WO2005064328A1 - Verfahren zur fotometrischen bestimmung eines parameters - Google Patents

Verfahren zur fotometrischen bestimmung eines parameters Download PDF

Info

Publication number
WO2005064328A1
WO2005064328A1 PCT/EP2004/013279 EP2004013279W WO2005064328A1 WO 2005064328 A1 WO2005064328 A1 WO 2005064328A1 EP 2004013279 W EP2004013279 W EP 2004013279W WO 2005064328 A1 WO2005064328 A1 WO 2005064328A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid sample
extinction
determination
reaction mixture
parameter
Prior art date
Application number
PCT/EP2004/013279
Other languages
English (en)
French (fr)
Inventor
Bernd Gassner
Klaus Geick
Andreas Golitz
Wilfried Belting
Lothar Heidemanns
Rolf Uthemann
Manfred Battefeld
Frank Thomas
Original Assignee
Hach Lange Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hach Lange Gmbh filed Critical Hach Lange Gmbh
Publication of WO2005064328A1 publication Critical patent/WO2005064328A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator

Definitions

  • the invention relates to a method for the photometric determination of a parameter of a liquid sample subjected to an oxidative digestion.
  • CMOS complementary metal-oxide-semiconductor
  • COD chemical oxygen demand
  • a cuvette is first filled with the liquid sample and a disintegrant, which changes the absorbance of the reaction mixture formed in this way.
  • the reaction mixture is brought to a boil under atmospheric pressure.
  • the reaction mixture undergoes a color change, the intensity of which depends on the concentration of the quantitatively determined substances in the liquid sample. Since the different substances to be determined within a liquid sample can have digestion times of very different lengths, the intensity of the color change is only determined photometrically after a relatively long fixed period of time and the parameter in question is calculated from this.
  • the standardized digestion time is two hours.
  • the object of the invention is to provide a faster method for the photometric determination of a parameter of a liquid sample subjected to an oxidative digestion.
  • the liquid sample-disintegrant reaction mixture in the cuvette is heated to a temperature above its atmospheric boiling temperature during the entire disintegration time, with the pressure being closed.
  • the absorbance of the reaction mixture is determined quasi-continuously at at least one defined wavelength in the cuvette throughout the digestion.
  • the extinction determination is finally ended when a defined state with regard to the extinction is reached.
  • the duration of a parameter determination is therefore accelerated by two measures, namely by heating the reaction mixture to a temperature above the atmospheric boiling temperature and by a dynamic measurement period.
  • a prerequisite for the dynamic measurement duration is the continuous determination of the absorbance of the reaction mixture already during the digestion in the cuvette.
  • the absorbance determination is ended as soon as the time course of the measured absorbance reaches a defined state.
  • the specified state is selected so that the parameter to be determined can be determined with great certainty and with sufficient accuracy. For example, the oxidative digestion of the liquid sample can be almost completely completed after a few minutes, so that the absorbance determination can also be ended after a few minutes and a new liquid sample can be subjected to the determination. A long-lasting extinction determination only takes place with liquid samples, which also require this due to their slow oxidative digestion.
  • the defined state in which the absorbance determination is ended is a value of minimal change in the absorbance over time. As soon as the extinction changes only slightly over time, the extinction determination is ended and the parameter in question is determined or extrapolated from the last measured extinction value. In this way, a simple criterion for ending the absorbance determination is created, which allows reliable operation and a relatively precise determination of the parameter in question.
  • the defined state is preferably a limit value x for the ratio of the extinction last determined to an end extinction extrapolated from the time course of the specific extinctions.
  • An end absorbance is determined from the temporal course of the already determined extinctions using a mathematical function, for example an e-function.
  • the extinction determination is ended as soon as the ratio of the extinction last determined to the extrapolated final extinction has reached a limit value x which is, for example, greater than or equal to 0.95 or 0.99. Because with this In this method, the temporal course of the already determined extinctions is always included, this method for determining the defined state in which the extinction determination is ended offers a high degree of security against the extinction determination being ended too early and an incorrect determination of the relevant parameter.
  • the liquid sample is a sample from waste water.
  • the method is suitable for the continuous monitoring of wastewater.
  • the reaction mixture is preferably heated to a fixed temperature value of over 155 ° C.
  • the set temperature is about 175 ° C. At these temperatures above the atmospheric boiling point in the COD determination, the oxidative digestion is accelerated considerably.
  • the parameter to be determined is preferably the chemical oxygen requirement of the liquid sample.
  • the parameter to be determined can also be the total nitrogen of the liquid sample.
  • the figure shows a device for carrying out the method according to the invention for the photometric determination of a parameter of a liquid sample subjected to an oxidative digestion.
  • a determination device 10 for determining the chemical oxygen demand (COD) is shown.
  • the CSB chemical oxygen demand
  • Determination device 10 works automatically and quasi-continuously. It essentially consists of several containers 21-27 with one Liquid sample, calibration solutions, color change solubilizers,
  • the containers 21-27, the lower end of the metering chamber 12 and the lower end of the cuvette 16 are interconnected in a star-like manner by short lines of small diameter.
  • the entire COD determination device 10 is controlled by a control device 62.
  • the piston pump 14 is driven by a motor 15.
  • a three-way valve 30 is arranged between the piston pump 14 and the metering chamber 12, which selectively connects the piston pump 14, the metering chamber 12 and the atmosphere to one another.
  • the dosing chamber 12 has two light barriers 32, 34, which serve to determine the fill level of a liquid in the dosing chamber 12.
  • the light barriers 32, 34 detect the liquid level in the dosing chamber at 200 ⁇ l or 750 ⁇ l.
  • the cuvette 16 has a one-piece transparent glass body 17 which can be heated by a heating device 38. Furthermore, the cuvette 16 has a photometer 40, which is designed as an LED photometer and determines the extinction at a wavelength of 600 nm.
  • a ventilation valve 42 is provided at the upper end of the cuvette glass body 17 and an inlet / outlet valve 44 is provided at the lower end.
  • the contents of the containers 21-27 are as follows: In a container 21 there is a liquid sample 60.
  • the liquid sample 60 is a sample from waste water.
  • two containers 22, 23 there is a calibration solution, namely in one container 22 a standard calibration solution and in the other container 23 distilled water as a zero calibration solution.
  • Another container 24 contains mercury (I ⁇ ) sulfate (HgSO 4 ) for masking chloride ions in the liquid sample.
  • Another container 25 contains silver sulfate (Ag 2 SO 4 ) as a catalyst.
  • Another container 26 contains potassium dichromate (K 2 Cr 2 O 7 ) as a disintegrant.
  • a last container 27 holds the waste liquids.
  • a valve 51-57 is assigned to each of the containers 21-27. All valves 30, 42, 44, 51-57 are electromagnetic valves that have a closed position and an open position.
  • the procedure for the photometric determination of the parameter COD of the liquid sample 16 subjected to an oxidative digestion is as follows: First, a liquid sample 60 is drawn from the relevant container 21 through the piston pump 14 into the metering chamber 12, from where it is then pumped into the cuvette 16 to become.
  • one of the two calibration solutions can also be pumped from the containers 22, 23 into the cuvette 16.
  • the masking agent two parts of the catalyst and part of the color change disintegrant are pumped from the containers 24, 25, 26 into the cuvette 16. Then both valves 42, 44 assigned to the cuvette 16 are closed and the heating device 38 is put into operation.
  • the heating device 38 heats the reaction mixture in the cuvette 16 to a temperature of approximately 175 ° C. at a pressure of 5 to 10 bar and keeps this temperature constant.
  • the photometer 40 begins the extinction of the reaction mixture in the quasi-continuously with approximately 3 measurements per second To determine cuvette vitreous 17. The determined extinction values are evaluated and stored in the control device 62.
  • the set state is a value of minimal change in absorbance over time, for example a change in absorbance of less than one percent in 10 seconds.
  • the defined state can also be a limit value x for the ratio of the extinction determined last to the final extinction extrapolated from the time course of the already determined extinctions. This final extinction is determined by the control device 62 with the aid of suitable mathematical functions. With a ratio x of 0.95 of the last extinction value determined to the extrapolated final extinction value, the defined state is reached and the extinction determination is ended.
  • the limit value x can also be 0.99.
  • COD chemical oxygen demand
  • the above-described method can in principle also be used to determine the total nitrogen of a liquid sample.
  • appropriate suitable reagents are used instead of the reagents described in the containers 22-26.
  • the oxidative digestion is accelerated considerably.
  • the mean measurement time is significantly reduced. This means that several measurements per hour can be carried out if necessary and the quality of the liquid sample can be monitored more closely.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe (60). Derartige Verfahren haben in der Regel eine konstante Aufschlussdauer von mehreren Stunden, nach deren Ablauf die Extinktion bestimmt wird. Aufgabe der Erfindung ist es demgegenüber, ein schnelleres Verfahren zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe zu schaffen. Gemäß dem erfindungsgemäßen Verfahren wird das aus der Flüssigkeitsprobe 60) und einem Farbumschlags-Aufschlussmittel (26) bestehende Reaktionsgemisch in der Küvette (16) unter Druckabschluss auf eine Temperatur oberhalb ihrer atmosphärischen Siedetemperatur erhitzt. Gleichzeitig wird während des Aufschlusses kontinuierlich die Extinktion des Reaktionsgemisches bei einer festgelegten Wellenlänge bestimmt. Schließlich wird die Extinktions-Bestimmung bei Erreichen eines festgelegten Zustandes in Bezug auf die Extinktion beendet. Durch die Erhöhung der Temperatur des Reaktionsgemisches sowie die quasi-kontinuierliche dynamische Bestimmung der Extinktion wird die Messzeit auf ein Minimum reduziert.

Description

Unser Zeichen: 042729WO/SG-mw
Verfahren zur fotometrischen Bestimmung eines Parameters
Die Erfindung bezieht sich auf ein Verfahren zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe.
Bekannte Verfahren, bei denen mittels eines oxidativen Aufschlusses einer Flüssigkeitsprobe ein Parameter fotometrisch bestimmt wird, sind die Bestimmung des chemischen Sauerstoffbedarfes (CSB) und die Bestimmung des Gesamt-Stickstoffes einer Flüssigkeitsprobe.
Bei den bekannten Verfahren wird zunächst eine Küvette mit der Flüssigkeitsprobe und einem Aufschlussmittel gefüllt, das die Extinktion des auf diese Weise gebildeten Reaktionsgemisches verändert. Das Reaktionsgemisch wird unter atmosphärischem Druck zum Kochen gebracht. Das Reaktionsgemisch erfährt dabei einen Farbumschlag, dessen Intensität von der Konzentration der quantitativ zu bestimmenden Substanzen der Flüssigkeitsprobe abhängig ist. Da die verschiedenen zu bestimmenden Substanzen innerhalb einer Flüssigkeitsprobe sehr verschieden lange Aufschlusszeiten besitzen können, wird erst nach einem relativ langen festgelegten Zeitraum die Intensität des Farbumschlags fotometrisch bestimmt und hieraus der betreffende Parameter errechnet. Bei der Bestimmung des CSB beträgt die standardisierte Aufschlusszeit zwei Stunden.
Aufgabe der Erfindung ist es demgegenüber, ein schnelleres Verfahren zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe zu schaffen.
Diese Aufgabe wird erfindungsgemäß gelöst mit den Merkmalen des Patentanspruches 1.
Bei dem erfindungsgemäßen Verfahren wird nach dem Befüllen der Küvette mit der Flüssigkeitsprobe und dem Aufschlussmittel das Flüssigkeitsproben- Aufschlussmittel-Reaktionsgemisch in der Küvette unter Druckabschluss auf eine Temperatur oberhalb seiner atmosphärischen Siedetemperatur während der gesamten Aufschlusszeit erhitzt. Gleichzeitig wird die Extinktion des Reaktionsgemisches bei mindestens einer festgelegten Wellenlänge in der Küvette während des gesamten Aufschlusses quasi-kontinuierlich bestimmt. Die Extinktionsbestimmung wird schließlich bei Erreichen eines festgelegten Zustandes in Bezug auf die Extinktion beendet. Die Dauer einer Parameterbestimmung wird also durch zwei Maßnahmen beschleunigt, nämlich durch die Erwärmung des Reaktionsgemisches auf eine oberhalb der atmosphärischen Siedetemperatur liegenden Temperatur sowie durch eine dynamische Messdauer. Voraussetzung für die dynamische Messdauer ist die kontinuierliche Bestimmung der Extinktion des Reaktionsgemisches schon während des Aufschlusses in der Küvette. Die Extinktionsbestimmung wird beendet, sobald der zeitliche Verlauf der gemessenen Extinktion einen festgelegten Zustand erreicht. Der festgelegte Zustand wird so gewählt, dass der zu bestimmende Parameter mit großer Sicherheit und hinreichender Genauigkeit bestimmt werden kann. Beispielsweise kann der oxidative Aufschluss der Flüssigkeitsprobe bereits nach wenigen Minuten nahezu vollständig vollzogen sein, so dass die Extinktionbestimmung ebenfalls bereits nach wenigen Minuten beendet werden und eine neue Flüssigkeitsprobe der Bestimmung unterzogen werden kann. Eine lang andauernde Extinktionsbestimmung erfolgt nur noch bei Flüssigkeitsproben, die dies aufgrund ihres langsam verlaufenden oxidativen Aufschlusses auch erfordern.
Gemäß einer bevorzugten Ausgestaltung ist der festgelegte Zustand, bei dem die Extinktionsbestimmung beendet wird, ein Wert minimaler zeitlicher Änderung der Extinktion. Sobald sich die Extinktion in ihrem zeitlichen Verlauf nur noch geringfügig verändert, wird die Extinktionsbestimmung beendet und der betreffende Parameter aus dem zuletzt gemessenen Extinktionswert bestimmt oder extrapoliert. Auf diese Weise ist ein einfaches Kriterium für die Beendigung der Extinktionsbestimmung geschaffen, das einen zuverlässigen Betrieb und eine relativ genaue Bestimmung des betreffenden Parameters erlaubt.
Vorzugsweise ist der festgelegte Zustand ein Grenzwert x für das Verhältnis der zuletzt bestimmten Extinktion zu einer aus dem zeitlichen Verlauf der bestimmten Extinktionen extrapolierten End-Extinktion. Aus dem zeitlichen Verlauf der bereits bestimmten Extinktionen wird mittels einer mathematischen Funktion, beispielsweise einer e-Funktion eine End-Extinktion bestimmt. Die Extinktions-Bestimmung wird beendet, sobald das Verhältnis der zuletzt bestimmten Extinktion zu der extrapolierten End-Extinktion einen Grenzwert x erreicht hat, der beispielsweise größer oder gleich 0,95 oder 0,99 ist. Da bei die- sem Verfahren der zeitliche Verlauf der bereits bestimmten Extinktionen stets mit eingeht, bietet dieses Verfahren zur Festlegung des festgelegten Zustandes, bei dem die Extinktionsbestimmung beendet wird, eine hohe Sicherheit vor einer zu frühen Beendigung der Extinktionsbestimmung und einer fehlerhaften Bestimmung des betreffenden Parameters.
Gemäß einer bevorzugten Ausgestaltung ist die Flüssigkeitsprobe eine Probe aus Abwasser. Das Verfahren eignet sich zur kontinuierlichen Überwachung von Abwasser.
Vorzugsweise wird das Reaktionsgemisch auf einen festgelegten Temperaturwert von über 155 °C erhitzt. Vorzugsweise ist der festgelegte Temperatur- Wert ungefähr 175°C. Bei diesen Temperaturen oberhalb der atmosphärischen Siedetemperatur bei der CSB-Bestimmung ist der oxidative Aufschluss erheblich beschleunigt.
Vorzugsweise ist der zu bestimmende Parameter der chemische Sauerstoffbedarf der Flüssigkeitsprobe. Alternativ kann der zu bestimmende Parameter auch der Gesa mt-Stickstoff der Flüssigkeitsprobe sein.
Im Folgenden wird unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens näher erläutert.
Die Figur zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe.
In der Figur ist eine Bestimmungsvorrichtung 10 zur Bestimmung des chemischen Sauerstoffbedarfes (CSB) dargestellt. Die CSB-
Bestimmungsvorrichtung 10 arbeitet automatisch und quasi-kontinuierlich. Sie besteht im Wesentlichen aus mehreren Behältern 21-27 mit einer Flüssigkeitsprobe, Kalibrierlösungen, Farbumschlag-Aufschlussmitteln,
Maskierungsmitteln und Abfall, einer Dosierkammer 12 mit angeschlossener Kolbenpumpe 14 sowie einer Küvette 16.
Die Behälter 21-27, das untere Ende der Dosierkammer 12 sowie das untere Ende der Küvette 16 sind durch kurze Leitungen geringen Durchmessers sternartϊg miteinander verbunden. Die gesamte CSB-Bestimmungsvorrichtung 10 wird gesteuert durch eine Steuervorrichtung 62.
Die Kolbenpumpe 14 wird durch einen Motor 15 angetrieben. Zwischen der Kolbenpumpe 14 und der Dosierkammer 12 ist ein Dreiwegeventil 30 angeordnet, das die Kolbenpumpe 14, die Dosierkammer 12 und die Atmosphäre wahlweise miteinander verbindet.
Die Dosϊerkammer 12 weist zwei Lichtschranken 32,34 auf, die der Bestimmung des Füllstandes einer Flüssigkeit in der Dosierkammer 12 dienen. Die Lichtschranken 32,34 detektieren den Flüssigkeits-Füllstand in der Dosierkammer bei 200O μl bzw. bei 750 μl.
Die Küvette 16 weist einen einstückigen transparenten Glaskörper 17 auf, der durch eine Heizvorrichtung 38 beheizbar ist. Ferner weist die Küvette 16 ein Fotometer 40 auf, das als LED-Fotometer ausgebildet ist und bei einer Wellenlänge von 600 nm die Extinktion bestimmt. Am oberen Ende des Küvetten-GIaskörpers 17 ist ein Belüftungsventil 42 und am unteren Ende ein Einlass-/Auslass-Ventil 44 vorgesehen.
Der Inhalt der Behälter 21-27 ist folgender: In einem Behälter 21 befindet sich eine Flüssigkeitsprobe 60. Die Flüssigkeitsprobe 60 ist eine Probe aus Abwasser. In zwei Behältern 22,23 befindet sich jeweils eine Kalibrierlösung, nämlich in dem einen Behälter 22 eine Standard-Kalibrierlösung, und in dem anderen Behälter 23 destilliertes Wasser als Null-Kalibrierlösung. Ein weiterer Behälter 24 enthält Quecksilber (IΙ)-Sulfat (HgSO4) zur Maskierung von Chlorid-Ionen in der Flüssigkeitsprobe. Ein weiterer Behälter 25 enthält als Katalysator Silbersulfat (Ag2SO4). Ein weiterer Behälter 26 enthält als Aufschlussmittel Kaliumdichromat (K2Cr2O7). Ein letzter Behälter 27 nimmt die Abfall-Flüssigkeiten auf.
Jedem der Behälter 21-27 ist jeweils ein Ventil 51-57 zugeordnet. Alle Ventile 30,42,44,51-57 sind elektromagnetische Ventile, die eine Schließposition und eine Öffnungsposition aufweisen.
Der Verfahrensablauf zur foto metrischen Bestimmung des Parameters CSB der einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe 16 ist wie folgt: Zunächst wird eine Flüssigkeitsprobe 60 aus dem betreffenden Behälter 21 durch die Kolbenpumpe 14 in die Dosierkammer 12 gesaugt, um von dort aus anschließend in die Küvette 16 gepumpt zu werden.
Die Dosierung aller aus den Behältern 21-26 in die Küvette 16 gepumpten Flüssigkeiten erfolgt mit Hilfe der beiden Lichtschranken 32,34.
Alternativ zu der Flüssϊgkeitsprobe aus dem Behälter 21 kann auch eine der beiden Kalibrierlösungen aus den Behältern 22,23 in die Küvette 16 gepumpt werden.
Anschließend werden ein Teil des Maskierungsmittels, zwei Teile des Katalysators sowie ein Teil des Farbumschlag-Aufschlussmittels aus den Behältern 24,25,26 in die Küvette 16 gepumpt. Anschließend werden beide der Küvette 16 zugeordneten Ventile 42,44 geschlossen und die Heizvorrichtung 38 in Betrieb genommen. Die Heizvorrichtung 38 heizt das in der Küvette 16 befindliche Reaktionsgemisch auf eine Temperatur von ungefähr 175°C bei einem Druck von 5 bis 10 bar auf und hält diese Temperatur konstant. Mit Beginn des Heizvorganges beginnt das Fotometer 40 quasi-kontinuierlich mit ungefähr 3 Messungen pro Sekunde die Extinktion des Reaktionsgemisches in dem Küvetten-Glaskörper 17 zu bestimmen. Die bestimmten Extinktions-Werte werden in der Steuervorrichtung 62 ausgewertet und gespeichert.
Sobald ein festgelegter Zustand in Bezug auf die Extinktion erreicht ist, wird die Extinktionsbestimmung durch die Steuervorrichtung 62 beendet. Der festgelegte Zustand ist ein Wert minimaler zeitlicher Änderung der Extinktion, beispielsweise eine Änderung der Extinktion von weniger als einem Prozent in 10 Sekunden.
Der festgelegte Zustand kann aber alternativ auch ein Grenzwert x für das Verhältnis der zuletzt bestimmten Extinktion zu der aus dem zeitlichen Verlauf der bereits bestimmten Extinktionen extrapolierten End-Extinktion sein. Diese End-Extinktion wird durch die Steuervorrichtung 62 mit Hilfe geeigneter mathematischer Funktionen bestimmt. Bei einem Verhältnis x von 0,95 des zuletzt bestimmten Extinktionswertes zu dem extrapolierten End-Extinktionswert ist der festgelegte Zustand erreicht und wird die Extinktions-Bestimmung beendet. Der Grenzwert x kann auch 0,99 betragen.
Anschließend wird aus der Extinktion der Parameter chemischer Sauerstoffbedarf (CSB) nach einer festgelegten Funktion errechnet.
Alternativ zu dem Parameter chemischer Sauerstoffbedarf kann mit dem vorbeschriebenen Verfahren grundsätzlich auch der Gesamt-Stickstoff einer Flüssigkeitsprobe bestimmt werden. Hierzu werden statt der beschriebenen Reagenzien der Behälter 22-26 entsprechende geeignete Reagenzien verwendet.
Durch die Erhöhung der Temperatur des Reaktionsgemisches der Küvette auf eine Temperatur oberhalb der. atmosphärischen Siedetemperatur des Reaktionsgemisches wird der oxidative Aufschluss erheblich beschleunigt. Durch die quasi-kontinuierliche Bestimmung der Extinktion schon während des oxidativen Aufschlusses und das Beenden der Extinktionsbestimmung bei Erreichen eines festgelegten und nahezu stabilen Zustandes in Bezug auf die Extinktion wird die mittlere Messzeit erheblich verkürzt. Hierdurch können ggf. mehrere Messungen pro Stunde durchgeführt werden und die Qualität der Flüssigkeitsprobe engmaschiger überwacht werden.

Claims

PATENTANSPRÜCHE
1. Verfahren zur fotometrischen Bestimmung eines Parameters einer einem oxidativen Aufschluss unterzogenen Flüssigkeitsprobe (60), mit den Verfahrensschritten :
Befüllen einer Küvette (16) mit einer Flüssigkeitsprobe (60),
Befüllen der Küvette (16) mit einem Aufschlussmittel, das die Extinktion des Flüssigkeitsproben-Aufschlussmittel-Reaktionsgemisches ändert,
Heizen des Reaktionsgemisches in der Küvette (16) unter Druckabschluss auf eine Temperatur oberhalb der atmosphärischen Siedetemperatur während des Aufschlusses,
Kontinuierliche Bestimmung der Extinktion des Reaktionsgemisches bei einer festgelegten Wellenlänge in der Küvette (16) während des Aufschlusses, und
Beenden der Extinktionsbestimmung bei Erreichen eines festgelegten Zustandes in Bezug auf die Extinktion.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der festgelegte Zustand ein Wert minimaler zeitlicher Änderung der Extinktion ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der festgelegte Zustand ein Grenzwert x für das Verhältnis der zuletzt bestimmten Extinktion zu einer aus dem zeitlichen Verlauf der bestimmten Extinktionen jeweils extrapolierten End-Extinktion ist.
4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Flüssigkeitsprobe (60) eine Probe aus Abwasser ist.
5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass das Reaktionsgemisch durch das Heizen auf einen festgelegten Temperaturwert von über 155°C erwärmt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der festgelegte Temperaturwert ungefähr 175°C beträgt.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Grenzwert x größer oder gleich 0,95 ist.
8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Grenzwert x gleich 0,99 ist.
9. Verfahren nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass der zu bestimmende Parameter der chemische Sauerstoffbedarf der Flüssigkeitsprobe (60) ist.
10. Verfahren nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass der zu bestimmende Parameter der Gesamt-Stickstoff der Flüssigkeitsprobe ist.
PCT/EP2004/013279 2003-12-20 2004-11-23 Verfahren zur fotometrischen bestimmung eines parameters WO2005064328A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360066.3 2003-12-20
DE2003160066 DE10360066A1 (de) 2003-12-20 2003-12-20 Verfahren zur fotometrischen Bestimmung eines Parameters

Publications (1)

Publication Number Publication Date
WO2005064328A1 true WO2005064328A1 (de) 2005-07-14

Family

ID=34683642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013279 WO2005064328A1 (de) 2003-12-20 2004-11-23 Verfahren zur fotometrischen bestimmung eines parameters

Country Status (4)

Country Link
CN (1) CN1629623A (de)
DE (1) DE10360066A1 (de)
TW (1) TW200526956A (de)
WO (1) WO2005064328A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279123A (zh) * 2011-06-14 2011-12-14 聚光科技(杭州)股份有限公司 一种前处理方法和装置
DE102011075762A1 (de) 2011-05-12 2012-11-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analysegerät zur automatisierten Bestimmung einer Messgröße einer Messflüssigkeit
CN104458733A (zh) * 2014-12-17 2015-03-25 河北先河环保科技股份有限公司 一种比色法氨氮自动监测仪消解比色装置
DE102013114138A1 (de) 2013-12-16 2015-06-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Aufschlussreaktor und Analysegerät zur Bestimmung eines Aufschlussparameters einer Flüssigkeitsprobe
CN106053202A (zh) * 2016-06-12 2016-10-26 山东思睿环境设备科技有限公司 高温高压消解比色装置
CN106124287A (zh) * 2016-06-13 2016-11-16 山东思睿环境设备科技有限公司 高温高压消解光纤比色系统
US20170089750A1 (en) * 2015-09-28 2017-03-30 Endress+Hauser Conducta Gmbh+Co. Kg Device for dispensing a liquid
CN107831121A (zh) * 2017-11-22 2018-03-23 江苏蓝创智能科技股份有限公司 多参数水质检测仪及其使用方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367710B2 (ja) * 2007-09-05 2013-12-11 ジーイー・アナリティカル・インストルメンツ・インコーポレイテッド 高温および高圧下で酸化を利用する水性サンプル中の炭素測定
DE102009028165B4 (de) 2009-07-31 2017-03-30 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren und Vorrichtung zur automatisierten Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe
DE102013108556A1 (de) 2013-08-08 2015-02-12 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren und Analysegerät zur Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe
DE102013109168A1 (de) 2013-08-23 2015-02-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analysegerät zur Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe
DE102013114132A1 (de) * 2013-12-16 2015-06-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Aufschlussreaktor und Analysegerät zur Bestimmung eines Aufschlussparameters einer Flüssigkeitsprobe
DE102014119547A1 (de) 2014-08-13 2016-02-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Vorrichtung und Verfahren zum Entfernen von Chlorid aus einer Flüssigkeitsprobe
CN106556533A (zh) * 2015-09-25 2017-04-05 株式会社岛津制作所 一种排除气体和液体的方法
DE102015117637A1 (de) * 2015-10-16 2017-04-20 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Verbesserung einer Messgenauigkeit eines nasschemischen Analysegerätes bei einer Bestimmung eines Parameters einer zu analysierenden Flüssigkeit
DE102015117639A1 (de) * 2015-10-16 2017-04-20 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Sicherstellung der Betriebsfähigkeit eines Analysegerätes vor einer Bestimmung eines Aufschlussparameters einer Flüssigkeitsprobe
DE102019122163A1 (de) * 2019-08-19 2021-02-25 Endress+Hauser Conducta Gmbh+Co. Kg Messanordnung zur Messung des gesamten gebundenen Stickstoffs in einer Messflüssigkeit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222982A1 (de) * 1992-07-13 1994-01-20 Lange Gmbh Dr Bruno Verfahren zur Schnellbestimmung des Gesamtstickstoffgehalts
DE10024903A1 (de) * 2000-05-19 2001-11-22 Wtw Weilheim Gerät und Verfahren zur Bestimmung des gelösten anorganischen Stickstoffs in Flüssigkeiten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109118C2 (de) * 1991-03-20 1995-04-06 Lange Gmbh Dr Bruno Verfahren zum automatischen Auswerten eines Probeninhaltsstoffes einer Wasserprobe
AT407802B (de) * 1998-02-26 2001-06-25 Staudinger Gernot Vorrichtung zur messung der zeitlichen entwicklung der transparenz eines in einer küvette sedimentierenden klärschlammes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222982A1 (de) * 1992-07-13 1994-01-20 Lange Gmbh Dr Bruno Verfahren zur Schnellbestimmung des Gesamtstickstoffgehalts
DE10024903A1 (de) * 2000-05-19 2001-11-22 Wtw Weilheim Gerät und Verfahren zur Bestimmung des gelösten anorganischen Stickstoffs in Flüssigkeiten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DASGUPTA P K ET AL: "KINETIC APPROACH TO THE MEASUREMENT OF CHEMICAL OXYGEN DEMAND WITH AN AUTOMATED MICRO BATCH ANALYZER", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 62, no. 4, 15 February 1990 (1990-02-15), pages 395 - 402, XP000134506, ISSN: 0003-2700 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9086156B2 (en) 2011-05-11 2015-07-21 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analytical device for automated determining of a measured variable of a measured liquid
DE102011075762A1 (de) 2011-05-12 2012-11-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analysegerät zur automatisierten Bestimmung einer Messgröße einer Messflüssigkeit
CN102279123A (zh) * 2011-06-14 2011-12-14 聚光科技(杭州)股份有限公司 一种前处理方法和装置
DE102013114138A1 (de) 2013-12-16 2015-06-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Aufschlussreaktor und Analysegerät zur Bestimmung eines Aufschlussparameters einer Flüssigkeitsprobe
US20150168373A1 (en) * 2013-12-16 2015-06-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analytical device for determining a digestion parameter of a liquid sample
US10295458B2 (en) 2013-12-16 2019-05-21 Endress+Hauser Conducta Gmbh+Co. Kg Analytical device for determining a digestion parameter of a liquid sample
CN104458733A (zh) * 2014-12-17 2015-03-25 河北先河环保科技股份有限公司 一种比色法氨氮自动监测仪消解比色装置
US10161781B2 (en) * 2015-09-28 2018-12-25 Endress+Hauser Conducta Gmbh+Co. Kg Device for dispensing a liquid
US20170089750A1 (en) * 2015-09-28 2017-03-30 Endress+Hauser Conducta Gmbh+Co. Kg Device for dispensing a liquid
CN106053202A (zh) * 2016-06-12 2016-10-26 山东思睿环境设备科技有限公司 高温高压消解比色装置
CN106124287A (zh) * 2016-06-13 2016-11-16 山东思睿环境设备科技有限公司 高温高压消解光纤比色系统
CN107831121A (zh) * 2017-11-22 2018-03-23 江苏蓝创智能科技股份有限公司 多参数水质检测仪及其使用方法
CN107831121B (zh) * 2017-11-22 2024-03-01 江苏蓝创智能科技股份有限公司 多参数水质检测仪及其使用方法

Also Published As

Publication number Publication date
DE10360066A1 (de) 2005-07-21
CN1629623A (zh) 2005-06-22
TW200526956A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
WO2005064328A1 (de) Verfahren zur fotometrischen bestimmung eines parameters
DE102011007011B4 (de) Analysegerät zur automatisierten Bestimmung einer Messgröße einer Flüssigkeitsprobe und Verfahren zur Überwachung einer Messgröße
DE102009028165B4 (de) Verfahren und Vorrichtung zur automatisierten Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe
DE102011088959B4 (de) Vorrichtung zum Entgasen einer Flüssigkeit und Verwendung dieser Vorrichtung in einem Analysegerät
WO2008025428A1 (de) Verfahren und vorrichtung zur detektion lebender phytoplanktonzellen in wasser
DE102011088235A1 (de) Probenvorbereitungseinrichtung für eine Analyseeinrichtung zur Bestimmung einer Messgröße einer flüssigen Probe
DE10018784C2 (de) Verfahren für die Analyse von gasförmigen Inhaltsstoffen sowie Testkit insbesondere zur Durchführung dieses Verfahrens
WO2005083386A1 (de) Anordnung und verfahren zur spektroskopischen bestimmung der bestandteile und konzentrationen pumpfähiger organischer verbindungen
EP1057017B1 (de) Verfahren und vorrichtung zur bestimmung des organischen kohlenstoff(toc-)gehalts in flüssigkeiten, insbesondere reinstwasser
DE112015006435B4 (de) Wasserqualitätsanalysevorrichtung
DE2007727A1 (de) Verfahren zur Bestimmung der biochemischen Abbaubarkeit von Substraten und zur optimalen Steuerung des biochemischen Reaktionsablaufes in einem Fermenter
DE102013109168A1 (de) Analysegerät zur Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe
DE102019135489A1 (de) Verfahren zur Bestimmung eines von der Konzentration mindestens eines Analyten in einer Probenflüssigkeit abhängigen Parameters
DE102016123227A1 (de) Verfahren zur Bestimmung einer Konzentration einer Messgröße einer Flüssigkeitsprobe und Analysator
EP2581344A1 (de) Anordnung zur Behandlung von Flüssigkeiten, insbesondere zur Wasserbehandlung
DE102011086942B4 (de) Verfahren zur Kalibrierung und/oder Justierung eines Analysegerätes für chemische Substanzen in Flüssigkeiten, insbesondere in wässrige Lösungen
DE19753701A1 (de) Verfahren und Vorrichtung zur quasi-kontinuierlichen Bestimmung von anorganischen oder organischen Inhaltsstoffen in Fluiden
DE3820196C2 (de)
WO2001044803A2 (de) Schnelltest zur formaldehydbestimmung
WO2001042772A1 (de) Verfahren zur qualitätskontrolle von materialschichten
DE3221063C2 (de) Vorrichtung zur automatischen, analytischen Prüfung von Flüssigkeiten, insbesondere von Wasser
DE102015117637A1 (de) Verfahren zur Verbesserung einer Messgenauigkeit eines nasschemischen Analysegerätes bei einer Bestimmung eines Parameters einer zu analysierenden Flüssigkeit
DE2420327A1 (de) Verfahren und anordnung zur ermittlung des desinfektionsmittelanteils in schwimmbeckenwassern
DE102006026044A1 (de) Vorrichtung zur Bestimmung stark schwankender Gehalte flüchtiger Stoffe in Flüssigkeiten
DE3814230C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase