EP2881666A1 - Düsenträger aus metallischem Schaum - Google Patents

Düsenträger aus metallischem Schaum Download PDF

Info

Publication number
EP2881666A1
EP2881666A1 EP13196216.9A EP13196216A EP2881666A1 EP 2881666 A1 EP2881666 A1 EP 2881666A1 EP 13196216 A EP13196216 A EP 13196216A EP 2881666 A1 EP2881666 A1 EP 2881666A1
Authority
EP
European Patent Office
Prior art keywords
nozzle carrier
plate
passages
hot side
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13196216.9A
Other languages
English (en)
French (fr)
Inventor
Simon Bez
Björn Buchholz
Thomas Grieb
Matthias Hase
Werner Krebs
Berthold Köstlin
Stefan Reich
Marc Tertilt
Jan Wilkes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13196216.9A priority Critical patent/EP2881666A1/de
Publication of EP2881666A1 publication Critical patent/EP2881666A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03282High speed injection of air and/or fuel inducing internal recirculation

Definitions

  • the invention relates to a nozzle carrier for a jet burner.
  • Jet-stabilized combustion systems where the fuel is burned in a jet flame downstream of the burner, have a simpler premixing zone compared to spin-stabilized systems. Since the pressure difference in the burner is converted exclusively into the axial velocity component, these burners are characterized by a low flashback tendency, which is why even highly reactive combustion mixtures with a higher hydrogen content can be burned with this burner. Furthermore, no spin-induced vortex structures are generated in jet-stabilized combustion systems, which can cause flame instabilities.
  • Such a jet-stabilized burner comprises, for example, a jet carrier with a plurality of nozzles, which can usually be arranged concentrically on one or more rings.
  • the design of the nozzle carrier is usually very solid and therefore associated with high material and processing costs.
  • the nozzle carrier must be coated and cooled.
  • the nozzle carrier is made by forging.
  • this shaping method is very expensive and, on the other hand, is only suitable for the production of simple geometries due to the process.
  • the object of the invention is to further develop said nozzle carrier, so that it is at least easier and cheaper to manufacture.
  • the invention solves this problem by providing that in such a nozzle carrier for a jet burner, comprising a nozzle carrier body comprising a hot side facing a combustion chamber in operation and a cold side facing away from the combustion chamber, between which a peripheral edge extends, wherein passages in Düsenarri notion extend from the cold side to the hot side and form Vormischzonen, the nozzle carrier body is made of metal foam and inner walls of the passages for Vormischzonen are gas-tight.
  • the nozzle carrier is no longer massively forged and machined, but it is a nozzle carrier body made of foamed metal powder. Cavities or breakthroughs (e.g., for premix zone and pilot cone) can be shaped directly upon foaming. This eliminates the editing.
  • a high-temperature resistant material should be used (for example, nickel-based alloy).
  • Metal foam can be made with different pore sizes. Due to the sponge-like structure, it offers a very large surface area, is gas-permeable and combines a low weight with good strength. Similar to any type of insulation material, a sponge structure is well suited to breaking and absorbing frequencies.
  • the passages for the premix zones, in which fuel and combustion air are to mix must be made gas-tight by suitable measures.
  • the inner walls are formed by tubes arranged in the passages for premixing zones. This ensures that no fuel enters the nozzle carrier uncontrolled and away from the premix zones.
  • a plate in particular a metal plate, is firmly connected to the hot side.
  • the temperature in front of the foam can be lowered somewhat or the nozzle carrier made of metal foam can thus be sealed against the penetration of the hot gas from the combustion chamber.
  • the metal plate should be made as thin as possible on the hot side, so that they can forward similar to a membrane vibrations of the burner on the associated metal foam. The vibrations are absorbed and absorbed by the metal foam.
  • a correspondingly shaped enclosure is firmly connected to the peripheral edge.
  • One possibility is, for example, to surround the body of metal foam with a cylinder of a shaped metal plate. Compressor air, which is guided past the nozzle carrier during operation, before it is guided around the burner back wall and into the premixing passages of the nozzle carrier, can thus be conducted better past the nozzle carrier. In addition, the mechanical stability of the nozzle carrier improves.
  • a plate is firmly connected to the cold side. It is expedient if the plate is a metal plate. Fastening elements of the nozzle carrier can be attached to this metal plate by means of which the nozzle carrier can be mounted on a burner back plate (cover plate).
  • At least one cooling tube is incorporated in the metal foam.
  • This cooling tube can already be incorporated during foaming in the metal foam. Through the cooling tube cooling air can be directed through the foam targeted to the plate on the hot side.
  • cooling air holes are provided in the plate on the hot side to divert the cooling air into the combustion chamber can.
  • FIG. 1 shows schematically and by way of example a section through a nozzle carrier 1 for a jet burner, with a nozzle carrier body 2, comprising a combustion chamber during operation facing a hot side 3 and a remote from the combustion chamber cold side 4, between which a circumferential edge 5 extends.
  • Passages 6 in the nozzle carrier body 2 extend from the cold side 4 to the hot side 3. In operation, combustion air flows from the cold side 4 into the passages 6 and mixes with fuel from fuel lances which project into the passages 6. Thus, premix zones are formed in the passages 6.
  • the nozzle carrier body 2 is made of metal foam 7 and the inner walls 8 of the passages 6 for premixing zones are gas-tight, for example by means of metallic tubes 9 for the premixing zone, which are firmly incorporated into the metal foam 7 of the nozzle carrier body 2.
  • FIG. 1 shows two metallic plates 10, 13, between which the metal foam 7 is foamed firmly adhering.
  • the plate 10 on the hot side 3 has a thermal barrier coating 11 in order to lower the temperature in the nozzle carrier 1.
  • the plate 13 connected to the cold side 4 may, for example, have fastening elements (not shown) with which the nozzle carrier 1 can be mounted in, for example, a gas turbine.
  • FIG. 1 a correspondingly shaped, in the example of FIG. 1 hollow cylindrical enclosure 12 which is fixedly connected to the peripheral edge 5 of the nozzle carrier body 2.
  • a cooling tube 14 is incorporated in the metal foam 7.
  • the cooling tube 14 serves to cool the plate 10 on the hot side 3 of the nozzle carrier 1 and allows cooling air 15 targeted, ie without high pressure loss, to lead to the plate 10, where they by additional, introduced into the plate 10 cooling air holes 16 in a Combustion chamber can be derived.
  • FIG. 2 shows FIG. 2 in that a plate 13 does not necessarily have to be provided at least on the cold side 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Die Erfindung betrifft einen Düsenträger (1) für einen Strahlbrenner, mit einem Düsenträgerkörper (2) umfassend eine im Betrieb einer Brennkammer zugewandte Heißseite (3) und eine von der Brennkammer abgewandte Kaltseite (4), zwischen denen sich ein umlaufender Rand (5) erstreckt, wobei sich Durchlässe (6) im Düsenträgerkörper (2) von der Kaltseite (4) bis zur Heißseite (3) erstrecken und Vormischzonen ausbilden, wobei der Düsenträgerkörper (2) aus Metallschaum (7) gefertigt ist und Innenwände (8) der Durchlässe (6) für Vormischzonen gasdicht ausgeführt sind.

Description

  • Die Erfindung betrifft einen Düsenträger für einen Strahlbrenner.
  • Strahlstabilisierte Verbrennungssysteme, bei denen stromabwärts des Brenners der Brennstoff in einer Strahlflamme verbrannt wird, weisen gegenüber drallstabilisierten Systemen eine einfachere Vormischzone auf. Da die Druckdifferenz im Brenner ausschließlich in die Axialgeschwindigkeitskomponente gewandelt wird, zeichnen sich diese Brenner durch eine geringe Flammenrückschlagsneigung aus, weshalb auch höher reaktive Verbrennungsgemische mit höherem Wasserstoffanteil mit diesem Brenner verbrannt werden können. Weiterhin werden in strahlstabilisierten Verbrennungssystemen keine drallinduzierten Wirbelstrukturen erzeugt, die Flammeninstabilitäten verursachen können.
  • Ein solcher strahlstabilisierter Brenner umfasst beispielsweise einen Düsenträger (jet carrier) mit mehreren Düsen, die üblicherweise konzentrisch auf einem oder mehreren Ringen angeordnet werden können.
  • Das Design des Düsenträgers ist üblicherweise sehr massiv und daher mit hohen Material- und Bearbeitungskosten verbunden.
  • Ferner muss der Düsenträger beschichtet und gekühlt werden.
  • Der Düsenträger wird durch Schmieden hergestellt. Dieses Formgebungsverfahren ist zum einen sehr teuer und ist zum anderen prozessbedingt nur zur Herstellung von einfachen Geometrien geeignet.
  • Des Weiteren ist nach dem Schmieden eine Bearbeitung notwendig, um Durchbrüche z.B. für die Vormischzone aus dem Schmiedeteil zu entfernen.
  • Aufgabe der Erfindung ist es, den genannten Düsenträger weiterzuentwickeln, so dass er zumindest einfacher und kostengünstiger herzustellen ist.
  • Die Erfindung löst diese Aufgabe, indem sie vorsieht, dass bei einem derartigen Düsenträger für einen Strahlbrenner, mit einem Düsenträgerkörper umfassend eine im Betrieb einer Brennkammer zugewandte Heißseite und eine von der Brennkammer abgewandte Kaltseite, zwischen denen sich ein umlaufender Rand erstreckt, wobei sich Durchlässe im Düsenträgerkörper von der Kaltseite bis zur Heißseite erstrecken und Vormischzonen ausbilden, der Düsenträgerkörper aus Metallschaum gefertigt ist und Innenwände der Durchlässe für Vormischzonen gasdicht ausgeführt sind.
  • Der Düsenträger wird nicht mehr massiv geschmiedet und bearbeitet, sondern es wird ein Düsenträgerkörper aus aufgeschäumtem Metallpulver hergestellt. Hohlräume oder Durchbrüche (z.B. für Vormischzone und Pilotkonus) können direkt beim Aufschäumen in Form gebracht werden. Dadurch entfällt die Bearbeitung. Als Werkstoff sollte ein hochtemperaturbeständiger Werkstoff eingesetzt werden (z.B. Nickel-Basis-Legierung).
  • Metallschaum kann mit unterschiedlichen Porengrößen hergestellt werden. Aufgrund des schwammartigen Aufbaus bietet er eine sehr große Oberfläche, ist gasdurchlässig und verbindet ein geringes Gewicht mit guter Festigkeit. Ähnlich wie bei jeglicher Art von Dämm-Material, ist eine Schwammstruktur gut geeignet, Frequenzen zu brechen und diese zu absorbieren.
  • Aufgrund der Gasdurchlässigkeit des Metallschaums müssen die Durchlässe für die Vormischzonen, in denen sich Brennstoff und Verbrennungsluft mischen sollen, durch geeignete Maßnahmen gasdicht ausgeführt sein.
  • Es ergibt sich eine deutliche Kostenreduzierung bei der Fertigung. Trotz Schaumstruktur bleibt das Bauteil aber stabil und duktil.
  • Im Hinblick auf die gasdichte Ausführung der Durchlässe für die Vormischzonen ist es besonders vorteilhaft, wenn die Innenwände durch in den Durchlässen für Vormischzonen angeordnete Rohre gebildet sind. Dadurch wird sichergestellt, dass kein Brennstoff unkontrolliert und abseits der Vormischzonen in den Düsenträger eindringt.
  • Weiterhin ist es vorteilhaft, wenn eine Platte, insbesondere eine Metallplatte, fest mit der Heißseite verbunden ist. Dadurch lässt sich die Temperatur vor dem Schaum etwas absenken bzw. der Düsenträger aus Metallschaum kann damit gegen das Eindringen des Heißgases aus dem Brennraum abgedichtet werden. Dabei soll die Metallplatte auf der Heißseite möglichst dünn gestaltet werden, so dass sie ähnlich wie eine Membran Schwingungen der Brenners auf den mit ihr verbundenen Metallschaum weiterleiten kann. Die Schwingungen werden vom Metallschaum aufgenommen und absorbiert.
  • Bei Vorhandensein einer solchen Metallplatte ist es zweckmäßig, wenn diese eine Wärmedämmschicht aufweist, um den Temperaturschutz für den Düsenträger weiter zu verbessern.
  • In einer vorteilhaften Ausführungsform der Erfindung ist eine entsprechend geformte Einfassung fest mit dem umlaufenden Rand verbunden. Eine Möglichkeit ist z.B., den Körper aus Metallschaum mit einem Zylinder aus einer geformten Metallplatte zu umgeben. Verdichterendluft, die im Betrieb am Düsenträger vorbeigeleitet wird, bevor sie an der Brennerrückwand umund in die Vormischpassagen des Düsenträgers hinein gelenkt wird, kann somit besser am Düsenträger vorbeigeleitet werden. Außerdem verbessert sich die mechanische Stabilität des Düsenträgers.
  • In einer weiteren vorteilhaften Ausführungsform ist eine Platte fest mit der Kaltseite verbunden. Dabei ist es zweckmäßig, wenn die Platte eine Metallplatte ist. An diese Metallplatte können Befestigungselemente des Düsenträgers angebracht werden, mittels derer der Düsenträger an einer Brennerrückwand (cover plate) montiert werden kann.
  • Zur Kühlung der Frontplatte ist es vorteilhaft, wenn mindestens ein Kühlrohr in den Metallschaum eingearbeitet ist. Dieses Kühlrohr kann bereits beim Aufschäumen in den Metallschaum eingearbeitet werden. Durch das Kühlrohr kann Kühlluft durch den Schaum gezielt zur Platte auf der Heißseite geleitet werden.
  • Dabei ist es besonders vorteilhaft, wenn Kühlluftbohrungen in der Platte auf der Heißseite vorgesehen sind, um die Kühlluft in die Brennkammer ableiten zu können.
  • Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:
    • Figur 1 einen Schnitt durch einen Düsenträger und
    • Figur 2 einen weiteren Schnitt durch einen Düsenträger.
  • Die Figur 1 zeigt schematisch und beispielhaft einen Schnitt durch einen Düsenträger 1 für einen Strahlbrenner, mit einem Düsenträgerkörper 2, umfassend eine im Betrieb einer Brennkammer zugewandte Heißseite 3 und eine von der Brennkammer abgewandte Kaltseite 4, zwischen denen sich ein umlaufender Rand 5 erstreckt.
  • Durchlässe 6 im Düsenträgerkörper 2 erstrecken sich von der Kaltseite 4 bis zur Heißseite 3. Im Betrieb strömt Verbrennungsluft von der Kaltseite 4 her in die Durchlässe 6 hinein und vermischt sich mit Brennstoff aus Brennstofflanzen, die in die Durchlässe 6 hineinragen. In den Durchlässen 6 bilden sich somit Vormischzonen aus.
  • Gemäß der Erfindung ist der Düsenträgerkörper 2 aus Metallschaum 7 gefertigt und die Innenwände 8 der Durchlässe 6 für Vormischzonen sind gasdicht ausgeführt, beispielsweise mittels metallischer Rohre 9 für die Vormischzone, die fest in den Metallschaum 7 des Düsenträgerkörpers 2 eingearbeitet sind.
  • Ferner zeigt die Figur 1 zwei metallische Platten 10, 13, zwischen denen der Metallschaum 7 fest anhaftend aufgeschäumt ist.
  • Die Platte 10 an der Heißseite 3 weist eine Wärmedämmschicht 11 auf, um die Temperatur im Düsenträger 1 zu senken. Die mit der Kaltseite 4 verbundene Platte 13 kann beispielsweise Befestigungselemente aufweisen (nicht gezeigt) mit denen der Düsenträger 1 in beispielsweise einer Gasturbine montiert werden kann.
  • Weiter zeigt die Figur 1 eine entsprechend geformte, im Beispiel der Figur 1 hohlzylinderförmige Einfassung 12, die fest mit dem umlaufenden Rand 5 des Düsenträgerkörpers 2 verbunden ist.
  • Bei der Ausführungsform der Figur 2 ist ein Kühlrohr 14 in den Metallschaum 7 eingearbeitet. Das Kühlrohr 14 dient der Kühlung der Platte 10 auf der Heißseite 3 des Düsenträgers 1 und erlaubt es, Kühlluft 15 gezielt, d.h. ohne hohen Druckverlust, bis zur Platte 10 zu leiten, wo sie durch zusätzliche, in die Platte 10 eingebrachte Kühlluftbohrungen 16 in eine Brennkammer abgeleitet werden kann.
  • Weiter zeigt Figur 2, dass zumindest auf der Kaltseite 4 nicht zwingend eine Platte 13 vorgesehen sein muss.

Claims (7)

  1. Düsenträger (1) für einen Strahlbrenner, mit einem Düsenträgerkörper (2) umfassend eine im Betrieb einer Brennkammer zugewandte Heißseite (3) und eine von der Brennkammer abgewandte Kaltseite (4), zwischen denen sich ein umlaufender Rand (5) erstreckt, wobei sich Durchlässe (6) im Düsenträgerkörper (2) von der Kaltseite (4) bis zur Heißseite (3) erstrecken und Vormischzonen ausbilden, dadurch gekennzeichnet, dass der Düsenträgerkörper (2) aus Metallschaum (7) gefertigt ist und Innenwände (8) der Durchlässe (6) für Vormischzonen gasdicht ausgeführt sind.
  2. Düsenträger (1) nach Anspruch 1, wobei die Innenwände (8) durch in den Durchlässen (6) für Vormischzonen angeordnete Rohre (9) gebildet sind.
  3. Düsenträger (1) nach einem der Ansprüche 1 oder 2, wobei eine Platte (10) fest mit der Heißseite (3) verbunden ist.
  4. Düsenträger (1) nach Anspruch 3, wobei die Platte (10) eine Wärmedämmschicht (11) aufweist.
  5. Düsenträger (1) nach einem der vorhergehenden Ansprüche, wobei eine entsprechend geformte Einfassung (12) fest mit dem umlaufenden Rand (5) verbunden ist.
  6. Düsenträger (1) nach einem der vorhergehenden Ansprüche, wobei eine Platte (13) fest mit der Kaltseite (4) verbunden ist.
  7. Düsenträger (1) nach einem der vorhergehenden Ansprüche, wobei mindestens ein Kühlrohr (14) in den Metallschaum (7) eingearbeitet ist.
    Düsenträger (1) nach den Ansprüchen 3 und 7, wobei Kühlluftbohrungen (16) in der Platte (10) vorgesehen sind.
EP13196216.9A 2013-12-09 2013-12-09 Düsenträger aus metallischem Schaum Withdrawn EP2881666A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13196216.9A EP2881666A1 (de) 2013-12-09 2013-12-09 Düsenträger aus metallischem Schaum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13196216.9A EP2881666A1 (de) 2013-12-09 2013-12-09 Düsenträger aus metallischem Schaum

Publications (1)

Publication Number Publication Date
EP2881666A1 true EP2881666A1 (de) 2015-06-10

Family

ID=49726612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13196216.9A Withdrawn EP2881666A1 (de) 2013-12-09 2013-12-09 Düsenträger aus metallischem Schaum

Country Status (1)

Country Link
EP (1) EP2881666A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016362A (zh) * 2016-05-16 2016-10-12 中国科学院工程热物理研究所 一种燃气轮机柔和燃烧室及其控制方法
EP3195905A1 (de) * 2016-01-22 2017-07-26 Extinctium Geräuschlose düse zur gasdiffusion
WO2022058369A1 (de) * 2020-09-18 2022-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammeranordnung
EP4411241A1 (de) * 2023-02-02 2024-08-07 Pratt & Whitney Canada Corp. Brennstoffsystem mit pilot- und hauptinjektoren für wasserstoffangetriebenen gasturbinenmotor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2122653A1 (de) * 1970-05-08 1971-12-09 Dunlop Holdings Ltd Stabilisierter Düsenbrenner
US5764850A (en) * 1996-04-04 1998-06-09 Phoenix Solutions Co. Silicon carbide foam electric heater for heating gas directed therethrough
WO2005061855A1 (de) * 2003-12-20 2005-07-07 Mtu Aero Engines Gmbh Gasturbinenbauteil
DE102006029586A1 (de) * 2006-06-20 2007-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Einblaskopf, Mischungsraum und Triebwerk
DE102007063539A1 (de) * 2007-12-21 2009-06-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
EP2442029A1 (de) * 2010-10-12 2012-04-18 Siemens Aktiengesellschaft Prallgekühlte Kopfplatte mit thermischer Entkopplung für einen Strahlpiloten
DE102010043336A1 (de) * 2010-11-03 2012-05-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
DE102010043337A1 (de) * 2010-11-03 2012-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fluidzuführungsvorrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2122653A1 (de) * 1970-05-08 1971-12-09 Dunlop Holdings Ltd Stabilisierter Düsenbrenner
US5764850A (en) * 1996-04-04 1998-06-09 Phoenix Solutions Co. Silicon carbide foam electric heater for heating gas directed therethrough
WO2005061855A1 (de) * 2003-12-20 2005-07-07 Mtu Aero Engines Gmbh Gasturbinenbauteil
DE102006029586A1 (de) * 2006-06-20 2007-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Einblaskopf, Mischungsraum und Triebwerk
DE102007063539A1 (de) * 2007-12-21 2009-06-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
EP2442029A1 (de) * 2010-10-12 2012-04-18 Siemens Aktiengesellschaft Prallgekühlte Kopfplatte mit thermischer Entkopplung für einen Strahlpiloten
DE102010043336A1 (de) * 2010-11-03 2012-05-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
DE102010043337A1 (de) * 2010-11-03 2012-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fluidzuführungsvorrichtung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3195905A1 (de) * 2016-01-22 2017-07-26 Extinctium Geräuschlose düse zur gasdiffusion
FR3046943A1 (fr) * 2016-01-22 2017-07-28 Extinctium Buse silencieuse de diffusion de gaz.
CN106016362A (zh) * 2016-05-16 2016-10-12 中国科学院工程热物理研究所 一种燃气轮机柔和燃烧室及其控制方法
WO2022058369A1 (de) * 2020-09-18 2022-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammeranordnung
EP4411241A1 (de) * 2023-02-02 2024-08-07 Pratt & Whitney Canada Corp. Brennstoffsystem mit pilot- und hauptinjektoren für wasserstoffangetriebenen gasturbinenmotor
US20240263590A1 (en) * 2023-02-02 2024-08-08 Pratt & Whitney Canada Corp Fuel system with pilot and main injectors for hydrogen-driven gas turbine engine

Similar Documents

Publication Publication Date Title
EP2010773B1 (de) Turbinenschaufel für eine turbine
DE69919298T2 (de) Kühlstruktur für eine Gasturbinenbrennkammer
DE69526615T2 (de) Wandaufbau für die Austrittsdüse eines Überschall-Strahltriebwerks
EP3526519B1 (de) Brennerspitze mit einem luftkanalsystem und einem brennstoffkanalsystem für einen brenner und verfahren zu deren herstellung
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
DE60224141T2 (de) Gasturbine und Brennkammer dafür
EP2881666A1 (de) Düsenträger aus metallischem Schaum
EP2954262B1 (de) Strahlbrenner mit kühlkanal in der grundplatte
DE112014001594B4 (de) Brennkammer und Gasturbine
DE112009000822T5 (de) Brennerkomponente und Verfahren zur Herstellung
WO2010066516A2 (de) Brennstofflanze für einen brenner
DE102007043383A1 (de) Treibstoffeinspritzdüse mit verteilten Strahlen
DE112019004946T5 (de) Brennerkomponente, Brenner, Gasturbine und Herstellungsverfahren für Brennerkomponente
EP2442029A1 (de) Prallgekühlte Kopfplatte mit thermischer Entkopplung für einen Strahlpiloten
EP3018412B1 (de) Rekuperator und Rekuperatorbrenner
EP2435588A2 (de) Verwendung einer höhenkompensierenden düse
EP3559556B1 (de) Brennerspitze zum einbau in einen brenner mit luftkanalsystem und brennstoffkanalsystem und verfahren zu deren herstellung
DE2815916C2 (de) Ringbrennkammer mit Brennstoff-Vorverdampfung für Gasturbinentriebwerke
DE10341515A1 (de) Anordnung zur Kühlung hoch wärmebelasteter Bauteile
DE102019117868B4 (de) Düsenvorrichtung und Heißgasschweißanlage
EP2270397A1 (de) Gasturbinenbrennkammer und Gasturbine
WO2020157190A1 (de) Gasturbinen-heissgas-bauteil und verfahren zum herstellen eines derartigen gasturbinen-heissgas-bauteils
EP2864705B1 (de) Brennkammerkühlung
EP1577614B1 (de) Anordnung einer Tragstruktur und eines Hitzeschildes einer Gasturbine
DE10037776A1 (de) Brennkammer für ein Flüssigkeitsraketentriebwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151211