JP2006176858A - スラグフューミング方法 - Google Patents

スラグフューミング方法 Download PDF

Info

Publication number
JP2006176858A
JP2006176858A JP2004373413A JP2004373413A JP2006176858A JP 2006176858 A JP2006176858 A JP 2006176858A JP 2004373413 A JP2004373413 A JP 2004373413A JP 2004373413 A JP2004373413 A JP 2004373413A JP 2006176858 A JP2006176858 A JP 2006176858A
Authority
JP
Japan
Prior art keywords
slag
copper
lead
zinc
fuming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373413A
Other languages
English (en)
Inventor
Junichi Takahashi
純一 高橋
Keiji Fujita
敬二 藤田
Toshiro Tan
敏郎 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004373413A priority Critical patent/JP2006176858A/ja
Publication of JP2006176858A publication Critical patent/JP2006176858A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと、安定的に土壌環境基準を満足することができるスラグとが得られるスラグフューミング方法を提供する。
【解決手段】亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、前記スラグに銅源として製錬中間物又はスクラップから選ばれる少なくとも1種の含銅原料を添加した後にフューミングに付し、Cu−Fe−Pb−As系銅合金の均一融体を形成することを特徴とするスラグフューミング方法などによって提供する。
【選択図】なし

Description

本発明は、スラグフューミング方法に関し、さらに詳しくは、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと、安定的に土壌環境基準を満足することができるスラグとが得られるスラグフューミング方法に関する。
亜鉛及び/又は鉛製錬において、Imperial Smelting Processと呼ばれる亜鉛と鉛を同時に製錬する熔鉱炉法が広く用いられている。前記熔鉱炉法で熔鉱炉で発生するスラグの処理方法は、スラグを熔鉱炉の前床に導いて含銅粗鉛と炉鉄を粗分離した後水砕して、セメント原料用等の製品スラグとされている。また、一般には、前記スラグは、亜鉛含有量が高く、鉛とともに、スパイスの成分であるヒ素、アンチモンその他の金属を含むため、フューミング炉に装入してスラグフューミングを行ったのち水砕して製品化される。
前記スラグフューミングは、熔融状態のスラグを加熱還元することによって、スラグに含まれる亜鉛、鉛、ヒ素、アンチモン等の金属を揮発させるものである。これによって、スラグから亜鉛と鉛を回収するとともに不純物金属を除去することができ、清浄化されたスラグが得られる。ここで、スラグフューミング処理は、ガス吹き込み用のランス又は炉下部に羽口を備えた加熱炉を用いて行われる。例えば、ガス吹き込み用のランスを備えた炉を用いて、該炉内に装入したスラグにランスを浸漬してランス先端から重油、微粉炭等の炭素質燃料と空気を噴出させることにより、スラグ中の金属を還元し揮発させる処理である。処理後のスラグは前記炉底部から抜き出され、揮発された金属は前記炉頂部への移動の途中で空気を加えて酸化されて亜鉛と鉛を含むスラグフューミングダストとして回収される。
しかしながら、スラグフューミング処理では、回収の主目的元素である亜鉛と鉛とともに、低沸点で蒸気圧の高いヒ素、アンチモンなどの15族元素が揮発し、回収した亜鉛と鉛ダスト中に濃縮する。これら15族元素は、回収した亜鉛と鉛とともに、例えば、前記熔鉱炉法の焼結工程に繰り返されるが、焼結工程で揮発して排ガス処理系統への負荷を増加させること、あるいは焼結塊とともに熔鉱炉内へ装入されると、高融点金属化合物であるスパイスを生成させる原因となって、熔鉱炉操業を困難にさせるという問題があった。
また、スラグフューミング処理のばらつきにより、鉛又はヒ素といった有害元素がスラグ中に残留した場合には、上記清浄化されたスラグの溶出試験において、土壌環境基準を満足することができないという問題がおこるので、安定的に土壌環境基準を満足する方法が望まれていた。
この解決策として、スラグの改質方法が提案されており、代表的なものとしては、熔鉱炉産出のスラグを前床に導いて含銅粗鉛と炉鉄を粗分離した後、電気炉で加熱して含銅粗鉛と炉鉄を沈降分離して、その後フューミング炉で処理する2段処理(例えば、特許文献1参照。)が挙げられる。しかしながら、この方法では、スラグの亜鉛、鉛及びヒ素の含有量及びスラグの土壌環境基準は満足されるが、ヒ素とアンチモンの揮発については根本的な解決策は得られないという問題があった。
以上の状況から、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグのフューミング方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストを得るとともに、安定的に土壌環境基準(環境庁告示第46号による溶出試験でのPb、As溶出量:各0.01mg/L以下)を満足することができるスラグが得られるスラグフューミング方法が求められている。
特開平11−269567号公報(第1頁、第2頁)
本発明の目的は、上記の従来技術の問題点に鑑み、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと、安定的に土壌環境基準を満足することができるスラグとが得られるスラグフューミング方法を提供することにある。
本発明者らは、上記目的を達成するために、亜鉛及び/又は鉛製錬の熔錬炉から産出される亜鉛、鉛及びヒ素を含有するスラグのスラグフューミング方法について、鋭意研究を重ねた結果、銅源として製錬中間物やスクラップとして回収された含銅原料を添加した後にスラグのフューミングを行なったところ、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストが得られるとともに、安定的に土壌環境基準を満足することができるスラグが得られることを見出し、本発明を完成した。
すなわち、本発明の第1の発明によれば、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、
前記スラグに、銅源として製錬中間物又はスクラップから選ばれる少なくとも1種の含銅原料を添加した後にフューミングに付し、Cu−Fe−Pb−As系銅合金の均一融体を形成することを特徴とするスラグフューミング方法が提供される。
また、本発明の第2の発明によれば、第1の発明において、前記均一融体中のCuとFeの含有割合(重量比)は、1:0.05〜1:0.50であることを特徴とするスラグフューミング方法が提供される。
また、本発明の第3の発明によれば、第1の発明において、前記フューミングは、温度を1075〜1500℃に維持するとともに、スラグの酸素分圧を次式に示す範囲に制御しながら行なうことを特徴とするスラグフューミング方法が提供される。
−8>logPo>−11.5
(但し、式中、Poはatm単位によるスラグ中の酸素分圧を表し、かつ1400℃の温度基準に換算したものである。)
また、本発明の第4の発明によれば、第1の発明において、前記含銅原料は、亜鉛及び/又は鉛を含有することを特徴とするスラグフューミング方法が提供される。
本発明のスラグフューミング方法は、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストとともに、安定的に土壌環境基準を満足することができるスラグが得られるので、その工業的価値は極めて大きい。また、銅源として製錬中間物やスクラップとして回収された含銅原料を用いるので、銅源のコストを削減することができる。さらに、含銅原料として、亜鉛及び/又は鉛を含有する製錬中間物やスクラップを用いると、亜鉛及び/又は鉛の回収メリットも得られるので、より有利である。
以下、本発明のスラグフューミング方法を詳細に説明する。
本発明のスラグフューミング方法は、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、前記スラグに、銅源として製錬中間物又はスクラップから選ばれる少なくとも1種の含銅原料を添加した後にフューミングに付し、Cu−Fe−Pb−As系銅合金の均一融体を形成することを特徴とする。
本発明において、銅源として前記含銅原料を添加してスラグ中に含有されるヒ素又はヒ素及びアンチモンと銅とを反応させてCu−Fe−Pb−As系均一融体を形成することが重要な意義を有する。これによって、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと安定的に土壌環境基準を満足することができるスラグとが得られるとともに、銅源のコストを削減することができる。
すなわち、ヒ素とアンチモンをそれらが安定して含有されるCu−Fe−Pb−As系銅合金中に分配させることによって、フューミングによる揮発を抑制することができる。したがって、フューミングにより生成された亜鉛と鉛を含むダストとフューミング後のスラグへのヒ素及びアンチモンの分布を低減することが達成される。
ここで、上記Cu−Fe−Pb−As系銅合金の均一融体の生成について、図面を用いて、より詳しく説明する。図1は、銅―鉄二元系状態図を示す。
図1より、例えば、1350℃では、銅中に鉄が約15%まで熔融し、均一融体となることが分かる。すなわち、鉄スパイスが金属状の銅と共存した際には、鉄スパイスは銅中に熔融し、一部の鉛とともに銅主体のCu−Fe−Pb−As系銅合金の均一融体を生成することになる。高銅品位領域では、均一融体を形成する銅に対する鉄の溶解量は温度によって変化し、温度が高いほど溶解量は増加する。したがって、高温度で行うほど、少ない銅量でも処理が可能であるというメリットを有する。
上記方法においてフューミングは、以下のように行うことができる。
例えば、ガス吹き込み用のランスを備えたスラグフューミング炉を用いて、炉内に装入したスラグ融体にランスを浸漬してランス先端から重油、天然ガス、微粉炭等と酸素含有ガスを噴出するガス吹錬を行い、これらを混合撹拌するとともに、融体内を還元性雰囲気として、亜鉛、鉛、ヒ素、アンチモン等を金属状態へ還元する。ここで、金属化された亜鉛の大部分と鉛の一部を揮発させてダストとして回収する。
金属化された亜鉛の大部分と鉛の一部は揮発してダストとして回収される。一方、金属化されたヒ素とアンチモンは、蒸気圧が高いという性質と、鉄及び銅との親和力が強いという性質を有している。そこで、銅融体が共存するとヒ素とアンチモンは銅と反応する。ここで、銅中のヒ素の活量は、ヒ素濃度が低い場合には著しく小さいので、ヒ素が銅中に溶融あるいは固溶すれば、ヒ素の蒸気圧は十分に小さくなり、揮発することなく銅合金を形成することになる。アンチモンに関しても、ヒ素と同様の挙動を示し、Cu−Fe−Pb−As系銅合金の均一融体に含有される。
上記方法に用いるスラグとしては、特に限定されるものではなく、亜鉛及び/又は鉛製錬の熔錬炉から産出される、亜鉛、鉛のほかにヒ素又はヒ素及びアンチモンを含有する還元性雰囲気で形成されたスラグが用いられる。例えば、上記熔鉱炉法による熔鉱炉内においては、金属に還元された鉄及び銅は、ヒ素及びアンチモンと反応してスパイスと呼ばれる高融点の金属間化合物を形成し、スラグ層とメタル層の間に半溶融状又は固体状で存在する。
すなわち、亜鉛及び/又は鉛製錬において産出されるスラグは、原料とフラックスの調合によって、例えば、FeO−SiO−Al−CaO−ZnO−PbO系の比較的低融点であるスラグ組成に調製される。そこで、スラグ温度は1200〜1350℃で操業される。このスラグには、多量の酸化物としての鉄が存在しており、例えば、熔鉱炉法のような還元性雰囲気においては、局部的な強還元性によって生成された金属鉄と、ヒ素とアンチモンがスパイスを形成する。
この鉄スパイス中のヒ素とアンチモンは、著しく活量が低下しており、極めて安定化した状態にあることが知られている。そのため、ヒ素とアンチモンは、熔鉱炉法のスラグ温度がそれらの金属の沸点以上である1200〜1350℃であることにもかかわらず、スパイス相としてスラグ中に混濁した状態で存在する。
上記方法では、銅源として、製錬中間物又はスクラップから選ばれる少なくとも1種の含銅原料を用いる。ここで、上記含銅原料は、各種の含銅原料を混合して用いることができる。また、銅源としての金属銅と併用することができる。
前記製錬中間物としては、特に限定されるものではなく、銅製錬から得られる粗銅(銅品位98〜99重量%)のほか、製錬、特に銅製錬の熔錬、転炉等の各工程で発生するダスト、滓等の含銅中間物が用いられる。また、多くの銅材料の使用分野からリサイクルされた、金属及び合金形態の加工屑等の含銅スクラップが用いられる。
これらの中で、亜鉛及び/又は鉛を比較的高濃度で含有する銅製錬工程のダスト、及び真鍮等の銅と亜鉛を含む合金スクラップが好ましい。また、特に、銅品位が高く、一方揮発されやすくダスト中への分配量が多い元素、例えばハロゲン類の含有量が少ないものがより好ましい。
上記方法で用いるスラグに対する含銅原料中の銅の使用量は、特に限定されるものではなく、スラグに含まれるスパイスと反応して、1075〜1500℃の温度範囲においてCu−Fe−Pb−As系銅合金の均一融体を形成する条件が選ばれるが、例えば、この温度範囲において均一融体中のCuとFeの含有割合(重量比)は、1:0.05〜1:0.5であり、用いる温度とスラグに含まれるスパイス中の鉄量に応じて、銅に対する鉄の溶解量から求められる銅量以上の使用量にすることが望ましい。
具体的には、スラグに含まれるスパイス中の鉄量に応じて銅量を変化させるか、あるいは銅量を一定にして処理するスラグ量を変化させることによって、Cu−Fe−Pb−As系銅合金の均一融体を安定的に形成することができる。
また、前記均一融体の形成において、銅スパイス相の生成が懸念されるが、上記鉄の溶解量に基づいて選ばれる過剰の銅量の添加条件では、銅スパイス相の生成はおきないので、事実上は上記鉄の溶解量に基づいて調製される。
ここで、スパイスと鉛リッチ相の生成について、図面を用いて、より詳しく説明する。図2は1200℃における銅−鉛−ヒ素三元系の状態図である(例えば、「資源と素材」1998年、第4号、p.218、第7図を参照。)。図2において、楕円形の領域の組成内で、スパイス相と鉛リッチ相の2液相分離範囲を形成することを示している。この領域以外では、均一相を形成し、たとえば、鉛が約10重量%含有する場合には、ヒ素が約20重量%含有する組成までスパイス相は生成しない。鉛量がそれ以下であれば、銅メタル近傍ではスパイスが生成しないことがわかる。
上記方法においてフューミングでのスラグの温度は、1075〜1500℃が好ましく、1200〜1400℃がより好ましい。スラグ中の亜鉛と鉛を十分に揮発させ、かつ銅とスパイスとを反応させて銅合金の均一融体を形成するためには、上記温度範囲が用いられる。すなわち、スラグの温度が1075℃未満では、Zn−ZnO平衡から亜鉛蒸気の形成が不十分なためスラグから亜鉛の揮発効率が悪化したり、又はFe−FeO平衡からFeOを含む安定したスラグの形成が不十分であるので、スラグの粘性が高すぎたりあるいは固化するといった問題が生じる。一方、スラグの温度が1500℃を超えると、耐火物の損傷量が多くなり、あるいは必要とする熱エネルギーが大きくなるという問題が生ずる。
上記方法においてフューミングの雰囲気としては、特に限定されるものではなく、亜鉛、鉛、ヒ素及びアンチモンを金属状態に還元できる雰囲気を用いるが、この中で、特に、−8>logPo>−11.5(但し、式中、Poはatm単位によるスラグ中の酸素分圧を表し、かつ1400℃の温度基準に換算したものである。)で示す範囲の酸素分圧に制御することが好ましい。
すなわち、Poが10−8atmを超えると、還元性が弱まるので、金属亜鉛の揮発が起りにくくなる。また、FeO−Fe平衡のPo依存性によって高融点であるFeがスラグ中に増加してスラグの流動性が悪化することによって、安定したスラグフューミング操業が困難になる。一方、Poが10−11.5atm未満では、Fe−FeO平衡のPo依存性によって鉄が金属状態で安定になり、炉鉄の生成が起り操業を阻害するので好ましくない。
したがって、上記フューミングに際して、スラグの温度は1075〜1500℃であり、かつスラグの酸素分圧は上記の要件を満たすことが好ましい。これによって、炉鉄の生成を抑えて、なおかつ亜鉛の大部分を揮発回収することができる。
上記方法においてフューミング炉から得られた銅合金の均一融体の繰り返しは、ヒ素あるいは鉄が銅中へ固溶しなくなる、あるいは均一融体を形成できなくなるまで行うことができる。この際、ヒ素量に関しては、スラグ中の含有率が、通常、0.n重量%以下と低いので、事実上は鉄量によって制限される。また、銅合金中の鉄が飽和した場合でも、銅を継ぎ足すことで、その銅合金を継続して用いることができる。
上記方法においてフューミング炉で得られる銅合金の均一融体は、比重差でスラグと分離し、炉の傾転あるいはタッピングにより銅合金として容易に回収できる。また、回収された銅合金は、例えば酸化雰囲気である銅製錬の転炉工程に投入することで、銅を回収するとともに、鉄をスラグとして除去し、鉛、ヒ素及びアンチモンをダストとして処理することが可能である。このように、既存プロセス工程での処理が可能であることから、回収された銅処理におけるコストの上昇も非常に少なくてすむ。
上記方法において得られるスラグは、安定的に土壌環境基準を満足することができるスラグであり、セメント原料等へ使用することができる。
以下に、本発明の実施例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例で用いた金属の分析方法は、ICP発光分析法で行った。
また、実施例で用いた原料スラグは、熔鉱炉から産出したスラグを用いた。表1にその化学組成を示す。
Figure 2006176858
また、実施例で用いたスラグフューミング方法は、下記の通りである。
[スラグフューミング方法]
図3のスラグフューミング装置を用いた。スラグフューミング装置は、外熱式の電気炉9によって加熱され、温度制御用熱電対6と雰囲気担保用窒素吹き込み管1によって温度と電気炉内雰囲気が制御される。まず、反応に用いるアルミナるつぼ7に原料調合物を装入し、るつぼ保持用レンガ8の上に設置したセラミック外るつぼ5の中にアルミナるつぼ7を装入する。次に、加熱されて熔融状態の融体に撹拌窒素用吹き込み管3により窒素を吹きこみ、測温用熱電対4で反応温度を測定しながらスラグフューミングを行う。なお、発生するダストは、ダスト回収用セラミック管2を通じて回収する。
(実施例1)
アルミナるつぼ内に、上記スラグ2000g、金属銅(銅品位99.99重量%)300g、銅含有滓200g、及びコークス(全炭素87.5重量%)50gからなる原料調合物を入れた。なお、前記銅含有滓の組成は、Cu:50.4重量%、Zn:12.0重量%、Pb1.7重量%、Fe5重量%及びAs0.34重量%であった。次に、上記スラグフューミング方法にしたがって、窒素雰囲気下において1350℃に加熱し、熔融後30分保持した後、窒素ガスで浴内を50分撹拌した。撹拌終了後30分保持し、その後、スラグ、銅合金及びマットをサンプリングした。また、揮発したダストを回収した。その後、得られたスラグ、銅合金、マット及びダストの化学組成を分析した。結果を表2に示す。また、スラグに対し、環境庁告示第46号による溶出試験を行い鉛とヒ素の溶出量を測定した。結果を表3に示す。
Figure 2006176858
Figure 2006176858
表2より、実施例1は、銅源として銅含有滓を使用して、本発明に基づいて行われたので、ヒ素とアンチモンが銅合金中に濃縮し、スラグ中の鉛とヒ素が低減し、かつヒ素とアンチモンはダストに分布しないことが分かる。
表3より、実施例1は、銅源として銅含有滓を使用して、本発明に基づいて行われたので、鉛とヒ素の溶出量が低減し、安定的に土壌環境基準(Pb、As溶出量:各0.01mg/L以下)を満足できることが分かる。
(実施例2)
原料調合物として、上記スラグ2000g、真鍮スクラップ(70−30黄銅を主とするスクラップ)571g(Cu純分:約400g)、及びコークス(全炭素87.5重量%)50gからなる混合物を用いた以外は、実施例1と同様に行ない、スラグ、銅合金及びマットをサンプリングした。また、揮発したダストを回収した。その後、得られたスラグ、銅合金、マット及びダストの化学組成を分析した。結果を表4に示す。また、スラグに対し、環境庁告示第46号による溶出試験を行い鉛とヒ素の溶出量を測定した。結果を表5に示す。
Figure 2006176858
Figure 2006176858
表4より、実施例2は、銅源として銅含有スクラップを使用して、本発明に基づいて行われたので、ヒ素とアンチモンが銅合金中に濃縮し、スラグ中の鉛とヒ素が低減し、かつヒ素とアンチモンはダストに分布しないことが分かる。
表5より、実施例1は、銅源として銅含有スクラップを使用して、本発明に基づいて行われたので、鉛とヒ素の溶出量が低減し、安定的に土壌環境基準(Pb、As溶出量:各0.01mg/L以下)を満足できることが分かる。
以上より明らかなように、本発明のスラグフューミング方法は、亜鉛及び/又は鉛製錬における熔錬炉から産出されるスラグ、例えば熔鉱炉法により熔鉱炉から産出されるスラグから亜鉛と鉛を揮発分離回収するスラグフューミング方法において、ヒ素とアンチモンの含有量が少ない亜鉛と鉛を含むダストを得ることができるので、該ダストの溶錬炉への繰り返しに際してヒ素とアンチモンの負荷を軽減しコストの削減に寄与するものとして有用であり、また、鉛とヒ素を含有するスラグ中の鉛とヒ素を低減するスラグ改質方法として好適である。なお、改質されたスラグの用途はセメント用材等多岐に渡るものである。
銅−鉄二元系状態図である。 1200℃における銅−鉛−ヒ素三元系の状態図である。 実施例に用いたスラグフューミング装置の概念図である。
符号の説明
1 雰囲気担保用窒素吹き込み管
2 ダスト回収用セラミック管
3 撹拌窒素用吹き込み管
4 測温用熱電対
5 セラミック外るつぼ
6 温度制御用熱電対
7 アルミナるつぼ
8 るつぼ保持用レンガ
9 電気炉

Claims (4)

  1. 亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグから亜鉛と鉛を揮発分離するスラグフューミング方法において、
    前記スラグに、銅源として製錬中間物又はスクラップから選ばれる少なくとも1種の含銅原料を添加した後にフューミングに付し、Cu−Fe−Pb−As系銅合金の均一融体を形成することを特徴とするスラグフューミング方法。
  2. 前記均一融体中のCuとFeの含有割合(重量比)は、1:0.05〜1:0.5であることを特徴とする請求項1に記載のスラグフューミング方法。
  3. 前記フューミングは、スラグの温度を1075〜1500℃に維持するとともに、スラグの酸素分圧を次式に示す範囲に制御しながら行なうことを特徴とする請求項1に記載のスラグフューミング方法。
    −8>logPo>−11.5
    (但し、式中、Poはatm単位によるスラグ中の酸素分圧を表し、かつ1400℃の温度基準に換算したものである。)
  4. 前記含銅原料は、亜鉛及び/又は鉛を含有することを特徴とする請求項1に記載のスラグフューミング方法。
JP2004373413A 2004-12-24 2004-12-24 スラグフューミング方法 Pending JP2006176858A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373413A JP2006176858A (ja) 2004-12-24 2004-12-24 スラグフューミング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373413A JP2006176858A (ja) 2004-12-24 2004-12-24 スラグフューミング方法

Publications (1)

Publication Number Publication Date
JP2006176858A true JP2006176858A (ja) 2006-07-06

Family

ID=36731223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373413A Pending JP2006176858A (ja) 2004-12-24 2004-12-24 スラグフューミング方法

Country Status (1)

Country Link
JP (1) JP2006176858A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628108A (zh) * 2012-03-31 2012-08-08 昆明理工大学 一种脆硫铅锑矿铅锑分离的方法
CN108411123A (zh) * 2018-03-12 2018-08-17 蒙自矿冶科技开发有限责任公司 一种利用“双底吹炉”搭配处理复杂低品位铅锑物料的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628108A (zh) * 2012-03-31 2012-08-08 昆明理工大学 一种脆硫铅锑矿铅锑分离的方法
CN102628108B (zh) * 2012-03-31 2014-10-01 昆明理工大学 一种脆硫铅锑矿铅锑分离的方法
CN108411123A (zh) * 2018-03-12 2018-08-17 蒙自矿冶科技开发有限责任公司 一种利用“双底吹炉”搭配处理复杂低品位铅锑物料的方法

Similar Documents

Publication Publication Date Title
TWI398528B (zh) 包含銅與其他有價金屬之殘留物之回收
JP4967576B2 (ja) 銅製錬熔錬炉スラグの浄化方法
JP5183638B2 (ja) 液中プラズマでの電熱製錬を使用する亜鉛及び鉛産業の副産物からの非鉄金属の回収
CN111876611B (zh) 一种粗铜火法精炼深度脱除砷、铅、锌、锡的方法
KR20200088453A (ko) 개선된 건식 정련 공정
JP4470888B2 (ja) スラグフューミング方法
JP2009041052A (ja) スラグフューミング炉による含銅ドロスの製錬方法
JP2006307268A (ja) スラグフューミングにおけるダスト回収方法
JP4949343B2 (ja) 銅の製錬方法
KR20200091443A (ko) 개선된 땜납 제조 공정
JP4525453B2 (ja) スラグフューミング方法
JP2009209405A (ja) 含銅ドロスの製錬方法
JP6516264B2 (ja) 銅精錬スラグの処理方法
JP2009209389A (ja) スラグフューミング方法
JP2023503237A (ja) 改善された銅製錬方法
JP2006176857A (ja) スラグフューミング方法。
JP5092615B2 (ja) スラグフューミング方法
JP4274069B2 (ja) スラグフューミング法で得られる銅合金とマットの再利用方法
JP2006176858A (ja) スラグフューミング方法
JP2006057156A (ja) スラグフューミング方法
JP2009167469A (ja) 含銅ドロスの処理方法
JP2009209388A (ja) スラグフューミング方法
JP4274067B2 (ja) 銅合金から不純物金属を除去する方法及びそれを利用したスラグフューミング方法
EP0216618A2 (en) Recovery of volatile metal values from metallurgical slags
JP2009041051A (ja) スラグフューミング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027