WO2005066623A1 - 超臨界流体クロマトグラフィーによって物質を分離する方法及びこれに用いられる気液分離装置 - Google Patents

超臨界流体クロマトグラフィーによって物質を分離する方法及びこれに用いられる気液分離装置 Download PDF

Info

Publication number
WO2005066623A1
WO2005066623A1 PCT/JP2004/019105 JP2004019105W WO2005066623A1 WO 2005066623 A1 WO2005066623 A1 WO 2005066623A1 JP 2004019105 W JP2004019105 W JP 2004019105W WO 2005066623 A1 WO2005066623 A1 WO 2005066623A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mobile phase
outer cylinder
solvent
supercritical fluid
Prior art date
Application number
PCT/JP2004/019105
Other languages
English (en)
French (fr)
Inventor
Akihiro Matabe
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP04807462.9A priority Critical patent/EP1703280B1/en
Publication of WO2005066623A1 publication Critical patent/WO2005066623A1/ja
Priority to US11/478,699 priority patent/US7678276B2/en
Priority to US12/581,940 priority patent/US8591734B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • B01D19/0015Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid in contact columns containing plates, grids or other filling elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8447Nebulising, aerosol formation or ionisation
    • G01N2030/8494Desolvation chambers

Definitions

  • the present invention provides a method for separating a substance by supercritical fluid chromatography, in which a gas component constituting a supercritical fluid is recovered and reused from a mobile phase containing a supercritical fluid and a solvent, and
  • the present invention relates to a gas-liquid separation device used for this.
  • chromatography As a method for separating a desired substance in a sample, various types of chromatography are used. As one of such chromatography, supercritical fluid chromatography using a supercritical fluid as a mobile phase is known. Supercritical fluid chromatography uses a supercritical fluid, a fluid that has various properties compared to general solvents, as a mobile phase, so it is necessary to separate, analyze, purify, etc. various substances that were difficult to separate. It is being considered for use.
  • a supercritical fluid supplied from a cylinder is pumped, a sample is injected into the supercritical fluid, and the sample is injected.
  • the supercritical fluid is passed through the column, the pressure of the supercritical fluid passed through the column is reduced to precipitate a solute, the separated solute and the supercritical fluid are separated, and the separated supercritical fluid is sent to the pump.
  • a mobile phase in which a supercritical fluid and a solvent are mixed may be used depending on the type of solute and the type of filler.
  • the techniques described above do not show the use of such a mobile phase, and there is room for study on the reuse of a supercritical fluid when using such a mobile phase.
  • the present invention relates to a method for separating a substance by a supercritical fluid chromatography using a mobile phase containing a supercritical fluid and a solvent, wherein a gas forming the supercritical fluid is reused. It is an object of the present invention to provide a method capable of performing the method and a gas-liquid separation device used for the method.
  • the present invention provides a new method of generating a supercritical fluid from a gas, separating a mobile phase after passing through a column into a gas and a liquid, and adjusting the pressure of the separated gas. If the pressure of the separated gas is higher than the pressure of the newly supplied gas, the separated gas has priority over the newly supplied gas. And a method for producing a supercritical fluid, and a gas-liquid separation device suitably used for the method.
  • the present invention provides a process of liquefying a gas to generate a liquefied gas, and adding a desired substance to a mobile phase containing the obtained liquefied gas force and the generated supercritical fluid and solvent.
  • a step of injecting a contained sample a step of passing the mobile phase into which the sample has been injected through a column for separating the desired substance from the sample, and a step of separating the mobile phase containing the desired substance into a solvent and a gas.
  • the step of producing the liquid gas comprises the step of separating the gas separated from the mobile phase.
  • a method in which the gas separated from the mobile phase is liquefied when the pressure is higher than the pressure of the gas supplied from the gas supply means to generate the liquefied gas (hereinafter also referred to simply as the ⁇ separation method ''). ).
  • the present invention provides a method for injecting a sample containing a desired substance into a mobile phase containing a supercritical fluid and a solvent, and passing the sample through a column for separating the desired substance from a sample.
  • a gas used in a method for separating a substance by supercritical fluid chromatography in which a desired substance in the column is separated, a mobile phase passed through a column is separated into a solvent and a gas, and the solvent power also separates the desired substance.
  • a liquid separator wherein an outer cylinder having both ends open, a flange portion closing an opening at one end of the outer cylinder, and a mobile phase being introduced into the outer cylinder in a circumferential direction along an inner peripheral wall surface of the outer cylinder.
  • the gas-liquid separation device includes an introduction portion and an inner cylinder that is open at both ends and extends to the other end of the outer cylinder beyond the introduction portion through the flange portion.
  • FIG. 1 is a schematic diagram showing the structure of an example of a supercritical fluid chromatography fractionation device used in the separation method of the present invention.
  • FIG. 2 is a cross-sectional view showing a longitudinal section of a main part of an example of the gas-liquid separation device of the present invention.
  • FIG. 3 is a cross-sectional view showing a cross section of a main part when the gas-liquid separation device shown in FIG. 2 is cut along a line AA.
  • the separation method of the present invention comprises the steps of: liquefying a gas to generate a liquefied gas; and obtaining a sample containing a desired substance in a mobile phase containing the resulting liquefied gas force and the generated supercritical fluid and solvent. Injecting, passing the mobile phase into which the sample has been injected through a column for separating the desired substance from the sample, and separating the mobile phase containing the desired substance into the solvent and the gas And a step of performing.
  • the gas for generating the supercritical fluid is subjected to liquid filtration.
  • the generation of the liquid gas is performed by adjusting the pressure and temperature of the gas.
  • a pressure adjusting means such as a compressor or a back pressure valve can be used.
  • a temperature adjusting means such as heat exchange can be used.
  • the gas carbon dioxide, ammonia, sulfur dioxide, hydrogen halide, nitrous acid nitrogen, hydrogen sulfide, methane, ethane, propane, butane, ethylene, propylene, halogenated hydrocarbon, water and the like are used. be able to. From the viewpoints of flammability, explosiveness, harm to the human body, easiness of handling, economic efficiency, and the like, the gas is preferably diacid carbon.
  • the mobile phase in the step of injecting the sample is a mixed solvent containing a supercritical fluid and a solvent.
  • the supercritical fluid in the present invention is the above-mentioned gas under at least one of a pressure exceeding a critical pressure and a temperature exceeding a critical temperature.
  • the supercritical fluid can be generated by further applying one or both of pressure and temperature to the generated liquid.
  • the mobile phase may be generated by mixing the generated supercritical fluid and a solvent, or may be formed by mixing the liquefied gas and a solvent, and adding one or both of pressure and temperature to the mixed solvent. By applying both, the liquefied gas in the mixed solvent may be converted into a supercritical fluid to generate the gas.
  • the mixing of the liquid gas or the supercritical fluid with the solvent is performed, for example, by feeding each fluid at a predetermined flow rate by a metering pump as in a high-performance liquid chromatography. It can be carried out by pouring and mixing.
  • the mixing ratio of the solvent varies depending on conditions such as the type of the substance contained in the sample, but is preferably about 5 to 30% by mass in the mobile phase in order to enhance the separation efficiency of the desired substance.
  • the solvent a known solvent selected according to the type of the substance to be separated, the type of the filler, and the like is used, and examples thereof include lower alcohols such as ethanol and 2-propanol.
  • a sample obtained by a usual method in which a substance to be separated is dissolved in an appropriate solvent can be used.
  • a solvent for dissolving the object to be separated a general organic solvent or a mixed solvent thereof can be used.
  • an appropriate column according to the desired substance is used.
  • a mobile phase containing a supercritical fluid since a mobile phase containing a supercritical fluid is used, it can be suitably used for separation of a substance that has been difficult to separate by other chromatography.
  • the column is filled with a polysaccharide derivative having optical isomer separation ability supported on the surface of a carrier such as silica. A column filled with the agent is used.
  • an ordinary gas-liquid separator capable of separating the solvent and the gas can be used. It is preferable to use a liquid separation device in order to stably perform high-precision separation. By releasing the separated solvent from high-pressure conditions and, if necessary, employing a known method such as concentration under reduced pressure, the desired substance can be obtained in the solvent power.
  • the gas separated from the mobile phase is reused as a source of the liquefied gas according to the pressure of the gas. That is, in the step of generating the liquid gas, when the pressure of the gas separated from the mobile phase is higher than the pressure of the gas supplied from the gas supply means for generating the liquid gas. Then, the gas from which the mobile phase force has been separated is liquefied.
  • Such a reuse of the separated gas is achieved by connecting the gas-liquid separation device and the means for generating the liquefied gas with a pipe, and using a suitable pressure adjusting means to perform the gas re-use. It can be performed by setting the pressure of the separated gas to a pressure higher than the pressure of the gas from the supply means.
  • the pressure adjusting means as described above, a known means such as a compressor or a back pressure valve can be used.
  • the pressure of the separated gas is set according to not only the pressure of the gas from the gas supply means but also the solubility of the gas in the solvent from the viewpoint of suppressing re-dissolution in the solvent. You. For example, in the case where diacid carbon is used as the gas and a normal organic solvent is used as the solvent, the pressure of the separated gas is set to about 11 lOMPa. Preferred in suppressing re-dissolution into.
  • the pressure of the separated gas is not particularly limited as long as it is set to a value higher than the pressure of the gas of the gas supply means, but the pressure of the separated gas and the gas supply means
  • the pressure difference from the pressure of the gas from is preferably not less than 0.1 IMPa.
  • the method may further include a step of separating the gas and the solvent separated in the step of separating. According to such a re-separation step, a larger amount of the gas can be recovered from the solvent, and the recovery rate of the gas can be further increased.
  • the re-separation step can be performed by lowering the pressure of the system containing the solvent.
  • the pressure of the system containing the solvent is adjusted, for example, by storing the solvent in a sealable container and gradually opening the sealable container to a low-pressure side such as a normal-pressure container or a vacuum pump. , Can be lowered continuously.
  • the re-separation step may be performed by housing the solvent in a sealable container and setting the pressure of the sealable container to a pressure lower than the pressure of the solvent before storage. it can.
  • the pressure in the container may be set before storing the solvent, or may be set after storing the solvent.
  • the re-separation step can be performed by connecting a plurality of the sealable containers in series and sequentially supplying the solvent to a container having a lower internal pressure.
  • the gas-liquid separation device causes the mobile phase to move forward from the mobile phase.
  • the operation of separating the gas and the solvent and the operation of further recovering the gas from the solvent can be performed in parallel.
  • the number of the hermetically sealable containers is not particularly limited.
  • the gas separated in the re-separation step is recovered, for example, from the sealable container, and the recovered gas is compressed by a compressor to liquefy, thereby obtaining the liquefied gas. It can be reused as dangling gas.
  • the re-separation step is particularly effective when a large amount of the solvent is separated in the separation step.
  • a case for example, a case where the desired substance is separated using a column having a large diameter as in industrial production or the like can be mentioned.
  • the diameter of the column is preferably 10 cm or more, more preferably 20 cm or more.
  • the present invention may include other steps in addition to those described above.
  • Such other steps include, for example, a step of detecting a substance in a mobile phase after passing through a column, and a method of dividing a mobile phase into a plurality of gas-liquid separation means according to the detection result of the substance in the mobile phase.
  • the gas-liquid separation device includes an outer cylinder open at both ends, a flange portion closing an opening at one end of the outer cylinder, and removing the mobile phase in a circumferential direction along an inner peripheral wall surface of the outer cylinder. It has an introduction part which is introduced into the cylinder, and an inner cylinder which is open at both ends and extends to the other end of the outer cylinder from the introduction part through the flange part.
  • the gas-liquid separation device since the inner cylinder extends from the introduction section to the other end of the outer cylinder, the droplets of the mobile phase introduced from the introduction section, It is possible to reduce the concentration of the solvent and the substance in the gas contained in the gas discharged from the inner cylinder. Further, since the outer cylinder is cylindrical, pressure is evenly applied to the inner peripheral wall surface, so that the durability of the gas-liquid separation device is enhanced. As described above, the gas-liquid separation device can recover a gas with high purity under high-pressure conditions, and thus can be used for separation of optical isomers that require more precise separation by supercritical fluid chromatography. ⁇ Then, the recovered gas is It is suitably used for the technology of reusing the material.
  • a jacket for covering the outer peripheral wall surface of the outer cylinder and adjusting the temperature of the outer cylinder, and connected to the introduction section through the jacket to supply the mobile phase to the introduction section. It is preferable to further include a mobile phase supply pipe in order to further increase the separation efficiency of gas-liquid separation in the outer cylinder. Further, the temperature of the mobile phase is adjusted to the temperature of the outer cylinder before the mobile phase is introduced into the outer cylinder, which is preferable for further increasing the separation efficiency of gas-liquid separation in the outer cylinder.
  • the outer cylinder is not particularly limited as long as the mobile phase introduced from the introduction section can spirally flow from one end of the outer cylinder to the other end along the inner peripheral wall surface.
  • the outer cylinder is generally cylindrical, but the shape of the inner peripheral wall surface in cross section is used for the purpose of causing a deviation in the flow velocity of the mobile phase introduced into the outer cylinder, or for giving an appropriate impact.
  • a substantially circular cylinder such as an oval or polygon may be used.
  • the flange is not particularly limited as long as it closes an opening at one end of the outer cylinder.
  • a difference diameter lon for installing the inner cylinder and closing the outer cylinder can be suitably used.
  • the introduction section may be formed by a nozzle or a tube that introduces the mobile phase into the outer cylinder along a tangent to the inner peripheral wall surface in the cross-sectional shape of the outer cylinder.
  • the mobile phase is usually introduced in a direction parallel to the transverse direction of the outer cylinder.
  • the present invention is not limited to this, and the introduction portion may be provided parallel to the transverse direction of the outer cylinder or may be provided obliquely.
  • the cross-sectional shape of the inner cylinder is not particularly limited as long as the pipe has a smaller diameter than the outer cylinder.
  • the inner cylinder is configured to extend sufficiently to the other end side of the outer cylinder from the introduction portion from the viewpoint of preventing the mobile phase splash from entering the gas in the outer cylinder.
  • the extension length of such an inner cylinder differs depending on various conditions such as the conditions for introducing the mobile phase into the outer cylinder, the diameter of the outer cylinder, and the diameter of the inner cylinder.
  • the inner cylinder is extended to a position where the flow of the mobile phase introduced into the outer cylinder loses momentum and the mobile phase is transmitted along the inner peripheral wall surface of the outer cylinder, that is, the position where the inner peripheral wall surface force does not splash. Good luck.
  • the jacket a normal jacket for circulating a heat medium outside the outer cylinder is used. be able to. If the heating medium supplied to the jacket is a warm medium, it is effective in increasing the gas separation efficiency.If the heating medium supplied to the jacket is a cooling medium, the solubility of the desired substance in the solvent is reduced. It is effective in lowering.
  • the mobile phase supply pipe is preferably provided long in the jacket from the viewpoint of previously adjusting the temperature of the mobile phase before gas-liquid separation to the temperature in the outer cylinder.
  • the mobile phase supply pipe is provided in a meandering shape in the jacket or spirally provided on the outer peripheral wall surface of the outer cylinder.
  • Such a mobile phase supply pipe is preferable, particularly when the heat medium is a warm medium, in order to suppress droplets due to a change in temperature of the mobile phase when introduced into the outer cylinder.
  • the gas-liquid separation device of the present invention reduces the incorporation of mobile phase droplets into gas that has been subjected to gas-liquid separation. Is possible. In particular, in the field of medicine, etc., contamination with impurities may have a significant effect. It is effective to apply the method to the analysis and separation of optical isomers with certain strength.
  • FIG. 1 shows a supercritical fluid chromatography fractionation apparatus used in the separation method of the present invention.
  • the supercritical fluid chromatographic fractionation apparatus includes a cylinder 1 as a gas supply means filled with high-pressure carbon dioxide, and cools and liquefies high-pressure carbon dioxide.
  • the pump 3 for sending the liquid of the disulfide gas generated in the heat exchange 2, and the liquid 3
  • a pump 5 for supplying a solvent to be supplied, a heat exchanger 6 for heating a mixed solvent of the liquefied gas and the solvent to convert the liquefied gas into a supercritical fluid
  • Injector 7 for injecting the sample into the mobile phase which is a mixture with the solvent
  • column 8 for separating the desired substance in the injected sample, and detection of the substance in the mobile phase passing through column 8
  • Back pressure valve 10 as a pressure control device, a plurality of gas-liquid separation devices 11 for gas-liquid separation of the pressure-adjusted mobile phase passing through the back pressure valve 10, and a gas-liquid
  • a gas-liquid-separated gas power A gas-liquid-separated gas power, a purifier 13 for further removing liquid, a tank 14 for storing the liquid removed by the purifier 13, and a gas purified by the purifier 13.
  • the pressure of the given And a back pressure valve 15 for maintaining pressure.
  • the cylinder 1, the heat exchanger 2, the pump 3, the heat exchanger 6, the injector 7, the column 8, the detector 9, and the back pressure valve 10 are connected in series by a pipe.
  • the gas-liquid separation device 11 is connected to the back pressure valve 10 and the purification device 13 by pipes in parallel.
  • the purification device 13 and the back pressure valve 15 are connected by a pipe.
  • the secondary side of the back pressure valve 15 (the side opposite to the purification device 13) is connected to a pipe for discharging gas out of the system.
  • the pipe connecting the refining device 13 and the back pressure valve 15 branches on the way, and the branched pipe is connected to the pipe on the upstream side of the heat exchanger 2.
  • the solvent tank 4 and the pump 5 are connected by a pipe, and the pump 5 is connected by a pipe to a pipe connecting the pump 3 and the heat exchanger 6.
  • Each gas-liquid separator 11 and each tank 12, and each of the purifiers 13 and 14 are also connected by pipes.
  • a check valve 17 for preventing backflow of gas is provided.
  • a buffer tank 18 for receiving the liquefied gas generated in the heat exchange 2 is provided.
  • the column 8 is housed in a column oven 19 for adjusting the inside of the column 8 to a predetermined temperature.
  • a valve 20 corresponding to each gas-liquid separation device 11 is provided so that the supply destination of the mobile phase from the back pressure valve 10 can be selected. It is provided.
  • a check valve 21 for preventing backflow of gas from the purification device 13 to each gas-liquid separation device 11 is provided between each gas-liquid separation device 11 and the purification device 13. 11 is provided.
  • Pumps 3 and 5 are pumps capable of quantitatively sending liquid.
  • the back pressure valve 10 is provided with a mobile phase having a pressure equal to or higher than the constant pressure so as to maintain the pressure on the column 8 side of the back pressure valve 10, that is, the system on the primary side of the back pressure valve 10 at a constant pressure (for example, 20 MPa). It is a valve that opens and closes so as to escape to the gas-liquid separator 9 side of 10, that is, the secondary side of the back pressure valve 10.
  • the back pressure valve 15 is maintained at a pressure equal to or higher than the predetermined pressure so as to maintain the pressure of the purification device 13 of the back pressure valve 15 and the heat exchanger 2 side, that is, the pressure of the primary side of the back pressure valve 15 at a constant pressure (for example, 9.5 MPa).
  • This valve opens and closes such that the gas to be discharged to the pipe side for discharging the back pressure valve 15, that is, the secondary side of the back pressure valve 15.
  • the detector 9 has a predetermined It is connected to a control device (not shown) for controlling the opening and closing of the valve 20, the tank 12, and the tank 14.
  • the gas-liquid separation device 11 includes a cylindrical outer cylinder 31 having both ends opened, a flange portion 32 for closing one end of the outer cylinder 31, and an outer cylinder.
  • An introduction portion 33 which is a tube provided along the tangent to the inner peripheral surface in the cross-sectional shape of 31 and opening into the outer cylinder 31, and an introduction portion which is open at both ends and penetrates through the flange portion 32.
  • the inner cylinder 34 extends to the other end of the outer cylinder 31 from the outer cylinder 33, the jacket 35 covers the outer peripheral wall of the outer cylinder 31 to form a circulation path for the heat medium, and passes through the jacket 35 to the introduction section 33.
  • a mobile phase supply pipe 36 connected thereto.
  • the jacket 35 has a heat medium supply port 37 at the other end of the jacket 35 and a heat medium discharge port 38 at one end of the jacket 35.
  • the force at one end of the jacket 35 is also passed through the jacket 35, and the force at one end of the jacket 35 is spirally wound around the outer circumference of the outer cylinder 31 toward the other end of the jacket 35. From the other end side, and is connected to the introduction section 33.
  • the mobile phase supply pipe 36 is connected to the valve 20.
  • the inner cylinder 34 is connected to the purification device 13.
  • the other end of the outer cylinder 31 is connected to the tank 12.
  • the supply port 37 and the discharge port 38 are connected to a heating medium circulating means (not shown).
  • the refining device 13 has the same configuration as the gas-liquid separation device 11 shown in Figs. 2 and 3.
  • the mobile phase supply pipe 36 is connected to the check valve 21.
  • the inner cylinder 34 is connected to the back pressure valve 15.
  • the other end of the outer cylinder 31 is connected to the tank 14.
  • the supply port 37 and the discharge port 38 are connected to a heating medium circulating means (not shown), similarly to the gas-liquid separation device 11.
  • a heat medium is circulated in the jacket 35 of the gas-liquid separation device 11 and the purification device 13, and the temperature of the outer cylinder 31 is adjusted to a predetermined temperature.
  • valves such as valves, check valves, and safety valves
  • pressure gauges thermometers
  • flow meters are also provided.
  • Peripheral devices such as means, heaters and binchers, and accumulators are provided in appropriate places.
  • pressure regulating valve 16 is adjusted to supply carbon dioxide to heat exchanger 2 from cylinder 1 at a predetermined pressure (for example, 4 MPa). The carbon dioxide is cooled and liquefied in the heat exchanger 2.
  • the liquefied gas of carbon dioxide generated in heat exchange 2 is stored in a buffer tank 18 and supplied to heat exchange 6 by pump 3.
  • Liquid dani gas supplied to heat exchange 6 The organic solvent such as lower alcohol sent from the medium tank 4 by the pump 5 is supplied, the liquefied gas and the organic solvent are mixed, and the mixed solvent is supplied to the heat exchanger 6.
  • the mixed solvent is heated to convert the liquefied gas in the mixed solvent into a supercritical fluid, and the temperature of the mobile phase formed by mixing the supercritical fluid and the solvent is changed by a power oven. Adjust to the temperature of column 8 set at 19 (eg 40 ° C).
  • a solution of an object to be separated is injected as a sample from the injector 7 into the mobile phase whose temperature has been adjusted.
  • the sample injected from the injector 7 is sent to the column 8, and various substances contained in the sample are separated as the sample passes through the column 8.
  • the substance in the mobile phase that has passed through the column 8 is detected by the detector 9. According to the detection result of the detector 9, a predetermined knob 20 is opened and other valves 20 are closed.
  • the mobile phase that has passed through the detector 9 is sent to the back pressure valve 10. As the mobile phase passes through the back pressure valve 10, the pressure of the mobile phase is reduced, and the mobile phase is supplied from a predetermined valve 20 to a mobile phase supply pipe 36 of a predetermined gas-liquid separation device 11.
  • the mobile phase supplied to the mobile phase supply pipe 36 spirally moves along the outer peripheral surface of the outer cylinder 31 in the jacket 35 and is then supplied to the introduction section 33.
  • the mobile phase is preliminarily adjusted to the temperature of the outer cylinder 31 before being supplied to the introduction section 33.
  • the mobile phase whose temperature has been adjusted is introduced into the outer cylinder 31 from the introduction section 33.
  • the mobile phase falls while making a circular motion along the circumferential direction of the inner peripheral wall surface of the outer cylinder 31.
  • the gas recovered from the inner cylinder 34 is introduced from the mobile phase supply pipe 34 into the outer cylinder 31 through the introduction part 33 in the purifier 13 and is discharged from the purifier 13 through the inner cylinder.
  • the refining device 13 a trace amount of solvent mixed into the gas by the above-mentioned droplets is removed from the gas.
  • the back pressure valve 15 maintains the pressure on the primary side of the back pressure valve 15 at a predetermined pressure higher than the pressure set by the pressure regulating valve 16. Therefore, the gas discharged from the refining device 13 is supplied to the heat exchanger 2 if the gas pressure is equal to or higher than the predetermined pressure. At this time, the gas from the gas cylinder 1 purified by the purification device 13 is suppressed and supplied to the heat exchange 2. Therefore, the gas purified by the purification device 13 is used in preference to the liquid gas. The flow of the gas purified by the purification device 13 to the cylinder 1 is prevented by the check valve 17.
  • surplus gas force for maintaining a predetermined pressure is supplied to the pipe for discharging.
  • This gas is discharged to the outside air as it is or after an appropriate treatment, but may be compressed by a condenser or the like, stored in a cylinder, and reused.
  • valve 20 is opened and closed appropriately according to the substance detected by the detector 9, and the desired substance in the sample is separated.
  • the recovery rate of carbon dioxide supplied for the supercritical fluid is about 80% as a theoretical value when methanol is used as the organic solvent. It is considered that the unrecovered 20% is mainly due to the re-dissolution in the organic solvent in the gas-liquid separator 11.
  • an acidic substance such as an organic carboxylic acid that does not add an acid to the mobile phase or that does not perform an esterification is added to the mobile phase. It is possible to separate them as they are. This is probably because the carbon dioxide in the mobile phase shows weak acidity.
  • the decomposition of the acidic substance as a desired substance can be suppressed, and since the esterification is not required, the acidic substance is esterified. It is possible to increase the yield of the acidic substance from the sample, as compared with the case of separating afterwards.
  • the present embodiment by intermittently injecting the sample into the mobile phase, it is possible to separate a desired substance in the sample with high productivity.
  • the above-mentioned optical resolution makes it possible to produce 4.006 kg of optical isomers per day in 1 kg of column packing material.
  • the temperature of the mixed solvent is adjusted to make the liquid liquid in the mixed solvent a supercritical fluid.
  • Heat exchange is further provided to heat the liquid before mixing so that the temperature of the liquid exceeds the critical temperature to generate a supercritical fluid, and the supercritical fluid is mixed with a solvent to form a mobile phase.
  • the temperature of the mobile phase may be adjusted to a temperature suitable for separation in column 8.
  • the gas-liquid separation device 11 is provided so as to separate the gas upward and the solvent downward, however, the present invention is not limited to such an installation, and the present invention is not limited to such a vertical installation.
  • the gas-liquid separation device 11 and the purification device 13 may be provided obliquely or perpendicular to the direction.
  • one tank 12 is provided for gas-liquid separation device 11, but the number of tanks 12 is not particularly limited in the present invention.
  • a plurality of tanks connected in series to the gas-liquid separation device 11 are provided, and the pressure in the tanks is reduced as needed, so that the gas is It is also possible to suppress the solution.
  • the carbon dioxide is collected in the second and subsequent tanks further connected to the tank 12. Need to be collected. In such a case, the pressure in the second and subsequent tanks is further reduced (for example, IMPa).
  • the carbon dioxide released from the solvent in the second and subsequent tanks can be compressed by a compressor to be liquefied, and sent to the knocker tank 18.
  • the mobile phase containing the desired substance in the sample is subjected to gas-liquid separation, the desired substance is contained in the solvent that is the separated liquid, and the separated solvent is decompressed.
  • the desired substance can be easily recovered in a concentrated state.
  • the desired substance can be recovered in a concentrated state only by decompressing the solvent, it is also advantageous for separation of a substance unstable to heat, which is liable to change with time due to heat. is there.
  • a gas obtained by gas-liquid separation of the mobile phase is supplied to heat exchange 2 against the pressure of the gas from cylinder 1 to generate liquid gas. Therefore, carbon dioxide forming a supercritical fluid can be reused in a supercritical fluid chromatography using a mixed solvent of a supercritical fluid of carbon dioxide and an organic solvent as a mobile phase. This can reduce the cost of carbon dioxide. Further, discharge of carbon dioxide into the environment in supercritical fluid chromatography can be suppressed.
  • the gas-liquid separation device 11 including the inner cylinder 34 extending into the outer cylinder 31 to a position where the mobile phase does not splash in the outer cylinder 31 is used. It is possible to reduce the incorporation of mobile phase droplets generated during the separation, and to obtain high-purity gas that can be reused as a new chromatography mobile phase by gas-liquid separation.
  • the mobile phase before being introduced into outer cylinder 31 is passed through jacket 35 for adjusting the temperature of outer cylinder 31, the mobile phase is not introduced into outer cylinder 31.
  • the temperature of the mobile phase can be adjusted to the temperature of the outer cylinder 31 in advance. Therefore, the efficiency of gas-liquid separation, which is enhanced by adjusting the temperature of the outer cylinder 31, can be further increased.
  • the mobile phase supply pipe 36 is provided in the jacket 35 so as to be wound around the outer peripheral wall surface of the outer cylinder 31, so that the temperature of the outer cylinder 31 can increase the gas-liquid separation. Efficiency can be further increased with a compact configuration.
  • the outer cylinder 31 since the outer cylinder 31 has a cylindrical shape, pressure is uniformly applied to the peripheral wall of the outer cylinder 31, so that gas-liquid under high-pressure conditions such as supercritical fluid chromatography is used. The durability of the gas-liquid separator 11 in the separation can be further improved.
  • the purifying device 13 since the purifying device 13 is provided, trace amounts of impurities such as the solvent contained in the gas separated by the gas-liquid separating device 11 are further removed from the gas, thereby further purifying the gas. Pure gas can be recovered and reused for the mobile phase.
  • a check valve 17 is provided between the cylinder 1 and the heat exchange 2 to prevent the gas from flowing from the heat exchange 2 to the cylinder 1. Therefore, it is possible to prevent the gas purified by the purification device 13 from flowing into the cylinder 1.
  • a check valve 21 for preventing a gas flow from the purification device 13 to the gas-liquid separation device 11 is provided between the gas-liquid separation device 11 and the purification device 13. Since it is provided corresponding to each gas-liquid separation device 11, the gas flows back from the purification device 13 to the outer cylinder 31 and the gas flows from one gas-liquid separation device 11 to another gas-liquid separation device 11. Inflow can be prevented.
  • a method for separating substances by supercritical fluid chromatography using a mobile phase containing a solvent and a supercritical fluid generated from a liquefied gas formed by liquefying a gas When the pressure of the separated gas is higher than the pressure of the gas supplied by the gas supply means for generating liquid gas, the mobile phase is separated. Since the liquefied gas is liquefied, the gas forming the supercritical fluid can be reused by a method of separating substances by supercritical fluid chromatography using a mobile phase containing a supercritical fluid and a solvent.
  • an outer cylinder having both ends open, a flange portion closing an opening at one end of the outer cylinder, and an inner peripheral wall surface of the outer cylinder.
  • Gas-liquid having an introduction part for introducing the mobile phase into the outer cylinder in the circumferential direction, and an inner cylinder having openings at both ends and extending from the introduction part to the other end side of the outer cylinder through the flange part.
  • the gas-liquid separation device covers the outer peripheral wall surface of the outer cylinder! ⁇ If it further has a jacket for adjusting the temperature of the outer cylinder and a mobile phase supply pipe connected to the introduction section through the jacket and for supplying the mobile phase to the introduction section, the supercritical fluid chromatography It is even more effective in increasing the efficiency of gas-liquid separation in chromatography.
  • the sample contains a mixture of optical isomers, and when the desired substance is any of the optical isomers, a high-purity optical isomer in which contamination of impurities is further suppressed is suppressed. It is even more effective in sorting efficiently.
  • the gas-liquid separation device of the present invention has the above-described configuration, it is possible to separate a high-purity gas in which contamination of impurities is further suppressed and to reuse such a gas. Can be widely used for gas-liquid separation.
  • the gas-liquid separation device of the present invention further includes the jacket and the mobile phase supply pipe, it is more effective in increasing the separation efficiency in gas-liquid separation.

Abstract

 本発明は、ガスを液化させて液化ガスを生成し、この液化ガスから生成した超臨界流体と溶媒とを含む移動相に試料を注入し、この移動相をカラムに通し、所望の物質を含む移動相を溶媒と前記ガスとに分離して、溶媒から所望の物質を分離するにあたり、移動相から分離させたガスの圧力が、液化ガスの生成のためにガス供給手段から供給されるガスの圧力よりも高いときに、移動相から分離させたガスを液化させる方法、及びこれに用いられる気液分離装置を提供する。

Description

明 細 書
超臨界流体クロマトグラフィーによって物質を分離する方法及びこれに用 いられる気液分離装置
技術分野
[0001] 本発明は、超臨界流体と溶媒とを含有する移動相から、超臨界流体を構成するガ ス成分を回収し、再利用する、超臨界流体クロマトグラフィーによって物質を分離する 方法、及びこれに用いられる気液分離装置に関する。
背景技術
[0002] 試料中の所望の物質を分離する方法としては、種々のクロマトグラフィーが用いら れている。このようなクロマトグラフィーの一つとして、超臨界流体を移動相として用い る超臨界流体クロマトグラフィーが知られている。超臨界流体クロマトグラフィーは、超 臨界流体という、一般の溶媒に比べて種々の特性を有する流体を移動相に用いるこ とから、分離が困難とされていた種々の物質の分離、分析、精製等への利用が検討 されている。
[0003] 前記超臨界流体クロマトグラフィーによって物質を分離する方法としては、ボンべか ら供給された超臨界流体をポンプで送液し、この超臨界流体に試料を注入し、試料 が注入された超臨界流体をカラムに通し、カラムに通した超臨界流体の圧力を減圧 して溶質を析出させ、析出させた溶質と超臨界流体とを分離し、分離させた超臨界 流体を前記ポンプに送って再利用する技術が知られている(例えば、特開平 5— 307 026号公報参照。)。
[0004] ところで、超臨界流体クロマトグラフィーにおいては、溶質の種類や充填剤の種類 によっては超臨界流体と溶媒とを混合した移動相を用いることがある。前述した技術 では、このような移動相の使用が示されておらず、このような移動相を用いる際の超 臨界流体の再利用につ 、て、検討の余地が残されて 、る。
発明の開示
[0005] 本発明は、超臨界流体と溶媒とを含有する移動相を用いる超臨界流体クロマトダラ フィ一によつて物質を分離する方法であって、超臨界流体を形成するガスを再利用 することが可能な方法、及びこれに用いられる気液分離装置を提供することを課題と する。
[0006] 本発明は、前記課題を解決するために、超臨界流体をガスから生成し、カラムを通 した後の移動相を気液分離し、分離させたガスの圧力調整を新規に供給されるガス の圧力調整に比べて高めに設定し、分離させたガスの圧力が新規に供給されるガス の圧力よりも高い場合に、分離させたガスを新規に供給されるガスに対して優先して 超臨界流体の生成に使用する方法、及びこの方法に好適に用いられる気液分離装 置を提供する。
[0007] すなわち本発明は、ガスを液ィ匕させて液ィ匕ガスを生成する工程と、得られた液化ガ ス力 生成した超臨界流体と溶媒とを含む移動相に、所望の物質を含有する試料を 注入する工程と、試料が注入された移動相を、前記所望の物質を試料から分離させ るためのカラムに通す工程と、所望の物質を含む移動相を溶媒とガスとに分離する 工程とを含み、溶媒から所望の物質を分離する、超臨界流体クロマトグラフィーによ つて物質を分離する方法であって、液ィ匕ガスを生成する工程では、移動相から分離 させたガスの圧力が、液化ガスの生成のためにガス供給手段カゝら供給されるガスの 圧力よりも高いときに、移動相から分離させたガスを液化させる方法 (以下、単に「分 離方法」ともいう)である。
[0008] また本発明は、超臨界流体と溶媒とを含む移動相に、所望の物質を含有する試料 を注入し、前記所望の物質を試料カゝら分離させるためのカラムに前記試料を通して 試料中の所望の物質を分離し、カラムに通した移動相を溶媒とガスとに分離し、前記 溶媒力も前記所望の物質を分離する、超臨界流体クロマトグラフィーによって物質を 分離する方法に用いられる気液分離装置であって、両端が開口している外筒と、外 筒の一端の開口を塞ぐフランジ部と、外筒の内周壁面に沿って周方向に移動相を外 筒内に導入する導入部と、両端が開口しており、フランジ部を貫いて導入部よりも外 筒の他端側に延出する内筒とを有する気液分離装置である。
図面の簡単な説明
[0009] [図 1]本発明の分離方法に用いられる超臨界流体クロマト分取装置の一例の構造を 示す概略図である。 [図 2]本発明の気液分離装置の一例の要部の縦断面を示す断面図である。
[図 3]図 2に示す気液分離装置を A— A線で切断したときの要部の横断面を示す断面 図である。
発明を実施するための最良の形態
[0010] <超臨界クロマトグラフィーによって物質を分離する方法 >
本発明の分離方法は、ガスを液化させて液ィ匕ガスを生成する工程と、得られた液化 ガス力 生成した超臨界流体と溶媒とを含む移動相に、所望の物質を含有する試料 を注入する工程と、前記試料が注入された移動相を、前記所望の物質を試料から分 離させるためのカラムに通す工程と、所望の物質を含む移動相を前記溶媒と前記ガ スとに分離する工程とを含む。
[0011] 前記液ィ匕ガスを生成する工程では、超臨界流体を生成するガスを一且液ィ匕させる 。このような液ィ匕ガスの生成は、ガスの圧力及び温度を調整することによって行われ る。ガスの圧力の調整には、圧縮機や、背圧弁等の圧力調整手段を用いることがで きる。ガスの温度の調整には、熱交 等の温度調整手段を用いることができる。
[0012] 前記ガスには、二酸化炭素、アンモニア、二酸化イオウ、ハロゲン化水素、亜酸ィ匕 窒素、硫化水素、メタン、ェタン、プロパン、ブタン、エチレン、プロピレン、ハロゲン化 炭化水素、水等を用いることができる。前記ガスには、可燃性、爆発性、人体への有 害性、取り扱いの容易性や経済性等の観点から、二酸ィ匕炭素が好ましい。
[0013] 前記試料を注入する工程における前記移動相は、超臨界流体と溶媒とを含む混合 溶媒である。本発明における超臨界流体とは、臨界圧力を超えた圧力及び臨界温度 を超えた温度の少なくとも 、ずれかの条件下にある前記ガスである。超臨界流体は、 生成した液ィ匕ガスに、さらに圧力及び温度のいずれか一方又は両方をかけることに よって生成させることができる。前記移動相は、生成した超臨界流体と溶媒とを混合 することによって生成させても良いし、又は前記液ィ匕ガスと溶媒とを混合し、この混合 溶媒に圧力及び温度のいずれか一方又は両方をかけ、混合溶媒中の液化ガスを超 臨界流体にすることによって生成させても良い。
[0014] 前記液ィヒガス又は超臨界流体と前記溶媒との混合は、例えば高速液体クロマトダラ フィ一で行われているように、それぞれの流体を定量ポンプによって所定の流量で送 液し混合することによって行うことができる。前記溶媒の混合比率は、試料中に含ま れる物質の種類等の条件によって異なるが、移動相中の 5— 30質量%程度であるこ とが、前記所望の物質の分離効率を高める上で好ましい。前記溶媒には、分離対象 の物質の種類や充填剤の種類等に応じて選択される公知の溶媒が用いられるが、 例えばエタノール、 2—プロパノール等の低級アルコールが挙げられる。
[0015] また、前記移動相への試料の注入には、高速液体クロマトグラフィーで通常用いら れているインジヱクタ等の公知の手段を用いることができる。前記試料には、分離対 象物を適当な溶媒に溶解した、通常の方法によって得られる試料を用いることができ る。前記分離対象物を溶解する溶媒には、一般の有機溶媒やその混合溶媒等を用 いることができる。前記試料の注入には、前述した特開平 5— 307026号公報に記載 されているような、注入時における圧力の変動が生じない注入方法を採用することが 、所望の物質の分離効率を高める上で好ましい。
[0016] 前記試料が注入された移動相をカラムに通す工程では、前記所望の物質に応じた 適当なカラムが用いられる。本発明では、超臨界流体を含む移動相を用いることから 、他のクロマトグラフィーでは分離が困難であった物質の分離に好適に利用すること が可能である。例えば試料が光学異性体の混合物を含み、そのいずれかを分離しよ うとする場合では、前記カラムには、光学異性体分離能を有する多糖誘導体がシリカ 等の担体の表面に担持されている充填剤を充填したカラムが用いられる。
[0017] 前記所望の物質を含む移動相を前記溶媒と前記ガスとに分離する工程では、溶媒 とガスとを分離できる通常の気液分離装置を用いることができるが、後述する本発明 の気液分離装置を用いることが、高い精度の分離を安定して行う上で好ましい。分離 させた溶媒を高圧条件下から解放し、必要に応じて減圧濃縮等の公知の方法を採 用することにより、前記所望の物質が前記溶媒力 得られる。
[0018] 本発明では、前記移動相から分離させたガスを、このガスの圧力に応じて前記液化 ガスの原料として再利用する。すなわち、前記液ィ匕ガスを生成する工程では、前記移 動相から分離させたガスの圧力が、前記液ィ匕ガスの生成のためにガス供給手段から 供給されるガスの圧力よりも高いときに、前記移動相力も分離させたガスを液化させ る。 [0019] このような前記分離させたガスの再利用は、前記気液分離装置と前記液化ガスを生 成するための手段とを管で接続し、適当な圧力調整手段を用いて、前記ガス供給手 段からのガスの圧力よりも高い圧力に、前記分離させたガスの圧力を設定することに よって行うことができる。前記圧力調整手段としては、前述したように、圧縮機や背圧 弁等の公知の手段を用いることができる。
[0020] 前記分離させたガスの圧力は、前記ガス供給手段からのガスの圧力だけでなく、前 記溶媒への再溶解を抑制する観点から、前記溶媒に対するガスの溶解性に応じて 設定される。例えばガスとして二酸ィ匕炭素を用い、溶媒として通常の有機溶媒を用い る場合では、前記分離させたガスの圧力は、 1一 lOMPa程度に設定されていること 力 分離させたガスの前記溶媒への再溶解を抑制する上で好ま 、。
[0021] また前記分離させたガスの圧力は、前記ガス供給手段力 のガスの圧力よりも高い 値に設定されていれば良ぐ特に限定されないが、分離させたガスの圧力と前記ガス 供給手段からのガスの圧力との差圧は、 0. IMPa以上であることが好ましい。
[0022] 本発明では、前記分離させる工程で分離させた前記溶媒力 さらに前記ガスを分 離させる工程をさらに含んでいても良い。このような再分離工程によれば、より一層多 量の前記ガスを前記溶媒から回収することが可能となり、前記ガスの回収率をより一 層高めることができる。
[0023] 前記再分離工程は、前記溶媒を収容する系の圧力を下げることによって行うことが できる。前記溶媒を収容する系の圧力は、例えば前記溶媒を密閉可能な容器に収 容して、この密閉可能な容器を常圧の容器や真空ポンプ等の低圧側に対して徐々 に開放することによって、連続して下げることができる。
[0024] また、前記再分離工程は、前記溶媒を密閉可能な容器に収容し、前記密閉可能な 容器の圧力を、収容前の前記溶媒の圧力よりも低い圧力に設定することによって行う ことができる。容器内の圧力は、前記溶媒の収容前に設定されていても良いし、前記 溶媒の収容後に設定されても良 、。
[0025] さらに、前記再分離工程は、複数の前記密閉可能な容器を直列に接続し、より低い 内圧の容器に前記溶媒を順次供給することによって行うことができる。このように複数 の前記密閉可能な容器を用いると、前記気液分離装置によって前記移動相から前 記ガス及び前記溶媒を分離する作業と、前記溶媒から前記ガスをさらに回収する作 業とを並行することが可能となる。前記密閉可能な容器の数は、特に限定されないが 、設備や操作の簡易さや、前記溶媒力 の前記ガスの回収率を高める等の観点から
、 1一 3程度が好ましい。
[0026] 前記再分離工程にお!ヽて分離された前記ガスは、例えば前記密閉可能な容器か ら回収し、回収された前記ガスを圧縮機で圧縮して液化させることにより、前記液ィ匕 ガスとして再利用することができる。
[0027] 前記再分離工程は、前記分離させる工程において多量の前記溶媒が分離される 場合に特に有効である。このような場合としては、例えば工業的な生産等のように、 直径の大きなカラムを用いて前記所望の物質を分離する場合が挙げられる。このよう な場合におけるカラムの直径は 10cm以上であることが好ましぐ 20cm以上であるこ とがより好ましい。
[0028] 本発明では、前述した以外にも、他の工程を含んでいても良い。このような他のェ 程としては、例えばカラムを通した後の移動相中の物質の検出する工程や、移動相 中の物質の検出結果に応じて移動相を複数の気液分離手段の 、ずれかに供給する 工程や、前記分離させたガスを精製する工程等が挙げられる。
[0029] <気液分離装置 >
本発明の気液分離装置は、両端が開口している外筒と、前記外筒の一端の開口を 塞ぐフランジ部と、前記外筒の内周壁面に沿って周方向に前記移動相を外筒内に導 入する導入部と、両端が開口しており、前記フランジ部を貫いて前記導入部よりも前 記外筒の他端側に延出する内筒とを有する。
[0030] 前記気液分離装置によれば、前記内筒が、前記導入部よりも前記外筒の他端側に 延出していることから、導入部から導入された前記移動相の飛沫が、内筒から排出さ れるガス中に含まれにくぐガス中の溶媒や前記物質の濃度を低減させることが可能 である。また、外筒が筒状であることから、内周壁面に均等に圧力が力かるので、気 液分離装置の耐久性が高められる。このように前記気液分離装置は、高圧条件下で 純度の高 、ガスを回収することが可能であるので、超臨界流体クロマトグラフィーで のより精密な分離を要求される光学異性体の分離にぉ 、て、回収したガスを移動相 に再利用する技術に好適に用いられる。
[0031] また、前記外筒の外周壁面を覆い外筒の温度を調整するためのジャケットと、前記 ジャケット内を通って前記導入部に接続され、前記移動相を前記導入部に供給する ための移動相供給管とをさらに有すると、外筒における気液分離の分離効率をより一 層高める上で好ましい。また、移動相が外筒内に導入される前に移動相の温度が外 筒の温度に調整され、外筒における気液分離の分離効率をより一層高める上で好ま しい。
[0032] 前記外筒は、前記導入部から導入された移動相が外筒の一端側から他端側へ内 周壁面に沿ってらせん状に流れ得るものであれば特に限定されない。前記外筒は、 一般に円筒状であるが、外筒内に導入された移動相の流速に偏りを生じさせるため や、適度な衝撃を与えるため等の目的から、断面における内周壁面の形状が楕円形 や多角形等の略円形となっている筒であっても良い。
[0033] 前記フランジ部は、前記外筒の一端の開口を塞ぐものであれば特に限定されな 、。
このようなフランジ部は、例えば内筒の設置と外筒の閉塞とを行うための径違いュ- オンを好適に用いることができる。
[0034] 前記導入部は、前記外筒の断面形状における内周壁面の接線に沿って前記移動 相を外筒内に導入するノズルや管によって形成することができる。前記移動相は、通 常は前記外筒の横断方向に対して平行な方向に導入される。本発明ではこれに限 定されず、前記導入部を、外筒の横断方向に対して平行に設けても良いし、斜め〖こ 設けても良い。
[0035] 前記内筒は、前記外筒よりも径の小さい管であれば、その断面形状は特に限定さ れない。前記内筒は、外筒での移動相の飛沫のガス中への混入を防止する観点か ら、前記外筒において前記導入部よりも他端側に十分に延出するように構成される。 このような内筒の延出長さは、外筒への移動相の導入条件や外筒の径、及び内筒の 径等の諸条件によって異なる。前記内筒は、外筒内に導入された移動相の流れが勢 いを失い、移動相が外筒の内周壁面を伝わる、すなわち内周壁面力 の飛沫が起こ らなくなる位置まで延出させれば良 、。
[0036] 前記ジャケットには、前記外筒の外側に熱媒を循環させる通常のジャケットを用いる ことができる。ジャケットに供給される熱媒が温媒であれば、ガスの分離効率を高める 上で効果的であり、ジャケットに供給される熱媒が冷媒であれば、前記所望の物質の 前記溶媒に対する溶解度を下げる上で効果的である。
[0037] 前記移動相供給管は、気液分離前の移動相の温度を外筒における温度に予め調 整する観点から、ジャケット内に長く設けられていることが好ましい。例えば前記移動 相供給管は、ジャケット内において蛇行形状に設けられていることや、外筒の外周壁 面にらせん状に設けられていることが好ましい。このような移動相供給管は、特に前 記熱媒が温媒である場合に、外筒内に導入されたときの移動相の温度変化による飛 沫を抑制する上で好まし ヽ。
[0038] 本発明の気液分離装置は、気液分離したガスへの移動相の飛沫の混入が低減す ることから、このようなガスを移動相に利用する分析、分離手段に適用することが可能 である。特に医薬等の分野において、不純物の混入が重大な影響を及ぼす可能性 力 Sある光学異性体の分析、分離手段に適用することが効果的である。
[0039] 以下、本発明の一実施の形態を、図面に基づいて説明する。まず、本発明の分離 方法に用いられる超臨界流体クロマト分取装置を図 1に示す。
[0040] 前記超臨界流体クロマト分取装置は、図 1に示すように、高圧の二酸化炭素が充填 されている、ガス供給手段としてのボンべ 1と、高圧の二酸化炭素を冷却して液化す るための熱交 2と、熱交 2で生成した二酸ィ匕炭素の液ィ匕ガスを送液するた めのポンプ 3と、ポンプ 3で送られる液ィ匕ガスに溶媒タンク 4から供給される溶媒を供 給するためのポンプ 5と、前記液化ガスと前記溶媒との混合溶媒を加熱して前記液化 ガスを超臨界流体にするための熱交換器 6と、生成した超臨界流体と前記溶媒との 混合物である移動相に試料を注入するためのインジェクタ 7と、注入された試料中の 所望の物質を分離するためのカラム 8と、カラム 8を通った移動相中の物質を検出す る検出器 9と、ポンプ 3から検出器 9までの系内の圧力を所定の圧力に保っための圧 力調整装置である背圧弁 10と、背圧弁 10を通過した、圧力が調整された移動相を 気液分離するための複数の気液分離装置 11と、気液分離させた液を収容する槽 12 と、気液分離させたガス力 さらに液体を除去するための精製装置 13と、精製装置 1 3で除去された液を収容する槽 14と、精製装置 13で精製されたガスの圧力を所定の 圧力に保っための背圧弁 15とを有する。
[0041] ボンべ 1、熱交換器 2、ポンプ 3、熱交換器 6、インジェクタ 7、カラム 8、検出器 9、及 び背圧弁 10は、管で直列に接続されている。気液分離装置 11は、背圧弁 10及び精 製装置 13に対して並列に管で接続されている。精製装置 13と背圧弁 15とは、管で 接続されている。背圧弁 15の二次側 (精製装置 13に対して反対側)は、ガスを系外 に排出するための管に接続されている。精製装置 13と背圧弁 15とを接続する管は、 途中で分岐し、分岐した管は、熱交換器 2の上流側の管に接続されている。また、溶 媒タンク 4とポンプ 5とは管で接続されており、ポンプ 5は、ポンプ 3と熱交^^ 6とを接 続する管に、管で接続されている。各気液分離装置 11と各槽 12、及び精製装置 13 と槽 14も、それぞれ管で接続されている。
[0042] ボンべ 1と熱交 2との間には、ボンべ 1から所定の圧力で二酸ィ匕炭素を放出す る圧力調整弁 16と、熱交換器 2側からポンプ 1側へのガスの逆流を防止する逆止弁 17とが設けられている。熱交翻2とポンプ 3との間には、熱交翻2で生成した液 化ガスを受けるバッファタンク 18が設けられている。また、カラム 8は、カラム 8内を所 定の温度に調整するためのカラムオーブン 19に収容されている。
[0043] 背圧弁 10と各気液分離装置 11との間には、背圧弁 10からの移動相の供給先を選 択できるように、それぞれの気液分離装置 11に対応してバルブ 20が設けられて 、る 。各気液分離装置 11と精製装置 13との間には、精製装置 13側から各気液分離装 置 11へのガスの逆流を防止するための逆止弁 21が、それぞれの気液分離装置 11 に対応して設けられている。
[0044] ポンプ 3及び 5は定量的に送液できるポンプである。背圧弁 10は、背圧弁 10のカラ ム 8側、すなわち背圧弁 10の一次側の系の圧力を一定の圧力(例えば 20MPa)に 維持するように、この一定圧力以上となる移動相を背圧弁 10の気液分離装置 9側、 すなわち背圧弁 10の二次側に逃がすように開閉する弁である。また、背圧弁 15は、 背圧弁 15の精製装置 13及び熱交換器 2側、すなわち背圧弁 15の一次側の圧力を 一定の圧力(例えば 9. 5MPa)に維持するように、この一定圧力以上となるガスを、 背圧弁 15の前記排出するための管側、すなわち背圧弁 15の二次側に逃がすように 開閉する弁である。また、検出器 9は、検出器 9での検出結果に応じて、所定のバル ブ 20及び槽 12及び槽 14の開閉を制御する不図示の制御装置に接続されている。
[0045] 気液分離装置 11は、図 2及び図 3に示すように、両端が開口している円筒状の外 筒 31と、外筒 31の一端の開口を塞ぐフランジ部 32と、外筒 31の横断面形状におけ る内周面の接線に沿って設けられて外筒 31内に開口する管である導入部 33と、両 端が開口しており、フランジ部 32を貫いて導入部 33よりも外筒 31の他端側に延出す る内筒 34と、外筒 31の外周壁面を覆い熱媒の循環路を形成するジャケット 35と、ジ ャケット 35内を通って導入部 33に接続される移動相供給管 36とを有する。
[0046] ジャケット 35は、ジャケット 35の他端側に熱媒の供給口 37が設けられ、ジャケット 3 5の一端側に熱媒の排出口 38が設けられている。移動相供給管 36は、ジャケット 35 の一端部力もジャケット 35内に通され、ジャケット 35の一端側力もジャケット 35の他 端側に向けて外筒 31の外周にらせん状に巻きつけられ、ジャケット 35の他端側から 外部に出て、導入部 33に接続されている。移動相供給管 36はバルブ 20に接続され る。内筒 34は精製装置 13に接続される。外筒 31の他端は槽 12に接続される。供給 口 37及び排出口 38は、不図示の熱媒循環手段に接続される。
[0047] 精製装置 13は、図 2及び図 3に示した気液分離装置 11と同じ構成とされている。精 製装置 13では、移動相供給管 36は逆止弁 21に接続される。内筒 34は背圧弁 15に 接続される。外筒 31の他端は槽 14に接続される。供給口 37及び排出口 38は、気液 分離装置 11と同様に、不図示の熱媒循環手段に接続される。
[0048] 気液分離装置 11及び精製装置 13のジャケット 35には熱媒が循環しており、外筒 3 1の温度が所定の温度に調整されている。
[0049] なお、前記超臨界流体クロマト分取装置では、図示しないが、これらのほかにも、バ ルブ、逆止弁、安全弁等の弁や、圧力計、温度計、流量計等の各種検出手段、ヒー タゃブラインチラー、アキュムレータ等の周辺機器が適所に設けられて 、る。
[0050] 本実施の形態では、圧力調整弁 16を調整して、所定の圧力(例えば 4MPa)でボ ンべ 1から二酸ィ匕炭素を熱交換器 2に供給する。二酸化炭素は、熱交換器 2におい て冷却されて液化する。
[0051] 熱交翻 2で生成した二酸ィ匕炭素の液ィ匕ガスは、ノ ッファタンク 18に収容され、ポ ンプ 3によって熱交 6に供給される。熱交 6に供給される液ィ匕ガスには、溶 媒タンク 4からポンプ 5によって送られてきた低級アルコール等の有機溶媒が供給さ れ、前記液化ガスと前記有機溶媒とが混合され、この混合溶媒が熱交換器 6に供給 される。熱交換器 6では、前記混合溶媒を加熱して混合溶媒中の液化ガスを超臨界 流体とし、併せて、この超臨界流体と前記溶媒とが混合してなる移動相の温度を、力 ラムオーブン 19で設定されているカラム 8の温度 (例えば 40°C)に調整する。温度が 調整された移動相には、インジェクタ 7から、分離対象物の溶液が試料として注入さ れる。
[0052] インジェクタ 7から注入された試料はカラム 8に送られ、試料中に含まれる種々の物 質は、カラム 8の通過に伴って分けられる。
[0053] カラム 8を通過した移動相中の物質は検出器 9によって検出される。検出器 9での 検出結果に応じて、所定のノ レブ 20が開かれ、その他のバルブ 20が閉じられる。検 出器 9を通過した移動相は、背圧弁 10に送られる。移動相が背圧弁 10を通過するこ とによって移動相の圧力は低減し、前記移動相は、所定のバルブ 20から所定の気液 分離装置 11の移動相供給管 36に供給される。
[0054] 気液分離装置 11では、移動相供給管 36に供給された移動相は、ジャケット 35内を 、外筒 31の外周面に沿ってらせん状に移動した後に導入部 33に供給される。これに より、移動相は、導入部 33に供給される前に、外筒 31の温度に予備的に調整される 。温度が調整された移動相は、導入部 33から外筒 31に導入される。移動相は、外筒 31の内周壁面の周方向に沿って円運動をしながら落下する。
[0055] この過程において移動相中の二酸ィヒ炭素の多くは移動相からガスとして分離する 。移動相から分離させたガスは、内筒 34を通って気液分離装置 11から排出される。 ガスが分離した残りの溶媒には、カラム 8で試料中から分離させた所定の物質が含ま れており、この溶媒は外筒 31の内周壁面に沿って落下し、槽 12に収容される。槽 12 に収容された前記溶媒中の前記物質は、前記溶媒を含む系の圧力を解放すると液 化している二酸ィ匕炭素が前記溶媒力 放出されるので、前記溶媒に対する前記物質 の溶解度が低下し、濃縮された状態となる。解圧の後には必要に応じて減圧濃縮等 の公知の方法を採用し、前記溶媒に前記物質を析出させ、又は前記溶媒を揮発さ せることによって、前記物質が前記溶媒から取り出される。 [0056] 外筒 31では、移動相が外筒 31に強い勢いで導入される際に、また外筒 31内を移 動相が上記のように流れる間に、移動相の飛沫が生じる力 内筒 34が導入部 33より も外筒 31の他端側(図 2の気液分離装置 11では下側)まで延出している。このため、 前述した飛沫は、再び溶媒に吸収され、又はそのまま外筒 31を落下していき、内筒 3 4内に入りにくい。したがって、内筒 34からは、前述した飛沫の混入の少ないガスが 回収される。
[0057] 内筒 34から回収されたガスは、精製装置 13において、移動相供給管 34から導入 部 33を通り、外筒 31に導入され、内筒を通って精製装置 13から排出される。精製装 置 13では、前述した飛沫によってガスに混入された微量の溶媒がガスから除去され る。
[0058] 背圧弁 15は、圧力調整弁 16で設定されている圧力よりも高い圧力に、背圧弁 15 の一次側の圧力を所定の圧力に維持している。したがって、精製装置 13から排出さ れたガスは、ガスの圧力が前記所定の圧力以上であれば、熱交換器 2に向けて供給 される。このとき、精製装置 13で精製されたガス力 ボンべ 1からのガスを抑えて熱交 2に向けて供給される。したがって、精製装置 13で精製されたガスが液ィ匕ガスに 優先して用いられる。なお、精製装置 13で精製されたガスのボンべ 1への流れは、逆 止弁 17によって防止される。
[0059] 精製装置 13から排出されたガスの圧力が、圧力調整弁 16で設定されている圧力よ りも低い場合は、ボンべ 1から二酸ィ匕炭素が熱交 2に向けて供給される。ボンべ 1から精製装置 13に向けてのガスの流れは、背圧弁 15によって防止される。
[0060] 一方、背圧弁 15では、所定の圧力を維持するための余剰なガス力 前記排出する ための管へ供給される。このガスは、そのまま、又は適当な処理を施した後に外気に 排出されるが、コンデンサ等で圧縮してボンベに収容し、再利用しても良い。
[0061] 以後、検出器 9で検出される物質に応じてバルブ 20の開閉が適宜行われ、試料中 の所望の物質が取り分けられる。
[0062] 本実施の形態では、超臨界流体用に供給される二酸化炭素の回収率は、有機溶 媒にメタノールを用いた場合の理論値で 80%程度である。未回収の 20%は、主に 気液分離装置 11で有機溶媒に再溶解した分であると考えられる。 [0063] また、本実施の形態では、二酸ィ匕炭素の超臨界流体を用いることで、移動相へ酸 を添加することなぐまたエステルイ匕することなぐ有機カルボン酸等の酸性物質をそ のまま分離することが可能である。これは、移動相中の二酸ィ匕炭素が弱酸性を示す ためと考えられる。移動相へ酸を添加しなくても良いことから、所望の物質としての前 記酸性物質の分解を抑制することができ、またエステルイ匕しなくても良いことから、前 記酸性物質をエステル化してから分離する場合に比べて、試料からの前記酸性物質 の収率を高めることが可能である。
[0064] また、本実施の形態では、光学分割能を有するカラムを用いると、光学異性体を高 い純度で分離することが可能である。例えば、ダイセルィ匕学工業社製の CHIRALC EL OD (lcm X 25cmL)を前記カラムとして用いるグァイフェネシン(Guaifenesin )のラセミ体の光学分割では、光学純度が 99. 0%の R体が 94. 9%の収率で得られ 、光学純度が 98. 8%の S体が 98. 8%の収率で得られる。
[0065] また、本実施の形態では、試料を断続的に移動相に注入することにより、高い生産 性で試料中の所望の物質を分離することが可能である。例えば上記の光学分割では 、カラムの充填剤 lkgでの一日当たりの光学異性体の生産量にして 4. 06kgの光学 異性体の生産が可能となる。
[0066] なお、本実施の形態では、液ィ匕ガスに溶媒を混合した後に、混合溶媒の温度を調 整して混合溶媒中の液ィ匕ガスを超臨界流体としているが、例えば溶媒が混合される 前の液ィ匕ガスを液ィ匕ガスの温度が臨界温度を超えるように加熱する熱交 をさら に設けて超臨界流体を生成し、超臨界流体に溶媒を混合して移動相を生成した後 に、カラム 8での分離に適した温度に移動相の温度を調整しても良い。
[0067] また、本実施の形態では、ガスが上方に、溶媒が下方にそれぞれ分離するように気 液分離装置 11が設けられているが、本発明はこのような設置に限定されず、鉛直方 向に対して斜めに、又は直交するように気液分離装置 11及び精製装置 13を設けて も良い。
[0068] また、本実施の形態では、気液分離装置 11に対して一つの槽 12を設けたが、槽 1 2の数は本発明では特に限定されない。例えば気液分離装置 11に対して直列に接 続される複数の槽を設け、この槽の間で減圧を随時行い、前記溶媒へのガスの再溶 解を抑制することも可能である。例えば気液分離装置 11の下の槽 12で捕集された 溶媒に溶解している二酸ィ匕炭素を回収するためには、槽 12にさらに接続される二段 目以降の槽で二酸化炭素を回収する必要がある。このような場合では、二段目以降 の槽の圧力をさらに下げる (例えば IMPa)。二段目以降の槽で溶媒から放出された 二酸化炭素は、圧縮機で圧縮して液化させ、ノ ッファタンク 18に送ることも可能であ る。
[0069] 本実施の形態では、試料中の所望の物質を含む移動相を気液分離することから、 分離させた液である溶媒に所望の物質が含まれ、この分離させた溶媒を解圧するだ けで、所望の物質を濃縮された状態で容易に回収することができる。また前記溶媒を 解圧するだけで所望の物質を濃縮した状態で回収することができることから、熱によ つて経時的に変化しやすいような、熱に対して不安定な物質の分離にも有利である。
[0070] また本実施の形態では、前記移動相を気液分離して得られたガスがボンべ 1からの ガスの圧力に抗して熱交 2に供給され、液ィ匕ガスが生成されることから、二酸ィ匕 炭素の超臨界流体と有機溶媒との混合溶媒を移動相とする超臨界流体クロマトダラ フィ一において、超臨界流体を形成する二酸化炭素を再利用することができる。これ により、二酸ィ匕炭素のコストを削減することができる。また、超臨界流体クロマトグラフ ィ一における二酸ィ匕炭素の環境への排出を抑制することができる。
[0071] また本実施の形態では、外筒 31での移動相の飛沫が生じない位置まで外筒 31内 に延出する内筒 34を備えた気液分離装置 11を用いることから、気液分離の際に生 じる移動相の飛沫の混入を少なくすることができ、新たなクロマトグラフィーの移動相 に再利用可能な純度の高いガスを気液分離によって得ることができる。
[0072] また本実施の形態では、外筒 31に導入される前の移動相を、外筒 31の温度を調 整するためのジャケット 35内を通すことから、外筒 31に導入される前の移動相の温 度を外筒 31の温度に予め調整することができる。したがって、外筒 31の温度調整に よって高められる気液分離の効率をより一層高めることができる。
[0073] また本実施の形態では、移動相供給管 36をジャケット 35内において外筒 31の外 周壁面に巻きつける形状に設けたことから、外筒 31の温度調整によって高められる 気液分離の効率をコンパクトな構成でより一層高めることができる。 [0074] また本実施の形態では、外筒 31が円筒状であることから、外筒 31の周壁に均一に 圧力が力かるので、超臨界流体クロマトグラフィーのような高圧条件下での気液分離 における気液分離装置 11の耐久性をより一層高めることができる。
[0075] また本実施の形態では、精製装置 13を設けたことから、気液分離装置 11で分離さ せたガスに含まれる微量の前記溶媒等の不純物がガス中からさらに除去され、より清 浄なガスを回収し、移動相に再利用することができる。
[0076] また本実施の形態では、ボンべ 1と熱交翻 2との間に、熱交翻 2からボンべ 1へ の向きのガスの流れを防止する逆止弁 17が設けられていることから、精製装置 13で 精製されたガスのボンべ 1への流入を防止することができる。
[0077] また本実施の形態では、気液分離装置 11と精製装置 13との間に、精製装置 13か ら気液分離装置 11への向きのガスの流れを防止する逆止弁 21が、それぞれの気液 分離装置 11に対応して設けられていることから、精製装置 13から外筒 31へのガスの 逆流や、ある気液分離装置 11から他の気液分離装置 11へのガスの流入を防止する ことができる。
産業上の利用の可能性
[0078] 本発明では、ガスを液化させてなる液ィ匕ガスから生成した超臨界流体と溶媒とを含 む移動相を用いる、超臨界流体クロマトグラフィーによって物質を分離する方法で、 カラム通過後の移動相を気液分離し、移動相力 分離させたガスの圧力が、液ィ匕ガ スの生成のためにガス供給手段力 供給されるガスの圧力よりも高いときに、移動相 力 分離させたガスを液化させることから、超臨界流体と溶媒とを含有する移動相を 用いる、超臨界流体クロマトグラフィーによって物質を分離する方法法で超臨界流体 を形成するガスを再利用することができる。
[0079] 本発明では、移動相を溶媒とガスとに分離する工程において、両端が開口している 外筒と、外筒の一端の開口を塞ぐフランジ部と、外筒の内周壁面に沿って周方向に 移動相を外筒内に導入する導入部と、両端が開口しており、フランジ部を貫いて導 入部よりも外筒の他端側に延出する内筒とを有する気液分離装置を用いると、高圧 条件下での超臨界流体クロマトグラフィーにおいて、気液分離装置の耐久性を高め る上で、また効率の高い気液分離を行う上でより一層効果的である。 [0080] 本発明では、前記気液分離装置は、外筒の外周壁面を覆!ヽ外筒の温度を調整す るためのジャケットと、ジャケット内を通って導入部に接続され、移動相を導入部に供 給するための移動相供給管とをさらに有すると、超臨界流体クロマトグラフィーでの気 液分離の効率をより高める上でより一層効果的である。
[0081] 本発明では、前記試料は、光学異性体の混合物を含有し、所望の物質は光学異 性体のいずれかであると、不純物の混入がより抑制された高純度の光学異性体を効 率よく分取する上でより一層効果的である。
[0082] また、本発明の気液分離装置は、前述した構成を有することから、不純物の混入が より抑制された高純度のガスの分離や、このようなガスの再利用が行われる技術分野 の気液分離に広く用いることできる。
[0083] また、本発明の気液分離装置は、前記ジャケットと前記移動相供給管とをさらに有 すると、気液分離における分離効率を高める上でより一層効果的である。

Claims

請求の範囲
[1] ガスを液ィ匕させて液ィ匕ガスを生成する工程と、
得られた液ィ匕ガス力 生成した超臨界流体と溶媒とを含む移動相に、所望の物質 を含有する試料を注入する工程と、
前記試料が注入された移動相を、前記所望の物質を試料から分離させるカラムに 通す工程と、
所望の物質を含む移動相を前記溶媒と前記ガスとに分離する工程とを含み、前記 溶媒力も前記所望の物質を分離する、超臨界流体クロマトグラフィーによって物質を 分離する方法であって、
前記液ィ匕ガスを生成する工程では、前記移動相力も分離させたガスの圧力が、前 記液ィ匕ガスの生成のためにガス供給手段力 供給されるガスの圧力よりも高 、ときに 、前記移動相から分離させたガスを液化させることを特徴とする方法。
[2] 前記分離する工程では、両端が開口している外筒と、前記外筒の一端の開口を塞 ぐフランジ部と、前記外筒の内周壁面に沿って周方向に前記移動相を外筒内に導入 する導入部と、両端が開口しており、前記フランジ部を貫いて前記導入部よりも前記 外筒の他端側に延出する内筒とを有する気液分離装置を用いることを特徴とする請 求項 1記載の方法。
[3] 前記気液分離装置は、前記外筒の外周壁面を覆!ヽ外筒の温度を調整するための ジャケットと、前記ジャケット内を通って前記導入部に接続され、前記移動相を前記 導入部に供給するための移動相供給管とをさらに有することを特徴とする請求項 1又 は 2に記載の方法。
[4] 前記試料は、光学異性体の混合物を含有し、前記所望の物質は前記光学異性体 の!、ずれかであることを特徴とする請求項 1から 3の 、ずれか一項に記載の方法。
[5] 超臨界流体と溶媒とを含む移動相に、所望の物質を含有する試料を注入し、前記 所望の物質を試料力 分離させるカラムに前記試料を通して試料中の所望の物質を 分離し、前記カラムに通した移動相を前記溶媒とガスとに分離し、前記溶媒から前記 所望の物質を分離する、超臨界流体クロマトグラフィーによって物質を分離する方法 に用いられる気液分離装置であって、 両端が開口している外筒と、
前記外筒の一端の開口を塞ぐフランジ部と、
前記外筒の内周壁面に沿って周方向に前記移動相を外筒内に導入する導入部と、 両端が開口しており、前記フランジ部を貫いて前記導入部よりも前記外筒の他端側 に延出する内筒とを有することを特徴とする気液分離装置。
[6] 前記外筒の外周壁面を覆!、外筒の温度を調整するためのジャケットと、前記ジャケ ット内を通って前記導入部に接続され、前記移動相を前記導入部に供給するための 移動相供給管とをさらに有することを特徴とする請求項 5記載の気液分離装置。
[7] 前記試料は光学異性体の混合物を含有し、前記所望の物質は前記光学異性体の いずれかであることを特徴とする請求項 5又は 6に記載の気液分離装置。
PCT/JP2004/019105 2004-01-05 2004-12-21 超臨界流体クロマトグラフィーによって物質を分離する方法及びこれに用いられる気液分離装置 WO2005066623A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04807462.9A EP1703280B1 (en) 2004-01-05 2004-12-21 Method of substance separation by supercritical fluid chromatography
US11/478,699 US7678276B2 (en) 2004-01-05 2006-07-03 Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
US12/581,940 US8591734B2 (en) 2004-01-05 2009-10-20 Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-000317 2004-01-05
JP2004000317A JP4319551B2 (ja) 2004-01-05 2004-01-05 超臨界流体クロマトグラフィーによる物質の分離方法及びこれに用いられる気液分離装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/478,699 Continuation US7678276B2 (en) 2004-01-05 2006-07-03 Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein

Publications (1)

Publication Number Publication Date
WO2005066623A1 true WO2005066623A1 (ja) 2005-07-21

Family

ID=34746942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019105 WO2005066623A1 (ja) 2004-01-05 2004-12-21 超臨界流体クロマトグラフィーによって物質を分離する方法及びこれに用いられる気液分離装置

Country Status (6)

Country Link
US (2) US7678276B2 (ja)
EP (1) EP1703280B1 (ja)
JP (1) JP4319551B2 (ja)
KR (1) KR20060123511A (ja)
CN (1) CN100419421C (ja)
WO (1) WO2005066623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025895A1 (fr) * 2006-08-28 2008-03-06 Novasep Procédé d'enrichissement d'un ou plusieurs composés d'un mélange utilisant une phase mobile liquide contenant un gaz
US8246834B2 (en) 2006-09-01 2012-08-21 Waters Technologies Corporation High pressure flash chromatography

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889665B1 (fr) * 2005-08-12 2007-11-09 Pic Solution Soc Par Actions S Procede et installation pour la regulation du taux de modificateur dans une chromatographie ou extraction supercritique avec recyclage
JP4850740B2 (ja) * 2007-02-08 2012-01-11 新日本製鐵株式会社 油の鹸化価・酸価測定方法
WO2010056313A1 (en) * 2008-11-12 2010-05-20 Thar Instruments, Inc. Collection system for purification flowstreams
JP5114755B2 (ja) * 2009-02-09 2013-01-09 新日鐵住金株式会社 高周波誘導結合プラズマ発光分光分析法を用いた有機金属の定量分析方法
JP5709358B2 (ja) * 2009-04-02 2015-04-30 株式会社ダイセル 超臨界流体クロマトグラフィーを用いた物質の製造方法
CN102093321B (zh) * 2010-12-16 2012-04-25 厦门大学 蜜柚精油中橙油素的超临界色谱分离装置及其方法
TWM409188U (en) * 2011-03-01 2011-08-11 Unique Product & Design Co Ltd Filled tire for lightweight vehicle
WO2012174437A1 (en) 2011-06-17 2012-12-20 Waters Technologies Corporation Methods and devices for open-bed atmospheric collection for supercritical fluid chromatography
GB201414820D0 (en) 2014-08-20 2014-10-01 Brown Sebastian M Improvements to anaesthetic recycling methods and systems
WO2016042618A1 (ja) * 2014-09-17 2016-03-24 株式会社島津製作所 気液分離器及び超臨界流体装置
JP6489129B2 (ja) * 2014-12-11 2019-03-27 株式会社島津製作所 超臨界流体装置から流出する試料の回収方法及び試料回収機構
JP5913713B1 (ja) * 2015-10-06 2016-04-27 昭和電工ガスプロダクツ株式会社 塗装装置
CN111850081B (zh) * 2019-04-26 2022-03-01 广安摩珈生物科技有限公司 使用超临界流体萃取技术拆分光学异构体的方法
KR102394484B1 (ko) * 2020-11-19 2022-05-04 삼진제약주식회사 온라인 초임계유체추출-초임계유체크로마토그래피-질량분석법을 이용한 니트로사민 화합물의 추출, 분리 및 분석 방법
WO2022136401A1 (en) * 2020-12-22 2022-06-30 Gases Research Innovation And Technology, S.L. Separation of volatile components
CN113069792B (zh) * 2021-03-09 2022-04-01 中触媒新材料股份有限公司 一种基于吸附分离的工业化合物精制提纯装置及其提纯方法与应用
CN113583727B (zh) * 2021-07-22 2022-04-08 天津大学 一种高稳定性的具有砂砾收纳机构的页岩气除砂装置
CN114272646A (zh) * 2021-12-30 2022-04-05 江苏汉邦科技有限公司 一种高效率超临界设备
WO2024053515A1 (ja) * 2022-09-06 2024-03-14 日本分光株式会社 気液分離器及びこれを用いた試料の回収方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154303A (ja) * 1991-12-04 1993-06-22 Taiwan Honotsuki Kogyo Kofun Yugenkoshi キシレン異性体混合物からエチルベンゼン又はエチルベンゼンとパラキシレン混合物を分離する方法
JPH07294503A (ja) * 1994-04-21 1995-11-10 Jeol Ltd 超臨界流体による分別、分析方法および装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527934A1 (fr) * 1982-06-03 1983-12-09 Elf Aquitaine Procede de fractionnement de melanges par chromatographie d'elution avec fluide en etat supercritique et installation pour sa mise en oeuvre
FR2584516B1 (fr) 1985-07-02 1988-05-13 Smh Alcatel Procede et systeme de controle pour machines a affranchir
FR2584618B1 (fr) * 1985-07-09 1989-11-24 Elf Aquitaine Dispositif pour la mise en oeuvre de procedes d'extraction-separation-fractionnement par fluides supercritiques
US5180487A (en) * 1987-09-25 1993-01-19 Nihon Bunko Kogyo Kabushiki Kaisha Pump apparatus for transferring a liquified gas used in a recycle chromatograph
US5614089A (en) * 1990-07-13 1997-03-25 Isco, Inc. Apparatus and method for supercritical fluid extraction or supercritical fluid chromatography
CN1065529A (zh) * 1991-04-01 1992-10-21 山东省化学研究所 毛细管超临界流体色谱脱溶剂的方法及其脱溶剂分流进样系统
JPH05307026A (ja) 1992-04-30 1993-11-19 Sumitomo Heavy Ind Ltd 超臨界流体クロマトグラフィーによる物質の分離方法及びその方法に使用する超臨界流体クロマト分離装置
CN1099899C (zh) * 1997-12-31 2003-01-29 孙传经 生产型超临界二氧化碳制备色谱及其用途
FR2795087B1 (fr) * 1999-06-18 2002-08-02 Vittori Carlo De Procede de fractionnement d'une huile de cuisson
US6413428B1 (en) * 1999-09-16 2002-07-02 Berger Instruments, Inc. Apparatus and method for preparative supercritical fluid chromatography
US6685828B2 (en) * 1999-09-16 2004-02-03 Berger Instruments, Inc. Automated sample collection in supercritical fluid chromatography
JP2001246216A (ja) * 1999-12-28 2001-09-11 Denso Corp 気液分離装置
US6632353B2 (en) * 2000-06-26 2003-10-14 Berger Instruments, Inc. Rapid sample collection in supercritical fluid chromatography
US6558540B2 (en) * 2000-06-26 2003-05-06 Berger Instruments, Inc. Exhaust gas collection system for supercritical fluid chromatography
US6908557B2 (en) * 2002-06-25 2005-06-21 Thar Technologies, Inc. Collection system for chromatographic system
CN101925448B (zh) 2007-11-30 2014-05-07 京洛株式会社 中空双壁面板及使用该中空双壁面板制造的车辆用内部装饰板
JP5154303B2 (ja) 2008-05-20 2013-02-27 株式会社新生工業 静電モータ用駆動回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154303A (ja) * 1991-12-04 1993-06-22 Taiwan Honotsuki Kogyo Kofun Yugenkoshi キシレン異性体混合物からエチルベンゼン又はエチルベンゼンとパラキシレン混合物を分離する方法
JPH07294503A (ja) * 1994-04-21 1995-11-10 Jeol Ltd 超臨界流体による分別、分析方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1703280A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025895A1 (fr) * 2006-08-28 2008-03-06 Novasep Procédé d'enrichissement d'un ou plusieurs composés d'un mélange utilisant une phase mobile liquide contenant un gaz
WO2008025887A1 (fr) * 2006-08-28 2008-03-06 Novasep Procede d'enrichissement d'un ou plusieurs composes d'un melange utilisant une phase mobile liquide contenant un gaz
US8246834B2 (en) 2006-09-01 2012-08-21 Waters Technologies Corporation High pressure flash chromatography

Also Published As

Publication number Publication date
US20060249458A1 (en) 2006-11-09
EP1703280A1 (en) 2006-09-20
US7678276B2 (en) 2010-03-16
CN100419421C (zh) 2008-09-17
EP1703280A4 (en) 2010-06-02
JP2005195398A (ja) 2005-07-21
JP4319551B2 (ja) 2009-08-26
CN1926429A (zh) 2007-03-07
KR20060123511A (ko) 2006-12-01
EP1703280B1 (en) 2016-05-18
US8591734B2 (en) 2013-11-26
US20100038299A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US7678276B2 (en) Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
EP2326403B1 (en) Method for removing hydrogen sulfide from a natural gas stream
CN104936674B (zh) 气体料流与液体料流的接触
US8158004B2 (en) Method of manufacturing substances by supercritical fluid chromatography
JP5116274B2 (ja) 酸素同位体重成分の濃縮方法および濃縮装置
CN107001180A (zh) 制备烃类的方法和设备
AU2016363739B2 (en) Method of removing CO2 from a contaminated hydrocarbon stream
JP5314558B2 (ja) 有機溶剤中の水分除去装置および除去方法
JP4430977B2 (ja) 超臨界流体クロマトグラフィーによる光学異性体の製造方法
TWI532716B (zh) A method for producing paraffin wax and a paraffin making apparatus
JPH03161002A (ja) 非極性物質の抽出法
US8785710B2 (en) Paraffin purification method and apparatus
RU2003118273A (ru) Способ очистки от углеводородов парогазовой среды, образующей при хранении нефтепродукта и при заполнении им емкости (варианты) и установка для его осуществления
EP3003531B1 (en) Systems and methods for recovering dimethyl ether from gas mixtures and liquid mixtures
TWI750340B (zh) 丙烯的純化方法和純化設備
CN107200675B (zh) 一种全氟丙烯生产过程中全氟丙烷的分离方法
JP2006052968A (ja) 超臨界流体クロマトグラフィー分離装置の洗浄方法
JP2007085830A (ja) 濃縮装置及びそれを有するクロマトグラフィー装置
CN115739844A (zh) 超临界晶圆清洗/干燥介质回收方法以及系统
JP2008122284A (ja) 超臨界流体クロマトグラフィー装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11478699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067015777

Country of ref document: KR

Ref document number: 2857/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200480042306.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004807462

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11478699

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067015777

Country of ref document: KR