WO2005063874A1 - ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体 - Google Patents

ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体 Download PDF

Info

Publication number
WO2005063874A1
WO2005063874A1 PCT/JP2004/019701 JP2004019701W WO2005063874A1 WO 2005063874 A1 WO2005063874 A1 WO 2005063874A1 JP 2004019701 W JP2004019701 W JP 2004019701W WO 2005063874 A1 WO2005063874 A1 WO 2005063874A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
polyolefin
molding
resin
component
Prior art date
Application number
PCT/JP2004/019701
Other languages
English (en)
French (fr)
Inventor
Masahide Ishikawa
Sukehiro Niga
Original Assignee
New Japan Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co., Ltd. filed Critical New Japan Chemical Co., Ltd.
Priority to BRPI0418175-1A priority Critical patent/BRPI0418175A/pt
Priority to US10/583,000 priority patent/US7723413B2/en
Priority to EP04808052A priority patent/EP1715000B1/en
Priority to CN2004800389531A priority patent/CN1898317B/zh
Priority to AT04808052T priority patent/ATE460457T1/de
Priority to DE602004025980T priority patent/DE602004025980D1/de
Priority to JP2005516714A priority patent/JP4835159B2/ja
Priority to KR1020067014976A priority patent/KR101154564B1/ko
Publication of WO2005063874A1 publication Critical patent/WO2005063874A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • composition and method for controlling crystallization rate of polyolefin resin Composition and method for controlling crystallization rate of polyolefin resin
  • the present invention relates to a polyolefin-based resin crystallization rate control composition, a polyolefin-based bright resin composition containing the crystallization rate control composition, and a resin composition obtained by molding the resin composition.
  • BACKGROUND ART Polyolefin resins are excellent in moldability, mechanical properties, electrical properties, etc., and are used for film molding (molding for film production), sheet molding (molding for sheet production), blow molding, It is applied to various fields as a material for injection molding.
  • polyolefin-based resins generally have excellent physical properties, they have a problem that transparency, crystallinity and rigidity are low.
  • molding processing conditions There are various molding methods such as injection molding, extrusion molding, sheet molding, film molding, and blow molding. Molded product manufacturers are uniquely tailored to the molding method.
  • the molding process conditions of the molding machine injection or extrusion speed, injection pressure, resin temperature, mold and chill roll temperatures, mold shape, etc.
  • an object of the present invention is to simplify and speed up setting of molding processing conditions, or to diversify and flexify molding processing conditions.
  • the present inventors have intensively studied to solve the above-mentioned problems.
  • the present inventors have studied the setting of molding conditions.
  • the complexity of setting the conditions is due to the crystallization rate of the polyolefin resin to a considerable extent. It has been found that if the crystallization rate of the polyolefin resin can be controlled without depending only on the setting, the molding conditions can be set easily and quickly, and the molding conditions can be softened and diversified.
  • the crystallization rate is high, which may have an adverse effect that molding processing becomes difficult.
  • the crystallization rate of the polyolefin-based resin is not within an appropriate range, it is difficult to obtain a uniform molded product by film or sheet molding, blow molding, or injection molding of a large product.
  • the crystallization rate of the polyolefin resin is reduced so that it falls within the appropriate range described above.
  • the molding conditions eg, resin discharge speed, discharge amount, back pressure during injection molding, chill roll rotation speed, mold or chill roll temperature, mold shape, cooling time, cooling speed, etc.
  • the present inventors can provide a resin composition in which the crystallization rate of a polyolefin-based resin is controlled, the present inventors have developed a wide-ranging resin composition that does not depend only on complicated molding machine setting conditions. We thought that it would be possible to cope with the forming process.
  • the specific amide compound (A) is a soluble nucleating agent.
  • the resin temperature during molding (molding temperature) T is set to a temperature lower than or equal to the transition temperature Tsh of the storage elastic modulus when the temperature is raised, or higher than Tsh, and an amide compound is used.
  • Tsh transition temperature
  • an amide compound is used.
  • the resin temperature (molding temperature) T during molding is not less than the melting temperature Tm of the polyolefin-based resin, and the storage activity rate at the time of temperature rise is increased.
  • the transition temperature is set to a temperature equal to or lower than Tsh (the molding method (1) in FIG. 8)
  • the mixing ratio of the specific fatty acid metal salt (B) is increased (area (IA) ⁇ area (IAB))
  • the crystallization speed of the olefin resin can be increased (the crystallization end time can be shortened).
  • the molding method ( ⁇ ) described above includes only the specific amide compound and the fatty acid metal
  • the crystallization rate of the polyolefin-based resin can be controlled, that is, reduced or increased, as compared with the crystallization rate achieved by the crystallization rate control composition containing no salt.
  • the molding method (I) of the above (e) can increase the crystallization rate, thereby further shortening the molding cycle time, which is the original purpose of the nucleating agent, and mainly reduces the size of the nucleating agent. Suitable for high speed injection molding of products.
  • the resin is molded at a resin temperature equal to or lower than the transition temperature Tsh of the storage elastic modulus at the time of temperature rise, as shown in (I) of FIG. 7, the resin is molded in a state where the mesh structure (c) exists.
  • the fibrous particles constituting the network structure are oriented, so that the crystal lamella of the polyolefin resin can be oriented in the obtained molded article, and as a result, a molded article having particularly excellent rigidity can be produced. it can.
  • the crystallization rate of the polyolefin resin can be controlled by increasing or decreasing the proportion of the fatty acid metal salt (B).
  • the molding method (II) of the above (£) can reduce the crystallization rate, Since a molded product can be easily obtained, it is advantageous in film molding, sheet molding, and injection molding of large products.
  • the molding since the molding is performed at a temperature exceeding the transition temperature Tsh of the storage elastic modulus at the time of heating, the molding is performed in a state where the network structure of (c) is dissolved and disappears as shown in (II) of FIG. Is performed. Therefore, when the molten polyolefin-based resin composition is cooled, fibrous particles of the amide-based compound are formed, and the network structure is reconstructed.
  • the crystallization rate of the polyolefin resin can be controlled by increasing or decreasing the proportion of the fatty acid metal salt (B).
  • the crystallization rate of the polyolefin-based resin can be controlled (changed), but the function of the other nucleating agent of the amide-based compound is not substantially changed. Therefore, according to the present invention, the crystallization rate can be controlled by the crystallization rate control composition of the present invention, in addition to the crystallization rate control by setting the conditions of the molding apparatus. Therefore, a molded article having excellent physical properties can be easily produced.
  • the present invention has been completed based on such findings, and has been further studied.
  • the following crystallization rate controlling composition of a polyolefin resin, a resin composition containing the crystallization rate controlling composition A molded article obtained by molding the resin composition; a method for producing the molded article; a method for controlling a crystallization rate of a polyolefin-based resin; and a method for producing a polyolefin-based resin molded article using the control method. Things.
  • Term 1 (A) General formula (1)
  • R 1 represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid or 1,2,3,4-butanetetracarboxylic acid.
  • k represents an integer of 3 or 4.
  • Three or four R 2 s are the same or different from each other, and represent a cyclohexyl group or a cyclohexyl group substituted with one linear or branched alkyl group having 1 to 10 carbon atoms. Represent.
  • R 3 is a residue obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms, which may have one or more hydroxyl groups in the molecule. Represents a group.
  • M represents a monovalent or divalent metal.
  • At least one fatty acid metal salt represented by the following formula, wherein the weight ratio of component (A): component (B) is 100: 0 to 30:70 (that is, component (A) and component (B) (The composition contains 100 to 30% by weight of the component (A) and 0 to 70% by weight of the component (B), based on the total weight of the polyolefin resin.)
  • Item 2 The weight ratio of component (A): component (B) is 95: 5 to 30:70 (that is, component (A) is 95 to 30 with respect to the total amount of component (A) and component (B).
  • the composition according to item 1 wherein the composition contains 5 to 70% by weight of the component (B).
  • Item 3 Cyclohexyl in which 3 or 4 R 2 in the general formula (1) are the same or different and are substituted with a cyclohexyl group or an alkyl group having 1 to 4 carbon atoms. 3.
  • Item 4 To the mouth in which 3 or 4 R 2 in the general formula (1) are the same or different and are substituted with a hexyl group or a 2-methyl group, a 3-methyl group or a 4-methyl group.
  • Item 2 The composition according to Item 1, which is a xyl group.
  • Item 5 R 1 in the general formula (1) is a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid, and k is 3; A composition according to claim 1.
  • Item 6. The composition according to any one of Items 1 to 5, wherein M in the general formula (2) is at least one metal selected from the group consisting of an alkali metal, an alkaline earth metal, and zinc.
  • Item 7 — R 3 in the general formula (2) is a group in which a carboxyl group is excluded from a saturated or unsaturated aliphatic monocarboxylic acid having 10 to 18 carbon atoms which may have one or more hydroxyl groups in the molecule. 7.
  • composition according to any one of the above items 1 to 6, which is a residue obtained by: Item 8 The composition according to the above item 7, wherein the aliphatic monocarboxylic acid is at least one member selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and 12-hydroxystearic acid.
  • Item 9 is a method for controlling the crystallization rate of all polyolefin-based resins during molding of the polyolefin-based resin,
  • R 1 represents a residue obtained by removing all carboxyl groups from 1,2,3-propanetricarboxylic acid or 1,2,3,4-butanetetracarboxylic acid.
  • k represents an integer of 3 or 4.
  • 3 or 4 R 2 s are the same or different from each other and represent a cyclohexyl group or a cyclohexyl group substituted with one linear or branched alkyl group having 1 to 10 carbon atoms .
  • R 3 is a residue obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms, which may have one or more hydroxyl groups in the molecule. Represents a group.
  • M represents a monovalent or divalent metal.
  • the weight ratio of component (A): component (B) is at least 100: 0 to 30: 70, ie, component (A) and component (B). ), 100 to 30% by weight of the component (A) and 0 to 70% by weight of the component (B) based on the total amount of).
  • the component (A) and the component (B) may be mixed with the polyolefin resin simultaneously or separately, and the weight ratio of the component (A) to the component (B) may be 100: 0 to 30: 7. (Ie, 100 to 30% by weight of component (A) and 0 to 70% by weight of component (B) based on the total amount of component (A) and component (B).
  • a polyolefin-based resin composition by blending with the polyolefin-based resin, and
  • Item 10 The weight ratio of component (A): component (B) is 95: 5 to 30:70 (that is, the component is based on the total amount of component (A) and component (B). (A) is used in an amount of 95 to 30% by weight, and the component (B) is used in an amount of 5 to 70% by weight.
  • Item 11 The method according to the above item 9 or item 10, wherein the resin composition is formed at a resin temperature exceeding a transition temperature of a storage elastic modulus at a temperature rise.
  • Item 12 Molding of the resin composition at a resin temperature not lower than the melting temperature of the polyolefin-based resin and not higher than the transition temperature of the storage elastic modulus at the time of raising the temperature (particularly including the injection step or the extrusion step) Item 10.
  • Term 1 3 (A) General formula (1)
  • R 1 represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid or 1,2,3,4-butanetetracarboxylic acid.
  • k represents an integer of 3 or 4.
  • Three or four R 2 s are the same or different from each other, and represent a cyclohexyl group or a cyclohexyl group substituted with one linear or branched alkyl group having 1 to 10 carbon atoms. Represent. ]
  • R 3 is a residue obtained by removing a carboxyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms which may have one or more hydroxyl groups in the molecule. Represents a group.
  • M represents a monovalent or divalent metal.
  • the weight ratio of component (A): component (B) is 95: 5 to 30:70 (in other words, component (A) and component (B) are in proportion to the total amount of component (A) and component (B).
  • (A) is present in an amount of 95 to 30% by weight, and component (B) is present in an amount of 5 to 70% by weight.)
  • Term 15 (A) General formula (1)
  • R 1 represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid or 1,2,3,4-butanetetracarboxylic acid.
  • k represents an integer of 3 or 4.
  • Three or four R 2 s are the same or different and each is a cyclohexyl group or one linear or branched alkyl group having 1 to 10 carbon atoms; Represents a cyclohexyl group substituted with ]
  • R 3 is obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms which may have one or more hydroxyl groups in the molecule. Represents a residue.
  • M represents a monovalent or divalent metal.
  • At least one fatty acid metal salt represented by the following formula: wherein the weight ratio of component (A): component (B) is 100: 0 to 30: 70 (that is, component (A) and component (The component (A) is contained in an amount of 100 to 30% by weight and the component (B) is contained in an amount of 0 to 70% by weight, based on the total amount of the component (B).)
  • the component (A) and the component (B) are mixed with the polyolefin resin at the same time or separately, and the weight ratio of the component (A) to the component (B) is 100: 0 to 3 0: 70 (that is, 100% to 30% by weight of component (A) and 0 to 30% by weight of the total amount of component (A) and component (B). 70% by weight) to obtain a polyolefin-based resin composition by blending with the polyolefin-based resin; and
  • a method for producing a polyolefin-based resin molded article comprising: Item 16: The weight ratio of component (A): component (B) is 95: 5 to 30:70 (that is, the component is based on the total amount of component (A) and component (B). (A) is used in an amount of 95 to 30% by weight, and the component (B) is used in an amount of 5 to 70% by weight.)
  • Item 17 The production method according to item 15 or 16, wherein the resin composition is formed at a resin temperature exceeding a transition temperature of the storage elastic modulus at the time of temperature rise.
  • RIP represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid, and three R 2 Ps are the same or different and each represents a cyclohexyl group. Or a cyclohexyl group substituted by one linear or branched alkyl group having 1 to 4 carbon atoms.
  • a method for producing a polyolefin-based resin molded article having a molding step (or the method according to Item 18).
  • Item 20 (a) —A step of dissolving at least one amide compound represented by the general formula (11-P) in a molten polyolefin resin to obtain a molten mixture;
  • R 3 is obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms which may have one or more hydroxyl groups in the molecule. Represents a residue.
  • n represents an integer of 1 or 2, and when n is 2, two R 3 may be the same or different.
  • M represents a monovalent or divalent metal.
  • Item 19 The production method according to any one of Items 19 to 21 containing at least one fatty acid metal salt represented by the formula: Item 23.
  • the molding method including the injection step or the extrusion step is injection molding, extrusion molding, injection blow molding, injection extrusion professional molding, injection compression molding, extrusion blow molding, extrusion thermoform molding or melt spinning.
  • Item 23 The production method according to Item 23.
  • Item 25 The production method according to Item 23.
  • R 1 represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid or 1,2,3,4-butanetetracarboxylic acid.
  • k represents an integer of 3 or 4.
  • Three or four R 2 s are the same or different from each other, and represent a cyclohexyl group or a cyclohexyl group substituted with one linear or branched alkyl group having 1 to 10 carbon atoms. Represent. ]
  • R 3 is obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms which may have one or more hydroxyl groups in the molecule. Represents a residue.
  • M represents a monovalent or divalent metal.
  • Item 28 Polyolefin resin, and
  • RIP represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid, and three R 2 Ps are the same or different, and It represents a xyl group or a cyclohexyl group substituted by a single linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 3 is obtained by removing a carbonyl group from a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 32 carbon atoms which may have one or more hydroxyl groups in the molecule. Represents a residue.
  • M represents a monovalent or divalent metal.
  • Item 29. A polyolefin resin composition comprising the polyolefin resin and the crystallization rate controlling composition according to any one of Items 1 to 8 above.
  • Item 29. The polyolefin resin composition according to Item 29, wherein the crystallization rate controlling composition is contained in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the polyolefin resin.
  • Item 31 A polyolefin resin molded article obtainable (or obtained) by molding the polyolefin resin composition according to Item 29 or 30.
  • the crystallization rate controlling composition of the present invention by using the crystallization rate controlling composition of the present invention, it is possible to control the crystallization rate of a polyolefin resin during molding of a polyolefin resin. it can. In particular, .
  • the crystallization rate of the polyolefin-based fat can be reduced (the crystallization end time can be extended).
  • the crystallization rate of the polyolefin-based resin can be controlled, that is, increased or decreased, as compared to
  • the present invention provides a polyolefin-based appearance composition that can be suitably and flexibly used in various molding methods such as injection molding, extrusion molding, sheet molding, film molding, and professional molding.
  • the molding process (I) greatly contributes to the improvement of the rigidity of the polyolefin-based resin molded article, and is particularly remarkable in homopolypropylene resin, block polypropylene resin, and high-density polyethylene resin.
  • polyolefin Greatly contributes to the improvement of the transparency of resin-based resin
  • FIG. 1 is a DSC chart of the test piece (molded body) obtained in Example 2 and shows how to obtain the “crystallization end time”.
  • FIG. 2 schematically shows the temperature-dependent curves of the storage modulus of the resin composition containing a polyolefin resin and the amide compound represented by the general formula (1) when the temperature is increased (solid line) and when the temperature is decreased (dashed line). It is a graph shown in FIG.
  • FIG. 3 is a graph schematically showing a differential curve of the temperature dependence curve of FIG.
  • FIG. 4 is a perspective view showing the THROUGH direction, the END direction, and the EDGE direction of the test pieces used in Examples and Comparative Examples.
  • FIG. 5 is a graph showing a temperature dependence curve of storage elastic modulus at the time of temperature rise and temperature decrease measured for the polyolefin-based resin composition obtained in Example I-2.
  • the open circles ( ⁇ ) are the temperature dependence curves of the storage elastic modulus when the temperature rises, and the filled circles ( ⁇ ) are the temperature dependence curves of the storage elastic modulus when the temperature falls.
  • FIG. 6 is a derivative curve of the temperature dependence curve of FIG.
  • the open circle ( ⁇ ) is the differential curve of the temperature-dependent curve of the storage elastic modulus when the temperature rises
  • the black circle ( ⁇ ) is the differential curve of the temperature-dependent curve of the storage elastic modulus when the temperature drops.
  • FIG. 7 is a conceptual diagram showing the state of the polyolefin-based resin composition at each stage of the method for producing a molded article.
  • (I) is a conceptual diagram showing a production method employing the conditions of the molding method (I) of the present invention
  • (II) is a production method employing the conditions of the molding method (II) of the present invention.
  • FIG. 7 is a conceptual diagram showing the state of the polyolefin-based resin composition at each stage of the method for producing a molded article.
  • (I) is a conceptual diagram showing a production method employing the conditions of the molding method (I) of the present invention
  • (II) is a production method employing the conditions of the molding method (II) of the present invention.
  • FIG. 8 is a conceptual diagram relating to the control of the crystallization rate of the polyolefin-based resin of the present invention, showing the relationship between the composition of the crystallization rate controlling composition of the present invention, the resin temperature during molding and the crystallization rate.
  • the composition for controlling the crystallization rate of the polyolefin resin of the present invention comprises: (A) at least one amide compound represented by the general formula (1), or the components (A) and (B): the general formula (2) ) Is contained as an essential component.
  • the weight ratio of component (A): component (B) can be appropriately selected from a wide range. Generally, the weight ratio of component (A): component (B) is 100: 0 to 30:70, It is preferably in the range of 95: 5 to 30:70, more preferably 90:10 to 60:40, and particularly preferably in the range of 90:10 to 70:30.
  • the composition for controlling the crystallization rate of the polyolefin-based resin of the present invention comprises 100 to 30% by weight (particularly 100% by weight) of component (A) based on the total amount of component (A) and component (B).
  • % To less than 30% by weight preferably 95 to 30% by weight, more preferably 90 to 60% by weight, particularly preferably 90 to 70% by weight, and 0 to 70% by weight of component (B) (particularly more than 0% by weight).
  • To 70% by weight or less preferably 5 to 70% by weight, more preferably 10 to 40% by weight, and particularly preferably 10 to 30% by weight.
  • the amide compound (A) represented by the general formula (1) according to the present invention is an aliphatic polyfunctional compound.
  • the rubonic acid component and the substituted or unsubstituted cyclohexylamine can be easily prepared by amidation according to a conventionally known method, for example, a method described in JP-A-7-242610. .
  • polycarboxylic acid component a polycarboxylic acid or a reactive derivative thereof (typically, an acid chloride thereof, or a derivative such as an ester of the polycarboxylic acid with a lower alcohol having 1 to 4 carbon atoms) is used.
  • the production method is not particularly limited, and may be produced by any method.
  • the aliphatic polycarboxylic acids are 1,2,3-propanetricarboxylic acid and 1,2,3,4-butanetetracarboxylic acid, and 1,2,3-propanetricarboxylic acid is particularly recommended.
  • Examples of the substituted or unsubstituted cyclohexylamine include cyclohexylamine which may be substituted with a linear or branched alkyl group having 1 to 10 carbon atoms, and specifically, cyclohexylamine, 2-methylcyclohexylamine, 2-ethylcyclohexylamine, 2-n-propylcyclohexylamine, 2-iso-propylcyclohexylamine, 2_n-butylcyclohexylamine, 2-iso-butylcyclohexylamine, 2- sec-butylcyclohexylamine, 2-tert-butylcyclohexylamine, 2-n-pentylcyclohexylamine, 2-n-hexylcyclohexylamine, 2-n-heptylcyclohexylamine, 2-n-octylcyclohexylamine Xylamine, 2- (2-ethylhexy
  • cyclohexylamine and cyclohexylamine having a linear or branched alkyl group having 1 to 4 carbon atoms as a substituent, particularly a methyl group are preferred.
  • the substitution position may be any of the 2-, 3- and 4-positions, but the 2-position is particularly preferred.
  • the substitution position is preferably at the 2-position.
  • cyclohexylamines having these substituents include 2-methylcyclohexylamine, 3-methylcyclohexylamine, 4-methylcyclohexylamine, 2-ethylcyclohexylamine, 2-n-propylcyclohexylamine, 2-alkyl such as 2-iso-provylcyclohexylamine, 2-n-butylcyclohexylamine, 2-iso-butylcyclohexylamine, 2-sec-butylcyclohexylamine, 2-tert-butylcyclohexylamine, etc. -4) cyclohexylamine.
  • the above alkylcyclohexylamine may be any of a cis form, a trans form and a mixture of these stereoisomers.
  • the ratio of the cis-trans form of this mixture of stereoisomers can be measured by GLC (gas chromatography).
  • R 2 in the general formula (1) is a cyclohexyl group or a cyclohexyl group substituted with a linear or branched alkyl group having 1 to 4 carbon atoms. Certain amide compounds are preferred because of their high nucleation activity.
  • amide compound in which Ri is a 1,2,3-propanetricarboxylic acid residue examples include:
  • 1,2,3-propanetricarboxylic acid tris (2-methylcyclohexylamide), 1,2,3-propanetricarboxylic acid tris (3-methylcyclohexylamide), 1,2,3-propanetricarboxylic acid tris (4-Methylcyclohexylamide), 1,2,3-Propanetrisulfonic acid tris (2-ethylcyclohexylamide), 1,2,3-Propanetricarboxylic acid tris (3-ethylcyclohexylamide), 1, Tris 2,3-propanetrisulfonic acid (4-ethylcyclohexylamide), 1,2,3-propanetrisulfonic acid tris (2-n-propylcyclohexylamide),
  • 1,2,3-propanetricarboxylic acid tris (3-is 0 -butylcyclohexylamide),
  • 1,2,3-propanetricarboxylic acid tris (4-tert-butylcyclohexylamide) and the like.
  • 1,2,3,4-butanetetracarboxylic tetrakis (4-iso-butylsilyl hexylamide), 1,2,3,4-butanetetracarboxylic tetrakis (2-sec-butylsilyl hexylamide),
  • amide compounds in which R 2 in the general formula (1) is a cyclohexyl group substituted with a cyclohexyl group or a methyl group have a particularly high nucleation effect, and It is preferable because raw materials are easily available.
  • 1,2,3,4-butanetetracarboxylic tetrakis (4-methylcyclohexylamide) is an example.
  • 1,2,3-propanetricarboxylic acid tricyclohexylamide 1,2,3-propanetricarboxylic acid tris (2-methylcyclohexylamide)
  • 1,2,3_propanetricarboxylic acid tris 3 —Methylcyclohexylamide
  • 1,2,3-Propane trisulfonic acid tris (4-methylcyclohexylamide)
  • the crystal system of the amide compound according to the present invention is not particularly limited as long as the effects of the present invention can be obtained, and any crystal system such as a hexagonal crystal, a monoclinic crystal, and a cubic crystal can be used. These crystals are also known or can be produced according to known methods.
  • the amide compound according to the present invention may contain some impurities. It is recommended that the amide compound represented by the general formula (1) has a purity of 90% by weight or more, preferably 95% by weight or more, and particularly preferably 97% by weight or more.
  • impurities include monoamide dicarboxylic acid or its ester, diamide monocarboxylic acid or its ester, monoamide tricarboxylic acid or its ester, diamide dicarboxylic acid or its ester, triamide carboxylic acid or its ester derived from a reaction intermediate or an unreacted product And those having an imide skeleton such as an amide-imide structure or a bisimide structure.
  • the particle diameter of the amide compound according to the present invention is not particularly limited as long as the effects of the present invention can be obtained.However, it is preferable that the particle diameter is as small as possible from the viewpoint of dissolution rate or dispersibility in the molten polyolefin resin, Usually, the maximum particle size measured by the laser diffraction light scattering method is 200 / im or less, preferably 100 tm or less, more preferably 50 m or less, particularly preferably 10 ⁇ m or less.
  • Examples of a method for adjusting the maximum particle diameter within the above range include a method of pulverizing the powder using a conventional apparatus known in this field and classifying the powder. Specifically, using a fluidized bed counter-jet mill 100 AFG (trade name, manufactured by Hosokawa Micron), a supersonic jet mill PJM-200 (trade name, manufactured by Nippon Pneumatic Co., Ltd.), etc. A classification method is exemplified.
  • cis in the stereoisomer structure of an alkylcyclohexylamine residue (particularly, a 2-alkylcyclohexylamine residue) constituting the amide compound is preferred.
  • the arrangement part and the transformer arrangement part may be mixed. Further, the amide compound may be a mixture of two or more amide compounds having different ratios between the trans-configuration portion and the cis-configuration portion.
  • Sum of trans-configuration moieties and cis-configuration in the at least one amide compound The ratio of the sum of the parts should be confirmed by the ratio of the absorbance of the NH stretching vibration peak of the trans structure part measured by the FT-IR method to the absorbance of the NH stretching vibration peak of the cis structure part. Can be.
  • an alkylcyclohexylamine residue constituting an amide compound represented by the general formula (1) that is, a residue obtained by removing an amino group from an alkylcyclohexylamine, particularly a 2-alkylcyclo
  • the trans configuration part in the stereoisomer structure of (residue obtained by removing amino group from xylamine) is represented by the general formula (X)
  • R 4 represents a linear or branched alkyl group (particularly a methyl group) having 1 to 10 carbon atoms), particularly an alkylcyclohexyl moiety represented by the general formula (XI)
  • R 4 is the same as the alkyl group in the general formula (X).
  • the structure represented by the above general formula (X) or (XI) is a group obtained by removing an amino group from an alkylcyclohexylamine having a trans structure, and therefore, “trans-alkylcyclohexylamine residue” Base.
  • R 4 is the same as the alkyl group in the general formula (X).
  • the alkylcyclohexyl moiety represented by the general formula (YD) is the same as the alkyl group in the general formula (X).
  • R 4 is the same as the alkyl group in the general formula (X).
  • the structure represented by the above general formula (Y) or (Y1) is a group obtained by removing an amino group from an alkylcyclohexylamine having a cis structure, and therefore, “cis-alkylcyclohexylamine” Residue ".
  • the preferred amide compound has the following general formula (1Z)
  • Ri is the same as in the above general formula (1).
  • k represents an integer of 3 or 4.
  • R 2 z are the same or different and each is a trans-alkylcyclohexylamine residue represented by the above general formula (X) or a cis group represented by the above general formula (Y) Represents an alkylcyclyl hexylamine residue.
  • An amide compound represented by the formula or a mixture of at least two kinds of the amide compound is an amide compound represented by the formula or a mixture of at least two kinds of the amide compound
  • Ri in the above general formula (1Z) is a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid (k in the above general formula (1Z) is 3).
  • the trans-alkylcyclohexylamido represented by the above general formula (X) A compound or mixture in which the ratio of the residue is preferably 50 to 100%, more preferably 65 to 100%, or
  • the proportion of the trans-alkylcyclohexylamine residue represented by the general formula (X) is preferably from 10 to 80%, more preferably from 25 to 60%. Or a mixture.
  • the ratio of the trans-configuration portion to the cis-configuration portion is determined based on the alkyl It was found that the ratio was substantially the same as the ratio of the trans-form to the cis-form of cyclohexylamine (molar ratio determined by GLC; hereinafter, referred to as “GLC composition ratio”).
  • the ratio of the trans-configuration portion to the cis-configuration portion (trans: cis) in the mixture of the amide compounds can be controlled by the ratio of the trans-isomer to the cis-isomer of the starting amine.
  • the fatty acid metal salt (B) has a carbon number of 8 to 32, preferably 10 to 1, which may have one or more (particularly one or two) hydroxyl groups in the molecule.
  • the fatty acid metal salt a commercially available product can be used.
  • an aliphatic monocarboxylic acid and a metal or a chloride, oxide, or hydroxide thereof are used in a polyolefin resin to prepare the fatty acid metal salt. It may be used in such a form that a metal salt can be formed.
  • aliphatic monocarboxylic acids include caprylic acid, nonanoic acid, capric acid, pendecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptanodecanoic acid, and stearic acid.
  • Acids nonadecanoic acid, icosanoic acid, henicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, pentacosanoic acid, hexacosanoic acid, hepcosuccinic acid, octacosanoic acid, nonacosanoic acid, triacontanic acid, hentriconic acid , Saturated monocarboxylic acids such as dotriacontanic acid;
  • Octenoic acid nonenoic acid, decenoic acid, pendecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, pendedecenoic acid, hexadecenenoic acid, oleic acid, linoleic acid, linolenic acid, nonadecenenoic acid, icosenic acid, henycosenic acid, docosenic acid Unsaturated monocarboxylic acids such as trichosenoic acid, tetracosenoic acid, pencosenoic acid, hexacosenoic acid, heptosecosenoic acid, octosecosenoic acid, and nonacosenic acid;
  • Examples thereof include aliphatic monocarboxylic acids having a hydroxyl group such as 12-hydroxystearic acid and ricinoleic acid. Of these, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and 12-hydroxystearic acid are recommended. These aliphatic monocarboxylic acids may be one kind or a mixture of two or more kinds.
  • Examples of the metal in the general formula (2) include alkali metals, alkaline earth metals, and metals of Group 1 and 2 of the Periodic Table (Chemistry and Industry, edited by The Chemical Society of Japan, Vol. 57, No. 4, (2004)). Examples thereof include monovalent or divalent metals, of which alkali metals, alkaline earth metals and zinc are preferred. In particular, sodium, potassium, magnesium, potassium and zinc are recommended.
  • These metals may be one kind or a mixture of two or more kinds.
  • Preferred fatty acid metal salts are
  • a fatty acid monovalent metal salt of the above aliphatic monocarboxylic acid and a monovalent metal, particularly, sodium or potassium, is preferable from the viewpoint of giving a relatively high crystallization temperature to the polyolefin resin.
  • the aliphatic monocarboxylic acid is selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and 12-hydroxyxesteric acid. At least one aliphatic monocarboxylic acid is preferred.
  • Preferred specific examples of the fatty acid monovalent metal salt include sodium laurate, sodium myristate, sodium palmitate, sodium stearate, sodium 12-hydroxystearate, sodium oleate, lithium laurate, potassium myristate And potassium palmitate, potassium stearate, potassium 12-hydroxystearate, potassium oleate and the like.
  • Preferred specific examples of the fatty acid divalent metal salt include calcium laurate, calcium myristate, calcium palmitate, calcium stearate, calcium 12-hydroxystearate, calcium oleate, magnesium laurate, magnesium myristate, and magnesium palmitate.
  • These fatty acid metal salts can be used alone or in appropriate combination of two or more kinds.
  • Preferred crystallization rate controlling composition
  • Preferred crystallization rate controlling compositions include combinations selected from the above preferred components (A) and preferred components (B).
  • the component (A) is composed of tricyclohexylamide of 1,2,3-propanetripyruponic acid, tris (2-methylcyclohexylamide of 1,2,3-propanetripyruponic acid), 1,2,3— At least one member selected from the group consisting of tris (3-methylcyclohexylamide) and 1,2,3-propanetrisulfonic acid (4-methylcyclohexylamide); Sodium acid, Potassium stearate, Calcium stearate, Magnesium stearate Particularly preferred is a combination of at least one selected from the group consisting of zinc, zinc stearate, sodium 12-hydroxystearate, potassium 12-hydroxystearate, calcium 12-hydroxystearate, magnesium 12-hydroxystearate and zinc 12-hydroxystearate. Recommended.
  • component (B) is a fatty acid monovalent metal salt
  • 1,2,3-propanetricarboxylic acid tris (2-methylcyclohexylamide) + 12-hydroxystearate sodium
  • component (B) is a fatty acid divalent metal salt
  • component (B) is a fatty acid divalent metal salt
  • 1,2,3-Propane trisulfonic acid tris (3-methylcyclohexylamide) lead
  • 1,2,3-Propane trisulfonic acid tris (4-methylcyclohexylamide) + calcium stearate
  • Tris (1,2-, 3-propanetrisulfonic acid tris (4-methylcyclohexylamide) + zinc stearate 1,2,3-Propanetrisulfonic acid tricyclohexylamide + 12-calcium hydroxystearate,
  • the crystallization rate controlling composition of the present invention not only controls the crystallization rate of the polyolefin resin, but also disperses the amide compound into the polyolefin resin by blending the component (B). The solubility is further improved.
  • the mixing method such as a method of mixing powder as it is, a method of mixing at or above the melting point of the fatty acid metal salt, and a method of mixing an amide compound and a fatty acid metal salt in a dissolved or dispersed state in a solvent. After the solvent is distilled off and dried, a method of granulating, pulverizing, and pulverizing as necessary is exemplified.
  • the form is not particularly limited, and a general form such as powder, granules, evening bullets, and pellets can be arbitrarily selected.
  • the particle size is not particularly limited as long as the effects of the present invention can be obtained.However, the particle size is preferably as small as possible from the viewpoint of dissolution rate or dispersibility in the molten polyolefin resin,
  • the maximum particle size measured by the laser diffraction light scattering method is 200 m or less, preferably 100 m or less, more preferably 50 m or less, particularly preferably 10 m or less.
  • any shape and particle size can be selected, and these can be selected using known granulators, powder mills, crushers, classifiers, etc. Can be manufactured. The use of such granules contributes to improvement of powder fluidity and suppression of dust generation (reduction of dust explosion).
  • Examples of the granulator include a dry or wet extrusion granulator, a mixing and stirring granulator, an evening bullet machine, a dry compression roll granulator, and a marmellaizer (trade name, manufactured by Dalton Co., Ltd.).
  • 'Pulverizers include pin mills, jet mills, pulverizers, cutter mills, hammer mills, planar crushers and doublers.
  • Classifiers include vibrating sieves and air classifiers.
  • a polyolefin modifier or the like may be added as necessary, other than the amide compound and the fatty acid metal salt, as long as the effects of the present invention are not impaired.
  • the polyolefin modifier include various additives described in the “Polylist Additives Handbook” edited by the Polyolefin Hygiene Council (January 2002). Examples include stabilizers (metal compounds, epoxy compounds, nitrogen compounds, phosphorus compounds, sulfur compounds, etc.), ultraviolet absorbers (benzophenone compounds, benzotriazole compounds, etc.), antioxidants (phenol compounds, phosphorus suboxides, etc.).
  • Aliphatic hydrocarbons such as acid ester compounds, thio compounds, surfactants (glycerin fatty acid esters such as monoglycerin stearate, etc.), lubricants (paraffins, waxes (polypropylene wax, polyethylene wax, etc.), carbon number 8 to 22 higher fatty acids, 8 to 22 carbon atoms, higher aliphatic alcohols (such as stearyl alcohol), poly (E.g., esters of fatty acids having 4 to 18 carbon atoms and aliphatic monovalent alcohols having 4 to 18 carbon atoms, higher fatty acid amides having 8 to 22 carbon atoms, silicone oil, rosin derivatives, etc.), foaming agents , Foaming aids, polymer additives, plasticizers (dialkyl phthalate, dialkylhexahydrophthalate, etc.), crosslinking agents, crosslinking accelerators, antistatic agents, flame retardants, dispersants, organic and inorganic pigments, processing aids And various additives such
  • Examples of the filler include talc, clay, my power, hide mouth talcite, asbest, zeolite, glass fiber, glass flake, glass beads, perlite, Calcium silicate, calcium carbonate, montmorillonite, bentonite, graphite, aluminum powder, alumina, silica, kieselguhr, titanium oxide, magnesium oxide, pumice powder, pumice balloon, aluminum hydroxide, magnesium hydroxide, basic carbonate Examples include magnesium, dolomite, calcium sulfate, potassium titanate, barium sulfate, calcium sulfite, and molybdenum sulfide. Among these, talc, haidoido talcite, myriki, zeolite, perlite, diatomaceous earth, calcium carbonate and the like are preferred. These fillers can be used alone or in an appropriate combination of two or more.
  • the polyolefin-based resin composition of the present invention contains a polyolefin-based resin, the component (A) and the component (B) according to the present invention, and a polyolefin modifier if necessary. It can be obtained by blending the crystallization rate controlling composition of the present invention with a polyolefin-based resin according to a conventional method.
  • the method for producing the polyolefin resin composition of the present invention is not particularly limited as long as the desired resin composition is obtained, and a conventional method can be used.
  • a polyolefin-based resin (powder, granule or pellet) and the above-mentioned crystallization rate controlling composition of the present invention or a polyolefin-based resin (powder, granule or pellet) and the component (A) of the present invention
  • a component (B) and, if necessary, the above-mentioned polyolefin modifying agent a blending type polyolefin-based resin mixed using a conventional mixer, for example, a Henschel mixer, a replum blender, a V blender, etc.
  • the method for obtaining the composition, or the blend-type polyolefin-based resin composition is usually added to the mixture using a conventional kneader, for example, a single-screw or twin-screw extruder, preferably at 160 to 300 ° C. Is melted and kneaded at a temperature of 180 to 280 ° C, particularly preferably 200 to 260 ° C, the extruded strand is cooled, and the obtained strand is cut.
  • a conventional kneader for example, a single-screw or twin-screw extruder, preferably at 160 to 300 ° C. Is melted and kneaded at a temperature of 180 to 280 ° C, particularly preferably 200 to 260 ° C, the extruded strand is cooled, and the obtained strand is cut.
  • An example is a method of forming a pellet type polyolefin resin composition by inking. Shown.
  • the method for adding the crystallization rate controlling composition of the present invention to the polyolefin resin according to the present invention is preferably a single-stage addition method using the above-mentioned commonly used equipment, for example, a single-screw or twin-screw extruder.
  • a two-stage addition method in the form of a high-concentration master batch of about 2 to 15% by weight is used.
  • the amide compound (A) and the fatty acid metal salt (B) according to the present invention may be added in the form of a crystallization rate controlling composition, but the weight ratio of component (A): component (B) May be added simultaneously or separately to the polyolefin-based resin so as to be in the range of 100: 0 to 30:70, preferably 95: 5 to 30:70.
  • the component (B) according to the present invention is dissolved in a polyolefin-based shelf in advance to form a resin composition (in the form of powder, pellets, granules, etc.), the component (B) according to the present invention is added to the resin composition.
  • the polyolefin-based resin composition of the present invention may be prepared by mixing A) and, if necessary, the above-mentioned modifier for polyolefin.
  • the content of the crystallization rate controlling composition in the polyolefin resin composition of the present invention is not particularly limited as long as a predetermined effect is obtained, and can be appropriately selected from a wide range.
  • the crystallization rate controlling composition of the present invention is used in an amount of 0.01 to 0.5 parts by weight, preferably 0.05 to 5 parts by weight, particularly preferably 0.1 to 5 parts by weight. It is recommended to contain 0.5 to 2 parts by weight.
  • the effect of the present invention can be sufficiently obtained by blending within these ranges.
  • the component (A) and the component (B) can be blended simultaneously or separately into the polyolefin-based resin, in which case the total amount of the component (A) and the component (B) is 100% by weight of the polyolefin-based resin. It is recommended that the content be 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, particularly preferably 0.05 to 2 parts by weight based on parts.
  • the amount of the at least one amide compound (component (A)) represented by the general formula (1) is preferably 0 to 100 parts by weight of the polyolefin resin. 0.1-5 parts by weight, more preferably 0.05-2 parts by weight, is recommended. A significant improvement in transparency or stiffness is observed when used in amounts in this range.
  • the polyolefin resin composition is an amide compound represented by the general formula (1): Can be used alone (that is, even if only the component (A) is used without using the component (B)), a molded article excellent in transparency or rigidity can be obtained. However, in order to improve the transparency or rigidity of the obtained resin molded article and to control the crystallization rate of the polyolefin resin, a fatty acid metal salt (component (B)) is contained. Preferably.
  • the amount of the fatty acid metal salt (component (B)) to be added is generally 0 to 5 parts by weight, preferably 0 to 1 part by weight, more preferably 0.005 parts by weight, based on 100 parts by weight of the polyolefin resin. It is advantageously from 0.5 to 0.5 part by weight, particularly preferably from 0.01 to 0.3 part by weight.
  • polystyrene resin examples include a polyethylene resin, a polypropylene resin, a polybutene resin, a polymethylpentene resin S, a polybutadiene resin, and more specifically, high-density polyethylene, Medium density polyethylene, linear polyethylene, ethylene content of 50% by weight or more, preferably 70% by weight or more, propylene homopolymer, propylene 50% by weight or more, preferably 70% by weight or more of propylene Copolymer, butene homopolymer, butene content 50% by weight or more, preferably 70% by weight or more butene copolymer, methylpentene homopolymer, methylpentene content 50% by weight or more, preferably 70% by weight or more methylpentene Copolymers, polybutadienes and the like are exemplified.
  • the copolymer may be a random copolymer or a block copolymer. When these resins have stereoregularity, they may be isotyrene
  • Examples of the comonomer that can constitute the above-mentioned copolymer include, specifically, ⁇ -age having 2 to 12 carbon atoms such as ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, pendecene, and dodecene.
  • Examples thereof include bicyclo-type monomers such as refin, 1,4-endomethylenecyclohexene, etc .; (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate; and vinyl acetate.
  • a catalyst applied for producing such a polymer a commonly used catalyst is used.
  • transition metal compounds eg, titanium halides such as titanium trichloride and titanium tetrachloride
  • a carrier mainly composed of magnesium halide such as magnesium chloride.
  • an alkylaluminum compound tetraethylaluminum, getylaluminum chloride, etc.
  • a catalyst system or a hornworm medium can be used as well as a catalyst system or a hornworm medium.
  • the recommended melt mouth opening rate (hereinafter, abbreviated as “MFR”) of the polyolefin resin according to the present invention is appropriately selected according to the molding method to be applied.
  • the content is 0.01 to 200 gZ10 minutes, preferably 0.05 to 100 gZ10 minutes.
  • the crystallization rate of the polyolefin-based resin composition of the present invention thus obtained can be controlled by adjusting the resin temperature conditions during molding and the ratio of component (A) to component (B). More details are as follows.
  • the polyolefin-based resin composition of the present invention can control the crystallization rate during molding by adjusting the resin temperature conditions during molding and the ratio of component (A) to component (B). Can control. That is, in the present invention, the component (A) and the component (B) are blended with the polyolefin resin so that the weight ratio of the component (A): the component (B) becomes 100: 0 to 30:70.
  • Another object of the present invention is to provide a method for controlling the crystallization speed (crystallization ending time) of the polyolefin-based resin at the time of molding.
  • the amount of the composition for controlling the crystallization rate of the polyolefin-based resin can be appropriately selected from a wide range which is not particularly limited as long as a predetermined effect can be obtained.
  • the crystallization rate controlling composition of the present invention is used in an amount of 0.01 to: L 0 parts by weight, preferably 0.05 to 5 parts by weight, particularly preferably 0.1 to 100 parts by weight of the polyolefin resin. 0 It is recommended to use 5 to 2 parts by weight.
  • the total amount of the component (A) and the component (B) is 0% by weight based on 100 parts by weight of the polyolefin resin. : 0.1 to 10 parts by weight, preferably 0.05 to 5 parts by weight, particularly preferably 0.05 to 2 parts by weight.
  • crystallization end time is used as described below, and as described in the section of Examples described later, a differential scanning calorimeter (trade name “DSC”). 7 ”, manufactured by PerkinElmer Co., Ltd.).
  • the temperature at which the crystallization is completed is measured (the crystallization temperature of the composition (by the method described in the Examples section). Is higher than 0 to 20 ° C).
  • the measurement start time in the measurement of the crystallization end time was the time when the temperature of the rapidly cooled polyolefin resin composition reached the measurement temperature.
  • the crystallization speed is high, which may have the adverse effect of making molding difficult.
  • the crystallization rate of the polyolefin resin is not within an appropriate range, it will be difficult to obtain a homogeneous molded product by film / sheet molding, professional molding, or injection molding of a large product.
  • the present invention also provides a method for controlling the crystallization rate of a polyolefin-based resin and a polyolefin-based resin composition adapted to various molding methods.
  • the method for controlling the crystallization rate of a polyolefin resin according to the present invention comprises the steps of: blending a crystallization rate control composition for a polyolefin resin with a polyolefin resin to obtain a polyolefin resin composition; It is a control method including forming an object.
  • the component (B) according to the present invention is dissolved in a polyolefin-based resin in advance to form a resin composition (in the form of powder 'pellet' granules)
  • the component (A) according to the present invention is added to the resin composition.
  • the control method may include molding the polyolefin-based resin composition.
  • the crystallization rate control method of the present invention comprises:
  • the polyolefin resin composition of the present invention is prepared by simultaneously or separately mixing the component (A) and the component (B) constituting the crystallization rate controlling composition of the polyolefin resin with the polyolefin resin. The process of manufacturing; and
  • the step (1) is as described above in the section of “Polyolefin resin composition”. Since the amide compound (A) according to the present invention is a dissolvable nucleating agent, the crystallization rate controlling composition of the present invention is sufficiently used for the polyolefin resin before performing the step (2). It is important to dissolve in the crystallization rate controlling composition to the fullest extent, and also to obtain the effects of the present invention.
  • step (2) will be described in detail below.
  • T S h Transition temperature of storage modulus during cooling (Ganmatau sc “hereinafter) and temperature-raising-period storage modulus transition temperatures, as follows Is defined as
  • the amide compound represented by the general formula (1) used in the present invention forms a thermoreversible network structure formed by fibrous particles in a polyolefin resin.
  • the storage elastic modulus according to the present invention is due to the formation of a network structure formed by the fibrous particles of the amide compound.
  • the storage modulus (G ′) of the molten polyolefin resin containing the amide compound changes discontinuously with temperature.
  • FIG. 1 One example is schematically shown in FIG.
  • the storage elastic modulus (G ′) of the molten polyolefin resin containing the amide compound is discontinuous due to the formation of the network structure formed by the fibrous particles when the temperature is lowered.
  • the temperature that changes (rises), but at which the rate of change is maximum, is defined as Tsc.
  • Tsc The temperature that changes (rises), but at which the rate of change is maximum.
  • Tsh The temperature that changes (rises), but at which the rate of change is maximum.
  • Tsh and Tsc may vary depending on the type and amount of the amide compound represented by the general formula (1) to be used.
  • the higher the content of the amide compound, or the higher the ratio of trans-arranged moieties which are stereoisomers of the alkylcyclohexylamine residue constituting the amide compound the higher the temperature of Tsh and Tsc. Shift to the side.
  • a polyolefin-based resin composition in which the crystallization rate controlling composition is dissolved is experimentally prepared, and the resin composition is subjected to Tsh beforehand. And Tsc are measured. In accordance with the measured Tsh and Tsc, the temperature condition during the production of the actual polyolefin resin molded article may be adjusted.
  • Ri uses at least one amide-based compound of the general formula (1), which represents a residue obtained by removing all carbonyl groups from 1,2,3-propanetricarboxylic acid.
  • the temperature is from 170 to 250 ° C, especially from 180 to 240 ° C.
  • Ri represents a residue obtained by removing all carbonyl groups from 1,2,3,4-monobutanetetracarboxylic acid
  • the Tsh is generally 180 to 280 ° (: in particular, 190 to 270 ° C.
  • the resin temperature in the step (2) (Molding temperature) T is one of the most important conditions.
  • the crystallization rate control method of the present invention will be described below when the resin temperature T is Tsh or less (and the melting temperature Tm of the polyolefin resin is Tm or more). (Molding method (1)) will be described, and then the case where the resin temperature is higher than Tsh (Molding method (II)) will be described.
  • the resin temperature (molding temperature) T during the molding process is not less than the melting temperature Tm of the polyolefin resin, and is not more than the transition temperature Tsh of the storage elastic modulus at the time of the temperature rise.
  • the temperature is set to the above (the molding method (1) in FIG. 7)
  • the mixing ratio of the specific fatty acid metal salt (B) is increased (region (IA) —region (IAB))
  • the crystallization speed of the resin can be increased (the crystallization end time can be shortened).
  • the degree of the increase in the crystallization rate mainly depends on the combination of the component (A) and the component (B) and the weight ratio of the component (B) to the component (A).
  • This molding method (I) greatly contributes to the improvement in rigidity of the polyolefin resin molded article, and is particularly remarkable for a homopolypropylene resin, a block polypropylene resin, and a high-density polyethylene resin.
  • the molding process is performed while the above-mentioned network structure is left (that is, the temperature at which the fibrous particles constituting the network structure do not melt or melt). The particles are oriented, and the polyolefin resin is oriented and crystallized.
  • the method for molding the polyolefin resin composition in the step (2) can be widely applied to all molding methods including an injection step or an extrusion step.
  • Specific examples include injection molding, extrusion molding, injection professional molding, injection extrusion blow molding, injection compression molding, extrusion opening molding, extrusion thermoform molding, and fiber production by melt spinning.
  • the composition for controlling the crystallization rate of the polyolefin resin of the present invention By utilizing the fact that the amide compound represented by the general formula (1) forms a network structure in the polyolefin resin in addition to the use of It became possible to control.
  • the molding method (I) is also a method for producing a molded article that enables the crystallization rate to be controlled (increased) by using the component (B).
  • FIG. 7 (I) which is a conceptual diagram of a method for producing a polyolefin-based resin composition (manufacture of pellets) and a method for producing a polyolefin-based resin molded article (molding method) of the present invention, the following will be described. It is on the street.
  • the polyolefin resin composition of the present invention is typically produced by the following method.
  • a polyolefin-based resin (powder, granule or pellet) and the above-mentioned crystallization rate controlling composition of the present invention or a polyolefin-based resin (powder, granule or pellet) and the component (A) according to the present invention
  • the component (B) and, if necessary, the above-mentioned modifier for polyolefin) are dry-blended using a conventional mixer, for example, a Henschel mixer, a lip blender, a V blender, or the like.
  • the resulting dry blend is dissolved in a conventional kneader, for example, a single-screw or twin-screw extruder, at a temperature not lower than the temperature at which the amide compound represented by the general formula (1) used in the present invention is dissolved. Melt and knead to obtain a molten mixture (see (al) in FIG. 7). '
  • a polyolefin-based resin composition containing (a) in FIG. 7 is obtained (see (a) in FIG. 7.
  • the thin line shown in (a2) in FIG. 7 schematically represents the fibrous particles (other in FIG. 7). The same applies to the figure).
  • the resin temperature T of the obtained polyolefin-based resin composition only needs to be cooled to a temperature of Tsc or lower, and the polyolefin-based resin itself does not need to be in a solid state and may be in a molten state.
  • the resin temperature T of the obtained strand is set to a temperature lower than the crystallization temperature of the polyolefin-based resin composition (hereinafter referred to as “T c”), for example, lower than room temperature.
  • T c the crystallization temperature of the polyolefin-based resin composition
  • the crystal lamella of the polyolefin-based resin grows starting from the fibrous particles of the amide-based compound represented by the general formula (1).
  • the wavy line shown in (a3) of FIG. 7 schematically shows a crystal lamella of the polyolefin-based resin (the same applies to other figures in FIG. 7).
  • the method for producing the above-mentioned pellet is the same as the method for producing the pellet in the following molding method (II).
  • Preferred embodiments of the method for producing a polyolefin-based resin molded article (molding method (1)) according to the present invention include, for example, those employing the following steps [1;] to [5]. .
  • steps [1;] to [5]. these steps will be described with reference to FIG.
  • FIG. 7 shows a molding method including an injection step, the following description also describes a molding method including an extrusion step.
  • the crystallization rate controlling composition of the present invention (or component (A) and component (B) according to the present invention, and Dissolve the polyolefin modifier as uniformly as possible.
  • the resin temperature T at this time is, for example, 160 to 300 ° C. in the case of a polypropylene resin.
  • Tsc shifts to a higher temperature as the content of the amide compound increases, or as the ratio of trans-arranged moieties that are stereoisomers of the alkylcyclohexylamine residue constituting the amide compound increases.
  • the resin temperature T is further lowered to a temperature not higher than the crystallization temperature Tc of the polyolefin resin to reduce the polyolefin resin in the molten polyolefin resin composition. It can be crystallized to form a pellet. At this time, the pellets are formed by fibrous particles of the amide compound represented by the general formula (1). The resulting network structure is retained.
  • the shear force generated during the injection causes the general formula
  • the fine fibrous particles constituting the network structure of the amide compound represented by (1) are oriented.
  • a polyolefin-based resin composition containing a network structure formed by fibrous particles of the amide compound represented by the general formula (1) (FIG. 7 (a2) ) Is subjected to a molding method including an extrusion step, without forming pellets, under specified temperature conditions, while maintaining the above network structure.
  • the polyolefin resin composition containing the network structure (in the state of (a2) in FIG. 7) is once pelletized as shown in (a3) of FIG. 7, and the pellet is subjected to a specific temperature condition. While maintaining the above network structure, it is provided to a molding method including an extrusion step. Thereby, the fine fibrous particles constituting the network structure of the amide compound represented by the general formula (1) are oriented by the shearing force generated during the extrusion.
  • the above-mentioned specific temperature conditions employed in these molding methods are such that the resin temperature T is equal to or higher than the melting temperature Tm of the polyolefin resin, and the transition of the storage elastic modulus when the temperature of the polyolefin resin composition is increased. It adjusts the temperature of the resin below the temperature Tsh (ie, Tm ⁇ T ⁇ Tsh). Tsh also shifts to a higher temperature as the content of the amide compound increases or as the ratio of trans-arranged moieties that are stereoisomers of the alkylcyclohexylamine residue constituting the amide compound increases. You.
  • the resin temperature T is generally from 170 to 250, particularly from 180 to 24O.
  • R 1 represents a residue obtained by removing all carbonyl groups from 1,2,3,4-butanetetracarboxylic acid
  • the resin temperature T is generally 180 to 280, and particularly 190 to 270 ° C.
  • the molten polyolefin resin composition that has reached the chill roll by a molding method including an extrusion step is cooled by the chill roll, and fine fibrous particles of the amide compound represented by the general formula (1) are converted into resin. It is kept oriented in the flow direction.
  • the set mold temperature or chill roll temperature needs to be lower than the crystallization temperature Tc of the polyolefin-based resin, and is preferably, for example, 10 to 80 ° C.
  • the polyolefin-based resin molded product obtained by the production method of the present invention has a feature that the crystal lamella of the polyolefin-based resin is oriented.
  • the molding method (I) utilizes the fact that the amide-based compound represented by the general formula (1) forms a network structure under the above-mentioned specific temperature conditions.
  • the fibrous particles are oriented by performing molding, and the polyolefin resin is oriented and crystallized. .
  • the present invention provides, as described in the above item 18, the resin of the present invention at a resin temperature that is equal to or higher than the melting temperature of the polyolefin-based resin and equal to or lower than the transition temperature of the storage elastic modulus when the temperature is increased.
  • Another object of the present invention is to provide a method for producing a polyolefin resin molded article having a step of molding a composition.
  • amide compounds are the compounds of formula (1), R 1 is 1, 2, is preferably a residue obtained by removing all force Rupokishiru group from 3-propanetricarboxylic acid and , to indicate the three R 2 are the same or different and either indicating a cyclohexyl group or a straight-chain or branched alkyl cyclohexyl group substituted with a group having a carbon number of 1-4 Is preferable (that is, the production method described in the aforementioned item 19).
  • the amount of at least one amide compound (component (A)) represented by the general formula (1) is limited to 100% by weight of the polyolefin resin. Parts are preferably used in an amount of 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight. A significant improvement in stiffness is observed when used in this range. It is also possible to use a content exceeding 5 parts by weight.
  • the amide compound represented by the general formula (1) can be used alone (ie, without using the component (B) and using only the component (A)).
  • a molded article having excellent IJ properties can be obtained.
  • the amount of the fatty acid metal salt (component (B)) to be added is generally 0 to 5 parts by weight, preferably 0 to 1 part by weight, more preferably 0.005 parts by weight, based on 100 parts by weight of the polyolefin resin. It is advantageously from 0.5 to 0.5 part by weight, particularly preferably from 0.01 to 0.3 part by weight.
  • the crystallization temperature Tc of the polyolefin-based resin can be reduced.
  • the degree of the reduction in the crystallization rate and the crystallization temperature mainly depends on the combination of the component (A) and the component (B) and the ratio of the component (B) to the component (A).
  • This molding method ⁇ ) greatly contributes to the improvement of the transparency of the polyolefin-based resin molded article, and is particularly remarkable in homopolypropylene resin and random polypropylene resin.
  • the resin temperature ⁇ is preferably 300 ° C. or less, particularly 280 ° C. or less. preferable.
  • the fibrous particles of the amide compound are melted or dissolved, and the network structure is lost.
  • the network structure dissolves and disappears due to molding at a temperature exceeding the transition temperature h of the storage elastic modulus at elevated temperature.
  • the molten polyolefin resin composition is cooled, fibrous particles of the amide compound are formed, and the network structure is reconstructed. From this, fine crystals (spherulites) such as polyolefin resin are formed, and as a result, a molded article having particularly excellent transparency can be produced.
  • the molding method (II) of the polyolefin-based resin composition according to the present invention will be described in detail.
  • the molding method ( ⁇ ) controls (reduces) the crystallization rate by using component (B). It is also a method for producing a molded article that has been made possible.
  • FIG. 7 (II) is a conceptual diagram of the method for producing a polyolefin-based resin molded article (molding method) of the present invention.
  • the method for producing the polyolefin-based resin composition corresponds to (al) in (I) in FIG. 7 in the molding method (I). Same as (a3).
  • the network structure is formed again by cooling the molten polyolefin-based resin composition to a temperature lower than the transition temperature Tsc of the storage elastic modulus at the time of the temperature drop. Yes, but to a lesser extent.
  • the degree of orientation of the fibrous particles is low, even if the cooling temperature is lowered to the crystallization temperature Tc of the polyolefin-based resin composition or lower as shown in FIG. In the obtained molded article, the degree of orientation of the crystal lamella of the polyolefin resin is low.
  • the present invention provides, as described in the above item 17, a polyolefin-based resin composition characterized in that the polyolefin-based resin composition of the present invention is molded at a resin temperature exceeding the transition temperature of the storage elastic modulus when the temperature is raised. It also provides a method for producing a resin molded article.
  • examples of the molding method include a molding method including the above-mentioned injection step or extrusion step.
  • Specific examples include injection molding, extrusion molding, injection blow molding, injection extrusion blow molding, injection compression molding, extrusion blow molding, extrusion thermoform molding, fiber production by melt spinning, and the like.
  • the effect of the present invention achieved by the above-mentioned molding method (II) is particularly, when the weight ratio of component (A): component (B) is , Preferably in the range of 100: 0 to 30:70, more preferably in the range of 95: 5 to 30:70, more preferably in the range of 90:10 to 60:40, particularly preferably It is obtained by blending so as to be in the range of 90: 10 to 70: 30. Further, by changing the ratio of the component (B) within this range, the crystallization speed of the polyolefin-based resin can be reduced.
  • At least one amide compound (component (A)) represented by the general formula (1) is used in an amount of at least one polyolefin resin.
  • the amount is 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, based on parts by weight. A significant improvement in transparency is observed when used in this range. It is also possible to use a content exceeding 5 parts by weight.
  • the amide compound represented by the general formula (1) can be used alone (ie, without using the component (B) and using only the component (A)), A molded article having excellent properties can be obtained.
  • the amount of the fatty acid metal salt (component (B)) to be added is generally 0 to 5 parts by weight, preferably 0 to 1 part by weight, more preferably 0.005 parts by weight, based on 100 parts by weight of the polyolefin-based shelf. It is advantageously from 0.5 to 0.5 part by weight, particularly preferably from 0.01 to 0.3 part by weight.
  • the present invention relates to a composition containing a component ( ⁇ ): component ( ⁇ ) in a weight ratio of 100: 0 to 30:70, which is used in molding a polyolefin resin. It also provides use for controlling the rate of fat crystallization.
  • Polyolefin resin molded body The molded article of the present invention is formed by molding the polyolefin resin composition of the present invention according to a commonly used molding method as long as the conditions required for the above molding methods (I) and ( ⁇ ) are used. Is obtained by Since the crystallization rate of the polyolefin resin composition of the present invention can be controlled, any of the conventionally known molding methods such as injection molding, extrusion molding, blow molding, pressure molding, rotation molding, sheet molding, and film molding can be used. As the molding conditions, conventionally employed conditions can be appropriately selected from a wide range.
  • the polyolefin resin molded article obtained by the molding method (I) of the present invention particularly a widely used ethylene-propylene random copolymer (particularly, an ethylene content of about 2 to 4% by weight, and the remainder being propylene Propylene homopolymer or ethylene-propylene block copolymer (especially those having an ethylene content of about 5 to 15% by weight and the balance being propylene), and are represented by the general formula (1).
  • the molded product obtained by using at least one of the amide compounds has a degree of orientation of 2 or more, which is represented by a ratio of (0 40) reflection intensity to (1 10) reflection intensity determined by wide-angle X-ray diffraction. (Especially 2 to 10), and has significantly higher rigidity.
  • the method for measuring the degree of orientation described above is as follows.
  • 1 (11 ) indicates the peak intensity (cps) of (1 10) surface reflection
  • I ( 040 ) indicates the peak intensity (cps) of (0 40) surface reflection.
  • the molding method (I) of the polyolefin resin composition of the present invention By applying the molding method (I) of the polyolefin resin composition of the present invention, excellent rigidity can be imparted to the polyolefin resin molded article. This characteristic also helps to reduce the wall thickness of the molded article to achieve weight reduction.
  • the polyolefin-based resin molded article of the present invention obtained as described above has conventionally used a polyolefin-based resin composition obtained by blending a metal phosphate, a metal salt of an aromatic carboxylic acid, a benzylidene sorbitol, or the like as a nucleating agent.
  • Medical devices such as disposable syringes, infusions, blood transfusion sets, blood collection devices, etc., which are applied in the same field and specifically sterilized by heat, radiation, etc .; Foods, plants sterilized by radiation, etc.
  • Various cases such as clothing cases and containers for storing clothing; cups for hot-filling food; packaging containers for retort foods; containers for microwave ovens; beverages for use, tea, etc .; Containers for cans and bottles for cosmetics, pharmaceuticals, shampoos, etc .; Containers and caps for seasonings such as miso, soy sauce, etc .; Food containers for water, rice, bread, pickles, etc. Scan and containers; goods such as refrigerator case; it is suitable as a part Hinto automotive materials; stationery; electrical 'mechanical parts.
  • the temperature of the exothermic peak was measured according to JISK7121, except that the temperature was raised to the resin temperature at the time of molding the polyolefin resin composition, and the temperature was maintained for 3 minutes after the temperature was reached. .
  • Example weight 10 mg, prepared by cutting out the molded product (specimen) obtained in each Example and Comparative Example) at a heating rate of 200 ° C / min was used to mold the resin for molding the polyolefin resin composition. The temperature was raised to the temperature, and held for 3 minutes after reaching the temperature. Next, at a cooling rate of 100 ° C / min, the crystallization end time was measured (isotactic ethylene-propylene random copolymer resin; 120 ° C, isotactic homopolypropylene resin and ethylene-propylene resin).
  • the block copolymer resin was quenched to 130 ° C) to crystallize the polyolefin resin at an isothermal temperature.
  • the time at which the sample was cooled rapidly and reached the measurement temperature was defined as the measurement start time of the “crystallization end time”.
  • test specimen of 5 cm ⁇ 5 cm ⁇ l mm obtained in each Example and Comparative Example was measured using a haze meter manufactured by Toyo Seiki Seisaku-Sho, Ltd. in accordance with JIS K 7136 (2000). The smaller the value obtained, the better the transparency.
  • Measuring jig Parallel plate (diameter 20 mm)
  • Transition temperature (TSC) of storage elastic modulus at the time of cooling ⁇ The polyolefin-based resin composition ( ⁇ let) was heated at 250 ° C (however, in the case of using BTC-2MeCHA at 280 ° C, PTC-2MeCHA [ 100] or 260 ° C for the examples using PTC-2MeCHA (100)) for 1 minute, and then the temperature was decreased at a rate of 5 ° C / min to 150 ° C, and the measurement was performed.
  • Transition temperature of storage elastic modulus at the time of temperature rise (ii) Transition temperature of storage elastic modulus at the time of temperature rise (Tsh): After the measurement of the storage elastic modulus at the time of temperature decrease, the above polyolefin resin composition is heated up to 250 ° C at a rate of 5 ° CZ (however, The temperature was raised to 280 for the examples using BTC-2MeCHA, and to 260 ° C for the examples using PTC_2MeCHA [100] or PTC-2MeCHA (100).
  • the flexural modulus (MPa) of the polyolefin resin molded article was measured according to JIS K 7203 (1982). The test temperature was 25 and the test speed was 10 mm / min. The greater the value of the flexural modulus, the better the rigidity.
  • test specimen for flexural modulus measurement had a length of 90 mm, a width of 10 mm, and a height of 4 mm unless otherwise specified.
  • Tube voltage 40 kV
  • tube current 100 mA
  • I u 10) represents the peak intensity (cps) of (1 10) surface reflection
  • I (040) represents the peak intensity (cps) of (040) surface reflection.
  • PTC 1,2,3-Propanetricarboxylic acid
  • the obtained dried product is pulverized in a mortar and passed through a standard sieve with a mesh size of 106 m (JISZ8801 standard) to give 1,2,3_propanetricarboxylic acid tris (2-methylcyclohexylamide) (hereinafter referred to as “2-methylcyclohexylamide”). , Abbreviated as "PTC-2Me CHA”.) 18.8 g (74% yield) was obtained.
  • the ratio of the trans-configuration 2-methylcyclohexylamine residue to the cis configuration 2-methylcyclohexylamine residue was changed to the raw material 2-methylcyclohexylamine. It was confirmed that the ratio was the same as the ratio between the trans form and the cis form of xylamine.
  • the ratio of the trans-configuration alkylcyclohexylamine residue to the cis-configuration alkylcyclohexylamine residue in the amide compound of the product is also the same as described above. It was confirmed that the ratio coincided with the ratio between the trans form and the cis form of the starting material alkylcyclohexylamine.
  • BTC_2MeCHA 1,2,3,4-butanetetrahydrotetrakis-tetrakis (2-methylcyclohexylamide)
  • Examples 1 to 51 are examples of the molding method ( ⁇ ) (T> Tsh).
  • Examples 1 to 33 are examples using an ethylene-propylene random copolymer resin as the resin.
  • Examples 34 to 41 are examples using a homopolypropylene resin as the resin, and
  • Examples 42 to 51 are examples using an ethylene-propylene block copolymer resin as the resin.
  • r-PP melting temperature
  • Methane (trade name “I RGAN ⁇ X1010”, manufactured by Ciba S-Chart Chemicals Co., Ltd.) 0.05 parts by weight and tetrakis (2,4-zy t-) 0.05 parts by weight of butylphenyl) phosphite (trade name “IRGAF ⁇ ⁇ S 168” manufactured by Ciba S-Chart Chemicals Co., Ltd.) was blended, and dry-blended with a Hensil mixer at 1000 rpm for 5 minutes.
  • the extruded strand is melt-kneaded using a single-screw extruder having a diameter of 20 mm at a resin temperature of 240 ° C., and the extruded strand is water-cooled. Then, the obtained strand is cut to obtain a pellet-like polyolefin resin composition.
  • a single-screw extruder having a diameter of 20 mm at a resin temperature of 240 ° C.
  • the transition temperature of the storage modulus of the obtained pellet-like polyolefin-based resin composition, and the crystallization temperature, crystallization end time, haze value, and dispersibility of the obtained test piece were measured.
  • the measurement results, the resin temperature in the kneading process and the resin temperature in the (injection) molding process are shown in Table 1.
  • Example 1 The same procedure as in Example 1 was carried out except that the addition amount of calcium stearate was changed to the addition amount shown in Table 1, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition, and the obtained test piece The crystallization temperature, the crystallization end time, the haze value and the dispersibility were measured. Table 1 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 1 The same procedure as in Example 1 was carried out except that the fatty acid metal salt was changed to the fatty acid metal salt shown in Table 1, and the resulting transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and the obtained test piece The crystallization temperature, the crystallization end time, the haze value and the dispersibility were measured. Table 1 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 1 The same procedure as in Example 1 was carried out except that PTC-3MeCHA prepared in Production Example 2 was used instead of PTC-2Me CHA, and the transition temperature of the storage modulus of the obtained pellet-shaped polyolefin resin composition, and The crystallization temperature, crystallization end time, haze value, and dispersibility of the obtained test piece were measured.
  • Table 1 shows the evaluation results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 1 The same procedure as in Example 1 was carried out except that PTC-4Me CHA prepared in Production Example 3 was used instead of PTC-2Me CHA, and the transition temperature of the storage modulus of the obtained pellet-shaped polyolefin-based resin composition, and The crystallization temperature, crystallization end time, haze value and dispersibility of the obtained test piece were measured. Table 1 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Example 2 The same procedure as in Example 1 was carried out except that PTC-CHA prepared in Production Example 4 was used instead of PTC-2Me CHA, and the transition temperature of the storage modulus of the obtained pellet-shaped polyolefin-based resin composition, and Crystallization temperature, crystallization end time, The haze value and dispersibility were measured. The measurement results, and the resin temperature and
  • Table 1 shows the resin temperature in the molding process.
  • PTC-2MeCHA [100] prepared in Production Example 6 was used instead of PTC-2MeCHA, except that the resin temperature during melt-kneading was 260 ° C and the resin temperature during injection molding was 260 ° C.
  • Example 1 The same procedure as in Example 1 was carried out except that the fatty acid metal salt was changed to the fatty acid metal salt described in Table 1, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition, and the The crystallization temperature, crystallization end time, haze value and dispersibility were measured. Table 1 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the molding step.
  • tetrakis [methylene-1- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane Ciba Specialty Chemicals Co., Ltd., trade name "IRGANOX101 Oj” 0.05 parts by weight and tetrakis (2,4-di-t-butylphenyl) phosphite (Ciba Specialty Chemicals, trade name "IRGAFOS 168J" 0.05 parts by weight were blended and dry-blended with a Henschel mixer at 1000 rpm for 5 minutes.
  • the extruded strand is melt-kneaded using a single screw extruder having a diameter of 20 mm at a resin temperature of 240 ° C., and the extruded strand is cooled with water. Then, the obtained strand is cut to obtain a pellet-like polyolefin-based resin composition.
  • a single screw extruder having a diameter of 20 mm at a resin temperature of 240 ° C.
  • the obtained pellets were injection molded under the conditions of a resin temperature (molding temperature) of 240 ° C and a mold temperature of 40 ° C to prepare a polyolefin resin molded article (test piece, size: 5 cm x 5 cm X lmm).
  • the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and the crystallization temperature, crystallization end time, haze value and dispersibility of the obtained test piece were measured.
  • Table 1 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 1 Using 8 parts (: 1 2] ⁇ (311 80.1 parts by weight) prepared in Production Example 5 in place of 111, and setting the resin temperature during melting and kneading to 260 The same procedure as in Example 1 was carried out except that the storage elastic modulus of the obtained pellet-like polyolefin resin composition was changed. The temperature, the crystallization temperature, the crystallization end time, the haze value, and the dispersibility of the obtained test piece were measured. Table 1 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 19 The same procedure as in Example 19 was carried out except that potassium stearate was used instead of calcium stearate, and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained test piece were tested. The crystallization temperature, crystallization end time, haze value and dispersibility were measured. Table 1 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (emission) molding step.
  • Example 22 and Example 23 were Performed in the same manner as in Example 1 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, and the crystallization temperature and the crystallization end time of the obtained test piece The haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 22 and Example 23
  • Example 2 The same procedure as in Example 1 was carried out except that the amount of the amide compound was changed to the amount shown in Table 2 without using the fatty acid metal salt, and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition, and The crystallization temperature, crystallization end time, haze value and dispersibility of the obtained test piece were measured.
  • Table 2 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (emission) molding step.
  • Example 2 The same procedure as in Example 1 was carried out except that the additives listed in Table 2 were used instead of the fatty acid metal salt, and the resulting transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained test The crystallization temperature, crystallization end time, haze value and dispersibility of the pieces were measured. Table 2 shows the measurement results, the resin temperature in the kneading step, and the resin and temperature in the (injection) molding step.
  • Example 9 Except not using the fatty acid metal salt, the same procedure as in Example 9 was carried out, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin resin composition, and the The crystallization temperature, crystallization end time, haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 10 The same procedure as in Example 10 was carried out except that no fatty acid metal salt was used, and the transition temperature of the storage elastic modulus of the obtained pelletized polyolefin-based resin composition, and the crystallization temperature and crystallization of the obtained test piece were obtained. The end time, haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 11 Performed in the same manner as in Example 11 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured.
  • Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 12 Performed in the same manner as in Example 12 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the molding step.
  • Example 13 Except not using a fatty acid metal salt, the same procedure as in Example 13 was carried out, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin resin composition, the crystallization temperature of the obtained test piece, and the end of crystallization The time, haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 18 Except not using a fatty acid metal salt, the same procedure as in Example 18 was carried out, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured. Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 19 Except not using a fatty acid metal salt, the same procedure as in Example 19 was carried out, and the obtained pellets were obtained.
  • the transition temperature of the storage elastic modulus of the polyolefin-based resin composition, and the crystallization temperature, crystallization end time, haze value, and dispersibility of the obtained test piece were measured.
  • Table 2 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Amide compound (A) Fatty acid metal salt (B) Kneading process Molding process Storage modulus
  • Example 1 PTC-2MeCHA 0.2 StCa 0.05 240 240 105 2.94 177 211 14 S
  • Example 2 PTC-2MeCHA 0.2 StCa 0.02 240 240 108 1.40 181 211 14 S
  • Example 3 PTC-2 eCHA 0.2 StCa 0.01 240 240 117 1.00 184 211 14 S
  • Example 4 PTC-2MeCHA 0.2 StMg 0.05 240 240 106 4.51 174 211 14 S
  • Example 5 PTC-2MeCHA 0.2 StZn 0.05 240 240 107 2.62 176 211 14 S
  • Example 6 PTC-2MeCHA 0.2 StNa 0.05 240 240 116 1.41 180 212 13 A
  • Example 7 PTC-2MeCHA 0.2 StK 0.05 240 240 117 1.06 181 212 13
  • Example 8 PTC-2MeCHA 0.2 12-OHStCa 0.05 240 240 115 1.36 183 211 13 S
  • Example 9 PTC-3
  • StCa Calcium stearate 12-OHStCa: Calcium 12-hydroxystearate
  • StZn Zinc stearate BeMg: Magnesium behenate
  • StNa sodium stearate
  • LaMq magnesium laurate
  • StK Potassium stearate
  • Example 21 PTC-2MeCHA 0.2 ⁇ ⁇ 240 240 117 0.96 185 211 14 B
  • Example 22 PTC-2MeCHA 0.15 ⁇ ⁇ 240 240 117 0.97 180 207 15 B
  • Example 23 PTC-2MeCHA 0.1 ⁇ ⁇ 240 240 117 1.01 168 200 18 B
  • Example 24 PTC-2MeCHA 0.2 PEWAX 0.05 .240 240 118 0.92 186 211 13 A
  • Example 25 PTC-2MeCHA 0.2 StOH 0.05 240 240 117 0.93 186 212 13 A
  • Example 26 PTC-2MeCHA 0.2 GMS 0.05 240 240 118 0.95 185 211 12 S
  • Example 27 PTC-3MeCHA 0.2 ⁇ ⁇ 240 240 112 2.23 177 204 25 B
  • Example 28 PTC-4MeCHA 0.2 ⁇ ⁇ 240 240 113 1.99 165 196 19 B
  • Example 29 PTC-CHA 0.2 ⁇ ⁇ 240
  • PE ⁇ polyethylene wax
  • GS glycerin monostearate
  • the ratio of component (A) to component (B) must be controlled.
  • the crystallization rate of the polyolefin-based resin can be reduced (extending the crystallization end time) (Examples 1 to 3, Examples 17 and 17, and 21 to 23).
  • the fatty acid metal salt according to the present invention other than calcium stearate can similarly reduce the crystallization rate of the polyolefin-based resin (extend the crystallization end time) (Examples 4 to 8 and Example 4). 14 to 16).
  • the amide compound according to the present invention other than PTC-2MeChA can also reduce the crystallization rate of the polyolefin resin (extend the crystallization end time) similarly (Example 9).
  • Example 9 To 13; Examples 18 to 20; Examples 27 to 33).
  • the crystallization rate of the polyolefin resin can be controlled as compared with the fatty acid metal salt according to the present invention. Contribution to controlling the crystallization end time) is very small (see Examples 24 to 26).
  • the crystallization rate controlling composition of the present invention when a temperature exceeding the transition temperature of the storage elastic modulus at the time of heating is selected as the resin temperature (molding temperature) during molding (that is, T> Tsh), the crystallization rate controlling composition of the present invention
  • the crystallization temperature of the polyolefin resin can also be lowered by the ratio of the component (A) to the component (B) or the combination of the types thereof (Examples 1 to 5, Examples 9 to 10, Examples 14 to 17).
  • the solubility and dispersibility in polyolefin resin in particular are improved.
  • the molded product has a small amount of undispersed material (see Examples 1 to 5, Examples 8 to 17, and Example 19).
  • the molded body obtained by molding the polyolefin resin composition of the present invention has significantly improved transparency as compared with Comparative Examples 1 and 2 described below, and 1, 2, 3-
  • the transparency is particularly excellent (Examples 1 to 8, Examples 12-17, Comparative Examples 1 and 2).
  • Example 34
  • h-PP isotactic homopolypropylene resin
  • Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • the fatty acid metal salt described in Table 3 was used in the same manner as in Example 34 except that the fatty acid metal salt was changed to the fatty acid metal salt, and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained test were performed. The crystallization temperature, crystallization end time, haze value and dispersibility of the piece were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the molding step).
  • Example 34 Except for using PTC-CHA prepared in Production Example 4 instead of PTC-2Me CHA, the same procedure as in Example 34 was carried out, and the transition temperature of the storage modulus of the obtained polyolefin resin composition in the form of pellets, The crystallization temperature, crystallization end time, haze value and dispersibility of the obtained test piece were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • PTC-2MeCHA [100] prepared in Production Example 6 was used in place of PTC-2MeCHA, except that the resin temperature during melt-kneading was 260T and the resin temperature during injection molding was 260 ° C. Performed in the same manner as in Example 34 and obtained pellet-shaped polyole The transition temperature of the storage modulus of the fin-based resin composition, and the crystallization temperature, crystallization end time, haze value and dispersibility of the obtained test piece were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 34 Performed in the same manner as in Example 34 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained polyolefin resin composition in pellet form, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the molding step.
  • Example 37 Except not using a fatty acid metal salt, the same procedure as in Example 37 was carried out, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 38 Except that no fatty acid metal salt was used, the same procedure as in Example 38 was carried out, and the transition temperature of the storage elastic modulus of the obtained polyolefin resin composition in pellet form, the crystallization temperature of the obtained test specimen, and the end of crystallization The time, haze value and dispersibility were measured. Table 3 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 34 PTC-2MeCHA 0.2 StCa 0.05 240 240 117 2.93 174 211 19 S
  • Example 35 PTC-2MeCHA 0.2 StMg 0.05 240 240 117 2.77 172 211 20 S
  • Example 36 PTC-2MeCHA 0.2 StZn 0.05 240 240 116 3.73 172 211, 22 S
  • Example 37 PTC-CHA 0.2 StCa 0.05 240 240 118 2.08 163 188 24 S
  • Example 38 PTC-2MeCHA [100] 0.2 StCa 0.05 260 260 122 3.74 194 229 20 S.
  • Example 39 PTC-2MeCHA 0.2 ⁇ 240 240 125 1.36 186 214 20 B
  • Example 40 PTC-CHA 0.2 ⁇ ⁇ 240 240 126 1.05 168 188 26 B
  • Example 41 PTC-2MeCHA [100] 0.2 ⁇ ⁇ 260 260 125 1.24 207 229 21 B
  • StMg Magnesium stearate
  • the crystallization rate controlling composition of the present invention is obtained.
  • the product can also lower the crystallization temperature of the polyolefin-based resin by the ratio of the component (A) to the component (B) or a combination of the types thereof (see Examples 34 to 38).
  • the h-PP can also be used, especially by using the crystallization rate controlling composition of the combination of the amide compound and the fatty acid metal salt according to the present invention, to improve the solubility in the polyolefin resin. ⁇ Dispersibility is improved, and the molded product is less undispersed (see Examples 34 to 38).
  • the molded article obtained by molding the polyolefin resin composition of the present invention is excellent in transparency as compared with Comparative Examples 3 and 4 described later (Examples 34 to 38, Examples 39 to 41). , Comparative Examples 3 and 4).
  • Example 42
  • r-PP ethylene-propylene block copolymer resin with an ethylene content of 9.5% by weight
  • b-PP melting temperature
  • a 5 cm x 5 cm x lmm size test piece was used for the measurement of the crystallization temperature and crystallization end time, and a 9 Omm x 10 mm x 4 mm size test piece was used for the flexural modulus measurement. .
  • Table 4 shows the measurement results, as well as the resin temperature in the kneading step and the resin temperature in the (emission) molding step.
  • Example 42 The same procedure as in Example 42 was carried out except that the fatty acid metal salt was changed to the fatty acid metal salt in Table 4, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and The crystallization temperature, crystallization end time, and flexural modulus were measured.
  • Table 4 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 42 The same procedure as in Example 42 was carried out except that PTC-CHA prepared in Production Example 4 was used instead of PTC-2Me CHA, and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition was obtained. The crystallization temperature, crystallization end time, and flexural modulus of the obtained test piece were measured. Table 4 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 42 Except not using a fatty acid metal salt, the same procedure as in Example 42 was carried out, and the transition temperature of the storage elastic modulus of the obtained pelletized polyolefin-based resin composition, and the crystallization temperature and crystallization of the obtained test piece were obtained. The end time and flexural modulus were measured. Table 4 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Example 4 Performed in the same manner as in Example 45 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time and flexural modulus were measured.
  • Table 4 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Example 46 Except that no fatty acid metal salt was used, the same procedure as in Example 46 was carried out, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time and flexural modulus were measured. Table 4 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Example 4 Performed in the same manner as in Example 47 except that the fatty acid metal salt was not used, and the transition temperature of the storage elastic modulus of the obtained pellet-shaped polyolefin-based resin composition, the crystallization temperature of the obtained test specimen, and the end of crystallization The time and flexural modulus were measured.
  • Table 4 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Example 42 PTC-2 eCHA 0.2 StCa 0.05 240 240 117 2.51 178 212 1350
  • Example 43 PTC-2MeCHA 0.2 StMg 0.05 240 240 116 3.35 175 212 1350
  • Example 44 PTC-2MeCHA 0.2 StZn 0.05 240 240 117 3:06 176 212 1330
  • Example 45 PTC-CHA 0.2 StCa 0.05 240 240 117 1.50 168 206 1310
  • Example 46 PTC-2MeCHA [100] 0.2 StCa 0.05 260 260 120 2.91 201 225 1270
  • Example 47 PTC-2MeCHA [50] 0.2 StCa 0.05 240 240 118 2.51 156 200 1290
  • Example 48 PTC-2MeCHA 0.2 ⁇ ⁇ 240 240 127 0.83 186 212 1360
  • Example 49 PTC-CHA 0.2 ⁇ ⁇ 240 240 128 0.77 174 206 1320
  • Example 50 PTC-2Me
  • StMg Magnesium stearate
  • the b-PP also has a resin (molding temperature) that exceeds the transition temperature of the storage modulus at the time of temperature rise.
  • the crystallization rate controlling composition of the present invention when the temperature of the resin exceeds the transition temperature of the storage elastic modulus at the time of raising the temperature of the resin during molding (molding temperature), the crystallization rate controlling composition of the present invention
  • the crystallization temperature of the polyolefin-based resin composition can also be lowered by the ratio of the components (A) and (B) or the combination of the types. (See Examples 42-47).
  • a temperature exceeding the transition temperature of the storage elastic modulus at the time of temperature rise is selected as the resin temperature (molding temperature) during molding, a molded article obtained by molding the polyolefin resin composition of the present invention will be described later.
  • the flexural modulus is improved as compared with Comparative Examples 5 and 6 (see Examples 42 to 51 and Comparative Examples 5 and 6).
  • the following Examples 5'2 to 69 are examples of the molding method (I) (Tm ⁇ T ⁇ Tsh).
  • Example 52 The same procedure as in Example 52 was carried out, except that the addition amount of calcium stearate was changed to the addition amount shown in Table 5, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and the obtained test The crystallization temperature, crystallization end time, flexural modulus and degree of orientation of the pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 4 The same procedure as in Example 4 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 5 The same procedure as in Example 5 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained temperature were obtained. The crystallization temperature, crystallization end time, flexural modulus and degree of orientation of the test piece were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 34 The same procedure as in Example 34 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 35 The same procedure as in Example 35 was carried out except that the resin temperature in the molding step was changed to 20 Ot, and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, The crystallization temperature, crystallization end time, flexural modulus and degree of orientation of the obtained test piece were measured. Table 5 shows the measurement results, the resin temperature in the kneading process and the resin temperature in the (injection) molding process.
  • Example 36 The same procedure as in Example 36 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and The crystallization temperature, crystallization end time, flexural modulus and degree of orientation of the obtained test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 42 The same procedure as in Example 42 was carried out except that the resin temperature in the molding step was changed to 200 ° C., the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 43 The same procedure as in Example 43 was carried out, except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, the resin temperature in the kneading step, and the temperature of the resin in the (injection) molding step.
  • Example 44 The same procedure as in Example 44 was carried out except that the resin temperature in the molding step was changed to 200 ° C, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, the resin temperature in the kneading step, and the temperature of the resin in the (injection) molding step.
  • Example 21 The same procedure as in Example 21 was carried out, except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 22 The same procedure as in Example 22 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 23 The same procedure as in Example 23 was carried out except that the resin temperature in the molding step was changed to 180 ° C, the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 39 The same procedure as in Example 39 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 6 8 (Injection) The same procedure as in Example 48 was carried out except that the resin temperature in the molding step was changed to 200 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, as well as the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 32 The same procedure as in Example 32 was carried out except that the resin temperature in the molding step was changed to 240 ° C., and the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin resin composition and the obtained temperature were obtained. The crystallization temperature, the crystallization end time, the flexural modulus and the degree of orientation of the test pieces were measured. Table 5 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • Example 52 PTC-2MeCHA 0.2 StCa 0.05 r-PP 240 200 117 0.76 177 211 1510 2.4
  • Example 53 PTC-2MeCHA 0.2 StCa 0.02 r-PP 240 200 117 0.79 181 211 1500 2.3
  • Example 54 PTC-2MeCHA 0.2 StCa 0.01 r -PP 240 200 117 0.81 184 211 1480 2.3
  • Example 55 PTC-2MeCHA 0.2 StMg 0.05 r-PP 240 200 117 0.80 174 211 1470 2.6
  • Example 56 PTC-2MeCHA 0.2 StZn 0.05 r-PP 240 200 117 0.83 176 211 1460 2.6
  • Example 57 PTC-2MeCHA 0.2 StCa 0.05 h-PP 240 200 127 0.92 174 211 1890 2.4
  • Example 58 PTC-2MeCHA 0.2 StMg 0.05 h-PP 240 200 127 0.95 172 211 1890 2.4
  • StMg Magnesium stearate
  • the temperature of the resin (molding temperature) during molding is selected to be higher than the melting temperature of the polyolefin resin and lower than the transition temperature of the storage elastic modulus at the time of temperature rise, the components (A) and (B) By controlling the ratio, especially by increasing the ratio of component (B), the crystallization rate of the polyolefin resin can be increased (the crystallization end time can be shortened) (Examples 52 to 52). 54, Example 6 4-66).
  • the fatty acid metal salt according to the present invention other than calcium stearate can similarly increase the crystallization rate of the polyolefin-based resin (reduce the crystallization end time) (Examples 55 and 56). reference).
  • the crystallization rate can be similarly increased (the crystallization end time can be shortened) (Examples 57 to 62, See Examples 67 and 68).
  • the crystal of the present invention is obtained.
  • the temperature of the resin at the time of molding is selected to be not lower than the melting temperature of the polyolefin resin and not higher than the transition temperature of the storage elastic modulus at the time of raising the temperature
  • the polyolefin-based composition of the present invention is used.
  • the molded body obtained by molding has excellent rigidity. It is remarkable even when compared with the molded article obtained by the molding method (II) described above (see Examples 52 to 69, Examples 42 to 51, and Comparative Examples 1 to 6).
  • the polyolefin resin composition of the present invention is molded and processed.
  • the obtained molded articles each had a degree of orientation of 2 or more.
  • the number of molded articles obtained by the molding method ( ⁇ ) was less than 2 (see Examples 52 to 69, Examples 42 to 51, and Comparative Examples 1 to 6). Comparative Example 1
  • the crystallization temperature, crystallization end time, haze value, flexural modulus and degree of orientation were measured in the same manner as in Example 1 except that the amide compound and the fatty acid metal salt were not used.
  • Table 6 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • the crystallization temperature, the crystallization end time, the haze value, the flexural modulus and the degree of orientation were measured in the same manner as in Comparative Example 1, except that 0.05 part by weight of calcium stearate was used during the dry blending.
  • Table 6 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • the crystallization temperature, the crystallization end time, the haze value, the flexural modulus and the degree of orientation were measured in the same manner as in Example 34 except that the amide compound and the fatty acid metal salt were not used.
  • Table 6 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • the crystallization temperature, the crystallization end time, the haze value, the flexural modulus and the degree of orientation were measured in the same manner as in Comparative Example 3, except that 0.05 part by weight of calcium stearate was used during the dry blending.
  • Table 6 shows the measurement results, the resin temperature in the kneading step, and the resin temperature in the (injection) molding step.
  • Comparative Example 5 The crystallization temperature, the crystallization end time, the haze value, the flexural modulus and the orientation were measured in the same manner as in Example 42 except that the amide compound and the fatty acid metal salt were not used. Table 6 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the (injection) molding step.
  • the crystallization temperature, the crystallization end time, the haze value, the flexural modulus and the degree of orientation were measured in the same manner as in Comparative Example 5, except that 0.05 part by weight of calcium stearate was used during the dry blending.
  • Table 6 shows the measurement results, and the resin temperature in the kneading step and the resin temperature in the shaping step).
  • Comparative Example 1 ⁇ ⁇ 1 ⁇ r-PP 240 240 99> 10 74 920 1.2 Comparative Example 2 1 StCa 0.05 r-PP 240 240 99> 10 74 920 1.2 Comparative Example 3 1 ⁇ ⁇ ⁇ h-PP 240 240 109 > 10 66 1180 1.2 Comparative Example 4 1-StCa 0.05 h-PP 240 240 109> 10 66 1180 1.2 Comparative Example 5-1-1 b-PP 240 240 109> 10 99 1060 1.2 Comparative Example 6-1 StCa 0.05 b-PP 240 240 109> 10 99 1060 1.2
  • examples described with “1-” as in Example 1-1 are examples relating to the molding method (I), and as in Example I-1, " The examples described with “11-” are examples relating to the molding method (II).
  • the transition temperature of the storage elastic modulus of the obtained pellet-like polyolefin-based resin composition, and the flexural modulus of the molded article obtained from the polyolefin-based resin composition of the present invention is not limited.
  • the X-ray diffraction measurement and the degree of orientation were measured and evaluated in the same manner as described above.
  • the impact resistance (Dupont method impact strength) of the molded article was measured and evaluated by the following method.
  • 14.4 g (0.18 mol) of pyridine and 50 g of N-methyl-2-pyrrolidone were added, and the mixture was reacted at 100 ° C. for 4 hours with stirring under a nitrogen atmosphere.
  • the reaction solution was slowly poured into a mixed solution of 500 ml of isopropyl alcohol and 500 ml of water, stirred at about 40 ° C. for 1 hour, and the deposited white precipitate was separated by filtration. Further, the obtained white solid was washed twice with 500 ml of isopropyl alcohol at about 40 ° C, and then dried under reduced pressure at 133 ° Pa at 100 ° C for 6 hours.
  • the obtained dried product is pulverized in a mortar and passed through a standard sieve having a mesh size of 106 m (JISZ8011 standard) to give 1,2,3-propanetripyrrhonic acid tris (2-methine).
  • Rucyclohexylamide hereinafter referred to as “PTC-2Me CHA (100)” was obtained.
  • the unreacted 2-methylcyclohexylamine recovered after the amidation reaction was subjected to GLC analysis.
  • the ratio of the trans-isomer to the cis-isomer of the unreacted amine was 74:26. This was consistent with the trans: cis ratio of methylcyclohexylamine (74:26, GLC composition ratio).
  • the ratio of the trans-configuration 2-methylcyclohexylamine residue to the cis configuration 2-methylcyclohexylamine residue was changed to the raw material 2-methylcyclohexylamine.
  • the ratio was consistent with the ratio between the trans form and the cis form of xylamine.
  • Production Example I-4 was carried out in the same manner as in Production Example I-1, except that 1,2,3-propanetricarboxylic acid tricyclohexylamide (hereinafter abbreviated as rpTC-CHAj) (17.3 g, yield)
  • rpTC-CHAj 1,2,3-propanetricarboxylic acid tricyclohexylamide
  • test pieces (length 90 mm, width 10 mm, height 4 mm).
  • Table 7 shows Tsc CO and Tsh CO of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example G1 except that the kneading temperature was 240 ° C and the forming temperature was 200 ° C, using PTC-2Me CHA (74) instead of PTC-2Me CHA (100). Produced. Table 7 shows Tsc CC) and Tsh CC) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • FIG. 5 shows a temperature-dependent curve of the storage elastic modulus of the polyolefin resin composition obtained in Example 1-2 when the temperature is raised and when the temperature is lowered
  • FIG. 6 shows a differential curve thereof.
  • the open circle ( ⁇ ) is the temperature-dependent curve of the storage modulus when the temperature rises
  • the black circle (Oka) is the temperature-dependent curve of the storage modulus when the temperature drops.
  • a white circle ( ⁇ ) ′ is a differential curve of the temperature dependence curve of the storage elastic modulus at the time of temperature rise
  • a black circle ( ⁇ ) is a differential curve of the temperature dependence curve of the storage modulus at the time of temperature decrease. .
  • test piece was prepared in the same manner as in Example 1-2, except that 0.2 parts by weight of PTC-2Me CHA (74) was changed to 0.1 parts by weight and the molding temperature was changed to 180 ° C.
  • Table 7 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Specimens were prepared in the same manner as in Example 1-1 except that PTC-2Me CHA (50) was used instead of PTC-2Me CHA (100), and the kneading temperature was 240 ° C and the forming temperature was 180 ° C. Was prepared.
  • Table 7 shows Tsc (° C) and Tsh CO of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-1, except that PTC-CHA was used instead of PTC-2Me CHA (100), and the kneading temperature was changed to 240 and the molding temperature was changed to 180 ° C.
  • Table 7 shows the Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation degree of the test piece.
  • test piece was prepared in the same manner as in Example I-1, except that 0.05% by weight of calcium stearate was further used during dry blending.
  • Table 7 shows Tsc CO and Tsh O of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • Example I-8 A test piece was prepared in the same manner as in Example 1-2 except that 0.05 part by weight of calcium stearate was further used during dry blending. Table 7 shows Tsc CC) and Tsh CO of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Example I-8
  • test piece was prepared in the same manner as in Example 1-2, except that at the time of dry blending, 0.05 part by weight of zinc stearate was further used.
  • Table 7 shows the Tsc (° C) and Tsh CO of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example I-2 except that 0.05% by weight of magnesium stearate was further used during dry blending.
  • Table 7 shows the Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-2 except that 0.1 part by weight of calcium stearate was further used during dry blending.
  • Table 7 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Test pieces were prepared in the same manner as in Example 1-5, except that 0.05% by weight of calcium stearate was further used during dry blending.
  • Table 7 shows Tsc CO and Tsh (° C) of the resin composition thus obtained, as well as flexural modulus (MPa) and degree of orientation of the test piece.
  • Example 1-1 Using the pellets prepared in Example 1-1, a test piece was prepared by injection molding at a molding temperature of 260 ° C (resin temperature) and a mold temperature of 40. Table 8 shows the Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • Example 8 Using the pellets prepared in Example 1-2, a test piece was prepared by injection molding at a molding temperature of 240 (resin temperature) and a mold temperature of 40. The Tsc (° C) and Tsh CO of the above pellets (resin composition) and the flexural modulus (MPa) and degree of orientation of the test piece are shown.
  • Figure 8 The Tsc (° C) and Tsh CO of the above pellets (resin composition) and the flexural modulus (MPa) and degree of orientation of the test piece are shown.
  • test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C.
  • Table 8 shows the Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • test piece was prepared by injection molding at a molding temperature of 240 (resin temperature) and a mold temperature of 40 ° C.
  • Table 8 shows the Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • Example 8 Using the pellets prepared in Example 1-5, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 8 shows Tsc CO and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • Example 8 Using the pellets prepared in Example 1-6, a test piece was prepared by injection molding at a molding temperature of 260 ° C (resin temperature) and a mold temperature of 40 ° C. Table 8 shows the Tsc (° C.) and T ⁇ h CO of the pellets (resin composition) and the flexural modulus (MPa) and orientation degree of the test pieces.
  • Example 8 Using the pellets prepared in Example 1-7, a test piece was produced by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 8 shows the Tsc CO and Tsh CC of the pellet (resin composition) and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Example 1-8 Using the pellets prepared in Example 1-8, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40.
  • Table 8 shows the Tsc CO and Tsh CO, and the flexural modulus (MPa) and orientation of the test piece.
  • Example 8 Using the pellets prepared in Example 1-9, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 8 shows the Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • Example I-10 Using the pellets prepared in Example I-10, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 8 shows Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and degree of orientation of the test pieces.
  • St Ca Calcium stearate
  • St Zn Zinc stearate
  • the degree of orientation of the molded article obtained by the molding method (II) is less than 2, and the degree of orientation of the molded article obtained by the molding method (I) is 2 or more. Atsushi. Also, it can be seen that the bending elastic modulus of the molded body having an orientation degree of 2 or more is significantly higher than that of the molded body having an orientation degree of less than 2.
  • h 100 parts by weight of PP, 0.2 parts by weight of PTC—2Me CHA (100), tetrakismethylene-1- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate :! Methane (Ciba Specialty Chemicals: IR GANOX1010 (trade name)) 0.05 parts by weight and tetrakis (2,4-di-t-butylphenyl) phosphite (Ciba Specialty Chemicals: I RGAFOS 168 (trade name) )) 0.05 parts by weight were weighed and dry-blended with a Henschel mixer at 1000 rpm for 5 minutes together with 100 parts by weight of h-PP.
  • a pelletized polyolefin resin composition was obtained.
  • a test piece was prepared by injection molding at a molding temperature of 220X (resin temperature) and a mold temperature of 40 ° C.
  • Table 9 shows Tsc (° C) and Tsh CO of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Example 9 shows TscCO and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation degree of the test piece.
  • test piece was prepared in the same manner as in Example I-13 except that the temperature was changed to 0 ° C.
  • Table 9 shows the TscCO and Tsh (.C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation degree of the test piece.
  • Example 9 shows Tsc (° C) and TshCO of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • Test pieces were prepared in the same manner as in Example 1-12, except that the kneading temperature was changed to 240 ° C and the molding temperature was changed to 180 ° C, using PTC-CHA instead of PTC-2MeCHA (100).
  • Table 9 shows the Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-12, except that 0.05 part by weight of calcium stearate was used during dry blending.
  • Table 9 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, as well as the flexural modulus (MPa) and orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-13 except that 0.05 part by weight of calcium stearate was further used during dry blending.
  • Table 9 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, as well as the flexural modulus (MPa) and orientation of the test piece.
  • test piece was prepared in the same manner as in Example I-13, except that 0.05 part by weight of magnesium stearate was further used during dry blending.
  • Table 9 shows the Tsc CC) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation of the test piece.
  • Example 1-20 Test pieces were prepared in the same manner as in Example 1-13, except that 0.05 parts by weight of zinc stearate was further used during dry blending.
  • Table 9 shows Ts c (° C.) and Ts li (° C.) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-16, except that 0.05 part by weight of calcium stearate was further used during dry blending.
  • Table 9 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, as well as the flexural modulus (MPa) and orientation of the test piece.
  • Example 10 Using the pellets prepared in Example 1-14, a test piece was prepared by injection molding at a molding temperature of 240 (resin temperature) and a mold temperature of 40 ° C. Table 10 shows the TscCO and Tsh (° C) of the pellet (resin composition), and the flexural modulus (MPa) and orientation of the test piece.
  • Example II-16 Using the pellets prepared in Examples 1-15, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 10 shows Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and orientation of the test pieces.
  • Example II-16 Using the pellets prepared in Examples 1-15, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 10 shows Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and orientation of the test pieces.
  • Example II-16 Example II-16
  • Example 10 Using the pellets prepared in Example I-16, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 10 shows the Ts c CC) and Ts h CO of the pellets (resin composition) and the flexural modulus (MPa) and orientation degree of the test pieces.
  • Example 10 Using the pellets prepared in Example 1-17, injection molding was performed at a molding temperature of 260 ° C (resin temperature) and a mold temperature of 40 ° C to produce test pieces.
  • Table 10 shows TscCO and Tsh (° C) of the pellet (resin composition), and the flexural modulus (MPa) and orientation of the test piece.
  • Example 10 Using the pellets prepared in Example 1-18, injection molding was performed at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C to produce test pieces.
  • Table 10 shows the TscCO and TshCO of the pellets (resin composition) and the flexural modulus (MPa) and orientation of the test pieces.
  • Example 10 Using the pellets prepared in Example 1-19, a test piece was produced by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 10 shows Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and orientation of the test pieces.
  • Example I-20 Using the pellets prepared in Example I-20, a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 10 shows Tsc (° C) and Tsh (° C) of the pellets (resin composition), and the flexural modulus (MPa) and orientation of the test pieces.
  • Example I-21 Using the pellets prepared in Example I-21, a test piece was produced by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40. Ts c (° C) and Ts h CO of the above pellets (resin composition) and flexural modulus (MPa) and orientation of test specimens The degree is shown in Table 10.
  • S t Ca calcium stearate
  • S tMg magnesium stearate
  • S t Zn zinc stearate
  • StM magnesium stearate
  • the degree of orientation of the molded article obtained by the molding method ( ⁇ ) is less than 2, and The degree of orientation of the obtained molded body was 2 or more. Also, it can be seen that the bending modulus of the molded body having an orientation degree of 2 or more is significantly higher than that of the molded body having an orientation degree of less than 2.
  • b 100 parts by weight of PP, 0.2 parts by weight of PTC—2MeCHA (100), tetrakismethylene—3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane (Chiba Specialty ⁇ Chemicals: IR GANOX1010 (trade name) 0.05 parts by weight and tetrakis (2,4-di-t-butylphenyl) phosphite (Ciba Specialty Chemicals: IRGAFOS 168 (trade name)) 0 .05 parts by weight were weighed and dry-blended together with 100 parts by weight of b-PP in a Henschel mixer at 1000 rpm for 5 minutes.
  • a pellet-shaped polyolefin resin composition was obtained.
  • injection molding was performed at a molding temperature of 220 aC (resin temperature) and a mold temperature of 40 ° C to prepare test pieces (length: 90 mm, width: 10 mm, height: 4 mm).
  • Table 11 shows Ts c (° C.) and Ts h (° C.) of the obtained resin composition, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • Example 11 Tested in the same manner as in Example 1-22, except that the kneading temperature was changed to 240 ° C and the molding temperature was changed to 200 ° C, using PTC-2Me CHA (74) instead of PTC-2Me CHA (100). Pieces were made. Table 11 shows Ts c () and T sh CC) of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-23 except that the temperature was changed to 0 ° C.
  • Table 11 shows Tsc (° C) and Ts (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation degree of the test piece.
  • Example 11 Tested in the same manner as in Example 1-22, except that the kneading temperature was changed to 240 ° C and the forming temperature was changed to 180 ° C using PTC-2Me CHA (50) instead of PTC-2Me CHA (100). Pieces were made. Table 11 shows the Tsc (° C) and TshCO of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • a test piece was prepared in the same manner as in Example 1-22 except that the kneading temperature was changed to 240 ° C and the forming temperature was changed to 180 ° C, using PTC-CHA instead of PTC-2Me CHA (100).
  • Table 11 shows the Ts c (° C.) and Ts h CC) of the resin composition thus obtained, and the flexural modulus (MPa) and the degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-22 except that 0.05 part by weight of calcium stearate was further used during dry blending.
  • Table 11 shows the TscCO and TshCO of the resin composition thus obtained, and the flexural modulus (MPa) and orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-23 except that 0.05 part by weight of calcium stearate was further used during dry blending.
  • Table 11 shows the TscCO and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation degree of the test piece.
  • Test pieces were prepared in the same manner as in Example 1-23, except that 0.05 part by weight of magnesium stearate was further used during dry blending.
  • Table 11 shows Tsc (° C) and Tsh (° C) of the resin composition thus obtained, and the flexural modulus (MPa) and orientation of the test piece.
  • Example 1-30 At the time of dry blending, a test piece was prepared in the same manner as in Example 1-23, except that 0.05 part by weight of zinc stearate was further used. Table 11 shows the Tsc CC) and TshCO of the resin composition thus obtained, and the flexural modulus (MPa) and degree of orientation of the test piece.
  • test piece was prepared in the same manner as in Example 1-26 except that 0.05 part by weight of calcium stearate was further used during dry blending.
  • Table 11 shows the T sc CO and T sh CO of the polyolefin-based resin composition thus obtained, and the flexural modulus (M Pa) and orientation degree of the test piece.
  • test piece was prepared by injection molding at a molding temperature of 260 ° C (resin temperature) and a mold temperature of 40 ° C.
  • Table 12 shows the TscCO and TshCO of the pellets (resin composition) and the flexural modulus (MPa) and orientation of the test pieces.
  • a test piece was prepared by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C.
  • Table 12 shows the TscCO and Tsh (° C) of the pellet (resin composition), and the flexural modulus (MPa) and orientation of the test piece.
  • Example ⁇ - 26 shows TscCO and TshCO of the pellets (resin composition), and the flexural modulus (MPa) and orientation degree of the test pieces.
  • Example ⁇ - 26 shows TscCO and TshCO of the pellets (resin composition), and the flexural modulus (MPa) and orientation degree of the test pieces.
  • Example 12 Using the pellets prepared in Example I-26, a test piece was produced by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 12 shows the Tsc (° C) and Tsh (° C) of the pellets (resin composition), the flexural modulus (MPa) and the degree of orientation of the test pieces.
  • test piece was prepared by injection molding at a molding temperature of 260 ° C (resin temperature) and a mold temperature of 40 ° C.
  • Table 12 shows the TscCO and Tsh (° C) of the pellets (resin composition), the flexural modulus (MPa) and the degree of orientation of the test pieces.
  • Example II-30 Using the pellets prepared in Example I-30, a test piece was produced by injection molding at a molding temperature of 240 ° C (resin temperature) and a mold temperature of 40 ° C. Table 12 shows Tsc () and Tsh (° C) of the pellet (resin composition), and the flexural modulus (MPa) and orientation of the test piece.
  • Example II-31 Using the pellets prepared in Example I-31, a test piece was produced by injection molding at a molding temperature of 240 (resin temperature) and a mold temperature of 40. Ts c CC) and Ts h (° C) of the above pellets (resin composition) and flexural modulus (MPa) and orientation of test specimens The degrees are shown in Table 12.
  • S t Ca calcium stearate
  • S tMg magnesium stearate
  • S t Zn zinc stearate
  • S t Ca calcium stearate
  • S tMg magnesium stearate
  • S t Zn zinc stearate
  • the degree of orientation of the molded product obtained by the molding method (II) is less than 2 in the case of the b-PP as in the case of the r-PP, and the molding method ( The degree of orientation of the molded article obtained by the method (I) was 2 or more. Also, it can be seen that the bending modulus of the molded body having an orientation degree of 2 or more is significantly higher than that of the molded body having an orientation degree of less than 2.
  • Molding method (1) Molding method (II): b-P P)
  • the molded product obtained by the molding method (I) using the above b'-PP not only significantly improved the flexural modulus, but also significantly improved the impact resistance. Is recognized. INDUSTRIAL APPLICABILITY
  • the polyolefin-based resin composition of the present invention can control the crystallization rate and the crystallization temperature, and therefore can be suitably used for injection molding, film molding, blow molding, extrusion molding, and the like. it can.
  • the molded product obtained by molding the polyolefin-based resin composition has a small amount of undispersed material and is excellent in transparency, so that it can be used for medical instruments, packaging for foods and plants, various cases, and food packaging containers. It can be used as a material for containers for microwave ovens, miscellaneous goods, stationery, electrical and mechanical parts, automotive parts and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

開示されているのは、1,2,3−プロパントリカルボン酸又は1,2,3,4−ブタンテトラカルボン酸の置換又は非置換シクロヘキシルアミドであるアミド系化合物(A)及び脂肪酸金属塩(B)を含有し、成分(A):成分(B)の重量比が100:0~30:70であるポリオレフィン系樹脂用結晶化速度制御組成物、該組成物をポリオレフィン系樹脂に配合してポリオレフィン系樹脂組成物を得、該樹脂組成物を成形することを含むポリオレフィン系樹脂の結晶化速度制御方法、該方法により得られた成形体などである。

Description

ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、
樹脂組成物及び樹脂成形体 技術分野 本発明は、 ポリオレフイン系樹脂の結晶化速度制御組成物、 該結晶化速度制御 組成物を含有するポリオレフィン系明樹脂組成物、 該樹脂組成物を成形して得られ るポリオレフイン系樹脂成形体、 ポリオ細 1レフイン系樹脂組成物の成形時のポリオ レフィン系樹脂の結晶化速度を制御する方法書、 及び該制御方法を利用したポリオ レフィン系樹脂成形体の製造法に関する。 背景技術 ポリオレフィン系樹脂は、成形性、機械特性、電気特性等が優れているために、 フィルム成形(フィルムを製造するための成形)、 シート成形(シートを製造する ための成形)、 ブロー成形、射出成形等の素材として、様々な分野に応用されてい る。 しかし、 ポリオレフイン系樹脂は、 一般的には優れた物性を有しているもの の、 透明性、 結晶性及び剛性が低いという問題点があった。
これらの問題点を改善するために、 アミド系化合物等を造核剤として活用する 技術が提案されている(特開平 6— 1 9 2 4 9 6号、特開平 7— 2 4 2 6 1 0号、 特開平 7— 2 7 8 3 7 4号、特開平 8— 1 0 0 0 8 8号)。 これらアミド系化合物 を含有するポリオレフイン系樹脂組成物を成形した場合、 透明性、 機械強度に優 れた成形体を得ることができる。
しかしながら、 商業的な生産においてそのような優れた特性を有する成形体を 得るためには、 成形方法に合わせて、 成形加工条件を最適化する必要があった。 成形方法には、 射出成形、 押出成形、 シート成形、 フィルム成形、 ブロー成形 などの種々の成形方法がある。 成形体製造メーカ一は、 独自に、 成形方法に合わ せて成形機の成形加工条件 (射出または押出速度、 射出圧力、 樹脂温度、 金型及 びチルロールの温度、 金型形状など) を設定し、 成形加工条件の最適化を図らな ければならない。
しかしながら、 その成形加工条件の最適化は、 設定項目が多い上に、 その設定 作業が繁雑であり、 時間を要するものであった。 しかも、 その設定を誤ると、 成 形体中に造核剤の未分散物に基づく白点が生じる、 成形体の透明性が劣る、 成形 体の機械的強度が劣る等の問題が生じることもあった。
また、 或る特定の核剤を使用すると、 ポリオレフイン系樹脂の結晶化温度があ る程度高くなり、成形サイクルタイムが短縮できることも知られている。しかし、 かかる核剤の使用は、 その核剤の使用に特有の結晶化温度がもたらされるだけで あって、 結晶化温度が制御できるわけではないため、 成形加工条件の設定の簡便 化、 迅速化、 成形加工条件の柔軟化、 多様化等には大きく寄与していないのが現 状である。 発明の開示 上記現状に鑑み、 本発明の目的は、 成形加工条件の設定の簡便化、 迅速化或い は成形加工条件の多様化、 柔軟化を図ることにある。
本発明者らは、かかる現状に鑑み、前記課題を解決すべく鋭意検討した。特に、 本発明者らは、成形条件の設定について検討した結果、その条件設定の煩雑さが、 かなりの程度、 ポリオレフイン系樹脂の結晶化速度に起因しており、 成形機によ る成形条件の設定のみに依存することなく、 ポリオレフィン系樹脂の結晶化速度 を制御できれば、 成形条件設定が簡便かつ迅速となり、 また、 成形加工条件を柔 軟化、 多様化できることを見いだした。
より詳しくは、 成形方法や成形すべき樹脂によっては、 その結晶化速度が速い 故に成形加工が困難になるという逆効果になることがある。 例えば、 ポリオレフ ィン系樹脂の結晶化速度が適切な範囲内になければ、 フィルム又はシート成形、 ブロー成形、 大型製品の射出成形などでは均質な成形体を得られにくくなる。 し かし、 ポリオレフィン系樹脂の結晶化速度を低減させて上記適切な範囲内にする ためには、 成形機での成形条件 (例えば、 樹脂の排出速度、 排出量、 射出成形時 の背圧、 チルロール回転速度、 金型又はチルロール温度、 金型形状、 冷却時間、 冷却速度等) の煩雑な設定作業に依存しなければならない。 一方では、 小型製品 の射出成形などでは、 生産コストをできるだけ低減させる為に、 ポリオレフイン 系樹脂の結晶化速度をさらに高めて成形サイクルタイムを短縮すること (高速成 形) ができれば、 工業上きわめて有利である。 しかし、 ポリオレフイン系樹脂の 成形サイクルタイムを短縮しょうとしても、 従来は、 ある種の核剤が結晶化温度 を高めることが知られているだけであり、 結晶化速度を高めるには、 やはり成形 機での成形条件 (例えば、 冷却時間、 冷却速度等) の煩雑な設定作業に依存せざ るを得ない。
力 ^かる状況に鑑み、 本発明者らは、 ポリオレフイン系樹脂の結晶化速度が制御 された榭脂組成物が提供できれば、 煩雑な成形機での成形条件設定にのみに依存 せずに、 広範囲の成形加工に対応することが可能となると考えた。
本発明者らは、 更に検討を重ねた結果、 ポリオレフイン系樹脂に (A) 特定の アミド系化合物と (B) 特定の脂肪酸金属塩とを特定の重量比で配合することに より、 該ポリオレフイン系樹脂の結晶化速度 (結晶化終了時間) を制御できるこ とを見出した。 より詳しくは、 次の知見を得た。
(a) 特定のアミド系化合物 (A) が、 溶解型の核剤である。
(b) ポリオレフイン系樹脂中に該アミド系化合物(A) を溶解させて得られる 溶融ポリオレフィン系樹脂組成物の温度変化に対する貯蔵弾性率の変化を測定す ると、 昇温時及び降温時のいずれの曲線においても転移点があり、 貯蔵弾性率の 温度依存曲線の微分曲線が極値を示す。
(c) 上記 (b)の知見は、特定の温度範囲において、溶融ポリオレフイン系樹脂中 に上記アミド系化合物の繊維状粒子により形成される網目構造が存在することを 示す。 このことは、 従来全く知られておらず、 本発明者らにより初めて見いださ れた知見である。
(d) 成形加工時の樹脂温度 (成形温度) Tを、 昇温時の貯蔵弾性率の転移温度 Tsh以下の温度とするか、 又は Tshよりも高い温度に設定し、 且つ、 アミド系化 合物 (A) と特定の脂肪酸金属塩 (B) とを特定割合で併用すると、 該ポリオレ フィン系樹脂の結晶化速度 (結晶化終了時間) を制御できる。
(e) より詳しくは、 図 8に示すように、 成形加工時の樹脂温度 (成形温度) T を、 ポリオレフイン系樹脂の融解温度 Tm以上であって、 且つ、 昇温時の貯蔵弹 性率の転移温度 Tsh以下の温度に設定する場合 (図 8の成形方法 (1))、 該特定 の脂肪酸金属塩 (B) の配合比率を増加させると (領域 (IA)→領域 (IAB))、 ポリ ォレフィン系樹脂の結晶化速度を速くする (結晶化終了時間を短縮させる) こと ができる。
( ) また、 成形加工時の樹脂温度 (成形温度) τを、 昇温時の貯蔵弾性率の転 移温度 Tshを超える温度に設定する場合 (図 8の成形方法 (11))、 該特定の脂肪 酸金属塩 (B) の配合比率を増加させると (領域 (IIA)→領域 (IIAB))、 ポリオレフ イン系樹脂の結晶化速度を遅くする (結晶化終了時間を延長させる) ことができ る。
(g) 即ち、昇温時の貯蔵弾性率の転移温度 Tsh以下の温度領域と、 T¾hを超え る温度領域とからなる上記成形温度範囲の全体を通して見れば、 また、 Tm〜Tsh の樹脂温度範囲、 又は、 Tshよりも高い樹脂温度範囲のそれぞれにおいても、 特 定の脂肪酸金属塩の配合比の調整により、前記 ωに記載の成形方法 (Π)において特 定のアミド系化合物のみを含み脂肪酸金属塩を含まない結晶化速度制御組成物に より達成される結晶化速度に比べて、 ポリオレフイン系樹脂の結晶化速度を、 制 御、 即ち、 低減又は増加することができることとなる。
(h) 上記 (e)の成形方法(I)は、結晶化速度を速くすることができ、そのため、 核剤の元来の目的である成形サイクル時間の短縮が更に可能となり、 主に小型製 品の高速度での射出成形に適している。 この場合、 昇温時の貯蔵弾性率の転移温 度 Tsh以下の樹脂温度で成形するので、 図 7の (I)に示すように、上記 (c)の網目構 造が存在した状態で成形され、 該網目構造を構成する繊維状粒子が配向し、 その ため、 得られる成形体においてポリオレフイン系樹脂の結晶ラメラを配向させる ことができ、 その結果、 特に剛性に優れた成形体を製造することができる。 そし て、 脂肪酸金属塩 (B) の割合を増減することにより、 ポリオレフイン系樹脂の 結晶化速度を制御できる。
(i) 一方、 上記 (£)の成形方法 (II)は、結晶化速度を遅くすることができ、均質な 成形体が得られやすくなるので、 フィルム成形、 シート成形、 大型製品の射出成 形において有利である。 この場合、 昇温時の貯蔵彈性率の転移温度 Tshを超える 温度で成形するので、 図 7の (II)に示すように、 上記 (c)の網目構造が溶解して消 失した状態で成形が行われる。 そのため、 その溶融したポリオレフイン系樹脂組 成物を冷却すると、 アミド系化合物の繊維状粒子が形成され、 網目構造が再構成 される。 それを起点として、 ポリオレフイン系樹脂の微少な結晶 (球晶) が形成 され、 その結果、 特に透明性に優れた成形体を製造できる。 そして、 脂肪酸金属 塩 (B) の割合を増減することにより、 ポリオレフイン系樹脂の結晶化速度を制 御できる。
j) このように、 本発明によると、 ポリオレフイン系樹脂の結晶化速度を制御 する (変化させる) ことができるが、 前記アミド系化合物の他の核剤機能は実質 的に変化させない。 従って、 本発明によれば、 成形装置の条件設定による結晶化 速度制御に加えて、 本発明の結晶化速度制御組成物によっても結晶化速度が制御 できるため、 成形工程での条件設定の自由度が大きく拡大され、 その結果、 優れ た物性を有する成形体を容易に製造することができる。
本発明は、 かかる知見に基づき、 更に検討を重ねて完成されたものであって、 以下のポリオレフィン系樹脂の結晶化速度制御組成物、 該結晶化速度制御組成物 を含有してなる樹脂組成物、 該樹脂組成物を成形して得られる成形体及びその製 造方法、 並びにポリオレフィン系樹脂の結晶化速度を制御する方法及び該制御方 法を利用したポリオレフィン系樹脂成形体の製造方法を提供するものである。 項 1 (A) —般式 ( 1 )
R1-f CONHR2) k (1 )
[式中、 R 1は、 1 , 2, 3—プロパントリカルボン酸又は 1 , 2, 3 , 4—ブ タンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜 1 0の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。] で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 (2)
(R3— C00†-nM (2)
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 32 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n=2の場合、 2個の R 3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。 ]
で表される少なくとも一種の脂肪酸金属塩を含有し、 成分(A):成分(B) の重 量比が、 100 : 0〜30 : 70である (即ち、 成分 (A) 及び成分 (B) の合 計量に対して、 成分 (A) を 100〜30重量%、 成分 (B) を 0〜70重量% 含有している) ポリオレフィン系樹脂の結晶化速度制御組成物。 項 2 成分 (A):成分 (B) の重量比が、 95 : 5〜 30 : 70 (即ち、 成分 (A) 及び成分 (B) の合計量に対して、 成分 (A) を 95〜30重量%、 成分 (B) を 5〜70重量%含有している) である上記項 1に記載の組成物。 項 3 —般式 (1) における 3個又は 4個の R2が、 同一又は異なって、 シク 口へキシル基、 又は 1個の炭素数 1〜 4のアルキル基で置換されたシクロへキシ ル基である上記項 1又は項 2に記載の組成物。 項 4 一般式 (1) における 3個又は 4個の R2が、 同一又は異なって、 シク 口へキシル基又は 2—メチル基、 3—メチル基若しくは 4—メチル基で置換され たシク口へキシル基である上記項 1に記載の組成物。 項 5 —般式 (1) における R1が 1, 2, 3—プロパントリカルボン酸から 全ての力ルポキシル基を除いて得られる残基であり、 kが 3である上記項 1〜4 のいずれかに記載の組成物。 項 6 般式 (2)における Mが、 アルカリ金属、 アルカリ土類金属及び亜鉛 からなる群より選ばれる少なくとも 1種の金属である上記項 1〜5のいずれかに 記載の組成物。 項 7 —般式 (2) における R3が、 分子内に 1個以上の水酸基を有していて もよい炭素数 10〜18の飽和若しくは不飽和の脂肪族モノカルボン酸からカル ポキシル基を除いて得られる残基である上記項 1〜 6のいずれかに記載の組成物。 項 8 脂肪族モノカルボン酸が、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ォレイン酸及び 12—ヒドロキシステアリン酸からなる群より選 ばれる少なくとも 1種である上記項 7に記載の組成物。 項 9 ポリオレフィン系樹脂の成形時のポリオレフィン系樹皆の結晶化速度を 制御する方法であって、
(A) 一般式 (1)
R CONHR2)
Figure imgf000009_0001
(1)
[式中、 R1は、 1, 2, 3—プロパントリカルボン酸又は 1, 2, 3, 4—ブ タンテトラカルボン酸から全てのカルボキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜 10の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。 ]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 (2)
Figure imgf000009_0002
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜32 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n==2の場合、 2個の R3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。 ]
で表される少なくとも一種の脂肪酸金属塩を含有 成分 (A):成分(B) の重 量比が 1 0 0 : 0〜3 0 : 7 0である (即ち、 成分 (A) 及び成分 (B) の合計 量に対して、 成分 (A) を 1 0 0〜3 0重量%、 成分 (B) を 0〜7 0重量%含 有している) ポリオレフイン系樹脂結晶化速度制御組成物を該ポリオレフイン系 樹脂に配合するか、 又は、 上記成分 (A) と成分 (B) とを同時に又は別々に、 成分 (A) :成分 (B) の重量比が 1 0 0 : 0〜 3 0 : 7 0となるように (即ち、 成分(A)及び成分(B) の合計量に対して、成分(A)が 1 0 0〜3 0重量%、 成分(B)が 0〜7 0重量%となるように)、該ポリオレフイン系樹脂に配合する ことにより、 ポリオレフイン系樹脂組成物を得ること、 及び
該樹脂組成物を成形すること
を含む方法。 項 1 0 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0 : 7 0である (即 ち、 成分(A) 及び成分(B) の合計量に対して、 成分(A)が 9 5〜3 0重量% 使用され、 成分 (B) が 5〜7 0重量%使用される) 上記項 9に記載の方法。 項 1 1 樹脂組成物を、 昇温時の貯蔵弾性率の転移温度を超える樹脂温度で成 形する上記項 9又は項 1 0に記載の方法。 項 1 2 樹脂組成物を、ポリオレフイン系樹脂の融解温度以上であって、且つ、 昇温時の貯蔵弾性率の転移温度以下の樹脂温度で、 成形 (特に、 射出工程又は押 し出し工程を含む成形法で成形) する上記項 9又は項 1 0に記載の方法。 項 1 3 (A) 一般式 ( 1 )
R CONHR2) (1)
[式中、 R 1は、 1 , 2, 3—プロパントリカルボン酸又は 1, 2, 3, 4—ブ タンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜 1 0の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。 ]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 ( 2 )
Figure imgf000011_0001
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 3 2 の飽和若しくは不飽和の脂肪族モノカルボン酸からカルボキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R 3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも一種の脂肪酸金属塩を、 成分(A):成分(B) の重量比が 1 0 0 : 0〜3 0 : 7 0の割合で含有する (即ち、 成分 (A) 及び成分 (B) の 合計量に対して、成分(A) を 1 0 0〜3 0重量%、成分(B) を 0〜7 0重量% 含有している) 組成物の、 ポリオレフイン系樹脂の成形時のポリオレフイン系樹 脂の結晶化速度を制御するための使用。 項 1 4 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0 : 7 0である (即 ち、 成分(A)及び成分(B) の合計量に対して、 成分(A)が 9 5〜3 0重量% の量で存在し、 成分 (B) が 5〜 7 0重量%の量で存在している) 上記項 1 3に 記載の使用。 項 1 5 (A) 一般式 ( 1 )
R CONHR2)
Figure imgf000011_0002
(1)
[式中、 R 1は、 1, 2, 3—プロパントリカルボン酸又は 1, 2, 3 , 4—ブ 夕ンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜 1 0の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 及
(B) 一般式 ( 2 )
(R3— COO†-n M (2)
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R 3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも一種の脂肪酸金属塩を含有し、 成分(A):成分(B) の重 量比が 1 0 0 : 0〜3 0 : 7 0である (即ち、 成分 (A) 及び成分 (B) の合計 量に対して、 成分 (A) を 1 0 0〜3 0重量%、 成分 (B) を 0〜7 0重量%含 有している) ポリオレフィン系樹脂の結晶化速度制御組成物をポリオレフィン系 樹脂に配合するか、 又は、 上記成分 (A) と成分 (B) とを、 同時にまたは別々 に、 成分 (A):成分 (B) の重量比が 1 0 0 : 0〜3 0 : 7 0となるように (即 ち、 成分 (A) 及び成分 (B) の合計量に対して、 成分 (A) が 1 0 0〜3 0重 量%、 成分(B)が 0〜7 0重量%となるように)、 ポリオレフイン系榭脂に配合 することにより、 ポリオレフイン系樹脂組成物を得ること、 及び
該樹脂組成物を成形すること
を包含するポリオレフィン系樹脂成形体の製造方法。 項 1 6 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0: 7 0である (即 ち、 成分(A)及び成分(B) の合計量に対して、 成分(A)が 9 5〜3 0重量% 使用され、 成分 (B) が 5〜7 0重量%使用される) 上記項 1 5に記載の製造方 法。 項 1 7 樹脂組成物を、 昇温時の貯蔵弾性率の転移温度を超える樹脂温度で成 形する項 1 5又は項 1 6に記載の製造方法。 項 1 8 樹脂組成物を、ポリオレフィン系樹脂の融解温度以上であって、且つ、 昇温時の貯蔵弾性率の転移温度以下の樹脂温度で成形する項 1 5又は 1 6に記載 の製造方法。 項 1 9 一般式 (1一 p )
Figure imgf000013_0001
[式中、 RIPは、 1, 2, 3—プロパントリカルボン酸から全ての力ルポキシル 基を除いて得られる残基を示し、 3個の R2Pは、 同一又は相異なって、 シクロへ キシル基を示すか又は 1個の炭素数 1〜 4の直鎖状若しくは分岐鎖状のアルキル 基で置換されたシクロへキシル基を示す。]
で表される少なくとも 1種のアミド系化合物の繊維状粒子により形成された網目 構造を含む溶融ポリオレフィン系樹脂組成物を、 該網目構造を構成する繊維状粒 子が溶解又は溶融しない温度条件で、 成形する工程を備えているポリオレフィン 系樹脂成形体の製造法 (又は項 1 8に記載の製造法)。 項 2 0 (a) —般式(1一 P )で表される少なくとも 1種のアミド系化合物を 溶融ポリオレフィン系樹脂に溶解して溶融混合物を得る工程、
(b) 該溶融混合物を、降温時の貯蔵弾性率の転移温度以下に冷却して、一般式 ( 1 一 P ) で表される少なくとも 1種のアミド系化合物の繊維状粒子により形成され る網目構造を含むポリオレフイン系樹脂組成物を得る工程、 及び
(c) 該ポリオレフイン系樹脂組成物を、 ポリオレフイン系樹脂の溶融温度以上で あって、 且つ、 昇温時の貯蔵弾性率の転移温度以下の樹脂温度で成形する工程 を備えている項 1 9に記載の製造法。 項 2 1 上記ポリオレフィン系樹脂組成物が、 ペレツトの形態にある項 2 0に 記載の製造法。 項 2 2 上記ポリオレフイン系樹脂組成物が、 更に、 一般式 ( 2 )
(R^-COO)-nM (2)
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 nが 2の場合、 2個の R3は同 一又は相異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも 1種の脂肪酸金属塩を含有する項 1 9〜2 1のいずれ に 記載の製造法。 項 2 3 上記繊維状粒子により形成される網目構造を含むポリオレフィン系樹 脂組成物を、 射出工程又は押し出し工程を含む成形方法により成形する項 1 9〜 2 2のいずれかに記載の製造法。 項 2 4 前記射出工程又は押し出し工程を含む成形方法が、 射出成形、 押し出 し成形、 射出ブロー成形、 射出押出プロ一成形、 射出圧縮成形、 押し出しブロー 成形、 押し出しサーモフォーム成形又は溶融紡糸である項 2 3に記載の製造法。 項 2 5 上記ポリオレフイン系樹脂が、 プロピレンホモポリマー及びプロピレ ンコポリマーから選ばれる少なくとも 1種である項 1 5〜2 4のいずれかに記載 の製造法。 項 2 6 上記項 1 8又は項 1 9に記載の製造法により得られ、 広角 X線回折に より求められる (0 4 0 ) 反射強度の (1 1 0 ) 反射強度に対する比で表される 配向度が 2以上であるポリォレフィン系樹脂成形体。 項 2 7 ポリオレフイン系樹脂、
(A) 一般式 ( 1 ) R-fCONHR2) k (1)
[式中、 R1は、 1, 2, 3—プロパントリカルボン酸又は 1, 2, 3, 4—ブ タンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜1 0の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 (2)
(R3— COOtnM (2)
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも一種の脂肪酸金属塩を、成分(A):成分(B)の重量比が、 1 00 : 0〜 30 : 70の比率の範囲で含有し、 (即ち、成分(A)及び成分(B) の合計量に対して、 成分 (A) が 1 0.0〜 30重量%の量で存在し、 成分 (B) が 0〜70重量%の量で存在しており、)広角 X線回折により求められる(040) 反射強度の (1 1 0) 反射強度に対する比で表される配向度が 2以上であるポリ ォレフィン系樹脂成形体。 項 28 ポリオレフイン系樹脂、 及び
(a) 一般式 (1— P)
Figure imgf000015_0001
[式中、 RIPは、 1, 2, 3—プロパントリカルボン酸から全ての力ルポキシル 基を除いて得られる残基を示し、 3個の R2Pは、 同一又は相異なって、 シクロへ キシル基を示すか又は.1個の炭素数 1〜 4の直鎖状若しくは分岐鎖状のアルキル 基で置換されたシクロへキシル基を示す。]で表される少なくとも 1種のアミド系 化合物、 又は、
(b) 上記一般式(1一 P )で表される少なくとも 1種のアミド系化合物及び一 般式 C 2 )
(R3— COO†-n M (2)
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R3は同 一又は相異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも 1種の脂肪酸金属塩
を含有し、
広角 X線回折により求められる (0 4 0 ) 反射強度の (1 1 0 ) 反射強度に対 する比で表される配向度が 2以上であるポリオレフィン系樹脂成形体。 項 2 9 ポリオレフイン系榭脂及び上記項 1〜8のいずれかに記載の結晶化速 度制御組成物を含有するポリオレフィン系樹脂組成物。 項 3 0 ポリオレフィン系樹脂 1 0 0重量部に対し、 結晶化速度制御組成物を 0. 0 1〜 1 0重量部含有する上記項 2 9に記載のポリオレフィン系樹脂組成物。 項 3 1 上記項 2 9又は項 3 0に記載のポリオレフィン系樹脂組成物を成形す ることにより得ることができる (又は得られた) ポリオレフイン系榭脂成形体。 発明の効果 本発明によれば、 本発明の結晶化速度制御組成物を用いることにより、 ポリオ レフィン系樹脂の成形時のポリオレフィン系樹脂の結晶化速度を制御することが できる。 具体的には、 .
(I) 成形加工時の樹脂温度(成形温度) Tが、ポリオレフイン系樹脂の融解温 度 Tm以上であって、 且つ、 昇温時の貯蔵弾性率の転移温度 Tsh以下の温度の場 合、成分(A):成分(B) = 1 0 0: 0〜3 0: 7 0 (重量比) の範囲において、 成分 (B) の比率を高めることにより、 そのポリオレフイン系樹脂の結晶化速度 を速くする (結晶化終了時間を短縮させる) ことができる。
(I I) 成形加工時の樹脂温度 (成形温度) Tが、 昇温時の貯蔵弾性率の転移温 度 Tshを超える温度の場合、 成分 (A):成分 (B) = 1 0 0 : 0〜3 0 : 7 0
(重量比) の範囲において、 成分 (B) の比率を高めることにより、 ポリオレフ イン系 脂の結晶化速度を低下させる (結晶化終了時間を延長させる) ことがで さる。
従って、 成形温度範囲の全体を通して見ても、 また、 Tm〜Tshの樹脂温度範 囲、 又は、 Tshよりも高い樹脂温度範囲のそれぞれにおいても、 成分 (A):成 分 (B) の比を、 重量比 1 0 0 : 0〜3 0 : 7 0の範囲で調整することにより、 前記 (I)の方法における成分 (A):成分 (B) = 1 0 0 : 0の場合の結晶化速度 に比べて、 そのポリオレフイン系 脂の結晶化速度を制御、 即ち、 増大又は低減 できる。
そのため、 該結晶化速度制御組成物をポリォレフィン系樹脂に配合することに より、 ポリオレフイン系樹脂の成形時の結晶化速度が制御できるので、 所望の成 形体を得るための成形条件設定のための更なる選択肢が提供される。 従って、 成 形条件設定を、 成形装置のみに依存することなく、 容易にすることできる。 換言 すると、 本発明は、 射出成形、 押し出し成形、 シート成形、 フィルム成形、 プロ 一成形等の種々の成形方法に好適に且つ柔軟に用いることができるポリオレフィ ン系觀旨組成物を提供する。
また、 こうして得られるポリオレフイン系樹脂組成物を、 上記 (I) 又は (II) の方法で成形することにより、 優れた特性の成形品を得ることができる。 具体的 には、 上記 (I) の成形加工では、 ポリオレフイン系樹脂成形体の剛性の向上に大 きく寄与し、 特にホモポリプロピレン樹脂、 ブロックポリプロピレン樹脂、 高密 度ポリエチレン樹脂で顕著である。 また、 上記 (II)の成形加工では、ポリオレフィ ン系樹脂成形体の透明性の向上に大きく寄与し、 特にホモポリプロピレン樹脂や
'樹 こおいて顕著である。 図面の簡単な説明 図 1は、実施例 2で得られた試験片(成形体) の D S Cチャートであり、 「結晶 化終了時間」 の求め方を示す。
図 2は、 ポリオレフイン系樹脂及び一般式 ( 1 ) で表されるアミド系化合物を 含む樹脂組成物の昇温時 (実線) 及び降温時 (破線) の貯蔵弾性率の温度依存曲 線を模式的に示すグラフである。
図 3は、 図 2の温度依存曲線の微分曲線を模式的に示すグラフである。
図 4は、 実施例及び比較例で使用した試験片の THROUGH方向、 END方向 及び EDGE方向を示す斜視図である。
図 5は、実施例 I - 2で得られたポリオレフィン系樹脂組成物について測定され た昇温時及び降温時の貯蔵弾性率の温度依存曲線を示すグラフである。白丸(〇) は昇温時の貯蔵弾性率の温度依存曲線であり、 黒丸 (·) は降温時の貯蔵弾性率 の温度依存曲線である。
図 6は、 図 5の温度依存曲線の微分曲線である。 白丸 (〇) は昇温時の貯蔵弾 性率の温度依存曲線の微分曲線であり、 黒丸 (·) は降温時の貯蔵弾性率の温度 依存曲線の微分曲線である。
図 7は、 成形体の製造法の各段階におけるポリオレフィン系樹脂組成物の状態 を示す概念図である。 図 7において、 (I)は本発明の成形方法 (I)の条件を採用し た製造法を示す概念図であり、 (I I)は本発明の成形方法 (I I) の条件を採用した 製造法の概念図である。
図 8は、 本発明のポリオレフイン系樹脂の結晶化速度制御に関する、 本発明の 結晶化速度制御組成物の組成と成形加工時の樹脂温度と結晶化速度との関係を示 す概念図である。
図面における符号は次の意味を有する。
(a) 延長線 (b) 接線
(c) 交点
射出成形機
2 ホッパー
3 金型
4 ノズル 発明の詳細な記載 ポリオレフィン系樹脂の結晶化速度制御組成物
本発明のポリオレフイン系樹脂の結晶化速度制御組成物は、 (A) —般式 (1) で表される少なくとも一種のアミド系化合物、 又は該成分 (A) 及び (B) —般 式 (2) で表される少なくとも一種の脂肪酸金属塩を必須成分として含有する。 成分 (A):成分 (B) の重量比は、 広い範囲から適宜選択することできるが、 一般には、 成分 (A):成分 (B) の重量比が 100 : 0〜30 : 70であり、 好 ましくは 95 : 5〜30 : 70、 より好ましくは 90 : 10〜60 : 40、 特に 好ましくは 90 : 10〜70 : 30の範囲である。
換言すると、 本発明のポリオレフイン系樹脂の結晶化速度制御組成物は、 成分 (A) と成分 (B) との合計量に対して、 成分 (A) を 100〜30重量% (特 に 100重量%未満〜 30重量%)、好ましくは 95〜30重量%、より好ましく は 90〜60重量%、 特に好ましくは 90〜70重量%、 成分 (B) を 0〜70 重量% (特に 0重量%超〜 70重量%以下)、好ましくは 5〜 70重量%、 より好 ましくは 10~40重量%、 特に好ましくは 10〜30重量%含有する。
成分 (A) と成分 (B) との合計量に対して、 成分 (A) の割合が 30重量% より小さいと、 得られる樹脂成形体の透明性或いは剛性の有意な改善効果が認め られにくくなる。 成分 (A):アミド系化合物
本発明に係る一般式 (1) で表されるアミド系化合物 (A) は、 脂肪族ポリ力 ルボン酸成分と置換又は非置換シクロへキシルァミンとを、 従来公知の方法、 例 えば特開平 7— 2 4 2 6 1 0号に記載の方法に従ってアミド化することにより容 易に調製することができる。
上記ポリカルボン酸成分としては、 ポリカルボン酸又はその反応性誘導体 (典 型的には、 その酸塩化物、 該ポリカルボン酸と炭素数 1〜4の低級アルコールと のエステル等の誘導体)を用いることができ、その製造方法には特に限定がなく、 いずれの方法で製造されたものであってもよい。
脂肪族ポリカルボン酸としては、 1 , 2, 3 _プロパントリカルボン酸、 1 , 2 , 3 , 4—ブタンテトラカルボン酸であり、 特に 1 , 2, 3—プロパントリ力 ルボン酸が推奨される。
置換又は非置換シクロへキシルァミンとしては、 炭素数 1〜1 0の直鎖状又は 分岐鎖状のアルキル基で置換されていてもよいシクロへキシルァミンが挙げられ、 具体的には、 シクロへキシルァミン、 2—メチルシクロへキシルァミン、 2—ェ チルシク口へキシルアミン、 2— n—プロピルシクロへキシルァミン、 2 - i s o —プロピルシクロへキシルァミン、 2 _ n—プチルシクロへキシルァミン、 2— i s o—ブチルシクロへキシルァミン、 2— s e c—ブチルシクロへキシルアミ ン、 2— t e r t—ブチルシクロへキシルァミン、 2— n—ペンチルシクロへキ シルァミン、 2— n—へキシルシクロへキシルァミン、 2— n—ヘプチルシクロ へキシルァミン、 2— n—才クチルシクロへキシルァミン、 2— (2—ェチルへ キシル) シクロへキシルァミン、 2— n—ノニルシクロへキシルァミン、 2— n —デシルシクロへキシルァミン、 3—メチルシクロへキシルァミン、 3—ェチル シクロへキシルァミン、 3— n—プロピルシクロへキシルァミン、 3— i s o—プ 口ビルシクロへキシルァミン、 3— n—プチルシクロへキシルァミン、 3— i s o—ブチルシクロへキシルァミン、 3— s e c—プチルシクロへキシルァミン、 3 - t e r t —ブチルシクロへキシルァミン、 3— n—ペンチルシクロへキシル ァミン、 3— n—へキシルシクロへキシルァミン、 3—n—ヘプチルシクロへキ シルァミン、 3— n—才クチルシクロへキシルァミン、 3— (2—ェチルへキシ ル) シクロへキシルァミン、 3— n—ノニルシクロへキシルァミン、 3— n—デ シルシクロへキシルァミン、 4—メチルシクロへキシルァミン、 4—ェチルシク 口へキシルァミン、 4一 n—プロピルシクロへキシルァミン、 4一 i s 0—プロピ ルシクロへキシルァミン、 4— n—ブチルシクロへキシルァミン、 4— i s o— ブチルシクロへキシルァミン、 4 _ s e c—ブチルシクロへキシルァミン、 4 _
ァミン、 4一 n—ォクチルシクロへキシルァミン、 4— ( 2—ェチルへキシル) シクロへキシルァミン、 4一 n—ノエルシクロへキシルァミン、 4一 n—デシル シク口へキシルァミン等が例示される。
これらの中でも、 シクロへキシルァミンと、 置換基として炭素数 1〜4の直鎖 状若しくは分岐鎖状のアルキル基、 特にメチル基を有するシクロへキシルァミン が好ましい。
また、 置換基がメチル基である場合、 その置換位置は 2位、 3位及び 4位のい ずれでもよいが、 特に 2位が好ましい。
また、 置換基が炭素数 2〜 4の直鎖状若しくは分岐鎖状のアルキル基の場合、 その置換位置は 2位が好ましい。
これらの置換基を有する好ましいシクロへキシルァミンの具体例としては、 2 —メチルシクロへキシルァミン、 3—メチルシクロへキシルァミン、 4 _メチル シクロへキシルァミン、 2—ェチルシクロへキシルァミン、 2— n—プロピルシ クロへキシルァミン、 2— i s o—プロビルシクロへキシルァミン、 2— n—ブチ ルシクロへキシルァミン、 2— i s o—ブチルシクロへキシルァミン、 2— s e cーブチルシクロへキシルァミン、 2— t e r t—ブチルシクロへキシルァミン 等の 2—アルキル (炭素数 1〜4) シクロへキシルァミンが挙げられる。
上記アルキルシクロへキシルァミンは、 シス体、 トランス体及びこれら立体異 性体の混合物のいずれでもよい。 この立体異性体の混合物のシス体一トランス体 の比率は、 GL C (ガスクロマトグラフィー) で測定できる。
これら置換又は非置換シクロへキシルァミンは単独で又は 2種以上を混合して アミド化に供することができる。 好ましいアミド系化合物 本発明に係るアミド系化合物の中でも、 一般式 (1) における R2が、 シクロ へキシル基又は炭素数 1〜 4の直鎖状若しくは分岐鎖状のアルキル基で置換され たシクロへキシル基であるアミド系化合物は、 造核作用が高く好ましい。
上記の好ましいアミド系化合物の中で、 Riが 1, 2, 3—プロパントリ力ルポ ン酸残基であるアミド系化合物の具体例としては、
1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド、
1, 2, 3—プロパントリ力ルポン酸トリス(2—メチルシクロへキシルアミド)、 1, 2, 3—プロパントリカルボン酸トリス(3—メチルシクロへキシルアミド)、 1, 2, 3—プロパントリ力ルポン酸トリス(4—メチルシクロへキシルアミド)、 1, 2, 3—プロパントリ力ルポン酸トリス(2—ェチルシクロへキシルアミド)、 1, 2, 3—プロパントリ力ルポン酸トリス(3—ェチルシクロへキシルアミド)、 1, 2, 3—プロパントリ力ルポン酸トリス(4ーェチルシクロへキシルアミド)、 1, 2, 3—プロパントリ力ルポン酸トリス (2— n—プロビルシクロへキシル アミド)、
1, 2, 3—プロパントリカルボン酸トリス (3— n—プロピルシクロへキシル アミド)、
1, 2, 3—プロパントリ力ルポン酸トリス (4一 n—プロビルシクロへキシル アミド)、
1, 2, 3—プロパントリカルボン酸トリス (2— i s o—プロピルシクロへキ シルアミド)、
1, 2, 3—プロパントリ力ルポン酸トリス (3— i s o—プロピルシクロへキ シルアミド)、
1, 2, 3—プロパントリカルボン酸トリス (4一 i s o—プロピルシクロへキ シルアミド)、
1, 2, 3—プロパントリカルボン酸トリス (2— n—プチルシクロへキシルァ Sド)、
1, 2, 3—プロパントリカルボン酸トリス (3—n—ブチルシクロへキシルァ Sド)、
1, 2, 3—プロパントリ力ルポン酸トリス (4一 n—ブチルシクロへキシルァ ミド)、
1, 2 , 3-プロパントリ力ルポン酸トリス (27 i s 0 —ブチルシクロへキシ ルアミド)、
1, 2 , 3 -プロパントリカルボン酸トリス (3 - i s 0 —ブチルシクロへキシ ルアミド)、
1, 2 , 3-プロパントリ力ルポン酸トリス (4- i s 0ーブチルシクロへキシ ルアミド)、
1, 2 , 3-プロパントリカルボン酸トリス (2 - s e cーブチルシクロへキシ ルアミド)、
1, 2 , 3-プロパントリ力ルポン酸トリス (3 - s e c —ブチルシクロへキシ ルアミド)、
1, , 3-プロパントリカルボン酸トリス (4- s e c —ブチルシクロへキシ ルアミド)、
1, 2 , 3-プロパントリカルボン酸トリス (2 - t e r tーブチルシクロへキ シルァ Sド)、
1, 2 , 3-プロパントリカルボン酸トリス (3 - t e r t—ブチルシクロへキ シルァ Sド)、
1, 2 , 3-プロパントリ力ルポン酸トリス (4- t e r tーブチルシクロへキ シルァミド) 等が挙げられる。
また、 Riが 1, 2, 3, 4一ブタンテトラカルボン酸残基である好ましいアミ ド系化合物の具体例としては、
1, 2, 3, 4—ブタンテトラカルボン酸テトラシクロへキシルアミド、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (2—メチルシクロへキシ ルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (3—メチルシクロへキシ ルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (4—メチルシクロへキシ ルアミド)、 .
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2—ェチルシクロへキシ ルアミド)、 -
1, 2, 3, 4一ブタンテトラカルボン酸テトラ宁ス (3—ェチルシクロへキシ ルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (4—ェチルシクロへキシ ルアミド)、
1, 2, 3, 4一ブタンテトラカルボン酸テトラキス (2— n—プロビルシクロ へキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (3— n—プロピルシクロ へキシルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (4一 n—プロピルシクロ へキシルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (2— i s o—プロピルシ クロへキシルアミド)、
1, 2, 3, 4—ブタンテトラカルボン酸テトラキス (3_ i s o_プロビルシ クロへキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (4一 i s 0—プロビルシ クロへキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2 _n—プチルシクロへ キシルアミド)、
1, 2, 3, 4一ブタンテ卜ラカルボン酸テトラキス (3— n—プチルシクロへ キシルアミド)、
1, 2, 3, 4—ブタンテトラカルボン酸テトラキス (4一 n—プチルシクロへ キシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2— i s 0—プチルシク 口へキシルアミド)、
1, 2, 3, 4一ブタンテトラカルボン酸テトラキス (3— i s o—プチルシク 口へキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (4一 i s o—プチルシク 口へキシルアミド)、 1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2— s e c—プチルシク 口へキシルアミド)、
1, 2, 3, 4一ブタンテトラカルボン酸テトラキス (3— s e c—プチルシク 口へキシルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (4— s e c—プチルシク 口へキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2— t e r t—プチルシ クロへキシルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (3— t e r t—プチルシ クロへキシルアミド)、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (4— t e r t—プチルシ クロへキシルアミド) 等が挙げられる。
これら好ましいアミド系化合物の中でも、 一般式 (1) における R2が、 シク 口へキシル基又はメチル基で置換されたシクロへキシル基であるアミド系化合物 は、 造核作用が特に高く、 また、 原料入手が容易な点から好ましい。
具体的には、 1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド、
1, 2, 3—プロパントリカルボン酸トリス(2—メチルシクロへキシルアミド)、
1, 2, 3—プロパントリ力ルポン酸トリス(3—メチルシクロへキシルアミド)、
1, 2, 3—プロパントリカルボン酸トリス(4—メチルシクロへキシルアミド)、 1, 2, 3, 4—ブタンテトラカルボン酸テトラシクロへキシルアミド、
1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス (2—メチルシクロへキシ ルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (3—メチルシクロへキシ ルアミド)、
1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (4ーメチルシクロへキシ ルアミド) が例示される。
中でも、特に 1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド、 1, 2, 3—プロパントリカルボン酸トリス(2—メチルシクロへキシルアミド)、 1, 2, 3_プロパントリ力ルポン酸トリス(3—メチルシクロへキシルアミド)、 1 , 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド) が好ましい。
本発明に係るアミド系化合物の結晶系は、 本発明の効果が得られる限り特に限 定されず、 六方晶、 単斜晶、 立方晶等の任意の結晶系が使用できる。 これらの結 晶も公知であるか又は公知の方法に従い製造できる。
本発明に係るアミド系化合物は、 若干不純物を含むものであってもよい。 一般 式 (1 ) で表されるアミド系化合物の純度が 9 0重量%以上、 好ましくは 9 5重 量%以上、 特に好ましくは 9 7重量%以上が推奨される。 不純物としては、 反応 中間体又は未反応体由来のモノアミドジカルボン酸若しくはそのエステル、 ジァ ミドモノカルボン酸若しくはそのエステル、 モノアミドトリカルボン酸若しくは そのエステル、 ジアミドジカルボン酸若しくはそのエステル、 トリアミドカルポ ン酸若しくはそのエステル、 アミドーイミド構造やビスイミド構造等のイミド骨 格を有するものなどが例示される。
本発明に係るアミド系化合物の粒径は、 本発明の効果が得られる限り特に限定 されないが、 溶融したポリオレフィン系樹脂に対する溶解速度又は分散性の点か らできる限り粒径が小さいものが好ましく、 通常、 レーザー回折光散乱法で測定 した最大粒径が 2 0 0 /i m以下、 好ましくは 1 0 0 t m以下、 さらに好ましくは 5 0 m以下、 特に好ましくは 1 0 ^ m以下である。
最大粒子径を上記範囲内に調製する方法としては、 この分野で公知の慣用装置 を用いて微粉碎し、 これを分級する方法等が挙げられる。 具体的には、 流動層式 カウンタ一ジエツトミル 1 0 0 A F G (商品名、 ホソカワミクロン社製)、超音速 ジェットミル P J M— 2 0 0 (商品名、 日本ニューマチック社製) 等を用いて微 粉碎並びに分級する方法が例示される。
本発明に係る一般式 ( 1 ) で表されるアミド系化合物においては、 該アミド系 化合物を構成するアルキルシクロへキシルァミン残基 (特に、 2—アルキルシク 口へキシルァミン残基) の立体異性構造におけるシス配置部分とトランス配置部 分とが混合していてもよい。 また、 該アミド系化合物は、 トランス配置部分とシ ス配置部分との比が異なる 2種以上のアミド化合物の混合物であってもよい。 上記少なくとも 1種のアミド系化合物中のトランス配置部分の総和とシス配置 部分の総和の比率は、 F T— I R法を用いて測定されたトランス構造部分の N— H伸縮振動ピークの吸光度のシス構造部分の N— H伸縮振動ピークの吸光度に対 する比により確認することができる。
本明細書において、 一般式 ( 1 ) で表されるアミド系化合物を構成するアルキル シクロへキシルァミン残基 (即ち、 アルキルシクロへキシルァミンからアミノ基 を除いて得られる残基、 特に 2—アルキルシクロへキシルァミンからアミノ基を 除いて得られる残基)の立体異性構造における卜ランス配置部分とは、一般式 (X)
Figure imgf000027_0001
(式中、 R4は、 炭素数 1〜1 0の直鎖状若しくは分岐鎖状のアルキル基 (特に メチル基)を示す。)で表されるアルキルシクロへキシル部分、特に一般式 (X I )
R4
Figure imgf000027_0002
(式中、 R4は、 上記一般式 (X) におけるアルキル基と同じ。) で表される 2— アルキルシク口へキシル部分を指す。
本明細書において、 上記一般式 (X) 又は (X I ) で示される構造は、 トラン ス構造のアルキルシクロへキシルアミンからアミノ基を除いて得られる基である ので、 「トランス一アルキルシクロへキシルァミン残基」 という。
また、 一般式 ( 1 ) で表されるアミド系化合物を構成するアルキルシクロへキシ ルァミン残基 (特に 2—アルキルシクロへキシルァミン残基) の立体異性構造に おけるシス配置部分とは、 一般式 (Y)
Figure imgf000028_0001
(式中、 R4は、 上記一般式 (X) におけるアルキル基と同じ。) で表されるアル キルシクロへキシル部分、 特に一般式 (YD
Figure imgf000028_0002
(式中、 R4は、 上記一般式 (X) におけるアルキル基と同じ。) で表される 2— アルキルシク口へキシル部分を指す。
'本明細書において、 上記一般式 (Y) 又は (Y1) で示される構造は、 シス構 造のアルキルシクロへキシルァミンからアミノ基を除いて得られる基であるので、 「シス—アルキルシクロへキシルァミン残基」 という。
換言すると、 上記好ましいアミド系化合物は、 下記一般式 ( 1 Z)
RH CONHR2z) k (1Z)
[式中、 Riは上記一般式 ( 1 ) におけると同じ。 kは 3又は 4の整数を表 す。 3個又は 4個の R2zは、 同一又は相異なって、 上記一般式 (X) で表される トランス一アルキルシクロへキシルァミン残基、 又は、 上記一般式 (Y) で表さ れるシス一アルキルシク口へキシルァミン残基を表す。 ]
で表されるアミド系化合物又は該アミド系化合物の少なくとも 2種の混合物であ つて、
上記一般式 ( 1 Z) の Riが 1, 2, 3—プロパントリカルボン酸から全ての 力ルポキシル基を除いて得られる残基(上記一般式 (1 Z) の kは 3である。)で ある場合、 上記一般式 (X) で表されるトランス—アルキルシクロへキシルアミ ン残基の割合が好ましくは 5 0〜1 0 0 %、 より好ましくは 6 5〜1 0 0 %であ る化合物又は混合物であるか、 又は、
上記一般式 (1 Z ) の R iが 1, 2, 3 , 4 _ブタンテトラカルボン酸から 全ての力ルポキシル基を除いて得られる残基 (上記一般式 ( 1 Z ) の kは 4であ る。) である場合、 上記一般式(X) で表されるトランス一アルキルシクロへキシ ルァミン残基の割合が好ましくは 1 0〜8 0 %、 より好ましくは 2 5〜6 0 %で ある化合物又は混合物である。
なお、 本発明に係るアミド系化合物 (R2がアルキルシクロへキシル基である アミド系化合物) の混合物中のトランス配置部分とシス配置部分との割合 (卜ラ ンス:シス) は、 原料のアルキルシクロへキシルァミンのトランス体:シス体の 比 (G L Cにより求めたモル比。 以下、 「GL C組成比」 という。) と実質上同一 割合となっていることが明らかとなった。 これは、 (a)原料アルキルシクロへキシ ルァミン中のトランス体:シス体の比と、 当該原料をアミド化反応に供した後に 残留した未反応アルキルシクロへキシルァミン中のトランス体:シス体の比とが 一致すること、 及び、 (b)本発明で得られた生成物アミドを、 アミド化反応条件と 実質上同様の温度条件 (室温〜 2 8 0 °C) で処理しても、 F T— I Rスペクトル 及び融点が処理前のそれらと完全に一致し、 アミド化反応により立体配置が変更 されないことが確認されることによる。 従って、 アミド系化合物の混合物中のト ランス配置部分とシス配置部分との割合 (トランス:シス) は、 原料ァミンのト ランス体:シス体の比によりコントロールできる。 成分 (B):脂肪酸金属塩
本発明に係る脂肪酸金属塩 (B) は、 分子内に 1個以上 (特に 1個又は 2個) の水酸基を有していてもよい炭素数 8〜 3 2、 好ましくは炭素数 1 0〜1 8の飽 和若しくは不飽和脂肪族モノカルボン酸と、 一価若しくは二価の金属とから得ら れる脂肪酸金属塩である。 該脂肪酸金属塩は、 通常市販品を用いることができる 他、 例えば、 脂肪族モノカルボン酸と、 金属又はその塩化物、 酸化物若しくは水 酸化物とを用いて、 ポリオレフイン系樹脂中で、 当該脂肪酸金属塩が生成し得る 形態で用いてもよい。 上記脂肪族モノカルボン酸としては、 具体的には、 力プリル酸、 ノナン酸、 力 プリン酸、 ゥンデカン酸、 ラウリン酸、 トリデカン酸、 ミリスチン酸、 ペンタデ カン酸、 パルミチン酸、 ヘプ夕デカン酸、 ステアリン酸、 ノナデカン酸、 ィコサ ン酸、 ヘンィコサン酸、 ドコサン酸、 トリコサン酸、 テトラコサン酸、 ペン夕コ サン酸、 へキサコサン酸、 ヘプ夕コサン酸、 ォクタコサン酸、 ノナコサン酸、 ト リアコンタン酸、 ヘントリアコン夕ン酸、 ドトリアコンタン酸等の飽和モノカル ボン酸;
ォクテン酸、 ノネン酸、デセン酸、 ゥンデセン酸、 ドデセン酸、 トリデセン酸、 テトラデセン酸、 ペン夕デセン酸、 へキサデセン酸、 ォレイン酸、 リノール酸、 リノレン酸、 ノナデセン酸、 ィコセン酸、 ヘンィコセン酸、 ドコセン酸、 トリコ セン酸、 テトラコセン酸、 ペン夕コセン酸、 へキサコセン酸、 ヘプ夕コセン酸、 ォク夕コセン酸、 ノナコセン酸等の不飽和モノカルボン酸;
1 2—ヒドロキシステアリン酸、 リシノール酸等の水酸基を有する脂肪族モノ カルボン酸が例示される。 中でも、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ォレイン酸、 1 2—ヒドロキシステアリン酸が推奨される。 これらの脂肪族モノ力ルポン酸は、 1種又は 2種以上の混合物であつてもよい。 一般式 ( 2 ) における金属としては、 アルカリ金属、 アルカリ土類金属及び周 期律表第 1 2族 (化学と工業, 日本化学会編, 第 5 7巻第 4号 (2004) 参照) の 金属等の一価又は二価の金属が例示され、 その中でも、 アルカリ金属、 アルカリ 土類金属及び亜鉛が好ましい。 特に、 ナトリウム、 カリウム、 マグネシウム、 力 ルシゥム、 亜鉛が推奨される。
これらの金属は 1種又は 2種以上の混合物であつてもよい。 好ましい脂肪酸金属塩
好ましい脂肪酸金属塩としては、 ポリオレフィン系樹脂に比較的高い結晶化温 度を与える点から、 上記脂肪族モノカルボン酸と一価金属、 特に、 ナトリウム、 カリウムとの脂肪酸一価金属塩が好ましい。 また、 アミド系化合物のポリオレフ ィン系樹脂に対する溶解性 ·分散性を向上させる効果に優れる点から、 脂肪族モ ノカルボン酸と二価金属、 特にカルシウム、 マグネシウム、 亜鉛との脂肪酸二価 金属塩が好ましい。 .
また、 耐熱性及び入手容易性の点から、 脂肪族モノカルボン酸としては、 ラウ リン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ォレイン酸及び 1 2—ヒ ドロキシステアリン酸からなる群より選ばれる少なくとも 1種の脂肪族モノカル ボン酸が好ましい。
脂肪酸一価金属塩の好ましい具体例としては、 ラウリン酸ナトリウム、 ミリス チン酸ナトリウム、 パルミチン酸ナトリウム、 ステアリン酸ナトリウム、 1 2— ヒドロキシステアリン酸ナトリウム、 ォレイン酸ナトリウム、 ラウリン酸力リウ ム、 ミリスチン酸カリウム、 パルミチン酸カリウム、 ステアリン酸カリウム、 1 2—ヒドロキシステアリン酸カリウム、 ォレイン酸カリウム等が挙げられる。 脂肪酸二価金属塩の好ましい具体例としては、 ラウリン酸カルシウム、 ミリス チン酸カルシウム、 パルミチン酸カルシウム、 ステアリン酸カルシウム、 1 2— ヒドロキシステアリン酸カルシウム、 ォレイン酸カルシウム、 ラウリン酸マグネ シゥム、 ミリスチン酸マグネシウム、 パルミチン酸マグネシウム、 ステアリン酸 マグネシウム、 1 2—ヒドロキシステアリン酸マグネシウム、 ォレイン酸マグネ シゥム、 ラウリン酸亜鉛、 ミリスチン酸亜鉛、 パルミチン酸亜鉛、 ステアリン酸 亜鉛、 1 2—ヒドロキシステアリン酸亜鉛及びォレイン酸亜鉛等が挙げられる。 これらの脂肪酸金属塩は、 それぞれ単独で又は 2種以上を適宜組み合わせて用 いることができる。 好ましい結晶化速度制御組成物
好ましい結晶化速度制御組成物としては、 上記の好ましい成分 (A) と好まし い成分 (B)夫々から選ばれる組み合わせが挙げられる。 その中でも、 成分 (A) が、 1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド、 1 , 2 , 3—プロパントリ力ルポン酸トリス(2—メチルシクロへキシルアミド)、 1, 2 , 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) 並びに 1, 2 , 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド) からなる群より選ばれる少なくとも 1種、 及び成分 (B) が、 ステアリジ酸ナト リウム、 ステアリン酸カリウム、 ステアリン酸カルシウム、 ステアリン酸マグネ シゥム、 ステアリン酸亜鉛、 12—ヒドロキシステアリン酸ナトリウム、 12— ヒドロキシステアリン酸カリゥム、 12—ヒドロキシステアリン酸カルシウム、 12—ヒドロキシステアリン酸マグネシウム及び 12—ヒドロキシステアリン酸 亜鉛から選ばれる少なくとも 1種である組み合わせが特に推奨される。
上記の特に好ましい組み合わせとして、 成分 (B) が脂肪酸一価金属塩である 好ましい組み合わせの具体例としては、
1, 2, 3—プロパントリカルボン酸トリシクロへキシルアミド +ステアリン酸 ナトリウム、
1, 2, 3—プロパントリカルボン酸トリシクロへキシルアミド +ステアリン酸 カリウム、
1, 2, 3—プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) +ステアリン酸ナトリウム、
1, 2, 3—プロパントリカルボン酸トリス (2—メチルシクロへキシルアミド) +ステアリン酸カリウム、
1, 2, 3_プロパントリカルボン酸トリス(3—メチルシクロへキシルアミド) +ステアリン酸ナトリウム、
1, 2, 3—プロパントリカルボン酸トリス (3—メチルシクロへキシルアミド) +ステアリン酸カリウム、
1, 2, 3—プロパントリカルボン酸トリス (4—メチルシクロへキシルアミド) +ステアリン酸ナ小リウム、
1, 2, 3—プロパントリ力ルポン酸トリス (4—メチルシクロへキシルアミド) +ステアリン酸カリウム、
1, 2, 3—プロパントリカルボン酸トリシクロへキシルアミド +12—ヒドロ キシステアリン酸ナトリウム、
1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド + 12—ヒドロ キシステアリン酸カリウム、
1, 2, 3—プロパントリカルボン酸トリス (2—メチルシクロへキシルアミド) +12—ヒドロキシステアリン酸ナトリウム、
1, 2, 3_プロパントリカルボン酸トリス (2—メチルシクロへキシルアミド) + 12—ヒドロキシステアリン酸カリゥム、
1, 2, 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) + 12—ヒドロキシステアリン酸ナトリウム、
1, 2, 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) + 12—ヒドロキシステアリン酸カリウム、
1, 2, 3—プロパントリ力ルポン酸トリス (4—メチルシクロへキシルアミド) + 12—ヒドロキシステアリン酸ナトリウム、
1, 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド) + 12—ヒドロキシステアリン酸カリウム
等が挙げられる。
成分 (B) が脂肪酸二価金属塩である好ましい組み合わせの具体例としては、 1, 2, 3—プロパントリカルボン酸トリシクロへキシルアミド +ステアリン酸 カルシウム、
1, 2, 3 _プロパントリ力ルポン酸トリシクロへキシルアミド +ステアリン酸 マグネシウム、
1, 2, 3_プロパントリ力ルポン酸トリシクロへキシルアミド +ステアリン酸 亜鉛、
1, 2, 3—プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) +ステアリン酸カルシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) +ステアリン酸マグネシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) +ステアリン酸亜鉛、
1, 2, 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) +ステアリン酸カルシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) +ステアリン酸マグネシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (3—メチルシクロへキシルアミド) 鉛、 1, 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド) +ステアリン酸カルシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (4—メチルシクロへキシルアミド) +ステアリン酸マグネシウム、
1, 2, 3—プロパントリ力ルポン酸トリス (4—メチルシクロへキシルアミド) +ステアリン酸亜鉛 1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルァ ミド + 12—ヒドロキシステアリン酸カルシウム、
1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド + 12—ヒドロ キシステアリン酸マグネシウム、
1, 2, 3—プロパントリ力ルポン酸トリシクロへキシルアミド + 12—ヒドロ キシステアリン酸亜鉛、
1 , 2, 3一プロパントリカルポン酸トリス ( 2ーメチルシクロへキシルアミド)
+ 12-一ヒドロキシステアリン酸カルシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (2 —メチルシクロへキシルアミド)
+ 12- -ヒドロキシステアリン酸マグネシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (2一メチルシクロへキシルァミド)
+ 12- -ヒドロキシステアリン酸亜鉛、
1 , 2, 3—プロパントリカルボン酸トリス (3ーメチルシクロへキシルアミド)
+ 12 - -ヒドロキシステアリン酸カルシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (3ーメチルシクロへキシルアミド)
+ 12 - -ヒドロキシステアリン酸マグネシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (3ーメチルシクロへキシルアミド)
+ 12 - -ヒドロキシステアリン酸亜鉛、
1 , 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド)
+ 12- -ヒドロキシステアリン酸カルシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド)
+ 12- -ヒドロキシステアリン酸マグネシウム、
1 , 2, 3—プロパントリ力ルポン酸トリス (4ーメチルシクロへキシルアミド)
+ 12- -ヒドロキシステアリン酸亜鉛等が挙げられる。 さらに、 次の組み合わせも好ましい。
• 1 , 2 , 3 , 4—ブタンテトラカルボン酸テトラシクロへキシルアミドと、 ステアリン酸ナトリウム、 ステアリン酸カリウム、 ステアリン酸カルシウム、 ス テアリン酸マグネシウム、 ステアリン酸亜鉛、 1 2—ヒドロキシステアリン酸ナ トリウム、 1 2—ヒドロキシステアリン酸カリウム、 1 2—ヒドロキシステアリ ン酸カルシウム、 1 2—ヒドロキシステアリン酸マグネシウム及び 1 2—ヒドロ キシステアリン酸亜鉛からなる群から選ばれる少なくとも 1種との組み合わせ、 • 1 , 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (2—メチルシクロへキ シルアミド) と、 ステアリン酸ナトリウム、 ステアリン酸カリウム、 ステアリン 酸カルシウム、 ステアリン酸マグネシウム、 ステアリン酸亜鉛、 1 2—ヒドロキ システアリン酸ナトリウム、 1 2—ヒドロキシステアリン酸カリウム、 1 2—ヒ ドロキシステアリン酸カルシウム、 1 2—ヒドロキシステアリン酸マグネシウム 及び 1 2—ヒドロキシステアリン酸亜鉛からなる群から選ばれる少なくとも 1種 との組み合わせ。
本発明の結晶化速度制御組成物は、 ポリオレフィン系榭脂の結晶化速度を制御 するだけでなく、 成分 (B) が配合されることにより、 アミド系化合物のポリオ レフイン系樹脂への分散性 ·溶解性がより向上する。
特に、 アミド系化合物と脂肪酸金属塩を予め混合した状態で使用することによ り、 それらの効果が顕著になる傾向がある。 その混合方法として、 特に制限がな く、 粉体のまま混合する方法、 脂肪酸金属塩の融点以上で混合する方法、 アミド 系化合物と脂肪酸金属塩を、 溶媒中で溶解又分散した状態で混合し、 溶媒を留去 乾燥した後、 必要に応じて造粒、 粉碎、 解碎する方法などが例示される。
また、 その形態も特に制限はなく、 一般的な粉末、 顆粒、 夕ブレット、 ペレツ トなどの形態を任意に選択することができる。
粉末若しくは粒状の場合、 その粒径は、 本発明の効果が得られる限り特に限定 されないが、 溶融ポリオレフィン系樹脂に対する溶解速度又は分散性の点からで きる限り粒径が小さいものが好ましく、 通常、 レーザー回折光散乱法で測定した 最大粒径が、 2 0 0 m以下、 好ましくは 1 0 0 m以下、 さらに好ましくは 5 0 m以下、 特に好ましくは 1 0 m以下である。 顆粒、 タブレット、 ペレットなどの造粒物の場合には、 任意の形状、 粒径を選 択することができ、 これらは、 公知の造粒機、 粉^機 ·解砕機、 分級機などを用 いて製造することができる。 それらの造粒物とすることで、 粉体流動性の改善や 粉塵発生の抑制 (粉塵爆発の発生の低減) 等に寄与する。
造粒機としては、 乾式又は湿式押出造粒機、 混合撹拌造粒機、 夕ブレットマシ ーン、乾式圧縮ロール造粒機、マルメライザ一(商品名、 (株)ダルトン社製)が、 粉碎機'解碎機としては、 ピンミル、 ジェットミル、 パルべライザ一、 カッター ミル、 ハンマーミル、 プレーナークラッシャー、 二ブラーが、 分級機としては、 振動篩分機、 風力分級機などが例示される。
また、 アミド系化合物及び脂肪酸金属塩以外の他の成分として、 必要に応じて ポリオレフイン用改質剤等を、本発明の効果を損なわない範囲で配合してもよい。 上記ポリオレフイン用改質剤としては、 例えば、 ポリオレフイン等衛生協議会 編「ポジティブリストの添加剤要覧」 (2 0 0 2年 1月)に記載されている各種添 加剤が挙げられ、 より具体的には、 安定剤 (金属化合物、 エポキシ化合物、 窒素 化合物、 燐化合物、 硫黄化合物等)、 紫外線吸収剤 (ベンゾフエノン系化合物、 ベ ンゾトリアゾール系化合物等)、酸化防止剤(フエノール系化合物、亜リン酸エス テル系化合物、ィォゥ系化合物等)、界面活性剤(モノグリセリンステアレート等 のグリセリン脂肪酸エステル等)、滑剤 (パラフィン、 ワックス (ポリプロピレン ワックス、 ポリエチレンワックス等) 等の脂肪族炭化水素、 炭素数 8〜2 2の高 級脂肪酸、 炭素数 8〜2 2の高級脂肪族アルコール (ステアリルアルコール等)、 ポリグリコール、 炭素数 4〜 2 2の高級脂肪酸と炭素数 4〜 1 8の脂肪族 1価ァ ルコールとのエステル、 炭素数 8〜2 2の高級脂肪酸アマイド、 シリコーン油、 ロジン誘導体等)、 発泡剤、 発泡助剤、 ポリマー添加剤の他、 可塑剤 (ジアルキル フタレート、 ジアルキルへキサヒドロフタレート等)、 架橋剤、 架橋促進剤、 帯電 防止剤、 難燃剤、 分散剤、 有機無機の顔料、 加工助剤、 フィラー、 他の核剤等の 各種添加剤が例示される。 その添加量は、 本発明の所定の効果に悪影響を及ぼさ ない限り、 特に限定されない。
前記フイラ一としては、 タルク、 クレー、 マイ力、 ハイド口タルサイト、 ァス ベスト、ゼォライト、ガラス繊維、ガラスフレーク、ガラスビーズ、パーライト、 ケィ酸カルシウム、 炭酸カルシウム、 モンモリロナイト、 ベントナイト、 グラフ アイト、 アルミニウム粉末、 アルミナ、 シリカ、 ケィ藻土、 酸化チタン、 酸化マ グネシゥム、 軽石粉末、 軽石バルーン、 水酸化アルミニウム、 水酸化マグネシゥ ム、塩基性炭酸マグネシウム、 ドロマイト、硫酸カルシウム、チタン酸カリウム、 硫酸バリウム、 亜硫酸カルシウム、 硫化モリブデン等が挙げられる。 これらのう ちでも、 タルク、 八イド口タルサイト、 マイ力、 ゼォライト、 パーライト、 珪藻 土、 炭酸カルシウム等が好ましい。 これらフイラ一は、 1種単独で又は 2種以上 を適宜組み合わせて使用できる。
これらの他の成分を配合する場合は、 特に限定されないが、 例えば、 アミド系 化合物、 脂肪酸金属塩及び他の成分をドライブンレンドして均一混合物とする等 の方法が好ましい。 ポリオレフイン系樹脂組成物
本発明のポリオレフイン系樹脂組成物は、 ポリオレフイン系樹脂、 上記本発明 に係る成分(A) 及び成分(B)、 並びに必要に応じてポリオレフィン用改質剤等 を含有するものであり、 例えば、 上記本発明の結晶化速度制御組成物を、 ポリオ レフイン系樹脂に常法に従って配合することにより得られる。
本発明のポリオレフィン系榭脂組成物の製造方法は、 所望の該樹脂組成物が得 られれば特に限定されることなく、 常法を用いることができる。 例えば、 ポリオ レフイン系樹脂 (粉末、 顆粒又はペレット) と上述の本発明の結晶化速度制御組 成物とを (或いは、 ポリオレフイン系樹脂 (粉末、 顆粒又はペレット) と本発明 に係る成分 (A) 及び成分 (B) 並びに必要に応じて上記のポリオレフイン用改 質剤とを)、 慣用の混合機、 例えば、 ヘンシェルミキサー、 リポンプレンダー、 V プレンダ一等を用いて混合したブレンドタイプのポリオレフイン系樹脂組成物を 得る方法、 又は、 このブレンドタイプのポリオレフイン系樹脂組成物を、 慣用の 混練機、例えば、一軸又は二軸の押し出し機等を用いて、通常 1 6 0〜3 0 0 °C、 好ましくは 1 8 0〜2 8 0 °C、 特に好ましくは 2 0 0 °C〜2 6 0 °Cの温度で溶融 混練し、 押し出されたストランドを、 冷却し、 得られたストランドをカッテイン グすることでペレツトタイプのポリオレフィン系樹脂組成物とする方法などが例 示される。
本発明に係るポリオレフィン系樹脂に対する本 明の結晶化速度制御組成物の 添加方法としては、 前記の慣用されている装置、 例えば、 1軸又は 2軸の押出機 等を用いる一段添加法が好ましいが、 2〜1 5重量%程度の高濃度マスターバッ チの形態による 2段添加法を採用しても何ら差し支えない。
また、 本発明に係るアミド系化合物 (A) と脂肪酸金属塩 (B) は、 結晶化速 度制御組成物の形態で添加してもよいが、 成分 (A):成分 (B) の重量比が、 1 0 0 : 0〜3 0 : 7 0、 好ましくは 9 5 : 5〜3 0 : 7 0の範囲となるように、 ポリオレフィン系樹脂に対し、 同時にまたは別々に添加してもよい。
例えば、 本発明に係る成分 (B) を、 予めポリオレフイン系棚旨に溶解等させ て樹脂組成物 (粉末 'ペレット,顆粒等の形態) とした後、 その樹脂組成物に本 発明に係る成分 (A) 及び必要に応じて上記のポリオレフイン用改質剤等を配合 して、 本発明のポリオレフィン系樹脂組成物としてもよい。
本発明のポリオレフィン系樹脂組成物中の結晶化速度制御組成物の含有量は、 所定の効果が得られる限り特に限定されるものではなく、 広い範囲から適宜選択 することができる。 通常、 ポリオレフイン系樹脂 1 0 0重量部に対し、 本発明の 結晶化速度制御組成物を 0 . 0 1〜: L 0重量部、好ましくは 0 . 0 5〜 5重量部、 特に好ましくは 0 . 0 5〜2重量部含有することが推奨される。 これらの範囲内 で配合することにより十分に本発明の効果を得ることができる。
成分 (A) 及び成分 (B) を同時に又は別々にポリオレフイン系樹脂に配合す ることもでき、 その場合、 成分 (A) 及び成分 (B) の合計量が、 ポリオレフィ ン系樹脂 1 0 0重量部に対し、 0 . 0 1〜1 0重量部、 好ましくは 0 . 0 5〜5 重量部、 特に好ましくは 0 . 0 5〜 2重量部含有することが推奨される。
また、 核剤効果の観点から、 一般式 ( 1 ) で表される少なくとも 1種のアミド 系化合物 (成分 (A)) の使用量は、 ポリオレフイン系樹脂 1 0 0重量部に対し、 好ましくは 0 . 0 1〜5重量部、 より好ましくは 0 . 0 5〜2重量部が推奨され る。 この範囲の量で使用することにより、 透明性又は剛性の有意な向上が認めら れる。
上記ポリオレフイン系樹脂組成物は、 一般式 ( 1 ) で表されるアミド系化合物 を単独で使用しても (即ち、 成分 (B) を使用することなく、 成分 (A) のみを 使用しても)、透明性又は剛性に優れた成形体を与えることができる。 しかしなが ら、 得られる樹脂成形体の透明性又は剛性を向上させる上で、 また、 ポリオレフ ィン系樹脂の結晶化速度を制御するために、 脂肪酸金属塩(成分(B)) を含有さ せることが好ましい。
該脂肪酸金属塩(成分(B)) の添加量は、 ポリオレフイン系樹脂 1 0 0重量部 に対し、 通常、 0〜5重量部、 好ましくは 0〜1重量部、 より好ましくは 0 . 0 0 5〜0 . 5重量部、 特に好ましくは 0 . 0 1〜0 . 3重量部であるのが有利で ある。そして、成分(A):成分(B) = 1 0 0: 0〜 3 0: 7 0の範囲において、 成分 (B) の比率を高めることにより、 そのポリオレフイン系樹脂組成物の結晶 化速度を制御する (結晶化終了時間を制御する) ことができる。
本発明に係るポリオレフイン系樹脂としては、 ポリエチレン系樹脂、 ポリプロ ピレン系樹脂、 ポリブテン系樹旨、 ポリメチルペンテン系樹 S旨、 ポリブタジエン 系樹脂等が例示され、 より具体的には、 高密度ポリエチレン、 中密度ポリェチレ ン、 直鎖状ポリエチレン、 エチレン含量 5 0重量%以上、 好ましくは 7 0重量% 以上のエチレンコポリマー、 プロピレンホモポリマー、 プロピレン 5 0重量%以 上、 好ましくは 7 0重量%以上のプロピレンコポリマー、 ブテンホモポリマー、 ブテン含量 5 0重量%以上、 好ましくは 7 0重量%以上のブテンコポリマー、 メ チルペンテンホモポリマー、 メチルペンテン含量 5 0重量%以上、 好ましくは 7 0重量%以上のメチルペンテンコポリマー、 ポリブタジエン等が例示される。 上記コポリマーはランダムコポリマーであつてもよく、 ブロックコポリマ一で あってもよい。 これらの樹脂の立体規則性がある場合は、 ァイソタクチックでも シンジオタクチックでもよい。
上記コポリマ一を構成し得るコモノマーとして、 具体的にはエチレン、 プロピ レン、 ブテン、 ペンテン、 へキセン、 ヘプテン、 ォクテン、 ノネン、 デセン、 ゥ ンデセン、 ドデセン等の炭素数 2〜1 2の α—才レフイン、 1, 4—エンドメチ レンシクロへキセン等のビシクロ型モノマー、 (メタ)アクリル酸メチル、 (メタ) ァクリル酸ェチル等の(メタ)ァクリル酸エステル、酢酸ビニル等が例示できる。 かかる重合体を製造するために適用される触媒としては、 一般に使用されてい るチーグラー ·ナッタ型触媒はもちろん、 遷移金属化合物 (例えば、 三塩化チタ ン、 四塩化チタン等のチタンのハロゲン化物) を塩化マグネシウム等のハロゲン 化マグネシウムを主成分とする担体に担持してなる触媒と、 アルキルアルミニゥ ム化合物 (テトラェチルアルミニウム、 ジェチルアルミニウムクロリド等) とを 組み合わせてなる触媒系やメタ口セン角虫媒も使用できる。 .
本発明に係るポリオレフイン系樹脂の推奨されるメルトフ口—レート (以下、 「MF R」 と略記する。 J I S K 7 2 1 0 - 1 9 9 5 ) は、 その適用する成形 方法により適宜選択されるが、 通常、 0 . 0 1〜2 0 0 gZ l O分、 好ましくは 0 . 0 5〜1 0 0 gZ l 0分である。
本発明に係るポリオレフイン系樹脂組成物には、 使用目的やその用途に応じて 適宜、 従来公知の前記ポリオレフィン用改質剤を本発明の効果を損なわない範囲 で添加することができる。
かくして得られる本発明のポリオレフィン系樹脂組成物は、 成形加工時の樹脂 温度条件及び成分 (A) と成分 (B) との比率を調節することにより、 結晶化速 度の制御ができる。 より詳しくは、 次の通りで る。
(I) 成形加工時の樹脂温度 (成形温度) Tが、 ポリオレフイン系樹脂の融解温 度 Tm以上であって、 且つ、 昇温時の貯蔵弾性率の転移温度 Tsh以下の温度の場 合、 成分(A):成分(B) = 1 0 0: 0〜 3 0 : 7 0の範囲において、 成分(B) の比率を高めることにより、 そのポリオレフィン系樹脂の結晶化速度を速くする (結晶化終了時間を短縮させる) ことができる。 また、 この成形方法 (I)により、 特に剛性に優れた成形体を製造することができる。
(II)成形加工時の樹脂温度 (成形温度) Tが、 昇温時の貯蔵弾性率の転移温度 Tshを超える温度の場合、 成分 (A) :成分 (B) = 1 0 0 : 0〜3 0 : 7 0の 範囲において、 成分 (B) の比率を高めることにより、 ポリオレフイン系樹脂の 結晶化速度を低下させる (結晶化終了時間を延長させる) ことができる。 この成 形方法 (II)により、特に未分散核剤が少なく、透明性に優れた成形体を製造するこ とができる。
即ち、 Tm〜Tshの樹脂温度範囲と Tshよりも高い樹脂温度範囲との樹脂温度 範囲の全体を通して見れば、 また、 Tm〜Tshの樹脂温度範囲、 又は、 Tshより も高い樹脂温度範囲のそれぞれにおいても、 成分 (B) の比率を、 成分 (A):成 分 (B) = 1 0 0: 0〜3 0: 7 0の範囲で調整することにより、 前記 (II)の方法 における成分(A):成分(B) = 1 0 0 : 0の場合の結晶化速度に比べて、 その ポリオレフイン系樹脂の結晶化速度を制御、 即ち、 増加又は低減できる。 ポリオレフィン系樹脂の結晶化速度の制御方法
上記のように、 本発明のポリオレフイン系樹脂組成物は、 成形時の樹脂温度条 件及び成分 (A) と成分 (B) との比率を調節することにより、 成形加工時の結 晶化速度を制御できる。 即ち、 本発明は、 ポリオレフイン系樹脂に、 成分 (A) 及び成分 (B) を、 成分 (A):成分 (B) の重量比が 1 0 0 : 0〜3 0 : 7 0と なるよう配合することを含む、 成形時のポリオレフイン系樹脂の結晶化速度 (結 晶化終了時間) を制御する方法を提供するものでもある。
本発明の制御方法において、 ポリオレフィン系樹脂の結晶化速度制御組成物の 使用量は、 所定の効果が得られる限り特に限定されるものではなぐ 広い範囲か ら適宜選択することができる。通常、ポリオレフイン系樹脂 1 0 0重量部に対し、 本発明の結晶化速度制御組成物を 0 . 0 1〜: L 0重量部、 好ましくは 0 . 0 5〜 5重量部、 特に好ましくは 0 . 0 5〜 2重量部使用することが推奨される。 成分 (A) 及び成分 (B) を同時に又は別々にポリオレフイン系樹脂に配合す る場合も、 成分 (A) 及び成分 (B) の合計量が、 ポリオレフイン系樹脂 1 0 0 重量部に対し、 0 : 0 1〜1 0重量部、 好ましくは 0 . 0 5〜5重量部、 特に好 ましくは 0 . 0 5〜 2重量部であることが推奨される。
本明細書及び請求の範囲において、 「結晶化終了時間」という用語は、下記に記 載するように、また、後述する実施例の項に記載するように、示差走査熱量計(商 品名「D S C 7」、パーキンエルマ一社製) を用いて測定した結果から求められる 値である。
具体的には、 ポリオレフィン系樹脂組成物の温度を成形加工する際の樹脂温度 とした後、 結晶化終了時間の測定温度 (該組成物の結晶化温度 (実施例の項に記 載の方法により求められる。) よりも 0〜 2 0 °C高温側の範囲) まで、 1 0 0〜2
0 o°cz分の冷却速度で急冷し、 その測定温度でポリオレフイン系樹脂を等温結 晶化させる。 .
得られた示差走査熱量法で得られたチャート (図 1参照) において、 長時間側 のベースラインを短時間側に延長した延長線 (図 1の(a)で示される) を描き、 また、 発熱ピークの長時間側の曲線 (d)上に勾配が最大になる点で接線 (図 1の ( b ) で示される) を引き、 上記延長線と上記接線との交点 (図 1の (c)で示され る) を求める。 その交点の時間を、 その "ポリオレフイン系樹脂組成物の 「結晶 化終了時間」" とする。
その結晶化終了時間が長い程、 成形可能な時間が長いことを示す。 尚、 結晶化 終了時間の測定における測定開始時間は、 急冷したポリオレフィン系樹脂組成物 の温度が測定温度に達した時間とした。
成形方法や成形すべき樹脂によっては、 その結晶化速度が速い故に成形加工が 困難になるという逆効果になることがある。 例えば、 ポリオレフイン系樹脂の結 晶化速度が適切な範囲内になければ、 フィルム ·シート成形、 プロ一成形、 大型 製品の射出成形などでは均質な成形体を得られにくくなる。
一方では、 小型製品の射出成形などでは、 生産コストをできるだけ低減させる 為に、 ポリオレフィン系樹脂の結晶化速度をさらに高めて結晶化時間を短縮する ことができれば、 工業上有利である。
即ち、 ポリオレフイン系樹脂の結晶化速度を制御する方法、 或いは結晶化速度 が制御された樹脂組成物があれば、 煩雑な成形機の機械的設定のみに依存するこ となく、 広範囲の成形加工に対応することが可能となり、 上記本発明の課題が解 決される。 本発明は、 ポリオレフイン系樹脂の結晶化速度の制御方法、 種々の成 形方法に適応したポリオレフィン系樹脂組成物を提供するものでもある。
本発明のポリオレフィン系榭脂の結晶化速度の制御方法は、 ポリオレフィン系 樹脂の結晶化速度制御組成物をポリオレフィン系t脂に配合して、 ポリオレフィ ン系樹脂組成物を得、 該ポリオレフイン系樹脂組成物を成形することを包含する 制御方法である。
又は、 本発明に係る成分 (B) を、 予めポリオレフイン系樹脂に溶解などさせ て樹脂組成物 (粉末 'ペレット '顆粒等の形態) とした後、 その樹脂組成物に本 発明に係る成分 (A) を配合して、 本発明のポリオレフイン系樹脂組成物とした 後、 該ポリオレフィン系樹脂組成物を成形することを包含する制御方法であって もよい。 ,
より具体的には、 本発明の結晶化速度制御方法は、
( 1 ) ポリオレフイン系樹脂の結晶化速度制御組成物を構成する成分 (A) 及び 成分 (B) を、 同時又は別々に、 ポリ,ォレフィン系樹脂に配合して本発明のポリ ォレフィン系樹脂組成物を製造する工程、 及び
( 2 ) ポリオレフイン系樹脂組成物を成形する工程
を包含している。
該工程 (1 ) は、 前記 「ポリオレフイン系樹脂組成物」 の項で上述した通りで ある。 尚、 本発明に係るアミド系化合物 (A) は、 溶解型の核剤であるため、 前 記工程 (2 ) を行う前に、 本発明の結晶化速度制御組成物をポリオレフイン系樹 脂に十分に溶解させておくことは、 結晶化速度制御組成物の性能を最大限発揮す る上で重要であり、 また本発明の効果を得る上でも重要なことである。
上記工程 (2 ) について、 以下に詳述する。
なお、本明細書及び請求の範囲において、降温時の貯蔵弾性率の転移温度 (ΓΤ sc」 という) 及び昇温時の貯蔵弾性率転移温度 (「TSh」 という。) は、 次のよう に定義される。
本発明で使用する一般式 ( 1 ) で表されるアミド系化合物は、 ポリオレフイン 系樹脂中で繊維状粒子により形成される熱可逆性の網目構造を形成する。 本発明 に係る貯蔵造弾性率は、 このアミド系化合物の繊維状粒子により形成される網目 構造の形成に起因している。 該アミド系化合物を含む溶融ポリオレフイン系樹脂 の貯蔵弾性率 (G ' ) は温度に対して、 非連続的に変化する。 その一例を図 2に 模式的に示す。
図 2の破線で示すように、 降温時に繊維状粒子により形成される網目構造の形 成に由来して該アミド系化合物を含む溶融ポリオレフィン系樹脂の貯蔵弾性率 (G ' ) が非連続的に変化 (上昇) するが、 その変化率が最大となる温度を Tsc と定義する。 また、 図 2の実線で示すように、 昇温時に該アミド系化合物の繊維 状粒子の溶解による網目構造の消失に起因して G ' が変ィ匕 (低下) するが、 その 変化率が最大となる温度を Tshと定義する。 この Tsc及び Tshは、レオメーターを用いて動的粘弾性を測定することにより 得られる。 測定法の詳細は、 後述の実施例の項に記載している通りである。 これ により、 図 2に示すような昇温時の力一ブ (実線) 及び降温時のカーブ (破線) が得られ、 これらカーブを微分型に変換すると、 図 3に示すようにピークが現れ るので、 これらピークを示す温度をそれぞれ Tsh及び Tscとする。
Tsh及び Tscは、使用する一般式 ( 1 )で表されるアミド系化合物の種類及び 使用量等により変わり得る。例えば、 Tsh及び Tscは、該アミド系化合物の含有 量が高いほど、 又は、 該アミド系化合物を構成するアルキルシクロへキシルアミ ン残基の立体異性体であるトランス配置部分の比率が高いほど、 高温側へシフト する。
従って、 本発明のポリオレフイン系樹脂成形体を製造する前に、 当該結晶化速 度制御組成物を溶解させたポリオレフィン系樹脂組成物を試験的に調製し、 そし て、予めその樹脂組成物について Tsh及び Tscを測定しておく。 こうして測定さ れた Tsh及び Tscに従って、実際のポリオレフィン系樹脂成形体の製造時の温度 条件を調整すればよい。
一般に、 Riが 1 , 2 , 3—プロパントリカルボン酸から全ての力ルポキシル基 を除いて得られる残基を示す一般式 ( 1 ) のアミド系化合物の少なくとも 1種を 使用する塲合、 Tshは、 1 7 0〜2 5 0 °C、特に 1 8 0〜2 4 0 °Cである。また、 Riが 1 , 2 , 3 , 4一ブタンテトラカルボン酸から全ての力ルポキシル基を除い て得られる残基を示す一般式 ( 1 ) のアミド系化合物の少なくとも 1種を使用す る場合、 Tshは、 一般には 1 8 0〜2 8 0 ° (:、 特に 1 9 0〜2 7 0 °Cである。 ポリオレフイン系樹脂の結晶化速度を制御するに際し、 工程 (2 ) における樹 脂温度 (成形温度) Tは、 特に重要な条件の一つである。 以下、 本発明の結晶化 速度制御方法を、樹脂温度 Tが Tsh以下(且つ、ポリオレフイン系樹脂の融解温 度 Tm以上) である場合 (成形方法 (1)) について説明し、 次いで、 樹脂温度 が Tshよりも高い場合 (成形方法 (II)) について説明する。
<成形方法 (1) >
前記樹脂温度 Tがポリオレフイン系樹脂の融解温度(以下「Tm」 という)以上 であって、 且つ Tsh以下の樹脂温度の範囲 (即ち、 Tm≤T≤Tsh) の場合、 成 分(A):成分(B) = 1 0 0: 0〜 3 0: 7 0の重量比の範囲において、成分(B) の比率を高めることにより、 そのポリオレフィン系樹脂組成物の結晶化速度を速 くする (結晶化終了時間を短縮させる) ことができる。
より詳しくは、 図 8に示すように、 成形加工時の樹脂温度 (成形温度) Tを、 ポリオレフイン系樹脂の融解温度 Tm以上であって、 且つ、 昇温時の貯蔵弾性率 の転移温度 Tsh以下の温度に設定する場合 (図 7の成形方法 (1))、 該特定の脂 肪酸金属塩 (B) の配合比率を増加させると (領域 (IA)—領域 (IAB))、 ポリオレ フィン系樹脂の結晶化速度を速くする (結晶化終了時間を短縮させる) ことがで きる。 その結晶化速度の上昇の度合いは、 成分 (A) 及び成分 (B) の組み合わ せと、 成分 (A) に対する成分 (B) の重量比に主に依存する。
この成形方法 ( I)では、ポリオレフィン系樹脂成形体の剛性の向上に大きく寄与 し、 特にホモポリプロピレン樹脂やブロックポリプロピレン樹脂、 高密度ポリエ チレン樹脂で顕著である。 . この樹脂温度の領域では、 上述の網目構造を残した状態で (即ち、 該網目構造 を構成する繊維状粒子が溶解又は溶融しない温度) 成形加工を行うので、 該網目 構造を構成する繊維状粒子が配向し、 ポリオレフィン系樹脂を配向結晶化させて いる。
より詳しくは、 図 7の (I)に示すように、 昇温時の貯蔵弾性率の転移温度 Tsh以 下の温度で成形するために上記網目構造が存在した状態で成形されるので、 該網 目構造を構成する繊維状粒子が配向し、 そのため、 得られる成形体においてポリ ォレフィン系樹脂の結晶ラメラを配向させることができ、 その結果、 特に剛性に 優れた成形体を製造することができる。
工程 (2 ) におけるポリオレフイン系樹脂組成物の成形方法は、 射出工程又は 押し出し工程を含む全ての成形方法に広く適応できる。 具体的には、 射出成形、 押し出し成形、 射出プロ一成形、 射出押出ブロー成形、 射出圧縮成形、 押し出し ブ口一成形、 押し出しサ一モフォーム成形又は溶融紡糸による繊維の製造などが 挙げられる。
工程 (2 ) において、 本発明のポリオレフイン系榭脂の結晶化速度制御組成物 の使用に加え、 一般式.(1 ) で表されるアミド系化合物がポリオレフイン系樹脂 中で網目構造を形成することを利用することにより、 より広い領域でポリオレフ ィン系樹脂の結晶化速度を制御することが可能となった。
以下、 上記成形方法 (I)について、 詳述する。 成形方法 (I)は、 成分 (B) の使 用により結晶化速度を制御 (増大)することを可能とした成形体製造法でもある。 ポリオレフイン系樹脂組成物 (ペレットの製造) の製造方法及び本発明のポリオ レフィン系樹脂成形体の製造方法(成形方法)の概念図である図 7の(I)を参照し て説明すると、 次の通りである。
<ポリオレフイン系樹脂組成物 (ペレット) の製造方法 >
上述した通り、 本発明のポリオレフイン系樹脂組成物は、 典型的には、 次の方 法で製造される。
例えば、 ポリオレフイン系樹脂 (粉末、 顆粒又はペレット) と上述の本発明の 結晶化速度制御組成物とを (或いは、 ポリオレフイン系樹脂 (粉末、 顆粒又はべ レツト) と本発明に係る成分 (A) 及び成分 (B) 並びに必要に応じて上記のポ リオレフイン用改質剤とを)、 慣用の混合機、例えば、 ヘンシェルミキサー、 リポ ンブレンダー、 Vプレンダ一等を用いてドライブレンドする。 得られるドライブ レンド物を、 慣用の混練機、 例えば、 一軸又は二軸の押し出し機等を用いて、 本 発明で使用する一般式 ( 1 ) で表されるアミド系化合物が溶解する温度以上で溶 融混練して溶融混合物を得る (図 7の(al)参照)。 '
この溶融混合物を押し出し、 得られたストランドの樹脂温度 Tを、 降温時の貯 蔵弾性率の転移温度 Tsc以下の温度に冷却することにより、該アミド系化合物の 繊維状粒子により形成される網目構造を含むポリオレフイン系樹脂組成物が得ら れる (図 7の(a¾参照)。図 7の (a2)に示されている細線は、繊維状粒子を模式的 に表している (図 7の他の図においても同じ)。
得られるポリオレフィン系榭脂組成物の樹脂温度 Tは、 Tsc以下の温度にまで 冷却されていれば足り、ポリオレフィン系樹脂自体が固体状態である必要はなく、 溶融状態であってもよい。
しかし、 必要であれば、 得られたストランドの樹脂温度 Tをポリオレフイン系 樹脂組成物の結晶化温度 (以下、 「T c」 という。) 以下の温度、 例えば室温以下 とし、 ストランドをカッティングすることにより、 該ポリオレフイン系樹脂組成 物のペレットを得ることができる (図 7の(a3)参照)。
こうして得られるペレツ卜においては、 ポリオレフィン系樹脂の結晶ラメラが 一般式(1 )で表されるアミド系化合物の繊維状粒子を起点として成長している。 図 7の(a3)に示されている波線は、 ポリオレフイン系樹脂の結晶ラメラを模式的 に示している (図 7の他の図においても同じ)。
上記のペレツトの製造方法は、 下記の成形方法(Π)におけるペレツトの製造方 法と同様である。
<ポリオレフィン系榭脂成形体の製造方法 >
本発明に係るポリオレフィン系樹脂成形体の製造方法(成形方法 (1) )の好まし い実施形態としては、 例えば、 次の [ 1;]〜 [ 5 ]の工程を採用するものが例示でき る。 以下、 これらの工程について、 図 7の(I)を参照して説明する。 なお、 図 7で は、 射出工程を含む成形方法について記載しているが、 以下の記載では押出工程 を含む成形法についても併せて説明す'る。
[ 1 ]まず、 図 7の(al)に示すように、 溶融ポリオレフイン系樹脂に、 本発明の 結晶化速度制御組成物(或いは、 本発明に係る成分(A) 及び成分(B)、 並びに 必要に応じて、 ポリオレフイン用改質剤等) を、 可能な限り均一に溶解する。 こ の時の樹脂温度 Tは、例えば、ポリプロピレン系樹脂の場合には 1 6 0〜3 0 0 °C が挙げられる。
[ 2 ]次に、 図 7の(a2)に示すように、 当該ポリオレフイン系樹脂組成物を、 降 温時の貯蔵弾性率の転移温度 Tsc以下の樹脂温度まで冷却すると、該アミド系化 合物の繊維状粒子により形成される網目構造が形成される。
Tscは、 該アミド系化合物の含有量が高いほど、 又は該アミド系化合物を構成 するアルキルシクロへキシルァミン残基の立体異性体であるトランス配置部分の 比率が高いほど、 高温側へシフトする。
必要であれば、 図 7の(a3)に示すように、 更に樹脂温度 Tをポリオレフイン系 樹脂の結晶化温度 Tc 以下の温度に下げて、 該溶融ポリオレフイン系樹脂組成物 中のポリオレフィン系榭脂を結晶化させ、ペレツトとすることもできる。この時、 ペレット中には、 一般式 ( 1 ) で表されるアミド系化合物の繊維状粒子により形 成される網目構造が保持されている。
[ 3 ]本発明において、 射出工程を含む成形方法を採用する場合、 該アミド系化 合物の繊維状粒子により形成される網目構造を含むポリオレフィン系樹脂組成物 (図 7の(a2)の状態のもの)を、一旦ペレツト(図 7の(a3)の状態のもの)とし、 得られたペレツトを射出成形機 1のホッパー 2から導入する。次いで、図 7の(a4) に示すように、 特定の温度条件下 (即ち、 Tm≤T≤Tsh:)、 上記網目構造を保つ たままの状態で、 射出成形を行う。 これにより、 図 7の(a5)に示すように、 射出 の際に生じる剪断力、 特に射出成形機 1のノズル 4内での流れ及び金型 3内での 流れにより生じる剪断力により、 一般式 ( 1 ) で表されるアミド系化合物の網目 構造を構成する微小な繊維状粒子が配向される。
他方、 押出工程を含む成形方法を採用する場合、 一般式 ( 1 ) で表されるアミ ド系化合物の繊維状粒子により形成される網目構造を含むポリオレフイン系樹脂 組成物 (図 7の(a2)の状態のもの) を、 ペレットにすることなくそのまま、 特定 の温度条件下、 上記網目構造を保ったままの状態で、 押出工程を含む成形方法に 供する。 或いは、 該網目構造を含むポリオレフイン系樹脂組成物 (図 7の(a2)の 状態のもの) を、 図 7の(a3)に示すように一旦ペレットにし、 該ペレットを、 特 定の温度条件下、 上記網目構造を保ったままの状態で、 押出工程を含む成形方法 に供する。 これにより、 押出の際に生じる剪断力により、 一般式 ( 1 ) で表され るアミド系化合物の網目構造を構成する微小な繊維状粒子が配向される。
これら成形方法において採用する上記特定の温度条件は、 樹脂温度 Tを、 ポリ ォレフィン系樹脂の溶融温度 Tm以上であって、 且つ、 当該ポリオレフイン系樹 脂組成物の昇温時の貯蔵弾性率の転移温度 Tsh以下の樹脂温度の範囲に調整す るものである (即ち、 Tm≤T≤Tsh)。 なお、 Tshも、 該アミド系化合物の含有 量が高いほど、 又は該アミド系化合物を構成するアルキルシクロへキシルァミン 残基の立体異性体であるトランス配置部分の比率が高いほど、 高温側へシフトす る。
上記特定の温度条件としては、 例えば、 ポリプロピレン樹脂組成物を射出工程 又は押し出し工程を含む成形方法により成形する場合、 Riが 1 , 2 , 3—プロパ ントリカルボン酸から全ての力ルポキシル基を除いて得られる残基を示す一般式 ( 1 ) のアミド系化合物の少なくとも 1種を使用する場合、 樹脂温度 Tは、 一般 には 1 7 0〜2 5 0 、 特に 1 8 0〜2 4 O である。 また、 R1が 1, 2 , 3 , 4一ブタンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を 示す一般式 ( 1 ) のアミド系化合物の少なくとも 1種を使用する場合、 樹脂温度 Tは、 一般には 1 8 0〜 2 8 0で、 特に 1 9 0〜 2 7 0 °Cである。
[4]こうして射出工程を含む成形法で金型に到達した溶融ポリオレフィン系樹 脂組成物は、 金型により冷却され、 一般式 ( 1 ) で表されるアミド系化合物の微 小な繊維状粒子が、 樹脂の流れ方向に配向された状態に保持される (図 7の (a6) 参照)。
同様に、 押出工程を含む成形法でチルロールに到達した溶融ポリオレフイン樹 脂組成物は、 チルロールにより冷却され、 一般式 ( 1 ) で表されるアミド系化合 物の微小な繊維状粒子が、 樹脂の流れ方向に配向された状態に保持される。
[ 5 ]次いで、 図 7の(a6)に示す一般式 ( 1 ) で表されるアミド系化合物の微小 な繊維状粒子が配向された状態にある樹脂組成物を、 更にポリオレフィン系樹脂 の結晶化温度(Tc)以下に下げることにより、 ポリオレフィン系樹脂の結晶化が 起こる。 その際に、 繊維状粒子が配向しているので、 それら繊維状粒子を起点と して成長したポリオレフイン系樹脂の結晶ラメラも配向した状態となる (図 7の (a7)参照)。 押出工程を含む成形法の場合も同様である。
この時、 設定される金型温度又はチルロール温度としては、 ポリオレフイン系 樹脂の結晶化温度 Tc以下の温度であることが必要であり、例えば、 1 0〜 8 0 °C が好ましい。
その結果、 本発明の製造方法により得られるポリオレフィン系樹脂成形体は、 ポリオレフイン系樹脂の結晶ラメラが配向しているという特徴を有する。
このように、本発明に係る成形方法(I)は、 一般式 ( 1 )で表されるアミド系化 合物が、 上記特定温度条件で網目構造を形成することを利用し、 該網目構造を残 した状態で (即ち、 該網目構造を構成する繊維状粒子が溶解又は溶融しない温度 で)、成形を行うことにより、該繊維状粒子を配向させ、ポリオレフイン系樹脂を 配向結晶化させるものである。
その結果、 本発明の成形方法 (I)により、 機械的強度、 特に剛性 (曲げ弾性率) の高い成形体を得ることができる。
従って、 本発明は、 前記項 1 8に記載のように、 ポリオレフイン系榭脂の融解 温度以上であって、 且つ、 昇温時の貯蔵弾性率の転移温度以下の樹脂温度で、 本 発明の樹脂組成物を成形する工程を備えたポリオレフィン系樹脂成形体の製造方 法を提供するものでもある。
この製造方法においては、アミド系化合物は、一般式(1 )において、 R1が 1 , 2 , 3—プロパントリカルボン酸からすべての力ルポキシル基を除いて得られる 残基であるのが好ましく、 また、 3個の R 2が同一又は異なってシクロへキシル 基を示すか又は 1個の炭素数 1〜 4の直鎖状又は分岐鎖状のアルキル基で置換さ れたシクロへキシル基を示すことが好ましい (即ち、前記項 1 9に記載の製造法)。 また、 上記製造法(成形方法 (1) ) においては、 一般式 ( 1 ) で表される少なく とも 1種のアミド系化合物 (成分 (A)) の使用量は、 ポリオレフイン系樹脂 1 0 0重量部に対し、 好ましくは 0 . 0 1〜5重量部、 より好ましくは 0 . 0 5〜2 重量部が推奨される。 この範囲の量で使用することにより、 剛性の有意な向上が 認められる。 なお、 5重量部を越える含有量で使用することも可能である。
上記製造方法では、 一般式 ( 1 ) で表されるアミド系化合物を単独で使用して も (即ち、 成分 (B) を使用することなく、 成分 (A) のみを使用しても)、 岡 IJ性 に優れた成形体を得ることができる。 しかしながら、 得られる樹脂成形体の剛性 を向上させる上で、また、ポリオレフイン系樹脂の結晶化速度を制御するために、 脂肪酸金属塩 (成分 (B)) を含有させることが好ましい。
該脂肪酸金属塩 (成分(B)) の添加量は、 ポリオレフイン系樹脂 1 0 0重量部 に対し、 通常、 0〜5重量部、 好ましくは 0〜1重量部、 より好ましくは 0 . 0 0 5〜0 . 5重量部、 特に好ましくは 0 . 0 1〜0 . 3重量部であるのが有利で ある。そして、成分(A):成分(B) = 1 0 0: 0〜 3 0: 7 0の範囲において、 成分 (B) の比率を高めることにより、 そのポリオレフイン系樹脂組成物の結晶 化速度を速くする (結晶化終了時間を短縮させる) ことができる。
<成形方法 (I I) >
前記樹脂温度 Tが Tshを超える温度範囲(即ち、 Tsh<T)の場合、成分(A) 成分 (B ) = 1 0 0 : 0〜3 0 : 7 0の範囲において、 成分 (B ) の比率を高め ることにより、 そのポリオレフイン系樹脂の結晶化速度を低下させる (結晶化終 了時間を延長させる) ことができる。
より詳しくは、 図 8に示すように、 成形加工時の樹脂温度 (成形温度) Tを、 昇温時の貯蔵弾性率の転移温度 Tshを超える温度に設定する場合(図 7の成形方 法 (11))、該脂肪酸金属塩 (B)の配合比率を増加させると (領域 (IIA)→領域 (IIAB))、 ポリオレフィン系榭脂の結晶化速度を遅くする (結晶化終了時間を延長させる) ことができる。
また、 成分 (B) の比率を高めることにより、 ポリオレフイン系樹脂の結晶化 温度 T cを低下させることもできる。
その結晶化速度の低下及び結晶化温度の低下の度合いは、 成分 (A) 及び成分 (B) の組み合わせと成分 (A) に対する成分 (B) の比率に主に依存する。 この成形方法 αι)は、 ポリオレフィン系樹脂成形体の透明性の向上に大きく寄 与し、 特にホモポリプロピレン樹脂やランダムポリプロピレン榭脂において顕著 である。
なお、 この成形方法 (I I)において、 樹脂温度 Τがあまりに高いと樹脂が劣化す ることもあるので、 樹脂温度 Τは、 3 0 0 °C以下、 特に 2 8 0 °C以下であるのが 好ましい。
上記樹脂温度の領域では、 上述のアミド系化合物の繊維状粒子が溶融又は溶解 し、 網目構造が消失した状態にある。
より詳しくは、 成形方法 (II)によると、 図 7の (II)に示すように、 昇温時の貯蔵 弾性率の転移温度 hを超える温度で成形するために網目構造が溶解して消失し た状態で成形され、 そのため、 その溶融したポリオレフイン系樹脂組成物を冷却 すると、 アミド系化合物の繊維状粒子が形成され、 網目構造が再構成される。 そ れを起点として、 ポリオレフイン系樹脂め微少な結晶 (球晶) が形成され、 その 結果、 特に透明性に優れた成形体を製造できる。
<ポリオレフィン系觀旨成形体の製造方法 >
以下、 本発明に係るポリオレフイン系樹脂組成物の成形方法 (Π)について、 詳 述する。 成形方法 (Π)は、 成分 (B ) の使用により結晶化速度を制御 (低減) す ることを可能とした成形体製造法でもある。 本発明のポリオレフィン系樹脂成形 体の製造方法 (成形方法) の概念図である図 7の(I I)を参照して説明すると、 次 の通りである。
尚、 ポリオレフイン系樹脂組成物 (ペレットの製造) の製造方法 (図 7の(I I) の(b l)〜(b 3)は、 上記成形方法 (I) における図 7の(I)の (al)〜(a3)と同じで ある。
図 7の (b4)及び (b5)に示すように、樹脂温度 Tを Tshよりも高い温度に設定し て成形すると、 繊維状粒子が溶融又は溶解し、 網目構造が消失した状態で成形す ることとなる。
その結果、射出工程又は押し出し工程後に、図 7の (b6)及び (b7)に示すように、 溶融ポリオレフィン系樹脂組成物は網目構造が消失した状態で金型又はチル口一 ルに到達し、 そこで、 溶融ポリオレフイン系樹脂組成物を降温時の貯蔵弾性率の 転移温度 Tsc以下に冷却することによって再び網目構造が形成されるが、その際 に射出又は押出工程を経るので、 網目構造は若干配向するが、 その程度は低い。 このように、 繊維状粒子の配向の程度が低いので、 図 7の 0)8)に示すように、 冷却温度をポリオレフィン系樹脂組成物の結晶化温度 Tc以下に下げて成形体を 得ても、 得られる成形体においてはポリオレフイン系樹脂の結晶ラメラの配向度 は低い。
上記成形方法(I I)によると、 透明性が高い未分散核剤の少ない成形体を得るこ とができる。 従って、 本発明は、 前記項 1 7に記載のように、 昇温時の貯蔵弾性 率の転移温度を超える樹脂温度で、 本発明のポリオレフイン系樹脂組成物を成形 することを特徴とするポリオレフィン系榭脂成形体の製造方法を提供するもので もある。
上記成形方法 (Π)において、 成形法としては、 上記射出工程又は押し出し工程 を含む成形法が挙げられる。 具体的には、 射出成形、 押し出し成形、 射出ブロー 成形、 射出押出ブロー成形、 射出圧縮成形、 押し出しブロー成形、 押し出しサ一 モフォ一ム成形又は溶融紡糸による繊維の製造などが挙げられる。
上記成形方法(I I)により達成される本発明の効果 (透明性が高ぐ 未分散核剤 の少ない成形体が得られる効果) は、 特に、 成分 (A) :成分 (B) の重量比が、 好ましくは 1 0 0 : 0〜3 0 : 7 0の範囲、 より好ましくは 9 5 : 5〜3 0 : 7 0の範囲、 より好ましくは 9 0 : 1 0〜6 0 : 4 0 , 特に好ましくは 9 0 : 1 0 〜7 0 : 3 0の範囲となるように配合することにより、 得られる。 また、 この範 囲で成分 (B) の割合を変ィ匕させることにより、 ポリオレフイン系 脂の結晶化 速度を小さくすることができる。
また、 上記製造法 (成形方法(I I) ) においても、 一般式 ( 1 ) で表される少な くとも 1種のアミド系化合物 (成分 (A)) の使用量は、 ポリオレフイン系樹脂 1 0 0重量部に対し、 好ましくは 0 . 0 1〜5重量部、 より好ましくは 0. 0 5〜 2重量部が推奨される。 この範囲の量で使用することにより、 透明性の有意な向 上が認められる。 なお、 5重量部を越える含有量で使用することも可能である。 上記製造方法では、 一般式 ( 1 ) で表されるアミド系化合物を単独で使用して も (即ち、 成分 (B) を使用することなく、 成分 (A) のみを使用しても)、 透明 性に優れた成形体を得ることができる。 しかしながら、 得られる樹脂成形体の透 明性を向上させる上で、 また、 ポリオレフイン系樹脂の結晶化速度を制御するた めに、 脂肪酸金属塩 (成分 (B)) を含有させることが好ましい。
該脂肪酸金属塩(成分(B)) の添加量は、 ポリオレフイン系棚 1 0 0重量部 に対し、 通常、 0〜5重量部、 好ましくは 0〜1重量部、 より好ましくは 0 . 0 0 5〜 0 . 5重量部、 特に好ましくは 0 . 0 1〜0 . 3重量部であるのが有利で ある。そして、成分(A):成分(B) = 1 0 0: 0〜3 0: 7 0の範囲において、 成分 (B) の比率を高めることにより、 そのポリオレフイン系樹脂組成物の結晶 化速度を低減させる (結晶化終了時間を延長させる) ことができる。
上記成形方法 (I)及び成形方法 αι)の記載から判るように、本発明では、特定割 合の成分 (Α) 及び成分 (Β) を使用することにより、 ポリオレフイン系樹脂組 成物の成形時のポリオレフィン系榭脂の結晶化速度を制御することができる。 従 つて、 本発明は、 成分 (Α):成分 (Β) の重量比が 1 0 0 : 0〜3 0 : 7 0の割 合で含有する組成物の、 ポリオレフィン系樹脂成形時のポリオレフィン系榭脂の 結晶化速度を制御するための使用を提供するものでもある。 ポリオレフイン系樹脂成形体 本発明の成形体は、 上記本発明のポリオレフイン系樹脂組成物を、 上記成形方 法 (I)及び (Π)に要求される条件を用いる限り、 慣用.されている成形法に従って成 形することにより得られる。 本発明のポリオレフイン系樹脂組成物は、 結晶化速 度が制御できるので、 射出成形、 押出成形、 ブロー成形、 圧空成形、 回転成形、 シート成形、 フィルム成形等の従来公知の成形方法のいずれをも採用でき、 成形 条件としては、 従来採用されている条件が広い範囲から適宜選択できる。
また、 上記の成形方法(Π)を採用した場合、 透明性に優れた成形体が得られ、 また成形方法 (I)を採用した場合剛性に優れた成形体が得られる。
また、本発明の成形方法 (I)により得られるポリオレフィン系樹脂成形体、特に、 汎用されているエチレン—プロピレンランダム共重合体 (特にエチレン含量 2〜 4重量%程度であって、残部がプロピレンであるもの)、プロピレンホモポリマー 又はエチレン一プロピレンブロック共重合体 (特にエチレン含量が 5〜1 5重 量%程度であって、 残部がプロピレンであるもの)、 と一般式 ( 1 )で表されるァ ミド系化合物の少なくとも 1種を用いて得られる成形体は、 広角 X線回折により 求められる (0 4 0 ) 反射強度の (1 1 0 ) 反射強度に対する比で表される配向 度が 2以上 (特に 2〜1 0 ) であり、 有意に高い剛性を有する。 上記の配向度の 測定法は、 次の通りである。
通常の対称反射 X線回折法により、 射出成形体試料表面に対して入射する X線 の入射角 Θ と回折線検出角 2 Θ ifi Θ - 2 Θの関係を保って回転する集中光学系 で X線回折強度を測定する。 次いで、 得られた X線回折強度曲線を非晶質ハロー と各結晶質ピークとにピーク分離を行ない、ポリプロピレン結晶からの(1 1 0 ) 面反射 (2 0 =約 1 3 . 9度) と (0 4 0 ) 面反射 (2 0 =約 1 6. 6度) のピ ーク強度の比より下記 (F) 式で配向度が求められる。
配向度 = I I 謹 (F)
上記式 (F) において、 1 (11。)は (1 1 0 ) 面反射のピーク強度 (cps)を示し、 I (040)は (0 4 0 ) 面反射のピーク強度 (cps)を示す。
本発明のポリオレフィン系樹脂組成物の成形方法 (I)を適用することにより、ポ ' リオレフィン系樹脂成形体に対して優れた剛性を付与することができる。 この特 質は、 成形品の肉厚を薄くして軽量化を達成することにも役立つ。 かくして得られた本発明のポリオレフイン系樹脂成形体は、 従来、 リン酸金属 塩類、 芳香族カルボン酸金属塩類、 ベンジリデンソルビトール類等を核剤として 配合してなるポリオレフイン系樹脂組成物が用いられてきたと同様の分野におい て適用され、 具体的には、 熱や放射線等により滅菌されるディスポ一ザブル注射 器、 輸液 ·輸血セット、 採血器具等の医療用器具類;放射線等により滅菌される 食品 ·植物等の包装物;衣料ケ一スや衣料保存用コンテナ等の各種ケース類;食 品を熱充填するためのカップ、 レトルト食品の包装容器;電子レンジ用容器;ジ ユース、 茶等の飲料用、 化粧品用、 医薬品用、 シャンプー用等の缶、 ビン等の容 器;味噌、 醤油等の調味料用容器及びキャップ;水、 米、 パン、 漬物等の食品用 ケース及び容器;冷蔵庫用ケース等の雑貨;文具;電気'機械部品;自動車用部 品等の素材として好適である。
実施例 以下、 実施例及び比較例を挙げ、 本発明を詳しく説明するが、 本発明はこれら 実施例に限定されるものではない。
本発明に係るポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度(°C)、本発 明のポリオレフィン系樹脂組成物より得られる成形体の結晶化温度( )、結晶化 終了時間 (分)、 ヘイズ値 (%)、 分散性 (白点数)、 曲げ弾性率 (MP a)、 X線 回折測定及び ¾向度を以下の方法により測定し、 評価した。
( 1 ) 結晶化温度 T c (°C)
示差走査熱量法(パーキンエルマ一社製、 商品名 「D S C 7」) を用いて、 測定 サンプル (サンプル重量 = 1 O m g、 各実施例及び比較例で得られた成形体 (試 験片) から切り出して作成) をポリオレフイン系樹脂組成物の成形時の樹脂温度 まで昇温させ、 その温度の到達後 3分間保持した以外は、 J I S K 7 1 2 1に 準じて、 発熱ピークのピーク温度を測定した。
結晶化温度 (T c ) が高い程、 成形サイクルを短くすることができる。
( 2 ) 結晶化終了時間 (分) (以下 「Tej という。)
示差走査熱量計(パーキンエルマ一社製、 商品名 「D S C 7」) を用いて、 測定 サンプル (サンプル重量 =10mg、 各実施例及び比較例で得られた成形体 (試 験片) から切り出して作成) を昇温速度 200°C/分でポリオレフイン系樹脂組 成物の成形時の樹脂温度まで昇温させ、その温度の到達後 3分間保持した。次に、 冷却速度 100°C/分で 「結晶化終了時間」 の測定温度 (ァイソタクチックェチ レン一プロピレンランダム共重合樹脂; 120°C、 ァイソタクチックホモポリプ ロピレン樹脂及びエチレン一プロピレンブロック共重合樹脂; 130°C) まで急 冷し、 ポリオレフイン系樹脂を等温結晶化させた。 尚、 急冷して測定温度に達し た時間を 「結晶化終了時間」 の測定開始時間とした。
得られた示差走査熱量法 (DSC) のチャートから、 長時間側のベースライン を短時間側に延長した延長線(図 1の(a))と、発熱ピークの長時間側の曲線 (図 1の (d))に勾配が最大になる点で引いた接線(図 1の(b))の交点(図 1の(c)) に対応する時間を「結晶化終了時間」 (分)とした。 「結晶化終了時間」が長い程、 成形可能な時間が長いことを示す。
(3) ヘイズ値 (¾)
各実施例及び比較例で得られた 5 cmx5 cmx l mmのサイズの試験片につ いて、 東洋精機製作所製のヘイズメーターを用いて、 J I S K 7136 (20 00) に準じて測定した。 得られた数値が小さい程、 透明性に優れていることを 示す。
(4) 分散性 (白点数)
各実施例及び比較例で得られた 5 cmx5 cmx l mmのサイズの試験片 10 枚中の未分散又は未溶解のアミド系化合物による白点の数を目視で測定し 1枚あ たりの平均値を求めて、 下記判定を行つた。
判定:平均白点数
S : 0. 5個 枚以下
A: 1個 枚以下
B: 1個 枚より多く、 2個 Z枚以下
C: 2個 枚より多く、 10個 枚以下
D: 10個 枚より多い
(5) 貯蔵弾性率 (G' ) の転移温度 (°C) 動的粘弾性測定装置((株) レオロジ社製、商品名 「MR— 500ゾリキッドメ 一夕」) を用いて、下記の測定条件下で、各実施例で得られたペレット状ポリオレ フィン系榭脂組成物の貯蔵弾性率の温度依存曲線を作成した。 Tscは降温時の温 度依存曲線の微分曲線のピークトップの温度に対応し、 Ts は昇温時の温度依存 曲線の微分曲線のピークトップの温度に対応する。
く動的粘弾性率の測定条件〉
測定治具:パラレルプレート (直径 20 mm)
周波数: 0. 5 H z
歪角: 0. 5度
温度条件:
ω降温時の貯蔵弾性率の転移温度 (TSC):ポリオレフイン系樹脂組成物 (ぺ レット)を 250°Cで(但し、 BTC- 2MeCHAを用いた実施例については 280°Cで、 PTC-2MeCHA[100] 又は PTC-2MeCHA(100)を用いた実施例については 260°Cで) 1分間保持した後、 降温速度を 5 °C/分で、 150°Cまで降温させて測定した。 (i i)昇温時の貯蔵弾性率の転移温度 (Tsh):降温時の貯蔵弾性率の測定終了後、 上記ポリオレフイン系樹脂組成物を、 昇温速度 5°CZ分で 250°Cまで (但し、 BTC-2MeCHA を用いた実施例については 280 まで、 PTC_2MeCHA[100] 又は PTC-2MeCHA(100)を用いた実施例については 260 °Cまで)再昇温させて測定した。
(6) 曲げ弾性率 (MP a)
インストロン万能試験機を用いて、 J I S K 7203 (1982)に準じて、 ポリオレフイン系樹脂成形体の曲げ弾性率 (MP a) を測定した。 尚、 試験温度 は 25 、 試験速度は 10mm/分とした。 曲げ弾性率の値が大きいほど剛性に 優れている。
なお、 曲げ弾性率を測定している実施例及び比較例において、 曲げ弾性率測定 用試験片は、特に断らない限り、長さ 90mm、幅 10mm、高さ 4mmである。
(7) X線回折測定
X線回折装置(理学電機社製、 商品名 「R I NT 2000」) を用いて、 長さ 9 0mm、 幅 10mm、 高さ 4mmの試験片を用いて X線回折を測定した。 尚、 X 線の入射方向は、 試験片中央部を Through方向 (図 4参照) から行った。 <X線回折測定条件〉 - X線ビーム: CuKa
X線管球: C u
管電圧: 40 k V, 管電流: 100 mA
X線入射角 (0): 0— 20連動
測定角度 (2 Θ) 範囲: 5〜30度
スキャンスピード: 4度/分
(8) 配向度
上記 (7) に記載の方法で得られた X線回折強度曲線を非晶質ハローと各結晶質 ピークとにピーク分離を行ない、ポリプロピレン結晶からの(110)面反射(2 0=約 13. 9度) と (040) 面反射 (26>=約 16. 6度) のピーク強度の 比から下記の式 (F) を用いて配向度を求めた。
配向度 = 1 (040) ^1 (no) (F)
[式中、 I u10)は (1 10) 面反射のピ一ク強度 (c p s) を表し、 I (040) は (040) 面反射のピーク強度 (c p s) を表す。]
配向度の値が大きいほど、 ポリオレフィンの結晶の配向の度合いが大きい。 製造例 1
(1) 攪拌機、温度計、冷却管及びガス導入口を備えた 500mlの 4ッロフラ スコに 1, 2, 3—プロパントリカルボン酸. (以下 「PTC」 と略記する。) 9. 7 g (0. 055モル) と N—メチル— 2—ピロリドン 100 gを秤取り、 窒素 雰囲気下、 室温にて攪拌しながら PTCを完全溶解させた。 続いて、 2—メチル シクロへキシルァミン (トランス体:シス体 =74. 3 : 25. 7、 GLC組成 比) 20. 5 g (0. 1815モル)、 亜リン酸トリフエニル 56. 3 g (0. 1 815モル)、 ピリジン 14. 4g (0. 1815モル) 及び N—メチルー 2—ピ ロリドン 50 gを加え、 窒素雰囲気下、 攪拌しながら 100 で 4時間反応を行 つた。 冷却後、 反応溶液をイソプロピルアルコール 500mlと水 500mlの 混合溶液中にゆっくり注ぎ込み、 約 40でで 1時間攪拌後、 析出した白色沈殿物 を濾別した。 更に、 得られた白色固体を約 4 のイソプロピルアルコール 50 0mlで 2回洗浄した後、 100° (:、 133P aにて 6時間乾燥した。
得られた乾燥物を乳鉢で粉砕し、 目開き 106 mの標準篩い (J I S Z 8 801規格) に通して、 1, 2, 3 _プロパントリ力ルポン酸トリス (2—メチ ルシクロへキシルアミド) (以下、 「PTC— 2Me CHA」 と略記する。) 18. 8 g (収率 74%) を得た。
(2) また、アミド化反応後に回収した未反応 2—メチルシクロへキシルァミン を G L C分析に供したところ、該未反応ァミンのトランス体:シス体の比は 74. 3 : 25. 7であり、 原料として使用した 2—メチルシクロへキシルァミンのト ランス体:シス体の比 (74. 3 : 25. 7、 GLC組成比) と一致した。
更に、上記で得られた生成物であるアミド化合物を、 10 o°cで熱処理しても、 FT— I Rスペクトル、 融点が処理前のそれらと一致することから、 上記アミド 化反応により、 該アミド系化合物を構成する 2—メチルシク口へキシルアミン残 基の立体配置が変化していないことを確認した。
その結果、 本製造例 1の生成物であるアミド化合物において、 トランス配置の 2—メチルシク口へキシルアミン残基とシス配置の 2—メチルシク口へキシルァ ミン残基との比は、 原料 2—メチルシクロへキシルァミンのトランス体とシス体 との比と一致することを確認した。
以下、 製造例 2, 3, 5及び 7においても、 上記と同様に、 生成物のアミド化 合物において、 トランス配置のアルキルシクロへキシルァミン残基とシス配置の アルキルシクロへキシルァミン残基との比は、 原料アルキルシクロへキシルアミ ンのトランス体とシス体との比と一致することを確認した。
製造例 2
2—メチルシク口へキシルアミンに代えて、 3—メチルシク口へキシルアミン (トランス体:シス体 =75. 4 : 24. 6、 GLC組成比) を用いた以外は製 造例 1と同様に行い、 1, 2, 3—プロパントリ力ルポン酸トリス (3—メチル シクロへキシルアミド) (以下、 「PTC— 3MeCHA」 と略記する。) 15. 5 g (収率 61 %) を得た。
製造例 3
2—メチルシク口へキシルァミンに代えて、 4—メチルシクロへキシルァミン (トランス体:シス体 =58. 4 : 41. 6、 GLC組成比) を用いた以外は製 造例 1と同様に行い、 1, 2, 3—プロパントリ力ルポン酸トリス (4一メチル シクロへキシルアミド) (以下、 「PTC— 4MeCHA」 と略記する。) 9. 7 g
(収率 38%) を得た。
製造例 4
2—メチルシクロへキシルァミンに代えて、 シクロへキシルァミンを用いた以 外は製造例 1と同様に行い、 1, 2, 3—プロパントリ力ルポン酸トリシクロへ キシルアミド (以下、 「PTC— CHA」 と略記する。) 17. 3 g (収率 75%) を得た。
製造例 5
1, 2, 3—プロパントリカルポン酸に代えて、 1, 2, 3, 4一ブタンテト ラカルボン酸 12. 9 g (0. 055モル) と 2—メチルシクロへキシルァミン (トランス体:シス体 =74. 3 : 25. 7、 GLC組成比) 27. 4 g (0. 242モル)、 亜リン酸トリフエニル 75. 1 g (0. 242モル) 及びピリジン 19. 1 g (0. 242モル) を用いた以外は、製造例 1と同様にして行い、 1, 2, 3, 4一ブタンテトラ力ルポン酸テトラキス (2—メチルシクロへキシルァ ミド) (以下、 「BTC_2MeCHA」 と略記する。) 21.3 g (収率 63%) を得た。
製造例 6
2—メチルシクロへキシルァミン(トランス体:シス体 =74. 3 : 25. 7、 GLC組成比) に代えて、 2—メチルシクロへキシルァミン (トランス体:シス 体 =100: 0、 GLC組成比)を用いた以外は製造例 1と同様に行い、 1, 2, 3—プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) (以下、 「PTC— 2MeCHA [100]」 と略記する。) 20. 3 g (収率 80%) を 得た。
製造例 7
2—メチルシクロへキシルァミン(トランス体:シス体 =74. 3 : 25. 7、 GLC組成比) に代えて、 2—メチルシクロへキシルァミン (トランス体:シス 体 =50: 50、 GLC組成比) を用いた以外は製造例 1と同様に行い、 1, 2, 3_プロパントリ力ルポン酸トリス (2—メチルシクロへキシルアミド) (以下、 「PTC— 2MeCHA [50]」 と略記する。) 18. 0 g (収率 71%) を得 た。 以下に本発明の実施例を挙げる。 実施例 1〜 51は、 前記成形方法(Π) (T> Ts h) についての実施例であり、 実施例 1〜33は樹脂としてエチレン—プロ ピレンランダム共重合樹脂を使用した例であり、 実施例 34〜41は樹脂として ホモポリプロピレン樹脂を使用した例であり、 実施例 42〜51は樹脂としてェ チレン一プロピレンブロック共重合樹脂を使用した例である。
実施例 1
エチレン含有量 3. 0重量%のァイソタクチックエチレン—プロピレンランダ ム共重合樹脂(MF R= 20 gZ 10分、 融解温度 = 153 °C、以下「 r一 P P」 と略記する。) 100重量部に対して、アミド系化合物として製造例 1で調製した PTC-2MeCHA0. 2重量部と、 脂肪酸金属塩として、 ステアリン酸カル シゥム 0. 05重量部を添加し、 更に、 テトラキス [メチレン一 3— (3, 5— ジー t—ブチルー 4ーヒドロキシフエニル) プロピオネート] メタン (チバスべ シャルティ一ケミカルズ社製、商品名 「I RGAN〇X1010」) 0. 05重量 部及びテトラキス (2, 4ージー t—ブチルフエニル) ホスファイト (チバスべ シャルティ一ケミカルズ社製、 商品名 「I RGAF〇S 168」) 0. 05重量部 を配合し、 ヘンシ iルミキサーで 1000 r pm、 5分間ドライブレンドした。 次に、 樹脂温度 240°Cで直径 20mmの一軸押出機を用いて溶融混練して、 押し出されたストランドを水冷し、 次に得られたストランドを切断してペレツト 状ポリオレフィン系樹脂組成物を得た。
得られたペレツトを樹脂温度 (成形温度) 240°C、 金型温度 40°Cの条件下で 射出成形し、 ポリオレフィン系樹脂成形体 (試験片:サイズ = 5 cmx5 cmx lmm) を調製した。
得られたペレツト状ポリオレフイン系樹脂組成物の貯蔵弾性率の転移温度、 並び に得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定し た。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度 を表 1に示した。
実施例 2及び実施例 3
ステアリン酸カルシウムの添加量を表 1記載の添加量に変えた以外は、 実施例 1と同様に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率 の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及 び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成 形工程の樹脂温度を表 1に示した。
実施例 4〜8
脂肪酸金属塩を表 1記載の脂肪酸金属塩に変更した以外は、 実施例 1と同様に 行い、得られたペレツト状ポリオレフィン系榭脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測 定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂 温度を表 1に示した。
実施例 9
PTC— 2Me CHAに代えて製造例 2で調製した PTC— 3MeCHAを用 いた以外は、 実施例 1と同様にして行い、 得られたペレット状ポリオレフイン系 樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶 化終了時間、 ヘイズ値及び分散性を測定した。 その評価結果、 並びに混練工程の 樹脂温度及び (射出) 成形工程の樹脂温度を表 1に示した。
実施例 10 '
PTC— 2Me CHAに代えて製造例 3で調製した PTC— 4Me CHAを用 いた以外は、 実施例 1と同様に行い、 得られたペレット状ポリオレフイン系樹脂 組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終 了時間、 ヘイズ値及び分散性を測定した。 その測定結果並びに混練工程の樹脂温 度及び (射出) 成形工程の樹脂温度を表 1に示した。
実施例 11
PTC— 2Me CHAに代えて製造例 4で調製した PTC— CHAを用いた以 外は、 実施例 1と同様に行い、 得られたペレット状ポリオレフイン系樹脂組成物 の貯蔵弾性率の転移温度、並びに得られた試験片の結晶化温度、結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び
(射出) 成形工程の樹脂温度を表 1に示した。
を表 1に示した。
実施例 12
PTC—2MeCHAに代えて製造例 6で調製した PTC—2MeCHA [1 00] を用い、 溶融混練時の樹脂温度を 260°C、 射出成形時の樹脂温度を 26 0°Cとした以外は、 実施例 1と同様にして行い、 得られたペレット状ポリオレフ ィン系樹脂組成物の貯蔵弾性率の転移温度、並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練ェ 程の樹脂温度及び (射出) 成形工程の樹脂温度を表 1に示した。
実施例 13
PTC-2Me CHAに代えて製造例 7で調製した P TC— 2Me CHA [5 0] を用いた以外は、 実施例 1と同様にして行い、 得られたペレット状ポリオレ フィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温 度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混 練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 Γに示した。
実施例 14〜16
脂肪酸金属塩を表 1記載の脂肪酸金属塩に変更した以外は、 実施例 1と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測 定した。 その測定結果、 並びに混練工程の樹脂温度及び 谢出) 成形工程の樹脂 温度を表 1に示した。
実施例 17
攪拌機、温度計、冷却管及びガス導入口を備えた 20 OmLの 4ッロフラスコに、 メタノール 5重量部、 アミド系化合物として製造例 1で調製した PTC—2Me CHAO. 2重量部及び脂肪酸金属塩としてステアリン酸カルシウム 0. 05重 量部を入れて、室温で 0. 5時間攪拌した。次に、メタノールを減圧留去した後、 室温で 133P aにて 6時間乾燥した。 得られた乾燥物を乳鉢で粉枠し、 目開き 106 mの標準篩い ( J I S Z 8801規格) に通して、 本発明の結晶化速 度制御組成物を得た。
r-PP 100重量部に対して、 前記結晶化速度制御組成物 0. 25重量部、 テトラキス [メチレン一 3— (3, 5—ジ一 t—プチルー 4—ヒドロキシフエ二 ル)プロピオネート]メタン(チバスペシャルティーケミカルズ社製、商品名「I RGANOX101 Oj) 0. 05重量部及びテトラキス ( 2, 4ージ— t—プチ ルフエニル) ホスファイト (チバスペシャルティーケミカルズ社製、 商品名 「I RGAFOS 168J) 0. 05重量部を配合し、ヘンシェルミキサーで 1000 r pm、 5分間ドライブレンドした。
次に、 樹脂温度 240°Cで直径 20mmの一軸押出機を用いて溶融混練して、 押し出されたストランドを水冷し、 次に得られたストランドを切断してペレット 状ポリオレフィン系樹脂組成物を得た。
得られたペレットを樹脂温度 (成形温度) 240°C、 金型温度 40 °Cの条件下 で射出成形し、 ポリオレフイン系樹脂成形体 (試験片、 サイズ: 5 cmx5 cm X lmm) を調製した。
得られたペレツ卜状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並び に得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定し た。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度 を表 1に示した。
実施例 18
PTC— 2MeOHAに代えて製造例 5で調製した BTC— 2Me CHA0. 15重量部を用い、 溶融混練時の樹脂温度を 280°C、 射出成形時の樹脂温度を 280°Cとした以外は、 実施例 1と同様に行い、 得られたペレット状ポリオレフ ィン系樹脂組成物の貯蔵弾性率の転移温度、並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練工 程の樹脂温度及び (射出) 成形工程の樹脂温度を表 1に示した。
実施例 19
?丁(:ー2]\^。11八に代ぇて製造例5で調製した8丁(:一2]^(311八0. 1重量部を用い、 溶融混練時の樹脂温度を 260 とした以外は、 実施例 1と同 様に行い、 得られたペレツト状ポリオレフイン系樹脂組成物の貯蔵弾性率の転移 温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散 性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程 の樹脂温度を表 1に示した。
実施例 2 0
ステアリン酸カルシウムに代えて、 ステアリン酸カリウムを用いた以外は、 実 施例 1 9と同様に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵 弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイ ズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射 出) 成形工程の樹脂温度を表 1に示した。
実施例 2 1
脂肪酸金属塩を用いない以外は、 実施例 1と同様に行い、 得られたペレット状 ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の 結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。 実施例 2 2及び実施例 2 3
脂肪酸金属塩を用いず、アミド系化合物を表 2記載の添加量に変更した以外は、 実施例 1と同様に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵 弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイ ズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射 出) 成形工程の樹脂温度を表 2に示した。
, 実施例 2 4〜2 6
脂肪酸金属塩に代えて、 表 2記載の添加剤を用いた以外は、 実施例 1と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測 定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂 、温度を表 2に示した。
実施例 2 7
脂肪酸金属塩を用いない以外は、 実施例 9と同様に行い、 得られたペレット状 ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の 結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
実施例 2 8
脂肪酸金属塩を用いない以外は、 実施例 1 0と同様に行い、 得られたペレット 状ポリオレフィン系榭脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
実施例 2 9
脂肪酸金属塩を用いない以外は、 実施例 1 1と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
実施例 3 0
脂肪酸金属塩を用いない以外は、 実施例 1 2と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び 谢出) 成形工程の樹脂温度を表 2に示した。
実施例 3 1
脂肪酸金属塩を用いない以外は、 実施例 1 3と同様に行い、 得られたペレット 状ポリオレフイン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
実施例 3 2
脂肪酸金属塩を用いない以外は、 実施例 1 8と同様に行い、 得られたペレット 状ポリオレフイン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
実施例 3 3
脂肪酸金属塩を用いない以外は、 実施例 1 9と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 2に示した。
表 1 (成形方法 (Π) : r— P P)
アミド系化合勿 (A) 脂肪酸金属塩 (B) 混練工程 成形工程 貯蔵弾性率の
T c Te ヘイズ 添加量 添加量 樹脂温度 樹脂温度 転移温度(°c) 分散性 種類 種類 (°C) (分) 値 (%)
(重量部) (重量部) (。c) (°C) Tsc Tsh
実施例 1 PTC-2MeCHA 0.2 StCa 0.05 240 240 105 2.94 177 211 14 S 実施例 2 PTC-2MeCHA 0.2 StCa 0.02 240 240 108 1.40 181 211 14 S 実施例 3 PTC-2 eCHA 0.2 StCa 0.01 240 240 117 1.00 184 211 14 S 実施例 4 PTC-2MeCHA 0.2 StMg 0.05 240 240 106 4.51 174 211 14 S 実施例 5 PTC-2MeCHA 0.2 StZn 0.05 240 240 107 2.62 176 211 14 S 実施例 6 PTC-2MeCHA 0.2 StNa 0.05 240 240 116 1.41 180 212 13 A 実施例 7 PTC-2MeCHA 0.2 StK 0.05 240 240 117 1.06 181 212 13 A 実施例 8 PTC-2MeCHA 0.2 12-OHStCa 0.05 240 240 115 1.36 183 211 13 S 実施例 9 PTC-3 eCHA 0.2 StCa 0.05 240 240 106 3.77 170 204 25 S 実施例 10 PTC-4MeCHA 0.2 StCa 0.05 240 240 107 2.94 158 189 19 S 実施例 11 PTC-CHA 0.2 StCa 0.05 240 240 106 2.32 167 190 18 S 実施例 12 PTC-2MeCHA[100] 0.2 StCa 0.05 260 260 105 2.12 198 230 13 S 実施例 13 PTC-2MeCHA[50] 0.2 StCa 0.05 240 240 107 3.14 159 196 14 S 実施例 14 PTC-2MeCHA 0.2 BeCa 0.05 240 240 105 3.84 175 211 13 S 実施例 15 PTC-2MeCHA 0.2 BeMg 0.05 240 240 104 4.80 175 211 13 S 実施例 16 PTC-2MeCHA 0.2 LaMg 0.05 240 240 105 4.58 174 211 14 S 実施例 17 PTC-2MeCHA 0.2 StCa 0.05 240 240 105 3.04 177 211 14 S 実施例 18 BTC-2MeCHA 0.15 StCa 0.05 280 280 109 3.60 210 257 19 S 実施例 19 BTC-2MeCHA 0.1 StCa 0.05 260 240 114 1.82 201 236 25 S 実施例 20 BTC-2MeCHA 0.1 StK 0.05 260 240 115 1.74 203 236 25 A
StCa:ステアリン酸カルシウム 12-OHStCa: 12-ヒドロキシステアリン酸カルシウム
StMg:ステアリン酸マグネシウム BeCa:ベヘン酸カルシウム
StZn:ステアリン酸亜鉛 BeMg:ベヘン酸マグネシウム
StNa:ステアリン酸ナ卜リウ厶 LaMq:ラウリン酸マグネシウム
StK :ステアリン酸カリウム
(成形方法 (II): r - P P) アミド系化合物 (A) 添加剤 混練工程 成形工程 貯蔵弾性率の ヘイズ
T c Te
転移温度
添加量 添加量 樹脂温度 樹脂温度 (°c) 値 分散性
(。c) (分)
(重量部) (重量部) CO (。c) (%)
Tsc Tsh
実施例 21 PTC-2MeCHA 0.2 ― ― 240 240 117 0.96 185 211 14 B 実施例 22 PTC-2MeCHA 0.15 ― ― 240 240 117 0.97 180 207 15 B 実施例 23 PTC-2MeCHA 0.1 ― ― 240 240 117 1.01 168 200 18 B 実施例 24 PTC-2MeCHA 0.2 PEWAX 0.05 . 240 240 118 0.92 186 211 13 A 実施例 25 PTC-2MeCHA 0.2 StOH 0.05 240 240 117 0.93 186 212 13 A 実施例 26 PTC-2MeCHA 0.2 GMS 0.05 240 240 118 0.95 185 211 12 S 実施例 27 PTC-3MeCHA 0.2 ― ― 240 240 112 2.23 177 204 25 B 実施例 28 PTC-4MeCHA 0.2 ― ― 240 240 113 1.99 165 196 19 B 実施例 29 PTC-CHA 0.2 ― ― 240 240 119 0.83 176 189 18 B 実施例 30 PTC-2MeCHA [100] 0.2 ― ― 260 260 117 1.26 213 235 14 A 実施例 31 PTC-2MeCHA [50] 0.2 ― ― 240 240 117 1.08 165 201 14 B 実施例 32 BTC-2MeCHA 0.15 ― ― 280 280 117 0.99 216 257 20 S 実施例 33 BTC-2MeCHA 0.1 ― ― 260 240 116 1.59 205 236 27 B
PE ^:ポリエチレンワックス
StOH:ステアリルアルコール
G S:グリセリンモノステアレ一卜
表 1及び表 2の結果から、 以下の事項が明らかである。
( 1 ) 結晶化終了時間
成形加工時の樹脂温度 (成形温度) に昇温時の貯蔵弾性率の転移温度を越える 温度を選択した場合 (即ち T>Tsh)、 成分 (A) と成分 (B) の比率を制御する こと、 特に成分 (B) の比率を高める制御により、 ポリオレフイン系樹脂の結晶 化速度を低減させること (結晶化終了時間を延長させること) ができる (実施例 1〜3、 実施例 1 7、 実施例 2 1〜2 3参照)。
また、 ステアリン酸カルシウム以外の本発明に係る脂肪酸金属塩によっても、 同様にポリオレフィン系樹脂の結晶化速度を低減させること (結晶化終了時間を 延長させること) ができる (実施例 4〜8、 実施例 1 4〜1 6参照)。
更に、 P T C— 2 M e C HA以外の本発明に係るアミド系化合物によっても、 同様にポリオレフィン系樹脂の結晶化速度を低減させること (結晶化終了時間を 延長させること) ができる (実施例 9〜 1 3、 実施例 1 8〜2 0、 実施例 2 7〜 3 3参照)。
本発明に係るアミド系化合物に、 ポリエチレンワックス、 ステアリルアルコ一 ル又はグリセリンステアレートを併用しても、 本発明に係る脂肪酸金属塩と比較 して、 ポリオレフイン系樹脂の結晶化速度を制御すること (結晶化終了時間を制 御すること) への貢献度は非常に少ない (実施例 2 4〜2 6参照)。
( 2 ) 結晶化温度
上記効果に加え、 成形加工時の樹脂温度 (成形温度) に昇温時の貯蔵弾性率の 転移温度を越える温度を選択した場合 (即ち T>Tsh)、 本発明の結晶化速度制御 組成物は、成分(A) と成分(B) との比率或いはその種類の組み合わせにより、 そのポリオレフィン系榭脂の結晶化温度を低下させることもできる (実施例 1〜 5、 実施例 9〜 1 0、 実施例 1 4〜 1 7参照)。
( 3 ) ヘイズ値及び分散性
本発明に係るアミド系化合物と脂肪酸金属塩 (特に脂肪酸二価金属塩) との組 み合わせを含む結晶化速度制御組成物を用いることにより、 特にポリオレフィン 系樹脂に対する溶解性 ·分散性が向上し、 その成形体には未分散物が少ない (実 施例 1〜5、 実施例 8〜1 7、 実施例 1 9参照)。 また、本発明のポリォレフィン系榭脂組成物を成形加工して得られた成形体は、 後述の比較例 1及び比較例 2と比較して透明性が格段に向上し、 1, 2, 3—プ 口パントリカルボン酸と 2—メチルシク口へキシルアミンとの組み合わせで構成 されるアミド系化合物を含有する結晶化速度制御組成物を用いた場合、 特にその 透明性が優れる (実施例 1〜 8、 実施例 12〜 17、 比較例 1及び 2参照)。 実施例 34
r_PPをァイソタクチックホモポリプロピレン樹脂 (MFR=10 g/10 分、 融解温度 =163°C、 以下 「h— PP」 と略記する。) に代えた以外は、 実施 例 1と同様に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性 率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値 及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 3に示した。
実施例 35及び実施例 36
脂肪酸金属塩を表 3記載の.脂肪酸金属塩に変更した以外は、 実施例 34と同様 に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温 度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 ヘイズ値及び分散性 を測定した。 その測定結果、 並びに混練工程の樹脂温度及び 谢出) 成形工程の 樹脂温度を表 3に示した。
実施例 37
PTC— 2Me CHAに代えて製造例 4で調製した PTC— CHAを用いた以 外は、 実施例 34と同様にして行い、 得られたペレット状ポリオレフイン系樹脂 組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終 了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混練工程の樹脂 温度及び (射出) 成形工程の樹脂温度を表 3に示した。
実施例 38
PTC— 2Me CHAに代えて製造例 6で調製した PTC— 2Me CHA [1 00] を用い、 溶融混練時の樹脂温度を 260T、 射出成形時の樹脂温度を 26 0°Cとした以外は、 実施例 34と同様にして行い、 得られたペレット状ポリオレ フィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温 度、 結晶化終了時間、 ヘイズ値及び分散性を測定した。 その測定結果、 並びに混 練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 3に示した。
実施例 3 9
脂肪酸金属塩を用いない以外は、 実施例 3 4と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び 谢出) 成形工程の樹脂温度を表 3に示した。
実施例 4 0
脂肪酸金属塩を用いない以外は、 実施例 3 7と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 3に示した。
実施例 4 1
脂肪酸金属塩を用いない以外は、 実施例 3 8と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、結晶化終了時間、ヘイズ値及び分散性を測定した。その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 3に示した。
表 3 (成形方法(I I) : h - P P) アミド系化合物 (A) 脂肪酸金属塩 (B) 混練工程 成形工程 貯蔵弾性率の ヘイズ
T c Te 転移温度 (°c)
添加量 添加量 樹脂温度 樹脂温度 値 分散性
(°C)
¾ 類、 (分)
(重量部) (%)
類、 (重量部) (。c) (°C)
Tsc Tsh
実施例 34 PTC-2MeCHA 0.2 StCa 0.05 240 240 117 2.93 174 211 19 S 実施例 35 PTC-2MeCHA 0.2 StMg 0.05 240 240 117 2.77 172 211 20 S 実施例 36 PTC-2MeCHA 0.2 StZn 0.05 240 240 116 3.73 172 211, 22 S 実施例 37 PTC-CHA 0.2 StCa 0.05 240 240 118 2.08 163 188 24 S 実施例 38 PTC-2MeCHA [100] 0.2 StCa 0.05 260 260 122 3.74 194 229 20 S . 実施例 39 PTC-2MeCHA 0.2 ― 一 240 240 125 1.36 186 214 20 B 実施例 40 PTC-CHA 0.2 ― ― 240 240 126 1.05 168 188 26 B 実施例 41 PTC-2MeCHA [100] 0.2 ― ― 260 260 125 1.24 207 229 21 B
StCa:ステアリン酸カルシウム
StMg:ステアリン酸マグネシウム
StZn:ステアリン酸亜鉛
表 3の結果から、 以下の事項が明らかである。
(1) 結晶化終了時間
上記 r一 PPと同様に h— PPにおいても、成形加工時の樹脂温度(成形温度) に昇温時の貯蔵弾性率の転移温度を越える温度を選択した場合、 成分 (A) と成 分 (B) の比率を制御すること、 特に成分 (B) の比率を高めることにより、 ポ リオレフィン系樹脂の結晶化速度を低減させること (結晶化終了時間を延長させ ること) ができる (実施例 34〜38、 実施例 39〜41参照)。
(2) 結晶化温度
上記 r— PPと同様に h— PPにおいても、成形加工時の樹脂温度(成形温度) に昇温時の貯蔵弾性率の転移温度を越える温度を選択した場合、 本発明の結晶化 速度制御組成物は、 成分 (A) と成分 (B) との比率或いはその種類の組み合わ せにより、そのポリオレフイン系樹脂の結晶化温度を低下させることもできる(実 施例 34〜 38参照)。
(3) ヘイズ値及び分散性
上記 r一 PPと同様に h— PPにおいても、 本発明に係るアミド系化合物と脂 肪酸金属塩との組み合わせの結晶化速度制御組成物を用いることにより、 特にポ リオレフィン系樹脂に対する溶解性 ·分散性が向上し、 その成形体は未分散物が 少ない (実施例 34〜 38参照)。
また、本発明のポリオレフイン系樹脂組成物を成形加工して得られた成形体は、 後述の比較例 3及び 4に比較して透明性に優れる (実施例 34〜 38、 実施例 3 9〜 41、 比較例 3及び 4参照)。 実施例 42
r一 PPをエチレン含有量 9. 5重量%のエチレン一プロピレンブロック共重 合樹脂 (MFR=26g/l 0分、 融解温度 = 164°C、 以下 「b— PP」 と略 記する。) に代え、 且つ、 5 cmX 5 cmX 1mmの試験片に加えて 9 OmmX 1 OmmX 4 mmのサイズの試験片を同様にして得た以外は、 実施例 1と同様に 行い、得られたペレツ卜状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、結晶化終了時間及び曲げ弾性率を測定した。 なお、 結晶化温度及び結晶化終了時間の測定には、 5 cmx 5 cmX lmmのサ ィズの試験片を使用し、 曲げ弾性率の測定には、 9 OmmX 10mmX4mmの サイズの試験片を使用した。 その測定結果、 並びに混練工程の樹脂温度及び (射 出) 成形工程の樹脂温度を表 4に示した。
実施例 43及び実施例 44
脂肪酸金属塩を表 4に脂肪酸金属塩に変更した以外は、 実施例 42と同様に行 い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 45
PTC-2Me CHAに代えて製造例 4で調製した PTC— CHAを用いた以 外は、 実施例 42と同様にして行い、 得られたペレツ卜状ポリオレフィン系樹脂 組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終 了時間及び曲げ弾性率を測定した。 その測定結果、 並びに混練工程の樹脂温度及 び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 46
PTC— 2Me CHAに代えて製造例 6で調製した PTC— 2Me CHA [1 00] を用い、 溶融混練時の樹脂温度を 260°C、 射出成形時の榭脂温度を 26 0°Cとした以外ば、 実施例 42と同様にして行い、 得られたペレット状ポリオレ フィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温 度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並びに混練工程 の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 47
PTC— 2Me CHAに代えて製造例 7で調製した PTC— 2Me CHA [5 0] を用いた以外は、 実施例 42と同様にして行い、 得られたペレット状ポリオ レフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化 温度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並びに混練ェ 程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。 実施例 4 8
脂肪酸金属塩を用いない以外は、 実施例 4 2と同様に行い、 得られたペレット 状ポリオレフィン系榭脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並び に混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 4 9
脂肪酸金属塩を用いない以外は、 実施例 4 5と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並び に混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 5 0
脂肪酸金属塩を用いない以外は、 実施例 4 6と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並び に混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
実施例 5 1
脂肪酸金属塩を用いない以外は、 実施例 4 7と同様に行い、 得られたペレット 状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片 の結晶化温度、 結晶化終了時間及び曲げ弾性率を測定した。 その測定結果、 並び に混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 4に示した。
表 4 (成形方法(I I): b - P P) アミド系化合物 (A) 脂肪酸金属塩 (B) 混練工程 成形工程 貯蔵弾性率の
T c Te 転移温度 (°c) 曲げ弾性率 添加量 添加量 樹脂温度 樹脂温度
類、 種 類 (。c) (分) (M P a)
(重量部) (重量部) CO (。c) Tsc Tsh
実施例 42 PTC-2 eCHA 0.2 StCa 0.05 240 240 117 2.51 178 212 1350 実施例 43 PTC-2MeCHA 0.2 StMg 0.05 240 240 116 3.35 175 212 1350 実施例 44 PTC-2MeCHA 0.2 StZn 0.05 240 240 117 3:06 176 212 1330 実施例 45 PTC-CHA 0.2 StCa 0.05 240 240 117 1.50 168 206 1310 実施例 46 PTC-2MeCHA [100] 0.2 StCa 0.05 260 260 120 2.91 201 225 1270 実施例 47 PTC-2MeCHA [50] 0.2 StCa 0.05 240 240 118 2.51 156 200 1290 実施例 48 PTC-2MeCHA 0.2 ― ― 240 240 127 0.83 186 212 1360 実施例 49 PTC-CHA 0.2 ― ― 240 240 128 0.77 174 206 1320 実施例 50 PTC-2MeCHA [100] 0.2 ― ― 260 260 127 0.87 204 227 1290 実施例 51 PTC-2MeCHA [50] 0.2 一 ― 240 240 127 0.92 166 200 1300
StCa:ステアリン酸カルシウム
StMg:ステアリン酸マグネシウム
StZn:ステアリン酸亜
表 4の結果から、 以下の事項が明らかである。
(1) 結晶化終了時間
上記 r一 P Pと同様に b— P Pにおいても、成形加工時の樹脂温度(成形温度) に昇温時の貯蔵弾性率の転移温度を越える温度を選択した場合、 成分 (A) と成 分 (B) の比率を制御すること、 特に成分 (B) の比率を高めることにより、 ポ リオレフィン系樹脂の結晶化速度を低減させること (結晶化終了時間を延長させ ること) ができる (実施例 42〜47, 48〜51参照)。
(2) 結晶化温度
上記 r— PPと同様に b— PPにおいても、成形加工時の樹脂温度(成形温度) に昇温時の貯蔵弾性率の転移温度を越える温度を場合、 本発明の結晶化速度制御 組成物は、成分(A)と成分(B)との比率或いはその種類の組み合わせにより、 そのポリオレフィン系樹脂組成物の結晶化温度を低下させることもできる。 (実 施例 42〜47参照)。
(3) 曲げ弾性率
成形加工時の樹脂温度 (成形温度) に昇温時の貯蔵弾性率の転移温度を越える 温度を選択した場合、 本発明のポリオレフィン系樹脂組成物を成形して得られた 成形体は、 後述の比較例 5及び 6に比較して曲げ弾性率が改善されている (実施 例 42〜 51、 比較例 5及び 6参照)。 以下の実施例 5'2〜69は、 成形方法(I) (Tm≤T≤Ts h) についての実 施例である。
実施例 52
(射出) 成形工程の樹脂温度を 200°Cに変え、 且つ、 5 cmx 5 cmx lm mのサイズの試験片に加えて 9 OmmX 10 mm X 4 mmのサイズの試験片を 同様にして得た以外は、 実施例 1と同様に行い、 得られたペレット状ポリオレフ ィン系樹脂組成物の貯蔵弾性率の転移温度、並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を測定した。 その測定結果、 並びに混練 工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 5に示した。 なお、 結晶化 温度及び結晶化終了時間の測定には、 5 cmX 5 cmX l mmの試験片を使用し、 曲げ弾性率の測定には、. 9 O mmX 1 0 mm X 4 mmのサイズの試験片を使用し た。 (以下の実施例 5 3〜 6 9及び比較例 1〜 6においても同じ)。
実施例 5 3及び実施例 5 4
ステアリン酸カルシウムの添加量を表 5記載の添加量に変えた以外は、 実施例 5 2と同様に行い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性 率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性 率及び配向度を測定した。その測定結果、並びに混練工程の樹脂温度及び(射出) 成形工程の樹脂温度を表 5に示した。
実施例 5 5
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 4と同様に行 い、 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 5 6
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 5と同様に行 レ 得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 5 7
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 3 4と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 5 8
(射出) 成形工程の樹脂温度を 2 0 O tに変えた以外は、 実施例 3 5と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂^度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 5 9
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 3 6と同様に 行い、得られたペレツト状ポリオレフィン系榭脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 0
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 4 2と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 1
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 4 3と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 S旨温度を表 5に示した。
実施例 6 2
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 4 4と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 S旨温度を表 5に示した。
実施例 6 3
(射出) 成形工程の樹脂温度を 2 4 0 に変えた以外は、 実施例 1 8と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了間、 曲げ弾性率及び配向度を測 定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂 温度を表 5に示した。
実施例 6 4
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 2 1と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の榭 脂温度を表 5に示した。
実施例 6 5
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 2 2と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 6
(射出) 成形工程の樹脂温度を 1 8 0 °Cに変えた以外は、 実施例 2 3と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 7
(射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 3 9と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 8 (射出) 成形工程の樹脂温度を 2 0 0 °Cに変えた以外は、 実施例 4 8と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の榭脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
実施例 6 9
(射出) 成形工程の樹脂温度を 2 4 0 °Cに変えた以外は、 実施例 3 2と同様に 行い、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに得られた試験片の結晶化温度、 結晶化終了時間、 曲げ弾性率及び配向度を 測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹 脂温度を表 5に示した。
表 5 (成形方法 ( I ): r一 P P, h— P P, b - P P )
脂肪酸 :金属塩
アミド系化合物 (A) 混練工程成形工程 貯蔵弾性率の
( B) T c Te 曲げ弾性率
樹脂 転移温度 (°C) 配向度 添加量 添加量 樹脂温度 樹脂温度 (°C) (分) ( M P a ) 種 類
(重量部) (重量部) (°C) (。C) 1 sc Tsh
実施例 52 PTC-2MeCHA 0.2 StCa 0.05 r-PP 240 200 117 0.76 177 211 1510 2.4 実施例 53 PTC-2MeCHA 0.2 StCa 0.02 r-PP 240 200 117 0.79 181 211 1500 2.3 実施例 54 PTC-2MeCHA 0.2 StCa 0.01 r-PP 240 200 117 0.81 184 211 1480 2.3 実施例 55 PTC-2MeCHA 0.2 StMg 0.05 r-PP 240 200 117 0.80 174 211 1470 2.6 実施例 56 PTC-2MeCHA 0.2 StZn 0.05 r-PP 240 200 117 0.83 176 211 1460 2.6 実施例 57 PTC-2MeCHA 0.2 StCa 0.05 h-PP 240 200 127 0.92 174 211 1890 2.4 実施例 58 PTC-2MeCHA 0.2 StMg 0.05 h-PP 240 200 127 0.95 172 211 1890 2.4 実施例 59 PTC-2MeCHA 0.2 StZn 0.05 h-PP 240 200 127 0.96 172 211 1890 2.4 実施例 60 PTC-2MeCHA 0.2 StCa 0.05 b-PP 240 200 128 0.81 178 212 1600 2.1 実施例 61 PTC-2MeCHA 0.2 StMg 0.05 b-PP 240 200 128 0.75 175 212 1580 2.2 実施例 62 PTC-2MeCHA 0.2 StZn 0.05 b-PP 240 200 128 0.80 176 212 1560 2.2 実施例 63 BTC-2MeCHA 0.15 StCa 0.05 r-PP 280 240 117 0.96 210 257 1440 2.3 実施例 64 PTC-2MeCHA 0.2 ― ― r-PP 240 200 117 0.90 185 211 1450 2:5 実施例 65 PTC-2MeCHA 0.15 ― ― r-PP 240 200 117 0.96 180 207 1460 2.5 実施例 66 PTC-2MeCHA 0.1 ― ― r-PP 240 180 117 1.01 168 200 1460 2.3 実施例 67 PTC-2MeCHA 0.2 ― ― h-PP 240 200 125 1.00 186 214 1860 2.2 実施例 68 PTC-2MeCHA 0.2 ― ― b-PP 240 200 127 0.81 186 212 1570 2.3 実施例 69 BTC-2MeCHA 0.15 ― ― r-PP 280 240 117 0.98 216 257 1420 2.3
StCa:ステアリン酸カルシウム
StMg:ステアリン酸マグネシウム
StZn:ステアリン酸亜鉛
表 5の結果から、 以下の事項が明らかである。
( 1 ) 結晶化終了時間
成形加工時の樹脂温度(成形温度)に、ポリオレフィン系樹脂の融解温度以上、 且つ昇温時の貯蔵弾性率の転移温度以下の温度を選択した場合、 成分 (A) と成 分 (B) の比率を制御すること、 特に成分 (B) の比率を高めることにより、 ポ リオレフィン系榭脂の結晶化速度を高めること (結晶化終了時間を短縮させるこ と) ができる (実施例 5 2〜 5 4、 実施例 6 4 - 6 6参照)。
また、 ステアリン酸カルシウム以外の本発明に係る脂肪酸金属塩によっても、 同様にポリオレフィン系樹脂の結晶化速度を高めること (結晶化終了時間を短縮 させること) ができる (実施例 5 5、 実施例 5 6参照)。
更に、 r一 P P以外の本発明に係るポリオレフィン系樹脂を使用する場合も、 同様に結晶化速度を高めること(結晶化終了時間を短縮させること)ができる(実 施例 5 7〜 6 2、 実施例 6 7及び 6 8参照)。
( 2 ) 結晶化温度
上記効果に加え、 成形加工時の樹脂温度 (成形温度) に、 ポリオレフイン系榭 脂の融解温度以上、 且つ昇温時の貯蔵弾性率の転移温度以下の温度を選択した場 合、 本発明の結晶化速度制御組成物を含有するポリオレフィン系榭脂組成物の結 晶化温度は、 成形方法 (I I) において、 成分 (A):成分 (B) = 1 0 0 : 0であ る本発明の結晶化速度制御組成物を含有するポリオレフィン系樹脂組成物により 達成される結晶化温度と比較して、 殆ど低下が認められない。 即ち、 高い結晶化 速度を保持していることを示している。 (例えば、 r— P Pについては、実施例 5 2〜 5 6、 実施例 6 4〜 6 6, 実施例 2 1〜 2 3参照)
( 3 ) 曲げ弾性率'
成形加工時の樹脂温度(成形温度)に、ポリオレフィン系樹脂の融解温度以上、 且つ昇温時の貯蔵弾性率の転移温度以下の温度を選択した場合、 本発明のポリオ レフイン系棚旨組成物を成形加工して得られた成形体は、 剛性に優れている。 上 記の成形方法 (I I) で得られた成形体と比較しても顕著である (実施例 5 2〜6 9、 実施例 4 2〜 5 1、 比較例 1〜 6参照)。
P T C— 2 M e C HAの他の本発明に係るアミド系化合物においても、 同様に 当該成形体の剛性が向上する (実施例 6 3、 実施例 6 9参照)。
(4) 配向度
成形加工時の樹脂温度(成形温度)が、ポリオレフィン系樹脂の融解温度以上、 昇温時の貯蔵弾性率の転移温度以下の範囲の場合、 本発明のポリオレフィン系樹 脂組成物を成形加工して得られた成形体は、配向度が何れも 2以上を有していた。 一方、 上記の成形方法 (Π) で得られた成形体は 2未満であった (実施例 5 2〜 6 9、 実施例 4 2〜5 1、 比較例 1〜6参照)。 比較例 1
アミド系化合物及び脂肪酸金属塩を用いない他は実施例 1と同様に行い、 結晶 化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及び配向度を測定した。 その測 定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 6に示 した。
比較例 2
ドライブレンド時に、ステアリン酸カルシウム 0 . 0 5重量部を用いた以外は、 比較例 1と同様に行い、 結晶化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及 び配向度を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成 形工程の樹脂温度を表 6に示した。
比較例 3
アミド系化合物及び脂肪酸金属塩を用いない他は実施例 3 4と同様に行い、 結 晶化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及び配向度を測定した。 その 測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 6に 示した。
比較例 4
ドライブレンド時に、ステアリン酸カルシウム 0 . 0 5重量部を用いた以外は、 比較例 3と同様に行い、 結晶化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及 び配向度を測定した。 その測定結果、 並びに混練工程の樹脂温度及び (射出) 成 形工程の樹脂温度を表 6に示した。
比較例 5 アミド系化合物及び脂肪酸金属塩を用いない他は実施例 4 2と同様に行い、 結 晶化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及び 向度を測定した。 その 測定結果、 並びに混練工程の樹脂温度及び (射出) 成形工程の樹脂温度を表 6に 示した。
比較例 6
ドライブレンド時に、ステアリン酸カルシウム 0 . 0 5重量部を用いた以外は、 比較例 5と同様に行い、 結晶化温度、 結晶化終了時間、 ヘイズ値、 曲げ弾性率及 び配向度を測定した。 その測定結果、 並びに混練工程の榭脂温度及び 谢出) 成 形工程の樹脂温度を表 6に示した。
表 6 ( r - P P , h— P P, b - P P) アミド系化合物 (A) 脂肪酸金属塩 (B) 混練工程 成形工程
T c Te ヘイズ値 曲げ弾性率 添加量 添加量 樹脂 樹脂温度 樹脂温度
重 CO (分) (%) ( P a) 配向度 類
(重量部) 1 (重量部) (°c) (。c)
比較例 1 ― ― 一 ― r-PP 240 240 99 >10 74 920 1 .2 比較例 2 一 StCa 0.05 r-PP 240 240 99 >10 74 920 1.2 比較例 3 一 ― ― ― h-PP 240 240 109 >10 66 1180 1.2 比較例 4 一 ― StCa 0.05 h-PP 240 240 109 >10 66 1180 1.2 比較例 5 ― 一 ― 一 b-PP 240 240 109 >10 99 1060 1 .2 比較例 6 ― 一 StCa 0.05 b-PP 240 240 109 >10 99 1060 1 .2
StCa:ステアリン酸カルシウム
更に、実施例及び比較例を挙げて、本発明に係る成形方法(I)及び成形方法(II) に関して詳しく説明するが、 本発明はこれら実施例に限定されるものではない。 また、 いくつかのアミド系化合物の製造例を製造例 1-1〜 1-4に掲げる。
以下の記載において、 実施例 1-1のように、 「1-」 を伴って記載されている実 施例は成形方法(I)に関する実施例であり、 実施例 Π- 1のように、 「11-」 を伴つ て記載されている実施例は成形方法(II)に関する実施例である。
尚、得られたペレツト状ポリオレフィン系樹脂組成物の貯蔵弾性率の転移温度、 並びに本発明のポリオレフィン系樹脂組成物より得られる成形体の曲げ弾性率、
X線回折測定及び配向度を上述の方法と同様に測定し、 評価した。 また、 当該成 形体の耐衝撃性 (デュポン法衝撃強度) を下記の方法により測定し、 評価した。
(9) 耐衝撃性 (デュポン法衝撃強度)
落錘衝撃試験方法 J I S K 7211に準拠して、 23 °Cにおける厚さ 2匪 のシートの 50 %破壊エネルギーを求めた。数値が大きい程、耐衝撃性に優れる。 製造例 1-1
(1) 攪拌機、温度計、冷却管及びガス導入□を備えた 500mlの 4ッロフラ スコに、 1, 2, 3—プロパントリカルボン酸 (PTC) 9. 7 g (0. 055 モル) と N—メチル—2—ピロリドン 100gを秤取り、 窒素雰囲気下、 室温に て攪拌しながら PTCを完全溶解させた。 次に、 2—メチルシクロへキシルアミ ン (トランス体:シス体 = 100 : 0、 GLC組成比) 20. 5 g (0. 18モ ル)、亜リン酸トリフエニル 56. 3 g (0. 18モル)、ピリジン 14. 4 g (0. 18モル) 及び N—メチルー 2—ピロリドン 50 gを加え、 窒素雰囲気下、 攪拌 しながら 100°Cで 4時間反応を行った。 冷却後、 その反応溶液をイソプロピル アルコール 500m 1と水 500m 1との混合液中にゆつくり注ぎ込み、 約 4 0°Cで 1時間攪拌後、 析出した白色沈殿物を濾別した。 更に、 得られた白色固体 を約 40 °Cのィソプロピルアルコール 500 m 1で 2回洗浄した後、 100 °C、 133 P aにて 6時間減圧乾燥した。
得られた乾燥物を乳鉢で粉碎し、 目開き 106 mの標準篩い (J I S Z 8 801規格) に通して、 1, 2, 3—プロパントリ力ルポン酸トリス (2—メチ ルシクロへキシルアミド) (以下、 「PTC— 2Me CHA(100)」という。) 2 0. 3 g (収率 80%) を得た。
製造例 I - 2
2—メチルシクロへキシルァミン (トランス体:シス体 = 100 : 0、 GLC 組成比)に代えて 2—メチルシクロへキシルァミン(トランス体:シス体 =74: 26、 GLC組成比) を用いた以外は製造例 I - 1と同様に行い、 1, 2, 3—プ 口パントリカルポン酸トリス (2—メチルシクロへキシルアミド) (以下、 「PT C-2Me CHA(74)j という。) 18. 8 g (収率 74%) を得た。
尚、 上記のアミド化反応後に回収した未反応 2—メチルシクロへキシルァミン を GLC分析に供したところ、該未反応ァミンのトランス体:シス体の比は 74: 26であり、 原料として使用した 2—メチルシクロへキシルァミンのトランス 体:シス体の比 (74 : 26、 GLC組成比) と一致した。
更に、上記で得られた生成物であるアミド化合物を、 100nCで熱処理しても、 FT— I Rスペクトル、 融点が処理前のそれらと一致することから、 上記アミド 化反応により、 該アミド系化合物を構成する 2—メチルシクロへキシルァミン残 基の立体配置が変化していないことを確認した。
その結果、 本製造例 1の生成物であるアミド化合物において、 トランス配置の 2—メチルシク口へキシルアミン残基とシス配置の 2—メチルシク口へキシルァ ミン残基との比は、 原料 2—メチルシクロへキシルァミンのトランス体とシス体 との比と一致する—ことを確認した。
製造例 1-3
2—メチルシクロへキシルァミン (トランス体:シス体 = 100 : 0、 GLC 組成比)に代えて 2—メチルシクロへキシルァミン(トランス体:シス体 =50 : 50、 GLC組成比) を用いた以外は製造例 1-1と同様に行い、 1, 2, 3—プ 口パントリカルポン酸トリス (2—メチルシクロへキシルアミド) (以下、 「PT C- 2Me CHA(50)j という。) 18. O g (収率 71%) を得た。
また、 製造例卜 2と同様に前記アミド化合物の立体配置を確認したところ、 ァ ミド化合物の卜ランス配置部分とシス配置部分との比が、 原料ァミンのトランス 体とシス体との比と一致することを確認した。 製造例 I - 4 は製造例 I- 1と同様に行い、 1, 2, 3—プロパントリ力ルポン酸トリシクロへ キシルアミド (以下 (以下、 rpTC-CHAj と略記する。) 17. 3 g (収率 75%) を得た。 実施例 I - 1
r一 PP 100重量部に対して、 PTC— 2Me CHA (100) 0. 2重量 部、 テトラキスメチレン一 3— (3, 5—ジ— t一ブチル一4—ヒドロキシフエ ニル) プロピオネート].メタン (チバ 'スペシャルティ 'ケミカルズ社製、 商品 名 「I RGANOX1010」) 0. 05重量部及びテトラキス (2, 4—ジ— t 一ブチルフエニル) ホスファイト (チパ ·スペシャルティ ·ケミカルズ社製、 商 品名 「I RGAFOS 168」) 0. 05重量部を秤取り、 r— PP 100重量部 と共にヘンシェルミキサ一で 1000 r pm、 5分間ドライブレンドした。
次に、前記ドライブレンド物を混練温度 260 °C (樹脂温度)で一軸押出機(L /D = 44 Omm/2 Omm) を用いて溶融混練し、 押し出されたストランドを 水冷し、 そのストランドを切断してペレツト状ポリオレフイン系樹脂組成物を得 た。
このペレツトを用いて、成形温度 220°C (樹脂温度)、金型温度 40°Cで射出 成形して試験片 (長さ 90mm、 幅 10mm、 高さ 4mm) を作製した。
こうして得られた樹脂組成物の Tsc CO 及び Tsh CO 並びに試験片の曲げ 弾性率 (MP a) 及び配向度を表 7に示した。
実施例 1-2
PTC-2Me CHA (100) に代えて P T C— 2 M e CHA (74) を用 いて、混練温度 240 °C及び成形温度 200°Cに変えた以外は実施例ト 1と同様 にして試験片を作製した。こうして得られた樹脂組成物の Tsc CC)及び Tsh CC) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 7に示した。
また、実施例 1-2で得られたポリオレフィン系樹脂組成物の昇温時及び降温時 の貯蔵弾性率の温度依存曲線を図 5に示し、 その微分曲線を図 6に示す。 図 5に おいて、 白丸 (〇) は昇温時の貯蔵弾性率の温度依存曲線であり、 黒丸 (翁) は 降温時の貯蔵弾性率の温度依存曲線である。 同様に、 図 6において、 白丸 (〇) 'は昇温時の貯蔵弾性率の温度依存曲線の微分曲線であり、 黒丸 (會) は降温時の 貯蔵弾性率の温度依存曲線の微分曲線である。
実施例 1-3
PTC-2Me CHA (74) 0. 2重量部を 0. 1重量部及び成形温度を 1 80°Cに変えた以外は実施例 1-2と同様にして試験片を作製した。 こうして得ら れた樹脂組成物の Tsc (°C) 及び Tsh (°C)並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 7に示した。
実施例 I - 4
PTC-2Me CHA (100) に代えて P T C— 2 M e CHA (50) を用 いて、混練温度 240°C及び成形温度 180°Cに変えた以外は実施例 1-1と同様 にして試験片を作製した。こうして得られた樹脂組成物の Tsc (°C)及び Tsh CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 7に示した。
実施例 1-5
PTC-2Me CHA (100) に代えて P T C一 CHAを用いて、 混練温度 240 及び成形温度 180°Cに変えた以外は実施例 1-1と同様にして試験片 を作製した。 こうして得られた樹脂組成物の Tsc (°C) 及び Tsh (°C) 並びに試 験片の曲げ弾性率 (MP a) 及び配向度を表 7に示した。
実施例 I - 6
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05重量部を用いた 以外は実施例 I- 1と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Tsc CO 及び Tsh O 並びに試験片の曲げ弾性率 (MP a) 及び配向度を 表 7に示した。
実施例 I - 7
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05重量部を用いた 以外は実施例 1-2と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Tsc CC) 及び Tsh CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を 表 7に示した。 実施例 I - 8
ドライブレンド時に、 さらにステアリン酸亜鉛 0. 05重量部を用いた以外は 実施例 1-2と同様にして試験片を作製した。 こうして得られた樹脂組成物の Tsc (°C) 及び Tsh CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 7に 示した。
実施例 1-9
ドライブレンド時に、 さらにステアリン酸マグネシウム 0. 05重量部を用い た以外は実施例 I - 2と同様にして試験片を作製した。こうして得られた樹脂組成 物の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度 を表 7に示した。
実施例 1-10
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 1重量部を用いた以 外は実施例 1-2と同様にして試験片を作製した。 こうして得られた樹脂組成物の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 7に示した。
実施例 1-11
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05重量部を用いた 以外は実施例 1-5と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Tsc CO 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を 表 7に示した。
実施例 Π_1
実施例 1-1で調製したペレットを用いて、 成形温度 260°C (樹脂温度)、 金 型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 II - 2
実施例 1-2で調製したペレットを用いて、 成形温度 240 (樹脂温度)、 金 型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 Π- 3
実施例 1-3で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金 型温度 40 °Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 II- 4
実施例 1-4で調製したペレットを用いて、 成形温度 240 (樹脂温度)、 金 型温度 40 °Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 II- 5
実施例 1-5で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金 型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc CO 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 II- 6
実施例 1-6で調製したペレットを用いて、 成形温度 260°C (樹脂温度)、 金 型温度 40 °Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び T§h CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 II - 7
実施例 1-7で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金 型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc CO 及び Tsh CC) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 Π-8
実施例 1-8で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金 型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc CO 及び Tsh CO 並びに試験片の曲げ弾性率 (MP a) 及び 向度を表 8に示した。
実施例 Π-9
実施例 1-9で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金 型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 8に示した。
実施例 Π- 10
実施例 I- 10で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を 表 8に示した。
実施例 Π- 11
実施例 1-11で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Tsc (°C) 及び Tsh (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を 表 8に示した。
表 7 (成形方法 (I): r-PP)
Figure imgf000095_0001
S t Ca :ステアリン酸カルシウム S t Z n :ステアリン酸亜鉛
S t g :ステアリン酸マグネシウム
表 8 (成形方法(I I): r-P P)
Figure imgf000096_0001
S tCa :ステアリン酸カルシゥ厶 S t Z n :ステアリン酸亜鉛
S t g :ステアリン酸マグネシウム
表 7及び表 8カら明らかなように、 成形方法(I I)により得られた成形体の配向 度は 2未満であり、 成形方法 (I) により得られた成形体の配向度は 2以上であ つた。 また、 配向度 2未満の成形体と比較して、 配向度 2以上の成形体の曲げ弾 性率が有意に高いことが判る。
このことから、 本発明に係る成形方法 (I) に従い得られ、 ポリプロピレン樹脂 の結晶ラメラが配向している成形体は、 有意に高い剛性を有することが明らかで ある。 実施例 I- 12
h— PP 100重量部に対して、 PTC— 2Me CHA (100) 0. 2重量 部、 テトラキスメチレン一 3— (3, 5—ジー t一プチルー 4—ヒドロキシフエ ニル) プロピオネート:! メタン (チバ ·スペシャルティ ·ケミカルズ社製: I R GANOX1010 (商品名)) 0. 05重量部及びテトラキス (2, 4—ジー t 一ブチルフエニル) ホスフアイト (チバ ·スペシャルティ ·ケミカルズ社製: I RGAFOS 168 (商品名)) 0. 05重量部を秤取り、 h— PP 100重量部 と共にヘンシェルミキサーで 1000 r pm、 5分間ドライブレンドした。
次に、前記ドライブレンド物を混練温度 260°C (樹脂温度)で一軸押出機(L /D = 44 Omm/2 Omm) を用いて溶融混練し、 押し出されたストランドを 水冷し、そのストランドを切断してペレット状ポリオレフィン樹脂組成物を得た。 このペレットを用いて、成形温度 220X (樹脂温度)、金型温度 40 °Cで射出 成形して試験片を作製した。 こうして得られた樹脂組成物の Tsc (°C) 及び Tsh CO 並びに試験片の曲げ弾性率 (MP a)及び配向度を表 9に示した。
実施例 1-13
PTC-2Me CHA (100) に代えて P T C— 2 M e CHA (74) を用 いて、混練温度 240 °C及び成形温度 200°Cに変えた以外は実施例 I- 12と同 様にして試験片を作製した。 こうして得られた榭脂組成物の Ts c CO 及び T s h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 9に示した。
実施例 I- 14
PTC-2MeCHA (74) 0. 2重量部を 0. 1重量部、 成形温度を 18 0°Cに変えた以外は実施例 I- 13と同様にして試験片を作製した。 こうして得ら れた樹脂組成物の Ts c CO 及び Ts h (。C) びに試験片の曲げ弾性率 (M Pa) 及び配向度を表 9に示した。
実施例 I- 15
PTC- 2Me CHA (100) に代えて P T C— 2 M e CHA (50) を用 いて、混練温度 240°C及び成形温度 180°Cに変えた以外は実施例 I- 12と同 様にして試験片を作製した。 こうして得られた樹脂組成物の Ts c (°C) 及び T s h CO並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 9に示した。
実施例 I- 16
PTC-2MeCHA (100) に代えて P T C— CHAを用いて、 混練温度 240°C及び成形温度 180°Cに変えた以外は実施例 1-12と同様にして試験 片を作製した。 こうして得られた樹脂組成物の Ts c (°C) 及び Ts h (°C) 並 びに試験片の曲げ弾性率 (MP a) 及び配向度を表 9に示した。
実施例 1-17
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-12と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 9に示した。
実施例 I- 18
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-13と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 9に示した。
実施例 I- 19
ドライブレンド時に、 さらにステアリン酸マグネシウム 0. 05量部を用いた 以外は実施例 I- 13と同様にして試験片を作製した。こうして得られた樹脂組成 物の Ts c CC) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配 向度を表 9に示した。
実施例 1-20 ドライブレンド時に、 さらにステアリン酸亜鉛 0. 05量部を用いた以外は実 施例 1-13と同様にして試験片を作製した。 こうして得られた樹脂組成物の Ts c (°C) 及び Ts li (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 9に示した。
実施例 1-21
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-16と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 9に示した。
実施例 II - 12
実施例 1-12で調製したペレットを用いて、 成形温度 260°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 Π- 13
実施例 1-13で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 Π-14 .
実施例 1-14で調製したペレットを用いて、 成形温度 240 (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (榭脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 II- 15
実施例 1-15で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。 実施例 II- 16
実施例 I- 16で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40 °Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CC) 及び Ts h CO並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 II- 17
実施例 1-17で調製したペレツトを用いて、 成形温度 260°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 Π-18
実施例 1-18で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h CO並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 II- 19
'実施例 1-19で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 Π- 20
実施例 I- 20で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 10に示した。
実施例 II-21
実施例 I- 21で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h CO並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 1 0に示した。
表 9 (成形方法 ( I ): h-P P)
Figure imgf000102_0001
S t Ca :ステアリン酸カルシウム S tMg :ステアリン酸マグネシウム S t Z n :ステアリン酸亜鉛
表 1 0 (成形方法 ( I I ): h - P P) アミド系化合物(A) 脂肪酸金属塩(B) 貯蔵弾性率の転移温度混練工程成形工程 成形体 施 添加量 添加量 Tsc Tsh 曲げ弾性
樹脂温度樹脂温度
S 類- 種 類 配向度
(重量部) (重量部) CO (°C) CO (°C) 率
(MPa)
Π-12 PTC-2MeCHA (100) 0.2 . - - 207 229 260 260 1690 1.6
Π-13 PTC-2MeCHA (74) 0.2 - - 186 214 240 240 1690 1.6
Π-14 PTC-2MeCHA (74) 0.1 - - 168 201 240 240 1630 1.6
Π-15 PTC-2MeCHA (50) 0.2 - - 165 197 240 240 1670 1.5
11-16 PTC-CHA 0.2 - - 168 188 240 240 1680 1.3
11-17 PTC-2MeCHA (100) 0.2 StCa 0.05 194 229 260 260 1680 1.7
11-18 PTC-2MeCHA (74) 0.2 StCa 0.05 174 211 240 240 1650 1.5
11-19 PTC-2MeCHA (74) 0.2 StMg 0.05 172 211 240 240 1640 1.6
Π-20 PTC-2MeCHA (74) 0.2 StZn 0.05 172 211 240 240 1660 1.6
11-21 PTC-CHA 0.2 StCa 0.05 163 188 240 240 1650 1.4
S t C a :ステアリン酸カルシウム
S t M :ステアリン酸マグネシウム
S t Z n :ステアリン酸亜鉛
表 9及び表 10から明らかなように、 上記 r一 PPと同様に h— PPにおいて も、 成形方法(Π)により得られた成形体の配向度は 2未満であり、 成形方法 (I) により得られた成形体の配向度は 2以上であった。 また、 配向度 2未満の成形体 と比較して、 配向度 2以上の成形体の曲げ弾性率が有意に高いことが判る。
このことから、本発明に係る成形方法(I)に従い得られ、ポリプロピレン樹脂の結 晶ラメラが配向している成形体は、有意に高い剛性を有することが明らかである。 実施例 1-22
b— PP 100重量部に対して、 PTC— 2MeCHA (100) 0. 2重量 部、 テトラキスメチレン— 3— (3, 5—ジ— t—プチルー 4—ヒドロキシフエ ニル) プロピオネート] メタン (チバ 'スペシャルティ ·ケミカルズ社製: I R GANOX1010 (商品名)) 0. 05重量部及びテトラキス (2, 4—ジ— t 一ブチルフエニル) ホスファイト (チバ ·スペシャルティ ·ケミカルズ社製: I RGAFOS 168 (商品名)) 0. 05重量部を秤取り、 b— PP 100重量部 と共にヘンシェルミキサーで 1000 r pm、 5分間ドライブレンドした。
次に、前記ドライブレンド物を混練温度 260°C (樹脂温度)で一軸押出機(L /D=440mm/2 Omm) を用いて溶融混練し、 押し出されたストランドを 水冷し、そのストランドを切断してぺレット状ポリオレフィン樹脂組成物を得た。 このペレツトを用いて、成形温度 220aC (樹脂温度)、金型温度 40°Cで射出 成形して試験片 (長さ 90mm、 幅 10mm、 高さ 4mm) を作製した。 得られ た樹脂組成物の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 11に示した。
実施例 1-23
PTC-2Me CHA (100) に代えて P T C— 2 M e CHA (74) を用 いて、混練温度 240°C及び成形温度 200°Cに変えた以外は実施例 1-22と同 様にして試験片を作製した。 こうして得られた樹脂組成物の Ts c ( ) 及び T s h CC) 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 11に示した。
実施例 1-24
PTC-2Me CHA (74) 0. 2重量部を 0. 1重量部、 成形温度を 18 0°Cに変えた以外は実施例 1-23と同様にして試験片を作製した。 こうして得ら れた樹脂組成物の T s c (°C) 及び T s (°C) 並びに試験片の曲げ弾性率 (M P a) 及び配向度を表 11に示した。
実施例 1-25
PTC-2Me CHA (100) に代えて P T C— 2 M e CHA (50) を用 いて、混練温度 240°C及び成形温度 180°Cに変えた以外は実施例 1-22と同 様にして試験片を作製した。 こうして得られた樹脂組成物の Ts c (°C) 及び T s h CO並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 11に示した。
実施例 1-26
PTC- 2Me CHA (100) に代えて P T C— CHAを用いて、 混練温度 240°C及び成形温度 180°Cに変えた以外は実施例 1-22と同様にして試験 片を作製した。 こうして得られた樹脂組成物の Ts c (°C) 及び Ts h CC) 並 びに試験片の曲げ弾性率 (MP a) 及び配向度を表 11に示した。
実施例 1-27
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-22と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Ts c CO 及び Ts h CO並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 11に示した。
実施例 1-28
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-23と同様にして試験片を作製した。 こうして得られた樹脂組成物 の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 11に示した。
実施例 1-29
ドライブレンド時に、 さらにステアリン酸マグネシウム 0. 05量部を用いた 以外は実施例 1-23と同様にして試験片を作製した。 こうして得られた樹脂組成 物の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配 向度を表 11に示した。
実施例 1-30 . ドライブレンド時に、 · さらにステアリン酸亜鉛 0. 05量部を用いた以外は実 施例 1-23と同様にして試験片を作製した。 こうして得られた樹脂組成物の T s c CC) 及び Ts h CO 並びに試験片の曲げ弾性率 (MP a) 及び配向度を表 11に示した。
実施例 1-31
ドライブレンド時に、 さらにステアリン酸カルシウム 0. 05量部を用いた以 外は実施例 1-26と同様にして試験片を作製した。 こうして得られたポリオレフ ィン系樹脂組成物の T s c CO及び T s h CO並びに試験片の曲げ弾性率(M Pa) 及び配向度を表 11に示した。
実施例 II- 22
実施例 1-22で調製したペレツトを用いて、 成形温度 260°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h CO 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II- 23
実施例 1-23で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II-24 '
実施例 1-24で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II- 25
実施例 1-25で調製したペレツ卜を用いて、 成形、温度 240 (樹脂温度)、 金型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CO 及び Ts h CO 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。 実施例 Π- 26
実施例 I- 26で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II- 27
実施例 1-27で調製したペレットを用いて、 成形温度 260°C (樹脂温度)、 金型温度 40 °Cで射出成形して試験片を作製した。 上記ペレツ卜 (樹脂組成物) の Ts c CO 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II-28
実施例 1-28で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40 °Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h CO 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II- 29
実施例 1-29で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40 で射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c (°C) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 II- 30
実施例 I- 30で調製したペレットを用いて、 成形温度 240°C (樹脂温度)、 金型温度 40°Cで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c ( ) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 12に示した。
実施例 Π-31
実施例 I- 31で調製したペレットを用いて、 成形温度 240 (樹脂温度)、 金型温度 40でで射出成形して試験片を作製した。 上記ペレット (樹脂組成物) の Ts c CC) 及び Ts h (°C) 並びに試験片の曲げ弾性率 (MP a) 及び配向 度を表 1 2に示した。
表 Ί Ί (成形方法(I): b-P P)
Figure imgf000109_0001
S t Ca :ステアリン酸カルシウム S tMg :ステアリン酸マグネシウム S t Z n :ステアリン酸亜鉛
表 1 2 (成形方法(I I) : b-P P)
Figure imgf000110_0001
S t Ca :ステアリン酸カルシウム S tMg :ステアリン酸マグネシウム S t Z n :ステアリン酸亜鉛
表 1 1及び表 1 2から明らかなように、 上記 r— P Pと同様に b— P Pにおい ても、成形方法(I I)により得られた成形体の配向度は 2未満であり、成形方法(I) により得られた成形体の配向度は 2以上であった。 また、 配向度 2未満の成形体 と比較して、 配向度 2以上の成形体の曲げ弾性率が有意に高いことが判る。
このことから、本発明に係る成形方法(I)に従い得られ、ポリプロピレン樹脂の結 晶ラメラが配向している成形体は、有意に高い剛性を有することが明らかである。 実施例 1- 3 2
実施例 1- 2 8で調製したペレットを用いて、 成形温度 2 0 0 (樹脂温度)、 金型温度 4 0 °Cで射出成形して耐衝撃性試験用の試験片 (厚さ 2 mmのシー卜) を作製した。 耐衝撃性試験の評価結果を表 1 3に示した。
実施例 I I- 3 2
実施例 1- 2 8で調製したペレットを用いて、 成形温度 2 4 0 °C (樹脂温度)、 金型温度 4 0 °Cで射出成形して耐衝撃性試験用の試験片を作製した。 耐衝撃性試 験の評価結果を表 1 3に示した。
比較例 7
比較例 6で調製したペレツトを用いて、成形温度 2 0 0 °C (樹脂温度)、金型温 度 4 0 °Cで射出成形して耐衝撃性試験用の試験片を作製した。 耐衝撃性試験の評 価結果を表 1 3に示した。
(成形方法(1)、 成形方法(II) : b-P P)
Figure imgf000112_0001
StCa:ステアリン酸カルシウム
表 1 3から、上述の b'— P Pを用いて成形方法( I )により得られた成形体は、 曲げ弾性率が有意に向上するのみならず、 耐衝撃' [まも同時に有意に向上すること が認められる。 産業上の利用可能性 本発明のポリオレフィン系樹脂組成物は、 結晶化速度及び結晶化温度を制御す ることができるため、 射出成形、 フィルム成形、 ブロー成形、 押出成形等に好適 に用いることができる。 また、 該ポリオレフイン系樹脂組成物を成形して得られ た成形体は、 未分散物が少なく、 透明性に優れるため医療用器具類、 食品 '植物 等の包装物、 各種ケース類、 食品包装容器、 電子レンジ用容器、 雑貨、 文具、 電 気 ·機械部品、 自動車用部品等の素材として用いることができる。

Claims

請 求 の 範 囲
1. (A) 一般式 (1)
R1-f CONHR2) k (1)
[式中、 R1は、 1, 2, 3—プロパントリカルボン酸又は 1, 2, 3, 4ーブ タンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なって、 シク 口へキシル基又は 1個の炭素数 1〜: L 0の直鎖状若しくは分岐鎖状のアルキル基 で置換されたシクロへキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 (2)
(R3— COO†-nM (2)
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 32 の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除いて得ら れる残基を表す。 nは、 1又は 2の整数を表し、 n=2の場合、 2個の R 3は同 一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。]
で表される少なくとも一種の脂肪酸金属塩を含有し、
成分 (A):成分 (B) の重量比が、 100 : 0〜30 : 70であるポリオレフィ ン系樹脂の結晶化速度制御組成物。
2. 成分 (A):成分 (B) の重量比が、 95 : 5〜30 : 70である請求項 1に 記載の組成物。
3. 一般式 (1) における 3個又は 4個の R2が、 同一又は異なって、 シクロへキ シル基、又は 1個の炭素数;!〜 4のアルキル基で置換されたシクロへキシル基 である請求項 1に記載の組成物。
4. 一般式 (1) における 3個又は 4個の R2が、 同一又は異なって、 シクロへキ シル基又は 2—メチル基、 3—メチル基若しくは 4—メチル基で置換されたシ クロへキシル基である請求項 1に記載の組成物。
5. 一般式 (1) における R1が 1, 2, 3—プロパントリカルボン酸から全ての 力ルポキシル基を除いて得られる残基であり、 kが 3である請求項 1に記載の 組成物。
6. 一般式 (2) における Mが、 アルカリ金属、 アルカリ土類金属及び亜鉛から なる群より選ばれる少なくとも 1種の金属である請求項 1に記載の組成物。
7. —般式 (2) における R3が、 分子内に 1個以上の水酸基を有していてもよい 炭素数 10〜18の飽和若しくは不飽和の脂肪族モノカルボン酸からカルボ キシル基を除いて得られる残基である請求項 1に記載の組成物。
8. 脂肪族モノカルボン酸が、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ステ アリン酸、ォレイン酸及び 12—ヒドロキシステアリン酸からなる群より選ば れる少なくとも 1種である請求項 Ίに記載の組成物。
9. ポリオレフイン系樹脂の成形時のポリオレフイン系樹脂の結晶化速度を制御 する方法であって、
(A) 一般式 (1)
RHCONHR2)
Figure imgf000115_0001
(1)
[式中、 R1は、 1, 2, 3—プロパントリカルボン酸又は 1, 2, 3, 4一, ブタンテトラカルボン酸から全てのカルボキシル基を除いて得られる残基を 表す。 kは 3又 4の整数を表す。 3個又は 4個の R2は互いに同一又は異なつ て、 シクロへキシル基又は 1個の炭素数 1〜 10の直鎖状若しくは分岐鎖状の アルキル基で置換されたシクロへキシル基を表す。] で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 ( 2 )
Figure imgf000116_0001
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 3 2の飽和若しくは不飽和の脂肪族モノ力ルポン酸から力ルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R 3は同一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。] で表される少なくとも一種の脂肪酸金属塩を含有し、 成分 (A):成分 (B) の重量比が 1 0 0: 0〜3 0 : 7 0であるポリオレフィン系榭脂結晶化速度制 御組成物を該ポリオレフイン系樹脂に配合するか、 又は、
上記成分(A) と成分(B) とを、 同時に又は別々に、 成分(A):成分(B) の重量比が 1 0 0: 0〜3 0 : 7 0となるように、 該ポリオレフイン系樹脂に 配合することにより、
ポリオレフイン系樹脂組成物を得ること、 及び
該榭脂組成物を成形すること
を含む方法。
10. 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0 : 7 0である請求項 9 に記載の方法。
11. 樹脂組成物を、 昇温時の貯蔵弾性率の転移温度を超える樹脂温度で成形す る請求項 9に記載の方法。
12. 樹脂組成物を、 ポリオレフイン系樹脂の融解温度以上であって、 且つ、 昇 温時の貯蔵弾性率の転移温度以下の樹脂温度で成形する請求項 9に記載の方 法。
13. (A) 一般式 ( 1 ) R1- CONHR2) (1)
[式中、 R 1は、 1, 2, 3—プロパントリカルボン酸又は 1 , 2, 3, 4 —ブタンテトラカルボン酸から全てのカルボキシル基を除いて得られる残基 を表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異な つて、シクロへキシル基又は 1個の炭素数 1〜 1 0の直鎖状若しくは分岐鎖状 のアルキル基で置換されたシク口へキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 ( 2 )
Figure imgf000117_0001
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 3
2の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R 3は同一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。] で表される少なくとも一種の脂肪酸金属塩を、 成分 (A):成分 (B ) の重量 比が 1 0 0 : 0〜3 0: 7 0の割合で含有する組成物の、 ポリオレフィン系樹 脂の成形時のポリオレフイン系樹脂の結晶化速度を制御するための使用。
14. 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0 : 7 0である請求項 1 3に記載の使用。
15. (A) 一般式 ( 1 )
R CONHR2)
Figure imgf000117_0002
(1)
[式中、 R 1は、 1, 2, 3—プロパントリカルボン酸又は 1 , 2 , 3, 4一 ブタンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を 表す。 kは 3又 4の整数を表す。 3個又は 4個の R 2は互いに同一又は異なつ て、 シク口へキシル基又は 1個の炭素数 1〜 1 0の直鎖状若しくは分岐鎖状の アルキル基で置換されたシクロへキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 ¾び
(B) 一般式 ( 2 )
(R3— COO)-nM (2)
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2の飽和若しくは不飽和の脂肪族モノ力ルポン酸からカルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R 3は同一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。 ] で表される少なくとも一種の脂肪酸金属塩を含有し、 成分 (A):成分 (B) の重量比が 1 0 0: 0〜3 0: 7 0であるポリオレフィン系樹脂結晶化速度制 御組成物をポリオレフィン系榭脂に配合するか、 又は、
上記成分 (A) と成分 (B) とを、 同時にまたは別々に、 成分 (A) :成分 (B) の重量比が 1 0 0 : 0〜3 0 : 7 0となるように、 ポリオレフイン系榭 脂に配合することにより、
ポリオレフイン系樹脂組成物を得ること、 及び
該樹脂組成物を成形すること
を含むポリオレフィン系樹脂成形体の製造方法。
16. 成分 (A):成分 (B) の重量比が、 9 5 : 5〜3 0 : 7 0である請求項 1 5に記載の製造方法。
17. 樹脂組成物を、 昇温時の貯蔵弾性率の転移温度を超える樹脂温度で成形す る請求項 1 5に記載の製造方法。 ,
18. 樹脂組成物を、 ポリオレフイン系樹脂の融解温度以上であって、 且つ、 昇 温時の貯蔵弾性率の転移温度以下の樹脂温度で成形することを特徴とする請 求項 1 5に記載の製造方法。
19. 一般式 (1— P )
Figure imgf000119_0001
[式中、 R IPは、 1, 2, 3—プロパントリカルボン酸から全てのカルポキシ ル基を除いて得られる残基を示し、 3個の R2Pは、 同一又は相異なって、 シク 口へキシル基を示すか又は 1個の炭素数 1〜4の直鎖状若しくは分岐鎖状の アルキル基で置換されたシクロへキシル基を示す。]
で表される少なくとも 1種のアミド系化合物の繊維状粒子により形成された 網目構造を含む溶融ポリオレフィン系樹脂組成物を、該網目構造を構成する繊 維状粒子が溶解又は溶融しない温度条件で、成形する請求項 1 8に記載の製造 法。
20. (a) —般式 (1— p ) で表される少なくとも 1種のアミド系化合物を溶融 ポリオレフィン系樹脂に溶解して溶融混合物を得る工程、
(b) 該溶融混合物を、降温時の貯蔵弾性率の転移温度以下に冷却して、一般 式(1一 P ) で表される少なくとも 1種のアミド系化合物の繊維状粒子により 形成される網目構造を含むポリオレフィン系樹脂組成物を得る工程、 及び
(c) 該ポリオレフィン系榭脂組成物を、ポリオレフィン系樹脂の溶融温度以 上であって、 且つ、 昇温時の貯蔵弾性率の転移温度以下の樹脂温度で成形する 工程
を備えている請求項 1 9に記載の製造法。
21. 上記ポリオレフィン系樹脂組成物が、 ペレツトの形態にある請求項 2 0に 記載の製造法。
22. 上記ポリオレフイン系樹脂組成物が、 更に、 一般式 (2 )
(R3—COO n M (2) [式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜 3 2の飽和若しくは不飽和の脂肪族モノカルボン.酸から力ルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 nが 2の場合、 2個の R3は同一又は相異なっていてもよい。 Mは 1価又は 2価の金属を表す。] で表される少なくとも 1種の脂肪酸金属塩を含有する請求項 1 9に記載の製 造法。
23. 上記繊維状粒子により形成される網目構造を含むポリオレフィン系樹脂組 成物を、射出工程又は押し出し工程を含む成形方法により成形する請求項 1 9 に記載の製造法。
24. 前記射出工程又は押し出し工程を含む成形方法が、 射出成形、 押し出し成 形、 射出ブロー成形、 射出押出プロ一成形、 射出圧縮成形、 押し出しブロー成 形、押し出しサーモフォーム成形又は溶融紡糸である請求項 2 3に記載の製造 法。
25. 上記ポリオレフイン系樹脂が、 プロピレンホモポリマー及びプロピレンコ ポリマーから選ばれる少なくとも 1種である請求項 1 5に記載の製造法。
26. 請求項 1 8に記載のポリオレフイン系樹脂成形体の製造法により得られ、 広角 X線回折により求められる (0 4 0 ) 反射強度の (1 1 0 ) 反射強度に対 する比で表される配向度が 2以上であるポリオレフイン系樹脂成形体。
27. ポリオレフイン系樹脂、
(A) 一般式 ( 1 )
R CONHR2) (1)
[式中、 R 1は、 1, 2 , 3 _プロパントリカルボン酸又は 1 , 2, 3 , 4一 ブ夕ンテトラカルボン酸から全ての力ルポキシル基を除いて得られる残基を 表す。 kは 3又 4の整数を表す。 3個又は 4個の R2は互いに同一又は異なつ て、シク口へキシル基又は 1個の炭素数 1〜 19の直鎖状若しくは分岐鎖状の アルキル基で置換されたシク口へキシル基を表す。]
で表される少なくとも一種のアミド系化合物、 及び
(B) 一般式 (2)
(R3— COOtnM (2)
[式中、 R3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 n=2の場合、 2個の R 3は同一又は異なっていてもよい。 Mは 1価又は 2価の金属を表す。] で表される少なくとも一種の脂肪酸金属塩を、 成分 (A):成分 (B) の重量 比が、 1 00 : 0〜 30 : 7 0の比率の範囲で含有し、 広角 X線回折により求 められる (040) 反射強度の (1 1 0) 反射強度に対する比で表される配向 度が 2以上であるポリオレフィン系樹脂成形体。
28. ポリオレフイン系樹脂、 及び
(a) 一般式 (1-P)
R1 ( CONHR2P)3 (1-p)
[式中、 RIPは、 1, 2, 3—プロパントリカルボン酸から全てのカルボキシ ル基を除いて得られる残基を示し、 3個の R2Pは、 同一又は相異なって、 シク 口へキシル基を示すか又は 1個の炭素数 1〜 4の直鎖状若しくは分岐鎖状の アルキル基で置換されたシクロへキシル基を示す。] で表される少なくとも 1 種のアミド系化合物、 又は、
(b) 上記一般式(1— p)で表される少なくとも 1種のアミド系化合物及び 一般式 (2) (R3— COOtn M (2)
[式中、 R 3は、 分子内に 1個以上の水酸基を有していてもよい炭素数 8〜3 2の飽和若しくは不飽和の脂肪族モノカルボン酸から力ルポキシル基を除い て得られる残基を表す。 nは、 1又は 2の整数を表し、 n = 2の場合、 2個の R3は同一又は相異なっていてもよい。 Mは 1価又は 2価の金属を表す。] で表される少なくとも 1種の脂肪酸金属塩
を含有し、
広角 X線回折により求められる (0 4 0 ) 反射強度の (1 1 0 ) 反射強度に 対する比で表される配向度が 2以上であるポリオレフィン系榭脂成形体。
29. ポリオレフィン系樹脂及び請求項 1に記載の結晶化速度制御組成物を含有 するポリオレフィン系榭脂組成物。
30. ポリオレフィン系樹脂 1 0 0重量部に対し、 結晶化速度制御組成物を 0 .
0 1〜 1 0重量部含有する請求項 2 9に記載のポリオレフィン系樹脂組成物。
31. 請求項 2 9に記載のポリオレフイン系樹脂組成物を成形して得ることがで きるポリオレフィン系樹脂成形体。
PCT/JP2004/019701 2003-12-26 2004-12-22 ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体 WO2005063874A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0418175-1A BRPI0418175A (pt) 2003-12-26 2004-12-22 composição e processo para controle de taxa de cristalização de resina baseada em poliolefina, composição de resina e produto moldado de resina
US10/583,000 US7723413B2 (en) 2003-12-26 2004-12-22 Method and composition for control of crystallization rate of polyolefin resin, resin composition and resin molding
EP04808052A EP1715000B1 (en) 2003-12-26 2004-12-22 Method and composition for control of crystallization rate of polyolefin resin, resin composition and resin molding
CN2004800389531A CN1898317B (zh) 2003-12-26 2004-12-22 用于控制聚烯烃类树脂结晶速度的组合物和方法、树脂组合物和树脂成型品
AT04808052T ATE460457T1 (de) 2003-12-26 2004-12-22 Verfahren und zusammensetzung zur steuerung der kristallisationsrate von polyolefinharz, harzzusammensetzung und harzformkörper
DE602004025980T DE602004025980D1 (de) 2003-12-26 2004-12-22 Verfahren und zusammensetzung zur steuerung der kristallisationsrate von polyolefinharz, harzzusammensetzung und harzformkörper
JP2005516714A JP4835159B2 (ja) 2003-12-26 2004-12-22 ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体
KR1020067014976A KR101154564B1 (ko) 2003-12-26 2004-12-22 폴리올레핀계 수지의 결정화 속도 제어를 위한 조성물 및방법, 수지 조성물 및 수지 성형체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-432138 2003-12-26
JP2003432138 2003-12-26
JP2004169266 2004-06-07
JP2004-169266 2004-06-07

Publications (1)

Publication Number Publication Date
WO2005063874A1 true WO2005063874A1 (ja) 2005-07-14

Family

ID=34742132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019701 WO2005063874A1 (ja) 2003-12-26 2004-12-22 ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体

Country Status (11)

Country Link
US (1) US7723413B2 (ja)
EP (2) EP2083045A1 (ja)
JP (1) JP4835159B2 (ja)
KR (1) KR101154564B1 (ja)
CN (1) CN1898317B (ja)
AT (1) ATE460457T1 (ja)
BR (1) BRPI0418175A (ja)
DE (1) DE602004025980D1 (ja)
SA (1) SA04250433B1 (ja)
TW (1) TW200535185A (ja)
WO (1) WO2005063874A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063484A (ja) * 2005-09-01 2007-03-15 New Japan Chem Co Ltd 新規なポリプロピレン樹脂組成物、該組成物を用いたシート又はフィルム成形体及びその製造方法
JP2007092020A (ja) * 2005-09-01 2007-04-12 New Japan Chem Co Ltd ブロー成形用ポリプロピレン樹脂組成物、該組成物を用いたブロー成形品及びその製造方法
JP2007231134A (ja) * 2006-02-28 2007-09-13 New Japan Chem Co Ltd 改良されたポリプロピレン樹脂組成物及びその成形体
WO2007107579A1 (en) * 2006-03-21 2007-09-27 Basell Poliolefine Italia S.R.L. A controlled nucleated polymer composition
WO2012063814A1 (ja) * 2010-11-10 2012-05-18 株式会社Adeka ポリプロピレン系樹脂組成物
WO2019082930A1 (ja) * 2017-10-25 2019-05-02 株式会社Adeka 結晶化遅延剤、これを含有する組成物、オレフィン系樹脂組成物、その成形品、およびオレフィン樹脂の結晶化の遅延方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674447B1 (en) * 2003-10-17 2013-05-08 New Japan Chemical Co., Ltd. Amide mixtures, polyolefin resin compositions, and polyolefin resin molded products
US20120028006A1 (en) * 2009-01-31 2012-02-02 New Japan Chemical Co., Ltd. Polypropylene resin molded article
US9102811B2 (en) * 2011-05-10 2015-08-11 Canon Kabushiki Kaisha Pigment dispersion, ink composition including pigment dispersion, and color filter yellow resist composition including pigment dispersion
JP5882603B2 (ja) * 2011-05-26 2016-03-09 キヤノン株式会社 顔料分散体、イエロートナー
US9580575B2 (en) 2013-09-23 2017-02-28 Milliken & Company Polyethylene articles
US9200144B2 (en) 2013-09-23 2015-12-01 Milliken & Company Thermoplastic polymer composition
US9120914B2 (en) 2013-09-23 2015-09-01 Milliken & Company Thermoplastic polymer composition
US9193845B2 (en) 2013-09-23 2015-11-24 Milliken & Company Thermoplastic polymer composition
US9200142B2 (en) 2013-09-23 2015-12-01 Milliken & Company Thermoplastic polymer composition
US10138351B2 (en) 2014-10-15 2018-11-27 Bridgestone Corporation Rubber compositions and uses thereof
WO2016061300A1 (en) 2014-10-15 2016-04-21 Bridgestone Corporation Improved rubber compositions and uses thereof
KR101674609B1 (ko) * 2015-05-07 2016-11-09 롯데케미칼 주식회사 폴리올레핀 수지 단일칩 제조방법 및 폴리올레핀 수지 단일칩
WO2020176702A1 (en) * 2019-02-28 2020-09-03 Fina Technology, Inc. Clarified polypropylene for long term color performance
ES2973222T3 (es) 2019-12-12 2024-06-19 Milliken & Co Compuestos de trisamida y composiciones que comprenden los mismos
CN117756662A (zh) 2019-12-12 2024-03-26 美利肯公司 三酰胺化合物和包含所述三酰胺化合物的组合物
WO2022132455A1 (en) 2020-12-14 2022-06-23 Milliken & Company Trisamide compounds and compositions comprising the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261447A (ja) * 1991-02-14 1992-09-17 Asahi Denka Kogyo Kk 透明性の改善されたポリオレフィン系樹脂組成物
JPH06192496A (ja) 1992-10-22 1994-07-12 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH06234890A (ja) * 1993-02-08 1994-08-23 New Japan Chem Co Ltd ポリエチレン系樹脂組成物
JPH07242610A (ja) 1994-03-07 1995-09-19 New Japan Chem Co Ltd 新規なアミド系化合物
JPH07278374A (ja) 1994-04-06 1995-10-24 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08100088A (ja) 1994-09-29 1996-04-16 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08157640A (ja) * 1994-10-04 1996-06-18 New Japan Chem Co Ltd 結晶性合成樹脂組成物
JPH10273569A (ja) * 1997-03-28 1998-10-13 Grand Polymer:Kk ポリプロピレン系樹脂組成物
JPH10279739A (ja) * 1997-04-08 1998-10-20 New Japan Chem Co Ltd ポリオレフィン樹脂用核剤組成物並びにポリオレフィン樹脂組成物
JPH11228707A (ja) * 1997-08-07 1999-08-24 Fina Technol Inc シンジオタクテイツクポリプロピレンsPPが向上したTcを持つように結晶化速度と結晶化温度を向上させる方法、それから作られた製品、sPPが含むセルII型構造物の量が増えるようにsPP中のセルII型構造含有量を高くする方法、それから作られた製品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249031A1 (en) * 2001-09-12 2004-12-09 Kiyoshi Sadamitsu Polypropylene resin moldings and process for production thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261447A (ja) * 1991-02-14 1992-09-17 Asahi Denka Kogyo Kk 透明性の改善されたポリオレフィン系樹脂組成物
JPH06192496A (ja) 1992-10-22 1994-07-12 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH06234890A (ja) * 1993-02-08 1994-08-23 New Japan Chem Co Ltd ポリエチレン系樹脂組成物
JPH07242610A (ja) 1994-03-07 1995-09-19 New Japan Chem Co Ltd 新規なアミド系化合物
JPH07278374A (ja) 1994-04-06 1995-10-24 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08100088A (ja) 1994-09-29 1996-04-16 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08157640A (ja) * 1994-10-04 1996-06-18 New Japan Chem Co Ltd 結晶性合成樹脂組成物
JPH10273569A (ja) * 1997-03-28 1998-10-13 Grand Polymer:Kk ポリプロピレン系樹脂組成物
JPH10279739A (ja) * 1997-04-08 1998-10-20 New Japan Chem Co Ltd ポリオレフィン樹脂用核剤組成物並びにポリオレフィン樹脂組成物
JPH11228707A (ja) * 1997-08-07 1999-08-24 Fina Technol Inc シンジオタクテイツクポリプロピレンsPPが向上したTcを持つように結晶化速度と結晶化温度を向上させる方法、それから作られた製品、sPPが含むセルII型構造物の量が増えるようにsPP中のセルII型構造含有量を高くする方法、それから作られた製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chemistry and Chemical Industry", vol. 57, 2004, CHEMICAL SOCIETY OF JAPAN

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063484A (ja) * 2005-09-01 2007-03-15 New Japan Chem Co Ltd 新規なポリプロピレン樹脂組成物、該組成物を用いたシート又はフィルム成形体及びその製造方法
JP2007092020A (ja) * 2005-09-01 2007-04-12 New Japan Chem Co Ltd ブロー成形用ポリプロピレン樹脂組成物、該組成物を用いたブロー成形品及びその製造方法
JP2007231134A (ja) * 2006-02-28 2007-09-13 New Japan Chem Co Ltd 改良されたポリプロピレン樹脂組成物及びその成形体
WO2007107579A1 (en) * 2006-03-21 2007-09-27 Basell Poliolefine Italia S.R.L. A controlled nucleated polymer composition
WO2012063814A1 (ja) * 2010-11-10 2012-05-18 株式会社Adeka ポリプロピレン系樹脂組成物
WO2019082930A1 (ja) * 2017-10-25 2019-05-02 株式会社Adeka 結晶化遅延剤、これを含有する組成物、オレフィン系樹脂組成物、その成形品、およびオレフィン樹脂の結晶化の遅延方法

Also Published As

Publication number Publication date
TW200535185A (en) 2005-11-01
EP2083045A1 (en) 2009-07-29
SA04250433B1 (ar) 2010-01-20
JP4835159B2 (ja) 2011-12-14
KR101154564B1 (ko) 2012-06-08
TWI359842B (ja) 2012-03-11
US20070142514A1 (en) 2007-06-21
KR20070007057A (ko) 2007-01-12
US7723413B2 (en) 2010-05-25
EP1715000A4 (en) 2007-01-24
EP1715000B1 (en) 2010-03-10
JPWO2005063874A1 (ja) 2007-07-19
BRPI0418175A (pt) 2007-04-27
CN1898317B (zh) 2010-11-24
ATE460457T1 (de) 2010-03-15
EP1715000A1 (en) 2006-10-25
DE602004025980D1 (de) 2010-04-22
CN1898317A (zh) 2007-01-17

Similar Documents

Publication Publication Date Title
WO2005063874A1 (ja) ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体
JP5239869B2 (ja) 新規なポリオレフィン系樹脂組成物及びその樹脂成形体
JP3826187B2 (ja) ポリオレフィン用改質剤
KR100842164B1 (ko) 디아세탈 조성물, 상기 조성물을 포함하는 폴리올레핀용핵제, 상기 디아세탈 조성물을 포함하는 폴리올레핀 수지조성물, 상기 수지 조성물의 제조법 및 성형체
EP4073029B1 (en) Trisamide compounds and compositions comprising the same
JP4792973B2 (ja) アミド系化合物、ポリオレフィン樹脂組成物及び成形体
US20200095397A1 (en) Additive composition and method for producing a polymer composition using the same
JP4244806B2 (ja) ポリプロピレン系樹脂成形体及びその製造方法
JP5794145B2 (ja) アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法
JP2007022924A (ja) ジアセタールから発生する臭気及び味の移行性抑制剤及び該抑制剤を含むジアセタール組成物
JP5861713B2 (ja) アミド化合物の結晶化を制御する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JP3921750B2 (ja) ロジン系分子結晶及びポリオレフィン樹脂用核剤並びにポリオレフィン樹脂組成物とその成形体
JP5266622B2 (ja) 新規なポリオレフィン系樹脂組成物及びその樹脂成形体
JP5525830B2 (ja) ポリ乳酸樹脂組成物
JPH11130964A (ja) ロジン系ガラス化物及びポリオレフィン樹脂用核剤並びにポリオレフィン樹脂組成物とその成形体
JP2004231707A (ja) 芳香族カルボン酸金属塩組成物、該組成物を含むポリオレフィン樹脂組成物及びその成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038953.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007142514

Country of ref document: US

Ref document number: 3397/DELNP/2006

Country of ref document: IN

Ref document number: 10583000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005516714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004808052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067014976

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004808052

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014976

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0418175

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10583000

Country of ref document: US