WO2010023034A1 - Gasturbinenanordnung mit porösem gehäuse und herstellverfahren - Google Patents
Gasturbinenanordnung mit porösem gehäuse und herstellverfahren Download PDFInfo
- Publication number
- WO2010023034A1 WO2010023034A1 PCT/EP2009/059176 EP2009059176W WO2010023034A1 WO 2010023034 A1 WO2010023034 A1 WO 2010023034A1 EP 2009059176 W EP2009059176 W EP 2009059176W WO 2010023034 A1 WO2010023034 A1 WO 2010023034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- inner housing
- gas turbine
- mixing
- turbine arrangement
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0466—Nickel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/80—Repairing, retrofitting or upgrading methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/612—Foam
Definitions
- the present invention relates to a gas turbine arrangement comprising at least one combustion chamber for combusting fuel, a mixing housing and an adjoining inner housing and an adjoining turbine, the combustion exhaust gas resulting from the combustion of the fuel passing through the mixing housing into the inner housing and through the combustion chamber Inner housing flows to the turbine. Furthermore, the invention relates to a gas turbine and a manufacturing method.
- a gas turbine plant 1 (see 'FIG 1) essentially comprises one or more combustion chambers 3 with burners, in which a fuel is burned, a turbine 5, the hot and pressurized combustion exhaust gases from the combustion chambers 3 are supplied and in the Exhaust gases perform under cooling and relaxation work and so put the turbine 5 in rotation, and a compressor 7, which is coupled to the turbine 5 via a shaft 12 which is surrounded by a hub 17, and on the for combustion necessary air is sucked in and compressed to a higher pressure.
- hot gas components such as mixing housing and inner housing used. This is particularly true for those gas turbine plants in which so-called silo separation chambers 3 are used, which are generally arranged on both sides of the turbine 3.
- FIG 1 shows such a gas turbine plant in a schematic view
- FIG 1 shows a horizontal section through the system. From these Silobrennhuntn 3, the combustion gases 2 flow in a direction which is substantially perpendicular to a rotation axis A of the turbine 5. Between the outlet 18 of the silo separation chambers 3 and the turbine 5, a mixing housing 8 is arranged, which is adjoined on the turbine side by an inner housing 9 arranged in the interior of the gas turbine housing 2. The purpose of the inner housing 9 is to protect the surrounding components from heat and to redirect the hot exhaust gases emerging from the mixing housing 8 in the direction of the turbine 5. When exiting the inner housing 9, that is to say when entering the turbine 5 of the gas turbine plant 1, the combustion exhaust gases then flow essentially parallel to the axis of rotation A of the turbine shaft 12.
- Hot gas components such as the mixing housing 8 and the inner housing 9 must therefore withstand the high combustion temperatures and must therefore be made of temperature-resistant material and material.
- Nickel alloys or nickel-base superalloys are currently used here in particular. However, the use of these materials is associated with high costs, especially for large components.
- these components may be coated with a local thermal barrier coating to withstand the increased temperature loads of the hot exhaust gas.
- the components can be lapped around the outside of compressor air for cooling. However, this can cause high, harmful temperature stresses between the outside and the inside of the component. To further increase the efficiency of the gas turbine, however, an increase in the turbine inlet temperature is necessary, which is not possible with current cooling or only using a highly cost-intensive material.
- the first object is achieved by a gas turbine arrangement according to claim 1.
- the object related to the gas turbine is solved by specifying a gas turbine according to claim 0.
- the object related to the method is solved by claim 0.
- the dependent claims contain advantageous embodiments of the invention.
- a gas turbine arrangement comprises at least one combustion chamber for burning fuel, a mixing housing and an adjoining inner housing and an adjoining turbine.
- the combustion exhaust gas produced by the combustion of the fuel flows through the mixing housing into the inner housing and through the inner housing to the turbine, wherein the inner housing is designed such that the combustion exhaust gas is deflected in the inner housing by means of the inner housing hub towards the turbine.
- the inner housing and the mixing housing Since just the inner housing and the mixing housing is subjected to high temperatures, they must be made of high temperature resistant materials. However, these have the disadvantage of being particularly cost-intensive. Despite high-temperature-resistant, cost-intensive materials, however, a cooling of the components is still necessary, as well as a thermal barrier coating at locally particularly high stress points.
- the invention intervenes, and solves this existing problem by now the inner housing and / or the mixing housing is at least partially formed of porous metallic material. Due to the porous structure of the foamed material optimized cooling of the flat components is possible. The open porosity and thus the permeability can be tailored to the cooling requirements. Thus, cooling air can be saved. Due to the porous structure and the This optimized cooling air is also a use of cheaper base materials possible.
- the metal foam has a very low density, but a high rigidity and good strength, which are necessary for large components such as the inner housing / mixing housing.
- existing structures can also be retrofitted by replacing the foamed material partially thermally highly loaded sites.
- the inner housing and / or the mixing housing is formed entirely of porous metallic material. As a result, a small amount of cooling air is also possible while increasing the temperature.
- the inner housing and / or the mixing housing locally consist of different porosities.
- sites subject to high thermal stress can have a greater porosity and thus experience greater cooling than sites that are less prone to thermal stress.
- a transpiration cooling is provided in the inner housing and / or in the mixing housing.
- the coolant flow passes through the mixing housing and / or the inner housing in the radial direction. It is thus introduced directly into the boundary layer of the flow and ideally forms a cooling film there.
- the housing is not only lapped with cooling compressor air, but the porous material is flowed through by the cooling air. It thus creates a protective film of cooling air between hot gas and material. This means more cooling and avoiding the temperature gradient and thus the stresses in the material increasing further.
- the inner housing and / or the mixing housing is at least partially produced from plates, wherein the plates are provided of porous metallic material. These plates can advantageously also be used in existing inner housings / mixing housings, preferably at locations of the component component that are subject to particularly high thermal stress.
- the inner housing and / or the mixing housing is provided as a welded construction.
- This is particularly easy to realize from the plates.
- These welded construction / s are sustainable by means of Siz construction, in particular steel beams. This ensures a particularly good stability.
- a gas turbine comprising two mutually opposite combustion chambers for combustion of fuel and a mixing housing adjoining thereto and an adjoining inner housing for guiding the combustion exhaust gases to a turbine, wherein the inner housing and / or the mixing housing at least partially Metal foam exists.
- the open porosity and thus the permeability of the metal foam can be tailored specifically to the component and the associated cooling requirements. Locally, different porosities can be used.
- an optimized cooling, in particular a transpiration cooling of the inner housing and / or the mixing housing is made possible. This represents a significant improvement in cooling over the prior art as convective cooling is currently used.
- a manufacturing method comprising at least one combustion chamber in which fuel is burned to combustion exhaust gases, and a mixing housing and an adjoining inner housing for guiding the combustion exhaust gases to a turbine, wherein the inner housing and / or the mixing housing by means of foam of metallic material , is made in particular of high temperature resistant nickel alloy.
- the production method preferably comprises the following steps:
- the foam is prepared by the slip-reaction foam sintering process (SRSS).
- SRSS slip-reaction foam sintering process
- FIG. 1 shows a horizontal section through a gas turbine plant with two silo combustion chambers in a highly schematic representation according to the prior art
- FIG. 2 shows a detail of an inner housing according to FIG
- FIG 3 schematically shows the inner housing according to the invention made of porous foam.
- FIG. 1 An example of gas turbine plant 1 is shown in FIG. 1 in a highly schematic representation.
- the gas turbine 1 comprises two silo separation chambers 3, a turbine 5, a compressor 7, two mixing housings 8 and an inner housing 9.
- the silo combustion chambers 3 serve to burn a fuel, the hot exhaust gases 2 standing under high pressure being conveyed via the mixing housings 8 and 10 Inner housing 9 of the turbine 5 are supplied to drive them.
- the turbine 5 comprises stationary guide vanes 10 and rotor blades 11 fixedly connected to a shaft 12 which is rotatably mounted about an axis A.
- the hot exhaust gas 2 expanding in the turbine 5 transmits impulse to the shaft 12 via the rotor blades 11, whereby the latter is moved into the shaft 12 Rotation is offset.
- the shaft 12 can be roughly divided into three sections, namely a section carrying the blades 11 of the turbine 5, a rotor blade of the compressor 7 (not shown) and a shaft section 16 arranged between these two sections, in which no blades are arranged.
- the shaft 12 and the attached blades 11 form the so-called. Turbine rotor.
- the shaft 12 extends through the entire Gasturbinenan- plant (not fully shown) and drives the compressor 7 and a generator, not shown.
- the compressor 7 serves to compress air, which is then fed to the silo combustion chambers 3 for combustion.
- the shaft 12 is surrounded by a shaft protection jacket 15 (see FIG 2), which is itself surrounded by an inner housing hub 17 of the inner housing 9.
- FIG. 2 shows the inner housing with inner housing hub 17 (vertical section through the inner housing), in which the inner housing hub 17 of the inner housing 9 and a part of the wave protection jacket 15 can be seen. Section wise is too to recognize a guide vane 10 of the turbine 5, which is the turbine-side opening 19 of the inner housing 9 opposite.
- the inner housing hub 17 and the shaft protection jacket 15 have substantially the shape of a hollow cylinder.
- the inner housing 9 serves to deflect the hot exhaust flowing from the mixing housings 8 into the inner housing 9 on the one hand and to distribute it as evenly as possible around the entire circumference of the turbine runner on the other hand. Here, the deflection is done by about 90 ° degrees.
- the gases are then fed to the turbine via a common annulus.
- the mixing housing 8 and the inner housing 9 must therefore withstand the high combustion temperatures and must therefore be made of temperature-resistant material and material. However, these are very expensive. In addition, they must be cooled intensively. For a further increase in efficiency of the turbine, however, higher temperatures are necessary.
- FIG. 3 shows by way of example an inventive inner housing 90 made of porous metallic material.
- the preparation of the foam is done by mixing a metal powder and a blowing agent, which is then compressed, for example, by extrusion, axial pressing or unaxial rolls to form a foamable semi-finished. Subsequently, the semifinished product is converted if necessary.
- the inner housing 90 and / or the mixing housing of plates can be understood here, for example, the vote on the size of the required disk.
- the semifinished product can for example be in a suitable form. This makes it possible, for example, to produce any geometry. Subsequently, the semifinished product is foamed.
- a porous material here also cast metal foam can be provided.
- the foam may be prepared by the Schlicker Reaction Foam Sintering Process (SRSS).
- SRSS Schlicker Reaction Foam Sintering Process
- other known preparations are also possible, for example, the injection of gas into a molten metal, metal vapor or gaseous metallic or a solution of metal ions.
- a high-temperature-resistant nickel alloy is suitable as the porous material.
- the inner housing 90 and / or the mixing housing can be configured completely or partially with porous material.
- the material can also be produced as a plate shape. If the material is produced as a plate, these plates can then be welded. By welding solid beam carriers, the housing (s) can then be further supported. These plates can also be incorporated into existing inner housings 90 / mixing housings. For this, the significant points from the original component are at least partially cut out and the porous plates are either placed on the remaining cut-out locations or these locations are completely replaced by porous material. It can be used, matched to the required cooling, plates with different porosities.
- the improved cooling can thus contribute to the fact that the efficiency of the gas turbine can be increased by a higher turbine inlet temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Powder Metallurgy (AREA)
Abstract
Es wird eine Gasturbinenanordnung offenbart, umfassend zumindest einer Brennkammer (3) zum Verbrennen von Brennstoff, einem Mischgehäuse sowie einem sich daran anschließenden Innengehäuse (90) und eine sich daran anschließende Turbine (5), wobei das durch das Verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse (90) und durch das Innengehäuse (90) zur Turbine strömt, wobei das Innengehäuse (90) und/oder das Mischgehäuse zumindest teilweise aus porösen metallischen Werkstoff gebildet ist. Weiterhin wird erfindungsgemäß eine Gasturbine und ein Verfahren zur Herstellung offenbart.
Description
Beschreibung
GASTURBINENANORDNUNG MIT PORÖSEM GEHÄUSE UND HERSTELLVERFAHREN
Die vorliegende Erfindung betrifft eine Gasturbinenanordnung umfassend zumindest einer Brennkammer zum Verbrennen von Brennstoff, einem Mischgehäuse sowie einem sich daran anschließenden Innengehäuse und eine sich daran anschließende Turbine, wobei das durch das verbrennen des Brennstoffs ent- stehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse und durch das Innengehäuse zur Turbine strömt. Weiterhin betrifft die Erfindung eine Gasturbine und ein Herstellverfahren .
Eine Gasturbinenanlage 1 (vgl. 'FIG 1) umfasst im Wesentlichen eine oder mehrere Brennkammern 3 mit Brennern, in denen ein Brennstoff verbrannt wird, eine Turbine 5, der die heißen und unter Druck stehenden Verbrennungsabgase aus den Brennkammern 3 zugeführt werden und in der die Abgase unter Abküh- lung und Entspannung Arbeit leisten und so die Turbine 5 in Rotation versetzen, sowie einen Verdichter 7, der mit der Turbine 5 über eine Welle 12, welche von einer Nabe 17 umgeben ist, gekoppelt ist und über den die für die Verbrennung notwendige Luft eingesaugt und auf einen höheren Druck ver- dichtet wird.
Zum Führen der heißen Verbrennungsabgase kommen in Gasturbinenanlagen heißgasführenden Bauteile wie Mischgehäuse und Innengehäuse zum Einsatz. Dies trifft insbesondere für solche Gasturbinenanlagen zu, in denen so genannte Silobrennkammern 3 Verwendung finden, die in der Regel zu beiden Seiten der Turbine 3 angeordnet sind.
FIG 1 zeigt eine derartige Gasturbinenanlage in einer schema- tischen Ansicht, wobei 'FIGl einen horizontalen Schnitt durch die Anlage zeigt.
Aus diesen Silobrennkammern 3 strömen die Verbrennungsabgase 2 in einer Richtung aus, die im Wesentlichen senkrecht zu einer Drehachse A der Turbine 5 verläuft. Zwischen dem Ausgang 18 der Silobrennkammern 3 und der Turbine 5 ist ein Mischge- häuse 8 angeordnet, dem sich turbinenseitig ein im Inneren des Gasturbinengehäuses 2 angeordnetes Innengehäuse 9 anschließt. Das Innengehäuse 9 hat die Aufgabe, die umgebenden Bauteile vor Hitze zu schützen und die aus dem Mischgehäuse 8 austretenden heißen Abgase in Richtung auf die Turbine 5 um- zulenken. Beim Austritt aus dem Innengehäuse 9, das heißt beim Eintritt in die Turbine 5 der Gasturbinenanlage 1 strömen die Verbrennungsabgase dann im Wesentlichen parallel zur Rotationsachse A der Turbinenwelle 12.
Heißgasführende Bauteile wie das Mischgehäuse 8 als auch das Innengehäuse 9 müssen daher den hohen Verbrennungstemperaturen stand halten und müssen daher aus temperaturbeständigen Werkstoff und Material gefestigt werden. Zurzeit kommen hier vor allem Nickellegierungen oder Nickelbasis-Superlegierungen zum Einsatz. Der Einsatz dieser Werkstoffe ist jedoch mit hohen Kosten verbunden, insbesondere bei großen Bauteilen. Zudem können diese Bauteile mit einer lokalen Wärmedämmschicht beschichtet sein um den erhöhten Temperaturbelastungen des heißen Abgases standzuhalten. Weiterhin können zur Kühlung die Bauteile auf der Außenseite von Verdichterluft umspült werden. Dies jedoch kann zwischen der Außenseite und der Innenseite des Bauteils hohe, schädliche Temperaturspannungen hervorrufen. Zur weiteren Effizienzsteigerung der Gasturbine ist jedoch eine Erhöhung der Turbineneintrittstemperatur not- wendig, was bei derzeitiger Kühlung nicht oder nur unter Verwendung eines stark kostenintensiven Werkstoffes möglich ist.
Gegenüber diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, eine verbesserte Gasturbinenanordnung zur Verfügung zu stellen, welche sich durch ein kostengünstiges Innengehäuse und/oder Mischgehäuse mit effizienter Kühlung auszeichnet. Eine weitere Aufgabe ist die Angabe einer solchen Gasturbine. Eine weitere Aufgabe ist die Angabe eines
Verfahrens zur Herstellung eines solchen Innengehäuses und/oder Mischgehäuses.
Die erste Aufgabe wird durch eine Gasturbinenanordnung nach Anspruch 1 gelöst. Die auf die Gasturbine bezogene Aufgabe wird durch die Angabe einer Gasturbine nach Anspruch 0 gelöst. Die auf das Verfahren bezogene Aufgabe wird durch Anspruch 0 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen der Erfindung.
Eine erfindungsgemäße Gasturbinenanordnung umfasst zumindest eine Brennkammer zum Verbrennen von Brennstoff, ein Mischgehäuse sowie ein sich daran anschließendes Innengehäuse und eine sich daran anschließende Turbine. Dabei strömt das durch das verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse und durch das Innengehäuse zur Turbine, wobei das Innengehäuse derart ausgestaltet ist, dass das Verbrennungsabgas im Innengehäuse mittels der Innengehäusenabe in Richtung Turbine umgelenkt wird. Da gerade das Innengehäuse als auch das Mischgehäuse hohen Temperaturen unterworfen ist, müssen diese aus hochtemperaturbeständigen Werkstoffen gefertigt werden. Diese haben jedoch den Nachteil besonders kostenintensiv zu sein. Trotz hochtemperaturbeständigen, kostenintensiven Werkstoffen ist jedoch dennoch eine Kühlung der Bauteile notwendig, sowie eine Wärmedämmschicht bei lokal besonders hoch belasteten Stellen. Für eine weitere Effizienzsteigerung der Turbine sind jedoch höhere Turbineneintrittstemperaturen notwendig. Bei derzeitiger Kühlung ist das nicht oder nur unter Verwendung eines stark kostenintensiven Werkstoffes möglich. Hier greift nun die Erfindung ein, und löst dieses bestehende Problem, indem nun das Innengehäuse und/oder das Mischgehäuse zumindest teilweise aus porösem metallischem Werkstoff gebildet ist. Durch die poröse Struktur des aufgeschäumten Materials ist eine optimierte Kühlung der flächigen Bauteile möglich. Die Offenporigkeit und damit die Durchlässigkeit kann speziell auf die Kühlansprüche angestimmt werden. Somit lässt sich Kühlluft einsparen. Durch die poröse Struktur und die
dadurch optimierte Kühlluft ist auch ein Einsatz von günstigeren Grundmaterialien möglich. Zudem weist der Metallschaum eine sehr geringe Dichte, aber eine hohe Steifigkeit sowie gute Festigkeit auf, welche für große Bauteile wie das Innen- gehäuse/Mischgehäuse notwendig sind. Vorteilhafterweise können auch bestehende Konstruktionen nachgerüstet werden, indem das aufgeschäumte Material partiell thermisch hoch belastete Stellen ersetzt.
In bevorzugter Ausgestaltung ist das Innengehäuse oder/und das Mischgehäuse vollständig aus porösem metallischem Werkstoff gebildet. Dadurch ist ein geringer Kühllufteinsatz auch bei gleichzeitiger Erhöhung der Temperatur möglich.
Bevorzugt bestehen das Innengehäuse oder/und das Mischgehäuse lokal aus unterschiedlichen Porositäten. So können beispielsweise thermisch hoch beanspruchte Stellen eine größere Porosität aufweisen und somit eine größere Kühlung erfahren als thermisch weniger beanspruchte Stellen.
Bevorzugt ist als poröses Metall vergossener Metallschaum vorgesehen .
In bevorzugte Ausgestaltung ist im Innengehäuse und/oder im Mischgehäuse zumindest teilweise eine Transpirationskühlung vorgesehen. Bei der Transpirationskühlung passiert der Kühlmittelstrom das Mischgehäuse und/oder das Innengehäuse in radialer Richtung. Er wird somit direkt in die Grenzschicht der Strömung eingeleitet und bildet idealer Weise dort einen Kühlfilm. Damit wird das Gehäuse nicht nur mit kühlender Verdichterluft umspült, sondern das poröse Material wird von der kühlenden Luft durchströmt. Es legt sich somit ein schützender Film kühlender Luft zwischen Heißgas und Material. So wird stärker gekühlt und dabei vermieden, dass der Tempera- turgradient und damit die Spannungen in dem Material weiter steigen .
Bevorzugt ist das Innengehäuse und/oder das Mischgehäuse zumindest teilweise aus Platten herstellbar, wobei die Platten aus porösem metallischem Werkstoff vorgesehen sind. Diese Platten können vorteilhafterweise auch in bestehende Innenge- häuse/Mischgehäuse eingesetzt werden, bevorzugt an besonders thermisch hoch belasteten Stellen der Bauteilkomponente.
Bevorzugt ist das Innengehäuse und/oder das Mischgehäuse als Schweißkonstruktion vorgesehen. Aus den Platten ist dies be- sonders einfach zu realisieren. Diese Schweißkonstruktion/en sind mittels Stürzkonstruktion, insbesondere Stahlträger, stützbar. Dies gewährleistet eine besonders gute Stabilität.
Erfindungsgemäß wird weiterhin eine Gasturbine offenbart, um- fassend zwei sich gegenüberliegende Brennkammern zur Verbrennung von Brennstoff sowie ein sich jeweils daran anschließendes Mischgehäuse und ein sich daran anschließendes Innengehäuse zum Führen der Verbrennungsabgase zu einer Turbine, wobei das Innengehäuse und/oder das Mischgehäuse zumindest teilweise aus Metallschaum besteht. Die Offenporigkeit und damit die Durchlässigkeit des Metallschaums kann speziell auf das Bauteil und die damit verbundenen Kühlansprüche abgestimmt werden. Lokal können auch verschiedene Porositäten verwendet werden. Somit wird eine optimierte Kühlung, insbe- sondere eine Transpirationskühlung des Innengehäuses und/oder des Mischgehäuses ermöglicht. Dies stellt eine wesentliche Verbesserung der Kühlung gegenüber dem Stand der Technik dar, da derzeit eine Konvektivkühlung verwendet wird. Auch wird bei der Transpirationskühlung im Vergleich zur Filmkühlung über Bohrungen, insbesondere bei großen Flächen wie dem Innengehäuse, Kühlluft eingespart. Dadurch ist eine Temperaturerhöhung möglich. Zudem können günstigere Grundmaterial verwendet werden. In Abhängigkeit von steigenden Turbineneins- trittstemperaturen werden somit die Gehäuse weiter hochtempe- raturgeeignet ausgeführt wobei gleichzeitig der Kühlluftverbrauch auf ein Minimum zu reduziert wird.
Erfindungsgemäß wird weiterhin ein Herstellverfahren offenbart, umfassend zumindest einer Brennkammer, in welcher Brennstoff zu Verbrennungsabgasen verbrannt wird, und einem Mischgehäuse sowie ein sich daran anschließendes Innengehäuse zum Führen der Verbrennungsabgase zu einer Turbine, wobei das Innengehäuse und/oder das Mischgehäuse mittels Schaum aus metallischer Werkstoff, insbesondere aus hochtemperaturfester Nickellegierung gefertigt wird.
Bevorzugt umfasst das Herstellverfahren folgende Schritte:
Metallpulver und Treibmittel mischen,
Pressen insbesondere Strangpressen oder axiales Pressen der Mischung,
Herstellen eines aufschäumbaren Halbzeugs, - bedarfsweises Umformen des Halbzeugs,
Aufschäumen des Halbzeugs.
In bevorzugter Ausgestaltung wird bei dem Herstellverfahren der Schaum nach dem SchlickerReaktionsSchaumSinter-Verfahren (SRSS) herstellt.
Es sind jedoch auch andere Herstellverfahren vorstellbar.
Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren .
FIG 1 zeigt einen horizontalen Schnitt durch eine Gasturbinenanlage mit zwei Silobrennkammern in einer stark schematisierten Darstellung nach dem Stand der Technik, FIG 2 zeigt einen Ausschnitt eines Innengehäuses nach dem
Stand der Technik,
FIG 3 zeigt schematisch das erfindungsgemäße Innengehäuse aus porösem Schaum.
Ein Beispiel für Gasturbinenanlage 1 ist in der FIG 1 in einer stark schematisierten Darstellung gezeigt. Die Gasturbi-
nenanlage 1 umfasst zwei Silobrennkammern 3, eine Turbine 5, einen Verdichter 7, zwei Mischgehäuse 8 sowie ein Innengehäuse 9. Die Silobrennkammern 3 dienen zum Verbrennen eines Brennstoffes, wobei die heißen und unter hohem Druck stehen- den Abgase 2 über die Mischgehäuse 8 und das Innengehäuse 9 der Turbine 5 zugeführt werden, um diese anzutreiben.
Die Turbine 5 umfasst stationäre Leitschaufeln 10 sowie mit einer um eine Achse A drehbar gelagerten Welle 12 fest ver- bundene Laufschaufeln 11. Durch das in der Turbine 5 expandierende heiße Abgas 2 wird Impuls über die Laufschaufeln 11 auf die Welle 12 übertragen, wodurch diese in Rotation versetzt wird.
Die Welle 12 kann grob in drei Abschnitte unterteilt werden, nämlich einen die Laufschaufeln 11 der Turbine 5 tragenden Abschnitt, einen Laufschaufeln des Verdichters 7 (nicht dargestellt) tragenden Abschnitt sowie einen zwischen diesen beiden Abschnitten angeordneten Wellenabschnitt 16, in dem keine Laufschaufeln angeordnet sind. Die Welle 12 und die daran angebrachten Laufschaufeln 11 bilden den sog. Turbinenläufer .
Die Welle 12 erstreckt sich durch die gesamte Gasturbinenan- läge (nicht vollständig dargestellt) und treibt den Verdichter 7 sowie einen nicht dargestellten Generator an. Der Verdichter 7 dient dabei dazu, Luft zu verdichten, die anschließend den Silobrennkammern 3 für die Verbrennung zugeführt wird.
Die Welle 12 ist von einem Wellenschutzmantel 15 (vgl. FIG 2) umgeben, welche selbst von einer Innengehäusenabe 17 des Innengehäuses 9 umgeben ist.
FIG 2 zeigt das Innengehäuse mit Innengehäusenabe 17 (vertikaler Schnitt durch das Innengehäuse) , in dem die Innengehäusenabe 17 des Innengehäuses 9 sowie ein Teil des Wellen- schutzmantels 15 zu erkennen sind. Ausschnittsweise ist auch
eine Leitschaufel 10 der Turbine 5 zu erkennen, die der tur- binenseitigen Öffnung 19 des Innengehäuses 9 gegenüberliegt.
Die Innengehäusenabe 17 sowie der Wellenschutzmantel 15 haben im Wesentlichen die Form eines Hohlzylinders . Das Innengehäuse 9 dient dazu, das aus den Mischgehäusen 8 in das Innengehäuse 9 einströmende heiße Abgas einerseits abzulenken und andererseits möglichst gleichmäßig um den gesamten Umfang des Turbinenläufers zu verteilen. Hierbei erfolgt die Ablenkung um ca. 90 °Grad. Über einen gemeinsamen Ringraum werden die Gase dann der Turbine zugeführt. Das Mischgehäuse 8 als auch das Innengehäuse 9 müssen daher den hohen Verbrennungstemperaturen stand halten und müssen daher aus temperaturbeständigen Werkstoff und Material gefestigt werden. Diese sind je- doch sehr kostenintensiv. Zudem müssen sie intensiv gekühlt werden. Für eine weitere Effizienzsteigerung der Turbine sind jedoch höhere Temperaturen notwendig.
FIG 3 zeigt beispielhaft ein erfindungsgemäßes Innengehäuse 90 aus porösem metallischem Werkstoff. Dadurch wird die Kühlung wesentlich verbessert. Die Herstellung des Schaums geschieht dabei durch mischen eines Metallpulvers und eines Treibmittels, welches anschließend beispielsweise durch Strangpressen, axiales Pressen oder aber unaxialen Walzen zu einem aufschäumbaren Halbzeug verdichtet wird. Anschließend wird das Halbzeug bei Bedarf umgeformt. Bei einer Konstruktion des Innengehäuses 90 und/oder des Mischgehäuses aus Platten kann hier beispielsweise die Abstimmung auf die Größe der benötigten Platte verstanden werden. Auch kann das Halbzeug beispielsweise in eine geeignete Form geben werden. Dadurch ist es beispielsweise möglich beliebige Geometrien herzustellen. Anschließend wird das Halbzeug aufgeschäumt. Als poröses Material kann auch hierbei vergossener Metallschaum vorgesehen sein. Alternativ und/oder zusätzlich kann der Schaum nach dem SchlickerReaktionsSchaumSinter-Verfahren (SRSS) hergestellt werden. Auch andere bekannte Herstellungen sind jedoch möglich, beispielsweise das Einblasen von Gas in eine Metallschmelze, aus Metalldampf oder gasförmigen metallischen Be-
standteilen oder aus einer Lösung von Metall-Ionen. Dabei ist als poröses Material vor allem eine hochtemperaturfeste Nickellegierung geeignet.
Mittels der porösen Struktur ist es nunmehr möglich das/die Gehäuse nicht nur mit kühlender Luft zu umspülen, sondern vielmehr das poröse Material mit kühlender Luft zu durchströmen. Dieses legt sich als schützender Film zwischen Heißgas und Material. Damit wird vermieden, dass der Temperaturgra- dient und damit die Spannungen in dem Material weiter steigen. Das Innengehäuse 90 und/oder das Mischgehäuse können dabei vollständig oder partiell mit porösem Material ausgestaltet sein.
Der Werkstoff kann jedoch auch als Plattenform hergestellt sein. Wird der Werkstoff als Platte hergestellt, können diese Platten anschließend geschweißt werden. Durch aufschweißen massiver Strahlträger kann das/die Gehäuse anschließend noch weiter gestützt werden. Diese Platten können auch in beste- hende Innengehäuse 90 /Mischgehäuse eingearbeitet werden. Dafür werden die signifikanten Stellen aus dem ursprünglichen Bauteil zumindest teilweise herausgeschnitten und die porösen Platten entweder auf den verbleibenden ausgeschnittenen Stellen aufgesetzt oder diese Stellen werden komplett durch porö- ses Material ersetzt. Es können dabei, abgestimmt auf die benötigte Kühlung, Platten mit verschiedenen Porositäten benutzt werden.
Durch die somit verbesserte Kühlung ist auch die Verwendung eines günstigeren Grundmaterials möglich. Die verbesserte Kühlung kann somit dazu beitragen, dass die Effizienz der Gasturbine durch eine höhere Turbineneintrittstemperatur gesteigert werden kann.
Claims
1. Gasturbinenanordnung umfassend zumindest einer Brennkammer (3) zum Verbrennen von Brennstoff, einem Mischgehäuse sowie ein sich daran anschließendes Innengehäuse (90) und eine sich daran anschließende Turbine (5) , wobei das durch das verbren¬ nen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse (90) und durch das Innenge¬ häuse (90) zur Turbine strömt, d a d u r c h g e k e n n z e i c h n e t, d a s s das In¬ nengehäuse (90) und/oder das Mischgehäuse zumindest teilweise aus porösen metallischen Werkstoff gebildet ist.
2. Gasturbinenanordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s das In¬ nengehäuse (90) oder/und das Mischgehäuse vollständig aus po¬ rösen metallischen Werkstoff gebildet ist.
3. Gasturbinenanordnung nach einem der vorhergehenden Ansprü- che, d a d u r c h g e k e n n z e i c h n e t, d a s s das
Innengehäuse (90) oder/und das Mischgehäuse lokal aus unter¬ schiedlichen Porositäten besteht.
4. Gasturbinenanordnung nach einem der vorhergehenden Ansprü- che, d a d u r c h g e k e n n z e i c h n e t, d a s s als poröses Metall vergossener Metallschaum vorgesehen ist.
5. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s das im Innengehäuse (90) und/oder im Mischgehäuse zumindest teil¬ weise eine Transpirationskühlung vorgesehen ist.
6. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s das Innengehäuse (90) und/oder das Mischgehäuse zumindest teil¬ weise aus Platten herstellbar ist, wobei die Platten aus po¬ rösen metallischen Werkstoff vorgesehen sind.
7. Gasturbinenanordnung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a s s das In¬ nengehäuse (90) und/oder das Mischgehäuse als Schweißkon¬ struktion vorgesehen ist.
8. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s das Innengehäuse (90) und/oder das Mischgehäuse mittels Stürzkon¬ struktion insbesondere Stahlträger stützbar ist.
9. Gasturbine (5) umfassend zwei sich gegenüberliegende Brennkammern (3) zur Verbrennung von Brennstoff sowie ein sich jeweils daran anschließendes Mischgehäuse und ein sich daran anschließendes Innengehäuse (90) zum Führen der Ver- brennungsabgase zu einer Turbine (5) , d a d u r c h g e k e n n z e i c h n e t, d a s s das Innengehäuse (90) und/oder das Mischgehäuse zumindest teilweise aus Metall¬ schaum besteht.
10. Herstellverfahren umfassend zumindest einer Brennkammer (3) , in welcher Brennstoff zu Verbrennungsabgasen verbrannt wird, und einem Mischgehäuse sowie ein sich daran anschlie¬ ßendes Innengehäuse (90) zum Führen der Verbrennungsabgase zu einer Turbine (5) , d a d u r c h g e k e n n z e i c h- n e t, d a s s das Innengehäuse (90) und/oder das Mischgehäu¬ se mittels Schaum aus metallischem Werkstoff, insbesondere aus hochtemperaturfester Nickellegierung gefertigt wird.
11. Herstellverfahren nach Anspruch 10 umfassend folgender Schritte:
Metallpulver und Treibmittel mischen,
Pressen insbesondere Strangpressen oder axiales Pressen der Mischung,
Herstellen eines aufschäumbaren Halbzeugs, - bedarfsweises Umformen des Halbzeugs,
Aufschäumen des Halbzeugs.
12. Herstellverfahren nach Anspruch 10, bei dem der Schaum nach dem SchlickerReaktionsSchaumSinter-Verfahren (SRSS) herstellt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08015273.9 | 2008-08-29 | ||
EP08015273A EP2159380A1 (de) | 2008-08-29 | 2008-08-29 | Gasturbinenanordnung mit pörosen Gehäuse und Herstellverfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010023034A1 true WO2010023034A1 (de) | 2010-03-04 |
Family
ID=40873346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/059176 WO2010023034A1 (de) | 2008-08-29 | 2009-07-16 | Gasturbinenanordnung mit porösem gehäuse und herstellverfahren |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2159380A1 (de) |
WO (1) | WO2010023034A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021066182A1 (ja) * | 2019-10-04 | 2021-04-08 | 国立大学法人 筑波大学 | 消毒組成物、洗浄組成物、防汚組成物、ウイルス不活性化組成物および非殺菌性組成物並びにバイオフィルムの除去および形成抑制用組成物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011014292A1 (de) * | 2011-03-17 | 2012-09-20 | Rolls-Royce Deutschland Ltd & Co Kg | Zwischenstufendichtungsring sowie Verfahren zu dessen Herstellung |
FR3038364B1 (fr) * | 2015-07-01 | 2020-01-03 | Safran Helicopter Engines | Paroi de chambre de combustion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557553A (en) * | 1967-08-31 | 1971-01-26 | Daimler Benz Ag | Structural part of a gas turbine drive unit which is exposed to thermal load and is to be cooled by means of a gas |
US4158949A (en) * | 1977-11-25 | 1979-06-26 | General Motors Corporation | Segmented annular combustor |
US6495207B1 (en) * | 2001-12-21 | 2002-12-17 | Pratt & Whitney Canada Corp. | Method of manufacturing a composite wall |
US20070122606A1 (en) * | 2003-12-10 | 2007-05-31 | Mtu Aero Engines Gmbh | Method for producing gas turbine components and component for a gas turbine |
DE202006019983U1 (de) * | 2006-08-24 | 2007-07-26 | Elringklinger Ag | Abschirmbauteil, insbesondere Hitzeschild |
-
2008
- 2008-08-29 EP EP08015273A patent/EP2159380A1/de not_active Withdrawn
-
2009
- 2009-07-16 WO PCT/EP2009/059176 patent/WO2010023034A1/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557553A (en) * | 1967-08-31 | 1971-01-26 | Daimler Benz Ag | Structural part of a gas turbine drive unit which is exposed to thermal load and is to be cooled by means of a gas |
US4158949A (en) * | 1977-11-25 | 1979-06-26 | General Motors Corporation | Segmented annular combustor |
US6495207B1 (en) * | 2001-12-21 | 2002-12-17 | Pratt & Whitney Canada Corp. | Method of manufacturing a composite wall |
US20070122606A1 (en) * | 2003-12-10 | 2007-05-31 | Mtu Aero Engines Gmbh | Method for producing gas turbine components and component for a gas turbine |
DE202006019983U1 (de) * | 2006-08-24 | 2007-07-26 | Elringklinger Ag | Abschirmbauteil, insbesondere Hitzeschild |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021066182A1 (ja) * | 2019-10-04 | 2021-04-08 | 国立大学法人 筑波大学 | 消毒組成物、洗浄組成物、防汚組成物、ウイルス不活性化組成物および非殺菌性組成物並びにバイオフィルムの除去および形成抑制用組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP2159380A1 (de) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1322838B1 (de) | Laufschaufel für eine strömungsmaschine sowie strömungsmaschine | |
EP2260180B1 (de) | Leitschaufel für eine gasturbine | |
DE60201467T2 (de) | Gasturbinenbrennkammer aus Verbundwerkstoff mit keramischer Matrix | |
EP1979577A1 (de) | Leitschaufelsegment einer gasturbine und verfahren zu dessen herstellung | |
EP3183497A1 (de) | Hitzeschildelement und verfahren zu seiner herstellung | |
EP1904717B1 (de) | HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE | |
EP2812636B1 (de) | Ringbrennkammer-bypass | |
WO2010052050A1 (de) | Axial segmentierter leitschaufelträger für eine gasturbine | |
EP2411631B1 (de) | Dichtplatte und Laufschaufelsystem | |
EP2730844A1 (de) | Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung | |
WO2010023034A1 (de) | Gasturbinenanordnung mit porösem gehäuse und herstellverfahren | |
WO2011088819A2 (de) | Gehäusesystem für eine axialströmungsmaschine | |
EP1731715A1 (de) | Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit | |
DE102015221324A1 (de) | Turbinenrotor für eine Niederdruckturbine eines Gasturbinensystems | |
EP1398569A1 (de) | Gasturbine | |
EP2270397A1 (de) | Gasturbinenbrennkammer und Gasturbine | |
DE102016121360A1 (de) | System zur Halterung eines Turbinendiffusors | |
EP4031310A1 (de) | Verfahren zur schichtweisen additiven herstellung eines verbundwerkstoffs | |
EP3689500A1 (de) | Bauteil, insbesondere für eine thermische strömungsmaschine, und verfahren zum herstellen eines derartigen bauteils | |
EP3508690A1 (de) | Turbinenschaufelblatt, turbinenschaufel und verfahren zu deren herstellung | |
WO2007141091A1 (de) | Gepanzerte maschinenkomponente und gasturbine | |
EP2184449A1 (de) | Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger | |
DE102020202089A1 (de) | Plattformstruktur für eine Turbinenschaufel und additives Herstellungsverfahren | |
EP2318664A1 (de) | Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe und verfahren zur turbinenanströmung | |
EP2236758A1 (de) | Laufschaufelsystem mit Dichtplatten, die eine Stegstruktur aufweisen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809301 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09809301 Country of ref document: EP Kind code of ref document: A1 |