WO2005061855A1 - Gasturbinenbauteil - Google Patents

Gasturbinenbauteil Download PDF

Info

Publication number
WO2005061855A1
WO2005061855A1 PCT/DE2004/002706 DE2004002706W WO2005061855A1 WO 2005061855 A1 WO2005061855 A1 WO 2005061855A1 DE 2004002706 W DE2004002706 W DE 2004002706W WO 2005061855 A1 WO2005061855 A1 WO 2005061855A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
turbine component
metal foam
component according
carrier
Prior art date
Application number
PCT/DE2004/002706
Other languages
English (en)
French (fr)
Inventor
Reinhold Meier
Erich Steinhardt
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to US10/582,930 priority Critical patent/US7775766B2/en
Priority to EP04802912A priority patent/EP1702138B1/de
Priority to CA002547619A priority patent/CA2547619A1/en
Priority to DE502004003916T priority patent/DE502004003916D1/de
Publication of WO2005061855A1 publication Critical patent/WO2005061855A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/612Foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a gas turbine component, namely a static gas turbine component.
  • titanium alloys titanium alloys
  • nickel alloys also called super alloys
  • high-strength steels are used, for example, for compressor housings and turbine housings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • As a production method for gas turbine components made of titanium alloys, nickel alloys or other alloys, investment casting and forging are primarily known from the prior art. All highly stressed gas turbine components, such as components for a compressor, are forgings. Components for a turbine, however, are usually designed as investment castings.
  • MMC materials metal matrix composite materials
  • high-strength fibers are embedded in the metal material.
  • the production of gas turbine components from such MMC materials is complex and therefore expensive.
  • the mass of the static Gas turbine components affect the total weight of a gas turbine, in particular an aircraft engine.
  • the present invention is based on the problem of proposing a new type of static gas turbine component.
  • the static gas turbine component is at least partially formed from a metal foam.
  • metal foams enables a cost-effective alternative to MMC materials and significant weight savings.
  • 1 shows a block diagram to illustrate a method for producing gas turbine components according to the invention
  • 2 shows a gas turbine component according to the invention, designed as a housing structure, according to a first exemplary embodiment of the invention, in a highly schematic manner
  • FIG. 3 shows a gas turbine component according to the invention, designed as a housing structure, according to a second exemplary embodiment of the invention, in a highly schematic form
  • FIG. 4 shows a gas turbine component according to the invention, designed as a housing structure, according to a third exemplary embodiment of the invention, in a highly schematic manner
  • FIG. 5 shows a gas turbine component according to the invention, designed as an inlet lining, according to a further exemplary embodiment of the invention, in a highly schematic representation;
  • FIG. 6 shows a gas turbine component according to the invention, embodied as an inlet lining, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 7 shows a gas turbine component according to the invention, designed as an inlet lining, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 8 shows a gas turbine component according to the invention, embodied as an inlet lining, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 9 shows a gas turbine component according to the invention, designed as a pipeline system, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 10 shows a gas turbine component according to the invention, designed as a pipeline system, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 12 e shows a gas turbine component according to the invention, designed as a pipeline system, according to a further exemplary embodiment of the invention, in a highly schematic representation
  • FIG. 13 shows a gas turbine component according to the invention, designed as a pipeline system, according to a further exemplary embodiment of the invention, in a highly schematic illustration.
  • FIGS. 1 to 13 each showing gas turbine components according to the invention in a highly schematic manner.
  • steps should be taken beforehand with reference to FIG a preferred manufacturing method for static gas turbine components made of metal foam are described.
  • An inventive static gas turbine component for an aircraft engine is such that a metal ⁇ be provided a blowing agent powder and in a second step 1 1 in a first step 10.
  • the metal powder provided is a metal powder based on an aluminum alloy or titanium alloy or nickel alloy. It is also possible to use metal powder based on a cobalt alloy or an iron alloy. Metal powders made of intermetallic titanium-aluminum alloys can also be used. Titanium hydride is provided in particular as a blowing agent.
  • the metal powder provided and the blowing agent provided are mixed in a step 12.
  • the resulting mixture of metal powder and blowing agent is then compressed into a semi-finished product.
  • the compression can take place either in the sense of step 13 by extrusion or in the sense of step 14 by axial hot pressing.
  • step 15 At the end of the compression according to step 13 or step 14, there is accordingly a semi-finished product, which is visualized by step 15 in the flow diagram of FIG. 1.
  • the semifinished product is practically indistinguishable from a conventional metal, but it contains the blowing agent and is therefore foamable.
  • the semifinished product present in step 15 is heated in the sense of step 16, to just above its melting point, so that the metal is melted and the propellant is released.
  • the foaming of the semi-finished product is triggered by the gas release of the blowing agent.
  • the foaming is carried out until a defined degree of foaming is reached. As soon as this defined degree of foaming has been reached, the foaming is stopped by cooling below the melting point of the metal powder used. This stabilizes the foam structure.
  • the foaming triggered by the heating of the semi-finished product above the melting point of the metal powder and the corresponding termination of the foaming by cooling below the melting point of the metal powder are visualized together by step 16.
  • surface processing or other processing or finishing of the manufactured component in the sense of step 17 can also take place.
  • the component can be connected to a carrier.
  • FIG. 1 shows that in the sense of a step 18, in addition to the metal powder provided in the sense of step 10 and the blowing agent provided in the sense of step 11, further constituents can be mixed with the metal powder and the blowing agent in step 12.
  • the other constituents can be, for example, an additional metal powder with a different melting point or different powder grain size, a different blowing agent or ceramic particles, ceramic fibers or other inorganic or organic elements.
  • FIG. 2 shows a first exemplary embodiment of a gas turbine component according to the invention, which forms a housing structure 19, the housing structure 19 being formed at least in regions from metal foam.
  • the housing structure 19 of FIG. 2 has a first section or region 20 which is formed from metal foam and a second region 21 which serves as a carrier for the metal foam.
  • the carrier 21 is arranged on one side of the metal foam 20, the metal foam 20 being firmly connected to the carrier 21.
  • Carrier 21 and metal foam 20 form a simple sandwich structure in the exemplary embodiment in FIG. 2.
  • the carrier 21 also has an angled section 22, the section 22 having a bore 23 for connection to other components.
  • FIG. 3 likewise shows a gas turbine component according to the invention, which is designed as a housing structure 24, the exemplary embodiment in FIG. 3 differing from the exemplary embodiment in FIG. 2 in that a section or region 21 and 25 designed as a carrier is arranged on both sides of the metal foam 20 and is firmly connected to the metal foam 20.
  • the arrangement of FIG. 3 can also be referred to as a double sandwich construction.
  • the carriers 21 and 25 on both sides of the metal foam 20 can consist of the same or different materials, namely metal alloys.
  • 4 shows a further gas turbine component according to the invention, which is designed as a housing structure 26 and is likewise formed in some areas from metal foam 20, the metal foam 20 in the embodiment of FIG. 4 being surrounded on all sides by sections or areas designed as supports.
  • 5 to 8 show exemplary embodiments of static gas turbine components according to the invention, in which the components according to the invention form an inlet lining.
  • 5 shows a first inlet covering 27 according to the invention, which is formed from a metal foam 28, the metal foam 28 being firmly connected to a carrier 29.
  • the inlet lining 28 is used for the wear-free or low-wear rubbing against a rotating rotor blade 30 of the gas turbine.
  • the inlet lining 27 is fixed with respect to the rotating rotor blade 30 and accordingly forms a static gas turbine component.
  • FIG. 6 shows a further inlet covering 31, which in turn is formed from a metal foam 28 and a support 29 which is firmly connected to the metal foam 28.
  • the inlet lining 31 of FIG. 6 also serves to rub against the radially outer ends of rotating blades of the gas turbine, the carrier 29 performing a thermal insulation function in the inlet lining 31 of FIG. 6.
  • FIG. 7 shows a further inlet covering 32 according to the invention, which in turn consists of a metal foam 28 and a carrier 29 assigned to the metal foam 28 and firmly connected to the metal foam 28.
  • the static or fixed inlet lining 32 of FIG. 7 interacts with labyrinth seals 33, which are also referred to as sealing fins.
  • labyrinth seals 33 which are also referred to as sealing fins.
  • Such sealing fins as shown schematically in FIG. 7, have different outer radii, so that the inlet lining 32 provided by the metal foam 28 has a stepped contour.
  • the inside diameter of the inlet covering 32 provided by the metal foam 28 is adapted to the outside diameter of the labyrinth seals 33. It should be noted that the design of the inlet covering 32 according to FIG.
  • the honeycomb construction of the prior art known from the prior art Inlet pads can be replaced.
  • the metal foam 28 is firmly connected to the carrier 29, in particular glued or soldered.
  • FIG. 8 shows a further inlet covering 34 according to the invention, which in turn is formed from a metal foam 28 and a carrier 29 for the metal foam.
  • openings or bores 35 are made in the carrier 29.
  • a gas flow can be passed through the bores 35 in the direction of the arrows 36 for cooling, in which case the metal foam 28 is open-pored.
  • Such an open-pore metal foam 28 can have gas flowing through it. This is illustrated by the arrows 37.
  • FIGS. 9 to 13 show further preferred gas turbine components which are formed in some areas from metal foam, all gas turbine components shown in FIGS. 9 to 13 forming a pipeline system.
  • a pipeline system 38 is shown, the pipeline system 38 being formed by a closed-walled tube 39 which is surrounded on the outside concentrically by metal foam 40.
  • metal foam 40 With such a pipeline system, which in some areas consists of metal foam, improved vibration properties and thermal insulation properties of pipeline systems can be realized within gas turbines. This prevents the piping systems from igniting or coking.
  • FIG. 10 shows an embodiment of a pipeline system 41, the pipeline system 41 of FIG. 10 again being formed by a closed-walled pipe 39 which is surrounded on the outside by metal foam 40. 10 illustrates that the metal foam 40 can have any shape on the outside of the closed-wall tube 39.
  • the pipe system 42 shown in FIG. 12 differs from the pipe system 41 of FIG. 10 in that a fastening means 43 is integrated in the metal foam 40.
  • a fastening means can be foamed onto the tube in a simple manner. This significantly simplifies the connection with other components.
  • Fig. 1 1 shows a piping system 44 according to the invention, which in turn is partially formed from metal foam.
  • a closed-walled tube 39 is again provided, the tube 39 in the exemplary embodiment in FIG. 11 having a closed inner wall 45 and a closed outer wall 46.
  • the tube 39 is accordingly double-walled in the embodiment of FIG. 11.
  • the metal foam 40 is positioned between the two walls 45 and 46.
  • FIG. 13 shows a further exemplary embodiment of a pipeline system 47 according to the invention, the pipeline system 47 of FIG. 13 having four closed-walled tubes 39, which are positioned together in a metal foam 40.
  • a plurality of pipes 39 are therefore combined to form an integral unit via the metal foam 40.
  • All of the exemplary embodiments of a gas turbine component according to the invention shown in FIGS. 2 to 13 are static components for aircraft engines.
  • the components according to the invention have a minimized weight, good thermal insulation properties and are furthermore inexpensive to produce. Vibrations that occur can be dampened safely and well via the metal foam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Gasturbinenbauteil, nämlich statisches Gasturbinenbauteil, insbesondere für ein Flugtriebwerk. Erfindungsgemäß ist das statische Gasturbinenbauteil zumindest bereichsweise aus Metallschaum gebildet.

Description

Gasturbinenbauteil
Die Erfindung betrifft ein Gasturbinenbauteil, nämlich ein statisches Gasturbinenbauteil.
Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.
Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden zum Beispiel für Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet. Als Fertigungsverfahren für Gasturbinenbauteile aus Titanlegierungen, Nickellegierung oder sonstigen Legierungen sind aus dem Stand der Technik in erster Linie das Feingießen sowie Schmieden bekannt. Alle hochbeanspruchten Gasturbinenbauteile, wie zum Beispiel Bauteile für einen Verdichter, sind Schmiedeteile. Bauteile für eine Turbine werden hingegen in der Regel als Feingussteile ausgeführt.
Zur Reduzierung des Gewichts von Gasturbinenbauteilen ist es aus dem Stand der Technik bereits bekannt, Metallmatrix-Verbundwerkstoffe (sogenannte M MC-Werkstoffe) einzusetzen. Bei derartigen MMC-Werkstoffen sind hochfeste Fasern in den Metallwerkstoff eingelagert. Die Herstellung von Gasturbinenbauteilen aus derartigen MMC-Werkstoffen ist jedoch aufwendig und damit teuer.
Es liegt im Sinne der hier vorliegenden Erfindung, alternative Möglichkeiten zur Gewichtsreduzierung von statischen Gasturbinenbauteilen vorzuschlagen. Die Masse der statischen Gasturbinenbauteile beeinflusst nämlich das Gesamtgewicht einer Gasturbine, insbesondere eines Flugtriebwerks. Je stärker das Gewicht der Gasturbinenbauteile reduziert werden kann, desto günstiger fällt das sogenannte Schub-Gewichtsverhältnis des Flugtriebwerks aus, welches ein entscheidendes Wettbewerbsmerkmal für Flugtriebwerke darstellt.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges statisches Gasturbinenbauteil vorzuschlagen.
Dieses Problem wird dadurch gelöst, dass das eingangs genannte Gasturbinenbauteil durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist. Erfindungsgemäß ist das statische Gasturbinenbauteil zumindest teilweise aus einem Metallschaum gebildet. Im Sinne der hier vorliegenden Erfindung wird erstmals vorgeschlagen, statische Gasturbinenbauteile zumindest teilweise in Metallschaum auszuführen. Die Verwendung von Metallschäumen ermöglicht eine kostengünstige Alternative gegenüber MMC-Werkstoffen und eine deutliche Gewichtseinsparung.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 ein Blockschaltbild zur Verdeutlichung eines Verfahrens zur Herstellung von erfindungsgemäßen Gasturbinenbauteilen; Fig. 2 ein als Gehäusestruktur ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem ersten Ausführungsbeispiel der Erfindung in stark schematisierter
Darstellung; Fig. 3 ein als Gehäusestruktur ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem zweiten Ausführungsbeispiel der Erfindung in stark schematisierter
Darstellung; Fig. 4 ein als Gehäusestruktur ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem dritten Ausführungsbeispiel der Erfindung in stark schematisierter
Darstellung; Fig. 5 ein als Einlaufbelag ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 6 ein als Einlaufbelag ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 7 ein als Einlaufbelag ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 8 ein als Einlaufbelag ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 9 ein als Rohrleitungssystem ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 10 ein als Rohrleitungssystem ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 1 1 ein als Rohrleitungssystem ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung;
Fig. 12 e ein als Rohrleitungssystem ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung; und
Fig. 13 ein als Rohrleitungssystem ausgebildetes, erfindungsgemäßes Gasturbinenbauteil nach einem weiteren Ausführungsbeispiel der Erfindung in stark schematisierter Darstellung.
Die hier vorliegende Erfindung wird nachfolgend unter Bezugnahme auf Fig. 1 bis 13 in größerem Detail beschrieben, wobei Fig. 2 bis 13 jeweils erfindungsgemäße Gasturbinenbauteile stark schematisiert zeigen. Bevor jedoch auf die Details der erfindungsgemäßen Gasturbinenbauteile eingegangen wird, sollen vorab unter Bezugnahme auf Fig. 1 Schritte eines bevorzugten Herstellungsverfahrens für statische Gasturbinenbauteile aus Metallschaum beschrieben werden.
Zur Herstellung eines erfindungsgemäßen, statischen Gasturbinenbauteils für ein Flugtriebwerk wird gemäß Fig. 1 so vorgegangen, dass in einem ersten Schritt 10 ein Metall¬ pulver und in einem zweiten Schritt 1 1 ein Treibmittel bereitgestellt werden. Bei dem bereitgestellten Metallpulver handelt es sich um ein Metallpulver auf Basis einer Aluminiumlegierung oder Titanlegierung oder Nickellegierung. Es ist auch möglich, Metallpulver auf Basis einer Kobaltlegierung oder einer Eisenlegierung zu verwenden. Des weiteren können Metallpulver aus intermetallischen Titan-Aluminium-Legierungen verwendet werden. Als Treibmittel wird insbesondere Titanhydrid bereitgestellt.
Das bereitgestellte Metallpulver sowie das bereitgestellte Treibmittel werden in einem Schritt 12 gemischt. Die sich nach dem Mischen ergebende Mischung aus Metallpulver und Treibmittel wird sodann zu einem Halbzeug verdichtet. Das Verdichten kann entweder im Sinne des Schritts 13 durch Strangpressen oder im Sinne des Schritts 14 durch axiales Heißpressen erfolgen. Am Ende der Verdichtung gemäß Schritt 13 oder Schritt 14 liegt demnach ein Halbzeug vor, was im Abflussdiagramm der Fig. 1 durch den Schritt 15 visua- lisiert ist. Das Halbzeug ist äußerlich von einem herkömmlichen Metall so gut wie nicht zu unterscheiden, es enthält jedoch das Treibmittel und ist daher aufschäumbar.
Zur Herstellung des Gasturbinenbauteils wird das im Schritt 15 vorliegende Halbzeug im Sinne des Schritts 16 erwärmt, und zwar bis knapp über seinen Schmelzpunkt, sodass das Metall geschmolzen wird und eine Gasfreisetzung des Treibmittels erfolgt. Durch die Gasfreisetzung des Treibmittels wird die Aufschäumung des Halbzeugs ausgelöst. Das Aufschäumen wird solange durchgeführt, bis ein definierter Schäumungsgrad erreicht ist. Sobald dieser definierte Schäumungsgrad erreicht ist, wird die Aufschäumung dadurch beendet, dass eine Abkühlung unter den Schmelzpunkt des verwendeten Metallpulvers erfolgt. Hierdurch wird die Schaumstruktur stabilisiert. Das durch die Erwärmung des Halbzeugs über den Schmelzpunkt des Metallpulver ausgelöste Aufschäumen sowie das entsprechende Beenden der Aufschäumung durch Abkühlung unter den Schmelzpunkt des Metallpulvers sind gemeinsam durch den Schritt 16 visualisiert. Im Anschluss an den Schritt 16 kann noch eine Oberflächenbearbeitung oder sonstige Bearbeitung bzw. Veredlung des hergestellten Bauteils im Sinne des Schritts 17 erfolgen. So kann das Bauteil zum Beispiel mit einem Träger verbunden werden.
Weiterhin zeigt Fig. 1, dass im Sinne eines Schritts 18 zusätzlich zu dem in Sinne des Schritts 10 bereitgestellten Metallpulver und dem im Sinne des Schritts 1 1 bereitgestellten Treibmittels weitere Bestandteile mit dem Metallpulver und dem Treibmittel im Schritt 12 vermischt werden können. Bei den weiteren Bestandteilen kann es sich zum Beispiel um ein zusätzliches Metallpulver mit unterschiedlichem Schmelzpunkt oder unterschiedlicher Pulverkörnung, um ein unterschiedliches Treibmittel oder auch um Keramikpartikel, Keramikfasern oder sonstige anorganische oder organische Elemente handeln.
Fig. 2 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Gasturbinenbauteils, welches eine Gehäusestruktur 19 bildet, wobei die Gehäusestruktur 19 zumindest bereichsweise aus Metallschaum gebildet ist. Die Gehäusestruktur 19 der Fig. 2 verfügt über einen ersten Abschnitt bzw. Bereich 20, der aus Metallschaum gebildet ist, und einen zweiten Bereich 21, der als Träger für den Metallschaum dient. Im Ausführungsbeispiel der Fig. 2 ist der Träger 21 auf einer Seite des Metallschaums 20 angeordnet, wobei der Metallschaum 20 mit dem Träger 21 fest verbunden ist. Träger 21 und Metallschaum 20 bilden im Ausführungsbeispiel der Fig. 2 eine einfache Sandwichstruktur. Der Träger 21 verfügt des weiteren über einen abgewinkelten Abschnitt 22, wobei der Abschnitt 22 zur Verbindung mit anderen Bauteilen eine Bohrung 23 aufweist.
Fig. 3 zeigt ebenfalls ein als Gehäusestruktur 24 ausgebildetes, erfindungsgemäßes Gasturbinenbauteil, wobei sich das Ausführungsbeispiel der Fig. 3 vom Ausführungsbeispiel der Fig. 2 dadurch unterscheidet, dass zu beiden Seiten des Metallschaums 20 ein als Träger ausgebildeter Abschnitt bzw. Bereich 21 sowie 25 angeordnet und mit dem Metallschaum 20 fest verbunden ist. Die Anordnung der Fig. 3 kann auch als doppelte Sandwich- Bauweise bezeichnet werden. Die Träger 21 sowie 25 zu beiden Seiten des Metallschaums 20 können aus gleichen oder unterschiedlichen Werkstoffen, nämlich Metalllegierungen, bestehen. Im Ausführungsbeispiel der Fig. 4 ist ein weiteres, als Gehäusestruktur 26 ausgebildetes, erfindungsgemäßes Gasturbinenbauteil gezeigt, welches ebenfalls bereichsweise aus Metallschaum 20 gebildet ist, wobei der Metallschaum 20 im Ausführungsbeispiel der Fig. 4 allseitig von als Träger ausgebildeten Abschnitten bzw. Bereichen umgeben ist.
Fig. 5 bis 8 zeigen Ausführungsbeispiele erfindungsgemäßer, statischer Gasturbinenbauteile, bei welchen die erfindungsgemäßen Bauteile einen Einlaufbelag bilden. So zeigt Fig. 5 einen ersten erfindungsgemäßen Einlaufbelag 27, der aus einem Metallschaum 28 gebildet ist, wobei der Metallschaum 28 mit einem Träger 29 fest verbunden ist. Der Einlaufbelag 28 dient dem verschleißfreien bzw. verschleißarmen Anstreifen einer rotierenden Laufschaufel 30 der Gasturbine. Der Einlaufbelag 27 steht gegenüber der rotierenden Laufschaufel 30 fest und bildet demnach ein statisches Gasturbinenbauteil.
Fig. 6 zeigt einen weiteren Einlaufbelag 31, der wiederum aus einem Metallschaum 28 und einem mit dem Metallschaum 28 fest verbundenen Träger 29 gebildet wird. Auch der Einlaufbelag 31 der Fig. 6 dient dem Anstreifen radial außenliegender Enden rotierender Laufschaufeln der Gasturbine, wobei beim Einlaufbelag 31 der Fig. 6 der Träger 29 eine thermische Isolationsfunktion übernimmt.
Fig. 7 zeigt einen weiteren erfindungsgemäßen Einlaufbelag 32, der wiederum aus einem Metallschaum 28 und einem dem Metallschaum 28 zugeordneten, sowie fest mit dem Metallschaum 28 verbundenen Träger 29 besteht. Der statische bzw. feststehende Einlaufbelag 32 der Fig. 7 wirkt mit Labyrinthdichtungen 33 zusammen, die auch als Dichtfins bezeichnet werden. Derartige Dichtfins verfügen, wie dies in Fig. 7 schematisiert dargestellt ist, über unterschiedliche Außenradien, sodass der vom Metallschaum 28 bereitgestellte Einlaufbelag 32 über eine abgestufte Kontur verfügt. Der Innendurchmesser des vom Metallschaum 28 bereitgestellten Einlaufbelags 32 ist an den Außendurchmesser der Labyrinthdichtungen 33 angepasst. Es sei angemerkt, dass die Ausführung des Einlaufbelags 32 gemäß Fig. 7 eine besonders bevorzugte Ausführungsform der hier vorliegenden Erfindung ist, da mit einem derartigen Metallschaum-Einlaufbelag, der mit Labyrinthdichtungen zusammenwirkt, die aus dem Stand der Technik bekannte Honigwaben-Konstruktion des Einlaufbelags ersetzt werden kann. Wie bereits erwähnt, ist der Metallschaum 28 mit dem Träger 29 fest verbunden, insbesondere verklebt oder verlötet.
Fig. 8 zeigt einen weiteren erfindungsgemäßen Einlaufbelag 34, der wiederum aus einem Metallschaum 28 und einem Träger 29 für den Metallschaum gebildet ist. Im Ausführungsbeispiel der Fig. 8 sind in den Träger 29 Öffnungen bzw. Bohrungen 35 eingebracht. Durch die Bohrungen 35 kann im Sinne der Pfeile 36 zur Kühlung eine Gasströmung geleitet werden, wobei in diesem Fall der Metallschaum 28 offenporig ausgebildet ist. Ein derartiger, offenporig ausgebildeter Metallschaum 28 kann von Gas durchströmt werden. Dies ist durch die Pfeile 37 verdeutlicht.
Fig. 9 bis 13 zeigen weitere bevorzugte Gasturbinenbauteile, die bereichsweise aus Metallschaum gebildet sind, wobei alle in Fig. 9 bis 13 gezeigten Gasturbinenbauteile ein Rohrleitungssystem bilden. Im Ausführungsbeispiel der Fig. 9 ist ein Rohrleitungssystem 38 gezeigt, wobei das Rohrleitungssystem 38 von einem geschlossenwandigen Rohr 39 gebildet wird, welches an seiner Außenseite konzentrisch von Metallschaum 40 umschlossen ist. Mit einem derartigen Rohrleitungssystem, welches bereichsweise aus Metallschaum besteht, können verbesserte Schwingungseigenschaften sowie thermische Isolationseigenschaften von Rohrleitungssystemen innerhalb von Gasturbinen realisiert werden. So kann eine Entzündung bzw. Verkokung der Rohrleitungssysteme verhindert werden.
Fig. 10 zeigt eine Ausführungsform eines Rohrleitungssystems 41, wobei das Rohrleitungssystem 41 der Fig. 10 wieder von einem geschlossenwandigen Rohr 39 gebildet wird, welches auf der Außenseite von Metallschaum 40 umgeben ist. Fig. 10 verdeutlicht, dass der Metallschaum 40 auf der Außenseite des geschlossenwandigen Rohres 39 eine beliebige Form aufweisen kann.
Das in Fig. 12 dargestellte Rohrleitungssystem 42 unterscheidet sich vom Rohrleitungssystem 41 der Fig. 10 dadurch, dass in den Metallschaum 40 ein Befestigungsmittel 43 integriert ist. Im Sinne der Erfindung kann auf einfache Art und Weise ein Befestigungsmittel an das Rohr angeschäumt werden. Hierdurch wird die Verbindung mit anderen Bauteilen deutlich vereinfacht. Fig. 1 1 zeigt ein erfindungsgemäßes Rohrleitungssystem 44, welches wiederum bereichsweise aus Metallschaum gebildet ist. Im Ausführungsbeispiel der Fig. 1 1 ist wiederum ein geschlossenwandiges Rohr 39 vorgesehen, wobei das Rohr 39 im Ausführungsbeispiel der Fig. 1 1 über eine geschlossene Innenwand 45 sowie eine geschlossene Außenwand 46 verfügt. Das Rohr 39 ist demnach im Ausführungsbeispiel der Fig. 1 1 doppelwandig ausgebildet. Zwischen den beiden Wänden 45 und 46 ist der Metallschaum 40 positioniert.
Ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Rohrleitungssystems 47 zeigt Fig. 13, wobei das Rohrleitungssystem 47 der Fig. 13 vier geschlossenwandige Rohre 39 aufweist, die zusammen in einem Metallschaum 40 positioniert sind. Im Ausführungsbeispiel der Fig. 13 werden demnach mehrere Rohre 39 über den Metallschaum 40 zu einer integralen Einheit zusammengefasst.
An dieser Stelle sei darauf hingewiesen, dass durch die erfindungsgemäß ausgebildeten Rohrleitungssysteme der Fig. 9 bis 13 Gas, Öl oder auch Treibstoff geleitet werden kann.
Bei allen in Fig. 2 bis 13 gezeigten Ausführungsbeispielen eines erfindungsgemäßen Gasturbinenbauteils handelt es sich um statische Bauteile für Flugtriebwerke. Die erfindungsgemäßen Bauteile verfügen über ein minimiertes Gewicht, gute thermische Isolationseigenschaften und sind des weiteren kostengünstig herstellbar. Auftretende Schwingungen können über den Metallschaum sicher und gut gedämpft werden.

Claims

Patentansprüche
1. Gasturbinenbauteil, nämlich statisches Gasturbinenbauteil, insbesondere für ein Flugtriebwerk, dadurch gekennzeichnet, dass dasselbe zumindest bereichsweise aus Metallschaum gebildet ist.
2. Gasturbinenbauteil nach Anspruch 1, dadurch gekennzeichnet, dass dasselbe eine Gehäusestruktur (19, 24, 26) bildet.
3. Gasturbinenbauteil nach Anspruch 2, dadurch gekennzeichnet, dass die Gehäusestruktur (19, 24, 26) zumindest bereichsweise bzw. abschnittsweise aus Metallschaum (20) gebildet ist, wobei der aus Metallschaum gebildete Abschnitt bzw. Bereich der Gehäusestruktur mit mindestens einem als Träger ausgebildeten Abschnitt bzw. Bereich verbunden ist.
4. Gasturbinenbauteil nach Anspruch 3, dadurch gekennzeichnet, dass der aus Metallschaum (20) gebildete Abschnitt bzw. Bereich sandwichartig zwischen zwei plattenförmigen Trägern (21, 25) positioniert und mit diesen verbunden ist.
5. Gasturbinenbauteil nach Anspruch 1, dadurch gekennzeichnet, dass dasselbe einen Einlaufbelag (27, 31, 32, 34) bildet.
6. Gasturbinenbauteil nach Anspruch 5, dadurch gekennzeichnet, dass der Einlaufbelag (27, 31, 32, 34) aus Metallschaum (28) mit mindestens einem Träger (29) fest verbunden ist.
7. Gasturbinenbauteil nach Anspruch 6, dadurch gekennzeichnet, dass der oder jeder Träger (29) Öffnungen bzw. Bohrungen (35) aufweist, und dass der Metallschaum (20) des Einlaufbelags (34) offenporig ausgebildet ist, sodass sowohl der oder jeder Träger als auch der Metallschaum zur Kühlung derselben durchströmbar sind.
8. Gasturbinenbauteil nach Anspruch 1, dadurch gekennzeichnet, dass dasselbe ein Rohrleitungssystem (38, 41, 42, 44, 47) bildet.
9. Gasturbinenbauteil nach Anspruch 8, dadurch gekennzeichnet, dass das Rohrleitungssystem (38, 41, 42, 44, 47) von mindestens einem geschlos- senenwandigen Rohr (39) gebildet ist, wobei das oder jedes Rohr (39) von Metallschaum (40) umgeben ist.
10. Gasturbinenbauteil nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Rohrleitungssystem (38, 41, 42, 44) ein geschlossenenwandiges Rohr (39) aufweist, welches von Metallschaum umgeben ist.
1 1. Gasturbinenbauteil nach Anspruch 9 oder 10 dadurch gekennzeichnet, dass in den Metallschaum (40) ein Befestigungsmittel (43) integriert ist.
12. Gasturbinenbauteil nach Anspruch 10 dadurch gekennzeichnet, dass das Rohr (39) doppelwandig ausgebildet ist, wobei zwischen den beiden konzentrischen, geschlossenen Rohrwänden (45, 46) Metallschaum (40) angeordnet ist.
PCT/DE2004/002706 2003-12-20 2004-12-09 Gasturbinenbauteil WO2005061855A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/582,930 US7775766B2 (en) 2003-12-20 2004-12-09 Gas turbine component
EP04802912A EP1702138B1 (de) 2003-12-20 2004-12-09 Gasturbinenbauteil
CA002547619A CA2547619A1 (en) 2003-12-20 2004-12-09 Gas turbine component
DE502004003916T DE502004003916D1 (de) 2003-12-20 2004-12-09 Gasturbinenbauteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360164A DE10360164A1 (de) 2003-12-20 2003-12-20 Gasturbinenbauteil
DE10360164.3 2003-12-20

Publications (1)

Publication Number Publication Date
WO2005061855A1 true WO2005061855A1 (de) 2005-07-07

Family

ID=34683687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002706 WO2005061855A1 (de) 2003-12-20 2004-12-09 Gasturbinenbauteil

Country Status (5)

Country Link
US (1) US7775766B2 (de)
EP (1) EP1702138B1 (de)
CA (1) CA2547619A1 (de)
DE (2) DE10360164A1 (de)
WO (1) WO2005061855A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031279A1 (de) * 2005-09-16 2007-03-22 Orbiter Group Beteiligungsgesellschaft Mbh Verwendung eines metallschaumes in strömungsmaschinen, insbesondere in turbinen, lüftern und pumpen
EP1878876A2 (de) 2006-07-11 2008-01-16 Rolls-Royce plc Abreibbare Dichtungsschicht einer Gasturbine sowie Verfahren zu deren Herstellung
WO2008011864A1 (de) * 2006-07-26 2008-01-31 Mtu Aero Engines Gmbh Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal
EP2184449A1 (de) * 2008-11-05 2010-05-12 Siemens Aktiengesellschaft Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger
EP2372103A1 (de) * 2007-12-04 2011-10-05 Hitachi Ltd. Dichtungsanordnung für eine Dampfturbine
EP2881666A1 (de) * 2013-12-09 2015-06-10 Siemens Aktiengesellschaft Düsenträger aus metallischem Schaum
FR3071427A1 (fr) * 2017-09-22 2019-03-29 Safran Carter de turbomachine

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022164B4 (de) * 2006-05-12 2012-07-19 Mtu Aero Engines Gmbh Verfahren zum Aussteifen eines Rotorelements
GB2449249B (en) * 2007-05-14 2009-10-21 Rolls Royce Plc Seal assembley
DE102007038507A1 (de) * 2007-08-14 2009-02-19 Endress + Hauser Flowtec Ag Rohrleitung bzw. Messrohr mit mindestens einer, mindestens bereichsweise isolierenden Schicht und Verfahren zu dessen Herstellung
US8313288B2 (en) * 2007-09-06 2012-11-20 United Technologies Corporation Mechanical attachment of ceramic or metallic foam materials
DE102007047739B4 (de) * 2007-10-05 2014-12-11 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenverdichter mit Anlaufschicht
DE102008005479A1 (de) * 2008-01-23 2009-07-30 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit einem Verdichter mit flüssigkeitsbeaufschlagter Einlaufschicht
DE102008005480A1 (de) * 2008-01-23 2009-07-30 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit einem Verdichter mit Einlaufschicht mit luftaushärtendem Material
US8257016B2 (en) 2008-01-23 2012-09-04 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine with a compressor with self-healing abradable coating
DE102008019331A1 (de) 2008-04-16 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Einlaufdichtung für den Kompressor eines Gasturbinentriebwerks
GB0822416D0 (en) * 2008-12-10 2009-01-14 Rolls Royce Plc A seal and a method of manufacturing a seal
JP5411569B2 (ja) * 2009-05-01 2014-02-12 株式会社日立製作所 シール構造とその制御方法
EP2410133A1 (de) * 2010-07-22 2012-01-25 Siemens Aktiengesellschaft Gasturbine und Verfahren zum Abdichten von Leckströmen in einer solchen
US8613590B2 (en) * 2010-07-27 2013-12-24 United Technologies Corporation Blade outer air seal and repair method
GB201012719D0 (en) * 2010-07-29 2010-09-15 Rolls Royce Plc Labyrinth seal
GB2483060B (en) * 2010-08-23 2013-05-15 Rolls Royce Plc A turbomachine casing assembly
DE102011014292A1 (de) * 2011-03-17 2012-09-20 Rolls-Royce Deutschland Ltd & Co Kg Zwischenstufendichtungsring sowie Verfahren zu dessen Herstellung
DE102011014670A1 (de) 2011-03-22 2012-09-27 Rolls-Royce Deutschland Ltd & Co Kg Segmentierter Brennkammerkopf
GB2489693B (en) * 2011-04-04 2014-10-01 Rolls Royce Plc Abradable liner
DE202011005302U1 (de) * 2011-04-14 2011-06-17 BOA Balg- und Kompensatoren-Technologie GmbH, 76297 Flexibles Leitungselement
US20130017070A1 (en) * 2011-07-13 2013-01-17 General Electric Company Turbine seal, turbine, and process of fabricating a turbine seal
EP2551464A1 (de) * 2011-07-25 2013-01-30 Siemens Aktiengesellschaft Schaufelanordnung mit Abdichtelement aus Metallschaum
US20120051898A1 (en) * 2011-08-05 2012-03-01 General Electric Company Wind turbine component having a lightweight structure
JP5597174B2 (ja) * 2011-09-20 2014-10-01 株式会社日立製作所 アブレイダブルコーティングを有する部材およびガスタービン
DE102012222379B4 (de) 2012-12-06 2017-05-18 MTU Aero Engines AG Dichtelement und Strömungsmaschine
US10156359B2 (en) 2012-12-28 2018-12-18 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10018052B2 (en) 2012-12-28 2018-07-10 United Technologies Corporation Gas turbine engine component having engineered vascular structure
EP2778347A1 (de) * 2013-03-11 2014-09-17 Siemens Aktiengesellschaft Rotorschaufelanordnung, Turbomaschine mit einer Rotorschaufelanordnung und Verfahren zum Aufbau einer Rotorschaufelanordnung
CN105492726B (zh) * 2013-09-06 2018-03-30 通用电气公司 包括第一和第二蜂窝层和其间的穿孔中间密封板的燃气涡轮叠层密封组件
DE102013224199A1 (de) * 2013-11-27 2015-05-28 MTU Aero Engines AG Gasturbinen-Laufschaufel
EP2886804B1 (de) * 2013-12-20 2017-08-16 Safran Aero Boosters SA Dichtungsanordnung für einen Verdicther eines Turbotriebwerks
DE102014213911A1 (de) 2014-07-17 2016-01-21 MTU Aero Engines AG Aerogel-Auskleidungselement für Strömungsmaschinen
US9517606B2 (en) * 2014-08-06 2016-12-13 The Boeing Company Composite structure and method of forming thereof
US9789536B2 (en) 2015-01-20 2017-10-17 United Technologies Corporation Dual investment technique for solid mold casting of reticulated metal foams
US9737930B2 (en) 2015-01-20 2017-08-22 United Technologies Corporation Dual investment shelled solid mold casting of reticulated metal foams
US9789534B2 (en) 2015-01-20 2017-10-17 United Technologies Corporation Investment technique for solid mold casting of reticulated metal foams
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
US9884363B2 (en) 2015-06-30 2018-02-06 United Technologies Corporation Variable diameter investment casting mold for casting of reticulated metal foams
US9731342B2 (en) 2015-07-07 2017-08-15 United Technologies Corporation Chill plate for equiax casting solidification control for solid mold casting of reticulated metal foams
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
EP3514414B1 (de) 2016-09-14 2021-11-03 Eagle Industry Co., Ltd. Mechanische dichtung
BE1024941B1 (fr) * 2017-01-26 2018-08-28 Safran Aero Boosters S.A. Controle actif de jeu pour compresseur de turbomachine
EP3587872B1 (de) * 2017-02-22 2023-07-05 Eagle Industry Co., Ltd. Dichtungsvorrichtung
DE102017210311A1 (de) * 2017-06-20 2018-12-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Formteils und Formteil
DE102017211316A1 (de) 2017-07-04 2019-01-10 MTU Aero Engines AG Turbomaschinen-Dichtring
EP3757432B1 (de) 2018-02-21 2023-10-18 Eagle Industry Co., Ltd. Mechanische dichtung
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure
US11674396B2 (en) 2021-07-30 2023-06-13 General Electric Company Cooling air delivery assembly
US11674405B2 (en) 2021-08-30 2023-06-13 General Electric Company Abradable insert with lattice structure
US11834956B2 (en) * 2021-12-20 2023-12-05 Rolls-Royce Plc Gas turbine engine components with metallic and ceramic foam for improved cooling
US11746660B2 (en) 2021-12-20 2023-09-05 Rolls-Royce Plc Gas turbine engine components with foam filler for impact resistance

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB793886A (en) * 1955-01-24 1958-04-23 Solar Aircraft Co Improvements in or relating to sealing means between relatively movable parts
US3053694A (en) * 1961-02-20 1962-09-11 Gen Electric Abradable material
US3126149A (en) * 1964-03-24 Foamed aluminum honeycomb motor
US3460759A (en) * 1967-03-07 1969-08-12 Nasa Combustion chamber
GB1242864A (en) * 1968-05-15 1971-08-18 Dunlop Holdings Ltd Acoustical elements
US4377370A (en) * 1979-10-19 1983-03-22 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Safety device for a rotating element of a turbine engine
JPS59153902A (ja) * 1983-02-23 1984-09-01 Hitachi Ltd 冷却翼
EP1013890A2 (de) * 1998-12-16 2000-06-28 Rolls-Royce Deutschland GmbH Anstreifdichtung für Turbomaschinen
DE10024302A1 (de) * 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
EP1186748A1 (de) * 2000-09-05 2002-03-13 Siemens Aktiengesellschaft Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine
US20030107181A1 (en) * 2000-05-04 2003-06-12 Kai Wieghardt System for sealing off a gap
US20030118762A1 (en) * 2001-12-21 2003-06-26 Brown Daniel V. Turbine noise absorber
WO2003054360A1 (de) * 2001-12-13 2003-07-03 Alstom Technology Ltd Heissgaspfad-baugruppe einer gasturbine
EP1344895A2 (de) * 2002-03-15 2003-09-17 ROLLS-ROYCE plc Turbomaschinengehäuse aus Schaumstoff
US6652222B1 (en) * 2002-09-03 2003-11-25 Pratt & Whitney Canada Corp. Fan case design with metal foam between Kevlar
EP1391597A2 (de) * 2002-08-14 2004-02-25 Sener, Ingenieria Y Sistemas, S.A. Schalldämmende Leitung für statische Bauteile in Flugzeugtriebwerken
US20040141837A1 (en) * 2003-01-16 2004-07-22 Mcmillan Alison J. Gas turbine engine blade containment assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825364A (en) * 1972-06-09 1974-07-23 Gen Electric Porous abradable turbine shroud
US4155755A (en) * 1977-09-21 1979-05-22 Union Carbide Corporation Oxidation resistant porous abradable seal member for high temperature service
DE3316535A1 (de) * 1983-05-06 1984-11-08 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turboverdichter mit einlaufbelag
DE19627860C1 (de) * 1996-07-11 1998-01-08 Mtu Muenchen Gmbh Schaufel für Strömungsmaschine mit metallischer Deckschicht
EP0844369B1 (de) * 1996-11-23 2002-01-30 ROLLS-ROYCE plc Zusammenbau eines Schaufelrotors und dessen Gehäuses
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US20050111966A1 (en) * 2003-11-26 2005-05-26 Metheny Alfred P. Construction of static structures for gas turbine engines

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126149A (en) * 1964-03-24 Foamed aluminum honeycomb motor
GB793886A (en) * 1955-01-24 1958-04-23 Solar Aircraft Co Improvements in or relating to sealing means between relatively movable parts
US3053694A (en) * 1961-02-20 1962-09-11 Gen Electric Abradable material
US3460759A (en) * 1967-03-07 1969-08-12 Nasa Combustion chamber
GB1242864A (en) * 1968-05-15 1971-08-18 Dunlop Holdings Ltd Acoustical elements
US4377370A (en) * 1979-10-19 1983-03-22 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Safety device for a rotating element of a turbine engine
JPS59153902A (ja) * 1983-02-23 1984-09-01 Hitachi Ltd 冷却翼
EP1013890A2 (de) * 1998-12-16 2000-06-28 Rolls-Royce Deutschland GmbH Anstreifdichtung für Turbomaschinen
US20030107181A1 (en) * 2000-05-04 2003-06-12 Kai Wieghardt System for sealing off a gap
DE10024302A1 (de) * 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
EP1186748A1 (de) * 2000-09-05 2002-03-13 Siemens Aktiengesellschaft Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine
WO2003054360A1 (de) * 2001-12-13 2003-07-03 Alstom Technology Ltd Heissgaspfad-baugruppe einer gasturbine
US20030118762A1 (en) * 2001-12-21 2003-06-26 Brown Daniel V. Turbine noise absorber
EP1344895A2 (de) * 2002-03-15 2003-09-17 ROLLS-ROYCE plc Turbomaschinengehäuse aus Schaumstoff
EP1391597A2 (de) * 2002-08-14 2004-02-25 Sener, Ingenieria Y Sistemas, S.A. Schalldämmende Leitung für statische Bauteile in Flugzeugtriebwerken
US6652222B1 (en) * 2002-09-03 2003-11-25 Pratt & Whitney Canada Corp. Fan case design with metal foam between Kevlar
US20040141837A1 (en) * 2003-01-16 2004-07-22 Mcmillan Alison J. Gas turbine engine blade containment assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 003 (M - 349) 9 January 1985 (1985-01-09) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031279A1 (de) * 2005-09-16 2007-03-22 Orbiter Group Beteiligungsgesellschaft Mbh Verwendung eines metallschaumes in strömungsmaschinen, insbesondere in turbinen, lüftern und pumpen
EP1878876A2 (de) 2006-07-11 2008-01-16 Rolls-Royce plc Abreibbare Dichtungsschicht einer Gasturbine sowie Verfahren zu deren Herstellung
EP1878876A3 (de) * 2006-07-11 2013-01-16 Rolls-Royce plc Abreibbare Dichtungsschicht einer Gasturbine sowie Verfahren zu deren Herstellung
WO2008011864A1 (de) * 2006-07-26 2008-01-31 Mtu Aero Engines Gmbh Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal
US8092148B2 (en) 2006-07-26 2012-01-10 Mtu Aero Engines Gmbh Gas turbine having a peripheral ring segment including a recirculation channel
EP2372103A1 (de) * 2007-12-04 2011-10-05 Hitachi Ltd. Dichtungsanordnung für eine Dampfturbine
US8128351B2 (en) 2007-12-04 2012-03-06 Hitachi, Ltd. Seals in steam turbine
US8500397B2 (en) 2007-12-04 2013-08-06 Hitachi, Ltd. Seals in steam turbine
EP2184449A1 (de) * 2008-11-05 2010-05-12 Siemens Aktiengesellschaft Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger
EP2881666A1 (de) * 2013-12-09 2015-06-10 Siemens Aktiengesellschaft Düsenträger aus metallischem Schaum
FR3071427A1 (fr) * 2017-09-22 2019-03-29 Safran Carter de turbomachine

Also Published As

Publication number Publication date
EP1702138A1 (de) 2006-09-20
US7775766B2 (en) 2010-08-17
EP1702138B1 (de) 2007-05-23
US20070122269A1 (en) 2007-05-31
CA2547619A1 (en) 2005-07-07
DE10360164A1 (de) 2005-07-21
DE502004003916D1 (de) 2007-07-05

Similar Documents

Publication Publication Date Title
EP1702138B1 (de) Gasturbinenbauteil
EP1691946B1 (de) Verfahren zur herstellung von gasturbinenbauteilen und bauteil für eine gasturbine
EP1322838B1 (de) Laufschaufel für eine strömungsmaschine sowie strömungsmaschine
DE60220715T2 (de) Brennkammerkonstruktion mit schaumstoffwand
EP1898054B1 (de) Gasturbine
DE102010037690A1 (de) Turbinenrotor-Fabrikation unter Anwendung des Kaltspritzens
DE602005000185T2 (de) Turbomaschine mit einem Blockiersystem für die Haupttriebwerkswelle mit Lager-Sollbruchstelle
EP1531234B1 (de) Innendeckband für die Statorschaufeln des Verdichters einer Gasturbine
EP2719484A1 (de) Bauteil und Verfahren zur Herstellung des Bauteils
WO2010000238A1 (de) Verfahren zum herstellen von gasturbinenschaufeln
CH694257A5 (de) Dampfturbine.
DE69929490T2 (de) Gasturbine
DE2934271A1 (de) Radiallager fuer hochtourige stroemungsmaschinen
DE602005004005T2 (de) Axiallageranordnung für Gasturbinen
DE10331599A1 (de) Bauteil für eine Gasturbine sowie Verfahren zur Herstellung desselben
DE1944144A1 (de) Zusammengesetzte Turbomaschinenrotoren
WO2010099782A1 (de) Verfahren zur herstellung eines integral beschaufelten rotors
EP2097617A2 (de) Leitschaufelkranz sowie verfahren zum herstellen desselben
WO2010023034A1 (de) Gasturbinenanordnung mit porösem gehäuse und herstellverfahren
EP2022951A1 (de) Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
DE102005040184B4 (de) Mantelringsegment einer Gasturbine und Verfahren zur Herstellung derselben
DE102018107433A1 (de) Einlaufbelagstruktur aus einem metallischen Werkstoff, Verfahren zur Herstellung einer Einlaufbelagstruktur und Bauteil mit einer Einlaufbelagstruktur
EP1704628A2 (de) Rotor für eine turbomaschine und verfahren zur herstellung eines solchen rotors
DE10355313A1 (de) Leitschaufelgitter sowie Verfahren zur Herstellung desselben
EP4177443A1 (de) Verstellhebel für eine leitschaufel einer strömungsmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004802912

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2547619

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007122269

Country of ref document: US

Ref document number: 10582930

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004802912

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004802912

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10582930

Country of ref document: US