EP2719869A1 - Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine - Google Patents

Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine Download PDF

Info

Publication number
EP2719869A1
EP2719869A1 EP12188322.7A EP12188322A EP2719869A1 EP 2719869 A1 EP2719869 A1 EP 2719869A1 EP 12188322 A EP12188322 A EP 12188322A EP 2719869 A1 EP2719869 A1 EP 2719869A1
Authority
EP
European Patent Office
Prior art keywords
cavity
housing structure
flow channel
housing wall
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12188322.7A
Other languages
English (en)
French (fr)
Inventor
Manfred Feldmann
Janine Dr. Sangl
Sebastian Kaltenbach
Joachim Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP12188322.7A priority Critical patent/EP2719869A1/de
Priority to US14/048,169 priority patent/US9605551B2/en
Publication of EP2719869A1 publication Critical patent/EP2719869A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings

Definitions

  • the present invention relates to a housing structure for a turbomachine, in particular for a gas turbine or an aircraft engine.
  • turbomachines such as gas turbines or aircraft engines
  • air is drawn along a flow channel, compressed, and combusted in a combustion chamber along with fuel, and then the combustion gases are discharged through the flow channel, thereby driving in a turbine rotors.
  • the flow channel is circumferentially surrounded by a housing structure, wherein in particular in the region of the combustion chamber and the subsequent turbine, prevail by the combustion gases very high temperatures in the flow channel, so that surrounding the flow channel housing structure must be efficiently cooled in order to achieve that the lowest possible operating temperatures are present in order to use materials with lower requirements for high-temperature properties.
  • cooling air is passed into the area of the outer housing structure in order to bring about heat dissipation.
  • insulators and heat shields are used in such housing structures to protect the outer components from excessive temperatures.
  • the solution should be easy to implement.
  • the invention is based on the consideration that through cavities in the housing structure a pressure equalization in the axial direction, ie along the flow direction of the hot gas in the flow channel can be effected by the pressure equalization corresponding gas flows are caused, such as the outflow of hot gas from the flow channel in the housing structure or the inflow of cooling air from the housing structure in the flow channel.
  • a pressure equalization in the axial direction ie along the flow direction of the hot gas in the flow channel can be effected by the pressure equalization corresponding gas flows are caused, such as the outflow of hot gas from the flow channel in the housing structure or the inflow of cooling air from the housing structure in the flow channel.
  • the present invention proposes to provide an axial seal in a corresponding cavity between an inner housing wall and an outer housing wall of a housing structure of a turbomachine, so that an axial pressure equalization is prevented as much as possible.
  • the axial sealing at least two areas are created in a cavity, which are arranged one behind the other in the axial direction.
  • the axial sealing takes place in such a way that different pressure conditions can be established in the regions which correspond to the different pressure conditions in the flow channel along the axial direction. This means, for example, that the pressure in the flow channel before a blade stage is higher than after a blade stage, so that correspondingly in a cavity in the housing structure in a region axially corresponding to the region before a blade stage, the pressure ratios are higher than in a region corresponding in position to a blade stage in its axial position ,
  • the axial seal can be arranged in an axial position in the cavity, which corresponds to the axial position between an inlet edge and a trailing edge of a blade, in particular between a first and a second sealing tip of a blade.
  • the leading edge of the blade upstream is understood as the leading edge, which therefore first comes into contact with the flowing hot gases.
  • the trailing edge is the last region of the blade at which the flow gases leave the blade again.
  • axial seals for a cavity In addition to a single axial seal for a cavity of course, several axial seals for a single cavity can be provided and a plurality of cavities with axial seals.
  • the axial sealing can be realized by a cooperating with structural components sealing element, such as a flexible, heat-resistant sealing cord, which can cooperate with appropriately provided sealing walls.
  • structural components sealing element such as a flexible, heat-resistant sealing cord, which can cooperate with appropriately provided sealing walls.
  • other suitable structural components for producing the axial seal can be provided.
  • the cavity which is provided with the axial seal, may be a cavity disposed directly on the inner housing wall, which may be separated from the outer housing wall and in particular spaced apart.
  • that cavity is provided with an axial seal, which is arranged radially inwardly on the inner housing wall.
  • the cavity may be an annular space around the flow channel circumferential cavity or a cavity which is provided only in segments around the flow channel.
  • such cavities can be provided with axial seals, which have a cooling air supply.
  • the attached figure shows in a purely schematic way a part of a housing structure according to the invention in a sectional view.
  • the partial sectional view of the attached figure by an aircraft engine shows an outer housing wall 1 and an inner housing wall 2, which annularly surround a flow channel 15, in the blades 4 and vanes 5 are arranged.
  • the inner housing wall 2 is formed by a lining with a scuffing pad 3, wherein sealing tips 6, 7, which may also be referred to as sealing fins, are arranged on the moving blade 4 in order to provide, together with the scraper pad 3, a seal which may also be referred to as "outer Air seal "is called.
  • seal carrier 8 or heat shields 9, 10 are arranged, which should ensure that the outer housing wall 1 is as low as possible temperature, so as to select the material for the outer housing wall 1 not be limited by taking into account certain operating temperatures.
  • a cavity 11 is formed, which extends along the inner housing wall 2 and which is at least separated from the outer housing wall 1 by the heat shield 10, and at least partially by the outer housing wall 1 is spaced.
  • the cavity 11 is arranged in an annular manner around the flow channel 15 and is formed substantially closed, that is, that no defined openings are provided. Nevertheless, it comes due to the conditions prevailing in the flow channel 15 conditions and by the strong temperature change between operation and non-operation of the turbomachine and consequent structural conditions to a flow of hot gas from the flow channel 15 into the cavity 11. In addition, ambient air or in the Housing structure guided cooling air also penetrate into the cavity 11. Moreover, it is conceivable that the cavity 11 is also designed to guide cooling air and has corresponding openings for the entry of cooling air.
  • a seal is provided in the cavity 11, which comprises two sealing plates 12, 13 and a sealing cord 14, wherein the axial seal 12, 13, 14 divides the cavity 11 into two areas 16, 17.
  • the axial seal with the sealing walls 12 and 13 and the sealing cord 14 is arranged in an axial position corresponding to the axial position between the first and front sealing tip 6 and the second or rear sealing tip 7, so that the first region 16 with the flow channel in front of the Blade 4 corresponds, while the second region 17 corresponds to the region of the flow channel 15 after the blade.
  • the seal 12,13,14 ensures that in the areas 16, 17 different pressure conditions can be adjusted, as in the flow channel in the area in front of the blade 4 and in the area after the blade 4. This avoids that in the cavity 11th a pressure equalization between an axially forward position and an axially rearward position may occur, which could cause exchange flows between the hot gas passage and a possible cooling air flow.
  • the amount of hot gas that flows from the flow channel into the housing structure thus also reducing losses of cooling air, so that the efficiency of the machine is increased, and the temperatures in the housing structure can be lowered, or less cooling air is needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine Gasturbine oder ein Flugtriebwerk, mit einer äußeren Gehäusewand (1) und einer inneren Gehäusewand (2), wobei innere und äußere Gehäusewand einen Strömungskanal (15) der Strömungsmaschine ringförmig umschließen und in radialer Richtung bezogen auf den Strömungskanal beabstandet sind, wobei zwischen innerer und äußerer Gehäusewand mindestens ein Hohlraum (11) ausgebildet ist, wobei der Hohlraum in axialer Richtung in mindestens zwei Bereiche (16,17) unterteilt ist, die mit einer axialen Abdichtung (12,13,14) so voneinander getrennt sind, dass sich entsprechend der axialen Position der Bereiche zu den Druckverhältnissen im Strömungskanal korrespondierende, unterschiedliche Druckverhältnisse einstellen, sowie eine entsprechende Strömungsmaschine, wie beispielsweise ein Flugtriebwerk.

Description

    GEBIET DER ERFINDUNG
  • Die vorliegende Erfindung betrifft eine Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine Gasturbine oder ein Flugtriebwerk.
  • STAND DER TECHNIK
  • Bei Strömungsmaschinen, wie Gasturbinen oder Flugtriebwerken, wird Luft entlang eines Strömungskanals angesaugt, verdichtet, und in einer Brennkammer zusammen mit Brennstoff verbrannt, wobei anschließend die Verbrennungsgase über den Strömungskanal ausgegeben werden, um dabei in einer Turbine Rotoren anzutreiben.
  • Der Strömungskanal wird umlaufend von einer Gehäusestruktur umgeben, wobei insbesondere im Bereich der Brennkammer und der nachfolgenden Turbine, durch die Verbrennungsgase sehr hohe Temperaturen im Strömungskanal herrschen, sodass die den Strömungskanal umgebende Gehäusestruktur effizient gekühlt werden müssen, um zu erreichen, dass möglichst niedrige Betriebstemperaturen vorliegen, um so Werkstoffe mit geringeren Anforderungen an die Hochtemperatureigenschaften einsetzen zu können.
  • Hierzu wird Kühlluft in den Bereich der äußeren Gehäusestruktur geleitet, um eine Wärmeableitung zu bewirken. Zudem werden in derartigen Gehäusestrukturen Isolierungen und Hitzeschilde eingesetzt, die die äußeren Komponenten vor zu hohen Temperaturen schützen sollen.
  • Allerdings kommt es bei bekannte Gehäusestrukturen aufgrund der im Strömungskanal herrschenden Verhältnisse und der konstruktiven Gegebenheiten, die beispielsweise die Temperaturwechsel zwischen einem Betriebszustand und einem Nicht-Betriebszustand ermöglichen müssen, zu einem Ausströmen von Heißgas aus dem Strömungskanal in die Gehäusestruktur und zu einem Einströmen von Kühlluft in den Strömungskanal. Da jedoch dadurch Wirkungsgradverluste entstehen und die Temperaturbelastung der Gehäusestruktur ansteigt, gilt es derartige Austauschströmungen zu vermeiden bzw. zu verringern.
  • OFFENBARUNG DER ERFINDUNG AUFGABE DER ERFINDUNG
  • Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine stationäre Gasturbine oder ein Flugtriebwerk bereitzustellen, bei welchem die Gehäusetemperatur verringert und der Wirkungsgrad der Strömungsmaschine durch Vermeidung von Heißgasverlusten in die Gehäusestruktur verbessert werden kann. Hierbei soll die Lösung einfach realisierbar sein.
  • TECHNISCHE LÖSUNG
  • Diese Aufgabe wird gelöst durch eine Gehäusestruktur mit den Merkmalen des Anspruchs 1, sowie eine Strömungsmaschine mit den Merkmalen des Anspruchs 8. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung geht aus von der Überlegung, dass durch Hohlräume in der Gehäusestruktur ein Druckausgleich in axialer Richtung, also entlang der Strömungsrichtung des Heißgases im Strömungskanal erfolgen kann, wobei durch den Druckausgleich entsprechende Gasströmungen verursacht werden, wie beispielsweise das Ausströmen von Heißgas aus dem Strömungskanal in die Gehäusestruktur oder das Einfließen von Kühlluft aus der Gehäusestruktur in den Strömungskanal. Um diese Austauschströmungen zu verringern oder zu vermeiden, ist es sinnvoll, den Druckausgleich über Hohlräume in der Gehäusestruktur zu unterdrücken, sodass dadurch die Austauschströmungen verhindert werden. Hierzu schlägt die vorliegende Erfindung vor, eine axiale Abdichtung in einem entsprechenden Hohlraum zwischen einer inneren Gehäusewand und einer äußeren Gehäusewand einer Gehäusestruktur einer Strömungsmaschine vorzusehen, sodass ein axialer Druckausgleich möglichst weitgehend verhindert wird.
  • Durch die axiale Abdichtung werden mindestens zwei Bereiche in einem Hohlraum geschaffen, die in axialer Richtung hintereinander angeordnet sind. Die axiale Abdichtung erfolgt dabei so, dass sich in den Bereichen unterschiedliche Druckverhältnisse einstellen können, die mit den unterschiedlichen Druckverhältnissen im Strömungskanal entlang der axialen Richtung korrespondieren. Dies bedeutet beispielsweise, dass der Druck im Strömungskanal vor einer Laufschaufelstufe höher ist, als nach einer Laufschaufelstufe, sodass entsprechend in einem Hohlraum in der Gehäusestruktur in einem Bereich, der axial dem Bereich vor einer Laufschaufelstufe entspricht, die Druckverhältnisse höher sind, als in einem Bereich, der in seiner axialen Position der Position nach einer Laufschaufelstufe entspricht.
  • Entsprechend kann die axiale Abdichtung in einer axialen Position in dem Hohlraum angeordnet sein, die der axialen Position zwischen einer Eintrittskante und einer Austrittskante einer Laufschaufel, insbesondere zwischen einer ersten und einer zweiten Dichtspitze einer Laufschaufel entspricht. Unter Eintrittskante wird hierbei die vorderste Kante der Laufschaufel stromaufwärts verstanden, die also zuerst mit den strömenden Heißgasen in Berührung kommt. Entsprechend ist die Austrittskante der letzte Bereich der Laufschaufel, an dem die Strömungsgase die Schaufel wieder verlassen. Durch die Anordnung einer entsprechenden axialen Abdichtung in einem Hohlraum der Gehäusestruktur können sich in den abgetrennten Bereichen des Hohlraums zu den Druckverhältnissen im Strömungskanal korrespondierende Druckverhältnisse einstellen und ein Druckausgleich mit entsprechenden Austauschströmungen wird vermieden bzw. zumindest verringert.
  • Neben einer einzigen axialen Abdichtung für einen Hohlraum können selbstverständlich mehrere axiale Abdichtungen für einen einzigen Hohlraum vorgesehen werden sowie mehrere Hohlräume mit axialen Abdichtungen.
  • Die axiale Abdichtung kann durch ein mit Strukturbauteilen zusammenwirkendes Dichtelement realisiert werden, wie beispielsweise eine flexible, hitzebeständige Dichtschnur, die mit entsprechend vorgesehenen Dichtwänden zusammenwirken kann. Neben Dichtwänden können auch andere geeignete Strukturbauteile zur Herstellung der axialen Abdichtung vorgesehen werden.
  • Der Hohlraum, der mit der axialen Abdichtung versehen wird, kann ein unmittelbar an der inneren Gehäusewand angeordneter Hohlraum sein, der von der äußeren Gehäusewand getrennt und insbesondere beabstandet ausgebildet sein kann. Somit wird beim Vorliegen von mehreren Hohlräumen in radialer Richtung hintereinander vorzugsweise derjenige Hohlraum mit einer axialen Abdichtung versehen, der radial innenliegend an der inneren Gehäusewand angeordnet ist.
  • Der Hohlraum kann ein ringförmig um den Strömungskanal umlaufender Hohlraum sein oder ein Hohlraum, der lediglich segmentweise um den Strömungskanal vorgesehen ist.
  • Neben geschlossenen Hohlräumen, die keine definierten Öffnungen aufweisen, wie beispielsweise Eintrittsöffnungen für Kühlluft, können auch derartige Hohlräume mit axialen Abdichtungen versehen werden, die eine Kühlluftzufuhr aufweisen.
  • KURZBESCHREIBUNG DER FIGUR
  • Die beigefügte Figur zeigt in rein schematischer Weise einen Teil einer erfindungsgemäßen Gehäusestruktur in einer Schnittdarstellung.
  • AUSFÜHRUNGSBEISPIEL
  • Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung eins Ausführungsbeispiels deutlich. Allerdings ist die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt.
  • Die teilweise Schnittdarstellung der beigefügten Figur durch ein Flugtriebwerk zeigt eine äußere Gehäusewand 1 und eine innere Gehäusewand 2, die ringförmig einen Strömungskanal 15 umgeben, in dem Laufschaufeln 4 und Leitschaufeln 5 angeordnet sind. Die innere Gehäusewand 2 ist durch eine Auskleidung mit einem Anstreifbelag 3 ausgebildet, wobei Dichtspitzen 6, 7, die auch als Dichtfins bezeichnet werden können, an der Laufschaufel 4 angeordnet sind, um zusammen mit dem Anstreifbelag 3 eine Abdichtung bereitzustellen, die auch als "outer air seal" bezeichnet wird. Durch das Anstreifen bzw. Einschleifen der Dichtspitzen 6,7 der Laufschaufel 4 in den Anstreifbelag 3 kann erreicht werden, dass in radialer Richtung möglichst keine quer dazu verlaufenden Spalten und Zwischenräume vorliegen, die es dem Heißgasstrom im Strömungskanal 15 erlauben würde, außen an den Schaufelblättern der Laufschaufeln 4 vorbeizuströmen, was zu Leistungseinbußen führen würde.
  • Zwischen der inneren und der äußeren Gehäusewand sind verschiedenen Komponenten, wie beispielsweise Dichtungsträger 8 oder Hitzeschilde 9, 10 angeordnet, die dafür sorgen sollen, dass an der äußeren Gehäusewand 1 eine möglichst niedrige Temperatur vorliegt, um so in der Auswahl des Werkstoffs für die äußere Gehäusewand 1 nicht durch Berücksichtigung bestimmter Einsatztemperaturen eingeschränkt zu sein.
  • Durch die Hitzeschilde 9, 10 und den Dichtungsträger 8 ist ein Hohlraum 11 ausgebildet, der sich entlang der inneren Gehäusewand 2 erstreckt und der durch das Hitzeschild 10 zumindest getrennt von der äußeren Gehäusewand 1 ist, und zumindest teilweise auch von der äußeren Gehäusewand 1 beabstandet ist. Der Hohlraum 11 ist ringförmig um den Strömungskanal 15 angeordnet und ist im Wesentlichen geschlossen ausgebildet, d.h., dass keine definierten Öffnungen vorgesehen sind. Gleichwohl kommt es aufgrund der im Strömungskanal 15 herrschenden Bedingungen sowie durch den starken Temperaturwechsel zwischen Betrieb und Nicht-Betrieb der Strömungsmaschine und den dadurch bedingten konstruktiven Gegebenheiten zu einem Einströmen von Heißgas aus dem Strömungskanal 15 in den Hohlraum 11. Darüber hinaus kann Umgebungsluft oder in der Gehäusestruktur geführte Kühlluft ebenfalls in den Hohlraum 11 eindringen. Darüber hinaus ist es vorstellbar, dass der Hohlraum 11 ebenfalls zur Führung von Kühlluft ausgebildet ist und entsprechende Öffnungen zum Eintritt von Kühlluft aufweist.
  • Im Hinblick auf den Wirkungsgrad der Strömungsmaschine und die Temperaturbelastung der Bauteile der Gehäusestruktur ist es weder wünschenswert, dass Heißgas aus dem Strömungskanal 15 in den Zwischenraum zwischen innerer Gehäusewand 2 und äußerer Gehäusewand 1 und insbesondere in den Hohlraum 11 gelangt, noch, dass Kühlluft möglicherweise in den Strömungskanal einströmt.
  • Zur Verbesserung der Dichteigenschaften der Gehäusestruktur ist in dem Hohlraum 11 eine Abdichtung vorgesehen, die zwei Abdichtbleche 12,13 und eine Dichtschnur 14 umfasst, wobei die axiale Abdichtung 12,13,14 den Hohlraum 11 in zwei Bereiche 16 und 17 unterteilt.
  • Die axiale Abdichtung mit den Dichtwänden 12 und 13 sowie der Dichtschnur 14 ist in einer axialen Position entsprechend der axialen Position zwischen der ersten bzw. vorderen Dichtspitze 6 und der zweiten bzw. hinteren Dichtspitze 7 angeordnet, sodass der erste Bereich 16 mit dem Strömungskanal vor der Laufschaufel 4 korrespondiert, während der zweite Bereich 17 mit dem Bereich des Strömungskanals 15 nach der Laufschaufel korrespondiert. Durch die Dichtung 12,13,14 ist sichergestellt, dass sich in den Bereichen 16, 17 unterschiedliche Druckverhältnisse einstellen können, wie im Strömungskanal im Bereich vor der Laufschaufel 4 und im Bereich nach der Laufschaufel 4. Dadurch wird vermieden, dass in dem Hohlraum 11 ein Druckausgleich zwischen einer axial vorderen Position und einer axial hinteren Position erfolgen kann, was Austauschströmungen zwischen dem Heißgaskanal sowie eine eventuellen Kühlluftströmung verursachen könnte. Dadurch lässt sich somit die Menge an Heißgas, die aus dem Strömungskanal in die Gehäusestruktur strömt, also auch Verluste von Kühlluft verringern, sodass der Wirkungsgrad der Maschine erhöht wird, und die Temperaturen in der Gehäusestruktur abgesenkt werden können, bzw. weniger Kühlluft benötigt wird.
  • Obwohl die vorliegende Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist die Erfindung nicht auf dieses Ausführungsbeispiels beschränkt, sondern es sind vielmehr Abwandlungen in der Weise möglich, das einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden, ohne dass der Schutzbereich der beigefügten Ansprüche verlassen wird. Die vorliegende Offenbarung umfasst sämtliche Kombinationen aller vorgestellter Einzelmerkmale.

Claims (8)

  1. Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine Gasturbine oder ein Flugtriebwerk, mit einer äußeren Gehäusewand (1) und einer inneren Gehäusewand (2), wobei innere und äußere Gehäusewand einen Strömungskanal (15) der Strömungsmaschine ringförmig umschließen und in radialer Richtung bezogen auf den Strömungskanal beabstandet sind, wobei zwischen innerer und äußerer Gehäusewand mindestens ein Hohlraum (11) ausgebildet ist,
    dadurch gekennzeichnet, dass
    der Hohlraum in axialer Richtung in mindestens zwei Bereiche (16,17) unterteilt ist, die mit einer axialen Abdichtung (12,13,14) so voneinander getrennt sind, dass sich entsprechend der axialen Position der Bereiche zu den Druckverhältnissen im Strömungskanal korrespondierende, unterschiedliche Druckverhältnisse einstellen.
  2. Gehäusestruktur nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die axiale Abdichtung an einer axialen Position angeordnet ist, die der axialen Position zwischen einer Eintrittskante und einer Austrittskante einer Laufschaufel (4), insbesondere zwischen einer ersten und einer zweiten Dichtspitze (6,7) einer Laufschaufel entspricht.
  3. Gehäusestruktur nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die axiale Abdichtung durch mindestens ein mit Strukturbauteilen (12,13) zusammenwirkendes Dichtelement (14) realisiert ist, insbesondere durch flexible, hitzebeständige Dichtschnüre.
  4. Gehäusestruktur nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Hohlraum (11) von der äußeren Gehäusewand (1) getrennt und insbesondere beabstandet ausgebildet ist.
  5. Gehäusestruktur nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Hohlraum (11) ein ringförmig um den Strömungskanal umlaufender Hohlraum ist.
  6. Gehäusestruktur nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Hohlraum (11) ein geschlossener Hohlraum ist.
  7. Gehäusestruktur nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Hohlraum (11) unmittelbar an der inneren Gehäusewand (1) angeordnet ist.
  8. Strömungsmaschine, insbesondere Flugtriebwerk mit einer Gehäusestruktur nach einem der vorhergehenden Ansprüche.
EP12188322.7A 2012-10-12 2012-10-12 Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine Ceased EP2719869A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12188322.7A EP2719869A1 (de) 2012-10-12 2012-10-12 Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine
US14/048,169 US9605551B2 (en) 2012-10-12 2013-10-08 Axial seal in a casing structure for a fluid flow machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12188322.7A EP2719869A1 (de) 2012-10-12 2012-10-12 Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine

Publications (1)

Publication Number Publication Date
EP2719869A1 true EP2719869A1 (de) 2014-04-16

Family

ID=47080314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12188322.7A Ceased EP2719869A1 (de) 2012-10-12 2012-10-12 Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine

Country Status (2)

Country Link
US (1) US9605551B2 (de)
EP (1) EP2719869A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179053A1 (de) * 2015-12-07 2017-06-14 MTU Aero Engines GmbH Gehäusestruktur einer strömungsmaschine mit hitzeschutzschild
EP2725203B1 (de) * 2012-10-23 2019-04-03 MTU Aero Engines AG Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine
EP3000990B1 (de) 2014-09-26 2019-05-29 Rolls-Royce plc Halter einer turbinenummantelung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168804A1 (en) * 2013-04-12 2014-10-16 United Technologies Corporation Blade outer air seal with secondary air sealing
EP3090138B1 (de) * 2013-12-03 2019-06-05 United Technologies Corporation Hitzeschilder für luftdichtungen
US10196912B2 (en) * 2014-10-24 2019-02-05 United Technologies Corporation Bifurcated sliding seal
US10370994B2 (en) 2015-05-28 2019-08-06 Rolls-Royce North American Technologies Inc. Pressure activated seals for a gas turbine engine
US20180347399A1 (en) * 2017-06-01 2018-12-06 Pratt & Whitney Canada Corp. Turbine shroud with integrated heat shield
DE102021124357A1 (de) 2021-09-21 2023-03-23 MTU Aero Engines AG Hitzeschutzelement für eine Lagerkammer einer Gasturbine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656862A (en) * 1970-07-02 1972-04-18 Westinghouse Electric Corp Segmented seal assembly
US4053254A (en) * 1976-03-26 1977-10-11 United Technologies Corporation Turbine case cooling system
DE2745130A1 (de) * 1977-10-07 1979-04-12 Motoren Turbinen Union Einrichtung zur einhaltung bestimmter ausmasse von dichtspalten zwischen laufschaufel- und/oder leitschaufelspitzen und der damit zusammenwirkenden dichtungen fuer gasturbinentriebwerke
US4925365A (en) * 1988-08-18 1990-05-15 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbine stator ring assembly
GB2226365A (en) * 1988-12-22 1990-06-27 Rolls Royce Plc Turbomachine clearance control
EP0937864A2 (de) * 1998-02-20 1999-08-25 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Leitschaufelanordnung für eine axiale Strömungsmaschine
EP0940562A2 (de) * 1998-03-03 1999-09-08 Mitsubishi Heavy Industries, Ltd. Gasturbine
EP1106785A1 (de) * 1999-12-07 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Leckstromkanal im Rotor einer Turbomaschine
US20050232752A1 (en) * 2004-04-15 2005-10-20 David Meisels Turbine shroud cooling system
US8011879B2 (en) * 2006-10-06 2011-09-06 Snecma Transition channel between two turbine stages

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728257A (en) * 1986-06-18 1988-03-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal stress minimized, two component, turbine shroud seal
GB9027986D0 (en) 1990-12-22 1991-02-13 Rolls Royce Plc Gas turbine engine clearance control
DE10122464C1 (de) 2001-05-09 2002-03-07 Mtu Aero Engines Gmbh Mantelring
US6997673B2 (en) * 2003-12-11 2006-02-14 Honeywell International, Inc. Gas turbine high temperature turbine blade outer air seal assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656862A (en) * 1970-07-02 1972-04-18 Westinghouse Electric Corp Segmented seal assembly
US4053254A (en) * 1976-03-26 1977-10-11 United Technologies Corporation Turbine case cooling system
DE2745130A1 (de) * 1977-10-07 1979-04-12 Motoren Turbinen Union Einrichtung zur einhaltung bestimmter ausmasse von dichtspalten zwischen laufschaufel- und/oder leitschaufelspitzen und der damit zusammenwirkenden dichtungen fuer gasturbinentriebwerke
US4925365A (en) * 1988-08-18 1990-05-15 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbine stator ring assembly
GB2226365A (en) * 1988-12-22 1990-06-27 Rolls Royce Plc Turbomachine clearance control
EP0937864A2 (de) * 1998-02-20 1999-08-25 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Leitschaufelanordnung für eine axiale Strömungsmaschine
EP0940562A2 (de) * 1998-03-03 1999-09-08 Mitsubishi Heavy Industries, Ltd. Gasturbine
EP1106785A1 (de) * 1999-12-07 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Leckstromkanal im Rotor einer Turbomaschine
US20050232752A1 (en) * 2004-04-15 2005-10-20 David Meisels Turbine shroud cooling system
US8011879B2 (en) * 2006-10-06 2011-09-06 Snecma Transition channel between two turbine stages

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725203B1 (de) * 2012-10-23 2019-04-03 MTU Aero Engines AG Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine
EP3000990B1 (de) 2014-09-26 2019-05-29 Rolls-Royce plc Halter einer turbinenummantelung
EP3179053A1 (de) * 2015-12-07 2017-06-14 MTU Aero Engines GmbH Gehäusestruktur einer strömungsmaschine mit hitzeschutzschild
US10422247B2 (en) 2015-12-07 2019-09-24 MTU Aero Engines AG Housing structure of a turbomachine with heat protection shield

Also Published As

Publication number Publication date
US20140105731A1 (en) 2014-04-17
US9605551B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
EP2719869A1 (de) Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine
DE69937652T2 (de) Bürstendichtung für eine Turbomaschine
EP1736635B1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
EP2696037B1 (de) Abdichtung des Strömungskanals einer Strömungsmaschine
DE3338082A1 (de) Gasturbine mit verbessertem kuehlluftkreis
EP2148977B1 (de) Gasturbine
CH708646A2 (de) Innengekühlter Übergangskanalhinterrahmen.
DE102010017362A1 (de) Mechanische Verbindung für eine Gasturbinenmaschine
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
DE1475702B2 (de) Labyrinthdichtung für Bypaß-Gasturbinenstrahltriebwerke
DE1601554A1 (de) Rotor fuer Gasturbinentriebwerke
DE102014103081A1 (de) Strömungshülsenanordnung für ein Verbrennungsmodul eines Gasturbinenbrenners
DE102009021384A1 (de) Strömungsvorrichtung mit Kavitätenkühlung
CH702000B1 (de) Vorrichtung mit Wirbelkammern zur Spaltströmungssteuerung in einer Turbinenstufe.
CH708854A2 (de) Ansaugflächendichtung einer Rotationsmaschine und Verfahren zur Montage derselben.
CH707830A2 (de) Überleitungskanal mit verbesserter Kühlung für eine Turbomaschine.
CH708796A2 (de) Dichtungsbauteil zur Reduktion von sekundärer Luftströmung in einem Turbinensystem.
EP3307988A1 (de) Rotorkühlung für eine dampfturbine
EP0928364A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage
DE102014110749A1 (de) Systeme und Verfahren betreffend die axiale Positionierung von Turbinengehäusen und den Schaufelspitzenspalt in Gasturbinen
EP2718545B1 (de) Dampfturbine umfassend einen schubausgleichskolben
DE102011057131A1 (de) Brennkammeranordnungen zur Verwendung in Turbinen und Verfahren zur Montage derselben
DE102014118426A1 (de) Turbinenschaufel und Verfahren zur Kühlung einer Turbinenschaufel einer Gasturbine
CH701151B1 (de) Turbomaschine mit einem Verdichterradelement.
DE102012208263A1 (de) Verdichtervorrichtung für eine Turbomaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

17P Request for examination filed

Effective date: 20140918

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20240620