WO2005071246A1 - 内燃機関の制御装置およびこれを搭載する自動車 - Google Patents

内燃機関の制御装置およびこれを搭載する自動車 Download PDF

Info

Publication number
WO2005071246A1
WO2005071246A1 PCT/JP2005/001161 JP2005001161W WO2005071246A1 WO 2005071246 A1 WO2005071246 A1 WO 2005071246A1 JP 2005001161 W JP2005001161 W JP 2005001161W WO 2005071246 A1 WO2005071246 A1 WO 2005071246A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fuel
control
fuel pressure
Prior art date
Application number
PCT/JP2005/001161
Other languages
English (en)
French (fr)
Inventor
Keiko Hasegawa
Kenji Harima
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US10/586,585 priority Critical patent/US20080257312A1/en
Priority to EP05704214A priority patent/EP1707784A1/en
Publication of WO2005071246A1 publication Critical patent/WO2005071246A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the present invention relates to a control apparatus for a direct injection internal combustion engine, a vehicle including the same, and a control method for a direct injection internal combustion engine.
  • a control apparatus for a direct injection internal combustion engine a vehicle including the same, and a control method for a direct injection internal combustion engine.
  • the control device for the internal combustion engine described above can improve the startability of the next internal combustion engine, but does not consider the emission at the next start. If the internal combustion engine is stopped in a state where the fuel pressure is increased, the fuel may evaporate due to oil-tight leakage and stay in the cylinder over time. In this case, the fuel that has accumulated in the cylinder is discharged as it is at the next start, so that unburned hydrocarbons (HC) are discharged. If the internal combustion engine is stopped with the fuel pressure set high, When the engine is stopped at a high temperature or when the ambient temperature near the fuel pipe is high, the fuel pressure is further increased due to the thermal expansion of the fuel in the fuel pipe, and the fuel pipe is installed so that the fuel pressure does not become excessive. The operated relief valve becomes easier to operate. If the internal combustion engine is automatically stopped frequently, the operation of this relief valve will be frequent, and it will be necessary to increase the durability of the relief vanoleb, and a relief valve with excessive performance must be installed.
  • An object of the control device for an internal combustion engine, an automobile equipped with the same, and a control method for an internal combustion engine of the present invention is to improve emission at the start of a direct injection internal combustion engine. Further, the control device for an internal combustion engine, the vehicle equipped with the same, and the control method for an internal combustion engine according to the present invention are characterized in that the durability of a relief valve attached to a fuel pressurized supply unit that pressurizes and supplies fuel to a fuel injection valve is provided. One of the objectives is to improve.
  • control apparatus for an internal combustion engine the vehicle equipped with the same, and the control method for an internal combustion engine according to the present invention employ the following means to achieve at least a part of the above object.
  • the control device for an internal combustion engine is a control device for a direct injection internal combustion engine, wherein when a predetermined stop condition is satisfied while the internal combustion engine is operating, the fuel injection of the internal combustion engine is performed.
  • the operation of the internal combustion engine is stopped in a state where the valve side fuel pressure on the fuel injection valve side in the fuel pressure increasing supply unit for supplying fuel by increasing the pressure to the valve is reduced as compared with the normal operation of the internal combustion engine. It is characterized by executing stop control.
  • the fuel is pressurized and supplied to the fuel injection valve of the internal combustion engine.
  • the operation of the internal combustion engine is stopped in a state where the valve side fuel pressure on the fuel injection valve side in the fuel pressure supply section is reduced as compared with the normal operation of the internal combustion engine. For this reason, the operation of the internal combustion engine is stopped It is possible to suppress the fuel from staying in the cylinder due to oil-tight leakage during the course. As a result, when the internal combustion engine is started next time, it is possible to suppress the deterioration of the emission caused by discharging the fuel remaining in the cylinder as it is.
  • the emission can be improved. Further, since the internal combustion engine is stopped by decreasing the valve side fuel pressure, the operation of a mechanism such as a relief valve for preventing the valve side fuel pressure from becoming excessive can be suppressed. As a result, the durability of a mechanism such as a relief valve can be improved.
  • a start control for starting the internal combustion engine whose re-operation has been stopped by the stop control is executed. You can also. In this case, the internal combustion engine can be started automatically when a predetermined starting condition is satisfied.
  • the stop control may be control for reducing the valve side fuel pressure by injecting fuel from the fuel injection valve and burning the fuel.
  • the valve side fuel pressure can be easily reduced.
  • the stop control may be control for reducing the valve side fuel pressure and thereafter stopping the operation of the internal combustion engine. With this configuration, the internal combustion engine can be stopped in a state where the valve side fuel pressure is reduced.
  • the stop control is performed until the valve-side fuel pressure reaches a predetermined fuel pressure set so as to ensure startability in starting the internal combustion engine by the start control.
  • the control may be such that the operation of the internal combustion engine is stopped after the pressure is reduced. This makes it possible to ensure the startability of the internal combustion engine when starting the internal combustion engine next time.
  • the control apparatus for an internal combustion engine according to the present invention further includes a temperature detection and estimation unit that detects or estimates the temperature of the internal combustion engine or the temperature of the atmosphere of the internal combustion engine, and the stop control is detected by the temperature detection and estimation unit.
  • control may be performed such that the operation of the internal combustion engine is stopped in a state where the pressure on the valve side is lowered as the estimated temperature is higher.
  • An automobile according to the present invention includes: an in-cylinder injection type internal combustion engine capable of outputting driving power; and a fuel injection method for the internal combustion engine when a predetermined stop condition is satisfied during operation of the internal combustion engine.
  • the operation of the internal combustion engine is stopped in a state in which the valve side fuel pressure at the fuel injection valve side in the fuel pressurization supply unit that supplies fuel by raising the IE to the valve is reduced as compared with the normal operation of the internal combustion engine.
  • a control device for the engine that executes the stop control to be performed.
  • the fuel pressure increase supply section supplies the fuel to the fuel injection valve of the internal combustion engine by increasing the pressure.
  • the operation of the internal combustion engine is stopped with the valve side fuel pressure on the fuel injection valve side lowered compared to the normal operation of the internal combustion engine. Therefore, it is possible to suppress the fuel from remaining in the cylinder due to oil-tight leakage while the operation of the internal combustion engine is stopped.
  • the internal combustion engine is started next time, it is possible to suppress the deterioration of the emission caused by discharging the fuel remaining in the cylinder as it is. That is, the emission can be improved.
  • Such an automobile according to the present invention may be provided with an electric motor capable of outputting power for traveling.
  • the vehicle according to the present invention can further be capable of traveling by switching between engine operation traveling using the power from the internal combustion engine and electric motor traveling using only the power from the electric motor.
  • the engine control device is a device that executes start control for starting an internal combustion engine whose operation has been stopped by the stop control when a predetermined start condition is satisfied. You can also. In this case, the internal combustion engine can be started automatically when a predetermined starting condition is satisfied.
  • the stop control may be control for reducing the valve side fuel pressure by injecting and burning fuel from the fuel injection valve.
  • the valve side fuel pressure can be easily reduced.
  • the stop control may be control for reducing the valve side fuel pressure and thereafter stopping the operation of the internal combustion engine.
  • the internal combustion engine can be stopped with the valve side fuel pressure reduced.
  • the stop control reduces the valve-side fuel pressure until a predetermined fuel pressure is set so as to ensure startability in starting the internal combustion engine by the start control.
  • the control may be such that the operation of the internal combustion engine is stopped after the operation is performed. This makes it possible to ensure the startability of the internal combustion engine when starting the internal combustion engine next time.
  • the vehicle of the present invention further includes a temperature detection and estimation unit that detects or estimates the temperature of the internal combustion engine or the temperature of the atmosphere of the internal combustion engine, and the stop control performs the temperature detection or estimation by the temperature detection and estimation unit. Is high
  • the control may be such that the operation of the internal combustion engine is stopped in a state where the valve side fuel pressure is reduced as the tendency becomes lower. This makes it possible to more appropriately suppress the operation of a mechanism such as a relief valve for preventing the valve side fuel pressure from becoming excessive. As a result, the durability of a mechanism such as a relief valve can be improved.
  • a first control method for an internal combustion engine is a control method for a direct injection internal combustion engine, wherein when a predetermined stop condition is satisfied during operation of the internal combustion engine, By injecting fuel from the fuel injection valve of the internal combustion engine and burning it, the fuel pressure on the fuel injection valve side of the fuel injection valve side in the fuel pressure boosting supply unit that boosts and supplies the fuel to the fuel injection valve of the internal combustion engine And a stop control for stopping the operation of the internal combustion engine in a state in which the valve side fuel pressure is lowered, in which the power is reduced as compared with the normal operation of the internal combustion engine.
  • fuel is injected from a fuel injection valve of the internal combustion engine and burned to increase the fuel pressure to the fuel injection valve and supply the fuel to the fuel injection valve. Since the valve-side fuel pressure on the injection valve side is reduced as compared with the normal operation of the internal combustion engine, and the operation of the internal combustion engine is stopped in a state where the valve-side fuel pressure is reduced, the operation of the internal combustion engine is stopped. It is possible to suppress the fuel from staying in the cylinder due to oil-tight leakage during the operation. As a result, when the internal combustion engine is started next time, it is possible to suppress the deterioration of the emission caused by discharging the fuel remaining in the cylinder as it is. That is, the emission can be improved.
  • the internal combustion engine is stopped by lowering the valve side fuel pressure, the operation of a mechanism such as a relief valve for preventing the valve side fuel pressure from becoming excessive can be suppressed. As a result, the durability of a mechanism such as a relief valve can be improved.
  • start control for starting may be performed. With this configuration, the internal combustion engine can be automatically started when predetermined starting conditions are satisfied.
  • a second control method for an internal combustion engine is a method for controlling the internal combustion engine mounted on an automobile capable of running by switching between engine driving using power from the internal combustion engine and motor driving using only power from the electric motor.
  • a control method wherein when a predetermined stop condition is satisfied during operation of the internal combustion engine, the fuel is boosted to a fuel injection valve of the internal combustion engine, and the fuel is boosted by a fuel boosting supply unit.
  • the operation of the internal combustion engine is stopped in a state where the valve side fuel pressure on the injection valve side is reduced as compared with the normal operation of the internal combustion engine, and when a predetermined starting condition is satisfied, the stop control is performed. It is characterized by starting the internal combustion engine whose operation has been stopped.
  • the fuel is supplied from the fuel pressure increasing supply unit that injects fuel from the fuel injection valve of the internal combustion engine and burns the fuel to increase the pressure of the fuel supplied to the fuel injection valve. Since the valve-side fuel pressure on the injection valve side is reduced as compared with the normal operation of the internal combustion engine, and the operation of the internal combustion engine is stopped with the valve-side fuel pressure reduced, the operation of the internal combustion engine is stopped. It is possible to suppress the fuel from staying in the cylinder due to oil-tight leakage during the operation. As a result, when the internal combustion engine is started next time, it is possible to suppress the deterioration of the emission caused by directly discharging the fuel remaining in the cylinder. That is, the emission can be improved.
  • FIG. 1 is a configuration diagram schematically illustrating the configuration of a hybrid vehicle 20 according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of an engine stop control routine executed by the engine ECU 24 of the embodiment
  • FIG. 3 is an explanatory diagram showing an example of a correction coefficient setting map.
  • FIG. 4 is a configuration diagram schematically showing a configuration of a hybrid vehicle 120 of a modified example.
  • FIG. 5 is a configuration diagram schematically showing the configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 6 is a configuration diagram schematically showing a configuration of a hybrid vehicle 320 of a modified example.
  • FIG. 1 is a configuration diagram schematically showing a configuration of a hybrid automobile 20 equipped with a power output device according to one embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment is a three-shaft power distribution integrated engine connected to the engine 22 and a crankshaft 26 as an output shaft of the engine 22 via a damper 28.
  • Mechanism 30, a motor generator MG1 capable of generating electricity connected to the power distribution integration mechanism 30, and a reduction gear attached to the ring gear shaft 32a serving as a drive shaft connected to the power distribution integration mechanism 30 35, a motor MG2 connected to the reduction gear 35, and a hybrid electronic control unit 70 for controlling the entire power output device.
  • the engine 22 burns fuel into the cylinders to inject fuel directly into each cylinder. It is configured as a straight-type internal combustion engine equipped with a fuel injection valve 22a to 22f.
  • the in-cylinder fuel injection valves 22 a to 22 f were supplied from a fuel tank 60 by a fuel pump 62 and pressurized by a high-pressure fuel pump 64 driven by the power of a crankshaft 26.
  • Fuel is supplied by a dellipari pipe 66.
  • the high-pressure fuel pump 64 can be driven by, for example, vertical movement caused by unevenness of a cam shaft driven by a rotating wheel by rotation of the crankshaft 26.
  • a check valve is mounted on the discharge side of the high-pressure fuel pump 64 to prevent reverse flow of the fuel and to maintain the fuel pressure in the delipper pipe 66.
  • the delivery pipe 66 is provided with a relief pipe 68 for returning fuel to the tank 60 through a relief valve 67 for preventing the fuel pressure from becoming excessive.
  • the engine 22 has a fuel injection control, fuel supply control, ignition control, intake air volume control by an engine electronic control unit (hereinafter referred to as engine ECU) 24 that receives signals from various sensors that detect its operating state. It receives operation control such as control.
  • engine ECU engine electronice control unit
  • the engine ECU 24 includes not only the operating state of the engine but also a fuel pressure P from a fuel pressure sensor 69 attached to the delivery pipe 66 and detecting the pressure of the fuel in the delivery pipe 66 (hereinafter referred to as fuel pressure). f and the ambient temperature T dp near the delivery pipe 66 detected by the temperature sensor 23 attached near the delivery pipe 66 are also input.
  • the engine ECU 24 is in communication with the hybrid electronic control unit 70, and controls the operation of the engine 22 with a control signal from the hybrid electronic control unit 70, and also operates the engine 22 as necessary. TtS power is applied to the electronic control unit 70 for the hybrid for the data on the status.
  • the power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, and a sun gear 3. 1 and a plurality of pinion gears 3 3 that engage with the ring gear 3 2, and a carrier 3 4 that holds the plurality of pinion gears 3 3 so that they can rotate and revolve freely. It is configured as a planetary gear mechanism that performs a differential action with the rotating element as a rotating element.
  • the power distribution and integration mechanism 30 reduces the speed of the carrier 3 4 via the crankshaft 26 of the engine 22, the sun gear 3 1 via the motor gear MG 1, and the ring gear 3 2 via the ring gear shaft 3 2 a.
  • the motor MG 1 When the motor MG 1 functions as a generator, the power from the engine 22 input from the carrier 34 is applied to the sun gear 31 side and the ring gear 32 side according to the gear ratio.
  • the motor MG 1 functions as an electric motor, the power from the engine 22 input from the carrier 34 and the power from the motor MG 1 input from the sun gear 31 are integrated into the ring gear 32 side. Output to.
  • the power output to the ring gear 32 is finally output from the ring gear shaft 32 a via the gear mechanism 37 and the differential gear 38 to the driving wheels 39 a and 39 b of the vehicle.
  • Each of the motor MG 1 and the motor MG 2 is configured as a well-known synchronous generator motor that can be driven as a generator and can also be driven as a motor, and is connected to the battery 50 via inverters 41 and 42.
  • the power is exchanged.
  • the power line 54 that connects the inverters 41 and 42 to the battery 50 is configured as a positive bus and a negative bus that are shared by the inverters 41 and 42.
  • the power generated by either MG 1 or MG 2 can be consumed by other motors. Therefore, battery 50 is charged and discharged with electric power generated from one of motors MG 1 and G 2 or with insufficient electric power. Note that if the power balance is to be balanced by the modules MG 1 and MG 2, the battery 50 is not charged or discharged.
  • Both motors MG 1 and MG 2 are for motors
  • the drive is controlled by an electronic control unit (hereafter referred to as “mo ECU”) 40.
  • the motor ECU 40 has a rotation position detection sensor 43 that detects signals necessary for controlling the driving of the motors MG 1 and MG 2, for example, the rotation positions of the rotors of the motors MG 1 and MG 2.
  • , 44, and phase currents applied to the motors MG 1, MG 2 detected by a current sensor (not shown), etc., are input from the motor ECU 40 to the members 41, 42. Are output.
  • the motor ECU 40 communicates with the electronic control unit 70 for hybrids, and controls and drives the motors MG 1 and MG 2 according to control signals from the electronic control unit 70 for hybrids. Data on the operating state of MG 1 and MG 2 is output to the electronic control unit 70 for hybrid.
  • the battery 50 is managed by a battery electronic control unit (hereinafter, referred to as a battery ECU) 52.
  • a signal necessary for managing the notch 50 is provided to the notch ECU 52, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, an output terminal of the battery 50.
  • the charge / discharge current from a current sensor (not shown) attached to the connected power line 54, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input.
  • the data relating to the state of 50 is output to the electronic control unit 70 for re-hybrid by communication.
  • the remaining capacity (SOC) is also calculated based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
  • the electronic control unit 70 for the split is configured as a micro processor having a CPU 72 as a center, and in addition to the CPU 72, a ROM 74 for storing a processing program, and a temporary memory. It has a RAM 76 for temporarily storing, an input / output port and a communication port (not shown).
  • the electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects an operation position of a shift lever 81, and a stepping on an accelerator pedal 83.
  • the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via a communication port. 40, Nottery It exchanges various control signals and data with the ECU 52.
  • the hybrid vehicle 20 has a ring gear shaft 3 2 as a drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the amount of depression of the accelerator pedal 83 by the driver.
  • the required torque to be output to the motor a is calculated, and the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a.
  • the operation control of the engine 22, the motor MG 1, and the motor MG 2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and controlling the power output from the engine 22.
  • Torque conversion operation mode that drives and controls motors MG 1 and MG 2 so that all are torque-converted by power distribution and integration mechanism 30 and motors MG 1 and MG 2 and output to ring gear shaft 32 a.
  • the operation of the engine 22 is controlled so that the power corresponding to the sum of the power required for charging and discharging the battery 50 and the engine 22 is output from the engine 22 with the charging and discharging of the battery 50. All or part of the output power is controlled by the power distribution and integration mechanism 30, the motor MG ⁇ and the motor MG 2.
  • the charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled so that the required power is output to the ring gear shaft 32a together with the torque conversion.
  • the operation modes are basically the charge / discharge operation mode and the overnight operation mode.
  • the charge / discharge operation mode is determined based on the required power corresponding to the required torque required by the driver, the remaining capacity (SOC) of the battery 50, the mode selection instruction from the driver, and the like. Switch between the motor operation mode and drive. The operation of the engine 22 is stopped when switching from the charge / discharge operation mode to the motor / drive mode, and is stopped when switching from the motor operation mode to the charge / discharge operation mode. Engine 22 is started.
  • FIG. 2 is a flowchart showing an example of the engine stop control routine executed by the engine ECU 24. This routine is started when an engine stop request is issued from the hybrid electronic control unit 70. Note that the engine stop request is issued when the remaining power (SOC) of the battery 50 is sufficient and the required power becomes less than the engine stop power set for engine stop, or when the driver operates a motor drive switch (not shown).
  • SOC remaining power
  • the electronic control unit 70 for hybrid is output to the engine ECU 24.
  • the engine ECU 24 first executes a process of inputting the identification signal and the ambient temperature TdP near the delivery pipe 66 (step S100).
  • the identification signal is input by communication from the hybrid electronic control unit 70 in this embodiment.
  • it is determined whether or not the ignition is on step S110). When the ignition is off, the fuel cut and the ignition stop are immediately performed because the instruction to stop the system is issued by the driver. Then, the operation of the engine 22 is stopped (step S160), and the routine ends.
  • the stop determination fuel pressure Pref is calculated by multiplying k by the stop reference fuel pressure Pst0p (step S130).
  • the stop reference fuel pressure P st 0 p is set as a fuel pressure equal to or higher than the fuel pressure of the delivery pipe 66 necessary for ensuring sufficient startability of the stopped engine 22 and the vapor pressure.
  • the fuel pressure is set as a fuel pressure equal to or lower than the fuel pressure at which generation can be suppressed, and can be determined by the performance of the engine 22.
  • the correction coefficient k is corrected even if the engine 22 is stopped at the stop reference fuel pressure P st 0 p because the fuel pressure in the delivery pipe 66 changes due to the ambient temperature T dp near the delivery pipe 66. This is set as a tendency to decrease as the ambient temperature T dp increases.
  • the values of the ambient temperature T dp and the correction coefficient k are set in advance and stored in R 0 M74 as a correction coefficient setting map, and when the atmospheric temperature T dp is given, the corresponding correction from the map is performed.
  • the coefficient k was derived and set. An example of the correction coefficient setting map is shown in FIG.
  • step S140 When the stop determination fuel pressure P ref is set in this way, the fuel pressure sensor 69 The fuel pressure P f in the revalidating pipe 66 is input (step S140). The input fuel pressure P f is compared with the stop determination fuel pressure P ref (step S150), and after the input fuel pressure P f becomes lower than the stop determination fuel pressure P ref, the fuel power and ignition stop are stopped. Is executed to stop the operation of the engine 22 (step S160), and this routine ends.
  • the engine 22 is stopped in a state in which the fuel pressure P f in the delivery pipe 66 is reduced to be lower than the stop determination fuel pressure P ref. Accordingly, the fuel from the fuel injection valves 22 a to 22 f can be prevented from staying in the cylinder. As a result, when the engine 22 is started next time, it is possible to suppress the deterioration of the emission due to the fact that the fuel remaining in the cylinder is discharged as it is. That is, the emission can be improved.
  • the operation of the relief valve 67 to prevent the fuel pressure P f from becoming excessively high is activated. Can be suppressed. As a result, the durability of the relief valve 67 can be improved.
  • the correction coefficient k based on the ambient temperature T dp near the delivery pipe 6 6 is multiplied by a stop reference fuel pressure P stop set as a fuel pressure that can secure the startability of the engine 22 and suppress generation of vapor.
  • the correction coefficient k is set based on the ambient temperature T dp near the delivery pipe 66, but the temperature that affects the fuel pressure P f in the delivery pipe 66 is set. Then, the correction coefficient k may be set using any temperature. For example, the correction coefficient k may be set based on the temperature of the engine 22, or the correction coefficient k may be set based on the temperature near the engine 22.
  • the stop determination fuel pressure P ref is set by multiplying the correction coefficient k based on the ambient temperature T dp near the delivery pipe 66 by the stop reference fuel pressure P st 0 p, and the fuel pressure P f
  • the engine 22 is stopped when the fuel pressure becomes lower than the stop determination fuel pressure P ref, but the stop reference fuel pressure P st 0 p is reduced to the stop determination fuel pressure P ref irrespective of the ambient temperature T dp of the delivery pipe 66.
  • the engine 22 may be stopped when the fuel pressure P f becomes lower than the stop determination fuel pressure P ref.
  • the stop reference fuel pressure P stop the fuel pressure within the range of the fuel pressure within the range in which the startability of the engine 22 can be ensured and the generation of vapor can be suppressed even if the change due to the ambient temperature of the delivery pipe 66 occurs. It is preferable to use In the eight-iped vehicle 20 of the embodiment, the fuel pressure P f in the delivery pipe 66 is reduced by continuing the fuel injection from the fuel injection valves 22 a to 22 f. Any method may be used as long as it can reduce the fuel pressure P f in the pipe 66.
  • a pressure reducing valve is provided in the delivery pipe 66, and when the engine 22 is stopped, the fuel pressure P f in the delivery pipe 66 is made lower than the stop determination fuel pressure P ref by operating the pressure reducing valve. It may be something.
  • the crankshaft 26 of the in-cylinder injection type engine 22 is connected to the power distribution and integration mechanism 30 to which the motor MG 1 and the motor MG 2 are connected.
  • any vehicle that has an internal injection engine and performs automatic stop / start control that automatically stops the engine when a predetermined stop condition is satisfied and starts the automatically stopped engine when a predetermined start condition is satisfied For example, when the engine is automatically stopped, the engine can be stopped in a state where the fuel pressure in the delivery pipe is reduced, and therefore, the vehicle may have any configuration.
  • the power of the motor MG2 is connected to an axle (drive wheels 39a and 39b connected to a ring gear shaft 32a).
  • the vehicle may be connected to a different axle (the axle connected to the wheels 39c and 39d in Fig. 4), or a hybrid vehicle 220 of the modified example of Fig. 5 may be used.
  • the inner rotor 23 connected to the crankshaft 26 of the engine 22 and the outer rotor 23 connected to the drive shaft that outputs power to the drive wheels 39a and 39b.
  • a pair rotor motor 230 that transmits part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power.
  • the engine 22 outputs power to the drive wheels 39a and 39b via the transmission 340 by the clutch 327. Connected to the rotating shaft of the motor 330 to be driven.
  • the in-cylinder injection type engine that can output power to the axle and the motor that can output power to the axle are mounted, and running using the power from the engine and running using only the power from the motor are available.
  • a hybrid car that can be driven but also a car of a type that does not have a driving motor and runs only with power from an engine.
  • idle stop control can be considered.
  • the stop control described in the embodiment for stopping the engine by reducing the fuel pressure in the delivery pipe can be applied.
  • the fuel pressure P f in the delivery pipe 66 is determined to be the stop determination fuel pressure when the engine 22 is automatically stopped in response to a stop request of the engine 22 other than the induction off based on the driver's operation.
  • the delivery pipe 6 was also stopped when the engine 22 was stopped in response to a request from the driver to stop the engine 22 based on the driver's operation.
  • the engine 22 may be stopped by lowering the fuel pressure P f in 6 to a value lower than the stop determination fuel pressure P ref.
  • control for stopping the in-cylinder injection type internal combustion engine of the present invention has been described as being applied when the engine mounted on the hybrid vehicle is stopped.
  • a vehicle other than a vehicle, a ship, an aircraft, etc. The present invention may be applied when the internal combustion engine mounted on the moving body is stopped, or may be applied when the internal combustion engine incorporated in equipment other than the moving body, for example, the power generation equipment.
  • the present invention is applicable to an internal combustion engine manufacturing industry and an automobile manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

デリバリパイプ近傍の雰囲気温度Tdpに基づく補正係数kを用いてエンジンの始動性を確保できると共にベーパ発生を抑制可能な燃圧として停止判定燃圧Prefを設定し(S120,S130)、デリバリパイプ内の燃圧Pfがこの設定した停止判定燃圧Pref未満となるのを待って(S140,S150)、エンジンを停止する(S160)。これにより、油密漏れによって燃料がシリンダ内に滞留し、次にエンジン22を始動する際に滞留した燃料がそのまま排出されることによるエミッションの悪化を抑制することができる。また、デリバリパイプの燃圧Pfが過大となるのを防止するリリーフバルブの作動を抑制し、その耐久性の向上を図ることができる。

Description

明細書 内燃機関の制御装置およびこれを搭載する自動車 技術分野
内燃機関の制御装置およびこれを搭載する自動車並びに内燃機関の制 御方法に関し、 詳しくは、 筒内噴射式の内燃機関の制御装置およびこれ を搭載する自動車並びに筒内噴射式の内燃機関の制御方法に関する。 背景技術
従来、 この種の筒内噴射式の内燃機関の制御装置としては、 内燃機関 の自動停止前に燃料圧力を高めるものが提案されている (例えば、 特開 2 0 0 1 - 3 1 7 3 8 9号公報参照) 。 この内燃機関の制御装置では、 内燃機関を自動停止する前に燃料圧力を高めておくことにより、 長期に 亘つて十分な燃料圧力を維持し、 これにより次回の内燃機関の始動時に おける早期の圧縮行程での燃料噴射を可能として始動性の向上を図って いる。 発明の開示
上述の内燃機関の制御装置では、 次回の内燃機関の始動性を向上させ ることができるが、 次回の始動時におけるエミッションについては考慮 されていない。 燃料圧力を高く した状態で内燃機関を停止すると、 時間 の経過により油密漏れによる燃料が蒸発した状態でシリンダ内に滞留す る場合が生じ得る。 この場合、 シリンダ内に滞留した燃料は次回の始動 時にそのまま排出されるため、 未燃焼の炭化水素 (H C ) が排出されて しまう。 また、 燃料圧力を高くした状態で内燃機関を停止すると、 内燃 機関が高温で停止されたときや燃料管の近傍の雰囲気温度が高いときに は、 燃料管内の燃料の熱膨張により燃料圧力が更に高くなり、 過大な燃 料圧力にならないように燃料管に設けられたリリーフバルブが作動しや すくなる。 内燃機関を頻繁に自動停止すると、 このリ リーフバルブの作 動も頻繁となるから、 リリーフバノレブの耐久性を高める必要が生じ、 過 大な性能のリリーフバルブを取り付けなければならなくなる。
本発明の内燃機関の制御装置およびこれを搭載する自動車並びに内燃 機関の制御方法は、 筒内噴射式の内燃機関の始動時におけるエミッショ ンの向上を図ることを目的の一つとする。 また、 本発明の内燃機関の制 御装置およびこれを搭載する自動車並びに内燃機関の制御方法は、 燃料 噴射弁に燃料を昇圧して供給する燃料昇圧供給部に取り付けられたリリ ーフバルブの耐久性の向上を図ることを目的の一つとする。
本発明の内燃機関の制御装置およびこれを搭載する自動車並びに内燃 機関の制御方法は、 上述の目的の少なくとも一部を達成するために以下 の手段を採った。
本発明の内燃機関の制御装置は、 筒内噴射式の内燃機関の制御装置で あって、 前記内燃機関を運転している最中に所定の停止条件が成立した とき、 前記内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇圧供 給部における該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転 時に比して低下させた状態として該内燃機関の運転を停止する停止制御 を実行することを特徴とする。
この本発明の内燃機関の制御装置では、 筒内噴射式の内燃機関を運転 している最中に所定の停止条件が成立したときには、 内燃機関の燃料噴 射弁に燃料を昇圧して供給する燃料昇圧供給部における燃料噴射弁側の 弁側燃料圧力を内燃機関の通常の運転時に比して低下させた状態として 内燃機関の運転を停止する。 このため、 内燃機関の運転を停止している 最中に油密漏れにより燃料が筒内に滞留するのを抑制することができる。 この結果、 次に内燃機関を始動する際に筒内に滞留した燃料をそのまま 排出することによるエミッションの悪化を抑制することができる。 即ち、 ェミッションの向上を図ることができる。 また、 弁側燃料圧力を低下さ せて内燃機関を停止するから、 弁側燃料圧力が過大となるのを防止する リリーフバルブなどの機構の作動を抑制することができる。 この結果、 リリーフバルブなどの機構の耐久性の向上を図ることができる。
こうした本発明の内燃機関の制御装置において、 所定の始動条件が成 立したとき、 前記停止制御によリ運転が停止された内燃機関を始動する 始動制御を実行することを特徴とするものとすることもできる。 こうす れば、 所定の始動条件の成立により内燃機関を自動的に始動することが できる。
また、 本発明の内燃機関の制御装置において、 前記停止制御は、 前記 燃料噴射弁から燃料を噴射して燃焼させることにより前記弁側燃料圧力 を低下させる制御であるものとすることもできる。 こうすれば、 容易に 弁側燃料圧力を低下させることができる。
さらに、 本発明の内燃機関の制御装置において、 前記停止制御は、 前 記弁側燃料圧力を低下させて後に前記内燃機関の運転を停止する制御で あるものとすることもできる。 こうすれば、 弁側燃料圧力を低下させた 状態で内燃機関を停止することができる。
あるいは、 本発明の内燃機関の制御装置において、 前記停止制御は、 前記始動制御による前記内燃機関の始動において始動性を確保できる程 度に設定された所定の燃料圧力となるまで前記弁側燃料圧力を低下させ てから前記内燃機関の運転を停止する制御であるものとすることもでき る。 こうすれば、 次に内燃機関を始動する際の内燃機関の始動性を確保 することができる。 また、 本発明の内燃機関の制御装置において、 前記内燃機関の温度ま たは該内燃機関の雰囲気の温度を検出または推定する温度検出推定部を 備え、 前記停止制御は前記温度検出推定部により検出または推定された 温度が高いほど低い傾向として前記弁側燃;!^圧力を低下させた状態で前 記内燃機関の運転を停止する制御であるものとすることもできる。 こう すれば、 弁側燃料圧力が過大となるのを防止するリリーフバルブなどの 機構の作動をより適正に抑制することができる。 この結果、 リリーフバ ルブなどの機構の耐久性の向上を図ること力 できる。
本発明の自動車は、 走行用の動力を出力可能な筒内噴射式の内燃機関 と、 前記内燃機関を運転している最中に所定の停止条件が成立したとき に、 前記内燃機関の燃料噴射弁に燃料を昇 IEして供給する燃料昇圧供給 部における該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時 に比して低下させた状態として該内燃機関の運転を停止する停止制御を 実行する機関用制御装置と、 を備えることを要旨とする。
この本発明の自動車では、 筒内噴射式の内燃機関を運転している最中 に所定の停止条件が成立したときには、 内燃機関の燃料噴射弁に燃料を 昇圧して供給する燃料昇圧供給部における燃料噴射弁側の弁側燃料圧力 を内燃機関の通常の運転時に比して低下させた状態として内燃機関の運 転を停止する。 このため、 内燃機関の運転を停止している最中に油密漏 れにより燃料が筒内に滞留するのを抑制することができる。 この結果、 次に内燃機関を始動する際に筒内に滞留した燃料をそのまま排出するこ とによるェミッションの悪化を抑制することができる。 即ち、 エミッシ ヨンの向上を図ることができる。 また、 弁则燃料圧力を低下させて内燃 機関を停止するから、 弁側燃料圧力が過大となるのを防止するリリーフ バルブなどの機構の作動を抑制することができる。 この結果、 リリーフ バルブなどの機構の耐久性の向上を図ることができる。 こうした本発明の自動車において、 走行用の動力を出力可能な電動機 を備えるものとすることもできる。 この場合、 さらに、 本発明の自動車 は、 前記内燃機関からの動力を用いた機関運転走行と前記電動機からの 動力だけを用いた電動機走行とを切り替えて走行可能であるものとする こともできる。
また、 本発明の自動車において、 前記機関用制御装置は、 所定の始動 条件が成立したとき、 前記停止制御により運転が停止された内燃機関を 始動する始動制御を実行する装置であるものとすることもできる。 こう すれば、 所定の始動条件の成立により内燃機関を自動的に始動すること ができる。
さらに、 本発明の自動車において、 前記停止制御は、 前記燃料噴射弁 から燃料を噴射して燃焼させることにより前記弁側燃料圧力を低下させ る制御であるものとすることもできる。 こうすれば、 容易に弁側燃料圧 力を低下させることができる。
あるいは、 本発明の自動車において、 前記停止制御は、 前記弁側燃料 圧力を低下させて後に前記内燃機関の運転を停止する制御であるものと することもできる。 こうすれば、 弁側燃料圧力を低下させた状態で内燃 機関を停止することができる。
また、 本発明の自動車において、 前記停止制御は、 前記始動制御によ る前記内燃機関の始動において始動性を確保できる程度に設定された所 定の燃料圧力となるまで前記弁側燃料圧力を低下させてから前記内燃機 関の運転を停止する制御であるものとすることもできる。 こうすれば、 次に内燃機関を始動する際の内燃機関の始動性を確保することができる。 加えて、 本発明の自動車において、 前記内燃機関の温度または該内燃 機関の雰囲気の温度を検出または推定する温度検出推定部を備え、 前記 停止制御は前記温度検出推定部により検出または推定された温度が高い ほど低い傾向として前記弁側燃料圧力を低下させた状態で前記内燃機関 の運転を停止する制御であるものとすることちできる。 こうすれば、 弁 側燃料圧力が過大となるのを防止するリリーフバルブなどの機構の作動 をより適正に抑制することができる。 この結果、 リリーフバルブなどの 機構の耐久性の向上を図ることができる。
本発明の第 1 の内燃機関の制御方法は、 筒内噴射式の内燃機関の制御 方法であって、 前記内燃機関を運転している最中に所定の停止条件が成 立したときに、 前記内燃機関の燃料噴射弁から燃料を噴射して燃焼させ ることによリ該内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇 圧供給部における該燃料噴射弁側の弁側燃料压カを該内燃機関の通常の 運転時に比して低下させ、 該弁側燃料圧力を低下させた状態で前記内燃 機関の運転を停止する停止制御を実行することを特徴とする。
この本発明の第 1 の内燃機関の制御方法によれば、 内燃機関の燃料噴 射弁から燃料を噴射して燃焼させることにより燃料噴射弁に燃料を昇圧 して供給する燃料昇圧供給部における燃料噴射弁側の弁側燃料圧力を内 燃機関の通常の運転時に比して低下させ、 この弁側燃料圧力を低下させ た状態で内燃機関の運転を停止するから、 内燃機関の運転を停止してい る最中に油密漏れにより燃料が筒内に滞留するのを抑制することができ る。 この結果、 次に内燃機関を始動する際に筒内に滞留した燃料をその まま排出することによるエミッションの悪化を抑制することができる。 即ち、 ェミッションの向上を図ることができる。 また、 弁側燃料圧力を 低下させて内燃機関を停止するから、 弁側燃 斗圧力が過大となるのを防 止するリリーフバルブなどの機構の作動を抑 ilすることができる。 この 結果、 リ リーフバルブなどの機構の耐久性の向上を図ることができる。 こうした本発明の第 1の内燃機関の制御方法において、 所定の始動条 件が成立したときに、 前記停止制御によリ運転が停止された内燃機関を 始動する始動制御を実行するものとすることもできる。 こうすれば、 所 定の始動条件の成立によリ内燃機関を自動的に始動することができる。 本発明の第 2の内燃機関の制御方法は、 内燃機関からの動力を用いた 機関運転走行と電動機からの動力だけを用いた電動機走行とを切り替え て走行可能な自動車が搭載する前記内燃機関の制御方法であって、 前記 内燃機関を運転している最中に所定の停止条件が成立したときに前記内 燃機関の燃料噴射弁に燃料を昇圧して^袷する燃料昇圧供給部における 該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時に比して低 下させた状態として該内燃機関の運転を停止し、 所定の始動条件が成立 したときに前記停止制御によリ運転が停止された内燃機関を始動するこ とを特徴とする。
こうした本発明の第 2の内燃機関の制御方法によれば、 内燃機関の燃 料噴射弁から燃料を噴射して燃焼させることにより燃料噴射弁に燃料を 昇圧して供給する燃料昇圧供給部における燃料噴射弁側の弁側燃料圧力 を内燃機関の通常の運転時に比して低下させ、 この弁側燃料圧力を低下 させた状態で内燃機関の運転を停止するから、 内燃機関の運転を停止し ている最中に油密漏れにより燃料が筒内に滞留するのを抑制することが できる。 この結果、 次に内燃機関を始動する際に筒内に滞留した燃料を そのまま排出することによるエミッションの悪化を抑制することができ る。 即ち、 ェミッションの向上を図ることができる。 また、 弁側燃料圧 力を低下させて内燃機関を停止するから、 弁側燃料圧力が過大となるの を防止するリリーフバルブなどの機構の作動を抑制することができる。 この結果、 リリーフバルブなどの機構の耐久性の向上を図ることができ る。 さらに、 所定の始動条件が成立したときに運転を停止した内燃機関 を始動するから、 所定の始動条件の成立により内燃機関を自動的に始動 することができる。 図面の簡単な説明
図 1 は、 本発明の一実施例であるハイプリッド自動車 2 0の構成の概 略を示す構成図であり、
図 2は、 実施例のエンジン E C U 2 4により実行されるエンジン停止 制御ルーチンの一例を示すフローチャートであり、
図 3は、 補正係数設定用マップの一例を示す説明図であり、
図 4は、 変形例のハイブリッド自動車 1 2 0の構成の概略を示す構成 図であり、
図 5は、 変形例のハイブリッド自動車 2 2 0の構成の概略を示す構成 図であり、
図 6は、 変形例のハイプリッド自動車 3 2 0の構成の概略を示す構成 図である。 発明を実施するための最良の形態
次に、 本発明を実施するための最良の形態を実施例を用いて説明する。 図 1 は、 本発明の一実施例である動力出力装置を搭載したハイプリッド 自動車 2 0の構成の概略を示す構成図である。 実施例のハイプリッド自 動車 2 0は、 図示するように、 エンジン 2 2と、 エンジン 2 2の出力軸 としてのクランクシャフ卜 2 6にダンバ 2 8を介して接続された 3軸式 の動力分配統合機構 3 0と、 動力分配統合機構 3 0に接続された発電可 能なモー夕 M G 1 と、 動力分配統合機構 3 0に接続された駆動軸として のリングギヤ軸 3 2 aに取り付けられた減速ギヤ 3 5と、 この減速ギヤ 3 5に接続されたモータ M G 2と、 動力出力装置全体をコン卜ロールす るハイブリッド用電子制御ュニッ 卜 7 0とを備える。
エンジン 2 2は、 各気筒内に直接燃料を噴射するようシリンダ内に燃 料噴射弁 2 2 a〜 2 2 f が取り付けられた直囔形の内燃機関として ΐ成 されている。 筒内噴射する燃料噴射弁 2 2 a〜 2 2 f には、 燃料タンク 6 0から燃料ポンプ 6 2により供給されると共にクランクシャフト 2 6 の動力によって駆動する高圧燃料ポンプ 6 4により加圧された燃料がデ リパリパイプ 6 6によって供給されている。 高圧燃料ポンプ 6 4は、 例 えば、 クランクシャフト 2 6の回転により回車云駆動するカムシャフ卜の 凹凸による上下運動を用いて駆動させること力 できる。 なお、 図示しな いが、 高圧燃料ポンプ 6 4の吐出側には燃料の逆流を防止すると共にデ リパリパイプ 6 6内の燃料圧力を保持するチ; cックバルブが取り付けら れている。 また、 デリバリパイプ 6 6は、 燃^ t圧力が過剰となるのを防 止するリリーフバルブ 6 7を介して燃料を燃; ^タンク 6 0に戻すリリ一 フパイプ 6 8が取り付けられている。 エンジン 2 2は、 その運転状態を 検出する各種センサからの信号を入力するエンジン用電子制御ュニッ卜 (以下、 エンジン E C Uという) 2 4により燃料噴射制御や燃料供給制 御, 点火制御, 吸入空気量調節制御などの運転制御を受けている。 この エンジン E C U 2 4には、 エンジンの運転状態だけでなく、 デリバリパ イブ 6 6に取り付けられデリバリパイプ 6 6内の燃料の圧力 (以下、 燃 圧という) を検出する燃圧センサ 6 9からの燃圧 P f やデリバリパイプ 6 6近傍に取り付けられた温度センサ 2 3により検出されるデリバリパ イブ 6 6近傍の雰囲気温度 T d pなども入力されている。 エンジン E C U 2 4は、 ハイブリッド用電子制御ユニット 7 0と通信しており、 ハイ プリッド用電子制御ュニッ 卜 7 0からの制御信号によりエンジン 2 2を 運転制御すると共に必要に応じてエンジン 2 2の運転状態に関するデ一 夕をハイプリッド用電子制御ュニッ卜 7 0に ttS力する。
動力分配統合機構 3 0は、 外歯歯車のサンギヤ 3 1 と、 このサンギヤ 3 1 と同心円上に配置された内歯歯車のリングギヤ 3 2と、 サンギヤ 3 1 に嚙合すると共にリングギヤ 3 2に嚙合する複数のピニオンギヤ 3 3 と、 複数のピニオンギヤ 3 3を自転かつ公転自在に保持するキャリア 3 4とを備え、 サンギヤ 3 1 とリングギヤ 3 2とキャリア 3 4とを回転要 素として差動作用を行なう遊星歯車機構として構成されている。 動力分 配統合機構 3 0は、 キャリア 3 4にはエンジン 2 2のクランクシャフト 2 6が、 サンギヤ 3 1 にはモー夕 M G 1 が、 リングギヤ 3 2にはリング ギヤ軸 3 2 aを介して減速ギヤ 3 5がそれぞれ連結されており、 モータ M G 1が発電機として機能するときにはキャリア 3 4から入力されるェ ンジン 2 2からの動力をサンギヤ 3 1側とリングギヤ 3 2側にそのギヤ 比に応じて分配し、 モータ M G 1 が電動機として機能するときにはキヤ リア 3 4から入力されるエンジン 2 2からの動力とサンギヤ 3 1 から入 力されるモータ M G 1からの動力を統合してリングギヤ 3 2側に出力す る。 リングギヤ 3 2に出力された動力は、 リングギヤ軸 3 2 aからギヤ 機構 3 7およびデファレンシャルギヤ 3 8を介して、 最終的には車両の 駆動輪 3 9 a, 3 9 bに出力される。
モータ M G 1 およびモータ M G 2は、 いずれも発電機として駆動する ことができると共に電動機として駆動できる周知の同期発電電動機とし て構成されており、 インバー夕 4 1 , 4 2を介してバッテリ 5 0と電力 のやりとリを行なう。 ィンバ一夕 4 1 , 4 2とバッテリ 5 0とを接続す る電力ライン 5 4は、 各インバ一夕 4 1 , 4 2が共用する正極母線およ び負極母線として構成されており、 モー夕 M G 1 , M G 2のいずれかで 発電される電力を他のモータで消費することができるようになっている。 したがって、 バッテリ 5 0は、 モータ M G 1 , G 2のいずれかから生 じた電力や不足する電力にょリ充放電されることになる。 なお、 モ一夕 M G 1 , M G 2により電力収支のバランスをとるものとすれば、 バッテ リ 5 0は充放電されない。 モータ M G 1 , M G 2は、 いずれもモー夕用 電子制御ユニッ ト (以下、 モ一夕 E C Uという) 4 0により駆動制御さ れている。 モ一夕 E C U 4 0には、 モ一夕 M G 1 , M G 2を駆動制御す るために必要な信号、 例えばモータ M G 1 , M G 2の回転子の回転位置 を検出する回転位置検出センサ 4 3 , 4 4 からの信号や図示しない電流 センサにより検出されるモータ M G 1 , M G 2に印加される相電流など が入力されており、 モータ E C U 4 0からは、 ィンバ一夕 4 1 , 4 2へ のスイッチング制御信号が出力されている。 モータ E C U 4 0は、 ハイ プリッド用電子制御ュニッ卜 7 0と通信しており、 ハイブリツド用電子 制御ュニッ卜 7 0からの制御信号によってモータ M G 1 , M G 2を駆動 制御すると共に必要に応じてモータ M G 1 , M G 2の運転状態に関する データをハイプリッ ド用電子制御ュニッ 卜 7 0に出力する。
バッテリ 5 0は、 バッテリ用電子制御ユニット (以下、 バッテリ E C Uという) 5 2によって管理されている。 ノ ッテリ E C U 5 2には、 ノ ッテリ 5 0を管理するのに必要な信号、 例えば、 バッテリ 5 0の端子間 に設置された図示しない電圧センサからの端子間電圧, バッテリ 5 0の 出力端子に接続された電力ライン 5 4に取り付けられた図示しない電流 センサからの充放電電流, バッテリ 5 0に取り付けられた温度センサ 5 1 からの電池温度 T bなどが入力されており、 必要に応じてバッテリ 5 0の状態に関するデータを通信によリハイプリッ ド用電子制御ュニッ 卜 7 0に出力する。 なお、 バッテリ E C U 5 2では、 バッテリ 5 0を管理 するために電流センサによリ検出された充放電電流の積算値に基づいて 残容量 (S O C) も演算している。
八ィプリッド用電子制御ュニッ卜 7 0は、 C P U 7 2を中心とするマ イク口プロセッサとして構成されており、 C P U 7 2の他に処理プログ ラムを記憶する R O M 7 4と、 デ一夕を一時的に記憶する R A M 7 6と、 図示しない入出力ポー卜および通信ポー卜とを備える。 ハイプリッド用 電子制御ュニッ 卜 7 0には、 ィグニッションスィツチ 8 0からのィグニ ッション信号, シフ卜レバー 8 1の操作位置を検出するシフ卜ポジショ ンセンサ 8 2からのシフトポジション S P , アクセルペダル 8 3の踏み 込み量を検出するアクセルペダルポジシヨンセンサ 8 4からのアクセル 開度 A c c, ブレーキペダル 8 5の踏み込み量を検出するブレーキぺダ ルポジシヨンセンサ 8 6からのブレーキペダルポジシヨン B P, 車速セ ンサ 8 8からの車速 Vなどが入力ポー卜を介して入力されている。 ハイ ブリツド用電子制御ユニット 7 0は、 前述したように、 エンジン E C U 2 4やモータ E C U 4 0 , バッテリ E C U 5 2と通信ポ一卜を介して接 続されており、 エンジン E C U 2 4やモータ E C U 4 0, ノ ッテリ E C U 5 2と各種制御信号やデータのやりとりを行なっている。
こうして構成された実嗨例のハイプリッド自動車 2 0は、 運転者によ るアクセルペダル 8 3の踏み込み量に対応するアクセル開度 A c cと車 速 Vとに基づいて駆動軸としてのリングギヤ軸 3 2 aに出力すべき要求 卜ルクを計算し、 この要求トルクに対応する要求動力がリングギヤ軸 3 2 aに出力されるように、 エンジン 2 2とモー夕 M G 1 とモータ M G 2 とが運転制御される。 エンジン 2 2とモータ M G 1 とモータ M G 2の運 転制御としては、 要求動力に見合う動力がエンジン 2 2から出力される ようにエンジン 2 2を運転制御すると共にエンジン 2 2から出力される 動力のすべてが動力分配統合機構 3 0とモータ M G 1 とモータ M G 2と によってトルク変換されてリングギヤ軸 3 2 aに出力されるようモータ M G 1 およびモータ M G 2を駆動制御するトルク変換運転モードゃ要求 動力とバッテリ 5 0の充放電に必要な電力との和に見合う動力がェンジ ン 2 2から出力されるようにエンジン 2 2を運転制御すると共にバッテ リ 5 0の充放電を伴ってエンジン 2 2から出力される動力の全部または その一部が動力分配統合機構 3 0とモータ M G Ί とモー夕 M G 2とによ るトルク変換を伴って要求動力がリングギヤ軸 3 2 aに出力されるよう モータ M G 1 およびモータ M G 2を駆動制御する充放電運転モード、 ェ ンジン 2 2の運転を停止してモー夕 M G 2からの要求動力に見合う動力 をリングギヤ軸 3 2 aに出力するよう運転制御するモータ運転モードな どがある。 なお、 トルク変換運転モードは充放電運転モードにおいてバ ッテリ 5 0の充放電を値 0としたときであるから、 運転モードとしては 基本的には充放電運転モードとモ一夕運転モードとなる。 実施例のハイ プリッド自動車 2 0では、 運転者により要求される要求トルクに対応す る要求動力ゃバッテリ 5 0の残容量 (S O C ) , 運転者によるモード選 択指示などに基づいて充放電運転モードとモータ運転モードとを切り替 えて走行する。 この充放電運転モードからモー夕運転モードへの切リ替 えの際にはエンジン 2 2の運転が停止され、 逆にモータ運転モードから 充放電運転モードへの切り替えの際には停止しているエンジン 2 2が始 動される。
次に、 こうして構成された実施例のハイブリッ ド自動車 2 0の動作、 特に充放電運転モードで走行している状態からモータ運転モードに切り 替える際のエンジン 2 2の運転を停止するときの動作について説明する。 図 2は、 エンジン E C U 2 4により実行されるエンジン停止制御ルーチ ンの一例を示すフローチャートである。 このルーチンは、 ハイブリッ ド 用電子制御ュニッ卜 7 0からエンジン停止要求がなされたときに起動さ れる。 なお、 エンジン停止要求は、 バッテリ 5 0の残容量 (S O C ) が 十分な状態で要求動力がエンジン停止用に設定されたエンジン停止動力 未満になったときや図示しないモータ走行スィッチを運転者が操作した とき, 運転者がィグニッシヨンスィツチ 8 0をオフしたときなどの所定 のエンジン停止条件が成立したときにハイプリッ ド用電子制御ュニッ 卜 7 0からエンジン E C U 2 4に対して出力される。 エンジン停止制御ルーチンが実行されると、 エンジン E C U 2 4は、 まず、 イダニッシヨン信号とデリノ リパイプ 6 6近傍の雰囲気温度 T d Pを入力する処理を実行する (ステップ S 1 0 0 ) 。 ここで、 イダニッ シヨン信号については、 実施例ではハイプリッド用電子制御ュニッ卜 7 0から通信により入力するものとした。 そして、 イダニッシヨンオンで あるか否かを判定し (ステップ S 1 1 0 ) 、 ィグニッシヨンオフのとき には、 運転者によるシステム停止の指示であるから、 直ちに燃料カツ 卜 と点火停止を実行してエンジン 2 2の運転を停止し (ステップ S 1 6 0 ) 、 本ルーチンを終了する。
一方、 イダニッシヨンオンのときには、 充放電運転モードからモータ 運転モードへの移行と判断し、 雰囲気温度 T d pに基づいて補正係数 k を設定すると共に (ステップ S 1 2 0 ) 、 設定した補正係数 kを停止基 準燃圧 P s t 0 pに乗じて停止判定燃圧 P r e f を計算する (ステップ S 1 3 0 ) 。 ここで、 停止基準燃圧 P s t 0 pは、 運転を停止している エンジン 2 2の十分な始動性を確保できる程度に必要なデリバリパイプ 6 6の燃圧以上の燃圧として設定されると共にべーパ発生を抑制可能な 燃圧以下の燃圧として設定されるものであり、 エンジン 2 2の性能によ つて定めることができる。 補正係数 kは、 停止基準燃圧 P s t 0 pでェ ンジン 2 2を停止してもデリバリパイプ 6 6近傍の雰囲気温度 T d pに よりデリバリパイプ 6 6内の燃圧が変化するため、 これを補正するのも のであり、 雰囲気温度 T d pが高いほど小さくなる傾向として設定され る。 実施例では、 雰囲気温度 T d p と補正係数 kとの値を予め設定して 補正係数設定用マップとして R 0 M 7 4に記憶しておき、 雰囲気温度 T d pが与えられるとマップから対応する補正係数 kを導出して設定する ものとした。 補正係数設定用マップの一例を図 3に示す。
こうして停止判定燃圧 P r e f を設定すると、 燃圧センサ 6 9からデ リバリパイプ 6 6内の燃圧 P f を入力し (ステップ S 1 4 0 ) 。 入力し た燃圧 P f を停止判定燃圧 P r e f と比較し (ステップ S 1 5 0 ) 、 入 力した燃圧 P f が停止判定燃圧 P r e f 未満になるのを待って、 燃料力 ッ卜と点火停止を実行してエンジン 2 2の運転を停止し (ステップ S 1 6 0 ) 、 本ルーチンを終了する。 即ち、 燃料噴射弁 2 2 a〜2 2 f から の燃料噴射を行なってエンジン 2 2でファイアリングすることによリデ リバリパイプ 6 6内の燃圧 P f を低下させ、 燃圧 P f が停止判定燃圧 P r e f 未満に至ったときに燃料噴射弁 2 2 a〜 2 2 f からの燃料噴射を 停止すると共に点火制御を停止してエンジン 2 2の運転を停止するので ある。
以上説明した実施例のハイプリッ ド自動車 2 0によれば、 デリバリパ イブ 6 6内の燃圧 P f を低下させて停止判定燃圧 P r e f 未満とした状 態でエンジン 2 2を停止するから、 油密漏れにより燃料噴射弁 2 2 a〜 2 2 f からの燃料がシリンダ内に滞留するのを抑制することができる。 この結果、 次にエンジン 2 2を始動する際にシリンダ内に滞留した燃料 がそのまま排出されることによるェミッションの悪化を抑制することが できる。 即ち、 ェミッションの向上を図ることができる。 また、 デリバ リパイプ 6 6内の燃圧 P f を停止判定燃圧 P r e f 未満まで低下させた 状態でエンジン 2 2を停止するから、 燃圧 P f が過大となるのを防止す るリリーフバルブ 6 7の作動を抑制することができる。 この結果、 リリ ーフバルブ 6 7の耐久性の向上を図ることができる。 しかも、 デリバリ パイプ 6 6近傍の雰囲気温度 T d pに基づく補正係数 kをエンジン 2 2 の始動性を確保できると共にべ一パ発生を抑制可能な燃圧として設定さ れた停止基準燃圧 P s t o pに乗じて停止判定燃圧 P r e f を設定し、 燃圧 P f をこの設定した停止判定燃圧 P r e f 未満まで低下させた状態 でエンジン 2 2を停止するから、 デリバリパイプ 6 6近傍の雰囲気温度 T d pによりエンジン 2 2を停止した後に燃圧 P f が変化しても、 ェン ジン 2 2の始動性を確保することができると共にべーパ発生を抑制する ことができ、 リリーフバルブ 6 7の作動を抑制することができる。
実施例のハイプリ ッド自動車 2 0では、 デリバリパイプ 6 6近傍の雰 囲気温度 T d pに基づいて補正係数 kを設定するものとしたが、 デリバ リパイプ 6 6内の燃圧 P f に影響を与える温度であれば如何なる温度を 用いて補正係数 kを設定するものとしてもよい。 例えば、 エンジン 2 2 の溫度に基づいて捕正係数 kを設定するものとしてもよいし、 エンジン 2 2近傍の温度に基づいて補正係数 kを設定するものとしてもよい。 実施例のハイプリ ッド自動車 2 0では、 デリバリパイプ 6 6近傍の雰 囲気温度 T d pに基づく補正係数 kを停止基準燃圧 P s t 0 pに乗じて 停止判定燃圧 P r e f を設定し、 燃圧 P f が停止判定燃圧 P r e f 未満 に至ったときにエンジン 2 2を停止するものとしたが、 デリバリパイプ 6 6の雰囲気温度 T d pに拘わらず、 停止基準燃圧 P s t 0 pを停止判 定燃圧 P r e f として用い、 燃圧 P f が停止判定燃圧 P r e f 未満に至 つたときにエンジン 2 2を停止するものとしてもよい。 この場合、 停止 基準燃圧 P s t o p として、 エンジン 2 2の始動性を確保できると共に ベーパ発生を抑制可能な燃圧の範囲のうちデリバリパイプ 6 6の雰囲気 温度による変化が生じてもその範囲内となる燃圧を用いるのが好ましい。 実施例の八ィプリ ッド自動車 2 0では、 燃料噴射弁 2 2 a〜 2 2 f か ら燃料噴射を継続することによりデリバリパイプ 6 6内の燃圧 P f を低 下させるものとしたが、 デリバリパイプ 6 6内の燃圧 P f を低下させる ことができる手法であれば如何なる手法を用いるものとしてもよい。 例 えば、 デリバリパイ プ 6 6に減圧調整バルブを設け、 エンジン 2 2を停 止する際に減圧調整バルブを操作することによりデリバリパイプ 6 6内 の燃圧 P f を停止判定燃圧 P r e f 未満にするものとしてもよい。 実施例のハイプリッド自動車 2 0では、 筒内噴射式のエンジン 2 2の クランクシャフト 2 6をモー夕 M G 1やモータ M G 2が接続された動力 分配統合機構 3 0に接続する構成としたが、 筒内噴射式のエンジンを搭 載し、 所定の停止条件が成立したときにエンジンを自動停止すると共に 所定の始動条件が成立したときに自動停止したエンジンを始動する自動 停止始動制御を行なう自動車であれば、 エンジンを自動停止する際にデ リバリパイプ内の燃圧を低下させた状態でエンジンを停止することがで きるから、 如何なる構成の自動車であってもよい。 例えば、 図 4の変形 例のハイブリッ ド自動車 1 2 0に例示するように、 モータ M G 2の動力 をリ ングギヤ軸 3 2 aが接続された車軸 (駆動輪 3 9 a , 3 9 bが接続 された車軸) とは異なる車軸 (図 4における車輪 3 9 c, 3 9 dに接続 された車軸) に接続するものとしてもよいし、 図 5の変形例のハイプリ ッド自動車 2 2 0に例示するように、 エンジン 2 2のクランクシャフ卜 2 6 に接続されたィンナ一口一夕 2 3 2と駆動輪 3 9 a , 3 9 bに動力 を出力する駆動軸に接続されたアウターロータ 2 3 4とを有し、 ェンジ ン 2 2の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換 する対ロータ電動機 2 3 0を備えるものとしてもよい。 さらに、 図 6の 変形例のハイプリッド自動車 3 2 0に例示するように、 エンジン 2 2を クラッチ 3 2 7により変速機 3 4 0を介して駆動輪 3 9 a , 3 9 bに動 力を出力するモータ 3 3 0の回転軸に接続するものとしてもよい。 この よう に、 車軸に動力を出力可能な筒内噴射式のエンジンと車軸に動力を 出力可能なモータとを搭載し、 エンジンからの動力を用いた走行とモー 夕からの動力だけを用いた走行とが可能なハイプリッ ド自動車だけでな く、 走行用のモータを備えず、 エンジンからの動力だけで走行するタイ プの自動車であってもよい。 このタイプの自動車における自動停止始動 制御としては、 アイ ドルストップ制御を考えることができ、 このアイ ド ルストツプ制御におけるエンジンを自動停止する際に、 実施例で説明し たデリバリパイプ内の燃圧を低下させてエンジンを停止する停止制御を 適用することができる。
実施例のハイプリッド自動車 2 0では、 運転者の操作に基づくイダ二 ッションオフ以外のエンジン 2 2の停止要求に対するエンジン 2 2の自 動停止の際にデリバリパイプ 6 6内の燃圧 P f を停止判定燃圧 P r e f 未満まで低下させてエンジン 2 2を停止するものとしたが、 運転者の操 作に基づくイダ二ッション才フによるエンジン 2 2の停止要求に対する エンジン 2 2の停止の際にもデリバリパイプ 6 6内の燃圧 P f を停止判 定燃圧 P r e f 未満まで低下させてエンジン 2 2を停止するものとして もよい。
実施例では、 本発明の筒内噴射式の内燃機関の停止の際の制御をハイ プリッド自動車に搭載されたエンジンの停止時に適用するものとして説 明したが、 自動車以外の車両や船舶, 航空機などの移動体に搭載された 内燃機関の停止時に適用するものとしてもよいし、 移動体以外の設備、 例えば発電設備などに組み込まれた内燃機関の停止時に適用するものと してもよい。
以上、 本発明を実施するための最良の形態について実施例を用いて説 明したが、 本発明はこうした実施例に何等限定されるものではなく、 本 発明の要旨を逸脱しない範囲内において、 種々なる形態で実施し得るこ とは勿論である。 産業上の利用の可能性
本発明は、 内燃機関の製造産業や自動車製造産業に利用可能である

Claims

請求の範囲
1 . 筒内噴射式の内燃機関の制御装置であって、
前記内燃機関を運転している最中に所定の停止条件が成立したとき、 前記内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇圧供給部に おける該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時に比 して低下させた状態として該内燃機関の運転を停止する停止制御を実行 する
ことを特徴とする内燃機関の制御装置。
2 . 請求項 1記載の内燃機関の制御装置であって、
所定の始動条件が成立したとき、 前記停止制御により運転が停止され た内燃機関を始動する始動制御を実行する
ことを特徴とする内燃機関の制御装置。
3 . 請求項 1 記載の内燃機関の制御装置であって、
前記停止制御は、 前記燃料噴射弁から燃料を噴射して燃焼させること により前記弁側燃料圧力を低下させる制御である
内燃機関の制御装置。
4 . 請求項 1記載の内燃機関の制御装置であって、
前記停止制御は、 前記弁側燃料圧力を低下させて後に前記内燃機関の 運転を停止する制御である
内燃機関の制御装置。
5 . 請求項 1記載の内燃機関の制御装置であって、
前記停止制御は、 前記始動制御による前記内燃機関の始動において始 動性を確保できる程度に設定された所定の燃料圧力となるまで前記弁側 燃料圧力を低下させてから前記内燃機関の運転を停止する制御である 内燃機関の制御装置。
6 . 請求項 1記載の内燃機関の制御装置であって、
前記内燃機関の温度または該内燃機関の雰囲気の温度を検出または推 定する温度検出推定部を備え、
前記停止制御は、 前記温度検出推定部により検出または推定された温 度が高いほど低い傾向として前記弁側燃料圧力を低下させた状態で前記 内燃機関の運転を停止する制御である
内燃機関の制御装置。
7 . 自動車であって、
走行用の動力を出力可能な筒内噴射式の内燃機関と、
前記内燃機関を運転している最中に所定の停止条件が成立したときに、 前記内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇圧供給部に おける該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時に比 して低下させた状態として該内燃機関の運転を停止する停止制御を実行 する機関用制御装置と、
を備える自動車。
8 . 請求項 7記載の自動車であって、
走行用の動力を出力可能な電動機
を備える自動車。
9 . 請求項 8記載の自動車であって、
前記内燃機関からの動力を用いた機関運転走行と前記電動機からの動 力だけを用いた電動機走行とを切り替えて走行可能である
自動車。
1 0 . 請求項 9記載の自動車であって、
前記機関用制御装置は、 所定の始動条件が成立したとき、 前記停止制 御により運転が停止された内燃機関を始動する始動制御を実行する装置 である 自動車。
1 1 . 請求項 9記載の自動車であって、
前記停止制御は、 前記燃料噴射弁から燃料を噴射して燃焼させること により前記弁側燃料圧力を低下させる制御である
自動車。
1 2 . 請求項 9記載の自動車であって、
前記停止制御は、 前記弁側燃料圧力を低下させて後に前記内燃機関の 運転を停止する制御である
自動車。
1 3 . 請求項 9記載の自動車であって、
前記停止制御は、 前記始動制御による前記内燃機関の始動において始 動性を確保できる程度に設定された所定の燃料圧力となるまで前記弁側 燃料圧力を低下させてから前記内燃機関の運転を停止する制御である 自動車。
1 4 . 請求項 9記載の自動車であって、
前記内燃機関の温度または該内燃機関の雰囲気の温度を検出または推 定する温度検出推定部を備え、
前記停止制御は、 前記温度検出推定部によリ検出または推定された温 度が高いほど低い傾向として前記弁側燃料圧力を低下させた状態で前記 内燃機関の運転を停止する制御である
自動車。
1 5 . 筒内噴射式の内燃機関の制御方法であって、
前記内燃機関を運転している最中に所定の停止条件が成立したときに、 前記内燃機関の燃料噴射弁から燃料を噴射して燃焼させることにより該 内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇圧供給部におけ る該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時に比して 低下させ、 該弁側燃料圧力を低下させた状態で前記内燃機関の運転を停 止する停止制御を実行する
内燃機関の制御方法。
1 6 . 請求項 1 5記載の内燃機関の制御方法であって、
所定の始動条件が成立したときに、 前記停止制御により運転が停止さ れた内燃機関を始動する始動制御を実行する
内燃機関の制御方法。
1 7 . 内燃機関からの動力を用いた機関運転走行と電動機からの動力だ けを用いた電動機走行とを切り替えて走行可能な自動車が搭載する前記 内燃機関の制御方法であって、
前記内燃機関を運転している最中に所定の停止条件が成立したときに、 前記内燃機関の燃料噴射弁に燃料を昇圧して供給する燃料昇圧供給部に おける該燃料噴射弁側の弁側燃料圧力を該内燃機関の通常の運転時に比 して低下させた状態として該内燃機関の運転を停止し、
所定の始動条件が成立したときに、 前記停止制御により運転が停止さ れた内燃機関を始動する
内燃機関の制御方法。
PCT/JP2005/001161 2004-01-23 2005-01-21 内燃機関の制御装置およびこれを搭載する自動車 WO2005071246A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/586,585 US20080257312A1 (en) 2004-01-23 2005-01-21 Control Apparatus for Internal Combustion Engine and Motor Vehicle Equipped With the Same
EP05704214A EP1707784A1 (en) 2004-01-23 2005-01-21 Internal combustion engine control device and automobile mounting this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-015461 2004-01-23
JP2004015461A JP2005207339A (ja) 2004-01-23 2004-01-23 内燃機関の制御装置およびこれを搭載する自動車並びに内燃機関の運転停止方法

Publications (1)

Publication Number Publication Date
WO2005071246A1 true WO2005071246A1 (ja) 2005-08-04

Family

ID=34805458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001161 WO2005071246A1 (ja) 2004-01-23 2005-01-21 内燃機関の制御装置およびこれを搭載する自動車

Country Status (5)

Country Link
US (1) US20080257312A1 (ja)
EP (1) EP1707784A1 (ja)
JP (1) JP2005207339A (ja)
CN (1) CN1910356A (ja)
WO (1) WO2005071246A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175371B2 (ja) * 2006-02-02 2008-11-05 トヨタ自動車株式会社 内燃機関装置およびその制御方法並びに動力出力装置
JP2009115009A (ja) 2007-11-07 2009-05-28 Denso Corp 筒内噴射エンジンの停止後燃圧制御装置
US8099203B2 (en) * 2008-05-27 2012-01-17 GM Global Technology Operations LLC Method to autostart an internal combustion engine in a hybrid powertrain system
JP5149846B2 (ja) * 2009-03-19 2013-02-20 株式会社デンソー 内燃機関の自動停止始動制御装置
US8214095B2 (en) * 2009-05-27 2012-07-03 GM Global Technology Operations LLC Method and apparatus for detecting engine firing in a hybrid powertrain system
KR101416366B1 (ko) * 2012-10-05 2014-07-08 기아자동차 주식회사 가솔린 직분사 엔진의 연료 제어 시스템 및 방법
DE102013201355A1 (de) * 2013-01-29 2014-07-31 Robert Bosch Gmbh Steuern des Treibstoffdrucks in einer Einspritzanlage
FR3050236B1 (fr) * 2016-04-19 2018-04-13 Peugeot Citroen Automobiles Sa Procede d’optimisation d’un temps de redemarrage d’un moteur thermique par pilotage de la pression dans un rail d’injection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315730A (ja) * 1998-04-28 1999-11-16 Toyota Motor Corp 蓄圧式燃料噴射機構の燃料圧制御装置
JP2001214828A (ja) * 2000-01-31 2001-08-10 Toyota Motor Corp 内燃機関の燃料供給装置
JP2001317389A (ja) * 2000-05-09 2001-11-16 Toyota Motor Corp 筒内噴射式内燃機関制御装置
JP2002295347A (ja) * 2001-03-30 2002-10-09 Nissan Motor Co Ltd 低沸点燃料使用のディーゼルエンジンの始動制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596382B2 (ja) * 1999-11-02 2004-12-02 国産電機株式会社 筒内直噴形2サイクル内燃機関用燃料噴射装置及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315730A (ja) * 1998-04-28 1999-11-16 Toyota Motor Corp 蓄圧式燃料噴射機構の燃料圧制御装置
JP2001214828A (ja) * 2000-01-31 2001-08-10 Toyota Motor Corp 内燃機関の燃料供給装置
JP2001317389A (ja) * 2000-05-09 2001-11-16 Toyota Motor Corp 筒内噴射式内燃機関制御装置
JP2002295347A (ja) * 2001-03-30 2002-10-09 Nissan Motor Co Ltd 低沸点燃料使用のディーゼルエンジンの始動制御装置

Also Published As

Publication number Publication date
US20080257312A1 (en) 2008-10-23
CN1910356A (zh) 2007-02-07
EP1707784A1 (en) 2006-10-04
JP2005207339A (ja) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4581586B2 (ja) 内燃機関システム及びこれを搭載する自動車並びに内燃機関の始動方法
JP4197038B2 (ja) ハイブリッド自動車およびその制御方法
US6763298B2 (en) Controlled engine shutdown for a hybrid electric vehicle
US7263959B2 (en) Control apparatus of internal combustion engine
US7828094B2 (en) Driving system, control method of driving system, and vehicle equipped with driving system
WO2005071246A1 (ja) 内燃機関の制御装置およびこれを搭載する自動車
JP5700061B2 (ja) ハイブリッド車
KR20080089623A (ko) 내연기관시스템, 내연기관시스템의 제어방법 및 동력출력장치
JP2008296698A (ja) ハイブリッド車両
JP2005273530A (ja) 内燃機関の制御装置およびこれを備える自動車
JP3956953B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
CN108930599B (zh) 车辆及车辆的控制方法
JP2010255493A (ja) ハイブリッド自動車
JP2009209775A (ja) ディーゼルエンジンの自動停止装置
JP2008105558A (ja) 動力出力装置およびこれを搭載する車両並びに内燃機関の始動方法
JP2009174501A (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP2006063899A (ja) 内燃機関の制御装置およびこれを搭載する自動車並びに内燃機関における燃料噴射弁の温度の推定方法
JP4306685B2 (ja) 内燃機関装置,動力出力装置,内燃機関の運転停止方法および内燃機関装置の制御方法
JP3988715B2 (ja) ハイブリッド自動車およびその制御方法
JP3721987B2 (ja) 内燃機関の始動制御装置
JP2011111951A (ja) 車両および排気再循環制御方法
CN112302816B (zh) 车辆
JP2008291805A (ja) 自動車及び自動車の異常判定方法
JP2007321651A (ja) 内燃機関の始動制御装置
JP2013230705A (ja) ハイブリッド車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580003079.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10586585

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005704214

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005704214

Country of ref document: EP