WO2008011864A1 - Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal - Google Patents

Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal Download PDF

Info

Publication number
WO2008011864A1
WO2008011864A1 PCT/DE2007/001276 DE2007001276W WO2008011864A1 WO 2008011864 A1 WO2008011864 A1 WO 2008011864A1 DE 2007001276 W DE2007001276 W DE 2007001276W WO 2008011864 A1 WO2008011864 A1 WO 2008011864A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
gap
channel
housing
blades
Prior art date
Application number
PCT/DE2007/001276
Other languages
English (en)
French (fr)
Inventor
Peter Seitz
Roland Huttner
Karl-Heinz Dusel
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to US12/309,662 priority Critical patent/US8092148B2/en
Priority to EP07785646.6A priority patent/EP2044293B1/de
Priority to CA2657190A priority patent/CA2657190C/en
Publication of WO2008011864A1 publication Critical patent/WO2008011864A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/612Foam

Definitions

  • the invention relates to a gas turbine, in particular a gas turbine aircraft engine, according to the preamble of claim 1.
  • Gas turbines particularly gas turbine aircraft engines, typically include a plurality of rotating blades in the region of a compressor and a turbine, and a plurality of stationary vanes, the blades rotating together with a rotor, and the blades and vanes being surrounded by a fixed housing.
  • a plurality of rotating blades in the region of a compressor and a turbine, and a plurality of stationary vanes, the blades rotating together with a rotor, and the blades and vanes being surrounded by a fixed housing.
  • sealing systems include the so-called sealing systems.
  • blades have no shroud, especially in the compressor. Therefore, the radially outer ends of the blades are exposed to so-called rubbing into the fixed housing a direct frictional contact with the housing.
  • Such a rubbing of the tips of the blades into the housing is caused by setting a minimum radial gap by manufacturing tolerances.
  • As is removed by the frictional contact of the tips of the blades on the same material, over the entire circumference of the housing and rotor can set an undesirable gap magnification.
  • Another way to avoid the wear on the tips or radially outer ends of the blades and to ensure an optimized seal between the tips or tips of the blades and the stationary housing consists in the coating of the housing with a so-called inlet lining.
  • housings with inlet lining are known from the prior art, wherein the inlet lining is typically associated with housing-side shroud segments, which serve as a carrier for the inlet lining. Such shroud segments are also referred to as shrouds.
  • the present invention is based on the problem of creating a novel gas turbine with reduced aerodynamic gap losses.
  • This problem is solved by a gas turbine according to claim 1.
  • the gas turbine has at least one channel in order to apply a pressure prevailing on the high pressure side of blades of a rotor at a low pressure side thereof in the region of the gap between the radially outer ends of the blades and the housing and thus to prevent flow through the gap.
  • the channel extends at least in sections in a serving as a support for the inlet lining, housing-side shroud segment, such that the channel opens on the high pressure side in the region of the shroud segment in a flow channel and on the low pressure side in the region of the inlet lining in the gap to be sealed.
  • Fig. 1 is a highly schematic section of a erf ⁇ ndunmultien gas turbine.
  • FIG. 1 shows a highly schematic section of a gas turbine 10 according to the invention in the region of a high-pressure compressor 11, wherein the high-pressure compressor 11 has a rotating rotor, of which in FIG. 1 a rotor blade 12 is shown.
  • the blades 12 of the rotor of the high-pressure compressor 11 are surrounded by a fixed housing 13, wherein the housing 13 are associated with shroud segments 14 which serve, inter alia, as a carrier for an inlet lining 15.
  • the gas turbine 10 has at least one channel 18 to the prevailing on the high pressure side of the blades 12 pressure on the low pressure side thereof in the region of the gap to be sealed 17th to apply.
  • the inlet lining 15 is a gas-permeable inlet lining, which preferably has an open-pored structure.
  • the inlet lining 15 is designed as an open-pored metal foam.
  • the channel 18 shown in FIG. 1 extends at least in sections in the housing-side shroud segment 14 serving as a carrier for the inlet lining 15, wherein the channel 18 on the high-pressure side, at which the pressure P H prevails, in the region of the shroud segment 14 into a flow channel of High-pressure compressor 11 of the gas turbine 10 opens.
  • the channel 16 opens in the region of the inlet lining 15 into the gap 17 to be sealed.
  • a cross-section of the or each channel 18 is preferably dimensioned such that an optionally flowing through the respective channel air in the region of the gap 17 to be sealed acts as sealing air.
  • guide elements z. As baffles or guide grille, be integrated to aerodynamically optimally guide the flowing through the channel 18 sealing air.
  • the invention is not limited to use on high pressure compressors.
  • the invention can also be used on other compressors and on turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Es wird eine Gasturbine, mit mindestens einem Verdichter, mindestens einer Brennkammer und mindestens einer Turbine vorgestellt, wobei der oder jeder Verdichter und/oder die oder jede Turbine einen von einem feststehenden Gehäuse (13) umgebenen, Laufschaufeln (12) umfassenden Rotor aufweist, und wobei dem Gehäuse ein Einlaufbelag (15) zugeordnet ist. Die Gasturbine umfasst mindestens einen Kanal (19), um einen auf der Hochdruckseite von Laufschaufeln (12) eines Rotors herrschenden Druck an einer Niederdruckseite derselben im Bereich eines Spalts (17) zwischen den radial außenliegenden Enden (16) der Laufschaufeln (12) und dem Gehäuse (13) anzulegen und so eine Strömung durch den Spalt (17) zu unterbinden.

Description

GASTURBINE MIT EINEM MANTELRINGSEGMENT UMFASSEND EINEN REZIRKULATIONSKANAL
Die Erfindung betrifft eine Gasturbine, insbesondere ein Gasturbinenflugtriebwerk, gemäß dem Oberbegriff des Anspruchs 1.
Gasturbinen, insbesondere Gasturbinenflugtriebwerke, weisen in der Regel im Bereich eines Verdichters und einer Turbine mehrere rotierende Laufschaufeln sowie mehrere feststehende Leitschaufeln auf, wobei die Laufschaufeln zusammen mit einem Rotor rotieren, und wobei die Laufschaufeln sowie die Leitschaufeln von einem feststehenden Gehäuse umgeben sind. Zur Leistungssteigerung ist es von Bedeutung, alle Komponenten und Subsysteme zu optimieren. Hierzu zählen auch die sogenannten Dichtsysteme.
Besonders problematisch ist die Einhaltung eines minimalen Spalts zwischen den rotierenden Laufschaufeln und dem feststehenden Gehäuse eines Hochdruckverdichters einer Gasturbine. Bei Hochdruckverdichtern treten nämlich hohe absolute Temperaturen sowie Temperaturengradienten auf, was die Spalthaltung der rotierenden Laufschaufeln zum feststehenden Gehäuse erschwert. Dies liegt unter anderem auch darin begründet, dass bei Verdichterlaufschaufeln auf Deckbänder, wie sie üblicherweise bei Turbinenlaufschaufeln verwendet werden, verzichtet wird. Es sind auch Turbinenlaufschaufeln ohne Deckbänder bekannt.
Wie bereits erwähnt, verfügen Laufschaufeln insbesondere im Verdichter über kein Deckband. Daher sind die radial außen liegenden Enden der Laufschaufeln beim sogenannten Anstreifen in das feststehende Gehäuse einem direkten Reibkontakt mit dem Gehäuse ausgesetzt. Ein solches Anstreifen der Spitzen der Laufschaufeln in das Gehäuse wird bei Einstellung eines minimalen Radialspalts durch Fertigungstoleranzen hervorgerufen. Da durch den Reibkontakt der Spitzen der Laufschaufeln an denselben Material abgetragen wird, kann sich über den gesamten Umfang von Gehäuse und Rotor eine unerwünschte Spaltvergrößerung einstellen. Um dies zu vermeiden ist es aus dem Stand der Technik bereits bekannt, die Enden der Laufschaufeln mit einem harten Belag oder mit abrasiven Partikeln zu panzern. Eine andere Möglichkeit, den Verschleiß an den Spitzen bzw. radial außen liegenden Enden der Laufschaufeln zu vermeiden und für eine optimierte Abdichtung zwischen den Enden bzw. Spitzen der Laufschaufeln und dem feststehenden Gehäuse zu sorgen, besteht in der Beschichtung des Gehäuses mit einem sogenannten Einlaufbelag.
Bei einem Materialabtrag an einem Einlaufbelag wird der Radialspalt nicht über den gesamten Umfang vergrößert, sondern in der Regel nur sichelförmig. Gehäuse mit Einlaufbelag sind aus dem Stand der Technik bekannt, wobei der Einlaufbelag typischerweise gehäu- seseitigen Mantelringsegmenten zugeordnet ist, die als Träger für den Einlaufbelag dienen. Solche Mantelringsegmente werden auch als Shrouds bezeichnet.
Wie oben ausgeführt, vergrößert sich auch bei Verwendung eines Einlaufbelags der Spalt zwischen den Spitzen bzw. radial außen liegenden Enden der Laufschaufeln und dem Gehäuse, so dass nach dem Stand der Technik eine aerodynamische Strömung durch diesen Spalt von einer Hochdruckseite der Laufschaufeln zu einer Niederdruckseite derselben nicht gänzlich unterbunden werden kann. Es stellen sich demnach aerodynamische Spaltverluste ein. Dies reduziert den Wirkungsgrad von Gasturbinen.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, eine neuartige Gasturbine mit verringerten aerodynamischen Spaltverlusten zu schaffen. Dieses Problem wird durch eine Gasturbine gemäß Anspruch 1 gelöst. Erfindungsgemäß weist die Gasturbine mindestens einen Kanal auf, um einen auf der Hochdruckseite von Laufschaufeln eines Rotors herrschenden Druck an einer Niederdruckseite derselben im Bereich des Spalts zwischen den radial außenliegenden Enden der Laufschaufeln und dem Gehäuse anzulegen und so eine Strömung durch den Spalt zu unterbinden.
Mit der hier vorliegenden Erfindung können aerodynamische Spaltverluste im Bereich des Spalts zwischen den radial außen liegenden Enden der rotierenden Laufschaufeln und dem Gehäuse, der sich im Betrieb beim Einlaufen der Laufschaufeln in einen Einlaufbelag ausbildet, minimiert werden. Hierdurch wird der Wirkungsgrad von Gasturbinen optimiert. Vorzugsweise verläuft der Kanal zumindest abschnittweise in einem als Träger für den Einlaufbelag dienenden, gehäuseseitigen Mantelringsegment, derart, dass der Kanal auf der Hochdruckseite im Bereich des Mantelringsegments in einen Strömungskanal und auf der Niederdruckseite im Bereich des Einlaufbelags in den abzudichtenden Spalt mündet.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausfuhrungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 einen stark schematisierten Ausschnitt aus einer erfϊndungemäßen Gasturbine.
Nachfolgend wird die Erfindung unter Bezugnahme auf Fig. 1 in größerem Detail beschrieben.
Fig. 1 zeigt einen stark schematisierten Ausschnitt aus einer erfindungsgemäßen Gasturbine 10 im Bereich eines Hochdruckverdichters 11, wobei der Hochdruckverdichter 11 einen rotierenden Rotor aufweist, von welchem in Fig. 1 eine Laufschaufel 12 gezeigt ist. Die Laufschaufeln 12 des Rotors des Hochdruckverdichters 11 sind von einem feststehenden Gehäuse 13 umgeben, wobei dem Gehäuse 13 Mantelringsegmente 14 zugeordnet sind, die unter anderem als Träger für einen Einlaufbelag 15 dienen.
Gemäß Fig. 1 laufen im Betrieb der Gasturbine radial außen liegende Enden 16 der Laufschaufeln 12 in den Einlaufbelag 15 ein, so dass sich zwischen dem Einlaufbelag 15 und den radial außen liegenden Enden 16 der Laufschaufeln ein Spalt 17 ausbildet. Durch diesen Spalt 17 kann sich im Betrieb der Gasturbine eine Leckageströmung von der Hochdruckseite der Laufschaufeln 12 zur Niederdruckseite derselben ausbilden, wobei in der Darstellung der Fig. 1 die rechte Seite der Laufschaufeln 12 die Hochdruckseite ist, in welcher der Druck PH herrscht, und wobei die Niederdruckseite die linke Seite der Laufschaufeln ist, an welcher der Druck PL herrscht. Um nun eine Leckageströmung durch den Spalt 17 zu unterbinden, wird im Sinne der hier vorliegenden Erfindung vorgeschlagen, dass die Gasturbine 10 mindestens einen Kanal 18 aufweist, um den auf der Hochdruckseite der Laufschaufeln 12 herrschenden Druck an der Niederdruckseite derselben im Bereich des abzudichtenden Spalts 17 anzulegen.
Hierdurch liegt dann im Bereich des Spalts 17 an der eigentlichen Niederdruckseite desselben in etwa der gleiche Druck an wie an der Hochdruckseite, so dass eine Leckageströmung durch den Spalt 17 und damit den Wirkungsgrad der Gasturbine beeinträchtigende, aerodynamische Spaltverluste effektiv vermieden werden können.
Bei dem Einlaufbelag 15 handelt es sich um einen gasdurchlässigen Einlaufbelag, der vorzugsweise eine offenporige Struktur aufweist. Insbesondere ist der Einlaufbelag 15 als offenporiger Metallschaum ausgebildet.
Der in Fig. 1 gezeigte Kanal 18 verläuft zumindest abschnittsweise in dem als Träger für den Einlaufbelag 15 dienenden, gehäuseseitigen Mantelringsegment 14, wobei der Kanal 18 auf der Hochdruckseite, an welcher der Druck PH herrscht, im Bereich des Mantelringsegments 14 in einen Strömungskanal des Hochdruckverdichters 11 der Gasturbine 10 mündet. Auf der Niederdruckseite, an welcher der Druck PL herrscht, mündet der Kanal 16 hingegen im Bereich des Einlaufbelags 15 in den abzudichtenden Spalt 17.
Ein Querschnitt des oder jedes Kanals 18 ist vorzugsweise derart bemessen, dass eine gegebenenfalls durch den jeweiligen Kanal strömende Luft im Bereich des abzudichtenden Spalts 17 als Sperrluft wirkt. In den oder jeden Kanal 18 können Leitelemente, z. B. Leitbleche oder Leitgitter, integriert sein, um die durch den Kanal 18 strömende Sperrluft aerodynamisch optimal zu führen.
Die Erfindung ist nicht auf den Einsatz an Hochdruckverdichtern beschränkt. Die Erfindung kann auch an anderen Verdichtern und an Turbinen zum Einsatz kommen.

Claims

Patentansprüche
1. Gasturbine, insbesondere Gasturbinenflugtriebwerk, mit mindestens einem Verdichter, mindestens einer Brennkammer und mindestens einer Turbine, wobei der oder jeder Verdichter und/oder die oder jede Turbine einen von einem feststehenden Gehäuse umgebenen, Laufschaufeln umfassenden Rotor aufweist, und wobei dem Gehäuse ein Einlaufbelag zugeordnet ist, gekennzeichnet durch mindestens einen Kanal (19), um einen auf der Hochdruckseite von Laufschaufeln (12) eines Rotors herrschenden Druck an einer Niederdruckseite derselben im Bereich eines Spalts (17) zwischen den radial außenliegenden Enden (16) der Laufschaufeln (12) und dem Gehäuse (13) anzulegen und so eine Strömung durch den Spalt (17) zu unterbinden.
2. Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass der Einlaufbelag (15) gasdurchlässig ist und eine offenporige Struktur aufweist.
3. Gasturbine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Einlaufbelag (15) als Metallschaum ausgebildet ist.
4. Gasturbine nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der oder jeder Kanal (18) zumindest abschnittweise in einem als Träger für den Einlaufbelag (15) dienenden, gehäuseseitigen Mantelringsegment (14) verläuft, derart, dass der Kanal (18) auf der Hochdruckseite im Bereich des Mantelringsegments (14) in einen Strömungskanal und auf der Niederdruckseite im Bereich des Einlauf- blags (15) in den abzudichtenden Spalt (17) mündet. Gasturbine nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Querschnitt des oder jedes Kanals (18) derart ausgelegt ist, dass durch den jeweiligen Kanal (18) strömende Luft als Sperrluft im Bereich des Spalts (17) wirkt.
* * *
PCT/DE2007/001276 2006-07-26 2007-07-18 Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal WO2008011864A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/309,662 US8092148B2 (en) 2006-07-26 2007-07-18 Gas turbine having a peripheral ring segment including a recirculation channel
EP07785646.6A EP2044293B1 (de) 2006-07-26 2007-07-18 Gasturbine mit einem mantelringsegment, das einen rezirkulationskanal umfasst
CA2657190A CA2657190C (en) 2006-07-26 2007-07-18 Gas turbine with a peripheral ring segment comprising a recirculation channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006034424A DE102006034424A1 (de) 2006-07-26 2006-07-26 Gasturbine
DE102006034424.3 2006-07-26

Publications (1)

Publication Number Publication Date
WO2008011864A1 true WO2008011864A1 (de) 2008-01-31

Family

ID=38663013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001276 WO2008011864A1 (de) 2006-07-26 2007-07-18 Gasturbine mit einem mantelringsegment umfassend einen rezirkulationskanal

Country Status (5)

Country Link
US (1) US8092148B2 (de)
EP (1) EP2044293B1 (de)
CA (1) CA2657190C (de)
DE (1) DE102006034424A1 (de)
WO (1) WO2008011864A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008019331A1 (de) * 2008-04-16 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Einlaufdichtung für den Kompressor eines Gasturbinentriebwerks
DE102014213911A1 (de) 2014-07-17 2016-01-21 MTU Aero Engines AG Aerogel-Auskleidungselement für Strömungsmaschinen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858229A (zh) * 2010-04-29 2010-10-13 中国燃气涡轮研究院 发动机热定心承力型导向器
WO2012052740A1 (en) * 2010-10-18 2012-04-26 University Of Durham Sealing device for reducing fluid leakage in turbine apparatus
US9726084B2 (en) 2013-03-14 2017-08-08 Pratt & Whitney Canada Corp. Compressor bleed self-recirculating system
US9737930B2 (en) 2015-01-20 2017-08-22 United Technologies Corporation Dual investment shelled solid mold casting of reticulated metal foams
US9789536B2 (en) 2015-01-20 2017-10-17 United Technologies Corporation Dual investment technique for solid mold casting of reticulated metal foams
US9789534B2 (en) 2015-01-20 2017-10-17 United Technologies Corporation Investment technique for solid mold casting of reticulated metal foams
US9884363B2 (en) 2015-06-30 2018-02-06 United Technologies Corporation Variable diameter investment casting mold for casting of reticulated metal foams
US9731342B2 (en) 2015-07-07 2017-08-15 United Technologies Corporation Chill plate for equiax casting solidification control for solid mold casting of reticulated metal foams
US10876549B2 (en) 2019-04-05 2020-12-29 Pratt & Whitney Canada Corp. Tandem stators with flow recirculation conduit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB504214A (en) * 1937-02-24 1939-04-21 Rheinmetall Borsig Ag Werk Bor Improvements in and relating to turbo compressors
US3053694A (en) * 1961-02-20 1962-09-11 Gen Electric Abradable material
EP0497574A1 (de) * 1991-01-30 1992-08-05 United Technologies Corporation Ventilatorgehäuse mit Rezirculationskanälen
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
EP0719908A1 (de) * 1994-12-29 1996-07-03 United Technologies Corporation Compressorgehäuse mit Rezirkulationskanälen
EP0751280A1 (de) * 1995-05-31 1997-01-02 United Technologies Corporation Bearbeitung eines Axialkompressormantels zur Verbesserung der Strömungsleitung durch die Beschaufelung
EP0992656A1 (de) * 1998-10-05 2000-04-12 Asea Brown Boveri AG Strömungsmaschine zum Verdichten oder Entspannen eines komprimierbaren Mediums
EP1149985A2 (de) * 2000-04-27 2001-10-31 MTU Aero Engines GmbH Gehäusestruktur in Metallbauweise
EP1286022A1 (de) * 2001-08-14 2003-02-26 United Technologies Corporation Mantelbehandlung für Kompressoren
US20030152455A1 (en) * 2002-02-14 2003-08-14 James Malcolm R. Engine casing
WO2005061855A1 (de) * 2003-12-20 2005-07-07 Mtu Aero Engines Gmbh Gasturbinenbauteil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063694A (en) * 1959-08-04 1962-11-13 Joy Mfg Co Apparatus for cleaning gases from ferrous metallurgical operations
GB0300999D0 (en) * 2003-01-16 2003-02-19 Rolls Royce Plc A gas turbine engine blade containment assembly
DE102004021657B4 (de) * 2004-05-03 2010-04-08 Manroland Ag Verfahren zur Durchführung eines druckplattenspezifischen Produktionswechsels an einer Druckmaschine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB504214A (en) * 1937-02-24 1939-04-21 Rheinmetall Borsig Ag Werk Bor Improvements in and relating to turbo compressors
US3053694A (en) * 1961-02-20 1962-09-11 Gen Electric Abradable material
EP0497574A1 (de) * 1991-01-30 1992-08-05 United Technologies Corporation Ventilatorgehäuse mit Rezirculationskanälen
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
EP0719908A1 (de) * 1994-12-29 1996-07-03 United Technologies Corporation Compressorgehäuse mit Rezirkulationskanälen
EP0751280A1 (de) * 1995-05-31 1997-01-02 United Technologies Corporation Bearbeitung eines Axialkompressormantels zur Verbesserung der Strömungsleitung durch die Beschaufelung
EP0992656A1 (de) * 1998-10-05 2000-04-12 Asea Brown Boveri AG Strömungsmaschine zum Verdichten oder Entspannen eines komprimierbaren Mediums
EP1149985A2 (de) * 2000-04-27 2001-10-31 MTU Aero Engines GmbH Gehäusestruktur in Metallbauweise
EP1286022A1 (de) * 2001-08-14 2003-02-26 United Technologies Corporation Mantelbehandlung für Kompressoren
US20030152455A1 (en) * 2002-02-14 2003-08-14 James Malcolm R. Engine casing
WO2005061855A1 (de) * 2003-12-20 2005-07-07 Mtu Aero Engines Gmbh Gasturbinenbauteil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008019331A1 (de) * 2008-04-16 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Einlaufdichtung für den Kompressor eines Gasturbinentriebwerks
DE102014213911A1 (de) 2014-07-17 2016-01-21 MTU Aero Engines AG Aerogel-Auskleidungselement für Strömungsmaschinen

Also Published As

Publication number Publication date
US8092148B2 (en) 2012-01-10
DE102006034424A1 (de) 2008-01-31
CA2657190C (en) 2015-06-23
CA2657190A1 (en) 2008-01-31
EP2044293B1 (de) 2018-06-13
EP2044293A1 (de) 2009-04-08
US20090324384A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
EP2044293B1 (de) Gasturbine mit einem mantelringsegment, das einen rezirkulationskanal umfasst
DE69936184T2 (de) Abzapfringraum bei den Schaufelspitzen eines Gasturbinentriebwerks
EP1898067B1 (de) Fluidrückführung im Trennkörper von Strömungsarbeitsmaschinen mit Nebenstromkonfiguration
DE3428892A1 (de) Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
EP2647795A1 (de) Dichtungssystem für eine Strömungsmaschine
EP1389265A1 (de) Mantelring
DE102011054586A1 (de) Dichtungsanordnung für eine Turbomaschine
EP2719869A1 (de) Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine
EP1744016A1 (de) Heissgasführendes Gehäuseelement, Wellenschutzmantel und Gasturbinenanlage
EP3561236B1 (de) Leitschaufel für eine turbine einer strömungsmaschine, turbinenmodul und verwendung eines turbinenmoduls
EP3699398A1 (de) Deckbandlose schaufel für eine schnelllaufende turbinenstufe
EP2526263A2 (de) Gehäusesystem für eine axialströmungsmaschine
EP2087208B9 (de) Turbomaschine
DE102010036071A1 (de) Gehäuseseitige Struktur einer Turbomaschine
EP2665896B1 (de) Zwischengehäuse einer Gasturbine mit einer aussen liegenden Begrenzungswand welche stromaufwärts einer Stützrippe eine in Umfangrichtung verändernde Kontur aufweist zur Verringerung der Sekundärströmungsverluste
DE102004050739A1 (de) Turbomaschine, insbesondere Gasturbine
EP3495639B1 (de) Verdichtermodul für eine strömungsmaschine, das die grenzschicht in einem verdichterzwischengehäuse abbaut
EP3686396B1 (de) Leitgitter für eine strömungsmaschine
EP1673519B1 (de) Dichtungsanordnung für eine gasturbine
EP3997310A1 (de) Leitschaufelsegment mit stützabschnittsrippe
EP3109407A1 (de) Statorvorrichtung für eine strömungsmaschine mit einer gehäuseeinrichtung und mehreren leitschaufeln
EP2650520B1 (de) Fluggasturbine mit einem Entlastungskanal in einem Leitschaufelfußelement eines Nebenstromkanals
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
DE102011051477A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Rotationsmaschinen
DE102016110269A1 (de) Axialturbine eines Turboladers und Turbolader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2657190

Country of ref document: CA

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007785646

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12309662

Country of ref document: US