WO2005068669A1 - スラグフューミング方法 - Google Patents

スラグフューミング方法 Download PDF

Info

Publication number
WO2005068669A1
WO2005068669A1 PCT/JP2005/000462 JP2005000462W WO2005068669A1 WO 2005068669 A1 WO2005068669 A1 WO 2005068669A1 JP 2005000462 W JP2005000462 W JP 2005000462W WO 2005068669 A1 WO2005068669 A1 WO 2005068669A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
copper
lead
arsenic
melt
Prior art date
Application number
PCT/JP2005/000462
Other languages
English (en)
French (fr)
Inventor
Jun-Ichi Takahashi
Keiji Fujita
Toshiro Tan
Original Assignee
Sumitomo Metal Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co., Ltd. filed Critical Sumitomo Metal Mining Co., Ltd.
Priority to JP2005517090A priority Critical patent/JP4470888B2/ja
Publication of WO2005068669A1 publication Critical patent/WO2005068669A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/28Obtaining zinc or zinc oxide from muffle furnace residues
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a slag fuming method, and more particularly, to a slag fuming method for heating and reducing slag produced from a slag produced from a melting furnace made of zinc and Z or lead to volatilize and separate zinc and lead. More particularly, the present invention relates to a slag fuming method capable of obtaining dust containing a small amount of arsenic and antimony, containing zinc and lead, and slag stably satisfying soil environmental standards, and having a low treatment cost.
  • the blast furnace method of simultaneously producing zinc and lead has been widely used! / Puru.
  • the blast furnace method As a method of treating slag generated in the blast furnace, the slag is introduced to the front floor of the blast furnace to roughly separate copper-containing coarse lead and furnace iron, and then granulated to produce a cement raw material. And other methods of obtaining product slag.
  • the slag since the slag generally has a high zinc content and contains arsenic, antimony, and other metals which are spice components together with lead, the slag is charged into a slag fuming furnace to perform water fusing. Crushed.
  • the slag fuming is to volatilize metals such as zinc, lead, arsenic and antimony contained in the slag by heating and reducing the molten slag. Thereby, slag power Since zinc and lead can be recovered and impurity metals can be removed, slag that has been cleaned can be obtained.
  • the slag fuming treatment is performed using a lance for gas injection or a heating furnace provided with blades at the bottom of the furnace.
  • a lance for gas injection the lance is immersed in the slag charged in the furnace, and the lance tip force is spouted out with carbonaceous fuel such as heavy oil and pulverized coal and air.
  • carbonaceous fuel such as heavy oil and pulverized coal and air.
  • the treated slag is extracted from the furnace bottom, while the volatilized metal is oxidized by adding air during its movement to the furnace top, and recovered as a slag fume dust containing zinc and lead. Is done.
  • Patent Document 1 JP-A-11-269567 (pages 1 and 2)
  • an object of the present invention is to provide a slag fuming for heating and reducing slag produced from zinc, zinc, or lead, and for volatilizing and separating zinc and lead. It is an object of the present invention to provide a slag fusing method that can obtain dust containing zinc and lead having low contents of arsenic and antimony and slag that satisfies soil environmental standards stably and has low treatment cost.
  • the present inventors have eagerly studied a slag fuming method for slag containing zinc, lead and arsenic produced from a melting furnace made of zinc and zinc or lead.
  • slag fuming was conducted under specific conditions in which slag and copper melt coexisted.As a result, dust containing zinc and lead with low arsenic and antimony contents was obtained and stable.
  • the present inventors have found that slag that can satisfy soil environmental standards can be obtained, and completed the present invention.
  • slag which is produced from a smelting furnace made of zinc and Z or lead and contains arsenic or arsenic and antimony together with zinc and lead, is placed in a slag fuming furnace.
  • a slag fuming method of reducing by heating and volatilizing and separating zinc and lead is used.
  • the slag fuming method according to the first aspect wherein the melt temperature is 1200 to 1500 ° C.
  • the content ratio of Fe to Cu in the Cu—Fe—Pb—As homogenous melt is 0.01 to 50% by weight. %.
  • a slag fuming method is provided.
  • the oxygen partial pressure of the slag melt is controlled within a range shown by the following equation. But Provided.
  • a slag fuming method characterized by repeatedly using a Pb As-based homogeneous melt is provided.
  • the slag fuming method of the present invention is directed to a slag fuming method for slag produced from a zinc and Z or lead smelting furnace, wherein the content of arsenic and antimony is low! Since zinc and dust containing lead can be obtained, the load on arsenic and antimony is reduced when dust is repeatedly returned to the melting furnace, contributing to cost reduction. In addition, slag can reduce lead and arsenic in slag, and slag that satisfies soil environmental standards can be stably obtained.
  • FIG. 1 is a copper-iron binary system phase diagram.
  • FIG. 2 is a phase diagram of a ternary system of copper, lead and arsenic at 1200 ° C.
  • FIG. 3 is a conceptual diagram of a slag fuming device used in an example.
  • a slag containing arsenic or arsenic and antimony, together with zinc and lead, produced from a zinc and zinc or lead smelting furnace is heat-reduced in a slag fuming furnace to reduce zinc.
  • the slag fuming method of volatilizing and separating lead from the slag is carried out at a temperature of 1075-1500 ° C. at a temperature of 1075-1500 ° C. in an amount of 5-100% by weight based on the amount of the slag charged into the furnace.
  • a slag melt and a predetermined amount of a copper melt coexist and are maintained at a predetermined temperature, and arsenic or arsenic and antimony contained in the copper melt and the slag are contained.
  • has a significant significance in forming a homogeneous Cu—Fe—Pb—As melt (sometimes referred to as a “homogeneous melt of copper alloy”).
  • FIG. 1 shows a copper-iron binary phase diagram.
  • the slag fuming method of the present invention is performed using the following reduction blowing method. be able to.
  • the lance is immersed in a mixture of slag melt and copper melt charged in the furnace, and heavy oil, natural gas, pulverized coal And the like, and gas is blown to blow out an oxygen-containing gas to mix and agitate them, and reduce the zinc, lead, arsenic, antimony, and the like to a metal state by setting the melt in a reducing atmosphere.
  • the metallized zinc and some of the lead are volatilized and collected as dust.
  • metalized arsenic and antimony have the property of having a high vapor pressure and the property of having a strong affinity for iron and copper.
  • arsenic and antimony react with copper.
  • arsenic forms a copper alloy without volatilization and is included in the Cu-Fe-Pb-As system homogeneous melt.
  • Antimony also shows the same behavior as arsenic and is contained in a homogeneous copper alloy.
  • the slag containing arsenic or arsenic and antimony used in the present invention is not particularly limited.
  • slag containing zinc, zinc or lead containing arsenic or arsenic and antimony is used. Slag produced from a furnace and formed in a reducing atmosphere in a smelting furnace is used.
  • the slag of the above melting furnace is, for example, FeO-SiO A1
  • the slag temperature is operated at 1200-1350 ° C.
  • This slag contains a large amount of iron as an oxide.
  • iron was generated by local strong reduction.
  • the slag fuming temperature used in the present invention is 1075 to 1500 ° C, preferably 1200 to 1500 ° C, and more preferably 1200 to 1400 ° C. That is, the above temperature range is used in order to form a Cu—Fe—Pb—As homogenous melt by reacting the copper melt with spices contained in the slag. At temperatures below 1075 ° C, the slag becomes too viscous or has problems when solidified. On the other hand, when the temperature exceeds 1500 ° C, there is a problem that the amount of damage to the refractory increases and the heat energy required for heating increases.
  • the copper melt used in the present invention is not particularly limited. During slag fuming, iron and a homogeneous melt are heated at a temperature of 1075 to 1500 ° C in a reducing atmosphere in a slag fuming furnace. A copper-containing material that can be formed is used. For example, in addition to metallic copper, copper intermediates such as copper scrap and crude copper (copper grade 98-99% by weight) obtained from the copper manufacturing process must be melted and used. Can be.
  • the amount of copper in the copper melt used in the present invention is controlled so as to satisfy the following two requirements.
  • a lead-rich phase is formed. That is, in the actual operation of the blast furnace, slag is usually extracted together with some lead from the furnace bottom of the blast furnace, and the slag is called a front floor. The operation of separating lead is carried out in a holding container. However, the slag obtained contains lead. Therefore, when slag fuming treatment is performed in the coexistence of a copper melt, when the amount of lead in the formed copper alloy exceeds a certain ratio, a copper-arsenic rich phase (copper spice phase) and a lead rich phase are formed. To separate.
  • Figure 2 shows a phase diagram for the ternary copper-lead-arsenic system at 1200 ° C (see, eg, Resources and Materials, 1998, Issue 4, p. 218, Figure 7).
  • FIG. 2 shows that, within the composition of the elliptical region, a two-liquid phase separation range of a spice phase and a lead-rich phase is formed. If this lead phase is formed and exists as a separate layer in the furnace, it accumulates in the furnace bottom and reduces the furnace volume. In addition, as the lead layer increases, the erosion of the refractory at the interlayer interface increases. Therefore, forming a lead layer is not preferable in practical operation.
  • the amount of copper in the copper melt is not particularly limited, but is preferably 100% by weight or more based on the amounts of arsenic and antimony in the charge to the furnace. That is, if the amount of copper is too small with respect to arsenic and antimony, a problem arises that the copper cannot be fixed sufficiently. In general, when the amount of copper in the copper melt satisfies the above requirements (a) and (mouth), this requirement is satisfied.
  • the atmosphere of slag fuming used in the present invention is not particularly limited, and an atmosphere capable of reducing zinc, lead, arsenic and antimony to a metal state is used.
  • the melt temperature is 1075 to 1500 ° C.
  • the oxygen partial pressure of the slag melt is ⁇ 8> logPo> —11.5 (where Po is in atm unit).
  • the force for forming a Cu-Fe-Pb-As system homogeneous melt is preferably 0.01- 50% by weight, more preferably 5-50% by weight, which can reduce the amount of copper added.
  • the amount of copper used in slag depends on the conditions under which it reacts with the spices contained in the slag to form a homogeneous Cu—Fe—Pb—As system melt in the temperature range of 1075 to 1500 ° C.
  • Force selected For example, in the temperature range of 1200-1500 ° C., the amount of iron dissolved in the homogeneous melt is 5-50% by weight with respect to copper.
  • slag is separated from slag by a specific gravity difference in a slag fuming furnace, and tilting or tapping of the furnace is performed.
  • the recovered copper alloy is put into a converter process for copper, for example, in an oxidizing atmosphere to recover copper, remove iron as slag, and remove lead, arsenic, and antimony into dust. It is possible to process as. As described above, since the processing can be performed in the existing process steps, the increase in the cost of processing the recovered copper alloy is very small.
  • the cost will increase. Therefore, a uniform melt of the produced copper alloy is repeatedly used for new processing slag to minimize the amount of copper used. It is desirable to do so. Further, since the reaction with spices in the slag depends on the degree of contact between the slag melt and the copper melt, the larger the amount of copper with respect to the amount of slag per batch, the more preferable. Therefore, the amount of copper relative to the amount of slag per batch is the amount of iron Using more than the amount of copper per batch determined from the amount, the method of repeatedly using multiple batches of new slag until it is saturated at a concentration of 5 to 50% by weight, more preferably 5 to 35% by weight, of iron with respect to copper. desirable.
  • the above-mentioned copper melt can be repeatedly used until arsenic or iron no longer forms a solid solution in the copper melt or a homogeneous melt cannot be formed.
  • the content of arsenic in the slag is usually as low as less than 0.1 wt%, so it is practically limited by the iron content. Further, even when the iron in the copper melt is saturated, the copper melt can be used continuously by adding copper.
  • the slag obtained in the present invention is a slag that satisfies the soil environmental standards (Pb, As elution amount: each 0.1 OlmgZL or less) in an elution test according to the Environment Agency Notification No. 46, and is preferably used as a cement raw material. Can be used.
  • the soil environmental standards Pb, As elution amount: each 0.1 OlmgZL or less
  • the slag fuming device shown in Fig. 3 was used. As shown in FIG. 3, the slag fuming apparatus is heated by an externally heated electric furnace 9, and the temperature and the atmosphere in the electric furnace are controlled by a thermocouple 6 for temperature control and a nitrogen blowing pipe 1 for ensuring atmosphere.
  • the raw material mixture is charged into the alumina crucible 7 used for the reaction, and the alumina crucible 7 is set in the ceramic outer crucible 5 placed on the crucible holding brick 8.
  • nitrogen is blown into the melt in the heated and molten state through a stirring nitrogen blowing pipe 3, and the temperature is measured. Slag fuming is performed while measuring the reaction temperature with thermocouple 4 for use.
  • the generated dust is collected outside the electric furnace through the ceramic tube 2 for dust collection.
  • Example 1 In the slag fuming treatment operation, Example 1 was repeated except that the copper alloy layer was not sampled for the second and subsequent times, and that the entire operation was repeated for the next operation without changing the molten material, and that the operation was repeated five times. , And the chemical composition of the slag and dust obtained in each operation was analyzed. Table 4 shows the results.
  • the slag fuming treatment was performed in the same manner as in Example 1 except that the slag was heated to 1250 ° C, and the chemical compositions of the slag, copper alloy, and dust obtained by the operation were analyzed. The operation was not repeated. Table 5 shows the results. In addition, the slag was subjected to a dissolution test according to the notification of the Environment Agency No. 46, and the dissolution amount of lead and arsenic was measured. Table 6 shows the results.
  • Example 2 The procedure was the same as in Example 1, except that 250 g of metallic copper (copper grade 99.99% by weight) was used in the raw material preparation (the amount of copper added was 50% by weight of the raw material slag). The chemical composition of the obtained slag, copper alloy and dust was analyzed. The operation was not repeated. Table 5 shows the results. In addition, slag was subjected to an elution test according to the Environment Agency Notification No. 46, and the elution amounts of lead and arsenic were measured. Table 6 shows the results.
  • Example 5 ⁇ 0. 0 0 5 ⁇ 0. 0 0 5 According to Table 5, Examples 3-5 were performed based on the present invention, so that arsenic and antimony were concentrated in the copper alloy, lead and arsenic in the slag were reduced, and arsenic and antimony were reduced. You can see that it is not distributed to dust.
  • Examples 3-5 were carried out based on the present invention, so that the elution amounts of lead and arsenic were reduced, and the soil environmental standards (Pb, As elution amount: each less than 0.1 OlmgZL) ) Can be satisfied.
  • the slag and the copper alloy were sampled and analyzed for their composition.
  • the volatilized dust was collected and analyzed for its composition.
  • Table 7 shows the results.
  • the obtained slag was subjected to a dissolution test according to the Environment Agency Notification No. 46 to measure the dissolution amount of lead and arsenic.
  • Table 8 shows the results.
  • the production amounts of slag and copper alloy were 1780 g and 290 g, respectively.
  • the slag and copper alloy obtained in the eighth operation were sampled to obtain analyzed.
  • the volatilized dust was recovered and analyzed for its composition.
  • Table 7 shows the results.
  • the slag obtained in the eighth operation was subjected to a dissolution test according to the notification of the Environment Agency No. 46, and the dissolution amount of lead and arsenic was measured.
  • Table 8 shows the results.
  • the production amounts of slag and copper alloy obtained in the eighth operation were 1785 g and 295 g, respectively.
  • the reduction blowing operation was performed under the same conditions as in Example 6, except that the amount of the coatas in the raw material preparation was 60 g.
  • the oxygen partial pressure (atm) of slag is log 11.8 (converted to 1400 ° C)
  • Example 7 ⁇ 0.05 ⁇ 0.05 [0061] From Table 8, it can be seen that Example 6 or 7 was carried out in accordance with the method of the present invention, so that the amount of lead and arsenic dissolved was reduced and the soil environmental standards could be stably satisfied. You.
  • Example 1 was repeated, except that only 500 g of the raw material slag was used as the raw material preparation, and the chemical compositions of the slag and dust obtained by the operation were analyzed. Table 9 shows the results. In addition, slag was subjected to a dissolution test according to the Environment Agency Notification No. 46, and the dissolution amount of lead and arsenic was measured. Table 10 shows the results.
  • a slag fuming operation was performed under the same conditions as in Example 6, except that the amount of metallic copper added was 80 g (corresponding to 4% by weight of the raw material slag). After that, the state of the sample after cooling was observed, and it was found that the formation of a homogeneous molten copper alloy was insufficient, and that the iron spices were dispersed in the copper alloy force ⁇ ⁇ absorbed by the copper.
  • Reduction blowing was performed under the same conditions as in Example 6 except that 400 g of a copper-lead alloy (copper grade 40% by weight, lead grade 60% by weight) prepared by melting at 1250 ° C and quenching was used instead of metallic copper. ⁇ Performed the operation. The amount of added copper is equivalent to 8% by weight of the raw material slag weight, and is equivalent to 60% by weight of the amount of lead in the charge (240g in copper ⁇ 0 alloy + 24g in raw material slag). afterwards Observation of the state of the sample after cooling revealed that a lead layer had been formed at the bottom of the crucible in addition to the formation of the slag and the copper alloy. Further, the obtained slag was subjected to a dissolution test according to the notification of the Environment Agency No. 46, and the dissolution amount of lead and arsenic was measured. Table 11 shows the results.
  • the slag fuming method of the present invention provides a slag that also produces smelting furnace power in zinc and Z or lead production, for example, a slag that produces blast furnace power by the blast furnace method.
  • Slag fuming method in which zinc is reduced by heating and zinc and lead are volatilized and separated, dust containing zinc and lead with low arsenic and antimony contents can be obtained. It is useful as a method of reducing the load of arsenic and antimony upon repetition of the above and contributing to cost reduction, and is also suitable as a slag reforming method capable of reducing lead and arsenic in slag.
  • the use of the modified slag is wide-ranging, such as cement materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグのスラグフューミング方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと、安定的に土壌環境基準を満足するスラグとが得られ、かつ低処理コストであるスラグフューミング方法を提供する。  亜鉛及び鉛とともにヒ素又はヒ素及びアンチモンを含有するスラグをスラグフューミング炉内で加熱還元し、亜鉛と鉛を揮発分離するスラグフューミング方法において、前記スラグの融体に、1075~1500°Cの温度下で、前記炉中に装入するスラグ量に対して5~100重量%であるとともに前記炉内の装入物中の鉛量に対して100重量%以上である銅量を含有する銅融体を共存させながら、スラグ中に含有されるヒ素又はヒ素及びアンチモンとを反応させてCu−Fe−Pb−As系均一融体を形成することを特徴とするスラグフューミング方法などによって提供する。

Description

明 細 書
スラグフューミング方法
技術分野
[oooi] 本発明は、スラグフューミング方法に関し、さらに詳しくは、亜鉛及び Z又は鉛製鍊 の熔鍊炉カゝら産出されるスラグを加熱還元し、亜鉛と鉛を揮発分離するスラグフュー ミング方法にぉ 、て、ヒ素及びアンチモン含有量が少な 、亜鉛と鉛を含むダストと、 安定的に土壌環境基準を満足するスラグとが得られ、かつ低処理コストであるスラグ フューミング方法に関する。
背景技術
[0002] 亜鉛、鉛製鍊において、 Imperial Smelting Processと呼ばれる亜鉛と鉛を同 時に製鍊する熔鉱炉法が広く用いられて!/ヽる。前記熔鉱炉法にお!ヽて熔鉱炉で発 生するスラグの処理方法としては、該スラグを熔鉱炉の前床に導!ヽて含銅粗鉛と炉 鉄を粗分離した後に水砕して、セメント原料用等の製品スラグを得る方法が用いられ ている。この際、一般には、前記スラグは、亜鉛含有量が高ぐかつ鉛とともにスパイ スの成分であるヒ素、アンチモンその他の金属を含むため、スラグフューミング炉に装 入してフューミングを行った後に水砕される。
[0003] ところで、前記スラグフューミングとは、熔融状態のスラグを加熱還元することによつ て、スラグに含まれる亜鉛、鉛、ヒ素、アンチモン等の金属を揮発させるものである。こ れによって、スラグ力 亜鉛と鉛を回収するとともに不純物金属を除去することができ るので、清浄ィ匕されたスラグが得られる。
ここで、スラグフューミング処理は、ガス吹き込み用のランス又は炉下部に羽ロを備 えた加熱炉を用いて行われる。例えば、ガス吹き込み用のランスを備えた炉を用いて 、該炉内に装入したスラグにランスを浸漬してランス先端力 重油、微粉炭等の炭素 質燃料と空気を噴出させることにより、スラグ中の金属を還元し、揮発させる処理であ る。ここで、処理後のスラグは炉底部から抜き出され、一方、揮発された金属は炉頂 部への移動の途中で空気を加えて酸化され、亜鉛と鉛を含むスラグフューミングダス トとして回収される。 [0004] し力しながら、従来、スラグフューミング処理では、低沸点で蒸気圧の高!、ヒ素、ァ ンチモンなどの 15族元素の金属は、回収の主目的金属である亜鉛、鉛とともに揮発 され、回収した亜鉛と鉛を含むダスト中に濃縮される。その後、前記ダストは、例えば 、上記熔鉱炉法の焼結工程に繰り返される力 この場合に、これら 15族元素は、焼 結工程で揮発して排ガス処理系統への負荷を増加させるという問題、あるいは、焼結 塊中に含まれて熔鉱炉内へ繰返されると高融点金属化合物であるスパイスを生成さ せる原因となって、熔鉱炉操業を困難にさせるという問題があった。
また、スラグフューミング処理の操業のばらつきにより、鉛又はヒ素といった有害元 素がスラグ中に残留した場合には、上記清浄ィ匕されたスラグの溶出試験において、 土壌環境基準を満足することができないという問題がおこる。したがって、安定的に 土壌環境基準を満足するスラグが得られるスラグフューミング方法が望まれていた。
[0005] この解決策として、スラグの改質方法が提案されており、代表的なものとしては、熔 鉱炉産出のスラグを前床に導!ヽて含銅粗鉛と炉鉄を粗分離した後、電気炉で加熱し て含銅粗鉛と炉鉄を十分に沈降分離して、その後スラグフューミング炉で処理する 2 段処理法 (例えば、特許文献 1参照。)が挙げられる。し力しながら、この方法では、ス ラグ中の亜鉛、鉛及びヒ素の含有量及びスラグの土壌環境基準は満足されるが、一 方、スラグフューミングダストへのヒ素とアンチモンの揮発は避けられず、このダストの 焼結工程への繰返し処理に際してヒ素とアンチモンに伴ない生じる問題については 根本的な解決策は得られないので、その処理コストを上昇させるという問題が残る。 また、 2段で処理することも処理コストを上昇させる要因となる。
[0006] 以上の状況から、亜鉛及び Z又は鉛製鍊の熔鍊炉から産出されるスラグのスラダフ ユーミング方法にぉ 、て、ヒ素及びアンチモン含有量が少な 、亜鉛と鉛を含むダスト が得られるとともに、安定的に土壌環境基準 (環境庁告示第 46号による溶出試験で の Pb、 As溶出量:各 0. OlmgZL以下)を満足するスラグが得られるスラグフューミン グ方法が求められている。
特許文献 1 :特開平 11— 269567号公報 (第 1頁、第 2頁)
発明の開示
発明が解決しょうとする課題 [0007] 本発明の目的は、上記の従来技術の問題点に鑑み、亜鉛及び Z又は鉛製鍊の熔 鍊炉力 産出されるスラグを加熱還元し、亜鉛と鉛を揮発分離するスラグフューミング 方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと、安定的 に土壌環境基準を満足するスラグとが得られ、かつ低処理コストであるスラグフューミ ング方法を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成するために、亜鉛及び Z又は鉛製鍊の熔鍊炉から 産出される亜鉛、鉛及びヒ素を含有するスラグのスラグフューミング方法について、鋭 意研究を重ねた結果、特定の条件でスラグと銅の融体を共存させてスラグフューミン グを行ったところ、ヒ素及びアンチモン含有量が少な 、亜鉛と鉛を含むダストが得ら れるとともに、安定的に土壌環境基準を満足することができるスラグが得られることを 見出し、本発明を完成した。
[0009] すなわち、本発明の第 1の発明によれば、亜鉛及び Z又は鉛製鍊の熔鍊炉から産 出される、亜鉛及び鉛とともにヒ素又はヒ素及びアンチモンを含有するスラグをスラグ フューミング炉内で加熱還元し、亜鉛と鉛を揮発分離するスラグフューミング方法に おいて、
前記スラグの融体に、 1075— 1500°Cの温度下で、前記炉中に装入するスラグ量 に対して 5— 100重量%であるとともに前記炉内の装入物中の鉛量に対して 100重 量%以上である銅量を含有する銅融体を共存させながら、スラグ中に含有されるヒ素 又はヒ素及びアンチモンとを反応させて Cu— Fe— Pb— As系均一融体を形成すること を特徴とするスラグフューミング方法が提供される。
[0010] また、本発明の第 2の発明によれば、第 1の発明において、前記融体温度は、 120 0— 1500°Cであることを特徴とするスラグフューミング方法が提供される。
[0011] また、本発明の第 3の発明によれば、第 1の発明において、前記 Cu— Fe— Pb— As 系均一融体中の Cuに対する Feの含有比率は、 0. 01— 50重量%であることを特徴 とするスラグフューミング方法が提供される。
[0012] また、本発明の第 4の発明によれば、第 1の発明において、前記スラグ融体の酸素 分圧は、次式に示す範囲に制御されることを特徴とするスラグフューミング方法が提 供される。
8 >logPo >— 11. 5
2
(但し、式中、 Poは atm単位によるスラグ中の酸素分圧を表し、かつ 1400°Cの温度
2
基準に換算したものである。 )
[0013] また、本発明の第 5の発明によれば、第 1の発明において、銅融体として、 Cu-Fe
Pb As系均一融体を繰り返し用いることを特徴とするスラグフューミング方法が提 供される。
発明の効果
[0014] 本発明のスラグフューミング方法は、亜鉛及び Z又は鉛製鍊の熔鍊炉から産出さ れるスラグのスラグフューミング方法にお!、て、ヒ素とアンチモンの含有量が少な!/、亜 鉛と鉛を含むダストを得ることができるので、ダストの溶鍊炉への繰り返しに際してヒ素 とアンチモンの負荷を軽減しコストの削減に寄与する。また、スラグ中の鉛とヒ素を低 減させ、かつ安定的に土壌環境基準を満足するスラグを得ることができるので、その 工業的価値は極めて大き 、。
図面の簡単な説明
[0015] [図 1]図 1は、銅-鉄二元系状態図である。
[図 2]図 2は、 1200°Cにおける銅 鉛 ヒ素三元系の状態図である。
[図 3]図 3は、実施例に用いたスラグフューミング装置の概念図である。
符号の説明
1 雰囲気担保用窒素吹き込み管
2 ダスト回収用セラミック管
3 撹拌窒素用吹き込み管
4 測温用熱電対
5 セラミック外るつぼ
6 温度制御用熱電対
7 アルミナるつぼ
8 るつぼ保持用レンガ
9 電 炉 発明を実施するための最良の形態
[0017] 以下、本発明のスラグフューミング方法を詳細に説明する。
本発明のスラグフューミング方法は、亜鉛及び Z又は鉛製鍊の熔鍊炉から産出さ れる、亜鉛及び鉛とともにヒ素又はヒ素及びアンチモンを含有するスラグをスラグフユ 一ミング炉内で加熱還元し、亜鉛と鉛を揮発分離するスラグフューミング方法にぉ ヽ て、前記スラグの融体に、 1075— 1500°Cの温度下で、前記炉中に装入するスラグ 量に対して 5— 100重量%であるとともに前記炉内の装入物中の鉛量に対して 100 重量%以上である銅量を含有する銅融体を共存させながら、スラグ中に含有されるヒ 素又はヒ素及びアンチモンとを反応させて Cu— Fe— Pb— As系均一融体を形成するこ とを特徴とする。
[0018] 本発明において、スラグのフューミングに際して、スラグ融体と所定量の銅融体を共 存させて所定温度で保持し、該銅融体とスラグ中に含有されるヒ素又はヒ素及びアン チモンとを反応させて Cu— Fe— Pb— As系均一融体(「銅合金の均一融体」と呼称す ることがある。)を形成させることに重要な意義を有する。これによつて、ヒ素及びアン チモン含有量が少ない亜鉛と鉛を含むダストと、安定的に土壌環境基準を満足する スラグとが得られる。すなわち、ヒ素とアンチモンの揮発を抑制して、それらが安定し て含有される銅合金の均一融体中に分配させることにより、揮発生成される亜鉛と鉛 を含むダストと清浄ィ匕されたスラグの両者へのヒ素とアンチモンの分布を低減させるこ とが達成される。
[0019] ここで、前述した銅合金の均一融体の生成について、図面を用いて、より詳しく説 明する。図 1は、銅-鉄二元系状態図を示す。
図 1より、例えば、 1350°Cでは、銅中に鉄が約 15%まで熔融し、均一融体となるこ とが分かる。すなわち、鉄スパイスが金属状の銅と共存した際には、鉄スパイスは銅 中に熔融し、一部の鉛とともに銅主体の Cu— Fe— Pb— As系均一融体を生成すること になる。また、高銅品位領域では、均一融体を形成する銅に対する鉄の溶解量は温 度によって変化し、温度が高いほど溶解量は増加する。したがって、高温度で行うほ ど、少な 、銅量でも処理が可能であると 、うメリットを有する。
[0020] 本発明のスラグフューミング方法としては、以下のような還元吹鍊方法を用いて行う ことができる。
例えば、ガス吹き込み用のランスを備えたスラグフューミング炉を用いて、炉内に装 入したスラグ融体と銅融体の混合物中にランスを浸漬し、ランス先端から重油、天然 ガス、微粉炭等と酸素含有ガスを噴出するガス吹鍊を行なって、これらを混合撹拌す るとともに、融体内を還元性雰囲気下にして、亜鉛、鉛、ヒ素、アンチモン等を金属状 態へ還元する。ここで、金属化された亜鉛の大部分と鉛の一部を揮発させ、ダストとし て回収する。
[0021] 一方、金属化されたヒ素とアンチモンは、蒸気圧が高いという性質の一方で鉄及び 銅との親和力が強いという性質を有している。ここで、銅融体が共存すると、ヒ素とァ ンチモンは銅と反応する。この反応によりヒ素が銅中に溶融あるいは固溶すると、銅 中のヒ素の活量はヒ素濃度が低 、場合には著しく小さ 、ので、その蒸気圧は低くなる 。したがって、ヒ素は揮発することなく銅合金を形成し Cu— Fe— Pb— As系均一融体中 に含まれることになる。アンチモンに関しても、ヒ素と同様の挙動を示し、銅合金の均 ー融体中に含有される。
[0022] 本発明に用いるヒ素又はヒ素及びアンチモンを含むスラグとしては、特に限定され るものではなぐ亜鉛、鉛のほかにヒ素又はヒ素及びアンチモンを含有する、亜鉛及 び Z又は鉛製鍊の熔鍊炉から産出された、熔鍊炉において還元性雰囲気で形成さ れたスラグが用いられる。
[0023] 上記熔鍊炉のスラグは、原料とフラックスの調合によって、例えば、 FeO-SiO A1
2
O— CaO— ZnO— PbO系の比較的低融点であるスラグ組成に調製される。そこで、
2 3
スラグ温度は 1200— 1350°Cで操業される。このスラグには、多量の酸化物としての 鉄が存在しており、例えば、上記熔鉱炉法の熔鉱炉内のような還元性雰囲気におい ては、局部的な強還元性によって生成された金属鉄と、ヒ素とアンチモンカスパイス を形成する。形成されたスパイスは、主に、スラグ層とメタル層の間に半溶融状又は 固体状で存在する。したがって、熔鍊炉力 産出されたスラグには、スラグ中に混濁 した状態でスパイスが存在する。
[0024] この鉄スパイス中のヒ素とアンチモンは、著しく活量が低下しており、極めて安定ィ匕 された状態にあることが知られている。そのため、ヒ素とアンチモンは、熔鉱炉内のの スラグ温度がそれらの金属の沸点以上である 1200— 1350°Cであることにもかかわら ず、揮発せずにスパイス相として存在する。
[0025] 本発明で用いるスラグフューミングの温度としては、 1075— 1500°Cであり、 1200 一 1500°C力 S好ましく、 1200— 1400°Cがより好ましい。すなわち、銅融体とスラグ中 に含有されるスパイスとを反応させて Cu— Fe— Pb— As系均一融体を形成するために は、上記温度範囲が用いられる。温度が 1075°C未満では、スラグの粘性が高すぎた り、あるいは固化するといつた問題が生じる。一方、温度が 1500°Cを超えると、耐火 物の損傷量が多くなるとともに、加熱のため必要とされる熱エネルギーが大きくなると いう問題が生ずる。
[0026] 本発明で用いる銅融体としては、特に限定されるものではなぐスラグフューミング に際して、スラグフューミング炉内で還元性雰囲気下、 1075— 1500°Cの温度で鉄と 均一融体を形成することができる銅含有物が用いられるが、例えば、金属銅のほか、 銅スクラップ、及び銅製鍊工程から得られる粗銅 (銅品位 98— 99重量%)等の中間 物を熔融して用いることができる。
[0027] 本発明で用いる銅融体中の銅量は、下記の 2つの要件を満たすように制御する。
(ィ)前記炉中に装入するスラグ量に対して 5— 100重量%
(口)前記炉への装入物中の鉛量に対して 100重量%以上
[0028] すなわち、(ィ)の要件では、銅融体中の銅量が、前記炉中に装入するスラグ量に 対して 5重量%未満では、スラグ中のヒ素及びアンチモンと銅との接触が十分に図れ ないので、ヒ素及びアンチモンは銅合金の均一融体中に十分に固定されない。一方 、銅融体中の銅量が、前記炉中に装入するスラグ量に対して 100重量%を超えると、 一度に炉内で処理することができるスラグ量が少なくなるので、処理効率を下げること になる。
また、銅合金の均一融体の形成において、銅スパイス相の生成が懸念される力 上 記のような過剰の銅量の添加条件では銅スパイス相の生成はおきない。
[0029] (口)の要件では、銅融体中の銅量が、前記炉への装入物中の鉛量に対して 100重 量%未満では、鉛リッチ相が生成する。すなわち、上記熔鉱炉での実操業において は、通常、熔鉱炉の炉底部からスラグを一部の鉛と共に抜き出し、前床と呼ばれる保 持容器等で鉛を分離する操作を行っている。しカゝしながら、得られるスラグ中には鉛 が含有されている。したがって、銅融体を共存させてスラグフューミング処理を行った 場合、形成される銅合金中の鉛量がある一定の割合以上になると、銅ーヒ素リッチ相( 銅スパイス相)と鉛リッチ相に分離する。
[0030] ここで、上記鉛リッチ相の生成条件を、図面を用いて、より詳しく説明する。図 2は、 1200°Cにおける銅-鉛-ヒ素三元系の状態図(例えば、「資源と素材」 1998年、第 4 号、 p. 218、第 7図を参照。)を示す。
図 2において、楕円形の領域の組成内では、スパイス相と鉛リッチ相の 2液相分離 範囲を形成することを示して 、る。この鉛相が形成され炉内で別層となって存在する と、炉底部に蓄積して炉内体積を減少させる。また、鉛層が増えることにより、層間界 面部の耐火物の侵食が大きくなる。したがって、鉛層を生成させることは実操業上好 ましくない。
この領域以外では、最も鉛の割合が少なくて 2相分離するヒ素を含まな 、銅 ^&合 金の場合であっても、銅量が鉛量以上存在すれば、均一融体となることを示している 。また、鉛を約 10重量%含有する場合には、ヒ素を約 20重量%含有する組成までは スパイス相は生成しないことが分かる。また、鉛品位がそれ以下であれば、銅メタル近 傍ではスパイスが生成しな 、ことが分かる。
[0031] さらに、上記銅融体中の銅量は、特に限定されるものではないが、前記炉への装入 物中のヒ素及びアンチモン量に対して 100重量%以上であることが好ましい。すなわ ち、ヒ素及びアンチモンに対して銅量が少なすぎると、十分に固定できないという問 題が生ずる。し力しながら、通常、銅融体中の銅量が、上記 (ィ)及び (口)の要件が満 足されるとき、この要件ち満たされる。
[0032] 本発明で用いるスラグフューミングの雰囲気としては、特に限定されるものではなく 、亜鉛、鉛、ヒ素及びアンチモンを金属状態に還元することができる雰囲気が用いら れるが、この中で、特に、— 8 >logPo >— 11. 5 (但し、 Poは atm単位によるスラグ
2 2
中の酸素分圧を表し、かつ 1400°Cの温度基準に換算したものである。)で示す範囲 の酸素分圧に制御することが好ま U、。
[0033] すなわち、 Po力 8atmを超えると、還元性が弱まるので、金属亜鉛の揮発が起 りにくくなる。また、 FeO— Fe O平衡の Po依存'性によって、高融点である Fe O力 S
3 4 2 3 4 スラグ中に増加してスラグの流動性が悪ィ匕するので、安定したスラグフューミング操業 が困難になる。一方、 Po力 11 5atm未満では、 Fe— FeO平衡の Po依存性によ
2 2
つて、鉄が金属状態で安定になり炉鉄の生成が起り操業を阻害する。
[0034] 本発明のスラグフューミングに際しては、融体温度が 1075— 1500°Cであり、かつ スラグ融体の酸素分圧が— 8 >logPo >— 11. 5 (但し、 Poは atm単位によるスラグ
2 2
中の酸素分圧を表し、かつ 1400°Cの温度基準に換算したものである。)を満たすこと 力 より好ましい。これによつて、ヒ素とアンチモンを含む銅合金の均一融体を形成さ せるとともに、炉鉄の生成を抑えて、なおかつ亜鉛の大部分を揮発回収することがで きる。
[0035] 以上の条件で Cu— Fe— Pb— As系均一融体が形成される力 この中で、特に、該均 ー融体中の Cuに対する Feの含有比率は、好ましくは 0. 01— 50重量%、より好まし くは添加銅量を低減することができる 5— 50重量%である。すなわち、スラグに対する 銅の使用量は、前述のように、スラグに含まれるスパイスと反応して、 1075— 1500 °Cの温度範囲において Cu— Fe— Pb— As系均一融体を形成する条件が選ばれる力 例えば、 1200— 1500°Cの温度範囲において該均一融体中への鉄の溶解量は銅 に対して 5— 50重量%である。
[0036] 本発明において得られる銅合金の均一融体の回収法としては、スラグフューミング 炉内で比重差でスラグと分離し、該炉の傾転あるいはタッピングにより行なわれる。ま た、回収された銅合金は、例えば酸ィ匕雰囲気である銅製鍊の転炉工程に投入するこ とで、銅を回収するとともに、鉄をスラグとして除去し、鉛、ヒ素及びアンチモンをダスト として処理することが可能である。このように、既存プロセス工程での処理が可能であ ることから、回収された銅合金の処理におけるコストの上昇も非常に少なくてすむ。
[0037] し力しながら、銅を大量に使用すると、コストの上昇につながるため、生成する銅合 金の均一融体を新規の処理スラグに対して繰り返し使用して、使用銅量を最少にす ることが望ましい。また、スラグ中のスパイスとの反応はスラグ融体と銅融体の接触度 合に依存するので、 1バッチあたりのスラグ量に対する銅量が多 、ほど好ま 、。 したがって、 1バッチあたりのスラグ量に対する銅量は、上記の銅に対する鉄の溶解 量から求められる 1バッチあたりの銅量以上を用いて、銅に対する鉄の溶解量力 5 一 50重量%、さらに好ましくは 5— 35重量%で飽和するまで新規スラグの複数バッ チを繰り返し用いる方法が望ましい。上記銅融体の繰り返し使用は、ヒ素あるいは鉄 が銅融体中へ固溶しなくなる、あるいは均一融体を形成できなくなるまで行うことがで きる。この際、ヒ素量に関しては、スラグ中の含有率力 通常、 0. n重量%以下と低い ので、事実上は鉄量によって制限される。また、銅融体中の鉄が飽和した場合でも、 銅を継ぎ足すことで、その銅融体を継続して用いることができる。
[0038] 本発明において得られるスラグは、環境庁告示第 46号による溶出試験において土 壌環境基準 (Pb、 As溶出量:各 0. OlmgZL以下)を満足するスラグであり、セメント 原料等へ好ましく使用することができる。 実施例
[0039] 以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、 本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及 び比較例で用いた金属の分析方法は、 ICP発光分析法で行った。
また、実施例及び比較例で用いた原料スラグは、熔鉱炉カゝら産出されたスラグを用 いた。表 1にその化学組成を示す。
[0040] [表 1]
Figure imgf000011_0001
また、実施例及び比較例で用いたスラグフューミング方法は、下記の通りである。
[スラグフューミング方法]
図 3のスラグフューミング装置を用いた。図 3に示すように、スラグフューミング装置 は、外熱式の電気炉 9によって加熱され、温度制御用熱電対 6と雰囲気担保用窒素 吹き込み管 1によって温度と電気炉内雰囲気が制御される。
ここで、まず、反応に用いるアルミナるつぼ 7に原料調合物を装入し、るつぼ保持用 レンガ 8の上に載せたセラミック外るつぼ 5の中にアルミナるつぼ 7を設置する。次に、 加熱されて熔融状態の融体に撹拌窒素用吹き込み管 3により窒素を吹きこみ、測温 用熱電対 4で反応温度を測定しながらスラグフューミングを行う。なお、発生するダス トは、ダスト回収用セラミック管 2を通じて、電気炉外部で回収される。
[0042] (実施例 1)
アルミナるつぼ内に、上記原料スラグ 500gと金属銅 (銅品位 99. 99重量%) 100g とともに炉内への混入酸素による酸ィ匕分を考慮したコータス (全炭素品位 87. 5重量 %) 28gを添加した原料調合物を入れた。添加銅量は、原料スラグ重量の 20重量% 、及び装入物中の鉛量の 1667重量%にあたる。次に、上記スラグフューミング方法 にしたがって、窒素雰囲気下において 1350°Cに加熱し、熔融後 30分保持した後、 窒素ガスで浴内を 50分撹拌した。撹拌終了後 30分保持し、その後、スラグと銅合金 をサンプリングした。また、揮発したダストを回収した。
このスラグフューミング処理操作後、アルミナるつぼを冷却し、スラグと銅合金を分 離し回収した。次に、この銅合金とともに、新たな原料スラグ 500gとコータス 28gをァ ルミナるつぼ内に入れ、同様のフューミング操作を繰り返し行った。この操作を合計 3 回行った。その後、各操作で得られたスラグ、銅合金及びダストの化学組成を分析し た。結果を表 2に示す。また、各スラグに対し、環境庁告示第 46号による溶出試験を 行い鉛とヒ素の溶出量を測定した。結果を表 3に示す。
[0043] [表 2]
Figure imgf000012_0001
[0044] [表 3] 溶出量 (m g Z L )
操作回数
P b A s
1 < 0 . 0 0 5 < 0 . 0 0 5
2 < 0 . 0 0 5 < 0 . 0 0 5
3 < 0 . 0 0 5 < 0 . 0 0 5
[0045] 表 2より、 3回の各操作は、本発明に基づいて行われたので、ヒ素とアンチモンが銅 合金中に濃縮し、スラグ中の鉛とヒ素が低減し、かつヒ素とアンチモンはダストに分布 しないことが分かる。また、得られた銅合金の繰り返しに際しても悪ィ匕は見られない。 表 3より、 3回の各操作は、本発明に基づいて行われたので、鉛とヒ素の溶出量が 低減し、安定的に土壌環境基準 (Pb、 As溶出量:各 0. OlmgZL以下)を満足でき ることが分力ゝる。
[0046] (実施例 2)
スラグフューミング処理操作において、 2回目以降は銅合金層のサンプリングを行 わず熔体のまま、全量次回の操作に繰り返したこと、及び操作の繰り返し回数が 5回 であること以外は実施例 1と同様に行 、、各操作で得られたスラグ及びダストの化学 組成を分析した。結果を表 4に示す。
[0047] [表 4]
Figure imgf000013_0001
[0048] 表 4より、 5回の各操作は、本発明に基づ!/、て行われたので、スラグ中の鉛とヒ素が 低減し、かつヒ素とアンチモンはダストに分配しないことが分かる。さらに、銅合金を熔 体のまま連続的に繰り返し使用しても、分離性能が保たれることが分力ゝる。
[0049] (実施例 3)
原料調合にお ヽてコ一タス量を 42g用いたこと、及びスラグフューミング処理操作に おいて、 1400°Cに加熱した以外は実施例 1と同様に行い、操作で得られたスラグ、 銅合金及びダストの化学組成を分析した。なお、繰り返し操作は行わなカゝつた。結果 を表 5に示す。また、スラグに対し、環境庁告示 46号による溶出試験を行い鉛とヒ素 の溶出量を測定した。結果を表 6に示す。
[0050] (実施例 4)
スラグフューミング処理操作にぉ 、て、 1250°Cに加熱した以外は実施例 1と同様に 行い、操作で得られたスラグ、銅合金及びダストの化学組成を分析した。なお、繰り 返し操作は行わな力つた。結果を表 5に示す。また、スラグに対し、環境庁告示第 46 号による溶出試験を行い鉛とヒ素の溶出量を測定した。結果を表 6に示す。
[0051] (実施例 5)
原料調合において金属銅 (銅品位 99. 99重量%)量を 250g (添加銅量は、原料ス ラグ重量の 50重量%にあたる。)用いたこと以外は実施例 1と同様に行い、操作で得 られたスラグ、銅合金及びダストの化学組成を分析した。なお、繰り返し操作は行わ なかった。結果を表 5に示す。また、スラグに対し、環境庁告示第 46号による溶出試 験を行 、鉛とヒ素の溶出量を測定した。結果を表 6に示す。
[0052] [表 5] 品位 (重量%)
Z n P b F e A s s b スラグ 0 . 5 1 0 . 0 1 2 2 < 0 . 0 1 < 0 . 0 1 実施例 3 銅合金 1 . 2 1 . 8 3 1 0 . 3 5 0 . 0 2 ダス ト > 7 0 7 . 7 0 . 0 5 < 0 . 0 1 < 0 . 0 1 スラグ 1 . 0 0 . 0 1 2 6 < 0 . 0 1 < 0 . 0 1 実施例 4 銅合金 3 . 0 1 . 5 1 5 0 . 3 5 0 . 0 2 ダス 卜 > 7 0 4 . 2 0 . 0 5 < 0 . 0 1 < 0 . 0 1 スラグ 0 . 4 8 0 . 0 1 2 9 < 0 . 0 1 < 0 . 0 1 実施例 5 銅合金 0 . 5 0 . 7 3 . 5 0 . 1 5 0 . 0 1 ダス ト > 7 0 3 . 0 0 . 0 5 < 0 . 0 1 < 0 . 0 1
[0053] [表 6] 溶出量 (m g Z L )
P b A s
実施例 3 < 0 . 0 0 5 ぐ 0 . 0 0 5
実施例 4 < 0 . 0 0 5 < 0 . 0 0 5
実施例 5 < 0 . 0 0 5 < 0 . 0 0 5 [0054] 表 5より、実施例 3— 5は、本発明に基づいて行われたので、ヒ素とアンチモンが銅 合金中に濃縮し、スラグ中の鉛とヒ素が低減し、かつヒ素とアンチモンはダストに分配 しないことが分かる。
表 6より、実施例 3— 5は、本発明に基づいて行われたので、鉛とヒ素の溶出量が低 減し、安定的に土壌環境基準 (Pb、 As溶出量:各 0. OlmgZL以下)を満足できるこ とが分かる。
[0055] (実施例 6)
アルミナるつぼ内に、上記原料スラグ 2000g、金属銅 (銅品位 99. 99重量%)400 g、及び炉内への混入酸素による酸ィ匕分を考慮したコータス (全炭素品位 87. 5重量 %)40gを原料調合物として入れた。なお、添加銅量は、原料スラグ重量の 20重量% 、及び装入物中の鉛量の 1667重量%にあたる。次に、上記スラグフューミング方法 にしたがって、窒素雰囲気下において 1400°Cに加熱し、熔融後 30分保持した後、 窒素ガスで浴内を 120分撹拌した。撹拌終了後、消耗型の酸素測定用プローブをス ラグ中に浸漬させて酸素分圧を測定した。このときのスラグの酸素分圧 (atm)は、 log P で 9. 6 (1400°C換算値)であった。その後、 60分保持してセトリングした後、冷
02
却した。
次いで、スラグと銅合金をサンプリングしィ匕学組成を分析した。また、揮発したダスト を回収しィ匕学組成を分析した。結果を表 7に示す。また、得られたスラグに対し、環境 庁告示第 46号による溶出試験を行い鉛とヒ素の溶出量を測定した。結果を表 8に示 す。なお、スラグ及び銅合金の生成量は、各々、 1780g及び 290gであった。
[0056] (実施例 7)
アルミナるつぼ内に、上記原料スラグ 2000g、実施例 6の操作にて得られた銅合金 270g、所定量の金属銅 (銅品位 99. 99重量%)及び炉内混入酸素による酸ィ匕分を 考慮した 40gのコータスを原料調合物として入れ、実施例 6と同様の条件でスラダフ ユーミングを行い、ダスト、スラグ及び銅合金を形成した。なお、全装入銅量を 400g に調合した。その後、同様の操作を 7回繰り返した。各 8回の操作において、スラグの 酸素分圧(atm)は、 logP で 9. 4一 10. 1 (1400°C換算値)であった。
02
次いで、第 8回目の操作で得られたスラグ及び銅合金をサンプリングしィ匕学組成を 分析した。また、揮発したダストを回収しィ匕学組成を分析した。結果を表 7に示す。ま た、第 8回目の操作で得られたスラグに対し、環境庁告示第 46号による溶出試験を 行い鉛とヒ素の溶出量を測定した。結果を表 8に示す。なお、第 8回目の操作で得ら れたスラグ及び銅合金の生成量は、各々、 1785g及び 295gであった。
[0057] (実施例 8)
原料調合物のコータスの添加量が 60gであること以外は実施例 6と同様の条件で還 元吹鍊操作を行った。スラグの酸素分圧 (atm)は logP で 11. 8 ( 1400°C換算値
02
)であった。その後、スラグ、銅合金及びダストをサンプリングしィ匕学組成を分析した。 なお、スラグの粘性は高かった。結果を表 7に示す。
[0058] [表 7]
Figure imgf000016_0001
[0059] 表 7より、実施例 6— 8では、本発明の方法に従って行われたので、ヒ素、アンチモ ンが銅合金に濃縮しており、スラグへの鉛、ヒ素及びアンチモンの分配とダストへのヒ 素及びアンチモンの分配が低いことが分かる。また、実施例 7では、銅合金中の鉄が 十分に少なぐ銅合金を繰返し使用することができることが分かる。さらに、実施例 8 では、スラグの酸素分圧が低下すると銅合金中の鉄品位が上昇するとともに、スラグ 中の鉄品位が低下することが分かる。これに伴ない、粘性が上昇したと見られる。
[0060] [表 8] 溶出量 (m g Z L )
P b A s
実施例 6 < 0 . 0 0 5 < 0 . 0 0 5
実施例 7 < 0 . 0 0 5 < 0 . 0 0 5 [0061] 表 8より、実施例 6又は 7では、本発明の方法に従って行われたので、鉛とヒ素の溶 出量が低下し、安定的に土壌環境基準を満足することができることが分力る。
[0062] (比較例 1)
原料調合物として上記原料スラグ 500gのみを用いたこと以外は実施例 1と同様に 行い、操作で得られたスラグ及びダストの化学組成を分析した。結果を表 9に示す。 また、スラグに対し、環境庁告示第 46号による溶出試験を行い鉛とヒ素の溶出量を 測定した。結果を表 10に示す。
[0063] [表 9]
Figure imgf000017_0001
[0064] [表 10]
Figure imgf000017_0002
[0065] 表 9、 10より、銅融体の添カ卩において本発明の条件と異なるので、スラグとダストへ のヒ素と鉛の分布が大きぐまた、スラグのヒ素と鉛の溶出量も土壌環境基準 (Pb、 As 溶出量:各 0. OlmgZL以下)より高ぐ満足すべき結果が得られないことが分かる。
[0066] (比較例 2)
金属銅の添加量が 80g (原料スラグ重量の 4重量%にあたる。 )である以外は実施 例 6と同様の条件でスラグフューミング処理操作を行った。その後、冷却後の試料の 状態を観察したところ、銅合金の均一融体の形成が不十分で、鉄スパイスが銅に吸 収された銅合金力^ラグ中に分散した状態であった。
[0067] (比較例 3)
金属銅の代わりに、 1250°Cで溶融後に急冷して作成した銅-鉛合金 (銅品位 40 重量%、鉛品位 60重量%) 400gを用いた以外は実施例 6と同様の条件で還元吹鍊 操作に行った。なお、添加銅量は、原料スラグ重量の 8重量%にあたり、また、装入 物中の鉛量 (銅^ 0合金中 240g+原料スラグ中 24g)の 60重量%にあたる。その後 、冷却後の試料の状態を観察したところ、スラグと銅合金の形成に加えて、るつぼ底 部に鉛層が形成されていた。また、得られたスラグに対し、環境庁告示第 46号による 溶出試験を行 、鉛とヒ素の溶出量を測定した。結果を表 11に示す。
[表 11]
Figure imgf000018_0001
[0069] 表 11より、銅融体の添カ卩において本発明の条件と異なるので、スラグのヒ素と鉛の 溶出量も土壌環境基準 (Pb、 As溶出量:各 0. OlmgZL以下)より高ぐ満足すべき 結果が得られな ヽことが分かる。
産業上の利用可能性
[0070] 以上より明らかなように、本発明のスラグフューミング方法は、亜鉛及び Z又は鉛製 鍊における熔鍊炉力も産出されるスラグ、例えば熔鉱炉法により熔鉱炉力 産出され るスラグを加熱還元し、亜鉛と鉛を揮発分離回収するスラグフューミング方法にぉ ヽ て、ヒ素とアンチモンの含有量が少な 、亜鉛と鉛を含むダストを得ることができるので 、ダストの溶鍊炉への繰り返しに際してヒ素とアンチモンの負荷を軽減しコストの削減 に寄与するものとして有用であり、また、スラグ中の鉛とヒ素を低減することができるス ラグ改質方法として好適である。なお、改質されたスラグの用途は、セメント用材等多 岐に渡るものである。

Claims

請求の範囲
[1] 亜鉛及び Z又は鉛製鍊の熔鍊炉カゝら産出される、亜鉛及び鉛とともにヒ素又はヒ素 及びアンチモンを含有するスラグをスラグフューミング炉内で加熱還元し、亜鉛と鉛を 揮発分離するスラグフューミング方法にお!ヽて、
前記スラグの融体に、 1075— 1500°Cの温度下で、前記炉中に装入するスラグ量 に対して 5— 100重量%であるとともに前記炉内の装入物中の鉛量に対して 100重 量%以上である銅量を含有する銅融体を共存させながら、スラグ中に含有されるヒ素 又はヒ素及びアンチモンとを反応させて Cu— Fe— Pb— As系均一融体を形成すること を特徴とするスラグフューミング方法。
[2] 前記融体温度は、 1200— 1500°Cであることを特徴とする請求項 1に記載のスラグ フューミング方法。
[3] 前記 Cu— Fe— Pb— As系均一融体中の Cuに対する Feの含有比率は、 0. 01— 50 重量%であることを特徴とする請求項 1に記載のスラグフューミング方法。
[4] 前記スラグ融体の酸素分圧は、次式に示す範囲に制御されることを特徴とする請求 項 1に記載のスラグフューミング方法。
8 >logPo >— 11. 5
2
(但し、式中、 Poは atm単位によるスラグ中の酸素分圧を表し、かつ 1400°Cの温度
2
基準に換算したものである。 )
[5] 銅融体として、 Cu— Fe— Pb— As系均一融体を繰り返し用いることを特徴とする請求 項 1に記載のスラグフューミング方法。
PCT/JP2005/000462 2004-01-19 2005-01-17 スラグフューミング方法 WO2005068669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517090A JP4470888B2 (ja) 2004-01-19 2005-01-17 スラグフューミング方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004010348 2004-01-19
JP2004-010348 2004-01-19
JP2004-205879 2004-07-13
JP2004205879 2004-07-13

Publications (1)

Publication Number Publication Date
WO2005068669A1 true WO2005068669A1 (ja) 2005-07-28

Family

ID=34797759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000462 WO2005068669A1 (ja) 2004-01-19 2005-01-17 スラグフューミング方法

Country Status (2)

Country Link
JP (1) JP4470888B2 (ja)
WO (1) WO2005068669A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095127A (ja) * 2006-10-06 2008-04-24 Sumitomo Metal Mining Co Ltd 銅製錬熔錬炉スラグの浄化方法
JP2016191120A (ja) * 2015-03-31 2016-11-10 Jx金属株式会社 非鉄製錬スラグの処理方法
JP2017201048A (ja) * 2016-05-06 2017-11-09 株式会社資源活用技術研究所 銅精錬スラグの処理方法
JP2018519428A (ja) * 2015-04-03 2018-07-19 メタロ ベルジウム 非鉄金属製造の際に生じる改質スラグ
CN108456777A (zh) * 2018-03-27 2018-08-28 广州万仕智投资有限公司 一种由贵锑制取富贵铅的方法
CN113862473A (zh) * 2021-08-19 2021-12-31 济源豫光有色冶金设计研究院有限公司 一种含锌物料的氢冶金烟化提锌方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192828A (ja) * 1987-02-04 1988-08-10 Sumitomo Metal Mining Co Ltd 亜鉛を含むからみから亜鉛を回収する方法
EP0654538A1 (de) * 1993-11-20 1995-05-24 Metallgesellschaft Aktiengesellschaft Wälzverfahren zur Aufarbeitung von Zink, Blei und Eisenoxide enthaltenden Materialien

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192828A (ja) * 1987-02-04 1988-08-10 Sumitomo Metal Mining Co Ltd 亜鉛を含むからみから亜鉛を回収する方法
EP0654538A1 (de) * 1993-11-20 1995-05-24 Metallgesellschaft Aktiengesellschaft Wälzverfahren zur Aufarbeitung von Zink, Blei und Eisenoxide enthaltenden Materialien

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095127A (ja) * 2006-10-06 2008-04-24 Sumitomo Metal Mining Co Ltd 銅製錬熔錬炉スラグの浄化方法
JP2016191120A (ja) * 2015-03-31 2016-11-10 Jx金属株式会社 非鉄製錬スラグの処理方法
JP2018519428A (ja) * 2015-04-03 2018-07-19 メタロ ベルジウム 非鉄金属製造の際に生じる改質スラグ
EP3277852B1 (en) 2015-04-03 2021-04-07 Metallo Belgium Improved slag from non-ferrous metal production
JP2017201048A (ja) * 2016-05-06 2017-11-09 株式会社資源活用技術研究所 銅精錬スラグの処理方法
CN108456777A (zh) * 2018-03-27 2018-08-28 广州万仕智投资有限公司 一种由贵锑制取富贵铅的方法
CN113862473A (zh) * 2021-08-19 2021-12-31 济源豫光有色冶金设计研究院有限公司 一种含锌物料的氢冶金烟化提锌方法

Also Published As

Publication number Publication date
JPWO2005068669A1 (ja) 2008-04-24
JP4470888B2 (ja) 2010-06-02

Similar Documents

Publication Publication Date Title
EP0771363B1 (en) Copper converting
JP5183638B2 (ja) 液中プラズマでの電熱製錬を使用する亜鉛及び鉛産業の副産物からの非鉄金属の回収
JPH0835020A (ja) 亜鉛含有廃棄物質から亜鉛の回収方法
CN111876611B (zh) 一种粗铜火法精炼深度脱除砷、铅、锌、锡的方法
JP2018145479A (ja) 白金族金属の回収方法
WO2005068669A1 (ja) スラグフューミング方法
WO2013088137A1 (en) Base metal recovery
JP2008095127A (ja) 銅製錬熔錬炉スラグの浄化方法
JP5446735B2 (ja) 金属マンガンの製造方法
KR102613147B1 (ko) 크루드 솔더의 제조를 위한 개선된 방법
KR20200091443A (ko) 개선된 땜납 제조 공정
JP2006307268A (ja) スラグフューミングにおけるダスト回収方法
JP4525453B2 (ja) スラグフューミング方法
JP2009041052A (ja) スラグフューミング炉による含銅ドロスの製錬方法
JP2009209405A (ja) 含銅ドロスの製錬方法
JP2009209389A (ja) スラグフューミング方法
JP2006176857A (ja) スラグフューミング方法。
JP5092615B2 (ja) スラグフューミング方法
JP4274069B2 (ja) スラグフューミング法で得られる銅合金とマットの再利用方法
CN100371476C (zh) 炉渣熏蒸方法
CN114667428A (zh) 改进的等离子体诱导烟化炉
AU7341098A (en) Recycling process for brass foundry waste
JP2006057156A (ja) スラグフューミング方法
JP2022519457A (ja) 鉛製品及びスズ製品の改良された同時生産
JP2006176858A (ja) スラグフューミング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001802.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517090

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2578/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase