WO2005069319A1 - 空芯コイルおよび空芯コイルの製造方法 - Google Patents

空芯コイルおよび空芯コイルの製造方法 Download PDF

Info

Publication number
WO2005069319A1
WO2005069319A1 PCT/JP2005/000354 JP2005000354W WO2005069319A1 WO 2005069319 A1 WO2005069319 A1 WO 2005069319A1 JP 2005000354 W JP2005000354 W JP 2005000354W WO 2005069319 A1 WO2005069319 A1 WO 2005069319A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
core coil
fusion
conductor
core
Prior art date
Application number
PCT/JP2005/000354
Other languages
English (en)
French (fr)
Inventor
Yuji Asanuma
Hiroshi Takeda
Original Assignee
Selco Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selco Co., Ltd filed Critical Selco Co., Ltd
Priority to JP2005517069A priority Critical patent/JP4040064B2/ja
Publication of WO2005069319A1 publication Critical patent/WO2005069319A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/077Deforming the cross section or shape of the winding material while winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/122Insulating between turns or between winding layers

Definitions

  • Air-core coil and method of manufacturing air-core coil are Air-core coil and method of manufacturing air-core coil
  • the present invention relates to an air-core coil and a method for manufacturing the air-core coil.
  • the "height of the air-core coil” refers to the thickness of the air-core coil orthogonal to the winding direction of the fusion wire.
  • the “width of the air-core coil” refers to a distance in a direction orthogonal to both the winding direction of the fusion wire and the height direction of the air-core coil.
  • the “space factor” is the sum of the cross-sectional areas of the fusion wires existing in the cross-section of the air-core coil orthogonal to the winding direction of the fusion wires, and the external shape of the cross-section of the air-core coil. The value obtained by dividing by the total cross-sectional area specified by
  • a coil in which a fusion wire including a conductor, an insulating film covering the periphery of the conductor, and a fusion film further covering the periphery of the insulation film is wound in an air core shape that is, a ferromagnetic coil
  • An air-core coil having a winding core of a body or the like is used for various motors such as a linear motor, a lens driving device of an optical head device, and the like.
  • a coil formed by winding a fusion wire in a substantially rectangular air-core shape, such as an air-core coil 101 shown in FIG. 17, is known.
  • FIGS. 18 to 21 examples of the cross section ⁇ of the air-core coil 101 shown in FIG. 17 are shown in FIGS. 18 to 21, and an example of a fusion wire used for the air-core coil 101 and a winding method thereof will be described.
  • the ⁇ direction and ⁇ direction shown in FIGS. 18 to 21 correspond to the ⁇ direction and ⁇ direction shown in FIG.
  • FIG. 18 shows an example of a cross section ⁇ of an air-core coil 101 formed by winding a fusion wire 102 having a round conductor having a circular cross section in an aligned winding.
  • a gap 103 is formed between the fusion wires 102.
  • the air-core coil 101 is formed so as to form a layer in the ⁇ direction, and includes, for example, a plurality of layers such as an ⁇ layer, an ⁇ + 1 layer, and an ⁇ + 2 layer. I have.
  • the air core coil 101 wound in the alignment winding For example, there is a portion where the (n + 1) th fusion line 102 obliquely crosses over the nth fusion line 102, and this portion is a cross point (not shown). Similarly, there is a cross point between the n + 1 layer and the n + 2 layer.
  • FIG. 19 shows an example of a cross section ⁇ of an air-core coil 101 formed by winding a fusion wire 105 having a rectangular flat rectangular cross section with an ⁇ winding
  • FIG. FIG. 21 shows an example of a cross section ⁇ of an air-core coil 101 formed by winding a fusion wire 106 having a rectangular flat wire in an edgewise winding
  • FIG. 21 shows a fusion wire having a square wire having a square cross section.
  • An example of a cross section a of an air-core coil 101 formed by winding a winding 107 in an alignment winding is shown.
  • the substantial space factor of the air-core coil 101 formed by winding the fusion wire 102 in the aligned winding is improved, and the dimensional accuracy in the height direction ( ⁇ direction) is improved.
  • the inner and outer sides of the wound coil are restrained, and the height of the coil is changed until plastic deformation occurs in the round conductor.
  • Patent Document 1 proposes a method of increasing the space factor of an air-core coil by applying pressure to the air.
  • fusion wires 102 and the like in a substantially rectangular air core shape
  • fusion wires 102 and the like in the case of an air-core coil having straight sides 101a, 101b, 101c, and 101d, the inner side of which is formed in a straight line when viewed from the height direction ( ⁇ ⁇ direction), the longitudinal direction of the straight sides 101a, 101b, 101c, and 101d.
  • a force bulge occurs at the center portion of the center portion (the X direction in the straight side portions 101a and 101b, and the Y direction in the straight side portions 101c and 101d), and the bulge is generated by the bulge.
  • a problem that the size in the Y direction varies (hereinafter, referred to as a third problem).
  • a third problem For example, when air core coils 101 are arranged and used in parallel as in a linear motor, variations in the width dimensions of the air core coils 101 cause variations in the intervals between the air core coils 101. As a result, the characteristics of the device using the air core coil 101 are deteriorated. In particular, it is known that the swelling that occurs in the straight side portions 101a, 101b, 101c, and 101d appears remarkably as the size of the air-core coil 101 increases.
  • Patent Document 1 JP-A-56-161631
  • Patent Document 1 which is proposed as a method for solving the first and second problems described above, the height of the coil is changed until plastic deformation occurs in the conductor. As a result, a large force is applied to the insulating film, causing a problem when the insulating film is damaged.
  • the fusion wire 102 and the like are wound with the tension applied to the fusion wire 102 and the like increased. And the like.
  • the force for pressing the fusion wire 102 or the like in the width direction is extremely near the center of the straight sides 101a, 101b, 101c, and 101d. Since it is small, the swelling that occurs in the straight sides 101a, 101b, 101c, and 101d of the air-core coil 101 can be suppressed to a certain extent.
  • the dimensional accuracy in the width direction of the air core coil 101 required in a device using the air core coil 101 cannot be secured.
  • the tension applied to the fusion wire 102 or the like is increased, a disadvantage that the resistance of the fusion wire 102 or the like changes due to the extension of the conductive wire.
  • winding the fusion wire 102 or the like with the tension applied to the fusion wire 102 or the like increased it is possible to improve the dimensional accuracy of the air core coil 101 in the height direction.
  • a method of winding the welding wire 102 or the like while pressing a roller or the like against the welding wire 102 or the like may be considered. According to this method, it is possible to suppress the swelling occurring in the straight side portions 101a, 101b, 101c, 101d of the air core coil 101 as compared with the above-described method. Influence the straight side The bulge generated in the portions 101a, 101b, 101c, and lOld cannot be sufficiently suppressed.
  • an object of the present invention is to improve the space factor without damaging an insulating film of a fusion wire in an air-core coil formed by winding a fusion wire in an alignment winding. It is an object of the present invention to provide an air-core coil having a configuration capable of performing the above-mentioned, and a method of manufacturing the air-core coil.
  • Another object of the present invention is to provide a configuration in which, in an air-core coil formed by being wound in an air-core shape, the dimensional accuracy can be improved without damaging the insulating coating of the fusion wire.
  • An object of the present invention is to provide an air-core coil provided with a method and a method of manufacturing the air-core coil.
  • another object of the present invention is to provide an air-core coil that is formed by being wound in an air-core shape and has a straight side portion whose inner peripheral side is formed in a straight line when viewed from the height direction.
  • the present invention provides an air-core coil and a method of manufacturing an air-core coil having a configuration capable of sufficiently suppressing swelling generated on a straight side portion of the air-core coil and securing dimensions required for the straight side portion. Means to solve the problem
  • the present invention provides a fusion wire including a conductor, an insulating coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulation coating.
  • a pressure is applied in at least one of a height direction of the air-core coil and a direction orthogonal to the height direction within an elastic deformation range of the conductor. The cross point at which the fusion wires intersect each other when the fusion wires are wound in the aligned windings is pressurized.
  • the air-core coil is pressed in at least one of the height direction and a direction orthogonal to the height direction. Therefore, in the pressed portion, the thickness of the fusion coating is reduced, and the gap formed between the fusion lines is reduced. Therefore, the space factor of the pressurized portion can be improved. Further, by adjusting the pressing force, it is possible to reduce the variation in the size of the gap in the pressing direction. Therefore, in the pressing portion, the dimensional accuracy in the pressing direction can be improved. On the other hand, since the air-core coil is pressurized within the elastic deformation range of the conductor, it is possible to prevent the insulation coating of the fusion wire from being damaged. In addition, since the cross points where the fusion lines intersect are not pressurized, stress concentration occurs when pressurized, and the insulation coating at the cross points where the insulation coating is likely to be damaged is increased. Damage can be prevented.
  • the cross points are formed without being dispersed in the circumferential direction, and that all of the cross points are formed in the cross point forming portion that is a specific portion in the circumferential direction.
  • the air-core coil is formed in a polygonal shape, includes a plurality of straight side portions whose inner peripheral sides are formed in a straight line when viewed from the height direction of the air-core coil, and includes a cross point forming unit. Is a straight side of the plurality of straight sides, the straight side is not pressurized, and at least one of the other straight sides is in the height direction and the height of the air-core coil. It is preferable to pressurize at least one of the gaps in the width direction perpendicular to the direction! /.
  • the air-core coil includes a plurality of straight sides formed on the inner circumference side in a straight line when viewed from the height direction of the air-core coil, and a plurality of straight sides formed on the inner circumference in an arc shape.
  • a cross point forming portion wherein the cross point forming portion is one straight side portion of the plurality of straight side portions or one of the plurality of arc portions, and the straight side portion or The arc portion is not pressurized, and at least one of the non-pressurized straight side portion or the straight side portion excluding the arc portion and the arc portion is orthogonal to the height direction and the height direction of the air-core coil. It is preferable that at least one of the width directions is pressurized!
  • a fusion wire including a conductor, an insulating coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulating coating is aligned.
  • an air-core coil formed by winding into an air-core shape at least a part of the air-core coil has at least one of a height direction and a direction orthogonal to the height direction, and an elastic deformation range of the conductive wire.
  • the pressurized portion is characterized in that the space factor of the pressurized portion is 84% or more and less than 91%.
  • the space factor of the pressurized portion can be improved without damaging the insulating coating.
  • the space factor of the pressurized portion is 84% or more, the space factor can be improved as compared with the conventional air-core coil. Further, since the space factor of the pressurized portion is less than 91%, the space factor can be more efficiently improved in relation to the pressing force.
  • the present invention provides a fusion wire including a conductor, an insulating film covering around the conductor, and a fusion film further covering around the insulating film.
  • a fusion wire including a conductor, an insulating film covering around the conductor, and a fusion film further covering around the insulating film.
  • the air-core coil formed by winding the core at least a part of the air-core coil is disposed in at least one of the height direction and the direction orthogonal to the height direction within the elastic deformation range of the conductive wire. It is characterized by being pressurized and having a dimensional accuracy in the pressing direction of ⁇ 0.2% or less.
  • the air-core coil is pressed in at least one of the height direction and the direction orthogonal to the height direction within the elastic deformation range of the conductor. Therefore, the dimensional accuracy in the direction in which the pressure is applied can be improved without damaging the insulating film. In addition, since the dimensional accuracy in the pressing direction is ⁇ 0.2% or less, the dimensional accuracy in the pressing direction can be improved as compared with the conventional air-core coil.
  • the air-core coil is formed by being wound in the aligned winding, and the cross points where the fusion wires intersect each other when being wound in the aligned winding are not pressurized.
  • the dimensional accuracy of the air-core coil in the height direction and the direction perpendicular to the height direction is ⁇ 0.2% or more.
  • the insulation film is likely to be damaged at the time of pressurization. It can be reliably prevented.
  • the cross points that are not pressed are concentrated on the parts where dimensional accuracy is not required, the dimensional accuracy required for the air core coil can be secured, so that it is not necessary to press the cross point part and the air core Manufacturing of the coil becomes easy.
  • the air-core coil is formed in a polygonal shape, and includes a plurality of straight sides each having an inner peripheral side formed in a straight line when viewed from the height direction of the air-core coil. It is preferable that a cross point is formed only in one straight side portion of the portion, and the dimensional accuracy in the width direction orthogonal to the height direction of the straight side portion where the cross point is formed is ⁇ 2% or more. As described above, when the dimensional accuracy in the width direction of the straight side portion where the cross point is formed is set to 2% or more, the winding operation of the air core coil becomes easier.
  • the present invention provides a fusion wire including a conductor, an insulation coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulation coating.
  • An air-core coil formed by being wound into a rectangular air-core shape the air-core coil includes a plurality of straight side portions whose inner peripheral sides are formed in a straight line when viewed from the height direction of the air-core coil, and at least one of the straight side portions is provided.
  • One is pressed within the elastic deformation range of the conductor in the direction perpendicular to the height direction of the air core coil and the winding direction of the fusion wire, and the outer periphery of the straight side in this pressure direction.
  • the swelling ratio on the side is 5.0% or less.
  • the bulge rate on the outer peripheral side of the straight side portion refers to the width W1 of the straight side portion at the central portion in the longitudinal direction of the straight side portion and the straight line at both end portions of the straight side portion.
  • the difference from the width W2 of the side is expressed as a ratio, and is calculated by the following equation.
  • At least one force of a plurality of straight sides formed on the inner circumferential side as a straight line when viewed from the height direction of the air-core coil, the height direction of the air-core coil and the winding of the fusion wire is applied in a direction perpendicular to the direction, and the swelling ratio on the outer peripheral side of the straight side in this pressure direction is 5.0% or less. That is, pressure is applied in the direction in which the swelling of the straight side portion occurs, The bulge rate on the outer peripheral side of the side is 5.0% or less.
  • the air-core coil is formed in a polygonal shape, and at least one of the plurality of straight sides is not pressurized and is not pressed, and the width direction is orthogonal to the height direction of the air-core coil. It is preferable that there is a straight side portion in which the swelling ratio on the outer peripheral side is 12.5% or more. With this configuration, it is not necessary to apply pressure to the straight side portion having a swelling ratio of 12.5% or more, which facilitates the manufacture of the air-core coil.
  • the air-core coil includes a plurality of arc portions whose inner peripheral sides are formed in an arc shape in view of the force in the height direction of the air-core coil, and includes a plurality of straight side portions and a plurality of arc portions. At least one of them is not pressurized, and there is a straight side or an arc with a bulge rate of 12.5% or more on the outer peripheral side in the width direction orthogonal to the height direction of the air core coil. It is preferred that With this configuration, it is not necessary to press the straight side portion or the arc portion having the swelling ratio of 12.5% or more, and the production of the air-core coil becomes easy.
  • the bulge rate on the outer peripheral side of the arc portion means the width wr of the arc portion at the center in the circumferential direction of the arc portion, and the arc portions at both ends in the circumferential direction of the arc portion.
  • the difference from the width is expressed as a ratio, and is calculated by the following equation.
  • the air-core coil is formed by winding in an aligned winding, and a cross point where the fusion lines intersect each other when wound in the aligned winding is formed by a plurality of straight sides or a plurality of straight points. It is preferable that the bulge ratio in the width direction on the outer peripheral side of the straight side portion or the circular arc portion where the cross point is formed is only 12.5% or more. With this configuration, it is not necessary to press the straight side portion or the arc portion where the cross point is formed, and it is possible to prevent the insulation film from being damaged at the cross point where the insulation film is likely to be damaged when the pressure is applied. .
  • the fusion coating is a fusion resin, and the thermally deformed fusion resin is filled between the fusion lines.
  • the gap is filled with a fusion resin in which the fusion coating is thermally deformed during heating.
  • the present invention relates to a method for aligning and winding a fusion wire including a conductor, an insulation coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulation coating.
  • the fusion wire is wound in an air-core shape, and then orthogonal to the height direction and the height direction of the air-core coil.
  • the pressure is applied within the elastic deformation range of the conductive wire, and when the fusion wire is wound in the alignment winding, the pressure is not applied to the cross point where the fusion wire intersects. I do.
  • pressure is applied in at least one of the height direction of the air-core coil and a direction orthogonal to the height direction within the elastic deformation range of the conductor, and the fusion wire is aligned and wound. Since the pressure is not applied to the crossing points where the fusion lines intersect when wound by the winding, the space factor of the pressurized part without damaging the insulating coating is improved, and the pressurized part is pressed in the pressing direction.
  • An air core coil with improved dimensional accuracy can be manufactured.
  • the present invention provides a fusion line including a conductor, an insulating film covering around the conductor, and a fusion film further covering around the insulating film.
  • a method of manufacturing an air-core coil formed by winding into an air core the fusion wire is wound into an air core, and then at least a part of the air-core coil is moved in the height direction.
  • at least one of the directions perpendicular to the height direction within the elastic deformation range of the conductor, and the space factor of the pressurized portion is set to 84% or more and less than 91%. I do.
  • the manufacturing method of the present invention at least a part of the air-core coil is pressed in at least one of the height direction and the direction orthogonal to the height direction within the elastic deformation range of the conductor, so that the insulation is performed.
  • the space factor of the pressurized portion can be improved without damaging the coating.
  • the space factor of the pressurized portion is 84% or more, the space factor can be improved as compared with the conventional air-core coil.
  • the space factor of the pressurized part is less than 91%, The space factor can be more efficiently improved in relation to the pressing force.
  • the present invention provides a fusion wire including a conductor, an insulating coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulation coating.
  • a method for manufacturing an air-core coil formed by being wound in a core shape the fusion wire is wound in an air-core shape, and then at least a part of the air-core coil is height-direction and height.
  • the pressure is applied to at least one of the directions perpendicular to the direction within the elastic deformation range of the conductor, and the dimensional accuracy in the pressing direction is set to ⁇ 0.2% or less.
  • the air-core coil is pressed in at least one of the height direction and the direction orthogonal to the height direction within the elastic deformation range of the conductor, so that the insulation is insulated.
  • the dimensional accuracy in the direction of pressing can be improved without damaging the coating. Also, since the dimensional accuracy in the pressing direction is ⁇ 0.2% or less, the dimensional accuracy in the pressing direction can be improved as compared with the conventional air-core coil.
  • the present invention relates to a fusion-bonded wire including a conductor, an insulating coating covering the periphery of the conductor, and a fusion coating further covering the periphery of the insulation coating.
  • the fusion wire is vacated so that the inner peripheral side has a plurality of straight sides formed linearly when viewed from the height direction force of the air-core coil. Then, at least one of the straight sides is wound within the elastic deformation range of the conductor in a direction perpendicular to the height direction of the air core coil and the winding direction of the fusion wire.
  • the swelling ratio on the outer peripheral side of the straight side portion in the pressing direction is 5.0% or less.
  • At least one of the plurality of straight sides formed so that the inner circumferential side is linear when viewed in the height direction force of the air-core coil is fused with the height direction of the air-core coil.
  • Pressure is applied in the direction perpendicular to the winding direction of the wire, and the swelling ratio of the outer peripheral side of the straight side in this pressure direction is set to 5.0% or less. Therefore, it is possible to suppress the swelling occurring at the straight side portion, and to secure a dimension in the direction perpendicular to the height direction and the winding direction of the fusion line required at the straight side portion. Further, since the straight side portion is pressurized within the elastic deformation range of the conductor, damage to the insulating coating can be prevented.
  • the wound wire is wound.
  • the fusion line is heated.
  • the wound fusion wire can be heated by at least one of the following methods: energization of a conductive wire, attachment to a heated mold, infrared irradiation, and hot air blowing.
  • the present invention it is possible to improve the space factor of the air-core coil formed by winding the fusion wires in the alignment winding without damaging the insulating coating of the fusion wires. it can. Further, according to the present invention, the dimensional accuracy of the air-core coil formed by being wound in an air-core shape can be improved without damaging the insulating coating of the fusion spliced wire. Further, according to the present invention, the bulge generated on the linear side portion of the air-core coil having the linear side portion formed so as to be wound in the air core shape and having the inner peripheral side formed linearly when viewed from the height direction is sufficiently provided. And the dimensions required for the straight side portion can be secured.
  • FIG. 1 shows an air-core coil according to a first embodiment of the present invention, where (A) is a plan view and (B) is a side view.
  • FIG. 2 is a bottom view of the air-core coil shown in FIG. 1, and is an enlarged view showing a part of a straight side portion where a cross point is formed.
  • FIG. 3 is a cross-sectional view showing a cross section of a fusion line.
  • FIG. 4 is an enlarged partial cross-sectional view showing a part of a cross section EE of the air core coil shown in FIG. 1 before pressurization.
  • FIG. 5 is a partially enlarged cross-sectional view showing a part of a cross section FF of the air core coil shown in FIG. 1 before pressurization.
  • FIG. 6 is a partially enlarged cross-sectional view showing a part of a cross-section FF of the air-core coil shown in FIG. 1 after being heated and then pressurized.
  • 7 is a partially enlarged cross-sectional view showing a part of a cross section FF after pressurizing the air-core coil shown in FIG. 1 without heating.
  • FIG. 9 is a graph showing a variation in dimensions before and after pressurization at a straight side portion of the air-core coil according to the first embodiment, where (A) shows dimensional variations in the height direction, and (B) shows dimensional variations. This shows the dimensional variation in the width direction.
  • FIG. 10 is a graph showing variations in width before and after pressurization at the center of a straight side portion of the air-core coil according to the first embodiment.
  • FIG. 11 is a perspective view showing an air-core coil according to a second embodiment of the present invention.
  • FIG. 12 is a plan view of the air-core coil shown in FIG.
  • FIG. 13 is a partially enlarged cross-sectional view showing a part of a cross section e—e of the air-core coil shown in FIG. 12 before pressurization in an enlarged manner.
  • FIG. 14 is a partially enlarged cross-sectional view showing a part of a cross section ff of the air-core coil shown in FIG. 12 before pressurization in an enlarged manner.
  • FIG. 15 is a partially enlarged cross-sectional view showing a part of a cross section ff of the air-core coil shown in FIG. 12 after heating and pressing after heating.
  • FIG. 16 is a partially enlarged cross-sectional view showing a part of a cross-section f-f of the air-core coil shown in FIG. 12 after being pressurized without heating.
  • FIG. 17 is a perspective view showing an air-core coil working on the prior art.
  • FIG. 18 is a partial cross-sectional view showing an example of a cross-section of an air-core coil working on the prior art.
  • FIG. 19 is a partial cross-sectional view showing an example of a cross-section of an air-core coil according to the related art.
  • FIG. 20 is a partial cross-sectional view showing an example of a cross section of an air-core coil that works on the prior art.
  • FIG. 21 is a partial cross-sectional view showing one example of a cross-section of an air-core coil according to the related art.
  • FIG. 1 shows an air-core coil 1 according to a first embodiment of the present invention, in which ( ⁇ ) is a plan view and ( ⁇ ) is a side view.
  • FIG. 2 is a bottom view of the air-core coil 1 shown in FIG. 1 and is an enlarged view showing a part of a straight side portion 6 where a cross point 7 is formed.
  • FIG. 3 is a cross-sectional view showing a cross section of the welding wire 2.
  • FIG. 4 is a partially enlarged cross-sectional view showing a state before pressurization in a part of a cross section ⁇ of the air-core coil 1 shown in FIG.
  • FIG. 5 is a partially enlarged cross-sectional view showing a part of the cross-section FF of the air-core coil 1 shown in FIG.
  • FIG. 1 shows an air-core coil 1 according to a first embodiment of the present invention, in which ( ⁇ ) is a plan view and ( ⁇ ) is a side view.
  • FIG. 2 is a bottom view of the air-core
  • FIG. 6 is a partially enlarged cross-sectional view showing a part of a cross section FF after heating and pressurizing the air-core coil 1 shown in FIG.
  • FIG. 7 is a partially enlarged cross-sectional view showing a part of cross section FF after pressurizing the air-core coil 1 shown in FIG. 1 without heating.
  • the air-core coil 1 of the present embodiment is used for various motors such as a linear motor.
  • a round conductor 2a having a circular cross section and an insulating coating covering the periphery of the round conductor 2a are provided.
  • a fusion wire 2 including a fusion coating 2c further covering the periphery of the insulating coating 2b is formed by winding in an aligned winding.
  • the air-core coil 1 is formed in a substantially rectangular air-core shape wound sequentially from one end la of the coil to the other end lb of the coil.
  • the inner side is straight when viewed from the direction perpendicular to the plane of (A). It has four straight sides 3, 4, 5, and 6 formed in the shape.
  • the straight sides 3 and 4 are formed by setting the vertical direction in the drawing as the longitudinal direction, that is, the vertical direction in the drawing as the winding direction of the welding wire 2, and 2 is formed by winding, and the straight sides 3 and 4 are opposed to each other.
  • the straight portions 5 and 6 are formed by winding the fusion wire 2 with the left-right direction in the drawing as the long direction, that is, the left-right direction in the drawing as the winding direction of the fusion wire 2.
  • 5 and 6 are opposite to each other.
  • the lengths of the straight sides 3 and 4 in the longitudinal direction are longer than the lengths of the straight sides 5 and 6 in the longitudinal direction. The length may be formed longer than the length of the straight sides 3 and 4 in the longitudinal direction.
  • the longitudinal direction of the straight sides 3 and 4 is the X direction
  • the longitudinal direction of the straight sides 5 and 6 is the Y direction
  • the air core is orthogonal to the winding direction of the fusion wire 2.
  • the thickness direction of coil 1 (the direction perpendicular to the paper surface in Fig. 1 (A)) is the Z direction (height direction). Therefore, the X direction and the Y direction orthogonal to the height direction (Z direction) of the air core coil 1 are the width direction of the air core coil 1, respectively.
  • the air-core coil 1 of the present embodiment when the fusion wires 2 are wound in the aligned winding, a cross point 7 at which the fusion wires 2 intersect is formed on one straight side.
  • the fusion wire 2 is wound so as to be formed only on the portion 6. That is, as shown in FIG. 4 and the like, the fusion wire 2 is wound so that the cross points 7 are not formed on the straight sides 3, 4, and 5.
  • the straight side 6 is crossed. It is a cross point formation part where all of point 7 is formed.
  • the air-core coil 1 of the present embodiment is used for applications where dimensional accuracy is not required in the X direction where the straight side portion 6 having the cross point 7 is formed.
  • the fusion wire 2 in the aligned winding of the fusion wire 2, first, the fusion wire 2 is sequentially wound in the Z1 direction to form a first layer. Are sequentially wound in the Z2 direction to form a second layer. Thereafter, the fusion wire 2 is sequentially wound in the Z1 direction to form a third layer, and thereafter, similarly, a fourth layer, a fifth layer, and a sixth layer are formed. Then, when going from one layer (n layer) to the next layer (n + 1 layer), the fusion lines 2 cross each other at the part from the n layer to the n + 1 layer.
  • the fusion line 2 forming the n + 1 layer intersects with the fusion line 2 forming the n layer.
  • This intersecting portion becomes a cross point 7, and the cross point 7 is formed for each revolution when the fusion wire 2 is wound.
  • the fusion wire 2 is heated after being wound into a substantially rectangular air-core shape, and thereafter, the outer peripheral sides of the straight side portions 3 and 4 are shown in FIG. As shown by the arrow G in (A), pressure is applied in the Y direction toward the inside of the air core coil 1. Further, in the air-core coil 1, after heating, the straight sides 3, 4, and 5 are pressurized in the Z direction as indicated by the arrow H in FIG. 1 (B). The method of manufacturing the core coil 1 will be described later in detail.
  • a round conductor 2a having a diameter of 0.05 mm to lmm is used, and its elongation is 30 to 40%.
  • the following effects such as improvement of the space factor of the straight side portions 3 and 4 and improvement of the dimensional accuracy can be more easily achieved. You can get it.
  • the elongation is more preferably in the range of 36% to 40%.
  • the elongation percentage means that the length of the fusion line 2 in a state where no load is applied in the longitudinal direction is Ll, and the fusion line 2 is extended by applying a load in the longitudinal direction, and When the length just before cutting 2 is L2, it is calculated by the following equation.
  • This elongation is a substitute for the hardness of the fusion line 2, and a relatively soft fusion line 2 is used in the present embodiment.
  • the fusion wire 2 is mounted on a winding machine, and wound into a rectangular air core with aligned winding (winding step).
  • the fusion wire 2 is heated at a controlled predetermined temperature.
  • the inner peripheral sides of the straight sides 3, 4, 5, and 6 are formed linearly.
  • a part of the cross section EE at one end of the straight side portion 3 after the completion of the winding of the fusion wire 2 is in a state as shown in FIG. That is, the fusion wire 2 is wound in a state where the round conductor 2a is covered with the insulating film 2b and the fusion film 2c, and a gap 8 is formed between the fusion wires 2.
  • the other end of the straight side 3 and both ends of the straight side 4 are also in the same state as the cross section EE.
  • some fusion lines 2 and some The gap 8 is marked with a symbol only.
  • a part of the cross section FF of the central portion of the straight side portion 3 after the completion of the winding of the fusion wire 2 is in a state as shown in Fig. 5. That is, the fusion wire 2 is wound in a state where the round conductor 2a is covered with the insulating coating 2b and the fusion coating 2c, and a gap 9 is formed between the fusion wires 2 in addition to the gap 8. Have been.
  • the gap 9 is larger than the gap 8 formed in the cross section EE. This is because, when winding the fusion wire 2, the fusion wire 2 is pressed in the Y direction toward the inside of the air core coil 1 as the force is applied from both ends of the straight side portion 3 to the center portion. This is due to the fact that the power gradually decreases.
  • the central portion of the straight side portion 4 is also in the same state as the cross section FF. Therefore, when the winding of the fusion wire 2 is completed, as shown by the two-dot chain line I in FIG. 1 (A), the outer sides of the straight sides 3 and 4 have a maximum at the center in the X direction. There is a bulge that faces outward in the Y direction. In FIG. 5, for convenience, only some of the fusion wires 2 and some of the gaps 9 are denoted by reference numerals. In addition, the state shown by the two-dot chain line I is larger than the actual bulge for the sake of explanation.
  • the state of both ends of the straight side portion 5 after the winding of the fusion wire 2 is completed is almost the same as the cross section EE.
  • the state of the central portion of the straight side portion 5 is a state intermediate between the cross section EE and the cross section FF. That is, in the present embodiment, since the length of the straight side portion 5 in the longitudinal direction is shorter than that of the straight side portions 3 and 4, the gap formed in the center portion of the straight side portion 5 is larger than the gap 9 As a result, the bulge generated on the straight side portion 5 outward in the X direction is smaller than the straight sides 3 and 4 (see the solid line state in FIG. 1). Since a plurality of cross points 7 are formed on the straight side portion 6 and are not pressed, the straight side portion 6 is in a state of greatly expanding outward as shown in FIG. 1 (A).
  • the fused wire 2 having been wound is heated (heating step). More specifically, the fusion wire is applied by one of the following methods: energization of the round conductor 2a, mounting to a heated mold, infrared irradiation or hot air blowing, or a combination of a plurality of heating directions. Heat 2 to 60 ° C to 230 ° C.
  • the heating of the welding wire 2 can be performed in the winding step by controlling the temperature in the winding step.
  • the outer peripheral sides of the straight sides 3 and 4 are pressed in the direction of arrow G in FIG. 1 (A) (pressing step). Also, press the straight sides 3, 4, and 5 in the Z direction of arrow H in FIG. ).
  • a pressurizing jig inserted through the inner peripheral side of the air-core coil 1, use another pressurizing jig in the direction of arrows G and H to obtain 2 to 13 megapascals ( (MPa).
  • MPa megapascals
  • a pressing device that fixes one of the right end surface and the left end surface in FIG. 1B and moves the other surface is pressed.
  • pressure can be applied by a press device that can move both surfaces.
  • the pressing force is a force that does not cause plastic deformation of the round conductor 2a, and the air core coil 1 is pressurized within the elastic deformation range of the round conductor 2a.
  • the air-core coil 1 shifts from the state shown by the two-dot chain line I in FIG. 1 to the state shown by the solid line in FIG.
  • the force that does not cause plastic deformation of the round conductor 2a includes a force that causes only a slight plastic deformation, as well as a force that does not cause plastic deformation at all, and includes a force that causes large plastic deformation as in Patent Document 1 described above. None.
  • a part of the cross section FF of the central portion of the straight side portion 3 after pressurization is in a state as shown in FIG.
  • a part of the fusion-bonded film 2c, in which the round conductor 2a is covered with the insulating film 2b is thermally deformed to become a fusion resin 10, and the fusion resin 10 is Filled between each other. That is, a part of the fusion coating 2c, which covered the insulating coating 2b before pressing, is melted by heating to form a fusion resin 10, which flows into the gaps 8, 9 formed before pressing, and The fusion resin 10 is filled between almost all of the fusion wires 2, and the gaps 8 and 9 hardly exist.
  • the round conductors 2a covered by the insulating coating 2b are in close contact with each other via the insulating coating 2b and the very thin fusion coating 2c, or only through the insulating coating 2b.
  • arbitrary cross sections of the straight side portion 3 and the straight side portion 4 are in a state similar to the state shown in FIG.
  • the outer peripheral sides of the straight sides 3 and 4 are in a state close to a straight line as shown by the solid line in FIG. The bulge that had been swelling is almost invisible.
  • the air-core coil 1 may be formed by applying pressure without heating.
  • a part of the cross section FF at the center of the straight side portion 3 after pressurization is in a state as shown in FIG. That is, the round conductor 2a is in a state of being covered with the insulating film 2b.
  • a part of the force-coated fusion film 2c is melted by the influence of heat due to the pressure to become a fusion resin 10, which is not pressurized.
  • the straight side portions 3 and 4 are heated.
  • the outer peripheral side is pressed in the Y direction with a force directed inside the air-core coil 1.
  • the straight sides 3, 4, and 5 are pressurized in the Z direction, as indicated by the arrow H in FIG. 1 (B). Therefore, at least a part of the fusion coating 2c, which has been coated with the insulating coating 2b before the pressing, is melted by the influence of the heat due to the pressure to become a fusion resin 10, and the gap formed before the pressing is formed. Flow into 8, 9. Therefore, at the straight sides 3, 4, and 5, the thickness of the fusion coating 2c becomes thin, and the gaps 8, 9 formed between the fusion lines 2 become small. Therefore, the space factor of the straight sides 3, 4, and 5 can be improved.
  • the dimension in the pressing direction is The dimensions can be based on the dimensions of the jig, and the dimensional accuracy in the pressing direction can be improved. That is, the linear sides 3 and 4 can improve the dimensional accuracy in the Y and Z directions, and the linear sides 5 can improve the dimensional accuracy in the Z direction. Furthermore, the bulge formed on the straight sides 3 and 4 before pressing can be sufficiently suppressed. As a result, the accuracy of the width dimension of the air-core coil 1 in the Y direction can be improved.
  • the cross points 7 are not formed in the straight side portions 3, 4, and 5, the pressure is evenly applied to the fusion wire 2 wound at the time of pressurization. Therefore, the above-described effects can be obtained more easily and efficiently.
  • the air-core coil 1 is pressurized within the elastic deformation range of the conductor, the insulating coating 2b of the fusion wire 2 can be prevented from being damaged.
  • the straight side portion 6 where the cross point 7 is formed is pressurized, so that the pressurizing easily causes damage to the insulating film 2b, which can prevent the insulating film 2b from being damaged at the cross point 7. it can.
  • all of the cross points 7 are formed on the straight side portions 6 serving as cross point forming portions. Therefore, the straight sides 3, 4, and 5 excluding the straight side 6, which is a specific part in the circumferential direction, can be pressurized at least in the Z direction. Therefore, in the pressing operation, the pressing operation may be performed in consideration of the straight side portion 6, and the pressing operation is facilitated.
  • the air-core coil 1 after the winding step of winding the fusion wire 2 in an air-core shape, heating is performed in a heating step, and then pressure is performed in a pressing step.
  • the manufacturing method is adopted.
  • this manufacturing method the hardness of the fusion bonding wire 2 is reduced by heating, so that the pressing force at the time of pressing can be reduced, and the air-core coil 1 can be easily pressed.
  • the pressing force can be reduced, it is possible to reliably prevent the insulating coating 2b from being damaged during pressurization.
  • a fusion resin formed by melting the fusion coating 2c by heating is used. 10 is filled between almost all of the fusion lines 2, and the gaps 8 and 9 hardly exist. Therefore, a larger amount of the fusion coating 2c is melted and flows into the gaps 8 and 9, and the space factor of the straight sides 3, 4, and 5 can be more effectively increased. In addition, variations in the dimensions of the straight sides 3, 4, and 5 due to the fusion coating 2c, such as variations in the thickness of the fusion coating 2c. Can be suppressed more effectively. Further, the adhesive strength between the fusion wires 2 is increased by the fusion resin 10 filled in the gaps 8 and 9, and the rigidity of the straight sides 3, 4, and 5 is also increased.
  • a fusion wire 2 having a wire diameter of 0.35 mm is mounted on a winding machine, and while the fusion wire 2 is heated at a predetermined temperature, 20 steps in the Z direction (height direction) and a direction perpendicular to the height direction ( Twenty-two rows (22 layers) were wound in a rectangular shape in the Y direction for straight sides 3 and 4, and the X direction for straight sides 5 and 6.
  • the target values of the X-, Y-, and Z-direction dimensions of the wound air core coil 1 are set to 44.05mm, 23.26mm, 8.36mm, and the fusion wire 2 is wound. did .
  • the space factor of the straight sides 3 and 4 was 83%.
  • the wound fusion wire 2 is heated at about 190 ° C, and after heating, the straight side portions 3 and 4 are passed through the pressing jig through the inner peripheral side of the air-core coil 1. Pressure was applied in the direction of arrow G and in the direction of arrow H at 2-13 MPa.
  • Fig. 8 shows the results.
  • FIG. 8 shows the relationship between the pressing force and the space factor, with the horizontal axis representing the pressing force (MPa, represented by the pressing force in the figure) and the vertical axis representing the space factor (%).
  • the space factor can be increased to 84% or more by increasing the pressure, and the space factor can be increased as compared with the conventional air-core coil.
  • the gaps 8 and 9 are filled with the fusion resin 10 and the gaps 8 and 9 decrease, the space factor does not increase so much even if the pressing force is increased. That is, as shown in data S1, if the space factor is set to 91% or more, a large pressing force is required, and it becomes extremely difficult in manufacturing. Also, a lot of manufacturing time is required.
  • the space factor of the air-core coil can be more efficiently improved.
  • the applicant has succeeded in manufacturing an air-core coil having a space factor of 96%, and it is possible to create an air-core coil having a space factor of 91% or more.
  • the space factor is set to 84% or more and less than 91% by pressurizing the wound air-core coil 1 after winding, compared to a conventional air-core coil having the same outer shape, the air-core coil 1 is raised.
  • the magnetic force can be improved by 18%, and the inductance can be improved by 2-20%.
  • the space factor can be improved, when the coil cross section is the same, the diameter of the conductor such as the round conductor 2a can be made larger than that of the conventional air-core coil, and as a result, The resistance value of air core coil 1 can be reduced.
  • a fusion wire 2 having a wire diameter of 0.3 mm is mounted on a winding machine, and while heating the fusion wire 2 at a predetermined temperature, 24 steps in the Z direction (height direction), a direction orthogonal to the height direction ( It was wound in a rectangular shape in 25 rows (25 layers) in the Y direction on straight sides 3 and 4 and the X direction on straight sides 5 and 6.
  • the fusion wire 2 is wound with the target values of the X-, Y-, and Z-dimensions of the wound air-core coil 1 set to 48.7 mm, 24.Omm, and 7.75 mm. did.
  • the wound fusion wire 2 is heated at about 190 ° C, and after heating, a pressing jig is inserted through the inner peripheral side of the air-core coil 1 and the straight sides 3 and 4 are marked with arrows. Pressure was applied at 3.8 MPa in the direction of G and the direction of arrow H.
  • Figure 9 shows the results.
  • Fig. 9 shows the variation in the dimensions at the center of the linear sides 3 and 4 before and after pressurization, with the horizontal axis representing the number of samples and the vertical axis representing the dimensions (mm).
  • B) shows the dimensional variation in the direction (denoted as the vertical direction in the figure), and
  • B) shows the dimensional variation in the Z direction (denoted as the horizontal direction in the figure).
  • 22 samples were used in the experiment.
  • the average value of the dimension in the Y direction at the center of the straight sides 3 and 4 is 23.885 mm, and the variation of the dimension is + 1.11-1.1 was 0.45%.
  • the average value of the dimension in the Y direction at the center of the straight sides 3 and 4 is 23.535 mm, and the variation of the dimension is +0. It is 0.61% 0.06%, and the dimensional variation can be greatly reduced.
  • the dimensional accuracy in the Y direction and the Z direction which are the directions of pressurization, can be set to ⁇ 0.2% or less, and can be greatly improved as compared with the related art.
  • the cross-sectional area of the straight sides 3 and 4 has decreased by 3.3%, which indicates that the space factor has improved.
  • the pressure is set to 7. OMPa, and other conditions are the same as above, the straight sides 3, 4 in the Y direction before pressurization are applied.
  • the average value of the dimensions is 23.889 mm, the variance of the dimensions is + 1.09-1.1.79%, and the average value of the dimensions in the Y direction of the straight sides 3 and 4 after pressing is 23.536 mm
  • the dimensional variation was +0.14-0.15%.
  • the average value of the dimension in the Z direction of the straight sides 3 and 4 before pressurization is 7.687 mm, and the variation in the dimensions is + 0.61-11.48%.
  • the average value of the dimension in the Z direction of 3. and 4. was 7.551 mm, and the variation of the dimension was +0.31 to 0.35%.
  • the dimensional accuracy can be improved even when heating is not performed before pressing.
  • the dimensional accuracy can be improved by pressurizing the wound air-core coil 1 so that the air-core coil 1 can be used for applications requiring dimensional accuracy.
  • the air-core coil 1 since the gaps 8 and 9 are filled with the fusion resin 10, even if the air-core coil 1 is used for insert molding, the air gap is generated due to the gaps 8 and 9. Degassing is easier when molding with less gas.
  • the dimensional accuracy of the straight side portion 6 in the X direction and the Z direction is ⁇ 0.2% or more.
  • the air-core coil 1 of the present embodiment is used for applications that do not require dimensional accuracy in the X direction where the straight side portion 6 having the cross point 7 is formed, the dimensional accuracy in the X direction is ⁇ 2%.
  • the above can be considered. For this reason, it is possible to reliably prevent the insulating film 2b from being damaged at the cross point 7 where the insulating film 2b is likely to be damaged when the linear side 6 is not required to be pressed.
  • the dimensional accuracy in the X direction of the straight side portion 6 where the cross point 7 is formed is not required, the winding operation of the fusion wire 2 becomes easy.
  • the wound fusion wire 2 is heated at about 190 ° C., and after heating, the straight side portions 3 and 4 are drawn while the pressing jig is passed through the inner peripheral side of the air-core coil 1. Pressure was applied in the direction of arrow G and the direction of arrow H at 5.0 MPa. In addition, 20 samples were used for the experiment.
  • the average value of the width dimension W2 before pressurization was 6.78 mm, and the average value of the width dimension W1 was 6.97 mm, and the average swelling ratio was 2.7%.
  • the maximum value of the swelling ratio f was 5.1% among the 20 samples.
  • the average value of the width dimension W2 after pressing was 6.77 mm
  • the average value of the width dimension W1 was 6.80 mm
  • the swelling ratio of the average value was 0.4%.
  • the maximum value of the swelling ratio was 1.5% among the 20 samples.
  • the swelling ratio can be set to 2.0% or less.
  • FIG. 10 shows the variation in the width dimension W1 when pressure is applied after heating.
  • Figure 10 shows the width W1 before and after pressing, with the horizontal axis representing the number of samples and the vertical axis representing the width (mm).
  • the air core coil 1 after winding can be pressurized to greatly reduce the swelling ratio of the straight side portions 3 and 4, for example, as in a stator of a linear motor, etc.
  • the air-core coils 1 are used in parallel in the Y direction, there is no variation in the distance between the air-core coils 1. Therefore, in such a coil group, the distribution of the strength of the magnetic field becomes uniform, and the strength of the magnetic field of the stator increases due to the interaction of the magnetic fields of the air-core coils 1.
  • the coil group in which the air-core coils 1 are arranged in parallel in the Y direction a highly accurate and strong magnetic field can be obtained, and the performance of the device including the coil group is improved.
  • the position accuracy and responsiveness of a slider are improved.
  • the swelling ratio of the straight side portions 3 and 4 can be significantly reduced, the density of the coil group in which the air-core coils 1 are used in parallel can be increased.
  • the variation in the position of the magnetic field strength was 0.1 in standard deviation ( ⁇ ). That is, by using the air-core coil 1 formed by pressing after heating, the variation in the magnetic field strength can be reduced to one-tenth of the standard deviation, and the variation can be greatly reduced.
  • the air-core coil 1 of the present embodiment is used for applications where dimensional accuracy is not required in the X direction where the straight side portion 6 having the cross point 7 is formed.
  • the reflection rate can be 12.5% or more. For this reason, it is possible to reliably prevent the insulating film 2b from being damaged at the cross point 7 where the insulating film 2b is likely to be damaged when the linear side portion 6 is not required to be pressed. Further, the winding operation of the fusion wire 2 becomes easy.
  • FIG. 11 is a perspective view showing the air-core coil 21 according to the second embodiment of the present invention.
  • FIG. 12 is a plan view of the air core coil 21 shown in FIG.
  • FIG. 13 is a partially enlarged cross-sectional view showing a part of the cross section e-e of the air-core coil 21 shown in FIG.
  • FIG. 14 is a partially enlarged cross-sectional view showing a part of the cross section f-f of the air-core coil 21 shown in FIG.
  • FIG. 15 is a partially enlarged cross-sectional view showing a part of the cross-section ff after the air-core coil 21 shown in FIG. 12 is heated and pressurized.
  • FIG. 15 is a partially enlarged cross-sectional view showing a part of the cross section ff after pressurizing the air-core coil 21 shown in FIG. 11 without heating.
  • the air core coil 21 of the present embodiment is also used for various motors such as a linear motor, similarly to the air core coil 1 described above.
  • the air-core coil 21 includes a rectangular conductor 22a having a substantially rectangular cross section, an insulating film 22b covering the rectangular conductor 22a, and a fusion coating further covering the periphery of the insulating film 22b. 22c is formed by being wound with an ⁇ -winding. More specifically, as shown in FIGS. 11 and 12, the air-core coil 21 is formed by two opposing parallel straight sides 23 each having a straight inner peripheral side when viewed from the direction perpendicular to the plane of FIG.
  • the straight sides 23 and 24 are formed by winding the fusion wire 22 with the vertical direction in FIG. 12 as the longitudinal direction, that is, the vertical direction in FIG. 12 as the winding direction of the fusion wire 22.
  • the ⁇ winding is a winding method in which both ends after the fusion wire 22 is wound are both on the outermost peripheral side of the air-core coil 21.
  • the winding method is such that both ends of the fixed winding shaft used in the winding operation are wound in opposite directions in an OC shape.
  • the longitudinal direction of the straight sides 23, 24 is defined as the X direction, and the thickness direction of the air-core coil 21 perpendicular to the winding direction of the fusion wire 22 (the direction perpendicular to the paper surface of Fig. 12).
  • the ⁇ direction, the X direction, and the direction orthogonal to the ⁇ direction are defined as ⁇ direction. Therefore, the X direction and the ⁇ direction orthogonal to the height direction ( ⁇ direction) of the air core coil 21 are the width direction of the air core coil 21.
  • the air-core coil 21 of the present embodiment has a heating step after the fusion wire 22 is wound in the winding step. And then pressurized in the Y and Z directions in a pressing step. That is, the outer peripheral forces of the straight sides 23 and 44 are pressed in the Y direction with a force toward the inside of the air core coil 21, and the straight sides 23 and 24 and the arcs 25 and 26 are applied in the Z direction. It is under pressure.
  • a method of manufacturing the core coil 21 will be described in detail.
  • the fusion wire 22 is mounted on a winding machine, and is wound in an air-core shape by winding a. In this winding, the fusion wire 22 is heated at a controlled predetermined temperature.
  • a part of the cross section e-e of one end of the straight side portion 23 after the winding of the fusion wire 22 is completed is in a state as shown in FIG. That is, the fusion wire 22 is wound in a state where the rectangular conductor 22a is covered with the insulating film 22b and the fusion film 22c, and a gap 28 is formed between the fusion wires 22. Further, the other end of the straight side portion 23 and both end portions of the straight side portion 24 are in the same state as the cross section e-e. In FIG. 13, for convenience, only some of the fusion lines 22 and some of the gaps 28 are denoted by reference numerals.
  • a part of the cross section ff of the central portion of the straight side portion 23 is in a state as shown in FIG. That is, the fusion wire 22 is wound in a state where the rectangular conductor 22a is covered with the insulating film 22b and the fusion film 22c, and the gap 29 is formed between the fusion wires 22 in addition to the gap 28. Is formed.
  • the fusion wire is wound in the Y direction toward the inside of the air core coil 21 from the both ends of the straight side portion 23 toward the center portion. Since the force pressing the 22 is gradually reduced, a gap is also formed between the parallel fusion lines 22 like the gap 29a.
  • the gap 29 is larger than the gap 28 formed in the cross section e-e.
  • the central portion of the straight side portion 24 is also in the same state as the cross section ff. Therefore, in the state where the winding of the fusion wire 22 is completed, as shown by the two-dot chain line i in FIG. 12, the outer sides of the straight sides 23 and 24 are located at the center in the X direction in the Y direction. There is a bulging force on the outside.
  • FIG. 14 for convenience, only some of the fusion lines 22 and some of the gaps 29 are denoted by reference numerals.
  • the fused wire 22 having been wound is heated. Since the heating direction is the same as that of the above-described first embodiment, the detailed description is omitted.
  • the heating of the fusion wire 22 is completed, the wound fusion wire 22 is pressed in the Y and Z directions.
  • the pressing direction is also the same as the pressing method of the first embodiment described above, and thus the detailed description is omitted.
  • the pressing force at the time of pressurization is a force that does not cause plastic deformation of the rectangular conductor 22a, and the air core coil 21 is pressurized within the elastic deformation range of the rectangular conductor 22a.
  • the force that does not deform the rectangular conductor 22a plastically includes not only the force that does not cause plastic deformation at all, but also the force that causes slight plastic deformation, and does not include the force that causes large plastic deformation as in Patent Document 1 described above. That means.
  • a part of the cross section ff of the central portion of the straight side portion 23 after pressurization is in a state as shown in FIG. That is, although the flat conductive wire 22a is covered with the insulating coating 22b, a part of the fusion coating 22c is thermally deformed to become the fusion resin 30. It is filled between them. That is, a part of the fusion coating 22c, which covered the insulating coating 22b before pressing, is melted by heating to form a fusion resin 30, and flows into the gaps 28, 29, 29a formed before pressing. The fusion resin 30 is filled between almost all of the fusion lines 22, and the gaps 28, 29, and 29 a hardly exist.
  • the rectangular conductors 22a covered by the insulating coating 22b are in close contact with each other via the insulating coating 22b and the very thin fusion coating 22c, or only via the insulating coating 2b.
  • arbitrary cross sections of the straight side portion 23 and the straight side portion 24 are in a state similar to the state shown in FIG. 15, that is, a state in which gaps 28, 29, and 29a hardly exist.
  • the outer peripheral sides of the straight sides 23 and 24 are in a state close to a linear state as shown by the solid line in FIG. It is no longer possible.
  • the air core coil 21 may be formed by applying pressure in a pressing step without heating. .
  • a part of the cross section ff of the central portion of the straight side portion 23 after pressurization is in a state as shown in FIG. That is, although the rectangular conductor 22a is covered with the insulating coating 22b, a part of the coated fusion coating 22c is melted under the influence of heat due to the pressure to become the fusion resin 30, and the heat is applied. It flows into gaps 28, 29 and 29a that were formed before pressing.
  • the air-core coil 21 is formed by applying pressure without heating as in the first embodiment, the fusion coating 22c is difficult to melt, and therefore, as shown in FIG. There is an unfilled portion 31 in which the filling resin 30 is not filled.
  • the arbitrary cross sections of the straight sides 23 and 24 are in the same state as the state shown in FIG.
  • the outer peripheral sides of the straight sides 23 and 24 are in a state close to a straight line as shown by the solid line in FIG. 11, and almost no bulge was formed before pressurization. Is no longer available.
  • the effect that the space factor of the straight sides 23 and 24 and the arcs 25 and 26 can be increased, and the straight sides 23 and 24 and the circle It is possible to obtain the effect that the dimensional variation of the arc portions 25 and 26 can be suppressed, and the effect that the bulge formed in the straight side portions 23 and 24 before pressing can be sufficiently suppressed. it can.
  • the air core coil 21 can be easily pressed.
  • more of the fusion coating 22c is melted and flows into the gaps 28 and 29, so that the space factor of the air core coil 21 can be more effectively increased.
  • variations in the dimensions of the air core coil 21 due to the fusion coating 22c such as variations in the thickness of the fusion coating 22c, can be more effectively suppressed.
  • the adhesive resin 30 filled in the gaps 28 and 99 increases the bonding strength between the fusion wires 22 and the rigidity of the air-core coil 21.
  • a rectangular welding wire 22 having a wire size of 0.24 X 1.2 mm was mounted on a 5 X 300 mm winding machine, and while the welding wire 22 was heated at a predetermined temperature, a 50-turn ⁇ winding was formed. In this way, it was wound in the shape of a land truck. ⁇ dimension of air core coil 1 after winding is 29mm, X dimension is 340 mm. Thereafter, the wound fusion wire 22 is heated at about 190 ° C., and after heating, the pressing jig is passed through the inner peripheral side of the air core coil 21 in the Y and Z directions. 7. Pressurized with OMPa. In addition, 20 samples were used for the experiment.
  • the average value of the width W3 of the central part in the Y direction was 13.92 mm. Therefore, the average swelling rate was 9.6%.
  • the maximum value of the swelling rate was 20.1% among the 20 samples.
  • the average value of the width dimension W4 was 12.21 mm
  • the average value of the width dimension W3 was 12.34 mm
  • the swelling ratio of the average value was 1.1%.
  • the maximum value of the swelling ratio was 2.4% among the 20 samples.
  • the swelling of the straight side portions 23 and 24 due to the pressurization can be largely suppressed. Specifically, the swelling rate can be reduced to 2.5% or less.
  • the average value of the width dimension W4 before pressurization was 12.58 mm
  • the average value of the width dimension W3 was 13
  • the average swelling ratio was 9.6%.
  • the maximum value of the swelling rate was 20.2% among the 20 samples.
  • the average value of the width dimension W4 after pressurization was 12.57 mm
  • the average value of the width dimension W3 was 12.98 mm
  • the swelling ratio of the average value was 3.2%.
  • the maximum value of the swelling rate was 4.9% among the 20 samples.
  • the swelling ratio can be reduced to 5.0% or less.
  • the air-core coil 1 formed by winding a fusion wire 2 having a circular conductor 2a having a circular cross section in an aligned winding or a fusion wire 22 having a rectangular conductor 22a having a rectangular cross section is formed.
  • an air-core coil formed by winding a fusion wire having a flat wire in edgewise winding, or a square wire having a square cross section The configuration of the present invention can also be applied to an air-core coil / ray formed by winding a fusion wire having a winding in an alignment winding.
  • the fusion wire 2 including the round conductor 2a is wound in a rectangular air core shape, but the fusion wire 2 has a land track shape shown in FIG. It may be wound around the air core.
  • the arc portion 25 or the arc portion 26 may be used as a cross point forming portion in which all of the cross points are formed so as not to pressurize the cross point forming portion.
  • the arc portion 25 is a cross point forming portion, as shown in FIG. 12, the width W at the center portion in the circumferential direction of the arc portion 25 and the width W2 at both end portions in the circumferential direction of the arc portion 25 are obtained.
  • the swelling ratio of the arc portion calculated from the above formula 2 by the above equation 2 can be 12.5% or more.
  • the fusion wire 22 including the rectangular conductor 22a described in the second embodiment may be wound in a rectangular air core shape shown in FIG.
  • one straight side 6 serves as a cross point forming portion, and all of the cross points 7 are formed.
  • the straight sides 5 and 6 have cross points. It is good to form 7 and make two cross point forming parts.
  • the winding shape of the fusion wire is limited to the rectangular air-core shape described in each of the above embodiments.
  • the fusion wire may be wound into another shape such as a circular air core or a triangular air core.
  • the cross point forming portion where all of the cross points are formed is used as the cross point forming portion, and the cross point forming portion is not pressed. What should I do?
  • a force that forms three straight sides is applied to the height direction of the air core coil and the winding of the fusion wire. By applying pressure in a direction perpendicular to the direction, the swelling ratio of the straight side portion toward the outer peripheral side can be made 5.0% or less.
  • the air-core coils 1 and 21 having a certain thickness are shown and shown, but the air-core coil of the present invention has a dimension in the height direction (Z direction).
  • a small, flat air core coil may be used.
  • the outer peripheral sides of the straight sides 3 and 4 are pressed in the Y direction toward the inside of the air core coil 1 and the straight sides 3, 4 and 5 are Direction, but one or two of the straight sides 3, 4, and 5 may be pressed, or the straight sides 3, 4 may be applied only in one direction of the Y or Z direction. You may press. Further, in the second embodiment, the wound fusion wire 22 may be pressed only in one direction of the Y direction or the Z direction, which has been pressed in the Y direction and the Z direction. , 24 and the arcs 25, 26 !, one or two or three shear forces can be applied!
  • the air-core coil of the present invention can be used for various electronic and electric devices such as a lens drive device of an optical head device other than a motor such as a linear motor. Size reduction and energy saving can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Windings For Motors And Generators (AREA)

Description

明 細 書
空芯コイルおよび空芯コイルの製造方法
技術分野
[0001] 本発明は、空芯コイルおよび空芯コイルの製造方法に関するものである。
[0002] なお、本明細書において、「空芯コイルの高さ」とは、融着線の卷回方向に直交す る空芯コイルの厚みをいうものとする。また、「空芯コイルの幅」とは、融着線の卷回方 向および空芯コイルの高さ方向の両方向に直交する方向の距離をいうものとする。さ らに、「占積率」とは、融着線の卷回方向に直交する空芯コイルの断面部分に存在す る融着線の断面積の総和を、空芯コイルのその断面の外形から特定される全断面積 で除した値を 、うものとする。
背景技術
[0003] 従来より、導線と、導線の周りを被覆する絶縁被膜と、絶縁被膜の周りをさらに被覆 する融着被膜とを備える融着線が空芯状に卷回されるコイル、すなわち強磁性体等 の卷芯を備えて 、な 、空芯コイルが、リニアモータ等の各種のモータや光ヘッド装置 のレンズ駆動装置などに用いられている。この種の空芯コイルとしては、図 17に示す 空芯コイル 101のように、たとえば、融着線が略矩形の空芯状に卷回されて形成され たものが知られている。
[0004] この空芯コイル 101には種々の融着線が用いられ、また、これらの融着線が種々の 巻き方で卷回されて空芯コイル 101が形成されている。以下、図 17に示す空芯コィ ル 101の断面 αの例を図 18から図 21に示し、空芯コイル 101に用いられる融着線 およびその巻き方の例を説明する。なお、図 18から図 21に示す Υ方向および Ζ方向 は、図 17に示す Υ方向および Ζ方向と一致する。
[0005] 図 18には、断面が円形状の丸導線を備える融着線 102が整列卷で卷回されて形 成された空芯コイル 101の断面 αの例を示す。この空芯コイル 101の場合には、融 着線 102同士の間に間隙 103が生じている。また、空芯コイル 101は、図 18に示す ように、 Υ方向で層状をなすように形成されており、たとえば、 η層、 η+ 1層、 η+ 2層 等の複数の層を備えている。ここで、整列卷で卷回された空芯コイル 101では、たと えば、 n+ 1層の融着線 102が n層の融着線 102を乗り越えるように斜めに交差する 部分があり、この部分がクロスポイント(図示省略)となっている。同様に、 n+ 1層と n + 2層との間にもクロスポイントが存在する。
[0006] また、図 19に、断面が長方形状の平角導線を備える融着線 105が α卷で卷回され て形成された空芯コイル 101の断面 αの例を、図 20に、断面が長方形状の平角導 線を備える融着線 106がエッジワイズ卷で卷回されて形成された空芯コイル 101の 断面 αの例を、図 21に、断面が正方形状の真四角導線を備える融着線 107が整列 卷で卷回されて形成された空芯コイル 101の断面 aの例を示す。
[0007] 従来から、丸導線を備える融着線 102が整列卷で卷回されて形成された空芯コィ ル 101の場合、融着線 102同士の間に間隙 103が生じるため、この間隙 103の分だ け空芯コイル: L01の占積率が低くなるという問題点 (以下、第 1の問題点とする。)が 知られており、この場合の空芯コイル 101の実質的な占積率は、一般〖こ 80— 83%に しかならない。また、間隙 103の大きさにもばらつきがあるため、空芯コイル 101の X、 Y、 Ζのそれぞれの方向の寸法精度がばらつくという問題点(以下、第 2の問題点とす る。)が知られており、この場合の空芯コイル 101の寸法精度は、一般に ± 1. 0%以 上となってしまう。
[0008] そのため、融着線 102が整列卷で卷回されて形成された空芯コイル 101の実質的 な占積率を向上させ、また、高さ方向(Ζ方向)の寸法精度を向上させる方法として、 融着線 102を整列巻で空芯状に卷回した後、卷回したコイルの内周側および外周側 を拘束した状態で、丸導線に塑性変形が生じるまでコイルの高さ方向に加圧すること で、空芯コイルの占積率を高める方法が提案されている(たとえば、特許文献 1参照 。)。
[0009] また、融着線 102、 105、 106、 107 (以下、融着線 102等とする。 )が略矩形の空 芯状に卷回されて形成された空芯コイル 101のように、高さ方向(Ζ方向)から見て内 周側が直線状に形成された直線辺部 101a、 101b, 101c, 101dを備える空芯コィ ルでは、直線辺部 101a、 101b, 101c, 101dの長手方向(直線辺部 101a、 101b では X方向、直線辺部 101c、 101dでは Y方向)の中央部分で最大となる外側に向 力 膨らみが生じ、この膨らみによって空芯コイル 101の幅寸法 (X方向寸法あるいは Y方向寸法)がばらつくといった問題点 (以下、第 3の問題点とする。)も知られている 。たとえば、リニアモータのように、空芯コイル 101が並列で配置されて使用される場 合、この空芯コイル 101の幅寸法のばらつきによって空芯コイル 101間の間隔にばら つきが生じ、その結果、空芯コイル 101が用いられる装置の特性の低下を招く。特に 、直線辺部 101a、 101b, 101c, 101dに生じる膨らみは、空芯コイル 101の寸法が 大きくなると顕著に現れてくることが知られて 、る。
[0010] 特許文献 1 :特開昭 56— 161631号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、上述した第 1および第 2の問題点を解決する方法として提案されてい る特許文献 1に記載された方法では、導線に塑性変形が生じるまでコイルの高さ方 向に加圧するため、絶縁被膜に大きな力が加わって、絶縁被膜を損傷するといつた 問題を生じる。
[0012] また、上述した第 3の問題点を解決する方法として、融着線 102等を卷回する卷線 機において、融着線 102等にかける張力を大きくした状態で、融着線 102等を卷回 する方法が考えられる。しカゝしながら、この方法を採用しても、直線辺部 101a、 101b 、 101c, 101dの中央部分付近では、融着線 102等を幅方向(X方向および Y方向) へ押し付ける力は極めて小さいため、空芯コイル 101の直線辺部 101a、 101b, 101 c、 101dに生じる膨らみを若干抑制できる程度である。そのため、空芯コイル 101が 用いられる装置で必要とされる空芯コイル 101の幅方向の寸法精度が確保できない 。また、融着線 102等にかける張力を大きくするため、融着線 102等が有する導線が 伸びてその抵抗値が変化するという弊害を生じる。なお、融着線 102等にかける張力 を大きくした状態で、融着線 102等を卷回する場合には、空芯コイル 101の高さ方向 の寸法精度を向上させることは可能である。
[0013] また、上述した第 3の問題点を解決する方法としては、ローラ等を融着線 102等に 圧接させながら、融着線 102等を卷回する方法も考えられる。この方法によれば、上 述した方法よりも空芯コイル 101の直線辺部 101a、 101b, 101c, 101dに生じる膨 らみを抑えることはできる力 融着線 102等の導線径のばらつき等の影響で、直線辺 部 101a、 101b, 101c, lOldに生じる膨らみを十分に抑制できない。
[0014] そこで、本発明の課題は、融着線が整列卷で卷回されて形成された空芯コイルに おいて、融着線の絶縁被膜を損傷させることなく占積率を向上させることが可能な構 成を備えた空芯コイルおよび空芯コイルの製造方法を提供することにある。
[0015] また、本発明の他の課題は、空芯状に卷回されて形成された空芯コイルにおいて、 融着線の絶縁被膜を損傷させることなく寸法精度を向上させることが可能な構成を備 えた空芯コイルおよび空芯コイルの製造方法を提供することにある。
[0016] さらに、本発明の他の課題は、空芯状に卷回されて形成され、高さ方向から見て内 周側が直線状に形成された直線辺部を備える空芯コイルにぉ ヽて、空芯コイルの直 線辺部に生じる膨らみを十分に抑制し、直線辺部に必要とされる寸法を確保すること ができる構成を備えた空芯コイルおよび空芯コイルの製造方法を提供することにある 課題を解決するための手段
[0017] 上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する絶縁被膜と 、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が整列巻で空芯状に 卷回されて形成された空芯コイルにおいて、空芯コイルの高さ方向および高さ方向 に直交する方向の少なくともいずれか一方に、導線の弾性変形範囲内で加圧されて いるとともに、融着線が整列卷で卷回される際に融着線同士が交差するクロスポイン トは加圧されて 、な 、ことを特徴とする。
[0018] 本発明では、空芯コイルは、その高さ方向および高さ方向に直交する方向の少なく ともいずれか一方に加圧されている。そのため、加圧された部分では、融着被膜の厚 さが薄くなり、融着線同士の間に形成された間隙が小さくなる。したがって、加圧され た部分の占積率を向上させることができる。また、加圧力を調整することで、加圧方向 における間隙の大きさのばらつきを小さくすることができる。そのため、加圧部分では 、加圧方向の寸法精度を向上させることも可能となる。一方で、空芯コイルは導線の 弾性変形範囲内で加圧されているため、融着線の絶縁被膜の損傷を防止することが できる。また、融着線同士が交差するクロスポイントは加圧されていないため、加圧す ると応力集中が発生して絶縁被膜に損傷を生じやすいクロスポイントでの絶縁被膜 の損傷を防止することができる。
[0019] 本発明において、クロスポイントは周方向に分散されずに形成され、クロスポイント の全てが、周方向の特定部位となるクロスポイント形成部に形成されることが好ましい 。このように構成すると、加圧されないクロスポイントの全てが周方向の特定部位とな るクロスポイント形成部に集中して形成されるため、クロスポイント形成部以外は加圧 可能となり、加圧作業が容易になる。
[0020] 本発明において、空芯コイルは多角形状に形成され、空芯コイルの高さ方向から見 て内周側が直線状に形成された複数の直線辺部を備えるとともに、クロスポイント形 成部は、複数の直線辺部のうちの 1つの直線辺部であり、当該直線辺部は加圧され ず、他の直線辺部の少なくともいずれか 1つは、空芯コイルの高さ方向および高さ方 向に直交する幅方向の少なくとも 、ずれか一方に加圧されて!、ることが好まし!/、。
[0021] このように構成すると、融着線の絶縁被膜の損傷を防止しつつ、クロスポイント形成 部となる直線辺部を除く他の直線辺部の占積率を向上させることが可能となる。また 、クロスポイント形成部となる直線辺部を除く他の直線辺部の加圧方向における寸法 精度を向上させることも可能となる。さらに、クロスポイント形成部となる直線辺部を除 く他の直線辺部に生じる膨らみを十分に抑制し、必要とされる空芯コイルの幅寸法の 確保が可能となる。
[0022] 本発明において、空芯コイルは、該空芯コイルの高さ方向から見て内周側が直線 状に形成された複数の直線辺部と、内周側が円弧状に形成された複数の円弧部とを 備えるとともに、クロスポイント形成部は、複数の直線辺部のうちの 1つの直線辺部ま たは、複数の円弧部のうちの 1つの円弧部であり、当該直線辺部または、当該円弧 部は加圧されず、当該加圧されない直線辺部または円弧部を除く直線辺部および円 弧部の少なくともいずれか 1つは、空芯コイルの高さ方向および高さ方向に直交する 幅方向の少なくとも 、ずれか一方に加圧されて 、ることが好まし!/、。
[0023] このように構成すると、融着線の絶縁被膜の損傷を防止しつつ、クロスポイント形成 部となる直線辺部または円弧部を除く他の直線辺部および円弧部の占積率を向上さ せることが可能となる。また、クロスポイント形成部となる直線辺部または円弧部を除く 他の直線辺部および円弧部の加圧方向における寸法精度を向上させることも可能と なる。さらに、クロスポイント形成部となる直線辺部または円弧部を除く他の直線辺部 および円弧部に生じる膨らみを十分に抑制し、必要とされる空芯コイルの幅寸法の 確保が可能となる。
[0024] また、上述の課題を解決するため、本発明では、導線と、導線の周りを被覆する絶 縁被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が整列巻で 空芯状に卷回されて形成された空芯コイルにおいて、空芯コイルの少なくとも一部が その高さ方向および高さ方向に直交する方向の少なくともいずれか一方に、導線の 弾性変形範囲内で加圧されているとともに、この加圧部分の占積率が 84%以上 91 %未満であることを特徴とする。
[0025] 本発明では、空芯コイルの少なくとも一部は、その高さ方向および高さ方向に直交 する方向の少なくともいずれか一方に導線の弾性変形範囲内で加圧されている。そ のため、絶縁被膜を損傷させることなく加圧された部分の占積率を向上させることが できる。また、加圧部分の占積率は 84%以上であるから、従来の空芯コイルと比較し て占積率を向上させることができる。さらに、加圧部分の占積率が 91%未満であるか ら、加圧力との関係でより効率的に占積率を向上させることができる。
[0026] さらに、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する絶 縁被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が空芯状〖こ 卷回されて形成された空芯コイルにおいて、空芯コイルの少なくとも一部がその高さ 方向および高さ方向に直交する方向の少なくともいずれか一方に、導線の弾性変形 範囲内で加圧されているとともに、この加圧方向の寸法精度が ±0. 2%以下である ことを特徴とする。
[0027] 本発明では、空芯コイルの少なくとも一部は、その高さ方向および高さ方向に直交 する方向の少なくともいずれか一方に導線の弾性変形範囲内で加圧されている。そ のため、絶縁被膜を損傷させることなく加圧された方向の寸法精度を向上させること ができる。また、加圧方向の寸法精度は ±0. 2%以下であるから、従来の空芯コイル と比較して加圧方向で寸法精度を向上させることができる。
[0028] 本発明において、空芯コイルは整列卷で卷回されて形成されるとともに、整列巻で 卷回される際に融着線同士が交差するクロスポイントは加圧されず、クロスポイント〖こ おける空芯コイルの高さ方向および高さ方向に直交する方向の寸法精度が ±0. 2 %以上であることが好ましい。このように、クロスポイントにおける寸法精度を ±0. 2% 以上として、クロスポイントは加圧しないようにすると、加圧の際に絶縁被膜に損傷を 生じやす 、クロスポイントでの絶縁被膜の損傷を確実に防止することができる。また、 加圧されないクロスポイントを寸法精度が必要とされない部分に集中させれば、空芯 コイルとして必要な寸法精度は確保することができため、クロスポイント部分を加圧す る必要がなくなり、空芯コイルの製造が容易になる。
[0029] 本発明において、空芯コイルは多角形状に形成され、空芯コイルの高さ方向から見 て内周側が直線状に形成された複数の直線辺部を備えるとともに、この複数の直線 辺部のうち 1つの直線辺部にのみクロスポイントが形成され、このクロスポイントが形成 された直線辺部の高さ方向に直交する幅方向の寸法精度が ± 2%以上であることが 好ましい。このように、クロスポイントが形成された直線辺部の幅方向の寸法精度を士 2%以上とすると、空芯コイルの卷回作業がより容易になる。
[0030] さらにまた、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する 絶縁被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が略矩形 の空芯状に卷回されて形成された空芯コイルにおいて、空芯コイルの高さ方向から 見て内周側が直線状に形成された複数の直線辺部を備え、直線辺部の少なくとも 1 つは、空芯コイルの高さ方向と融着線の卷回方向とに直交する方向に導線の弾性変 形範囲内で加圧されているとともに、この加圧方向における直線辺部の外周側の膨 らみ率が 5. 0%以下であることを特徴とする。
[0031] ここで、本明細書において「直線辺部の外周側の膨らみ率」とは、直線辺部の長手 方向の中央部分における直線辺部の幅 W1と、直線辺部の両端部分における直線 辺部の幅 W2との相違を比率で表したものをいい、下式によって算出される。
膨らみ率 ={1 (W2ZW1)}X 100 (式 1)
[0032] 本発明では、空芯コイルの高さ方向から見て内周側が直線状に形成された複数の 直線辺部の少なくとも 1つ力 空芯コイルの高さ方向と融着線の卷回方向とに直交す る方向に加圧されており、この加圧方向における直線辺部の外周側の膨らみ率が 5. 0%以下となっている。すなわち、直線辺部の膨らみが生じる方向に加圧され、直線 辺部の外周側の膨らみ率が 5. 0%以下となっている。そのため、直線辺部に生じる 膨らみを抑制し、直線辺部で必要とされる高さ方向と融着線の卷回方向とに直交す る方向の寸法を確保することができる。また、直線辺部は、導線の弾性変形範囲内で 加圧されているため、絶縁被膜の損傷を防止することができる。
[0033] 本発明において、空芯コイルは多角形状に形成され、複数の直線辺部のうち少な くとも 、ずれか 1つは加圧されず、空芯コイルの高さ方向に直交する幅方向における 外周側の膨らみ率が 12. 5%以上となる直線辺部が存在することが好ましい。このよ うに構成すると、膨らみ率が 12. 5%以上となる直線辺部を加圧する必要がなくなり、 空芯コイルの製造が容易になる。
[0034] 本発明において、空芯コイルは、該空芯コイルの高さ方向力も見て内周側が円弧 状に形成された複数の円弧部を備え、複数の直線辺部および複数の円弧部のうち 少なくとも 、ずれか 1つは加圧されず、空芯コイルの高さ方向に直交する幅方向にお ける外周側の膨らみ率が 12. 5%以上となる直線辺部または円弧部が存在すること が好ましい。このように構成すると、膨らみ率が 12. 5%以上となる直線辺部または円 弧部を加圧する必要がなくなり、空芯コイルの製造が容易になる。
[0035] ここで、本明細書において「円弧部の外周側の膨らみ率」とは、円弧部の周方向の 中央部分における円弧部の幅 wrと、円弧部の周方向の両端部分における円弧部 の幅 との相違を比率で表したものを 、、下式によって算出される。
膨らみ率 ={1 (W2'Zwr) } X 100 (式 2)
[0036] 本発明において、空芯コイルは整列卷で卷回されて形成されるとともに、整列巻で 卷回される際に融着線同士が交差するクロスポイントが複数の直線辺部または複数 の円弧部のうちの 1つにのみ形成され、このクロスポイントが形成された直線辺部また は円弧部の外周側の前記幅方向の膨らみ率が 12. 5%以上であることが好ましい。 このように構成すると、クロスポイントが形成された直線辺部または円弧部を加圧する 必要がなくなり、加圧すると絶縁被膜に損傷を生じやすいクロスポイントでの絶縁被 膜の損傷を防止することができる。
[0037] 本発明にお ヽて、融着被膜を融着榭脂とし、熱変形した当該融着榭脂が融着線間 に充填されていることが好ましい。すなわち、融着線の卷回後に形成される融着線間 の間隙に、加熱時に融着被膜が熱変形した融着榭脂が充填されていることが好まし い。このように構成すると、間隙に充填される融着被膜の量だけ導線を被覆する融着 被膜が薄くなり、その結果、空芯コイルの占積率を高めることができる。また、融着被 膜の厚みのばらつき等、融着被膜に起因する空芯コイルの寸法のばらつきを抑制す ることができる。さらに、間隙に充填された融着榭脂によって融着線同士の接着強度 が増加し、空芯コイルの剛性も増加する。
[0038] また、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する絶縁 被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が整列巻で空 芯状に卷回されて形成された空芯コイルの製造方法にお!ヽて、融着線を空芯状に 卷回し、その後、空芯コイルの高さ方向および高さ方向に直交する方向の少なくとも いずれか一方に、導線の弾性変形範囲内で加圧するとともに、融着線が整列卷で卷 回される際に融着線同士が交差するクロスポイントに加圧しないことを特徴とする。
[0039] 本発明の製造方法では、空芯コイルの高さ方向および高さ方向に直交する方向の 少なくともいずれか一方に、導線の弾性変形範囲内で加圧するとともに、融着線が整 列卷で卷回される際に融着線同士が交差するクロスポイントに加圧しないため、絶縁 被膜を損傷することなぐ加圧部分の占積率を向上させ、また、加圧部分では加圧方 向に寸法精度を向上させた空芯コイルを製造することができる。
[0040] さらに、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する絶 縁被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が整列巻で 空芯状に卷回されて形成された空芯コイルの製造方法にお!ヽて、融着線を空芯状 に卷回し、その後、空芯コイルの少なくとも一部をその高さ方向および高さ方向に直 交する方向の少なくともいずれか一方に、導線の弾性変形範囲内で加圧するととも に、この加圧部分の占積率を 84%以上 91%未満とすることを特徴とする。
[0041] 本発明の製造方法では、空芯コイルの少なくとも一部を、その高さ方向および高さ 方向に直交する方向の少なくともいずれか一方に導線の弾性変形範囲内で加圧す るため、絶縁被膜を損傷させることなく加圧した部分の占積率を向上させることができ る。また、加圧部分の占積率は 84%以上であるから、従来の空芯コイルと比較して占 積率を向上させることができる。さらに、加圧部分の占積率が 91%未満であるから、 加圧力との関係でより効率的に占積率を向上させることができる。
[0042] さらにまた、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する 絶縁被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が空芯状 に卷回されて形成された空芯コイルの製造方法にお!、て、融着線を空芯状に卷回し 、その後、空芯コイルの少なくとも一部をその高さ方向および高さ方向に直交する方 向の少なくともいずれか一方に、導線の弾性変形範囲内で加圧するとともに、この加 圧方向の寸法精度を ±0. 2%以下とすることを特徴とする。
[0043] 本発明の製造方法では、空芯コイルの少なくとも一部を、その高さ方向および高さ 方向に直交する方向の少なくともいずれか一方に導線の弾性変形範囲内で加圧す るため、絶縁被膜を損傷させることなく加圧した方向の寸法精度を向上させることが できる。また、加圧方向の寸法精度は ±0. 2%以下であるから、従来の空芯コイルと 比較して加圧方向で寸法精度を向上させることができる。
[0044] また、上記の課題を解決するため、本発明は、導線と、導線の周りを被覆する絶縁 被膜と、絶縁被膜の周りをさらに被覆する融着被膜とを備える融着線が空芯状に卷 回されて形成された空芯コイルの製造方法において、空芯コイルの高さ方向力 見 て内周側が直線状に形成された複数の直線辺部を備えるように融着線を空芯状に 卷回し、その後、上記直線辺部の少なくとも 1つを、上記空芯コイルの高さ方向と上 記融着線の卷回方向とに直交する方向に上記導線の弾性変形範囲内で加圧すると ともに、この加圧方向における上記直線辺部の外周側の膨らみ率を 5. 0%以下とす ることを特徴とする。
[0045] 本発明の製造方法では、空芯コイルの高さ方向力 見て内周側が直線状に形成さ れた複数の直線辺部の少なくとも 1つを、空芯コイルの高さ方向と融着線の卷回方向 とに直交する方向に加圧しており、この加圧方向における直線辺部の外周側の膨ら み率を 5. 0%以下としている。そのため、直線辺部に生じる膨らみを抑制し、直線辺 部で必要とされる高さ方向と融着線の卷回方向とに直交する方向の寸法を確保する ことができる。また、直線辺部は、導線の弾性変形範囲内で加圧されているため、絶 縁被膜の損傷を防止することができる。
[0046] 本発明における空芯コイルの製造方法では、融着線の卷回後に、当該卷回された 融着線を加熱することが好ましい。また、卷回された融着線は、導線への通電、加熱 した金型への装着、赤外線照射および熱風送風の少なくともいずれか 1つの加熱方 法で加熱することができる。このように構成すると、加熱によって加圧時の加圧力を下 げることができ容易に空芯コイルを加圧することができる。また、加圧力を下げること ができるので、加圧時における絶縁被膜の損傷を確実に防止することができる。さら に、加圧前に加熱をすると、融着被膜が融解しやすくなるため、より効果的に占積率 を向上させることができ、また、寸法精度を確保することができる。また、より効果的に 膨らみ率を抑制することができる。
発明の効果
[0047] 以上のように、本発明では、融着線が整列卷で卷回されて形成された空芯コイルの 占積率を、融着線の絶縁被膜を損傷させることなく向上させることができる。また、本 発明では、空芯状に卷回されて形成された空芯コイルの寸法精度を、融着線の絶縁 被膜を損傷させることなく向上させることができる。さらに、本発明では、空芯状に卷 回された形成され、高さ方向から見て内周側が直線状に形成された直線辺部を備え る空芯コイルの直線辺部に生じる膨らみを十分に抑制し、直線辺部に必要とされる 寸法を確保することができる。
図面の簡単な説明
[0048] [図 1]本発明の実施の形態 1にかかる空芯コイルを示し、(A)は平面図、(B)は側面 図である。
[図 2]図 1に示す空芯コイルの底面図で、クロスポイントが形成される直線辺部の一部 を拡大して示す拡大図である。
[図 3]融着線の断面を示す断面図である。
[図 4]図 1に示す空芯コイルの断面 E— Eの一部分で加圧前の状態を拡大して示す部 分拡大断面図である。
[図 5]図 1に示す空芯コイルの断面 F— Fの一部分で加圧前の状態を拡大して示す部 分拡大断面図である。
[図 6]図 1に示す空芯コイルを加熱後に加圧した後の断面 F— Fの一部分を拡大して 示す部分拡大断面図である。 [図 7]図 1に示す空芯コイルを加熱せずに加圧した後の断面 F— Fの一部分を拡大し て示す部分拡大断面図である。
圆 8]実施の形態 1にかかる空芯コイルにおける加圧力と占積率との関係を示すダラ フである。
[図 9]実施の形態 1にかかる空芯コイルの直線辺部における加圧前後の寸法のばら つきを示すグラフであり、(A)は高さ方向に寸法のばらつきを示し、(B)は幅方向の 寸法のばらつきを示す。
[図 10]実施の形態 1にかかる空芯コイルの直線辺部の中央部分における加圧前後の 幅寸法のばらつきを示すグラフである。
圆 11]本発明の実施の形態 2にかかる空芯コイルを示す斜視図である。
[図 12]図 11に示す空芯コイルの平面図である。
[図 13]図 12に示す空芯コイルの断面 e— eの一部分で加圧前の状態を拡大して示す 部分拡大断面図である。
[図 14]図 12に示す空芯コイルの断面 f fの一部分で加圧前の状態を拡大して示す 部分拡大断面図である。
[図 15]図 12に示す空芯コイルを加熱後に加圧した後の断面 f fの一部分を拡大して 示す部分拡大断面図である。
[図 16]図 12に示す空芯コイルを加熱せずに加圧した後の断面 f-fの一部分を拡大し て示す部分拡大断面図である。
圆 17]従来技術に力かる空芯コイルを示す斜視図である。
[図 18]従来技術に力かる空芯コイルの断面の一例を示す部分断面図である。
[図 19]従来技術に力かる空芯コイルの断面の一例を示す部分断面図である。
[図 20]従来技術に力かる空芯コイルの断面の一例を示す部分断面図である。
[図 21]従来技術に力かる空芯コイルの断面の一例を示す部分断面図である。
符号の説明
1、 21 空芯コイル
2、 22 融着線
2a 丸導線(導線) 22a 平角導線 (導線)
2b, 22b 絶縁被膜
2c, 22c 融着被膜
3、 4、 5、 23、 24 直線辺部
6 直線辺部(クロスポイント形成部)
7 クロスポイント
10、 30 融着榭脂
X、Y 幅方向
ζ 高さ方向
発明を実施するための最良の形態
[0050] 以下、本発明を実施するための最良の形態を図面に基づいて説明する。
[0051] [実施の形態 1]
図 1は、本発明の実施の形態 1にかかる空芯コイル 1を示し、(Α)は平面図、(Β)は 側面図である。図 2は、図 1に示す空芯コイル 1の底面図で、クロスポイント 7が形成さ れる直線辺部 6の一部を拡大して示す拡大図である。図 3は、融着線 2の断面を示す 断面図である。図 4は、図 1に示す空芯コイル 1の断面 Ε— Εの一部分で加圧前の状 態を拡大して示す部分拡大断面図である。図 5は、図 1に示す空芯コイル 1の断面 F Fの一部分で加圧前の状態を拡大して示す部分拡大断面図である。図 6は、図 1に 示す空芯コイル 1を加熱後に加圧した後の断面 F— Fの一部分を拡大して示す部分 拡大断面図である。図 7は、図 1に示す空芯コイル 1を加熱せずに加圧した後の断面 F - Fの一部分を拡大して示す部分拡大断面図である。
[0052] (空芯コイルの構成)
本形態の空芯コイル 1は、リニアモータ等の各種モータなどに用いられるものであり 、図 3に示すように、断面が円形状の丸導線 2aと、丸導線 2aの周りを被覆する絶縁 被膜 2bと、絶縁被膜 2bの周りをさらに被覆する融着被膜 2cとを備える融着線 2が、 図 4に示すように、整列卷で卷回されて形成されている。より具体的には、図 1 (A)に 示すように、空芯コイル 1は、コイル一端 laからコイル他端 lbまで順次卷回された略 矩形の空芯状に形成されており、図 1 (A)の紙面垂直方向から見て内周側が直線状 に形成された 4つの直線辺部 3、 4、 5、 6を備えている。
[0053] 直線辺部 3、 4は、図 1 (A)に示すように、図示上下方向を長手方向として、すなわ ち、図示上下方向を融着線 2の卷回方向として、融着線 2が卷回されて形成されてお り、直線辺部 3、 4は互いに相対向している。また、直線部 5、 6は図示左右方向を長 手方向として、すなわち、図示左右方向を融着線 2の卷回方向として、融着線 2が卷 回されて形成されており、直線辺部 5、 6は互いに相対向している。本形態では、直 線辺部 3、 4の長手方向の長さは、直線辺部 5、 6の長手方向の長さよりも長く形成さ れているが、直線辺部 5、 6の長手方向の長さは、直線辺部 3、 4の長手方向の長さよ りも長く形成されて 、ても良 、。
[0054] なお、以下の説明では、直線辺部 3、 4の長手方向を X方向、直線辺部 5、 6の長手 方向を Y方向と、融着線 2の卷回方向に直交する空芯コイル 1の厚み方向(図 1 (A) の紙面垂直方向)を Z方向(高さ方向)とする。したがって、空芯コイル 1の高さ方向(Z 方向)に直交する X方向および Y方向はそれぞれ空芯コイル 1の幅方向となる。
[0055] 本形態の空芯コイル 1では、図 2に示すように、融着線 2が整列卷で卷回される際に 、融着線 2同士が交差するクロスポイント 7が 1つの直線辺部 6のみに集中して形成さ れるように、融着線 2が卷回されている。すなわち、図 4等に示すように、直線辺部 3、 4、 5にはクロスポイント 7が形成されないように、融着線 2が卷回されており、本形態で は直線辺部 6はクロスポイント 7の全てが形成されるクロスポイント形成部となっている 。なお、本形態の空芯コイル 1は、クロスポイント 7を有する直線辺部 6が形成される X 方向では、寸法精度が要求されな 、用途に用いられて 、る。
[0056] ここで、図 4に示すように、融着線 2の整列卷では、まず、融着線 2が Z1方向へ順次 卷回されて第 1層が形成され、その後、融着線 2が Z2方向へ順次卷回されて第 2層 が形成される。また、その後、融着線 2が Z1方向へ順次卷回されて第 3層が形成され 、以下、同様に、第 4層、第 5層、第 6層が形成される。そして、ある層(n層とする。)か ら次の層(n+ 1層とする。)へ至るときには、 n層から n+ 1層へ渡る部分で融着線 2同 士が交差し、その後の卷回作業では、周方向における同じ部位で、 n+ 1層を形成す る融着線 2は、 n層を形成する融着線 2と交差する。この交差する部分がクロスポイン ト 7となり、このクロスポイント 7は、融着線 2を卷回する際、 1周ごとに形成される。この ように、整列巻が行われると外観上、クロスポイント 7は、空芯コイル 1の Z方向の両面 に表れる。
[0057] また、本形態の空芯コイル 1では、融着線 2が略矩形の空芯状に卷回された後、加 熱され、その後、直線辺部 3、 4の外周側が、図 1 (A)の矢印 Gで示すように、空芯コ ィル 1の内側に向かって Y方向に加圧されている。また、空芯コイル 1では、加熱後に 、直線辺部 3、 4、 5が、図 1 (B)の矢印 Hで示すように、 Z方向に加圧されている。空 芯コイル 1の製造方法については後に詳述する。
[0058] 本形態の融着線 2は、直径が 0. 05mm— lmmの丸導線 2aが用いられており、そ の伸び率は 30— 40%となっている。この伸び率が 30— 40%である融着線 2を用い ることで、直線辺部 3、 4等の占積率を向上させたり、寸法精度を向上させる等の後述 の効果がより容易に得られるようになつている。なお、このような効果を得るためには、 伸び率は 36%— 40%の範囲であることがより好ましい。ここで、伸び率とは、長手方 向に負荷をかけな 、状態での融着線 2の長さを Ll、長手方向に負荷をかけて融着 線 2を伸ばして 、き、融着線 2が切断される直前の長さを L2としたとき以下の式によつ て算出される。
伸び率 = (L2— LD ZL1 X 100 (式 3)
この伸び率は、融着線 2の硬さの代用特性となっており、本形態では比較的柔らかい 融着線 2が用いられている。
[0059] (空芯コイルの製造方法)
以上のように構成された空芯コイル 1の製造方法を以下に説明する。
[0060] まず、融着線 2を卷線機に装着し、整列巻で矩形の空芯状に卷回する (卷回ステツ プ)。この卷回の際には、融着線 2を制御された所定の温度で加熱する。この卷回ス テツプにおいて、直線辺部 3、 4、 5、 6の内周側は直線状に形成される。
[0061] 融着線 2の卷回が終了した後の直線辺部 3の一端部分の断面 E— Eの一部分は、 図 4に示すような状態となっている。すなわち、丸導線 2aが絶縁被膜 2bおよび融着 被膜 2cに被覆された状態で、融着線 2が卷回され、融着線 2同士の間には、間隙 8 が形成されている。また、直線辺部 3の他端部分および直線辺部 4の両端部分も断 面 E— Eと同様の状態となっている。なお、図 4では、便宜上、一部の融着線 2や一部 の間隙 8につ 、てのみ符号を付して 、る。
[0062] 融着線 2の卷回が終了した後の直線辺部 3の中央部分の断面 F— Fの一部分は、図 5に示すような状態となっている。すなわち、丸導線 2aが絶縁被膜 2bおよび融着被 膜 2cに被覆された状態で、融着線 2が卷回され、融着線 2同士の間には、間隙 8の 他に間隙 9も形成されている。この間隙 9は、断面 E— Eに形成された間隙 8よりも大き くなつている。これは、融着線 2を卷回する際には、直線辺部 3の両端部分から中央 部分に向力うにしたがって、空芯コイル 1の内側に向かって Y方向へ融着線 2を押し 付ける力がしだいに小さくなることに起因している。また、直線辺部 4の中央部分も断 面 F— Fと同様の状態となっている。そのため、融着線 2の卷回が終了した状態では、 図 1 (A)の二点鎖線 Iで示すように、直線辺部 3、 4の外周側には、 X方向の中央部分 で最大となる Y方向外側に向力う膨らみが生じている。なお、図 5では、便宜上、一部 の融着線 2や一部の間隙 9についてのみ符号を付している。また、二点鎖線 Iで示す 状態は説明の都合上、分力りやすくするため、実際より大きな膨らみとしている。
[0063] また、融着線 2の卷回が終了した後の直線辺部 5の両端部分の状態は、断面 E— E とほぼ同様の状態となっている。また、直線辺部 5の中央部分の状態は断面 E— Eと 断面 F— Fとの中間の状態となっている。すなわち、本形態では、直線辺部 5は、直線 辺部 3、 4に比べ、長手方向の長さが短くなつているため、直線辺部 5の中央部分に 形成される間隙は間隙 9よりも小さぐその結果、 X方向外側に向カゝつて直線辺部 5に 生じる膨らみは、直線辺部 3、 4に比べて小さくなつている(図 1の実線状態を参照)。 なお、直線辺部 6には複数のクロスポイント 7が形成され、かつ、加圧されないため、 図 1 (A)に示すように、直線辺部 6は外側に大きく膨らんだ状態となっている。
[0064] その後、卷回が終了した融着線 2を加熱する (加熱ステップ)。より具体的には、丸 導線 2aへの通電、加熱した金型への装着、赤外線照射あるいは熱風送風の加熱方 法のうちの 1つの方法で、あるいは、複数の加熱方向を組み合わせて融着線 2が 60 °Cから 230°Cとなるように加熱する。なお、融着線 2への加熱は、卷回ステップにおけ る温度を制御することで、卷回ステップで行うことも可能である。融着線 2への加熱が 終了すると、直線辺部 3、 4の外周側を図 1 (A)の矢印 Gの方向に加圧する (加圧ステ ップ)。また、直線辺部 3、 4、 5を図 1 (B)の矢印 Hの Z方向に加圧する (加圧ステップ )。より具体的には、空芯コイル 1の内周側に加圧治具を挿通させた状態で、別の加 圧治具を用いて矢印 Gおよび矢印 Hの方向へ、 2— 13メガパスカル (MPa)の加圧 力で加圧する。たとえば、矢印 Hの方向へは、図 1 (B)における右端面あるいは左端 面のいずれか一方の面を固定して、他方の面を可動するプレス装置が加圧する。ま た、矢印 Hの方向へは、両方の面を可動するプレス装置で加圧することもできる。ここ で、この加圧力は、丸導線 2aを塑性変形させない力であり、丸導線 2aの弾性変形範 囲内で空芯コイル 1の加圧が行われる。この加圧によって、空芯コイル 1は、図 1の二 点鎖線 Iで示す状態から図 1の実線で示す状態へと移行する。なお、丸導線 2aを塑 性変形させない力には、全く塑性変形させない力の他、ほんのわずかに塑性変形さ せる力を含むものとし、上述した特許文献 1のように、大きく塑性変形させる力は含ま ないことをいう。
[0065] 加圧後の直線辺部 3の中央部分の断面 F— Fの一部分は、図 6に示すような状態と なっている。すなわち、丸導線 2aは絶縁被膜 2bに被覆された状態である力 融着被 膜 2cの一部は熱変形して融着榭脂 10となって、この融着榭脂 10が融着線 2同士の 間に充填されている。すなわち、加圧前に絶縁被膜 2bを被覆していた融着被膜 2c の一部が加熱によって融解して融着榭脂 10となり、加圧前に形成されていた間隙 8、 9に流れ込み、この融着榭脂 10がほぼ全ての融着線 2同士の間に充填されており、 間隙 8、 9がほとんど存在しない状態になっている。この状態では、絶縁被膜 2bに被 覆された丸導線 2a同士が絶縁被膜 2bと非常に薄い融着被膜 2cとを介して、あるい は絶縁被膜 2bのみを介して密着している。なお、直線辺部 3および直線辺部 4の任 意の断面が図 6に示す状態と同様の状態となっている。また、 G方向への加圧によつ て、直線辺部 3、 4の外周側は図 1 (A)の実線で示すように直線状態に近い状態とな つており、加圧前に形成されていた膨らみはほとんど見られなくなつている。
[0066] また、直線辺部 5は、 H方向へのみ加圧されるため、一部に融着榭脂 10が充填さ れない間隙 8、 9が存在するものの、融着被膜 2cが加熱によって融解して融解榭脂 1 0となり、加圧前に形成されていた多くの間隙 8、 9に流れ込んでいる。
[0067] 以上、卷回ステップで融着線 2を整列卷で卷回した後、加熱ステップで加熱して、 その後、加圧ステップで加圧して空芯コイル 1を形成する製造方法を説明したが、融 着線 2を卷回した後、加熱せずに加圧して空芯コイル 1を形成しても良い。その場合 、加圧後の直線辺部 3の中央部分の断面 F— Fの一部分は、図 7に示すような状態と なっている。すなわち、丸導線 2aは絶縁被膜 2bに被覆された状態である力 被覆さ れた融着被膜 2cの一部が、加圧による熱の影響で融解して融着榭脂 10となり、加圧 前に形成されていた間隙 8、 9に流れ込んでいる。ここで、加熱せずに加圧して空芯 コイル 1を形成した場合には、融着被膜 2cが融解しにくいため、断面 F-Fには、図 7 に示すように、一部に融着榭脂 10が充填されな 、未充填部 11を有する状態となって いる。なお、加熱せずに加圧した場合、直線辺部 3および直線辺部 4の任意の断面 が図 7に示す状態と同様の状態、すなわち、未充填部 11を有する状態となっている。 また、 G方向への加圧によって、直線辺部 3、 4の外周側は図 1 (A)の実線で示すよう に直線状態に近い状態となっており、加圧前に形成されていた膨らみはほとんど見ら れなくなっている。
[0068] また、直線辺部 5でも、融着被膜 2cの一部が、加圧による熱の影響で融解して融着 榭脂 10となり、加圧前に形成されていた間隙 8、 9に流れ込んでいる力 H方向への み加圧されるため、融着榭脂 10が充填されない未充填部 11が直線辺部 3、 4よりも 多く存在する状態となっている
[0069] (実施の形態 1の主な効果)
以上説明したように、本形態の空芯コイル 1では、融着線 2が略矩形の空芯状に卷 回された後、加熱された状態あるいは加熱されない状態で、直線辺部 3、 4の外周側 が図 1 (A)の矢印 Gで示すように、空芯コイル 1の内側に向力つて Y方向に加圧され ている。また直線辺部 3、 4、 5は、図 1 (B)の矢印 Hで示すように、 Z方向に加圧され ている。そのため、加圧前に絶縁被膜 2bを被覆していた融着被膜 2cの少なくとも一 部は、加圧による熱の影響で融解して融着榭脂 10となり、加圧前に形成されていた 間隙 8、 9に流れ込む。そのため、直線辺部 3、 4、 5では、融着被膜 2cの厚さが薄く なり、融着線 2同士の間に形成される間隙 8、 9が小さくなる。したがって、直線辺部 3 、 4、 5の占積率を向上させることができる。
[0070] また、所定の加圧力を加えることで、加圧方向における間隙 8、 9の大きさのばらつ きを小さくすることできる。そのため、直線辺部 3、 4、 5では、加圧方向の寸法を加圧 治具の寸法に基づいた寸法とすることができ、加圧方向の寸法精度を向上させること も可能となる。すなわち、直線辺部 3、 4では、 Y方向および Z方向の寸法精度を向上 させることができ、直線辺部 5では、 Z方向の寸法精度を向上させることができる。さら に、加圧前に直線辺部 3、 4に形成されていた膨らみを十分に抑制することができる。 その結果、 Y方向における空芯コイル 1の幅寸法の精度を上げることができる。
[0071] 特に本形態では、直線辺部 3、 4、 5にはクロスポイント 7が形成されていないため、 加圧時に卷回された融着線 2には、均等に圧力がかかる。したがって、上述した効果 をより、容易にかつ効率的に得ることができる。
[0072] 一方で、空芯コイル 1は導線の弾性変形範囲内で加圧されて!ヽるため、融着線 2の 絶縁被膜 2bの損傷を防止することができる。また、クロスポイント 7が形成される直線 辺部 6は加圧されて 、な 、ため、加圧すると絶縁被膜 2bに損傷を生じやす 、クロス ポイント 7での絶縁被膜 2bの損傷を防止することができる。ここで、本形態では、クロ スポイント 7の全てがクロスポイント形成部となる直線辺部 6に形成されている。そのた め、周方向の特定部位となる直線辺部 6を除いた直線辺部 3、 4、 5は少なくとも Z方 向には加圧可能となる。したがって、加圧作業時には、直線辺部 6を考慮して加圧作 業を行えば良くなり、加圧作業が容易になる。
[0073] 本形態では、空芯コイル 1の製造方法の 1つとして、融着線 2を空芯状に卷回する 卷回ステップの後に、加熱ステップで加熱してから加圧ステップで加圧する製造方法 を採用している。この製造方法を採用する場合には、加熱によって、融着線 2の硬度 が下がるため、加圧時の加圧力を下げることができ容易に空芯コイル 1を加圧するこ とができる。また、加圧力を下げることができるので、加圧時における絶縁被膜 2bの 損傷を確実に防止することができる。
[0074] また、卷回ステップの後、加熱ステップで加熱して加圧ステップで加圧する製造方 法を採用した場合には、融着被膜 2cが加熱によって融解して形成された融着榭脂 1 0がほぼ全ての融着線 2間に充填されており、間隙 8、 9がほとんど存在しない状態に なっている。そのため、より多くの融着被膜 2cが融解して間隙 8、 9に流れ込むことに なり、より効果的に直線辺部 3、 4、 5の占積率を高めることができる。また、融着被膜 2 cの厚みのばらつき等、融着被膜 2cに起因する直線辺部 3、 4、 5の寸法のばらつき をより効果的に抑制することができる。さらに、間隙 8、 9に充填された融着榭脂 10に よって融着線 2同士の接着強度が増加し、直線辺部 3、 4、 5の剛性も増加する。
[0075] 上述した本形態の主な効果のうち、直線辺部 3、 4、 5の占積率を高めることできると いう効果、直線辺部 3、 4、 5の寸法のばらつきを抑制することができるという効果およ び加圧前に直線辺部 3、 4に形成されていた膨らみを十分に抑制することができると V、う効果につ!、てさらに詳述する。
[0076] まず、直線辺部 3、 4、 5の占積率を高めることできると!、う効果を実験データに基づ いて詳述する。線径 0. 35mmの融着線 2を卷線機に装着し、融着線 2を所定の温度 で加熱しながら、 Z方向(高さ方向)へ 20段、高さ方向に直交する方向(直線辺部 3、 4では Y方向、直線辺部 5、 6では X方向)へ 22列(22層)の整列巻で矩形状に卷回 した。この際には、卷回後の空芯コイル 1の X方向寸法、 Y方向寸法、 Z方向寸法の それぞれの目標値を 44. 05mm, 23. 26mm, 8. 36mmとして融着線 2を卷回した 。卷回が終了したときの直線辺部 3、 4の占積率は 83%であった。その後、卷回され た融着線 2を約 190°Cで加熱し、加熱後、空芯コイル 1の内周側に加圧治具を揷通 させた状態で、直線辺部 3、 4を矢印 Gの方向および矢印 Hの方向へ 2— 13MPaで 加圧した。その結果を図 8に示す。
[0077] 図 8は、横軸を加圧力(MPa、図中では押し圧力と表記)、縦軸を占積率(%)として 、加圧力と占積率との関係を示している。図 8のデータ S1に示すように、加圧カを大 きくすると占積率を 84%以上とすることができ、従来の空芯コイルと比べ、占積率を 高めることができる。一方、間隙 8、 9に融着榭脂 10が充填され、間隙 8、 9が減少し てくると加圧力を大きくしても占積率はそれほど大きくならない。すなわち、データ S1 に示すように、占積率を 91%以上にしょうとすると強大な加圧力を必要とし、製造上、 非常に困難になる。また、多くの製造時間が必要になる。したがって、加圧力との関 係を考慮すると占積率が 91%未満である場合に、より効率的に空芯コイルの占積率 を向上させることができる。なお、本出願人は、 96%という占積率の空芯コイルの製 造に成功しており、 91%以上の占積率を有する空芯コイルを作成することは可能で ある。
[0078] また、図 8のデータ S2には、加圧前に加熱を行わず、他の条件は上記と同様とした 場合の加圧力と占積率との関係を示している。この場合であっても、加圧力を大きく すると占積率を 84%以上とすることができ、従来の空芯コイルと比べ、占積率を高め ることができる。一方、加熱をしない場合には、間隙 8、 9に融着榭脂 10が充填されに くいため、加圧力を大きくしても占積率はそれほど大きくならない。すなわち、データ S2に示すように、占積率を 87%以上にしょうとすると強大な加圧力を必要とし、製造 上、非常に困難になる。また、多くの製造時間が必要になる。したがって、加圧前に 加熱をした方がより効果的に占積率を高めることができる。また、加熱をしないときは 、加圧力との関係を考慮すると占積率が 87%未満である場合に、より効率的に空芯 コイルの占積率を向上させることができる。
[0079] 以上のように、卷回後の空芯コイル 1を加圧して、占積率を 84%以上 91%未満と すると、同一の外形を有する従来の空芯コイルと比較して、起磁力を 1一 8%向上さ せることができ、また、インダクタンスを 2— 20%向上させることができる。また、占積 率を向上させることができるため、コイル断面が同一である場合には、従来の空芯コ ィルに比べ丸導線 2a等の導線の径を大きくすることができ、その結果、空芯コイル 1 の抵抗値を下げることができる。
[0080] 次に、直線辺部 3、 4、 5の寸法のばらつきを抑制することができるという効果を実験 データに基づいて詳述する。線径 0. 3mmの融着線 2を卷線機に装着し、融着線 2 を所定の温度で加熱しながら、 Z方向(高さ方向)へ 24段、高さ方向に直交する方向 (直線辺部 3、 4では Y方向、直線辺部 5、 6では X方向)へ 25列(25層)の整列巻で 矩形状に卷回した。この際には、卷回後の空芯コイル 1の X方向寸法、 Y方向寸法、 Z方向寸法のそれぞれの目標値を 48. 7mm、 24. Omm、 7. 75mmとして融着線 2 を卷回した。その後、卷回された融着線 2を約 190°Cで加熱し、加熱後、空芯コイル 1 の内周側に加圧治具を挿通させた状態で、直線辺部 3、 4を矢印 Gの方向および矢 印 Hの方向へ 3. 8MPaで加圧した。その結果を図 9に示す。
[0081] 図 9は、横軸を試料数、縦軸を寸法 (mm)として、加圧前後における直線辺部 3、 4 の中央部分における寸法のばらつきを示しており、 (A)は、 Y方向(図中ではタテ方 向と表記)の寸法のばらつきを、(B)は、 Z方向(図中ではョコ方向と表記)の寸法の ばらつきを示している。図 9の横軸に示すように、実験では 22個の試料を使用した。 [0082] 図 9 (A)のデータ S3に示す加圧前の状態では、直線辺部 3、 4の中央部分におけ る Y方向の寸法の平均値は 23. 885mm、寸法のばらつきは、 + 1. 11一一 0. 45% であった。これに対し、図 9 (A)のデータ S4に示す加圧後の状態では、直線辺部 3、 4の中央部分における Y方向の寸法の平均値は 23. 535mm,寸法のばらつきは、 + 0. 06一一 0. 06%であり、寸法のばらつきを大幅に低減させることができる。
[0083] また、図 9 (B)のデータ S5に示す加圧前の状態では、直線辺部 3、 4の中央部分に おける Z方向の寸法の平均値は 7. 688mm,寸法のばらつきは、 +0. 67一一 0. 50 %であった。これに対し、図 9 (B)のデータ S6に示す加圧後の状態では、直線辺部 3 、 4の中央部分における Z方向の寸法の平均値は 7. 551mm,寸法のばらつきは、 + 0. 12一一 0. 14%であり、寸法のばらつきを大幅に低減させることができる。
[0084] このように、直線辺部 3、 4では、加圧の方向である Y方向および Z方向の寸法精度 を ±0. 2%以下とでき、従来に比べ大幅に向上させることができる。また、上記の実 験データからわかるように、直線辺部 3、 4の断面積は 3. 3%減少しており、占積率が 向上していることもわ力る。
[0085] 一方、加圧前に加熱を行わずに、加圧力を 7. OMPaとし、その他の条件を上記と 同様とした場合には、加圧前の直線辺部 3、 4の Y方向の寸法の平均値は 23. 889 mm、寸法のばらつきは、 + 1. 09一一 0. 79%であり、加圧後の直線辺部 3、 4の Y 方向に寸法の平均値は 23. 536mm、寸法のばらつきは、 +0. 14—一 0. 15%であ つた。また、加圧前の直線辺部 3、 4の Z方向の寸法の平均値は 7. 687mm,寸法の ばらつきは、 +0. 69一一 0. 48%であり、加圧後の直線辺部 3、 4の Z方向の寸法の 平均値は 7. 551mm,寸法のばらつきは、 +0. 31一— 0. 35%であった。このように 、加圧前に加熱を行わない場合であっても、寸法精度を向上させることができる。
[0086] 以上の結果を以下の表 1にまとめる。なお、表 1では Y方向をタテ方向と表記し、 Z 方向をョコ方向と表記して!/、る。
[表 1] (表押し圧前後の寸法バラツキ)
(試料: 22個)
Figure imgf000025_0001
[0087] 以上のように、卷回後の空芯コイル 1を加圧して、寸法精度を向上させることができ るため、寸法精度が要求される用途に空芯コイル 1を用いることができる。また、空芯 コイル 1では、間隙 8、 9に融着榭脂 10が充填されているため、空芯コイル 1をインサ ート成型に用いる場合であっても、間隙 8、 9に起因する発生ガスが少なぐ成型時の ガス抜きが容易になる。
[0088] なお、直線辺部 6の X方向および Z方向の寸法精度は ±0. 2%以上となっている。
特に、本形態の空芯コイル 1は、クロスポイント 7を有する直線辺部 6が形成される X 方向では、寸法精度が要求されない用途に用いられているため、 X方向の寸法精度 を ± 2%以上とすることができる。そのため、直線辺部 6を加圧する必要はなぐ加圧 すると絶縁被膜 2bに損傷を生じやすいクロスポイント 7での絶縁被膜 2bの損傷を確 実に防止することができる。また、クロスポイント 7が形成された直線辺部 6の X方向の 寸法精度が要求されな 、ため、融着線 2の卷回作業が容易になる。
[0089] 続、て、加圧前に直線辺部 3、 4に形成されて 、た膨らみを十分に抑制することが できるという効果を実験データに基づいて詳述する。線径 0. 35mmの融着線 2を 10 X 50mmの卷線機に装着し、融着線 2を所定の温度で加熱しながら、 Z方向(高さ方 向)へ 27段、高さ方向に直交する方向(直線辺部 3、 4では Y方向、直線辺部 5、 6で は X方向)へ 22列(22層)で 590ターンの整列巻によって矩形状に卷回した。卷回後 の空芯コイル 1の γ方向寸法は 23. 5mm, X方向寸法は 65mmであった。その後、 卷回された融着線 2を約 190°Cで加熱し、加熱後、空芯コイル 1の内周側に加圧治 具を揷通させた状態で、直線辺部 3、 4を矢印 Gの方向および矢印 Hの方向へ 5. 0 MPaで加圧した。なお、実験に 20個の試料を使用した。
[0090] 実験の結果、加圧前の状態では、図 1に示す直線辺部 3、 4の両端部分の Y方向の 幅寸法 W2の平均値は 6. 77mm,直線辺部 3、 4の中央部分の Y方向の幅寸法 W1 の平均値は 6. 97mmであった。したがって、上述した式 1から求められる平均値の膨 らみ率は 2. 9°/0であった。また、 20個の試料の中では膨らみ率の最大値は 5. 1%で あった。これに対し、加圧後の状態では、幅寸法 W2の平均値は 6. 74mm、幅寸法 W1の平均値は 6. 76mmであり、平均値の膨らみ率は 0. 3%であった。また、 20個 の試料の中では膨らみ率の最大値は 0· 9%であった。このように、加圧によって直線 辺部 3、 4の膨らみを大幅に抑制することができる。具体的には、膨らみ率を 1. 0%以 下とすることができる。
[0091] —方、加圧前に加熱を行わず、他の条件を上記と同様とした場合には、加圧前の 幅寸法 W2の平均値は 6. 78mm,幅寸法 W1の平均値は 6. 97mmであり、 均値 の膨らみ率は 2. 7%であった。また、 20個の試料の中では膨らみ率の最大値 fま 5. 1 %であった。これに対し、加圧後の幅寸法 W2の平均値は 6. 77mm,幅寸法 W1の 平均値は 6. 80mmであり、平均値の膨らみ率は 0. 4%であった。また、 20個の試料 の中では膨らみ率の最大値は 1. 5%であった。このように、加圧前に力卩熱を行わな い場合であっても、加圧によって直線辺部 3、 4の膨らみを大幅に抑制することができ る。具体的には、膨らみ率を 2. 0%以下にすることができる。
[0092] 以上の結果を以下の表 2にまとめる。なお、表 2では中央部分を中央点と表 IEし、 両端部分を接点部分と表記している。また、加圧前を初期値と表記し、加圧後を押し 圧後と表記している。
[表 2] 平角融着線 α巻きの膨らみ率
試料数
Figure imgf000026_0001
なお、加熱後に加圧した場合における幅寸法 W1のばらつきを図 10に示す。 図 10 は、横軸を試料数、縦軸を幅寸法 (mm)として、加圧前後における幅寸法 W1の寸
差替え用紙 (規則 26) 法のばらつきを示している。すなわち、図 10のデータ S7は、加圧前の幅寸法 W1の ばらつきを、データ S8は、加圧後の幅寸法 W1のばらつきを示している。
[0094] 以上のように、卷回後の空芯コイル 1を加圧して、直線辺部 3、 4の膨らみ率を大幅 に低減することができるため、たとえば、リニアモータのステータ等のように、 Y方向に 空芯コイル 1が並列で配置されて使用されるコイル群では、空芯コイル 1同士の間隔 にばらつきが生じない。そのため、このようなコイル群では、磁界の強さの分布が均一 になり、また、空芯コイル 1がそれぞれ有する磁界の相互作用によってステータの磁 界の強さが増加する。その結果、 Y方向に空芯コイル 1が並列で配置されて使用され るコイル群では、精度の高い強い磁場を得ることができ、そのコイル群を備える装置 の性能が向上する。たとえば、リニアモータでは、スライダの位置精度や応答性が向 上する。また、直線辺部 3、 4の膨らみ率を大幅に低減することができるため、空芯コ ィル 1が並列で配置されて使用されるコイル群では高密度化を図ることができる。
[0095] より具体的には、線径 0. 35mmの融着線 2を用いて、上述の条件下で、加熱後に 加圧して形成された空芯コイル 1を Y方向に並列で 10個配置した場合、加圧されず に形成された空芯コイルを同じく 10個配置した場合と比較して、磁界の強さは約 10 %増加した。また、加熱なしで加圧して形成された空芯コイル 1を Y方向に並列で 10 個配置した場合であっても、磁界の強さは約 5%増加した。また、加熱後に加圧して 形成された空芯コイル 1を Y方向に並列で 10個配置した場合、磁界強さの位置のば らつきは、標準偏差( σ )で 0. 01であり、加圧されずに形成された空芯コイルを用い た場合、磁界強さの位置のばらつきは、標準偏差( σ )で 0. 1であった。すなわち、加 熱後に加圧して形成された空芯コイル 1を用いることで、磁界強さのばらつきを標準 偏差で 10分の 1とすることができ、ばらつきを大幅に低減することができる。
[0096] なお、本形態の空芯コイル 1は、クロスポイント 7を有する直線辺部 6が形成される X 方向では、寸法精度が要求されない用途に用いられているため、直線辺部 6の膨ら み率は、 12. 5%以上とすることができる。そのため、直線辺部 6を加圧する必要はな ぐ加圧すると絶縁被膜 2bに損傷を生じやすいクロスポイント 7での絶縁被膜 2bの損 傷を確実に防止することができる。また、融着線 2の卷回作業が容易になる。
[0097] [実施の形態 2] 図 11は、本発明の実施の形態 2にかかる空芯コイル 21を示す斜視図である。図 12 は、図 11に示す空芯コイル 21の平面図である。図 13は、図 12に示す空芯コイル 21 の断面 e - eの一部分で加圧前の状態を拡大して示す部分拡大断面図である。図 14 は、図 12に示す空芯コイル 21の断面 f - fの一部分で加圧前の状態を拡大して示す 部分拡大断面図である。図 15は、図 12に示す空芯コイル 21を加熱後に加圧した後 の断面 f fの一部分を拡大して示す部分拡大断面図である。図 15は、図 11に示す 空芯コイル 21を加熱せずに加圧した後の断面 f fの一部分を拡大して示す部分拡 大断面図である。
[0098] (空芯コイルの構成および製造方法)
本形態の空芯コイル 21も上述した空芯コイル 1と同様に、リニアモータ等の各種モ ータなどに用いられるものである。空芯コイル 21は、図 13等に示すように、断面が略 長方形状の平角導線 22aと、平角導線 22aの周りを被覆する絶縁被膜 22bと、絶縁 被膜 22bの周りをさらに被覆する融着被膜 22cとを備える融着線 22が α卷で卷回さ れて形成されている。より具体的には、図 11、 12に示すように、空芯コイル 21は、図 12の紙面垂直方向から見て内周側が直線状に形成された相対向する平行な 2つの 直線辺部 23、 24と、図 12の紙面垂直方向から見て内周側が円弧状に形成され、直 線辺部 23、 24をつなぐ半円状の円弧部 25、 26とを備え、図 12の左右方向に扁平し た陸上競技のトラック(陸上トラック)のような形状の空芯状に卷回されて形成されて ヽ る。直線辺部 23、 24は、図 12の上下方向を長手方向として、すなわち、図 12の上下 方向を融着線 22の卷回方向として、融着線 22が卷回されて形成されている。
[0099] ここで、 α巻とは、融着線 22が卷回された後の両端がともに空芯コイル 21の最外 周側にくるように卷回する巻き方であり、卷回時の卷回作業に用いられる固定巻軸に 対して両端を互いに反対方向へ OC形状となるように卷回する巻き方を 、う。
[0100] なお、以下の説明では、直線辺部 23、 24の長手方向を X方向、融着線 22の卷回 方向に直交する空芯コイル 21の厚み方向(図 12の紙面垂直方向)を Ζ方向、 X方向 および Υ方向に直交する方向を Υ方向とする。したがって、空芯コイル 21の高さ方向 (Ζ方向)に直交する X方向および Υ方向が空芯コイル 21の幅方向となる。
[0101] 本形態の空芯コイル 21は、融着線 22が卷回ステップで卷回された後、加熱ステツ プで加熱され、その後、加圧ステップで Y方向および Z方向に加圧されている。すな わち、直線辺部 23、 44の外周側力 空芯コイル 21の内側に向力つて Y方向に加圧 され、直線辺部 23、 24および、円弧部 25、 26が Z方向に加圧されている。以下、空 芯コイル 21の製造方法につ 、て詳述する。
[0102] まず、融着線 22を卷線機に装着し、 a巻で空芯状に卷回する。この卷回の際には 、融着線 22を制御された所定の温度で加熱する。
[0103] 融着線 22の卷回が終了した後の直線辺部 23の一端部分の断面 e— eの一部分は、 図 13に示すような状態となっている。すなわち、平角導線 22aが絶縁被膜 22bおよ び融着被膜 22cに被覆された状態で、融着線 22が卷回され、融着線 22同士の間に は、間隙 28が形成されている。また、直線辺部 23の他端部分および直線辺部 24の 両端部分も断面 e-eと同様の状態となっている。なお、図 13では、便宜上、一部の融 着線 22や一部の間隙 28についてのみ符号を付している。
[0104] 融着線 22の卷回が終了した後の直線辺部 23の中央部分の断面 f fの一部分は、 図 14に示すような状態となっている。すなわち、平角導線 22aが絶縁被膜 22bおよ び融着被膜 22cに被覆された状態で、融着線 22が卷回され、融着線 22同士の間に は、間隙 28の他に間隙 29も形成されている。実施の形態 1と同様に、融着線 22を卷 回する際に、直線辺部 23の両端部分から中央部分に向かうにしたがって、空芯コィ ル 21の内側に向かって Y方向へ融着線 22を押し付ける力がしだいに小さくなるため 、間隙 29aのように、並列する融着線 22の間にも間隙が生じている。また、この間隙 2 9は、断面 e-eに形成された間隙 28よりも大きくなつている。また、直線辺部 24の中 央部分も断面 f fと同様の状態となっている。そのため、融着線 22の卷回が終了した 状態では、図 12の二点鎖線 iで示すように、直線辺部 23、 24の外周側には、 X方向 の中央部分で最大となる Y方向外側に向力 膨らみが生じている。なお、図 14では、 便宜上、一部の融着線 22や一部の間隙 29につ 、てのみ符号を付して 、る。
[0105] その後、卷回が終了した融着線 22を加熱する。この加熱方向は上述した実施の形 態 1の加熱方法と同様であるため詳細な説明は省略する。融着線 22への加熱が終 了すると、卷回された融着線 22を Y方向および Z方向に加圧する。この加圧方向も 上述した実施の形態 1の加圧方法と同様であるため詳細な説明は省略する。なお、 加圧の際の加圧力は、平角導線 22aを塑性変形させない力であり、平角導線 22aの 弾性変形範囲内で空芯コイル 21の加圧が行われる。また、平角導線 22aを塑性変 形させない力には、全く塑性変形させない力の他、ほんのわずかに塑性変形させる 力を含むものとし、上述した特許文献 1のように、大きく塑性変形させる力は含まない ことをいう。
[0106] 加圧後の直線辺部 23の中央部分の断面 f fの一部分は、図 15に示すような状態 となっている。すなわち、平角導線 22aは絶縁被膜 22bに被覆された状態であるが、 融着被膜 22cの一部は熱変形して融着榭脂 30となって、この融着榭脂 30が融着線 22同士の間に充填されている。すなわち、加圧前に絶縁被膜 22bを被覆していた融 着被膜 22cの一部が加熱によって融解して融着榭脂 30となり、加圧前に形成されて いた間隙 28、 29、 29aに流れ込み、この融着榭脂 30がほぼ全ての融着線 22同士の 間に充填されており、間隙 28、 29、 29aがほとんど存在しない状態になっている。こ の状態では、絶縁被膜 22bに被覆された平角導線 22a同士が絶縁被膜 22bと非常 に薄い融着被膜 22cとを介して、あるいは絶縁被膜 2bのみを介して密着している。な お、直線辺部 23および直線辺部 24の任意の断面は図 15に示す状態と同様の状態 、すなわち、間隙 28、 29、 29aがほとんど存在しない状態となっている。また、 Y方向 への加圧によって、直線辺部 23、 24の外周側は図 11の実線で示すように直線状態 に近い状態となっており、加圧前に形成されていた膨らみはほとんど見られなくなつ ている。
[0107] また、円弧部 25、 26は、 Z方向へのみ加圧されるため、一部に融着榭脂 30が充填 されない間隙 28、 29、 29aが存在するものの、融着被膜 22cが加熱によって融解し て融解榭脂 30となり、加圧前に形成されていた間隙 28、 29、 29aに流れ込んでいる
[0108] なお、上述した実施の形態 1と同様に、卷回ステップで融着線 22を卷回した後、加 熱せずに加圧ステップで加圧して空芯コイル 21を形成しても良い。その場合、加圧 後の直線辺部 23の中央部分の断面 f fの一部分は、図 16に示すような状態となつ ている。すなわち、平角導線 22aは絶縁被膜 22bに被覆された状態であるが、被覆さ れた融着被膜 22cの一部が、加圧による熱の影響で融解して融着榭脂 30となり、加 圧前に形成されていた間隙 28、 29、 29aに流れ込んでいる。また、実施の形態 1と同 様に、加熱せずに加圧して空芯コイル 21を形成した場合には、融着被膜 22cが融解 しにくいため、図 16に示すように、一部に融着榭脂 30が充填されない未充填部 31 が存在した状態となっている。なお、加熱をせずに加圧した場合も、直線辺部 23およ び直線辺部 24の任意の断面は図 16に示す状態と同様の状態となっている。また、 Y 方向への加圧によって、直線辺部 23、 24の外周側は図 11の実線で示すように直線 状態に近い状態となっており、加圧前に形成されていた膨らみはほとんど見られなく なっている。
[0109] (実施の形態 2の主な効果)
実施の形態 2においても、上述した実施の形態 1と同様に、直線辺部 23、 24およ び円弧部 25、 26の占積率を高めることできるという効果、直線辺部 23、 24および円 弧部 25、 26の寸法のばらつきを抑制することができるという効果、および加圧前に直 線辺部 23、 24に形成されていた膨らみを十分に抑制することができるという効果を 得ることができる。
[0110] また、加熱後に加圧する製造方法を採用する場合には、実施の形態 1と同様に、加 圧時の加圧力を下げることができるため、容易に空芯コイル 21を加圧することができ 、また、加圧時における絶縁被膜 22bの損傷を確実に防止することができる。また、こ の場合には、より多くの融着被膜 22cが融解して間隙 28、 29に流れ込むため、より 効果的に空芯コイル 21の占積率を高めることができる。また、融着被膜 22cの厚みの ばらつき等、融着被膜 22cに起因する空芯コイル 21の寸法のばらつきをより効果的 に抑制することができる。さらに、間隙 28、 99に充填された融着榭脂 30によって融着 線 22同士の接着強度が増加し、空芯コイル 21の剛性も増加する。
[0111] ここで、上述した本形態の主な効果のうち、加圧前に直線辺部 23、 24に形成され ていた膨らみを十分に抑制することができるという効果を実験データに基づいてさら に詳述する。
[0112] 線サイズ 0. 24 X 1. 2mmの平角状の融着線 22を 5 X 300mmの卷線機に装着し 、融着線 22を所定の温度で加熱しながら、 50ターンの α巻で陸上トラック形状の空 芯状に卷回した。卷回後の空芯コイル 1の Ζ方向寸法は 29mm、 X方向寸法は 340 mmであった。その後、卷回された融着線 22を約 190°Cで加熱し、加熱後、空芯コィ ル 21の内周側に加圧治具を揷通させた状態で、 Y方向および Z方向へ 7. OMPaで 加圧した。なお、実験に 20個の試料を使用した。
[0113] 実験の結果、加圧前の状態では、図 12に示す直線辺部 23、 24の両端部分の Y方 向の幅寸法 W4の平均値は 12. 58mm,直線辺部 23、 24の中央部分の Y方向の幅 寸法 W3の平均値は 13. 92mmであった。したがって、平均値の膨らみ率は 9. 6% であった。また、 20個の試料の中では膨らみ率の最大値は 20. 1%であった。これに 対し、加圧後の状態では、幅寸法 W4の平均値は 12. 21mm,幅寸法 W3の平均値 は 12. 34mmであり、平均値の膨らみ率は 1. 1%であった。また、 20個の試料の中 では膨らみ率の最大値は 2. 4%であった。このように、加圧によって直線辺部 23、 2 4の膨らみを大幅に抑制することができる。具体的には、膨らみ率を 2. 5%以下とす ることがでさる。
[0114] 一方、加圧前に加熱を行わず、他の条件を上記と同様にした場合には、加圧前の 幅寸法 W4の平均値は 12. 58mm,幅寸法 W3の平均値は 13. 93mmであり、平均 値の膨らみ率は 9. 6%であった。また、 20個の試料の中では膨らみ率の最大値は 2 0. 2%であった。これに対し、加圧後の幅寸法 W4の平均値は 12. 57mm,幅寸法 W3の平均値は 12. 98mmであり、平均値の膨らみ率は 3. 2%であった。また、 20 個の試料の中では膨らみ率の最大値は 4. 9%であった。このように、加圧前に加熱 を行わない場合であっても、加圧によって直線辺部 23、 24の膨らみを大幅に抑制す ることができる。具体的には、膨らみ率を 5. 0%以下にすることができる。
[0115] 以上の結果を以下の表 3にまとめる。なお、表 3では中央部分を中央点と表記し、 両端部分を接点部分と表記している。また、加圧前を初期値と表記し、加圧後を押し 圧後と表記している。
[表 3] 融着線整列巻きの膨らみ率
試料数: 20個
Figure imgf000033_0001
[0116] [他の実施の形態]
上述した各形態は、本発明の好適な形態の一例ではある力 これに限定されるもの ではなく本発明の要旨を変更しない範囲において種々変形可能である。たとえば、 上述した各形態では、円形断面の丸導線 2aを備える融着線 2が整列巻で卷回され て形成された空芯コイル 1あるいは、長方形断面の平角導線 22aを備える融着線 22 が α卷で卷回されて構成された空芯コイル 21について説明したが、平角導線を備え る融着線がエッジワイズ卷で卷回されて形成された空芯コイルや、正方形断面の真 四角導線を備える融着線が整列卷で卷回されて形成された空芯コィ /レについても本 発明の構成を適用することができる。
[0117] また、上述した実施の形態 1では、丸導線 2aを備える融着線 2が矩形の空芯状に 卷回されていたが、融着線 2は、図 11に示す陸上トラック形状の空芯伏に巻回されて も良い。この場合には、円弧部 25または円弧部 26を、クロスポイントの全てが形成さ れたクロスポイント形成部として、このクロスポイント形成部を加圧しないようにすれば 良レ、。たとえば、円弧部 25がクロスポイント形成部となる場合には、図 12に示すよう に、円弧部 25の周方向の中央部分における幅 W] と、円弧部 25の周方向の両端 部分における幅 W2^とから上記の式 2によって算出される円弧部の膨らみ率は、 12 . 5%以上とすることができる。また、逆に、実施の形態 2で説明した平角導線 22aを 備える融着線 22が図 1に示す矩形の空芯状に卷回されても良'い。
[0118] さらに、上述した実施の形態 1では、一つの直線辺部 6がクロスポイント形成部とな つてクロスポイント 7の全てが形成されていた力 たとえば、直線辺部 5および 6にのみ クロスポイント 7を形成して、クロスポイント形成部を 2箇所としても良レ、。
[0119] さらに、融着線の卷回形状は上述した各形態で説明した矩形の空芯状等には限定
差替え用紙 (規則 26) されず、融着線を円形の空芯状や三角形の空芯状等のその他の形状の空芯状に卷 回しても良い。また、たとえば、整列巻で三角形の空芯状に卷回する場合には、三角 形の頂点部分をクロスポイントの全てが形成されたクロスポイント形成部として、このク ロスポイント形成部を加圧しないようにすれば良い。また、三角形の空芯状に卷回す る場合には、 3つの直線辺部が形成されることになる力 これらの直線辺部に対し、 空芯コイルの高さ方向と融着線の卷回方向とに直交する方向から加圧することで、直 線辺部の外周側への膨らみ率を 5. 0%以下とすることができる。
[0120] さらにまた、図 1、図 11等ではある程度の厚みを有する空芯コイル 1、 21を図示して 示しているが、本発明の空芯コイルは高さ方向(Z方向)の寸法が小さい、扁平形状 の空芯コイルであっても良い。
[0121] また、上述した実施の形態 1では、直線辺部 3、 4の外周側を、空芯コイル 1の内側 に向かって Y方向に加圧するとともに、直線辺部 3、 4、 5を Z方向に加圧していたが、 直線辺部 3、 4、 5のいずれか 1つあるいは 2つを加圧しても良いし、直線辺部 3、 4を Y方向あるいは Z方向の一方向にのみ加圧しても良い。また、実施の形態 2において は、卷回された融着線 22を Y方向および Z方向に加圧していた力 Y方向あるいは Z 方向の一方向にのみ加圧しても良いし、直線辺部 23、 24および円弧部 25、 26のう ちの!/、ずれ力 1つあるいは 2つまたは 3つを加圧しても良!、。
[0122] さらに、本発明の空芯コイルは、リニアモータ等のモータ以外にも光ヘッド装置のレ ンズ駆動装置等の種々の電子、電気機器に用いることができ、これらの機器の性能 向上、小型化および省エネルギー化を図ることができる。

Claims

請求の範囲
[1] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が整列巻で空芯状に卷回されて形成された空芯コイルに おいて、
該空芯コイルの高さ方向および高さ方向に直交する方向の少なくともいずれか一 方に、上記導線の弾性変形範囲内で加圧されているとともに、
上記融着線が整列卷で卷回される際に該融着線同士が交差するクロスポイントは 加圧されて!ヽな ヽことを特徴とする空芯コイル。
[2] 前記クロスポイントは周方向に分散されずに形成され、該クロスポイントの全てが、 周方向の特定部位となるクロスポイント形成部に形成されることを特徴とする請求項 1 記載の空芯コイル。
[3] 前記空芯コイルは多角形状に形成され、該空芯コイルの高さ方向から見て内周側 が直線状に形成された複数の直線辺部を備えるとともに、前記クロスポイント形成部 は、上記複数の直線辺部のうちの 1つの直線辺部であり、当該直線辺部は加圧され ず、
他の直線辺部の少なくともいずれか 1つは、前記空芯コイルの高さ方向および高さ 方向に直交する幅方向の少なくとも 、ずれか一方に加圧されて!、ることを特徴とする 請求項 2記載の空芯コイル。
[4] 前記空芯コイルは、該空芯コイルの高さ方向から見て内周側が直線状に形成され た複数の直線辺部と、内周側が円弧状に形成された複数の円弧部とを備えるととも に、前記クロスポイント形成部は、上記複数の直線辺部のうちの 1つの直線辺部また は、上記複数の円弧部のうちの 1つの円弧部であり、当該直線辺部または、当該円 弧部は加圧されず、
当該加圧されない直線辺部または円弧部を除く直線辺部および円弧部の少なくと もいずれか 1つは、前記空芯コイルの高さ方向および高さ方向に直交する幅方向の 少なくともいずれか一方に加圧されていることを特徴とする請求項 2記載の空芯コィ ル。
[5] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が整列巻で空芯状に卷回されて形成された空芯コイルに おいて、
該空芯コイルの少なくとも一部がその高さ方向および高さ方向に直交する方向の 少なくともいずれか一方に、上記導線の弾性変形範囲内で加圧されているとともに、 この加圧部分の占積率が 84%以上 91%未満であることを特徴とする空芯コイル。
[6] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が空芯状に卷回されて形成された空芯コイルにおいて、 該空芯コイルの少なくとも一部がその高さ方向および高さ方向に直交する方向の 少なくともいずれか一方に、上記導線の弾性変形範囲内で加圧されているとともに、 この加圧方向の寸法精度が ±0. 2%以下であることを特徴とする空芯コイル。
[7] 前記空芯コイルは整列卷で卷回されて形成されるとともに、整列卷で卷回される際 に前記融着線同士が交差するクロスポイントは加圧されず、該クロスポイントにおける 前記空芯コイルの高さ方向および高さ方向に直交する方向の寸法精度が ±0. 2% 以上であることを特徴とする請求項 6記載の空芯コイル。
[8] 前記空芯コイルは多角形状に形成され、該空芯コイルの高さ方向から見て内周側 が直線状に形成された複数の直線辺部を備えるとともに、この複数の直線辺部のうち 1つの直線辺部にのみ前記クロスポイントが形成され、このクロスポイントが形成され た直線辺部の高さ方向に直交する幅方向の寸法精度が ± 2%以上であることを特徴 とする請求項 7記載の空芯コイル。
[9] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が空芯状に卷回されて形成された空芯コイルにおいて、 該空芯コイルの高さ方向から見て内周側が直線状に形成された複数の直線辺部を 備え、該直線辺部の少なくとも 1つは、上記空芯コイルの高さ方向と上記融着線の卷 回方向とに直交する方向に上記導線の弾性変形範囲内で加圧されているとともに、 この加圧方向における上記直線辺部の外周側の膨らみ率が 5. 0%以下であることを 特徴とする空芯コイル。
[10] 前記空芯コイルは多角形状に形成され、前記複数の直線辺部のうち少なくともいず れか 1つは加圧されず、前記空芯コイルの高さ方向に直交する幅方向における外周 側の膨らみ率が 12. 5%以上となる直線辺部が存在することを特徴とする請求項 9記 載の空芯コイル。
[11] 前記空芯コイルは、該空芯コイルの高さ方向から見て内周側が円弧状に形成され た複数の円弧部を備え、前記複数の直線辺部および上記複数の円弧部のうち少な くとも!ヽずれか 1つは加圧されず、前記空芯コイルの高さ方向に直交する幅方向にお ける外周側の膨らみ率が 12. 5%以上となる直線辺部または円弧部が存在すること を特徴とする請求項 9記載の空芯コイル。
[12] 前記空芯コイルは整列卷で卷回されて形成されるとともに、整列卷で卷回される際 に前記融着線同士が交差するクロスポイントが前記複数の直線辺部または前記複数 の円弧部ののうちの 1つにのみ形成され、このクロスポイントが形成された直線辺部ま たは円弧部の外周側の前記幅方向の膨らみ率が 12. 5%以上であることを特徴とす る請求項 10または 11記載の空芯コイル。
[13] 前記融着被膜を融着榭脂とし、熱変形した当該融着榭脂が前記融着線間に充填 されていることを特徴とする請求項 1から 12いずれかに記載の空芯コイル。
[14] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が整列巻で空芯状に卷回されて形成された空芯コイルの 製造方法において、
上記融着線を空芯状に卷回し、
その後、上記空芯コイルの高さ方向および高さ方向に直交する方向の少なくともい ずれか一方に、上記導線の弾性変形範囲内で加圧するとともに、上記融着線が整列 卷で卷回される際に該融着線同士が交差するクロスポイントに加圧しないことを特徴 とする空芯コイルの製造方法。
[15] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が整列巻で空芯状に卷回されて形成された空芯コイルの 製造方法において、
上記融着線を空芯状に卷回し、
その後、上記空芯コイルの少なくとも一部をその高さ方向および高さ方向に直交す る方向の少なくともいずれか一方に、上記導線の弾性変形範囲内で加圧するととも に、この加圧部分の占積率を 84%以上 91%未満とすることを特徴とする空芯コイル の製造方法。
[16] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が空芯状に卷回されて形成された空芯コイルの製造方法 において、
上記融着線を空芯状に卷回し、
その後、上記空芯コイルの少なくとも一部をその高さ方向および高さ方向に直交す る方向の少なくともいずれか一方に、上記導線の弾性変形範囲内で加圧するととも に、この加圧方向の寸法精度を ±0. 2%以下とすることを特徴とする空芯コイルの製 造方法。
[17] 導線と、該導線の周りを被覆する絶縁被膜と、該絶縁被膜の周りをさらに被覆する 融着被膜とを備える融着線が空芯状に卷回されて形成された空芯コイルの製造方法 において、
該空芯コイルの高さ方向から見て内周側が直線状に形成された複数の直線辺部を 備えるように上記融着線を空芯状に卷回し、
その後、上記直線辺部の少なくとも 1つを、上記空芯コイルの高さ方向と上記融着 線の卷回方向とに直交する方向に上記導線の弾性変形範囲内で加圧するとともに、 この加圧方向における上記直線辺部の外周側の膨らみ率を 5. 0%以下とすることを 特徴とする空芯コイルの製造方法。
[18] 前記融着線の卷回後に、当該卷回された融着線を加熱することを特徴とする請求 項 14から 17いずれかに記載の空芯コイルの製造方法。
[19] 前記卷回された融着線は、前記導線への通電、加熱した金型への装着、赤外線照 射および熱風送風の少なくともいずれか 1つの加熱方法で加熱することを特徴とする 請求項 18記載の空芯コイルの製造方法。
PCT/JP2005/000354 2004-01-19 2005-01-14 空芯コイルおよび空芯コイルの製造方法 WO2005069319A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517069A JP4040064B2 (ja) 2004-01-19 2005-01-14 空芯コイルおよび空芯コイルの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-010058 2004-01-19
JP2004-010057 2004-01-19
JP2004010058 2004-01-19
JP2004010057 2004-01-19
JP2004176375 2004-06-15
JP2004-176375 2004-06-15

Publications (1)

Publication Number Publication Date
WO2005069319A1 true WO2005069319A1 (ja) 2005-07-28

Family

ID=34799323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000354 WO2005069319A1 (ja) 2004-01-19 2005-01-14 空芯コイルおよび空芯コイルの製造方法

Country Status (2)

Country Link
JP (1) JP4040064B2 (ja)
WO (1) WO2005069319A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041818A (ja) * 2006-08-03 2008-02-21 Nidec Sankyo Corp 空芯コイル、モータおよび空芯コイルの製造方法
WO2008149649A1 (ja) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki 回転電機およびその製造方法
WO2021176773A1 (ja) * 2020-03-05 2021-09-10 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913619A (ja) * 1972-05-19 1974-02-06
JPS5511391A (en) * 1978-07-11 1980-01-26 Matsushita Electric Ind Co Ltd Production method of magnet coil
JPS56101183U (ja) * 1979-12-28 1981-08-08
JPH04222452A (ja) * 1990-12-26 1992-08-12 Totoku Electric Co Ltd コイルの製造方法
JPH1187165A (ja) * 1997-09-09 1999-03-30 Toyota Motor Corp コイル用素材、コイル用素材の製造装置及びコイル形成方法
JP2003347145A (ja) * 2002-05-30 2003-12-05 Daishowa Seiki Co Ltd 巻線コイル及びその製造装置
JP2004032965A (ja) * 2002-06-28 2004-01-29 Asmo Co Ltd 電機子製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913619A (ja) * 1972-05-19 1974-02-06
JPS5511391A (en) * 1978-07-11 1980-01-26 Matsushita Electric Ind Co Ltd Production method of magnet coil
JPS56101183U (ja) * 1979-12-28 1981-08-08
JPH04222452A (ja) * 1990-12-26 1992-08-12 Totoku Electric Co Ltd コイルの製造方法
JPH1187165A (ja) * 1997-09-09 1999-03-30 Toyota Motor Corp コイル用素材、コイル用素材の製造装置及びコイル形成方法
JP2003347145A (ja) * 2002-05-30 2003-12-05 Daishowa Seiki Co Ltd 巻線コイル及びその製造装置
JP2004032965A (ja) * 2002-06-28 2004-01-29 Asmo Co Ltd 電機子製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041818A (ja) * 2006-08-03 2008-02-21 Nidec Sankyo Corp 空芯コイル、モータおよび空芯コイルの製造方法
WO2008149649A1 (ja) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki 回転電機およびその製造方法
US7898143B2 (en) 2007-06-06 2011-03-01 Kabushiki Kaisha Yaskawa Denki Rotary electric motor
WO2021176773A1 (ja) * 2020-03-05 2021-09-10 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器
JPWO2021176773A1 (ja) * 2020-03-05 2021-09-10

Also Published As

Publication number Publication date
JP4040064B2 (ja) 2008-01-30
JPWO2005069319A1 (ja) 2007-07-26

Similar Documents

Publication Publication Date Title
JP2006295106A (ja) 空芯コイルおよび空芯コイルの製造方法
US5088186A (en) Method of making a high efficiency encapsulated power transformer
JP6577970B2 (ja) コモンモードチョークコイル及びその製造方法、回路基板。
CN100403462C (zh) 薄型变压器及其制造方法
WO2018043429A1 (ja) 積層鉄心、積層鉄心の製造方法、および積層鉄心を用いた電機子
US7960890B2 (en) Laminated core, method and apparatus for manufacturing laminated core, and stator
US8427017B2 (en) Split stator member and method of manufacturing the split stator member
WO2007055210A1 (ja) モータコア部品及びモータ部品
JP2010177492A (ja) モールドコイルの製造方法
JP2018129376A (ja) コイル装置
US20120124821A1 (en) Method for producing group of electrical coils
WO2005069319A1 (ja) 空芯コイルおよび空芯コイルの製造方法
JP4763643B2 (ja) コイル及びその製造方法
JP4295744B2 (ja) 丸線、コイル、ステータコイル、ロータコイル、及び変成器
US20180151285A1 (en) Wire-wound type power inductor
US9251926B2 (en) Collective conductor and method for producing collective conductor
JP7173066B2 (ja) インダクタ部品およびその製造方法
JP6846882B2 (ja) 扁平絶縁電線及びその製造方法
JP2007027345A (ja) 積層電磁コイル及び積層電磁コイルの製造方法
WO2017110567A1 (ja) 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
JP2009131052A (ja) モールドコイルの製造方法およびモールドコイル、それを用いた固定子および回転電機
JP7173065B2 (ja) インダクタ部品
JP2006344435A (ja) 線材、コイル、ステータコイル、ロータコイル、及び変成器
JP2007227243A (ja) 集合導体の製造方法
JP5252379B2 (ja) リアクトル用コイルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005517069

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase