と重なり、
 前記第1チャンバは、前記第1貫通孔と前記第2貫通孔を介して前記注入口に接続され、
 前記方法は、
 前記第1チャンバへ電解液を注入する第1電解液注入工程、
 前記第2チャンバを経て、前記第1貫通孔または前記第2貫通孔の少なくとも一方へ、脂質溶液を注入する脂質溶液注入工程、および
 前記注入口へ電解液を注入して、前記脂質溶液が注入された貫通孔の内部に人工脂質膜を形成する第2電解液注入工程、
を順に包含する人工脂質膜形成方法である。
 また、本発明は、
 人工脂質膜形成装置であって、
 前記装置は、
  基板と、
  前記基板の一端に設けられた第1スペーサと、
  前記第1スペーサを介して前記基板に設けられた第1薄膜と、
  前記第1薄膜の一端に設けられた第2スペーサと、
  前記第2スペーサを介して前記第1薄膜に設けられた第2薄膜と、
  第2薄膜の一端に設けられたカバーと
 を備え、
 前記基板と前記第1薄膜との間には第1チャンバが備えられ、
 前記第1薄膜は両面を貫通する第1貫通孔を備え、
 前記第1薄膜と前記第2薄膜との間には第2チャンバが備えられ、
 前記第2薄膜は両面を貫通する第2貫通孔を備え、
 前記カバーには前記第2貫通孔へ接続する注入口が備えられ、
 平面視において前記第1貫通孔は前記第2貫通孔と重なり、
 前記第1チャンバは、前記第1貫通孔と前記第2貫通孔を介して前記注入口に接続されている、人工脂質膜形成装置である。
 本発明において、前記第1薄膜、第1スペーサ、および前記第2薄膜は、一体的に形成されていることが好ましい。
 本発明において、前記第1貫通孔は、前記第2貫通孔の断面積と同じ断面積を有することが好ましい。
 本発明において、前記注入口は、平面視において前記第1チャンバと重なり合うことが好ましい。
 本発明において、前記第1チャンバの外周面は、親水性を有することが好ましい。
 本発明において、前記第2チャンバの外周面は、疎水性を有することが好ましい。
 本発明において、前記注入口の外周面は、親水性を有することが好ましい。
 本発明において、前記第1チャンバと前記注入口のうち少なくとも一方は、電極を備えていることが好ましい。
 本発明において、前記第1チャンバと前記注入口のうち少なくとも一方は、センサを備えていることが好ましい。
 本発明において、前記第1電解液注入工程では、毛細管現象により前記第1チャンバへ前記電解液が注入されることが好ましい。
 本発明において、前記脂質溶液注入工程では、毛細管現象により前記第1貫通孔または前記第2貫通孔の少なくとも一方へ、前記脂質溶液が注入されることが好ましい。
 本発明において、分析装置に請求項1に記載の人工脂質膜形成方法を用いることが好ましい。
 本発明の上記目的、他の目的、特徴および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明の人工脂質膜形成方法および人工脂質膜形成装置によれば、適量の脂質溶液を貫通孔へ導入することができるので、余剰な脂質溶液を排出するための排出口を設けなくて良いし、外部ポンプを設ける必要もない。また人工脂質膜が形成されるまで長時間待機する必要もない。その結果、従来の人工脂質膜形成装置よりも簡便で短時間に人工脂質膜を形成することができる。
図1は、本発明の実施形態1における人工脂質膜形成装置の断面図である。 図2は、本発明の実施形態1における人工脂質膜形成装置の分解斜投影図である。 図3は、本発明の実施形態1における人工脂質膜形成装置の斜投影図である。 図4は、本発明の実施形態1における人工脂質膜形成装置の拡大図である。 図5は、本発明の実施形態1における第1貫通孔と第2貫通孔の拡大図である。 図6は、本発明の実施形態1における人工脂質膜形成装置の動作図である。 図7は、本発明の実施形態1における第2電解液注入工程の説明図である。 図8は、本発明の実施形態2における人工脂質膜形成装置の断面図および斜投影図である。 図9は、本発明の実施形態2における人工脂質膜形成装置の分解斜投影図である。 図10は、本発明の実施形態3における人工脂質膜形成装置の断面図および斜投影図である。 図11は、本発明の実施形態4における人工脂質膜形成装置の断面図および斜投影図である。 図12は、本発明の実施形態5における人工脂質膜形成装置の断面図および斜投影図である。 図13は、本発明の実施例における人工脂質膜の顕微鏡写真である。 図14は、本発明の実施例における人工脂質膜に流れる電流の過渡応答を示すグラフである。 図15は、比較例における人工脂質膜形成装置を示す図である。 図16は、比較例における人工脂質膜の顕微鏡写真である。 図17は、人工脂質膜の形成率の比較図である。 図18は、従来の人工脂質膜形成装置(泡吹き付け法)の模式図である。 図19は、従来の人工脂質膜形成装置(貼り合わせ法)の模式図である。 図20は、従来の人工脂質膜形成装置(特許文献1)の模式図である。
 (実施形態1)
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1~図3は、本発明の実施形態1における人工脂質膜形成装置の断面図、分解斜投影図および斜投影図である。
 本実施形態において、人工脂質膜形成装置100は基板101を備えている。基板101の材料はガラスが最も好ましい。ガラスはソーダガラスでも良いし、石英、ホウケイ酸ガラス、低融点ガラス、感光性ガラスなどでも良い。なお、基板101はシリコン、酸化アルミなど他の無機材料でも良いし、ポリエチレン、ポリプロピレン、塩化ビニルなどの有機材料でも良いし、他の有機材料でも良い。基板101の材料は、複数の材料を組み合わせても良い。基板101の外周面の少なくとも一部は親水性表面を有することが好ましい。基板101の外周面の少なくとも一部を親水的にするために、酸素プラズマ処理を行なっても良いし、親水性材料で被覆しても良い。また、一般的に知られている他の親水処理を行なっても良い。基板101は、光学計測の観点から透明であることが好ましい。なお本発明では、基板101の形状は限定されない。
 基板101の上には第1スペーサ102が設けられている。第1スペーサ102の材料は、有機材料でも良いし、無機材料でも良い。有機材料はテフロン(登録商標)が最も好ましく、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサンなどの有機ポリマーでも良い。ポリエチレン、ポリプロピレン、塩化ビニルなどのプラスチックでも良いし、有機材料を用いる場合、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料などを用いても良い。
 無機材料を用いる場合、ガラスが好ましい。ガラスは、ソーダガラスでも良いし、石英、ホウケイ酸ガラス、低融点ガラスなどでも良い。その他の無機材料を用いる場合、シリコン、酸化シリコン、酸化アルミ、窒化シリコンなどでも良い。第1スペーサ102の材料は、複数の材料を組み合わせても良い。
 第1スペーサ102の外周面の少なくとも一部は親水性表面を有することが好ましい。第1スペーサ102を親水処理することが好ましい。第1スペーサ102の外周面の少なくとも一部を親水的にするために、酸素プラズマ処理を行なっても良いし、親水性材料で被覆しても良い。また、一般的に知られている他の親水処理を行なっても良い。なお本発明では、第1スペーサ102の形状は限定されない。ただし、一般的には、第1スペーサ102は、基板101の外周に沿って設けられる。
 第1薄膜103は第1スペーサ102の上に設けられている。すなわち、基板101と第1薄膜103の間に第1スペーサ102が設けられている。第1薄膜103の材料は、有機材料が好ましい。有機材料はテフロン(登録商標)が最も好ましいが、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサン、パリレンなどの有機ポリマーでも良い。その他の有機材料として、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料などを用いても良い。
 第1薄膜103は、ガラス、酸化シリコン、酸化アルミなどの無機材料を基材にして、その表面をテフロン(登録商標)、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサン、パリレンなどの有機ポリマーや、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料、炭化水素を含む自己組織化膜(SAM膜)などで被覆しても良い。第1薄膜103の材料は、複数の材料を組み合わせても良い。
 第1薄膜103の外周面の少なくとも一部は疎水性表面を有することが好ましい。なぜなら、第1薄膜103の疎水性表面により脂質分子の疎水部が保持されるため、人工脂質膜が安定になるためである。
 第1薄膜103の厚みは50nm以上10mm以下が好ましく、1μm以上1mm以下がより好ましい。
 第1薄膜103の上には第2スペーサ104が設けられている。すなわち、第2スペーサ104と第1スペーサ102の間に、第1薄膜103が設けられている。第2スペーサ104の材料は、有機材料でも良いし、無機材料でも良い。有機材料はテフロン(登録商標)が最も好ましく、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサンなどの有機ポリマーでも良い。ポリエチレン、ポリプロピレン、塩化ビニルなどのプラスチックでも良い。有機材料を用いる場合、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料などを用いても良い。
 無機材料を用いる場合、ガラスが好ましい。ガラスは、ソーダガラスでも良いし、石英、ホウケイ酸ガラス、低融点ガラスなどでも良い。その他の無機材料を用いる場合、シリコン、酸化シリコン、酸化アルミ、窒化シリコンなどでも良い。第2スペーサ104の材料は、複数の材料を組み合わせても良い。第2スペーサ104の外周面の少なくとも一部は親水性表面を有することが好ましい。
 第2スペーサ104を親水処理することが好ましい。第2スペーサ104の外周面の少なくとも一部を親水的にするために、酸素プラズマ処理を行なっても良いし、親水性材料で被覆しても良い。また、一般的に知られている他の親水処理を行なっても良い。なお本発明では、第2スペーサ104の形状は限定されない。ただし、一般的には、第2スペーサ104は、基板101の外周に沿って設けられる。
 第2薄膜105は第2スペーサ104の上に設けられている。すなわち、第2薄膜105と第1薄膜103の間に第2スペーサ104が設けられている。第2薄膜105の材料は、有機材料が好ましい。有機材料はプラスチックが好ましい。有機材料はテフロン(登録商標)が最も好ましく、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサン、パリレンなどの有機ポリマーでも良い。その他の有機材料として、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料を用いても良い。
 第2薄膜105は、ガラス、酸化シリコン、酸化アルミなど無機材料を基材にして、その表面をテフロン(登録商標)、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサン、パリレンなどの有機ポリマーや、シリコン系、エポキシ系、ビニル系の接着剤や、フォトレジスト、ポリイミドを含む感光性有機材料、炭化水素を含む自己組織化膜(SAM膜)などで被覆しても良い。第2薄膜105の材料は、複数の材料を組み合わせても良い。
 第2薄膜105の外周面の少なくとも一部は疎水性表面を有することが好ましい。なぜなら、第2薄膜105の疎水性表面により脂質分子の疎水部が保持されるため、人工脂質膜が安定になるためである。
 第2薄膜105の厚みは50nm以上10mm以下が好ましく、1μm以上1mm以下がより好ましい。
 カバー106は第2薄膜105の上に設けられている。すなわち、カバー106と第2スペーサ104の間に第2薄膜105が設けられている。カバー106の材料は、有機材料が好ましい。有機材料はポリジメチルシロキサンが好ましい。有機材料は、ポリサルフォン、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、塩化ビニル、ポリジメチルシロキサン、パリレンなどの有機ポリマーでも良い。また、フォトレジスト、ポリイミドを含む感光性有機材料を用いても良い。
 カバー106は、ガラス、酸化シリコン、酸化アルミなど無機材料でも良い。カバー106の外周面の少なくとも一部は親水性表面を有することが好ましいが、疎水性表面を有していても良い。カバー106の材料は、複数の材料を組み合わせても良い。カバー106は光学計測の観点から透明であることが好ましい。なお本発明では、カバー106の形状は限定されない。
 第1チャンバ107は、基板101と第1薄膜103の間に形成される。第1チャンバ107の高さ114は、10nm以上100mm以下が好ましく、10nm以上1mm以下がより好ましい。図2において、第1チャンバ107の幅120は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。第1チャンバ121の長さ121は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。
 第1チャンバ107の高さ114は、第1チャンバ107内において、全て同じでも良いし、異なっていても良い。第1チャンバ107の幅120および第1チャンバ107の長さ121は、第1チャンバ107内において、全て同じでも良いし、異なっていても良い。なお、本発明では、第1チャンバ107の形状は限定されない。第1チャンバ107の形状は、直方体が最も好ましいが、円柱、三角柱など他の形状でも良い。
 第1貫通孔108は、第1薄膜103の両面を貫通するように形成される。第1貫通孔108を第1薄膜103の法線方向から眺めた時、第1貫通孔108の形状は円形が最も好ましい。なお、第1貫通孔108の形状は楕円形、正方形、長方形、ひし形、六角形、多角形など他の形状でも良い。
 第1貫通孔108の直径122は、10nm以上1mm以下が好ましく、2μm以上200μm以下がより好ましい。
 第1貫通孔108の加工方法は、切削加工、抜き加工などの機械加工でも良いし、リソグラフィ、エッチング、サンドブラスト、光造形、ナノインプリントなどでも良い。
 第1貫通孔108の内壁は、平坦であることが好ましいが、溝構造や凹凸構造などを設けても良い。
 第1貫通孔108の数は1つであることが最も好ましいが、2つ以上でも良い。第1貫通孔108を2つ以上設ける場合、第1貫通孔108の形状は、全て同じ形状でも良いし、異なっていても良い。また、第1貫通孔108を2つ以上設ける場合、第1貫通孔108の直径122は、全て同じでも良いし、異なっていても良い。
 第2チャンバ109は、第1薄膜103と第2薄膜105の間に形成される。第2チャンバ109は第1貫通孔108を介して第1チャンバ107と接続する。第2チャンバ109の高さ115は、10nm以上1mm以下が好ましく、10nm以上10μm以下がより好ましい。図2において、第2チャンバ109の幅123は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。第2チャンバ109の長さ124は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。
 第2チャンバ109の高さ115は、第2チャンバ109内において、全て同じでも良いし、異なっていても良い。例えば、開口部から遠ざかる方向へ向かって第2チャンバ109の高さ115が減少する場合、脂質溶液は一方向へ注入されるので好ましい。第1貫通孔108と第2貫通孔110の外周縁の近傍で高さが減少する場合、余剰な脂質溶液の注入を抑制できるので好ましい。
 第2チャンバ109の幅123および第2チャンバ109の長さ124は、第2チャンバ109内において、全て同じでも良いし、異なっていても良い。なお、本発明では、第2チャンバ109の形状は限定されない。第2チャンバ109の形状は、直方体が最も好ましいが、円柱、三角柱など他の形状でも良い。脂質溶液の注入を制御するために第2チャンバ109の内壁に溝構造や凹凸構造を設けても良い。
 第2貫通孔110は、第2薄膜105の両面を貫通するように形成される。第2貫通孔110を第2薄膜105の法線方向から眺めた時、第2貫通孔110の形状は円形が最も好ましい。第2貫通孔110の形状が円形の場合、なお、第2貫通孔110の形状は楕円形、正方形、長方形、ひし形、六角形、多角形など他の形状でも良い。
 第2貫通孔110の直径125は、10nm以上1mm以下が好ましく、2μm以上200μm以下がより好ましい。第2貫通孔110の直径125は、第1貫通孔108の直径122と同じであることが好ましいが、異なっても良い。
 第2貫通孔110の加工方法は、切削加工、抜き加工などの機械加工でも良いし、リソグラフィ、エッチング、サンドブラスト、光造形、ナノインプリントなどでも良い。
 第2貫通孔110の内壁は、平坦であることが好ましいが、溝構造や凹凸構造などを設けても良い。
 第2貫通孔110の数は1つであることが最も好ましいが、2つ以上でも良い。第2貫通孔110を2つ以上設ける場合、第2貫通孔110の形状は、全て同じ形状でも良いし、異なっていても良い。また、第2貫通孔110を2つ以上設ける場合、第2貫通孔110の直径125は、全て同じでも良いし、異なっていても良い。
 第1貫通孔108と第2貫通孔110の形状は、同じであることが好ましい。第1貫通孔108と第2貫通孔110の形状について、以下に詳しく述べる。図4(a)~(c)は、本発明の実施形態1における人工脂質膜形成装置の、第1貫通孔108と第2貫通孔110周辺の拡大図である。なお、図4(a)~(c)では、説明しやすくするために、第1薄膜103と第2薄膜105のみを示す。
 図4(a)に示すように、第1貫通孔108と第2貫通孔110は円柱型であることが最も好ましい。第1貫通孔108と第2貫通孔110は同じ大きさであることが好ましい。第1貫通孔108の断面108bの面積は、第2貫通孔110の断面110aの面積とほぼ等しいことが好ましい。なぜなら脂質溶液を注入しやすいためである。第1貫通孔108の断面108bの直径は10nm以上1mm以下が好ましく、2μm以上200μm以下がより好ましい。第2貫通孔110の断面110aの直径は10nm以上1mm以下が好ましく、2μm以上200μm以下がより好ましい。
 図4(b)に示すように、第1貫通孔108と第2貫通孔110の少なくとも一方は、台形柱型であっても良い。第1貫通孔108と第2貫通孔110は同じ大きさであっても良い。第1貫通孔108の断面108bの面積は、第2貫通孔110の断面110aの面積と、ほぼ等しいことが好ましい。第1貫通孔108の断面108bの面積は、第1貫通孔108の断面108aの面積よりも小さいことが好ましい。第2貫通孔110の断面110aの面積は、第2貫通孔110の断面110bの面積よりも小さいことが好ましい。
 図4(c)に示すように、第1貫通孔108および第2貫通孔110は、台形柱型であっても良い。第1貫通孔108の断面108bの面積は、第2貫通孔110の断面110aの面積と、ほぼ等しいことが好ましい。第1貫通孔108の断面108bの面積は、第1貫通孔108の断面108aの面積よりも大きいことが好ましい。第2貫通孔110の断面110aの面積は、第2貫通孔110の断面110bの面積よりも小さいことが好ましい。
 なお、簡単のため、図4(a)~(c)に示したように、第1貫通孔108と第2貫通孔110の形状は円柱型についてのみ説明した。しかし、他の形状でも同様である。
 第1貫通孔108と第2貫通孔110は重なる位置に設けられることが好ましい。第1貫通孔108と第2貫通孔110の位置関係について、以下に詳しく述べる。図5(a)~(c)は、本発明の実施形態1における人工脂質膜形成装置の、第1薄膜103と第2薄膜105の法線方向からみた、第1貫通孔108と第2貫通孔110の拡大図である。なお、図5(a)~(c)では、説明しやすくするために、第1貫通孔108と第2貫通孔110のみを示す。
 図5(a)に示すように、第1貫通孔108と第2貫通孔110が一致することが最も好ましい。なお本段落での説明では、簡単のため、第1貫通孔108と第2貫通孔110の形状は円柱形とする。
 図5(b)に示すように、第1貫通孔108と第2貫通孔110が一部重なっていても良い。図5(b)では、第1貫通孔108の直径が、第2貫通孔110の直径よりも、小さいことを示す。なお、第1貫通孔108の直径が、第2貫通孔110の直径よりも、大きくても良い。
 図5(c)に示すように、第1貫通孔108の中心位置が、第2貫通孔110の中心位置と異なっても良い。なお、このとき第1貫通孔108の直径が、第2貫通孔110の直径と異なっても良い。
 なお、複数の第1貫通孔108と第2貫通孔110を設ける場合、それらの配列は直線状でも良いし、円周状でも良いし、放射状でも良いし、正方格子状でも良いし、三角格子状などでも良い。
 図1に示すように、第1開口111は、基板101および第1薄膜103の一端に形成される。基板101の端部と第1薄膜103の端部の位置を違えることにより第1張り出し部191を形成し、第1開口111とすることが好ましい。図3に示す第1開口111の第1張り出し部191の長さ130は、1mm以上10mm以下が好ましい。第1開口111の第1張り出し部191の幅131は1mm以上20mm以下が好ましい。第1開口111は、図3に示すように平坦であっても良いし、液体を注入しやすいように溝構造や凹凸構造を備えていても良い。
 第2開口112は、第1薄膜103および第2薄膜105の一端に形成される。図1に示すように、第1薄膜103の端部と第2薄膜105の端部の位置を違えることにより第2張り出し部192を形成し、第2開口112とすることが好ましい。図3に示す第2開口112の第2張り出し部192の長さ132は、1mm以上10mm以下が好ましい。第2開口112の第2張り出し部192の幅133は1mm以上20mm以下が好ましい。第2開口112は、図3に示すように平坦であっても良いし、液体を注入しやすいように溝構造や凹凸構造を備えていても良い。
 注入口113は、カバー106の一端に形成される。注入口113は第2貫通孔110を介して第2チャンバ109と接続する。図1に示すように、カバー106を貫通するように形成されることが好ましい。図3に示すように、注入口113の形状は円柱形であることが好ましいが、その他の形状でも良い。注入口113の形状が円柱形の場合、注入口113の直径134は0.5mm以上2mm以下が好ましい。
 基板101と第1スペーサ102は一体でも良い。第1スペーサ102と第1薄膜103は一体でも良い。第1薄膜103と第2スペーサ104は一体でも良い。第1スペーサ102と第1薄膜103と第2スペーサ104は一体でも良い。第1薄膜103と第2スペーサ104と第2薄膜105は一体でも良い。第2スペーサ104と第2薄膜105は一体でも良い。第2薄膜105とカバー106は一体でも良い。
 基板101、第1スペーサ102、第1薄膜103、第2スペーサ104、第2薄膜105、カバー106は、積層した後に接合されることが好ましい。接着剤を使って各層を接着しても良いし、熱を加えて溶着しても良い。積層された各層を、2枚の板によって挟み、ボルトにより固定しても良いし、他の方法で接合しても良い。
 次に、人工脂質膜の形成手順を説明する。図6は本発明の実施形態1における人工脂質膜形成装置の動作図を表す。なお、図6において、図1~図3と同様の構成については、同一符号を付し、その説明を省略する。
 まず、図6(a)および(b)は第1電解液注入工程を表す。第1電解液注入工程では、第1チャンバ107へ第1電解液301を第1開口111から注入する。第1電解液301は、KClを含むことが好ましく、等張のKCl液がより好ましい。第1電解液301は細胞内の生理的条件であることが好ましい。pHは7付近が好ましい。pHの調節にはHEPESなどの緩衝液などを用いても良い。あるいは、電気生理実験で用いられる一般的な溶液を用いても良い。Ca2+濃度は10~100nMであることが好ましい。Ca濃度の調節にはEGTAなどのCa2+キレータなどを用いても良い。注入する第1電解液301の液量は第1チャンバ107の容積と同程度が最も好ましいが、第1チャンバ107の容積より少なくても良いし、多くても良い。
 第1電解液注入工程では、第1電解液301を毛細管現象により第1チャンバ107へ注入することが最も好ましいが、第1電解液301の自重で注入しても良いし、他の方法で注入しても良い。図6(a)および(b)は、毛細管現象により第1電解液301を第1チャンバ107へ注入する様子を表している。毛細管現象により第1電解液301を注入する場合、図6(a)に示すように、第1電解液301は、第1開口111から第1貫通孔108へ向かって順次注入される。そして、図6(b)に示すように、第1チャンバ107の内部は第1電解液301により満たされる。毛細管現象により第1電解液301を第1チャンバ107へ注入する場合、基板101の外周面の少なくとも一部は親水処理されることが好ましい。基板101の外周面のうち、第1電解液301に接する部分が親水処理されることが好ましい。基板101の外周面のうち、第1貫通孔108の近傍を親水処理することが好ましい。
 第1電解液注入工程には、第1電解液301を第1チャンバ107へ注入し終えたことを検出する工程を含んでいても良い。第1電解液301を第1チャンバ107へ注入し終えたことを検出するには、光学顕微鏡による観察でも良い。第1チャンバ107に複数の電極を設けて、電気伝導度を測定して検出しても良い。その他の一般的な電解液の存在を検出する方法を用いても良い。
 次に、図6(c)は脂質溶液注入工程を表す。脂質溶液注入工程では、第2チャンバ109へ脂質溶液302を第2開口112から注入する。脂質溶液注入工程では、第2チャンバ109を経由して第1貫通孔108へ脂質溶液302を注入することが最も好ましい。脂質溶液注入工程では、第2チャンバ109を介して第1貫通孔108および第2貫通孔110へ脂質溶液302を注入しても良い。脂質溶液注入工程では、第2チャンバ109を介して第2貫通孔110へ脂質溶液302を注入しても良い。
 脂質溶液302は、脂質を有機溶媒に分散したものであることが好ましい。脂質はリン脂質であることがもっとも好ましい。なお、脂質は糖脂質でも良いし、リポ脂質でも良いし、他の脂質でも良い。脂質はアゾレクチンでも良いし、その他の天然由来の脂質であっても良いし、合成脂質でも良い。合成脂質は高純度で化学的に安定なものが得やすいのでより好ましい。具体的にはリン酸脂質であるジフィタノイルフォスファジルコリン、グリセロルモノオレエイト、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ジパルミトイルホスファチジルコリンでも良いし、その他のリン酸脂質でも良い。また脂質分子の脂肪酸部分は炭素数が10から20の飽和脂肪酸または不飽和脂肪酸が好ましい。これらの脂質は単独で用いても良いし、2種類以上混合して用いても良い。また有機溶媒に対する脂質の濃度は3~50mg/mLが好ましく、4~40mg/mLがより好ましい。
 脂質溶液302には、脂質と有機溶媒のほかに、人工脂質膜に正味の表面電荷を持たせる物質を混合しても良い。人工脂質膜の表面電荷はマイナスであることが好ましい。人工脂質膜に電荷を持たせるためにホスファチジルセリン、ホスファチジルイノシトールなどを混合しても良い。人工脂質膜に電荷を持たせるための物質は、脂質溶液注入工程の前に予め混合しても良いし、人工脂質膜形成工程の後で混合しても良い。なお本発明では、人工脂質膜に電荷を持たせるための物質量は限定されない。
 脂質溶液302には、脂質と有機溶媒のほかに、受容体、イオンチャンネル、Gタンパクなど生体膜タンパクや分泌タンパクを混合しても良い。脂質溶液303にはグラミシジンなどのポリペプチドを混合しても良い。生体膜タンパクや分泌タンパク、ポリペプチドなどは、1種類だけ混合しても良いし、複数種類を混合しても良い。生体膜タンパクや分泌タンパク、ポリペプチドなどは、脂質溶液注入工程の前に予め混合しておいても良い。生体膜タンパクや分泌タンパク、ポリペプチドなどは、人工脂質膜形成工程の後で混合しても良い。
 なお、人工脂質膜形成工程の後で生体膜タンパクや分泌タンパクなどを混合する場合、生体膜タンパクや分泌タンパクなどを一旦ベシクルに組み込んで、ベシクルを人工脂質膜へ融合しても良いし、公知の混合技術を用いても良い。人工脂質膜形成工程の後で混合する場合は、生体膜タンパクや分泌タンパク、ポリペプチドなどを混合するための機構を人工脂質膜形成装置100に設けても良い。
 脂質溶液注入工程では、毛細管現象により第2チャンバ109へ脂質溶液302を注入することが最も好ましい。脂質溶液注入工程では、脂質溶液302の自重により第2チャンバ109へ脂質溶液302を注入しても良いし、他の方法で注入しても良い。
 脂質溶液注入工程では、第1チャンバ107が第1電解液301により満たされた後で、第2チャンバ109へ脂質溶液302の注入を開始することが好ましい。
 脂質溶液注入工程には、脂質溶液302を第2チャンバ109へ注入し終えたことを検出する工程を含んでいても良い。脂質溶液302を第2チャンバ109へ注入し終えたことを検出するには、光学顕微鏡による観察でも良い。その他の一般的な有機溶媒または脂質溶液の存在を検出する方法を用いても良い。
 次に、図6(d)は第2電解液注入工程を表す。第2電解液注入工程では、注入口113へ第2電解液303を注入する。第2電解液303は、KClを含むことが好ましく、等張のKCl液がより好ましい。第2電解液303は細胞内の生理的条件であることが好ましい。pHは7付近が好ましい。pHの調節にはHEPESなどの緩衝液などを用いても良い。Ca2+濃度は10~100nMであることが好ましい。Ca濃度の調節にはEGTAなどのCa2+キレータなどを用いても良い。注入する第2電解液303の液量は注入口113の容積と同程度が最も好ましいが、注入口113の容積よりも少なくても良いし、多くても良い。第2電解液303は、第1電解液301と同じでも良いし、異なっても良い。
 第2電解液注入工程では、適量の第2電解液303を注入口113へ滴下することが好ましい。図7(a)および(b)は、第2電解液注入工程において、第2電解液303を注入口113へ注入する様子を示す。図7(a)に示すように、第2電解液303を注入口113へ滴下する時、第1貫通孔108に形成された脂質溶液302の膜を壊さないように、注入口113の内壁面113aに沿って第2電解液303を注入することが好ましい。注入口113の内壁面113aは傾斜していることが好ましい。第2貫通孔110の内壁面110cは傾斜していることが好ましい。図7(b)に示すように、第2貫通孔110の内壁面110cは傾斜していても良い。注入口113の内壁面113aと、第2貫通孔110の内壁面110cの傾斜角は、同じでも良いし、異なっていても良い。第2電解液303を容易に注入するために、注入口113の内壁面113aは、親水処理されることが好ましい。第2電解液303を容易に注入するために、第2貫通孔110の内壁面110cは、親水処理されることが好ましい。注入口113の内壁面113aは、平坦であっても良いし、第2電解液303を注入しやすいように溝構造や凹凸構造を備えていても良い。
 第2電解液注入工程では、第1貫通孔108が脂質溶液302で満たされた後で、第2電解液303の注入を開始することが好ましい。第2電解液注入工程では、第1貫通孔108および第2貫通孔110が脂質溶液302で満たされた後で、第2電解液303の注入を開始することが好ましい。第2電解液注入工程では、第2貫通孔110が脂質溶液302で満たされた後で、第2電解液303の注入を開始することが好ましい。
 第2電解液注入工程には、第2電解液303を注入口113へ注入し終えたことを検出する工程を含んでいても良い。第2電解液303を注入口113へ注入し終えたことを検出するには、光学顕微鏡による観察でも良い。注入口113に複数の電極を設けて、電気伝導度を測定して検出しても良い。その他の一般的な電解液の存在を検出する方法を用いても良い。
 このようにして、第1貫通孔108に人工脂質膜が形成される。第1貫通孔108と第2貫通孔110に人工脂質膜が形成されても良い。第2貫通孔110のみに人工脂質膜が形成されも良い。人工脂質膜は脂質二重膜であることが最も好ましい。ここでは、第2電解液303の自重により、脂質溶液302の薄膜から有機溶媒が除去される。余剰な有機溶媒は、第1薄膜103と第2薄膜105の少なくとも一方の外周面に沿って、除去されることが好ましい。有機溶媒の除去を促進するために、第1薄膜103と第2薄膜105の少なくとも一方の外周面にあって、第1貫通孔108と第2貫通孔110の近傍に、溝構造や凹凸構造などの微小流体を制御する構造を設けても良い。また、有機溶媒の除去が必要以上に進みすぎないように、第1薄膜103と第2薄膜105の少なくとも一方の外周面にあって、第1貫通孔108と第2貫通孔110の近傍に、溝構造や凹凸構造などの微小流体を制御する構造を設けても良い。
 人工脂質膜形成工程には、人工脂質膜の形成を検出する工程を含んでいても良い。人工脂質膜の形成を検出するには、光学顕微鏡による観察でも良い。人工脂質膜の吸光度を測定しても良い。第1チャンバ107と注入口113に複数の電極を設けて、人工脂質膜の膜抵抗や膜容量、膜電流などを測定しても良いし、他の電気的特性を測定しても良い。
 かかる構成と動作の手順によれば、(1)適量の脂質溶液を貫通孔へ注入することができるので、外部ポンプなどを用いて余剰な脂質溶液を排出する必要がなくなる(2)脂質溶液を注入する経路と、電解液を注入する経路を別に設けているので、脂質溶液を電解液に置換する必要がなくなるため、簡便で短時間に人工脂質膜を形成することができる。
 本実施形態において、人工脂質膜装置100を図1に示す向きに設置して動作させても良いし、他の向きで動作させても良い。図1に示す人工脂質膜形成装置100を、紙面内で反時計方向へ90度回転させた向きに設置し、動作させても良い。
 本実施形態において、第1電解液注入工程から人工脂質膜形成工程までの一連の工程は、20℃以上60℃以下で行なうことが好ましく、25℃以上40℃以下がより好ましい。
 本実施形態において、分析装置へ上述の人工脂質膜形成方法を採用することが好ましい。分析装置は、臨床検査用分析装置、電気化学分析装置、ガス分析装置、味覚分析装置、神経生理解析装置、イオンチャンネル解析装置、イオンチャンネル機能解析装置、ドラッグスクリーニング分析装置、バイオセンシング装置などに用いても良い。
 (実施形態2)
 以下、本発明の実施形態2における人工脂質膜形成方法について、図面を参照しながら説明する。
 図8(a)および(b)は、実施形態2における人工脂質膜形成装置の断面図および斜投影図である。なお本実施形態において、実施形態1と同様の部分については同一符号を付し、その詳細な説明は省略する。
 本実施形態と実施形態1との相違点は、注入口113の形状である。また、本実施形態と実施形態1との相違点は、第2電解液注入工程である。
 図8(a)に示すように、人工脂質膜形成装置100は、第3スペーサ201を備えている。第3スペーサ201の一端には、カバー106が設けられている。第2薄膜105とカバー106の間に、第3チャンバ202が形成される。第3チャンバ202の高さ203は、10nm以上100mm以下が好ましく、10nm以上1mm以下がより好ましい。第3チャンバ202の高さ203は、第3チャンバ202内において、同じでも良いし、異なっていても良い。
 図9は、本発明の実施形態2における人工脂質膜形成装置の分解斜投影図である。第3チャンバ202の幅126および第3チャンバ202の長さ127は、第3チャンバ202内において、同じでも良いし、異なっていても良い。なお、本発明では、第3チャンバ107の形状は限定されない。第3チャンバ107の形状は、直方体が最も好ましいが、円柱、三角柱など他の形状でも良い。
 第3チャンバ202の幅126は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。第3チャンバ202の長さ127は、10nm以上100mm以下が好ましく、1μm以上5mm以下がより好ましい。
 図8(a)に示すように、注入口113は、第2薄膜105とカバー106の一端に形成される。第2薄膜105とカバー106の端部の位置を違えることにより第3張り出し部193を形成し、注入口113とすることが好ましい。図8(b)に示す注入口113の第3張り出し部193の長さ204は、1mm以上10mm以下が好ましい。注入口113の第3張り出し部193の幅205は1mm以上20mm以下が好ましい。注入口113は、図8(b)に示すように平坦であっても良いし、液体を注入しやすいように溝構造や凹凸構造を備えていても良い。
 第2電解液注入工程は、適量の第2電解液303を毛細管現象により注入口113から第3チャンバ202へ注入することが好ましい。毛細管現象により第2電解液303を第3チャンバ202へ注入する場合、カバー106の外周面の少なくとも一部は親水処理されることが好ましい。カバー106の外周面のうち、第2電解液303に接する部分が親水処理されることが好ましい。カバー106の外周面のうち、第2貫通孔110の近傍を親水処理することが好ましい。カバー106の外周面の少なくとも一部を親水処理するために、酸素プラズマ処理を行なっても良いし、親水性材料で被覆しても良い。また、一般的に知られている他の親水処理を行なっても良い。
 本実施形態において、人工脂質膜装置100を図8(a)に示す向きに設置して動作させても良いし、他の向きで動作させても良い。図8(a)に示す人工脂質膜形成装置100を、紙面内で反時計方向へ90度回転させた向きに設置し、動作させても良い。
 本実施形態の構成であれば、(1)開口が同一方向を向いている、(2)第3チャンバ202へ第2電解液303を注入する時に、毛細管現象を利用することができるので、容易に溶液を注入することができ、その結果として簡便に人工脂質膜を形成できる。
 (実施形態3)
 以下、本発明の実施形態3における人工脂質膜形成方法について、図面を参照しながら説明する。
 図10(a)および(b)は、実施形態3における人工脂質膜形成装置の断面図および斜投影図である。なお本実施形態において、実施形態1と同様の部分については同一符号を付し、その詳細な説明は省略する。
 本実施形態と実施形態1との相違点は、第1開口111および第2開口112の形状である。
 本実施形態において、図10(a)に示すように、第1開口111は、第1薄膜103と第2薄膜105とカバー106に形成された貫通孔でも良い。
 本実施形態において、図10(b)に示すように、第2開口112は、第2薄膜105とカバー106に形成された貫通孔でも良い。
 本実施形態の構成であれば、(1)開口が同一方向を向いている、(2)開口や注入口を小さくできるので、溶液が蒸発しにくいので、その結果として簡便に人工脂質膜を形成できる。
 (実施形態4)
 以下、本発明の実施形態4における人工脂質膜形成方法について、図面を参照しながら説明する。
 図11は、実施形態4における人工脂質膜形成装置の断面図および斜投影図である。なお本実施形態において、実施形態1と同様の部分については同一符号を付し、その詳細な説明は省略する。
 本実施形態と実施形態1との相違点は、第1チャンバ107と注入口113に電極401を設けることである。
 本実施形態において、電極401は1つでも良いし、複数でも良い。電極401は電気化学測定に適した電極が好ましい。非分極性の電極であることが好ましい。電極401はAg/AgCl電極が最も好ましが、飽和カロメル電極、水素電極などでも良い。電極401は、あるいは、Ag電極、Pt電極、Au電極などの金属電極でも良いし、カーボン電極、グラファイト電極、カーボンナノチューブ電極などでも良い。電極401を用いて人工脂質膜のコンダクタンス、電気容量を測定しても良い。
 また、電極401を用いて、第1電解液301または第2電解液303に含まれるイオン、酵素、反応生成物、基質などの化学物質を測定しても良い。なお、本発明では、電極形状、大きさは限定されない。
 電極401の位置は、第1チャンバ107と注入口113にあって、第1貫通孔108と第2貫通孔110の近傍に設けることがより好ましい。図11に示すように第1チャンバ107と注入口113に電極401a、401bをそれぞれ設ける場合、同じ電極でも良いし、異なっても良い。複数の電極を組み合わせても良い。
 電極401は、人工脂質膜を形成する前に予め設けてあっても良いし、人工脂質膜を形成した後で設けても良い。電極401は、人工脂質膜形成装置100に固定しても良いし、取り外し可能でも良い。第1チャンバ107に設けられる電極401aは、基板101の外周面に形成されることが好ましい。注入口113に設けられる電極401bは、第2薄膜105の外周面またはカバー106の外周面に形成されることが好ましい。
 電極401には、増幅器を接続することが好ましい。増幅器はパッチクランプアンプが最も好ましいが、電界効果トランジスタ、バイポーラトランジスタ、オペアンプ、作動アンプなどの増幅器を接続しても良い。
 本実施形態の構成であれば、人工脂質膜脂を形成するまでの各工程の進捗状況や終点などを、電極401を用いて検出できる。例えば、第1電解液注入工程において、第1チャンバ107に2つの電極を設けて、2つの電極間の電気伝導度を測定すれば、第1電解液301の注入が完了したことを容易に検出できる。
 さらには、脂質溶液を注入する経路と電解液を注入する経路を別に設けているので、電解液に浸漬される電極は、脂質溶液によって汚染されない。したがって、電極表面の保護や電極表面の洗浄といったわずらわしい工程を必要としないので、容易に人工脂質膜を形成できる。
 (実施形態5)
 以下、本発明の実施形態5における人工脂質膜形成方法について、図面を参照しながら説明する。
 図12は、実施形態5における人工脂質膜形成装置の断面図および斜投影図である。なお本実施形態において、実施形態1と同様の部分については同一符号を付し、その詳細な説明は省略する。
 本実施形態と実施形態1との相違点は、第1チャンバ107にセンサ402を設けることである。
 センサ402は、人工脂質膜を形成する前に予め設けてあっても良いし、人工脂質膜を形成した後で設けても良い。センサ402は、人工脂質膜形成装置100に固定しても良いし、取り外し可能でも良い。第1チャンバ107に設けられるセンサ402は、基板101の外周面に形成されることが最も好ましい。
 本実施形態において、センサ402は、電気化学測定に適したセンサが最も好ましい。センサ402は、イオン電極、イオン感応電界効果トランジスタ(ISFET)が最も好ましい。イオン電極はカリウムイオン電極、ナトリウムイオン電極、カルシウムイオン電極、塩化物イオン電極などが好ましい。イオン感応電界効果トランジスタにより、カリウムイオン、ナトリウムイオン、カルシウムイオン、塩化物イオンなどを検出することが好ましい。
 なお、センサ402は、オプトード、QCM(Quartz crystal microbalance)、SAW(Surfaceacousticwave)センサ、SPR(Surface plasmonresonance)、LSPR(Localizedsurface plasmon microbalance)、有機電気化学トランジスタ、酵素センサなどでも良い。吸光度や反射率など光学特性を計測するための光源や検出器などを設けても良い。
 本発明では、センサ402の数、形状、大きさは限定されない。またセンサ402の位置は、第1チャンバ107にあって、第1貫通孔108の近傍に設けることがより好ましい。なお、センサ402は注入口113に設けても良い。センサ402を注入口113に設ける場合、第2薄膜105の外周面またはカバー106の外周面に形成されることが好ましい。
 本実施形態において、注入口113に電極403を設けても良い。電極403は、人工脂質膜を形成する前に予め設けてあっても良いし、人工脂質膜を形成した後で設けても良い。電極403は、人工脂質膜形成装置100に固定しても良いし、取り外し可能でも良い。電極403は、第2薄膜105の外周面またはカバー106の外周面に形成されることが好ましい。電極403は第1チャンバ107に設けても良い。電極403を第1チャンバ107に設ける場合、基板101の外周面に形成されることが最も好ましく、第1薄膜103の外周面に形成されても良い。
 電極403は電気化学測定に適した電極が好ましい。非分極性の電極であることが好ましい。電極403はAg/AgCl電極が最も好ましいが、飽和カロメル電極、水素電極などでも良い。電極403は、あるいは、Ag電極、Pt電極、Au電極などの金属電極でも良いし、カーボン電極、グラファイト電極、カーボンナノチューブ電極などでも良い。電極403を用いて人工脂質膜のコンダクタンス、電気容量を測定しても良い。また、電極403を用いて、第1電解液301または第2電解液303に含まれるイオン、酵素、反応生成物、基質などの化学物質を測定しても良い。
 なお、本発明では、電極形状、大きさは限定されない。また電極403の位置は、注入口113にあって、第2貫通孔110の近傍に設けることがより好ましい。電極403は参照電極として用いても良い。
 本実施形態の構成であれば、人工脂質膜脂を形成するまでの各工程の進捗状況や終点などを、センサ402を用いて検出できる。例えば、第1電解液注入工程において、第1チャンバ107にセンサ402としてイオン電極を設けることにより、第1電解液301の注入が完了したことを容易に検出できる。
 さらには、人工脂質膜の直近にセンサを設けるので、人工脂質膜の電気的特性を測定するときにノイズを低減することができる。その結果、容易に人工脂質膜の形成を検出できるのでより好ましい。
 [実施例]
 まず、人工脂質膜形成装置の作製方法を説明する。基板101としてホウケイ酸ガラスを用いた。ホウケイ酸ガラスは22mm×22mm×0.17mmであった。まず、ホウケイ酸ガラスを純水、エタノール、アセトンで10分ずつ超音波洗浄した。次に、UVオゾンアッシャーによりホウケイ酸ガラスの外周面を親水化処理した。処理時間は5分間とした。
 第1スペーサ102、第1薄膜103、第2スペーサ104、第2薄膜105は厚み100μmのテフロン(登録商標)フィルムを用いた。第1スペーサ102と第1薄膜103と第2スペーサ104と第2薄膜105には、一枚のテフロン(登録商標)フィルムを用いた。テフロン(登録商標)フィルムの大きさは20mmx10mmであった。1枚のテフロン(登録商標)フィルムを中央で折り曲げて成型した。
 カバー106にはポリジメチルシロキサン(PDMS)を用いた。ポリジメチルシロキサンは厚み0.5mmのフィルム状に成型し、第2貫通孔110へ溶液を注入できる位置に直径3mmの貫通孔を形成した。
 第1貫通孔108は第1薄膜103の両面を貫通するようにドリルにより形成した。第1貫通孔108の直径は200μmであった。
 第2貫通孔110は第2薄膜105の両面を貫通するようにドリルにより形成した。第2貫通孔110の直径は200μmであった。
 第1貫通孔108と第2貫通孔110は、位置ずれを抑制するために、第1薄膜103と第2薄膜105を重ねた状態で同時に形成した。
 なお、第1貫通孔108と第2貫通孔110の形成は、第1薄膜103と第2薄膜105にそれぞれ第1貫通孔108と第2貫通孔110を別々に形成した後、位置合わせを行いながら、第1薄膜103と第2薄膜105を積層しても良い。
 第1貫通孔108と第2貫通孔110は、第1薄膜103と第2薄膜105の一辺から2mmの位置に形成した。第1貫通孔108と第2貫通孔110は、第1薄膜103と第2薄膜105の一辺から0.5mm以上3mm以下の位置に形成することが好ましい。
 第2薄膜105に第2開口112を設けた。第2開口112は第2薄膜105を貫通する直径1mmの円形の孔であった。第2開口112はドリルで形成した。
 第1薄膜103と第2薄膜105に第1開口111を設けた。第1開口111は、第1薄膜103と第2薄膜105を貫通する直径1mmの円形の孔であった。第1開口111は、第1薄膜103と第2薄膜105を重ねた状態で同時にドリルにより形成した。
 基板101、第1スペーサ102、第1薄膜103、第2スペーサ104、第2薄膜105、カバー106を積層した。第1チャンバ107と第2チャンバ109から溶液が漏洩しないように積層された基板101、第1スペーサ102、第1薄膜103、第2スペーサ104、第2薄膜105、カバー106の周縁部をエポキシ接着剤で封止した。なお、カバー106は第2薄膜105へ自発密着させた。
 最後に、積層された基板101、第1スペーサ102、第1薄膜103、第2スペーサ104、第2薄膜105、カバー106を、2枚のポリカーボネート板(36mm×36mm×1mm)で挟み、ポリカーボネート板の4隅をボルトで固定した。カバー106に接する方のポリカーボネート板には、第1開口111、第2開口112、注入口113へ溶液を注入できるように、直径9mmの円形孔を1つ設けた。
 次に、人工脂質膜の形成手順を説明する。まず、第1電解液注入工程を行なった。第1電解液301として1M KCl溶液を用いた。第1電解液301の液量は1μLであった。第1電解液301を第1開口111へ滴下した。滴下された第1電解液301は、毛細管現象により第1チャンバ107へ注入された。第1チャンバ107の内壁面は親水処理されているため、容易に第1電解液301を注入することができた。第1電解液301を注入するのに要する時間は1秒以下であった。第1電解液注入工程では、はじめに、第1チャンバ107の中で第1貫通孔108および第1貫通孔108周辺領域以外が、第1電解液で満たされた。その後、第1貫通孔108周辺領域および第1貫通孔108が第1電解液301で満たされた。第1電解液301が第1チャンバ107へ注入される様子を光学顕微鏡により観察した。
 第1電解液注入工程の後で、脂質溶液注入工程を行なった。脂質溶液302としてリン脂質(1,2-diphytanoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids)と有機溶媒(chloroform, 和光純薬)の混合液を用いた。脂質溶液302の濃度は25mg/mLであった。脂質溶液302を第2開口112へ滴下した。脂質溶液302の液量は0.4μLであった。脂質溶液302は、第2チャンバ109を経由して、第1貫通孔108と第2貫通孔110へ注入した。脂質溶液302は毛細管現象により注入した。第2チャンバ109の内壁面はテフロン(登録商標)であって疎水的であるため、容易に脂質溶液302を注入することができた。脂質溶液302を注入するのに要する時間は1秒以下であった。脂質溶液302が第1貫通孔108と第2貫通孔110へ注入される様子を光学顕微鏡により観察した。
 次に、脂質溶液注入工程の後で、第2電解液注入工程を行なった。第2電解液303は1M KCl溶液を用いた。第2電解液303の液量は2μLであった。第2電解液303を注入口113へ滴下した。第2電解液303は、注入口113の内壁を伝わって注入された。第2電解液303を注入するのに要する時間は1秒以下であった。第2電解液303が注入口113へ注入される様子を目視および光学顕微鏡により観察した。
 最後に、第2電解液注入工程の後で、人工脂質膜形成工程を行なった。人工脂質膜形成工程として、10秒間待機した。なお人工脂質膜形成工程を経て、人工脂質膜が形成されたことを確認するために、光学顕微鏡により人工脂質膜を観察した。人工脂質膜が形成されるといわゆる黒膜として観察される。なぜなら人工脂質膜の厚みは2~5nm程度であり、光をほとんど反射しないためである。図13(a)および(b)は人工脂質膜の顕微鏡写真である。図13(b)は、図13(a)において、第1貫通孔108および人工脂質膜の領域501の境界線を白点線により明示したものである。図13(b)において領域501は、その周りに比べて暗く見えた。時間の経過と共に領域501の面積は広がり、人工脂質膜の薄膜化が進展する様子を観察できた。
 さらに、人工脂質膜の電気的特性を測定するために、第1開口111と注入口113にそれぞれ電極401aと電極401bを設けた。電気的特性の測定にはパッチクランプアンプ(EPC-10, HEKA)を用いた。電極401aはグランド線、電極401bは信号線に接続した。電極401aに対して電極401bへ、5mV、10msecのパルス電圧を印加した。人工脂質膜に流れる電流の過渡応答を記録した。図14は人工脂質膜に流れる電流の過渡応答を示す。過渡応答は人工脂質膜に見られる電気容量性の膜電流が測定された。
 一方、人工脂質膜が形成されずに、第1チャンバ107の中の第1電解液301と注入口113の中の第2電解液303が直接接触する場合には、図14に示すような電気容量性の膜電流は測定されなかった。
 さらに、上述の人工脂質膜形成の手順によれば、第1開口111と注入口113に設けられた電極401aと電極401bは、脂質溶液302に触れることなく、電極表面を清浄な状態を保ったままで人工脂質膜を形成できた。その結果、人工脂質膜の電気的特性を正常に測定できた。
 [比較例]
 従来の人工脂質膜形成方法の1つである、泡吹き付け法を用いて、人工脂質膜を形成した。
 図15は比較例の人工脂質膜形成装置である。第1チャンバ601は、薄膜602に直径1.5mmの円形の貫通孔を開けて作製した。第1チャンバ601は抜き加工により作製した。薄膜602としてポリジメチルシロキサンを用いた。薄膜602の大きさは、10mm×10mm×0.5mmであった。人工脂質膜を形成する貫通孔603は、厚さ100μmのテフロン(登録商標)フィルム604に直径200μmの円形の貫通孔を開けて作製した。貫通孔603はドリルにより形成した。注入口605は、薄膜606に直径1.5mmの円形の貫通孔を開けて作製した。注入口605は抜き加工により作製した。薄膜606としてポリジメチルシロキサンを用いた。薄膜606の大きさは、10mm×10mm×0.5mmであった。そして、図15に示すように、テフロン(登録商標)フィルム604と薄膜602と薄膜606をガラス基板607の上に積層した。ガラス基板607としてホウケイ酸ガラスを用いた。ガラス基板607の大きさは、22mm×22mm×0.17mmであった。
 次に、人工脂質膜形成方法の手順を説明する。まず、マイクロピペットを用いて、第1チャンバ601へ電解液を注入した。電解液として1M KClを用いた。注入した電解液の量は1μLであった。次に薄膜602の上にテフロン(登録商標)フィルム604を積層した。余剰な電解液を除去した。次に、テフロン(登録商標)フィルム604の上に薄膜606を積層した。そして、マイクロピペットを用いて、注入口605へ電解液を注入した。電解液として1M KClを用いた。注入した電解液の量は1μLであった。最後に、マイクロピペットを用いて脂質溶液を貫通孔603へ吹き付けた。脂質溶液は、リン脂質(1,2-diphytanoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids)と有機溶媒(chloroform, 和光純薬)の混合液を用いた。脂質溶液の濃度は25mg/mLであっ
た。
 形成された人工脂質膜を光学顕微鏡により観察した。図16(a)および(b)は、比較例での人工脂質膜の光学顕微鏡写真である。図16(b)は、図16(a)において、貫通孔603および人工脂質膜の領域608の境界線を白点線により明示したものである。図16(b)において領域608は、その周りに比べて暗く見えた。時間の経過と共に領域608の面積は広がり、人工脂質膜の薄膜化が進展する様子が観察された。
 図17は、本発明の実施例と比較例において、人工脂質膜の形成率を比較した図である。ここで言う形成率とは、人工脂質膜が形成された回数を試行回数で除して100を掛けた数値である。具体的には、実施例および比較例において10回ずつ人工脂質膜の形成を試みた。その結果、実施例においては60%、比較例では10%の形成率で人工脂質膜を形成できた。この結果は、従来例に比べて簡便な操作で人工脂質膜を高率に形成できることを示す。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。したがって、上記説明は例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 本発明によれば、適量の脂質溶液を貫通孔へ導入することができるので、余剰な脂質溶液を排出するために外部ポンプを設ける必要もないし、長時間待機する必要もない。その結果、従来の人工脂質膜形成方法および人工脂質形成装置よりも簡便で短時間に人工脂質膜を形成することができる。
 簡便で短時間に人工脂質膜を形成できるならば、人工脂質膜を利用するような各種分析操作を大幅に効率化できる。例えば、イオンチャンネルや受容体などの膜タンパクを組み込んだ人工脂質膜は、膜タンパクの基本構造解析、機能解明および膜タンパク-膜タンパク間の相関研究への用途に応用できる。本発明は上述の研究発展に直接寄与できるだけでなく、イオンチャンネルに起因する疾患の診断や新薬開発のスクリーニングなどの医療、製薬分野への産業応用の可能性もある。また、膜タンパクが有する特異的な分子認識性を利用すればバイオセンサなどへ応用することが可能である。
 10 容器
 11 平板
 12 電解液
 13 微小孔
 14 脂質溶液
 15 ピペット
 20 容器
 21 平板
 22 微小孔
 23 電解液
 24 注入口
 25 脂質分子
 26 電解液
 27 注入口
 31 第1の室
 32 隔壁
 33 第2の室
 34 小孔
 35 人工脂質膜
 100 人工脂質膜形成装置
 101 基板
 102 第1スペーサ
 103 第1薄膜
 104 第2スペーサ
 105 第2薄膜
 106 カバー
 107 第1チャンバ
 108 第1貫通孔
 108a、108b 断面
 109 第2チャンバ
 110 第2貫通孔
 110a、110b 断面
 110c 内壁面
 111 第1開口
 112 第2開口
 113 注入口
 113a 内壁面
 114 第1チャンバの高さ
 115 第2チャンバの高さ
 120 第1チャンバの幅
 121 第1チャンバの長さ
 122 第1貫通孔の直径
 123 第2チャンバの幅
 124 第2チャンバの長さ
 125 第2貫通孔の直径
 126 第3チャンバの幅
 127 第3チャンバの長さ
 130 第1開口の張り出し部の長さ
 131 第1開口の張り出し部の幅
 132 第2開口の張り出し部の長さ
 133 第2開口の張り出し部の幅
 134 注入口の直径
 191 第1張り出し部
 192 第2張り出し部
 193 第3張り出し部
 201 第3スペーサ
 202 第3チャンバ
 203 第3チャンバの高さ
 204 注入口の張り出し部の長さ
 205 注入口の張り出し部の幅
 301 第1電解液
 302 脂質溶液
 303 第2電解液
 401、401a、401b 電極
 402 センサ
 403 電極
 501 領域
 601 第1チャンバ
 602 薄膜
 603 貫通孔
 604 テフロン(登録商標)フィルム
 605 注入口
 606 薄膜
 607 ガラス基板
 608 領域

Claims (20)

  1.  人工脂質膜形成装置を用いた人工脂質膜形成方法であって、
     前記装置は、
      基板と、
      前記基板の一端に設けられた第1スペーサと、
      前記第1スペーサを介して前記基板に設けられた第1薄膜と、
      前記第1薄膜の一端に設けられた第2スペーサと、
      前記第2スペーサを介して前記第1薄膜に設けられた第2薄膜と、
      第2薄膜の一端に設けられたカバーと
     を備え、
     前記基板と前記第1薄膜との間には第1チャンバが備えられ、
     前記第1薄膜は両面を貫通する第1貫通孔を備え、
     前記第1薄膜と前記第2薄膜との間には第2チャンバが備えられ、
     前記第2薄膜は両面を貫通する第2貫通孔を備え、
     前記カバーには前記第2貫通孔へ接続する注入口が備えられ、
     平面視において前記第1貫通孔は前記第2貫通孔と重なり、
     前記第1チャンバは、前記第1貫通孔と前記第2貫通孔を介して前記注入口に接続され、
     前記方法は、
     前記第1チャンバへ電解液を注入する第1電解液注入工程、
     前記第2チャンバを経て、前記第1貫通孔または前記第2貫通孔の少なくとも一方へ、脂質溶液を注入する脂質溶液注入工程、および
     前記注入口へ電解液を注入して、前記脂質溶液が注入された貫通孔の内部に人工脂質膜を形成する第2電解液注入工程、
    を順に包含する人工脂質膜形成方法。
  2.  前記第1薄膜、第1スペーサ、および前記第2薄膜は、一体的に形成されている、請求項1に記載の人工脂質膜形成方法。
  3.  前記第1貫通孔は、前記第2貫通孔の断面積と同じ断面積を有する、請求項1に記載の人工脂質膜形成方法。
  4.  前記注入口は、平面視において前記第1チャンバと重なり合う、請求項1に記載の人工脂質膜形成方法。
  5.  前記第1チャンバの外周面は、親水性を有する、請求項1に記載の人工脂質膜形成方法。
  6.  前記第2チャンバの外周面は、疎水性を有する、請求項1に記載の人工脂質膜形成方法。
  7.  前記注入口の外周面は、親水性を有する、請求項1に記載の人工脂質膜形成方法。
  8.  前記第1チャンバおよび前記注入口のうち少なくとも一方は、電極を備えている、請求項1に記載の人工脂質膜形成方法。
  9.  前記第1チャンバおよび前記注入口のうち少なくとも一方は、センサを備えている、請求項1に記載の人工脂質膜形成方法。
  10.  前記第1電解液注入工程では、毛細管現象により前記第1チャンバへ前記電解液が注入される、請求項1に記載の人工脂質膜形成方法。
  11.  前記脂質溶液注入工程では、毛細管現象により前記第1貫通孔または前記第2貫通孔の少なくとも一方へ、前記脂質溶液が注入される、請求項1に記載の人工脂質膜形成方法。
  12.  人工脂質膜形成装置であって、
     前記装置は、
      基板と、
      前記基板の一端に設けられた第1スペーサと、
      前記第1スペーサを介して前記基板に設けられた第1薄膜と、
      前記第1薄膜の一端に設けられた第2スペーサと、
      前記第2スペーサを介して前記第1薄膜に設けられた第2薄膜と、
      第2薄膜の一端に設けられたカバーと
     を備え、
     前記基板と前記第1薄膜との間には第1チャンバが備えられ、
     前記第1薄膜は両面を貫通する第1貫通孔を備え、
     前記第1薄膜と前記第2薄膜との間には第2チャンバが備えられ、
     前記第2薄膜は両面を貫通する第2貫通孔を備え、
     前記カバーには前記第2貫通孔へ接続する注入口が備えられ、
     平面視において前記第1貫通孔は前記第2貫通孔と重なり、
     前記第1チャンバは、前記第1貫通孔と前記第2貫通孔を介して前記注入口に接続されている、人工脂質膜形成装置。
  13.  前記第1薄膜、第1スペーサ、および前記第2薄膜は、一体的に形成されている、請求項12に記載の人工脂質膜形成装置。
  14.  前記第1貫通孔は、前記第2貫通孔の断面積と同じ断面積を有する、請求項12に記載の人工脂質膜形成装置。
  15.  前記注入口は、平面視において前記第1チャンバと重なり合う、請求項12に記載の人工脂質膜形成装置。
  16.  前記第1チャンバの外周面は、親水性を有する、請求項12に記載の人工脂質膜形成装置。
  17.  前記第2チャンバの外周面は、疎水性を有する、請求項12に記載の人工脂質膜形成装置。
  18.  前記注入口の外周面は、親水性を有する、請求項12に記載の人工脂質膜形成装置。
  19.  前記第1チャンバと前記注入口のうち少なくとも一方は、電極を備えている、請求項12に記載の人工脂質膜形成装置。
  20.  前記第1チャンバと前記注入口のうち少なくとも一方は、センサを備えている、請求項12に記載の人工脂質膜形成装置。
PCT/JP2009/003971 2008-08-26 2009-08-20 人工脂質膜形成方法および人工脂質膜形成装置 WO2010023848A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980108607.9A CN101971013B (zh) 2008-08-26 2009-08-20 人工脂质膜形成方法和人工脂质膜形成装置
JP2009552022A JP4469024B2 (ja) 2008-08-26 2009-08-20 人工脂質膜形成方法および人工脂質膜形成装置
US12/772,558 US7828947B2 (en) 2008-08-26 2010-05-03 Artificial lipid membrane forming method and artificial lipid membrane forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008216127 2008-08-26
JP2008-216127 2008-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/772,558 Continuation US7828947B2 (en) 2008-08-26 2010-05-03 Artificial lipid membrane forming method and artificial lipid membrane forming apparatus

Publications (1)

Publication Number Publication Date
WO2010023848A1 true WO2010023848A1 (ja) 2010-03-04

Family

ID=41721032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003971 WO2010023848A1 (ja) 2008-08-26 2009-08-20 人工脂質膜形成方法および人工脂質膜形成装置

Country Status (4)

Country Link
US (1) US7828947B2 (ja)
JP (1) JP4469024B2 (ja)
CN (1) CN101971013B (ja)
WO (1) WO2010023848A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149868A (ja) * 2010-01-22 2011-08-04 Kanagawa Acad Of Sci & Technol 脂質二重膜、それを形成するために用いられる自己支持性フィルム及びそれを具備するマイクロ流路デバイス
WO2013002339A1 (ja) * 2011-06-28 2013-01-03 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
JP2015024936A (ja) * 2013-07-26 2015-02-05 国立大学法人福井大学 脂質平面膜を形成するための貫通孔を有するガラス基板、およびその製造方法と用途
WO2017170075A1 (ja) * 2016-03-30 2017-10-05 シャープ ライフ サイエンス (イーユー)リミテッド 微小流体装置
JP2018140478A (ja) * 2017-02-28 2018-09-13 国立大学法人東北大学 シリコンチップ及びその製造方法
WO2019142784A1 (ja) * 2018-01-19 2019-07-25 地方独立行政法人神奈川県立産業技術総合研究所 脂質二重膜形成用隔壁及びその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062489B2 (en) * 2009-10-07 2011-11-22 Panasonic Corporation Method for forming artificial lipid membrane
US9782585B2 (en) 2013-08-27 2017-10-10 Halo Neuro, Inc. Method and system for providing electrical stimulation to a user
US9486618B2 (en) 2013-08-27 2016-11-08 Halo Neuro, Inc. Electrode system for electrical stimulation
EP3038699A4 (en) 2013-08-27 2017-03-29 Halo Neuro, Inc. Electrode system for electrical stimulation
US9630005B2 (en) 2013-08-27 2017-04-25 Halo Neuro, Inc. Method and system for providing electrical stimulation to a user
TWI701517B (zh) 2014-12-23 2020-08-11 德商卡爾蔡司Smt有限公司 光學構件
WO2017075086A1 (en) 2015-10-26 2017-05-04 Halo Neuro, Inc. Electrode positioning system and method
EP3413966A4 (en) 2016-02-08 2019-11-27 Halo Neuro, Inc. METHOD AND SYSTEM FOR IMPROVING THE PROVISION OF ELECTRICAL STIMULATION
US10485443B2 (en) 2016-06-20 2019-11-26 Halo Neuro, Inc. Electrical interface system
US10512770B2 (en) 2017-03-08 2019-12-24 Halo Neuro, Inc. System for electrical stimulation
US10507324B2 (en) 2017-11-17 2019-12-17 Halo Neuro, Inc. System and method for individualizing modulation
KR102083083B1 (ko) * 2018-06-21 2020-02-28 연세대학교 산학협력단 고효율 오가노이드 배양 디바이스 및 배양 시스템
JP7353597B2 (ja) * 2019-10-04 2023-10-02 地方独立行政法人神奈川県立産業技術総合研究所 計測器具及びそれを用いた標的物質の計測方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241512A (ja) * 1994-03-02 1995-09-19 Advance Co Ltd 黒膜作製装置
JP2005091305A (ja) * 2003-09-19 2005-04-07 Japan Science & Technology Agency 人工脂質二重膜の形成装置および人工脂質二重膜の形成方法、並びにその利用
WO2005071405A1 (ja) * 2004-01-21 2005-08-04 Japan Science And Technology Agency 膜タンパク質分析用平面脂質二重膜の形成方法とその装置
JP2005315832A (ja) * 2004-03-29 2005-11-10 Toshiba Corp 脂質二分子膜形成装置及び脂質二分子膜形成方法
WO2006030523A1 (ja) * 2004-09-17 2006-03-23 Japan Science And Technology Agency 人工脂質二重膜における脂質置換方法、その脂質置換方法を用いて得られる人工脂質二重膜、その人工脂質二重膜を製造する装置、および、イオン透過測定装置
JP2006312141A (ja) * 2005-05-09 2006-11-16 Foundation For The Promotion Of Industrial Science 脂質二重膜の形成方法およびその装置
JP2007029911A (ja) * 2005-07-29 2007-02-08 Univ Of Tokyo 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637861A (en) * 1985-12-16 1987-01-20 Allied Corporation Stabilized, lipid membrane-based device and method of analysis
JP3769622B2 (ja) * 2003-09-22 2006-04-26 国立大学法人 東京大学 人工脂質膜の形成方法とそのための脂質平面膜形成装置
JP4250523B2 (ja) 2003-12-25 2009-04-08 株式会社東芝 マイクロリアクタ、分析システム、分析方法、反応システム、反応方法、分離システム、分離方法
JP2005245331A (ja) 2004-03-04 2005-09-15 Eiichi Tamiya 薄膜形成用デバイス、薄膜デバイス及びその製造方法
US20050214163A1 (en) 2004-03-29 2005-09-29 Takeshi Kinpara Bilayer lipid membrane forming device and bilayer lipid membrane forming method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241512A (ja) * 1994-03-02 1995-09-19 Advance Co Ltd 黒膜作製装置
JP2005091305A (ja) * 2003-09-19 2005-04-07 Japan Science & Technology Agency 人工脂質二重膜の形成装置および人工脂質二重膜の形成方法、並びにその利用
WO2005071405A1 (ja) * 2004-01-21 2005-08-04 Japan Science And Technology Agency 膜タンパク質分析用平面脂質二重膜の形成方法とその装置
JP2005315832A (ja) * 2004-03-29 2005-11-10 Toshiba Corp 脂質二分子膜形成装置及び脂質二分子膜形成方法
WO2006030523A1 (ja) * 2004-09-17 2006-03-23 Japan Science And Technology Agency 人工脂質二重膜における脂質置換方法、その脂質置換方法を用いて得られる人工脂質二重膜、その人工脂質二重膜を製造する装置、および、イオン透過測定装置
JP2006312141A (ja) * 2005-05-09 2006-11-16 Foundation For The Promotion Of Industrial Science 脂質二重膜の形成方法およびその装置
JP2007029911A (ja) * 2005-07-29 2007-02-08 Univ Of Tokyo 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149868A (ja) * 2010-01-22 2011-08-04 Kanagawa Acad Of Sci & Technol 脂質二重膜、それを形成するために用いられる自己支持性フィルム及びそれを具備するマイクロ流路デバイス
WO2013002339A1 (ja) * 2011-06-28 2013-01-03 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
JPWO2013002339A1 (ja) * 2011-06-28 2015-02-23 株式会社フジクラ 脂質膜を形成するための基体、及び前記基体の製造方法
JP2015024936A (ja) * 2013-07-26 2015-02-05 国立大学法人福井大学 脂質平面膜を形成するための貫通孔を有するガラス基板、およびその製造方法と用途
WO2017170075A1 (ja) * 2016-03-30 2017-10-05 シャープ ライフ サイエンス (イーユー)リミテッド 微小流体装置
US11040345B2 (en) 2016-03-30 2021-06-22 Sharp Life Science (Eu) Limited Microfluidic device
JP2018140478A (ja) * 2017-02-28 2018-09-13 国立大学法人東北大学 シリコンチップ及びその製造方法
WO2019142784A1 (ja) * 2018-01-19 2019-07-25 地方独立行政法人神奈川県立産業技術総合研究所 脂質二重膜形成用隔壁及びその製造方法
US11607871B2 (en) 2018-01-19 2023-03-21 Kanagawa Institute Of Industrial Science And Technology Partition wall for formation of lipid bilayer membrane, and method for producing same

Also Published As

Publication number Publication date
JPWO2010023848A1 (ja) 2012-01-26
US7828947B2 (en) 2010-11-09
CN101971013B (zh) 2013-06-19
US20100213070A1 (en) 2010-08-26
CN101971013A (zh) 2011-02-09
JP4469024B2 (ja) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4469024B2 (ja) 人工脂質膜形成方法および人工脂質膜形成装置
US7470518B2 (en) Systems and method for rapidly changing the solution environment around sensors
US7563614B2 (en) Systems and methods for rapidly changing the solution environment around sensors
EP1712909B1 (en) Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
US8232074B2 (en) Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells
US8506905B2 (en) Method of forming bilayer membrane by contact between amphipathic monolayers and apparatus therefor
JP2008194573A (ja) 脂質二重膜形成方法
US20130140192A1 (en) Method of Producing a Lipid Bilayer and Microstructure and Measuring Arrangement
US20120040370A1 (en) Systems and methods for rapidly changing the solution environment around sensors
WO2005029056A1 (ja) 人工脂質二重膜の形成装置および人工脂質二重膜の形成方法、並びにその利用
US20040110307A1 (en) System and method for obtaining and maintaining high-resistance seals in patch clamp recordings
Quist et al. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: Lab-on-a-chip system for lipid membranes and ion channels
WO2005029054A1 (ja) 人工脂質二重膜を有する電流測定装置
JP6124205B2 (ja) 人工脂質膜形成装置および人工脂質膜形成方法
Challita et al. Hydrogel microelectrodes for the rapid, reliable, and repeatable characterization of lipid membranes
US8062489B2 (en) Method for forming artificial lipid membrane
WO2006030523A1 (ja) 人工脂質二重膜における脂質置換方法、その脂質置換方法を用いて得られる人工脂質二重膜、その人工脂質二重膜を製造する装置、および、イオン透過測定装置
Izawa et al. Handheld nanopore-based biosensing device
Wittenberg et al. Electrochemistry at the cell membrane/solution interface
JP2021186701A (ja) 脂質二重膜の形成方法並びにそのための隔壁及び器具
Mo et al. Impedance based Microfluidic Biosensor for Cell Study
van Uitert Investigating cellular electroporation using planar membrane models and miniaturized devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108607.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009552022

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809504

Country of ref document: EP

Kind code of ref document: A1