WO2005061713A1 - ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用 - Google Patents

ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用 Download PDF

Info

Publication number
WO2005061713A1
WO2005061713A1 PCT/JP2004/019196 JP2004019196W WO2005061713A1 WO 2005061713 A1 WO2005061713 A1 WO 2005061713A1 JP 2004019196 W JP2004019196 W JP 2004019196W WO 2005061713 A1 WO2005061713 A1 WO 2005061713A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
protein
seq
nucleotide sequence
dna
Prior art date
Application number
PCT/JP2004/019196
Other languages
English (en)
French (fr)
Inventor
Kanji Ohyama
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP04807553A priority Critical patent/EP1712626B1/en
Priority to US10/584,082 priority patent/US7915487B2/en
Priority to CA2550489A priority patent/CA2550489C/en
Priority to CN2004800384716A priority patent/CN1898383B/zh
Priority to JP2005516506A priority patent/JP4639150B2/ja
Priority to DE602004029935T priority patent/DE602004029935D1/de
Priority to KR1020067014762A priority patent/KR101110972B1/ko
Priority to DK04807553.5T priority patent/DK1712626T3/da
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to KR1020117013726A priority patent/KR101158533B1/ko
Priority to AT04807553T priority patent/ATE486939T1/de
Priority to KR1020117013728A priority patent/KR101156092B1/ko
Priority to AU2004303676A priority patent/AU2004303676B2/en
Publication of WO2005061713A1 publication Critical patent/WO2005061713A1/ja
Priority to AU2007221961A priority patent/AU2007221961B2/en
Priority to AU2010203054A priority patent/AU2010203054B2/en
Priority to US13/017,215 priority patent/US8962925B2/en
Priority to US13/017,228 priority patent/US8293978B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01001Amino-acid N-acetyltransferase (2.3.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to an unsaturated fatty acid synthesizing gene derived from Ze-moss (Marchantia polymorpha), ie, a ⁇ 5 fatty acid desaturase, a ⁇ 6 fatty acid desaturase, and a ⁇ 6 fatty acid chain elongase. It is about genes and their use.
  • Polyunsaturated fatty acids such as arachidonic acid and eicosapentaenoic acid (hereinafter abbreviated as "EPA" as appropriate) are abundant in cell membrane lipids mainly in the nervous system in humans. include. These polyunsaturated fatty acids act as precursors of bioactive substances such as prostaglandins and leukotrienes, and are very important pharmacologically. In recent years, health foods containing arachidonic acid and EPA have also been sold. In addition, fatty acids are attracting attention as a raw material because they are also used as raw materials for detergents and biodegradable plastics.
  • PUFAs polyunsaturated fatty acids
  • EPA eicosapentaenoic acid
  • Arachidonic acid and EPA are synthesized by three consecutive reactions starting from linoleic acid and ex-linolenic acid, namely, ⁇ 6 desaturation, fatty acid chain elongation, and ⁇ 5 desaturation, respectively. It is considered. These reactions are referred to as ⁇ 6 fatty acid desaturase (hereinafter abbreviated as “ ⁇ 6 desaturase”) and ⁇ 6 fatty acid chain elongase (hereinafter “ ⁇ 6 chain elongase”), respectively. Catalyzed by ⁇ 5 fatty acid desaturase (hereinafter abbreviated as “ ⁇ 5 desaturase”).
  • the gene for ⁇ 6 desaturase has been cloned in several plant species.
  • the gene for ⁇ 6 desaturase has been cloned from C. algae, Himeliganegoke, Yanoueokagoke, Borage, Murasaki, Sakuraso and Anemone.
  • the ⁇ 6 desaturase gene has been cloned from filamentous fungi, nematodes, cyanobacteria, rats and humans.
  • Non-Patent Document 5 ⁇ Lipids 37, 417, 2002 ''
  • Non-Patent Document 6
  • Non-Patent Document 4 rproc. FEBS Lett. 542, plOO, 2003 ''
  • Non-Patent Document 7 ⁇ Whitney et al. Planta Epub 2003 ''
  • Non-Patent Document 8 ⁇ Lipids 34, p649, 1999 ''
  • Non-Patent Document 9 ⁇ Gene, 238, p445 1999
  • Non-patent document 10 ⁇ Biochem J.
  • Non-patent document 11 rpknt Mol.Biol, 22, p293 1993
  • Non-patent document 12 ⁇ Biochem.Biophys.res.Commun. 255, p575, 1999 "
  • Non-Patent Document 13 J. Biol. Chem. 274, p471, 1999 ")
  • all of these ⁇ 6 desaturases have an N-terminal Contains a cytochrome b5 domain.
  • Non-patent Document 14 “Proc. Natl. Acad. Sci. USA 97, p8284, 2000”
  • Non-Patent Reference 15 “Proc. Natl. Acad. Sci. USA 97, p6421, 2000”
  • Himerigane see Non-Patent Document 16: “Plant J. 31, p255, 2002”.
  • yeast Sacharomyces cerevisiae
  • EL02 and EL03 proteins involved in the synthesis of long, saturated, acyl chains of sphingolipids (Non-Patent Document 17: "J. Biol. Chem., 272, pl7376, 1997 )
  • the amino acid sequences of the ⁇ 6 chain elongase show homology with these.
  • ⁇ -ketoacyl CoA synthase KCS
  • another type of fatty acid chain elongase exists in plants.
  • Non-Patent Document 15 and Non-Patent Document 18: “Plant Cell 7, p309, 1995”.
  • the ⁇ 6 chain elongase gene and the yeast EL02ZEL03 gene have no direct evolutionary relationship with the KCS gene (see Non-Patent Documents 15 and 16).
  • Non-Patent Document 19 “J. Biol. Chem. 273, p29360, 1998"
  • Non-Patent Document 20 “J. Biol. Chem. 273, pl9055 ").
  • the structure of ⁇ 5 desaturase is common to that of ⁇ 6 desaturase, and it has a cytochrome b5 domain at its ⁇ end.
  • the ⁇ 5 desaturase gene has also been cloned for its abilities such as kelp algae, nematodes, rats, humans, and Himeganegoke (Non-patent Document 1, Non-patent Document 21: “FEBS Lett.
  • Patent Document 22 ⁇ Arch.Biochem.Biophys.391, p8, 2001 ", Non-Patent Document 23:” J. Biol. Chem. 274, p37335, 1999 ", Non-Patent Document 24:” J. Biol. Chem. 278, 35115, 2003 ").
  • Land plants are composed of bryophytes (Bryophyta), ferns, gymnosperms and angiosperms.
  • Moss plants are the oldest branching group of land plants, and consist of three groups: mosses (Bryosida), Thai (Hepaticopsida) and mosses. Have been. Zeni moss is closest to the class of the creatures of the above organisms, but it belongs to the mosses, and the moss belongs to the sub-net (Marchantiidae) of the Thai net. Certainly, these three groups had already forked about 430 million years ago.
  • Non-Patent Document 26 "Biosci. Biotechnol. Biochem. 67, p605, 2003
  • Non-Patent Document 27 ⁇ Biosci.
  • MpFAE2 and MpFA E3 are not ⁇ 6 chain length elongase genes.
  • polyunsaturated fatty acid synthase genes derived from Aspergillus oryzae that is, ⁇ 5 desaturase gene, ⁇ 6 desaturase gene, and ⁇ 6 chain elongase gene can be obtained, these genes can be obtained.
  • arachidonic acid and EPA can be expected to accumulate efficiently in plants.
  • Himeriganoketake which is the same as Ze-Goke, a ⁇ 5 desaturase gene
  • the ⁇ 6 desaturase gene and ⁇ 6 chain length elongase gene have been cloned, but Zeni-mogake and Hime-Gri-Gone are significantly different in evolution, and the Z-Gome gene is obtained based on the Hi-Meri-Gonoke gene. Doing so is not easy with the current state of the art.
  • the present invention has been made in view of the above-mentioned conventional problems, and has as its object to synthesize unsaturated fatty acids derived from moss (Marchantia polymorpha), which can produce arachidonic acid and EPA in higher plants.
  • An object of the present invention is to provide an enzyme gene, that is, a ⁇ 5 desaturase gene, a ⁇ 6 desaturase gene, and a ⁇ 6 chain elongase gene, and methods of using the same.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result,
  • the genes encoding the above-mentioned ⁇ 6 unsaturated enzyme, ⁇ 5 desaturase and ⁇ 6 chain elongase were identified.
  • the gene was successfully introduced into methanol-assimilating yeast (Pichia pastoris) and expressed.
  • the proteins expressing these genes were ⁇ 6 unsaturated, ⁇ 5 unsaturated and ⁇ 6 chain length, respectively.
  • the inventors have found that the enzyme activity is prolonged, and have completed the present invention. That is, the present invention includes the following inventions.
  • the gene according to the following (a) or (b), which encodes a protein derived from an organism of the order Sarcolemaceae having a ⁇ 6 fatty acid chain elongation activity (A) a gene having the nucleotide sequence of 194 to 1066 of the nucleotide sequence shown in SEQ ID NO: 1; (b) A gene that hybridizes with DNA consisting of the nucleotide sequence of positions 194 to 1066 of the nucleotide sequence shown in SEQ ID NO: 1 or a DNA having a nucleotide sequence complementary to the DNA under stringent conditions .
  • (10) The gene according to the following (a) or (b), which encodes a protein derived from an organism belonging to the order Oribatida having ⁇ 5 fatty acid desaturation activity.
  • (A) a gene having the nucleotide sequence of SEQ ID NO: 5;
  • (B) A gene that hybridizes with a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 5 or a DNA having a nucleotide sequence complementary to the DNA under stringent conditions.
  • the gene according to the following (a) or (b), which encodes a protein derived from the order Oribatida having ⁇ 5 fatty acid desaturation activity (A) a gene having the nucleotide sequence at positions 375 to 1829 in the nucleotide sequence shown in SEQ ID NO: 5; (B) Of the base sequence shown in SEQ ID NO: 5, a gene that hybridizes under stringent conditions with DNA having the base sequence at positions 375 to 1829 or a DNA having a base sequence complementary to the DNA. .
  • (21) A plant in which at least the gene according to any one of (1) to (12) above has been introduced so as to be expressible and whose fatty acid composition has been modified, or a plant having the same properties as the plant.
  • a gene detection instrument using, as a probe, at least a part of the base sequence in the gene according to any one of (1) to (12) or a complementary sequence thereof.
  • (27) A method for screening for a gene that regulates the protein or a substance that regulates the protein, using the protein according to any one of (13) to (16).
  • A, C, G and T represent bases of adenine, cytosine, guanine and thymine.
  • FIG. 1 is an explanatory diagram showing the procedure for constructing a construct in which the expression cassettes of the MpDES6 gene, MpELOl gene and MpDES5 gene used in Example 6 are linked.
  • Arachidonic acid and eicosapentaenoic acid are linoleic acid and ⁇ -linoic acid, respectively. It is thought that biosynthesis is achieved by three consecutive reactions starting from renic acid, namely ⁇ 6 desaturation, ⁇ 6 chain length extension and ⁇ 5 desaturation. These reactions are catalyzed by ⁇ 6 desaturase, ⁇ 6 chain elongase and ⁇ 5 desaturase, respectively, and the n-6 pathway (arachidonic acid synthesis pathway) and the n-3 pathway (EPA synthesis It is called a route.
  • ⁇ 6 desaturase is a linoleic acid (18: 2DW2 , 18 represents the number of carbon atoms, 2 represents the number of double bonds, and 9 and 12 represent double bonds in the n-6 pathway). ..
  • GLA g- linolenic acid
  • STA stearidonic acid
  • GLA g- linolenic acid
  • ALA a- linolenic acid
  • STA stearidonic acid
  • STA 18: 4D 6' is converted into 9 '12' 15
  • the ⁇ 6 chain elongase converts GLA to dihomo- ⁇ -linolenic acid (DGLA; 20: 3 ⁇ 8,11,14 ) in the n-6 pathway, and converts STA to eicosatetraene in the ⁇ -3 pathway.
  • acid ⁇ ; 20: 4 ⁇ 8 '11' 14 '17
  • n-6 Arakidon acid DGLA is the path: the (20 4 ⁇ 1 ⁇ 211 '14) , ⁇ - 3 eicosa pentaenoic acid ⁇ the route ( ⁇ ; 20: 5 ⁇ 5,8,11 , 14,17 ).
  • the ⁇ 6 desaturase gene according to the present invention is a gene derived from the order Oribatida that encodes a protein having ⁇ 6 fatty acid desaturation activity, and may be any gene that meets the following conditions. .
  • the nucleotide sequence at positions 253 to 1698 of the nucleotide sequence shown in SEQ ID NO: 1 is a region translated into the protein having the amino acid sequence shown in SEQ ID NO: 2.
  • the ⁇ 6 chain elongase gene according to the present invention is a gene derived from the order Oribatida which encodes a protein having ⁇ 6 fatty acid chain elongase activity, and may be any gene that meets the following conditions.
  • the nucleotide sequence at positions 194 to 1066 of the nucleotide sequence shown in SEQ ID NO: 3 is a region translated into the protein having the amino acid sequence shown in SEQ ID NO: 4.
  • the ⁇ 5 desaturase gene according to the present invention is a gene derived from the order Oribatida that encodes a protein having ⁇ 5 fatty acid desaturation activity, and may be any gene that meets the following conditions. .
  • the nucleotide sequence at positions 375 to 1829 of the nucleotide sequence shown in SEQ ID NO: 5 is a region translated into the protein having the amino acid sequence shown in SEQ ID NO: 6.
  • stringent conditions means that at least 90% identity, preferably at least 95% identity, and most preferably at least 97% identity exists between sequences. Only means that hybridization occurs.
  • the hybridization is carried out by a conventionally known method such as the method described in J. Sambrook et al. Molecular Cloning. A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory (1989). be able to. Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (the less likely it is to hybridize), and a more homologous gene can be obtained.
  • conditions for the nodulation and the hybridization conventionally known conditions can be suitably used and are not particularly limited.For example, 42 ° C, 6 ⁇ SSPC, 50% formamide, 1% SDS , 100 ⁇ g / ml salmon sperm DNA, 5X Denhardt's solution (1X SSPE; 0.18M sodium chloride, 10mM sodium phosphate, pH7.7, ImM EDTA).
  • Zome-moss organism is not limited to Zome-moss (Marchantia polymorpha), and includes organisms belonging to the subsp.
  • Monoclea forsten Monocleaies
  • orsinia coriandnna Decemberantiales
  • Oximitra paleacea Septemberantiales
  • Ricciocarpos natans Septemberantiales
  • Ricca huebeneriana Septemberantiales
  • Ricca iluitans Septemberantiales
  • Riccaali Marsicacula Ricca atans (Marchantiales), Ricca bilurca (Marchantiales), Ricca ciliifera
  • the gene of the present invention includes not only double-stranded DNA but also single-stranded DNAs and RNAs constituting the same, such as a sense strand and an antisense strand.
  • the antisense strand can be used as a probe or as an antisense compound.
  • the DNA includes, for example, cDNA and genomic DNA obtained by the cloning method, a synthesis technique, or a combination thereof.
  • the gene of the present invention may include a sequence such as an untranslated region (UTR) sequence or a vector sequence (including an expression vector sequence)! /.
  • the ⁇ 6 desaturase protein according to the present invention may be a protein derived from an organism of the order Sarcolemaceae and may be a protein having ⁇ 6 fatty acid desaturation activity. More specifically, any of the following proteins may be used.
  • a protein consisting of an amino acid sequence, an insertion, and a Z or an added amino acid sequence.
  • the protein of the ⁇ 6 chain lengthening enzyme according to the present invention may be a protein derived from an organism of the order Cetaceae, and may be a protein having a ⁇ 6 fatty acid chain lengthening activity. More specifically
  • a protein consisting of an amino acid sequence, an insertion, and a Z or an added amino acid sequence.
  • the ⁇ 5 desaturase protein according to the present invention may be a protein derived from an organism of the order Sarcolemaceae and may be a protein having ⁇ 5 fatty acid desaturation activity. More specifically
  • a protein consisting of an amino acid sequence in which one or more amino acids of the amino acid sequence shown in SEQ ID NO: 6 have been substituted, deleted, inserted, Z- or added.
  • ⁇ 6 fatty acid desaturation activity refers to an action of converting ⁇ -linolenic acid or stearidonic acid, which has substrate specificity for linoleic acid or ex-linolenic acid, respectively.
  • ⁇ 6 fatty acid chain lengthening activity refers to an action of having substrate specificity for y-linolenic acid or stearidonic acid and converting it to dihomo-y-linolenic acid or eicosatetraenoic acid, respectively.
  • ⁇ 5 fatty acid desaturation activity refers to dihomo- ⁇ -linolenic acid or eicosatetraenoic acid, each of which has a substrate specificity, and arachidonic acid, respectively. Or it means the action of converting to eicosapentaenoic acid (EPA).
  • the above "one or more amino acids are substituted, deleted, inserted, and Z or added” means that substitution or deletion is performed by a known method for producing a mutant protein such as site-directed mutagenesis.
  • Insertion, and Z or amino acids that can be added are substituted, deleted, inserted, and Z or added. means.
  • Such a mutated protein is not limited to a protein having a mutation artificially introduced by a known method for producing a mutated protein, but is obtained by isolating and purifying a similar mutated protein existing in nature. You may.
  • the protein of the present invention may be a polypeptide in which amino acids are bound by a peptide bond, but is not limited thereto, and may be a complex protein containing a structure other than a polypeptide.
  • Examples of the structure other than the polypeptide referred to here include a sugar chain and an isoprenoid group, but are not particularly limited.
  • the protein of the present invention may include a polypeptide that is similar to a protein.
  • Such polypeptides may be added, for example, when the protein of the present invention is epitope-labeled with His, Myc, Flag, or the like.
  • the protein of the present invention may be in a state where the above-described gene of the present invention (a gene encoding the protein of the present invention) is introduced into a host cell, and the protein is intracellularly expressed. Alternatively, the strength of cells, tissues and the like may be isolated and purified. Further, depending on the expression conditions in the host cell, the protein of the present invention may be a fusion protein linked to another protein. Further, the protein of the present invention may be chemically synthesized.
  • the method for obtaining the protein and the gene (production method) according to the present invention is not particularly limited, but typical methods include the following methods.
  • the method for obtaining the protein of the present invention is not particularly limited as described above.
  • the purification method is not particularly limited, and is well-known.
  • a cell extract is prepared from cells and tissues by a method, and the cell extract is purified using a known method, for example, column chromatography.
  • Examples of a method for obtaining the protein of the present invention include a method using a genetic recombination technique and the like.
  • a method of incorporating the gene of the present invention into a vector or the like, introducing the gene into a host cell so that it can be expressed by a known method, and purifying the protein obtained by translation in the cell may be employed.
  • the method for producing the mutant protein is not particularly limited.
  • a site-directed mutagenesis method Hashimoto-Gotoh, Gene 152, 271-275 (1995), etc.
  • a method of introducing a point mutation into the nucleotide sequence using the PCR method to produce a mutated protein or a transposon
  • a well-known method for producing a mutant protein such as a method for producing a mutant strain by insertion of a gene can be used.
  • a commercially available kit may be used for producing the mutant protein.
  • the method for obtaining a protein of the present invention is not limited to the method described above, and may be, for example, a chemically synthesized one.
  • the genetic ability of the present invention may be used to synthesize the protein of the present invention using a cell-free protein synthesis solution.
  • the method for obtaining the gene of the present invention is not particularly limited, and examples thereof include a method using differential screening (subtraction closing).
  • the target cDNA (the gene of the present invention) may be concentrated by repeating direct hybridization in a test tube according to a known technique.
  • Each step in the above differential screening may be performed under the conditions generally used.
  • the clones obtained in this way can be analyzed in more detail by constructing a restriction map and determining its nucleotide sequence (sequencing). The By these analyses, the DNA fragment containing the gene sequence of the present invention can be easily confirmed.
  • Examples of a method for obtaining the gene of the present invention include a method of isolating and closing a DNA fragment containing the gene of the present invention by a known technique.
  • a probe that specifically hybridizes with a part of the nucleotide sequence of the gene of the present invention may be prepared, and a genomic DNA library or a cDNA library may be screened.
  • a probe having a shifted sequence and length may be used as long as it is a probe that specifically hybridizes to at least a part of the nucleotide sequence of the gene of the present invention or its complementary sequence! ⁇
  • the above-described probe sequence may be selected from among the above-mentioned regions that are well conserved among Z-mosses to screen genomic DNA (or cDNA) libraries of other Z-moss.
  • a gene encoding a homologous molecule or a related molecule having the same function as the above protein can be isolated and cloned.
  • a method for obtaining the gene of the present invention a method using amplification means such as PCR can be mentioned.
  • amplification means such as PCR
  • primers are respectively prepared from the 5′-side and 3′-side sequences (or their complementary sequences), and genomic DNA (or cDNA) or the like is prepared using these primers.
  • the DNA fragment containing the gene of the present invention can be obtained in a large amount by performing PCR or the like on type III and amplifying the DNA region sandwiched between both primers.
  • the recombinant expression vector according to the present invention is not particularly limited as long as it contains the gene according to the present invention described in (2) above.
  • An example is a recombinant expression vector into which cDNA has been inserted.
  • a plasmid, phage, cosmid, or the like can be used, but is not particularly limited. Also, the production method may be performed using a known method.
  • the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. In other words, depending on the type of host cell, What is necessary is just to select a promoter sequence as appropriate in order to express the gene, and to use a promoter sequence incorporating this and the gene of the present invention in various plasmids or the like as an expression vector.
  • Various markers may be used to confirm whether or not the gene of the present invention has been introduced into a host cell, and whether or not the gene is reliably expressed in the host cell.
  • a gene deleted in a host cell is used as a marker, and a plasmid or the like containing this marker and the gene of the present invention is introduced into the host cell as an expression vector.
  • the introduction of the gene of the present invention can be confirmed from the expression of the gene.
  • the protein of the present invention may be expressed as a fusion protein.
  • the protein of the present invention may be expressed as a GFP fusion protein by using green fluorescent protein GFP (Green Fluorescent Protein) derived from jellyfish as a marker.
  • the host cell is not particularly limited, and conventionally known various cells can be suitably used. Specific examples include bacteria such as Escherichia coli, yeasts (yeast 3 ⁇ 4accharomyces cerevisiae, fission yeast 3 ⁇ 4chizosaccharomyces pombe), insects, Caenorhabditis elegans, oocytes of Xenopus laevis, and the like. Power that can be used is not particularly limited.
  • a method for introducing the above-described expression vector into a host cell that is, a method known in the art, such as an electroporation method, a calcium phosphate method, a liposome method, and a DEAE dextran method, which does not particularly limit the transformation method, is also used. It can be suitably used.
  • a method known in the art such as an electroporation method, a calcium phosphate method, a liposome method, and a DEAE dextran method, which does not particularly limit the transformation method, is also used. It can be suitably used.
  • an expression system using a baculovirus can be employed.
  • transformant refers to a cell
  • Tissue means not only organs but also living organisms.
  • a method for producing a transformant is not particularly limited, and examples thereof include a method of introducing the above-described recombinant expression vector into a host cell and transforming the same.
  • the organism to be transformed is not particularly limited, and examples thereof include various microorganisms and animals exemplified as the host cells.
  • the transformant according to the present invention is a plant into which the gene according to the present invention has been introduced so as to be expressible, or a plant that has the same properties as the plant and is a descendant of the plant, or It is preferably a tissue of a plant body.
  • the recombinant expression vector used for transformation of a plant is not particularly limited as long as it can express the inserted gene in the plant cell.
  • a vector having a promoter that constitutively expresses a gene in plant cells for example, the 35S promoter of cauliflower mosaic virus
  • a vector having a promoter that is inducibly activated by an external stimulus can be used.
  • the plant cells include various forms of plant cells, for example, suspension culture cells, protoplasts, leaf sections, calli, and the like.
  • the recombinant expression vector can be introduced into plant cells by various methods known to those skilled in the art, such as a polyethylene glycol method, an electroporation method (electorifice poration method), a method mediated by agarbate terium, and a particle gun method. Can be used. Regeneration of a plant body from a transformed cell can be performed by a method known to those skilled in the art depending on the type of plant cell.
  • a technique for producing a transformed plant in tobacco includes a method of infecting a transformed tobacco leaf disk with a tobacco leaf disc, and a method of introducing a gene into protoplasts using polyethylene glycol to produce a plant.
  • Several technologies have already been established, such as a method for regenerating plants, a method for regenerating plants by introducing genes into protoplasts using electric pulses, and a method for regenerating plants by directly introducing genes into cells by the particle gun method. ing. In the present invention, these methods can be suitably used.
  • Tobacco is a model plant of plant breeding that uses genetic engineering techniques alongside Arabidopsis thaliana. To be able to obtain a transformant with an increased content of arachidonic acid and EPA in this tobacco means that the transformant can be obtained in all plants. It is no exaggeration to say.
  • rice transformants that can be obtained only by the octopus are also obtained.According to the present invention, all types of transformed objects are obtained. Demonstrate what you can do.
  • a method for producing a transformed plant in rice includes a method in which a gene is introduced into protoplasts using polyethylene glycol, and the plant is regenerated.
  • Some technologies have already been established, such as a method for regenerating plants and a method for regenerating plants by directly introducing genes into cells by the particle gun method. In the present invention, these methods can be suitably used.
  • the plant a plant that is a descendant of the plant having the same properties as the plant, and a tissue of the plant include a vegetatively propagated plant. Vegetative propagation is also called vegetative reproduction or clonal growth, and propagation by cuttings, cuttings, etc. is common.
  • a test tube it is possible to grow a plant body with organ power such as leaves, stems and roots by redistribution callus.
  • the tips of the branches may produce special winter buds, the axillary buds may become fleshy, the flowers may be mukagoi, or the potatoes may be formed.
  • a plant in which the gene of the present invention has been introduced so that it can be expressed and whose fatty acid composition has been modified, or a plant that is a descendant of the plant and has the same properties as the plant, or the plant And the propagation material of the plant are also included in the present invention.
  • “The fatty acid composition has been altered” means that the fatty acid composition of the plant before transformation and the fatty acid composition of the plant after transformation are different. For example, a case in which arachidonic acid or EPA is contained in the fatty acid composition of the transformed plant by transforming a small plant that originally contains arachidonic acid or EPA in the fatty acid composition with the gene according to the present invention, etc. Can be mentioned.
  • the present invention includes a method for producing a fatty acid using a plant or a tissue of a plant transformed with the gene of the present invention and having an altered fatty acid composition.
  • the edible oil produced from the transgenic product according to the present invention having an increased content of arachidonic acid or EPA as described above has a high value of arachidonic acid or EPA.
  • Seeds, fruits, cuttings, tubers, tubers, and the like of the above-mentioned transformed plants also have high value as foods containing arachidonic acid and EPA.
  • the present invention includes at least one substance obtained by the above-described method for producing a fatty acid, that is, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, stearidonic acid, eicosatetraenoic acid, and eicosapentaenoic acid. Materials are also included.
  • the term "material” refers to any material that can be used for industrial raw materials, in addition to the above-mentioned food, such as seeds, fruits, cuttings, tubers, or tubers.
  • Examples of the above-mentioned materials include materials for health foods containing arachidonic acid and water, films, biodegradable plastics, functional fibers, lubricating oils, detergents, and the like.
  • the above unsaturated fatty acids have a unique property of having a plurality of double bonds in the molecule. Therefore, for example, it is necessary to produce arachidonic acid or EPA using the transformed ⁇ ⁇ ⁇ object of the present invention. As a result, production costs can be reduced. Further, according to the present invention, an environmentally friendly production process can be realized.
  • the present invention includes a method for modifying the fatty acid composition using the gene according to the present invention. For example, by preparing a transformant into which the gene according to the present invention has been introduced as described above, the fatty acid composition of the host cell can be modified.
  • the object of modifying the fatty acid composition is not particularly limited, and can be any organism such as an animal, a bacterium, and a yeast, in addition to a plant.
  • the gene detection device uses at least a part of the base sequence of the gene according to the present invention or its complementary sequence as a probe.
  • the gene detection device can be used under various conditions for detecting and measuring the expression pattern of the gene of the present invention.
  • Examples of the gene detection device of the present invention include a DNA chip in which the above probe specifically hybridizing with the gene of the present invention is immobilized on a substrate (carrier).
  • the term “DNA chip” mainly includes a bonded DNA microarray using a cDNA such as a PCR product as a probe, which means a synthetic DNA chip using a synthesized oligonucleotide as a probe. .
  • the sequence used as a probe can be determined by a conventionally known method for specifying a neutral characteristic sequence of a cDNA sequence. Specifically, for example, the SAGE: Serial Analysis of Gene Expression method (Science 276: 1268, 1997; Cell 88: 243, 1997; Science 270: 484, 1995; Nature 389: 300, 1997; U.S. Patent No. 5,695,937) No.).
  • a known method may be employed for the production of a DNA chip!
  • the oligonucleotide may be synthesized on a substrate by a combination of a photolithography technique and a solid-phase DNA synthesis technique.
  • cDNA as an oligonucleotide
  • a perfect match probe (oligonucleotide) and a mismatch probe having a single base substitution in the perfect match probe may be arranged to further improve the detection accuracy of the gene.
  • a DNA chip may be constructed by immobilizing a plurality of types of oligonucleotides on the same substrate.
  • the gene detection device is not limited to the DNA chip described above, and may be any device that uses, as a probe, at least a part of the base sequence of the gene according to the present invention or its complementary sequence. .
  • the antibody according to the present invention is an antibody obtained as a polyclonal antibody or a monoclonal antibody by a known method using the protein according to the present invention or its partial protein / partial peptide as an antigen.
  • Known methods include, for example, literature (Harlow et al., "Ant3 ⁇ 4odies: A laboratory manual (Cold Spring Harbor Laboratory, New York (1988))” and Iwasaki et al., "Monoclonal antibody hybridoma and ELISA, Kodansha (1991)”). And the method described in (1).
  • the antibody thus obtained can be used for the detection and measurement of the protein of the present invention.
  • the screening method according to the present invention is a method for screening for a gene that regulates the protein or a substance that regulates the protein, using the protein according to the present invention.
  • the screening method of the present invention various conventionally known methods for examining the presence or absence of binding between substances and the presence or absence of dissociation can be applied, and are not particularly limited.
  • screening for a substance that promotes the activity ( ⁇ 6 desaturation activity, ⁇ 6 chain length elongation activity and Z or ⁇ 5 desaturation activity) of the protein according to the present invention can be mentioned.
  • the present invention also includes a gene or a substance obtained by the above screening method.
  • Example 1 Isolation of ⁇ 6 desaturase gene derived from Aspergillus niger
  • the obtained PCR product was electrophoresed on a l% (w / v) agarose gel, and an amplified fragment having the size expected from the amino acid sequence of a conventional ⁇ 6 desaturase was purified by Prep. -A Gene (Bio-rad (Manufactured by K.K.).
  • the recovered amplified fragment was ligated to pT7Blue Vector (Takara) and transformed into E. coli Electro-max DH10B cells (Invitrogen, Carlsbad, CA).
  • 5'-RACE and 3'-RACE were performed to obtain a full-length cDNA sequence. These include the 5-RACE system for Rapid Amplincation of cDNA Ends Version 2.0, manufactured by Invitrogen), the Ready-To-Go T-primed First Strand kit (manufactured by Amersham), and the primers (MpDES6-02R and MpDES6- 01F) and the method recommended by the manufacturer.
  • MpDES6-02R 5'-AAGTTGCCTTCGATGTTTCTGG-3 '(SEQ ID NO: 9)
  • MpDES6-01F 5'-GCTCGCCTGGAGCAAGGAAATC-3 '(SEQ ID NO: 10)
  • MpDES6 gene As a result, one type of homolog gene candidate was isolated, and this gene was designated as MpDES6 gene.
  • the length of the isolated cDNA of the MpDES6 gene (excluding the poly A portion) was 2,522 bp, and the encoded amino acid sequence was 481 residues.
  • the nucleotide sequence is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2.
  • PCR was performed using the above primers (dD6ELO-F and dD6ELO-R), and the resulting DNA fragment was subcloned.
  • the nucleotide sequence of the obtained clone was determined, and a full-length cDNA was obtained for the clone having the desired cDNA sequence using the following primers (MpELOl-02R and MpELOl-01F).
  • the experimental materials and methods are the same as in Example 1.
  • MpELOl gene As a result, one type of homolog gene candidate was isolated, and this gene was designated as the MpELOl gene.
  • the length of the MpELOl gene cDNA (excluding the poly A portion) was 1,559 bp, and the deduced amino acid sequence was 290 residues.
  • the nucleotide sequence is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4.
  • ⁇ 5 desaturases of other species have a cytochrome b5 domain at their N-terminus. From this, it was expected that the ⁇ 5 desaturase gene derived from Aspergillus oryzae belongs to the same cytochrome b5 domain fusion type desaturase gene family as the ⁇ 6 desaturase gene. However, the homology at the amino acid sequence level between ⁇ 5 desaturase and ⁇ 6 desaturase is very low in kayas and fungi. Therefore, as a result of comparing the amino acid sequences between the ⁇ 5 desaturase and the ⁇ 6 desaturase of the filamentous fungus (M.
  • PCR was performed using the above primers (dD5DES-F and dD5DES-R), and the obtained DNA fragment was subcloned.
  • the nucleotide sequence of the obtained clone was determined, and a full-length cDNA was obtained from the clone having the target cDNA sequence using the following primers (MpDES5-2R and MpDES5-1F).
  • the experimental materials and methods are the same as in Example 1.
  • MpDES5-01F 5, -AAGGCGGGACAGGATTCAACAC-3 '(SEQ ID NO: 18)
  • MpDES6, MpELOl and MpDES5 cDNAs A construct was prepared in which the ORF was placed downstream of the methanol-inducible promoter AOX1. These constructs were introduced into a methanol-assimilating yeast (Pichia pastoris), and their fatty acid composition was analyzed.
  • the ORF portions of the cDNA base sequences of MpDES6, MpEL01 and MpDES5 were amplified by PCR using the following primers.
  • MpD6- 17F 5 '-GGAATTCGCGATGGCCTCGTCCACCACCAC-3' (SEQ ID NO: 19)
  • MpD6- 18F 5, -GGAATTCTACTTTCGCAGCGTATGCTACC-3, (SEQ ID NO: 20) (MpELOlORF amplification primer)
  • MpD6EL01-15F 5,-GGAATTCGCGATGGAGGCGTACGAGATGG-3 '(SEQ ID NO: 21)
  • MpD6EL01-16F 5 '-GGAATTCTTCTGCCTTTTTGCTCTTGATC-3' (SEQ ID NO: 22)
  • MpD5-llF 5 '-GTTGAATTCGACAGTTATGCCGCCACACGC-3' (SEQ ID NO: 23)
  • MpD5-12R 5,-GTTGAATTCAGGCCCAAAGCATGCTGTCAC-3 '(SEQ ID NO: 24)
  • These primers contained an EcoRI recognition sequence shown underlined and used for the following cloning.
  • the PCR was performed using Pyrobest DNA polymerase (manufactured by Takara) 0.5 U in a reaction solution volume of 201 according to the method recommended by the manufacturer.
  • the reaction conditions were as follows: After holding at 94 ° C for 2 minutes, the reaction at 94 ° C for 1 minute, 57 ° C for 1 minute, 72 ° C for 1 minute was repeated 25 times, and then cooled to 4 ° C. . After each obtained ORF fragment was digested with EcoRI, gel purification was performed by the method described in Example 1.
  • Methanol-assimilating yeast cannot synthesize arachidonic acid or other precursors of ⁇ which can synthesize linoleic acid and ⁇ -linolenic acid, which are substrates for ⁇ 6 desaturase.
  • each transformant was purified using 1.0% glycerol only as a carbon source using the EasySelect Pichia Expression Kit (manufactured by Invitrogen) according to the method recommended by the kit. After culturing in the medium until the OD (600 nm) became 0.5, the cells were cultivated in a minimum medium containing only 0.5% methanol at 30 ° C. for 3 days until saturation. Thereafter, the fatty acid composition of each transformant was measured by a known method (Biosci. Biotechnol. Biochem. 67, p605, 2003) using GC-MS.
  • MpDES6, MpELOl and MpDES5 could be obtained from Aspergillus oryzae as genes encoding ⁇ 6 desaturase, ⁇ 6 chain elongase and ⁇ 5 desaturase, respectively.
  • MpELOl and MpDES5 the EcoRI-digested ORF-amplified fragments of MpELOl and MpDES5 prepared in Example 4 described above were each used in a separate methanol-assimilating yeast expression vector pPIC3K (marker: HIS4 gene , Invitrogen) and PPIC6A (marker: blasticidin metabolic gene, Invitrogen) 5, were linked in the sense direction to the EcoRI site downstream of the AOX1 promoter.
  • pPIC3K marker: HIS4 gene , Invitrogen
  • PPIC6A marker: blasticidin metabolic gene, Invitrogen
  • pPICZA-MpDES6 and pPIC3K-MpEL01 or pPICZA and pPIC3K were introduced into the above-mentioned transformant integrated into the genome, and a transformant was obtained using blastdin resistance as a marker.
  • ⁇ -Glucuronidase (GUS) gene portion was purified by PCR using the following primers designed between pBI221 (manufactured by TOYOBO) and the caulifla-mosaic virus (CaMV) 35S promoter and NOS terminator.
  • the removed expression vector p35S-NOS was prepared.
  • the primer MKOOl (F) contains an underlined BamHI recognition sequence, anneals to the 3 'end of the GUS gene, and the primer MK002 (R) anneals to the 5' end of the GUS gene (BamHI site is anneal). Upstream of the site).
  • PCR was performed using Pyrobest DNA polymerase (Takara) 0.5 U in a reaction volume of 501 according to the method recommended by the manufacturer. The reaction conditions were as follows: After holding at 96 ° C for 5 minutes, the reaction was repeated 30 times at 94 ° C for 30 seconds and at 68 ° C for 4 minutes, and then cooled to 4 ° C. After each obtained ORF fragment was digested with BamHI, gel purification was performed by the method described in Example 1, and then self-ligated.
  • MpD6-21F 5 '-GCTCTAGAGCGATGGCCTCGTCCACCACC-3' (SEQ ID NO: 27)
  • MpD6-llR 5, -GCTCTAGACTATACTTTCGCAGCGTATGC-3, (SEQ ID NO: 28) (MpELOl ORF amplification primer)
  • MpD6ELO 1-18F 5 '-GCTCTAGAGCGATGGAGGCGTACGAGATGG-3' (SEQ ID NO: 29)
  • MpD6EL01-13R 5 '-GCTCTAGATTATTCTGCCTTTTTGCTC-3' (SEQ ID NO: 30)
  • p35S-MpEL01 and p35S-MpDES5 which have the CaMV35S promoter 5, the Pstl site at the end, and the EcoRI site at the 3 'end of the NOS terminator. Connected.
  • PCR was performed using p35S-MpDES5 as a type III using the primers shown below to amplify the expression cassette of the MpDES5 gene and cloned into the Pstl site at the end of the CaMV35S promoter 5 of p35S-MpDES6. (refer graph1).
  • the M13R primer anneals to the vector sequence upstream of the CaMV35S promoter.
  • the NOS-R4-PST primer contains a Pstl recognition sequence shown underlined and anneals to the NOS terminator 3 terminal. NOS terminator 13 also does not include the EcoRI site at the end.
  • PCR was carried out using Pyrobest DNA polymerase (Takara) 0.5U in accordance with the method recommended by the manufacturer with a reaction volume of 201. The reaction conditions were as follows: after holding at 94 ° C for 2 minutes, repeating the reaction at 94 ° C for 1 minute, 57 ° C for 1 minute and 72 ° C for 1 minute 25 times, and then cooled to 4 ° C.
  • the expression cassette of the MpELOl gene was further ligated to the construct (described as p35S-MpDES5 / 35S-MpDES6) obtained by ligating the expression cassettes of the MpDES5 and MpDES6 genes obtained above. Using the following primers, PCR was performed using p35S-MpEL01 as type II, the expression cassette portion of the MpELOl gene was amplified, and cloned into the EcoRI site at the 3 'end of the NOS terminator in the MpDES6 gene expression cassette.
  • 35S-F3-EI 5 '-CCGGAATTCGCATGCCTGCAGGTCCCCAGA-3' (SEQ ID NO: 35)
  • the 35S-F3-EI primer contains an EcoRI recognition sequence shown underlined and anneals to the 5 terminal of the CaMV35S promoter.
  • the M13F primer anneals to the vector sequence downstream of the NOS terminator.
  • PCR was performed using Pyrobest DNA polymerase (manufactured by Takara) 0.5U in accordance with the method recommended by the manufacturer with a reaction volume of 201.
  • the reaction conditions were as follows: after holding at 94 ° C for 2 minutes, repeating the reaction at 94 ° C for 1 minute, 57 ° C for 1 minute and 72 ° C for 1 minute 25 times, and then cooled to 4 ° C.
  • gel purification was performed by the method described in Example 1, and the EcoRI site of the construct (p35S-MpDES5 / 35S-MpDES6) in which the expression cassettes of the MpDES5 and MpDES6 genes were ligated.
  • transgenic rice was obtained by introducing the plasmid with bialaphos as a selection marker into rice with a partial gun.
  • Example 7 Reconstitution of Ze-Goke polyunsaturated fatty acid synthesis system in tobacco (N. tabacum SR-1)]
  • the above-mentioned unsaturated fatty acid synthase genes derived from Zome moss that is, the MpDES6 gene, the MpDES5 gene, and the MpELO gene function well in plants.
  • MpDES6 gene, MpDES5 gene, and MpELO gene were introduced into tobacco, and it was confirmed that arachidonic acid and the like were produced in this tobacco.
  • three genes, a ⁇ 6 desaturase gene (MaDES6), a ⁇ 5 desaturase gene (MaDES5), and a ⁇ 6 fatty acid chain elongase (MaELO), derived from a filamentous fungus (M. alpina) Tano 3 was introduced.
  • pE2113 (Mitsuhara et al. Plant Cell Physiol. 37, 45-59 1996) has a cauliflower mosaic virus 35S (E1235S) promoter with a repeat of the enhancer sequence and a nopaline synthase (nos) terminator.
  • E1235S cauliflower mosaic virus 35S
  • the plasmid was ligated to Xhol linker (TAKARA) to prepare a plasmid.
  • This plasmid was digested with Sacl, blunt-ended, and ligated with BamHI linker (TAKARA) to prepare pUE7.
  • TAKARA BamHI linker
  • a plasmid containing the MaDES6 gene, pMLDlOl was digested with Xhol and further partially digested with BamHI to obtain a DNA fragment of about 1.6 kb. This fragment was ligated to a DNA fragment of a binary vector portion obtained by digesting pSPB505 with Xhol and BamHI to prepare PSPB559.
  • pUCAP van Engelen et al. Transgenic research 4, p288, 1995
  • Ascl Ascl
  • Pacl linker After blunt-ending and ligating with Pacl linker, pUCAPP was prepared.
  • pE2113 was digested with SnaBI, it was ligated to BamHI linker (TAKARA) to prepare pUE6.
  • pUE6 was digested with Sacl, blunt-ended, and ligated with Sail linker (TA KARA) to produce pUE8.
  • a plasmid was prepared by inserting a fragment having the E1235S promoter between Hindlll and EcoRI of pUCAPP among DNA fragments obtained by digesting pUE8 with Hindlll and EcoRI.
  • pSPB1130 was digested with Pacl, and the obtained DNA fragment of about 2.3 kb was inserted into the Pacl site of pBINPLUS.
  • a plasmid having the same orientation as the transcription direction of the MaELO gene and the transcription direction of the nptll gene on pBINPLUS was selected, and the plasmid was designated as pSPB1157P.
  • pSPB559A was produced by digesting the above-mentioned pSPB559 with Pacl, blunt-ending it, and linking it with an Ascl linker. Then, a DNA fragment containing the MaDES6 gene obtained by digesting pSPB559A with Ascl was inserted into the Ascl site of pSPB1157P, thereby producing pSPB1157.
  • a DNA fragment containing the MaDES5 gene was cut out from the pCRII vector in which the MaDES5 gene was subcloned by digestion with Xbal and KpnI.
  • This DNA fragment was ligated to a DNA fragment obtained by digesting the above-mentioned pSPB184 with Xbal and Kpnl to prepare pSPB1519A.
  • pSPB1519A was digested with Ascl, and the obtained DNA fragment was inserted into the Ascl site of pSPBl157 to produce pSPB1519.
  • the MaDES6, MaDES5 and MaELO genes are transcribed in the same direction and are under the control of the same constitutive promoter.
  • Transformation of pUCSAPF by digesting pUCAP (van Engelen et al. Transgenic Research 4, 288-290, 1995) with Sgfl linker after digestion with Ascl, and digesting with Pacl followed by ligation with Fsel linker. Produced. The same treatment was applied to pBINPLUS to produce pBINSAP F.
  • pUC19 was digested with Hindlll, ligated with Pacl linker, further digested with EcoRI, and ligated with Fsel linker, to prepare pUCPF. Further, pUC19 was digested with Hindlll and ligated with Sgfl linker, and further digested with EcoRI and ligated with Ascl linker, thereby producing pUCSA.
  • pSPB2353A was digested with Xbal and Sacl, after inserting E1235S between Hindlll and Xbal and manopin synthase (mas) gene terminator between Sacl and EcoRI of pUCSAPF. Got. A DNA fragment containing the MaDES6 gene, which had been cut out from p35S-MpDES6 with Xbal and whose ends had been blunt-ended, was ligated to the blunt ends of pSPB2353A to prepare PSPB2353.
  • XbaMpELOf 5'-AGTCTCTAGAGCGATGGAGGCGTACG- 3, (SEQ ID NO: 43) SacMpELOr: 5'- CAGTGAGCTCGGTGTCTTATTCTGCC- 3, (SEQ ID NO: 44)
  • PCR was performed using high-precision KOD + DNA polymerase (Toyobo) as an enzyme, holding at 94 ° C for 2 minutes, and then cycling at 94 ° C for 15 seconds and 68 ° C for 1-3 minutes. Repeated 25 times.
  • the MpELO DNA fragment thus prepared was digested with Xbal and Sacl, and ligated to the above-mentioned PSPB2355A to produce pSPB2355. Further, a DNA fragment obtained by digesting pSPB2355 with Sgfl and Ascl was ligated to pSPB2353 digested with Sgfl and Ascl to prepare PSPB2361.
  • PCR was performed using p35S-MpDES5 as a type III and the following primers, XbaMpD51 and SacMpD5r.
  • the PCR reaction conditions are the same as the above PCR conditions.
  • XbaMpD5f 5,-AGCTTCTAGAGCCATGCCGCCACACGCCC-3 '(SEQ ID NO: 45)
  • SacMpD5r 5,-CAGTGAGCTCTCAGCCATCCAGTCGT-3, (SEQ ID NO: 46)
  • a DNA fragment containing the MpDES5 gene cut out from pSPB2352 with Pacl and Fsel was ligated to a DNA fragment obtained by digesting pBINSAPF with Pacl and Fsel, to produce pSPB2 368A.
  • pSPB2368A was digested with Sgfl and Pacl, and a DNA fragment containing the MpDES6 gene and the MpELO gene cut out from pSPB2361 with Sgfl and Pacl was ligated to obtain pSPB2368.
  • the MpDES6, MpDES5, and MpELO genes are transcribed in the same direction and are under the control of the same constitutive promoter.
  • pSPB2368 or pS PBlSlS ⁇ rffil ⁇ Agrobacterium tumefaciens iliife AglC Lazo et al. 1991, Biotechnology 9: 963-967) was transformed based on a known method (Plant J. 5, 81, 1994).
  • the transformant agrobacterium having the pSPB2368 or pSPB1519 was used to infect a tobacco leaf disk. From the leaves of the recombinant tobacco thus obtained, RNA was extracted using RNeasyPlant miniKit (Qiagen), and a line expressing the introduced gene was selected by RT-PCR according to a conventional method.
  • Tobacco (pSPB1519-transformed tobacco) into which pSPB1519, which also has the enzyme gene power derived from the filamentous fungus, and pSPB2368, which also has the enzyme gene power derived from Ze-moss (pSPB2368) Lipids were extracted from leaves of tobacco according to a known method (Yasuhiko Fujino (ed. 1978), Biological Chemistry Experimental Method 9 Society Press, Ed. Yamada Akihiro (1989) Biochemical Experimental Method 24 Society Press). The resulting lipid Analysis was performed by gas chromatography (HP-6800, Hewlett Packard), and the results are shown in Table 1.
  • Control represents a control
  • pSPB2368 represents pSPB2368ff-transformed tobacco
  • PSPB1519 represents pSPB1519-transformed tobacco.
  • enzymes derived from Zegomoke are more functionally superior to enzymes derived from filamentous fungi, and linoleic acid and ⁇ -linolenic acid are used as substrates, and arachidonic acid and other advanced enzymes are used. It was thought that unsaturated fatty acids could be synthesized.
  • arachidonic acid was added to tobacco leaves by 10% or more by introducing ⁇ 6 desaturase, ⁇ 5 desaturase and chain elongation enzyme derived from Aspergillus niger into tobacco. They are accumulating. This result suggests that the PSPB2368-transformed tobacco of this example has the ability to synthesize polyunsaturated fatty acids more efficiently than the above-mentioned report.
  • the genes according to the present invention are a ⁇ 5 desaturase gene, a ⁇ 6 desaturase gene, and a ⁇ 6 chain length elongase gene isolated from the same species of Zome moss. Therefore, when these three types of genes are expressed simultaneously in a plant, the effect of functioning better in a plant is obtained than when a plurality of genes derived from different species are expressed. Furthermore, since Z. moss is considered to be a model system for higher plants, these genes have an effect that they can function better in plants than genes derived from species other than plants.
  • the transformant according to the present invention has an effect of producing polyunsaturated fatty acids such as arachidonic acid and eicosapentaenoic acid (EPA).
  • the transformant according to the present invention has the effect of being low-cost and environmentally friendly, and capable of producing highly unsaturated fatty acids such as arachidonic acid and EPA in the production process.
  • the obtained arachidonic acid and EPA have the effect that they can be used as inexpensive multipurpose materials.
  • the effect of arachidonic acid or EPA is high V, and the value as a food increases!
  • the gene and protein of the present invention are useful for the production of arachidonic acid and EPA.
  • a transformant into which the gene of the present invention has been introduced so that it can be expressed is extremely useful in the production of arachidonic acid and EPA in the pharmaceutical industry, food industry, various material industries, and the like.
  • the transformant is a plant, the content of arachidonic acid EPA in the plant increases, which is very useful in the agricultural field and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Fats And Perfumes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 同一種のゼニゴケから、Δ5脂肪酸不飽和化酵素遺伝子、Δ6脂肪酸不飽和化酵素遺伝子及びΔ6脂肪酸鎖長延長酵素遺伝子を単離する。これらの遺伝子を高等植物に導入することにより、アラキドン酸やエイコサペンタエン酸(EPA)を生産し得る形質転換植物体を取得する。

Description

明 細 書
ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用 技術分野
[0001] 本発明は、ゼ -ゴケ(Marchantia polymorpha)由来の不飽和脂肪酸合成系遺伝子 、すなわち、 Δ 5脂肪酸不飽和化酵素、 Δ 6脂肪酸不飽和化酵素、及び Δ 6脂肪酸 鎖長延長酵素の遺伝子とその利用に関するものである。
背景技術
[0002] ァラキドン酸、エイコサペンタエン酸 (以下、適宜「EPA」と略記する)等の高度不飽 和脂肪酸 (Polyunsaturated fatty acid; PUFA)は、ヒトにおいて神経系を中心とした細 胞膜脂質に多く含まれている。これらの高度不飽和脂肪酸は、プロスタグランジンや ロイコトリェンといった、生理活性物質の前駆体として作用しており、薬理学的に非常 に重要である。近年、ァラキドン酸や EPAを含む健康食品も販売されている。また、 脂肪酸は、洗剤や生分解性プラスチックの原料にもなるため、素材としても注目され ている。
[0003] 高度不飽和脂肪酸は、現在、培養微生物又は魚油力 の抽出により生産されてい る。このため、生産コストが高いこと、エネルギー使用量'廃棄物量が多くなること、特 に魚油から調製する方法では、魚資源が限られていることが問題になっている。
[0004] ァラキドン酸及び EPAは、それぞれリノール酸及び ex -リノレン酸を起点として、 Δ 6 不飽和化、脂肪酸鎖長延長及び Δ 5不飽和化という 3つの連続した反応により生合 成されると考えられている。これらの反応は、それぞれ、 Δ 6脂肪酸不飽和化酵素(以 下、「Δ 6不飽和化酵素」と略記する)、 Δ 6脂肪酸鎖長延長酵素 (以下、「Δ 6鎖長延 長酵素」と略記する)及び Δ 5脂肪酸不飽和化酵素(以下、「 Δ 5不飽和化酵素」と略 記する)により触媒される。
[0005] Δ 6不飽和化酵素の遺伝子は、いくつかの植物種でクローン化されている。例えば 、ケィ藻、ヒメッリガネゴケ、ヤノウエノァカゴケ、ボリジ、ムラサキ、サクラソゥ及びァネ モネから Δ 6不飽和化酵素の遺伝子がクローンィ匕されている。また、植物以外では、 糸状菌、線虫、ラン藻、 ラット及びヒトから Δ 6不飽和化酵素遺伝子がクローン化され ている(非特許文献 1 :「Eur. J. Biochem. 269, p4105, 2002」、非特許文献 2 :「Plant J. 15, p39, 1998」、非特許文献 3 :「Eur. J. Biochem., 267. p3801, 2000」、非特許文 献 4 : rproc. Natl. Acad. Sci. USA 94, p4211, 1997」、非特許文献 5 :「Lipids 37, 417, 2002」、非特許文献 6 :「FEBS Lett. 542, plOO, 2003」、非特許文献 7 : Γ Whitney et al.Planta Epub 2003」、非特許文献 8 :「Lipids 34, p649, 1999」、非特許文献 9 :「 Gene, 238, p445 1999」、非特許文献 10 :「Biochem J. 330, p611 1998」、非特許文献 11 : rpknt Mol. Biol, 22, p293 1993」、非特許文献 12 :「Biochem. Biophys. res. Commun. 255, p575, 1999」、非特許文献 13 :「J. Biol. Chem. 274, p471, 1999」参照 ) oまた、ラン藻のものを除いて、これらの Δ 6不飽和化酵素は、いずれも N末端にシト クロム b5ドメインが存在する。
[0006] Δ 6鎖長延長酵素の遺伝子は、最初に糸状菌及び線虫からクローン化された (非 特許文献 14 :「Proc. Natl. Acad. Sci. USA 97, p8284,2000」、非特許文献 15 :「Proc. Natl. Acad. Sci. USA 97, p6421, 2000」参照)。植物種では、唯一ヒメッリガネからク ローン化されている(非特許文献 16 :「Plant J. 31, p255, 2002」参照)。
[0007] 酵母(Saccharomyces cerevisiae)には、スフインゴ脂質の長鎖飽和ァシル鎖合成に 関与する EL02蛋白及び EL03蛋白が存在し (非特許文献 17 :「J. Biol. Chem., 272, pl7376, 1997」参照)、 Δ 6鎖長延長酵素のアミノ酸配列は、これらと相同性を示 す。一方、植物には、別タイプの脂肪酸鎖長延長酵素である β -ケトァシル CoA合成 酵素 (KCS)が存在する。この酵素は、長鎖飽和 Z—価不飽和脂肪酸の鎖長延長を 触媒する(非特許文献 15及び非特許文献 18 :「Plant Cell 7,p309, 1995」参照)。しか しながら、 Δ 6鎖長延長酵素遺伝子及び酵母 EL02ZEL03遺伝子は、 KCS遺伝 子との直接的な進化上の関係は見られない (非特許文献 15及び 16参照)。
[0008] Δ 5不飽和化酵素の遺伝子は、糸状菌から、初めてクローン化された (非特許文献 19 :「J. Biol. Chem. 273, p29360, 1998」、非特許文献 20 :「J. Biol. Chem. 273, pl9055」参照)。 Δ 5不飽和化酵素の構造は Δ 6不飽和化酵素と共通しており、 Ν末 端にシトクロム b5ドメインを有する。 Δ 5不飽和化酵素遺伝子は、ケィ藻、線虫、ラット 、ヒト、ヒメッリガネゴケなど力もクローンィ匕されている(非特許文献 1,非特許文献 21 : 「FEBS Lett. 439, p215, 1998」、非特許文献 22 :「Arch. Biochem. Biophys. 391, p8, 2001」、非特許文献 23 :「J. Biol. Chem. 274, p37335, 1999」、非特許文献 24 :「J. Biol. Chem. 278, 35115, 2003」参照)。
[0009] 陸上植物は、コケ植物(コケ植物門 (Bryophyta))、シダ植物、裸子植物及び被子植 物から構成されている。コケ植物は陸上植物の中で最も古くに分岐した群であり、セ ン類(セン類網 (Bryosida))、タイ類(タイ類網 (Hepaticopsida))及びッノゴケ類の 3つの グループカゝら構成されている。ゼニゴケは、上記生物のうちヒメッリガネゴケに分類上 最も近いが、ヒメッリゴケはセン類に属しており、ゼ-ゴケはタイ類網の中のゼ-ゴケ 亞網 (Marchantiidae)に属している。上記 3つのグループは、約 4億 3千年前には、す でに分岐していたことは確かである。したがって、同じコケといっても、ヒメッリガネゴケ とゼ-ゴケとは、例えば 2億年前に分ィ匕したシロイナズナとイネとの違 、どころでなく、 進化上大きく異なる(非特許文献 25:「1103615143968_0.html」参照)。
[0010] ゼ -ゴケ由来の高度不飽和脂肪酸合成系酵素遺伝子としては、上記の KCS様の 鎖長延長酵素遺伝子の MpFAE2及び MpFAE3が取得されて ヽる(非特許文献 26 :「Biosci. Biotechnol. Biochem. 67, p605, 2003」、非特許文献 27 :「Biosci.
Biotechnol. Biochem.67, pl667, 2003」参照)。しかしながら、 MpFAE2及び MpFA E3は Δ 6鎖長延長酵素遺伝子ではな 、。
[0011] 上述のように、多くの高度脂肪酸合成系酵素遺伝子が様々な生物種からクローン 化されている力 ァラキドン酸、 ΕΡΑ等の、 C20以上で不飽和度 4以上の高度不飽 和脂肪酸を植物中で生産させた例は少ない。このような例として、ケィ藻由来の Δ 6 不飽和化酵素及び Δ 5不飽和化酵素と、ヒメッリガネゴケ由来の Δ 6鎖長延長酵素と をアマで発現させ、ァラキドン酸及び ΕΡΑを生産させた報告があるが、その詳細は不 明である (非特許文献 24参照)。
[0012] 上述のように、ァラキドン酸や ΕΡΑ等の高度不飽和脂肪酸の生産は、培養微生物 又は魚油からの抽出により生産されているため、生産コストが高いこと、エネルギー使 用量'廃棄物量が多くなること、魚資源が限られていること等の問題点を有している。 ァラキドン酸や ΕΡΑ等の高度不飽和脂肪酸は、分子内に二重結合を複数有すると いうユニークな物性を持っているため、様々な工業用途 (例えばフィルム、生分解性 プラスチック、機能性繊維、潤滑油、洗剤の素材等)にも利用可能となる。このような 高度不飽和脂肪酸を遺伝子組み換え植物により生産することにより、生産コストを低 減でき、同時に、より環境にやさしい生産プロセスを実現することができると期待され る。遺伝子組み換え技術を用いて、これらの高度不飽和脂肪酸を、油糧植物で大量 生産できるようになれば、安価な多目的原料として非常に有用である。
[0013] 一方、植物に異種生物の遺伝子を発現させる場合、その遺伝子が植物内でどの程 度良好に機能するかは、転写、翻訳、その後の修飾などの過程があるため、予想す ることは困難である。特に、複数の異種生物の遺伝子を発現させる場合、上記非特 許文献 24のように異なる生物種由来の複数の遺伝子を発現させるより、同一の種に 由来する複数の遺伝子を発現させるほうが植物内で良好に機能することが予想され る。また、最初の陸上植物であるコケ類のゼ-ゴケは、高等植物のモデル系として注 目されており、その遺伝子は植物内で良好に機能することが期待できる。したがって 、ゼニゴケ由来の高度不飽和脂肪酸合成酵素遺伝子、すなわち Δ 5不飽和化酵素 遺伝子、 Δ 6不飽和化酵素遺伝子及び Δ 6鎖長延長酵素遺伝子を取得することがで きれば、これらの遺伝子を植物に導入することにより、ァラキドン酸や EPAが植物内 で効率よく蓄積されることが期待できる。
[0014] また、ゼ-ゴケと同じコケ植物のヒメッリガネゴケからは Δ 5不飽和化酵素遺伝子、
Δ 6不飽和化酵素遺伝子及び Δ 6鎖長延長酵素遺伝子がクローン化されて ヽるが、 ゼニゴケとヒメッリガネゴケは進化上大きく異なっており、ヒメッリガネゴケの遺伝子に 基づ 、てゼ-ゴケの遺伝子を取得することは、現在の技術水準をもってしても容易に できることではない。
発明の開示
[0015] 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、高等植 物中でァラキドン酸や EPAを生産し得る、ゼニゴケ (Marchantia polymorpha)由来の 不飽和脂肪酸合成酵素遺伝子、すなわち Δ 5不飽和化酵素遺伝子、 Δ 6不飽和化 酵素遺伝子及び Δ 6鎖長延長酵素遺伝子、及びその利用法を提供することにある。
[0016] 本発明者らは、上記の課題を解決するために鋭意検討した結果、ゼ-ゴケ(
Marchantia polymorpha)由来の cDNAクローンから、上記 Δ 6不飽和ィ匕酵素、 Δ 5不 飽和化酵素及び Δ 6鎖長延長酵素をコードする遺伝子を同定し、更にこれらの遺伝 子をメタノール資化性酵母 (Pichia pastoris)に導入して発現させることに成功し、これ らの遺伝子を発現させたたんぱく質が、それぞれ Δ 6不飽和化、 Δ 5不飽和化及び Δ 6鎖長延長の酵素活性を有することを見出し、本発明を完成するに至った。すなわ ち、本発明は、以下の発明を包含する。
[0017] (1)配列番号 1に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DNAと相補的な塩基配列からなる DNAの全部又は一部とストリンジェントな条件で ノ、イブリダィズし、かつ Δ 6脂肪酸不飽和化活性を有するたんぱく質をコードするゼ 二ゴケ目生物由来の遺伝子。
[0018] (2) Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードす る、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 1に示される塩基配列を有する 遺伝子。(b)配列番号 1に示される塩基配列からなる DNA、又は当該 DNAと相補 的な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0019] (3) Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードす る、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 1に示される塩基配列のうち、 2 53ないし 1698番目の塩基配列を有する遺伝子。(b)配列番号 1に示される塩基配 列のうち、 253ないし 1698番目の塩基配列力もなる DNA、又は当該 DNAと相補的 な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0020] (4) Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードす る、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 2に示されるアミノ酸配列力もな るたんぱく質をコードする遺伝子。(b)配列番号 2に示されるアミノ酸配列の 1個又は それ以上のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もな るたんぱく質をコードする遺伝子。
[0021] (5)配列番号 3に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DNAと相補的な塩基配列からなる DNAの全部又は一部とストリンジェントな条件で ハイブリダィズし、かつ Δ 6脂肪酸鎖長延長活性を有するたんぱく質をコードするゼ 二ゴケ目生物由来の遺伝子。
[0022] (6) Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目生物由来のたんぱく質をコードす る、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 3に示される塩基配列を有する 遺伝子。(b)配列番号 3に示される塩基配列からなる DNA、又は当該 DNAと相補 的な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0023] (7) Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目生物由来のたんぱく質をコードす る、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 1に示される塩基配列のうち、 1 94な ヽし 1066番目の塩基配列を有する遺伝子。 (b)配列番号 1に示される塩基配 列のうち、 194ないし 1066番目の塩基配列からなる DNA、又は当該 DNAと相補的 な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0024] (8) Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。 (a)配列番号 4に示されるアミノ酸配列力もなるた んぱく質、(b)配列番号 4に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置 換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなるたんぱく質をコードする 遺伝子。
[0025] (9)配列番号 5に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DNAと相補的な塩基配列からなる DNAの全部又は一部とストリンジェントな条件で ノ、イブリダィズし、かつ Δ 5脂肪酸不飽和化活性を有するたんぱく質をコードするゼ 二ゴケ目生物由来の遺伝子。
[0026] (10) Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコード する、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 5に示される塩基配列を有す る遺伝子。(b)配列番号 5に示す塩基配列からなる DNA、又は当該 DNAと相補的 な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0027] (11) Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコード する、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 5に示される塩基配列のうち、 375ないし 1829番目の塩基配列を有する遺伝子。(b)配列番号 5に示される塩基配 列のうち、 375ないし 1829番目の塩基配列力もなる DNA、又は当該 DNAと相補的 な塩基配列カゝらなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0028] (12) Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコード する、下記 (a)又は (b)に記載の遺伝子。(a)配列番号 6に示されるアミノ酸配列から なるたんぱく質、(b)配列番号 6に示されるアミノ酸配列の 1個又はそれ以上のァミノ 酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなるたんぱく質をコ ードする遺伝子。
[0029] (13)上記(1)一(12)の何れかに記載の遺伝子によってコードされるたんぱく質。
[0030] (14)以下の(a)又は (b)記載のたんぱく質。 (a)配列番号 2に示されるアミノ酸配列 力もなるたんぱく質。(b)配列番号 2に示されるアミノ酸配列において、 1個又はそれ 以上のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、か つ、 Δ 6脂肪酸不飽和化活性を有するたんぱく質。
[0031] (15)以下の(a)又は (b)記載のたんぱく質。 (a)配列番号 4に示されるアミノ酸配列 力もなるたんぱく質。(b)配列番号 4に示されるアミノ酸配列において、 1個又はそれ 以上のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、か つ、 Δ 6脂肪酸鎖長延長活性を有するたんぱく質。
[0032] (16)以下の(a)又は (b)記載のたんぱく質。 (a)配列番号 6に示されるアミノ酸配列 力もなるたんぱく質。(b)配列番号 6に示されるアミノ酸配列において、 1個又はそれ 以上のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、か つ、 Δ 5脂肪酸不飽和化活性を有するたんぱく質。
[0033] (17)上記(13)—(16)の何れかに記載のたんぱく質を認識する抗体。
[0034] ( 18)少なくとも上記( 1)一( 12)の何れかに記載の遺伝子を含む組換え発現べクタ
[0035] ( 19)少なくとも上記( 1)一( 12)の何れかに記載の遺伝子を導入してなる形質転換 体。
[0036] (20)少なくとも上記(1)一(12)の何れかに記載の遺伝子が発現可能に導入され た植物体、もしくは当該植物体と同一の性質を有する当該植物体の子孫となる植物 体、又は当該植物体の組織。
[0037] (21)少なくとも上記(1)一(12)の何れかに記載の遺伝子が発現可能に導入され、 脂肪酸組成が改変された植物体、もしくは当該植物体と同一の性質を有する当該植 物体の子孫となる植物体、又は当該植物体の組織。
[0038] (22)上記(20)又は(21)に記載の植物体の繁殖材料。
[0039] (23)上記(21)に記載の植物体又は植物体の組織を用いる脂肪酸生産方法。 [0040] (24)上記(23)に記載の脂肪酸生産方法により得られた、 γ -リノレン酸、ジホモ- γ -リノレン酸、ァラキドン酸、ステアリドン酸、エイコサテトラェン酸、およびエイコサぺ ンタエン酸から選択される少なくとも 1つ含む素材。
[0041] (25)少なくとも (1)一 (12)の何れかに記載の遺伝子を用いて脂肪酸組成を改変 する方法。
[0042] (26)上記(1)一(12)の何れかに記載の遺伝子における少なくとも一部の塩基配 列又はその相補配列をプローブとして用いた遺伝子検出器具。
[0043] (27)上記(13)—(16)の何れかに記載のたんぱく質を用いて、当該たんぱく質を 調節する遺伝子、又は当該たんぱく質を調節する物質をスクリーニングする方法。
[0044] (28)上記(27)に記載のスクリーニング方法により得られた遺伝子又は物質。
[0045] なお、本明細書において、特に断らない限り、 A、 C、 Gおよび Tは、アデニン、シト シン、グァニンおよびチミンの各塩基を示す。
[0046] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0047] [図 1]実施例 6で用いた MpDES6遺伝子、 MpELOl遺伝子及び MpDES5遺伝子 の各遺伝子の発現カセットが連結されたコンストラクトの構築手順を示す説明図であ る。
発明を実施するための最良の形態
[0048] 本発明の実施の一形態について説明すれば、以下の通りである。なお、本発明は
、これに限定されるものではない。
[0049] 以下、ァラキドン酸及びエイコサペンタエン酸 (EPA)の合成経路、本発明に係る遺 伝子、本発明に係るたんぱく質、本発明に係るたんぱく質及び遺伝子の取得方法、 並びに本発明に係る遺伝子及びたんぱく質の利用方法 (有用性)の順で、本発明を 詳細に説明する。
[0050] (1)ァラキドン酸及びエイコサペンタエン酸 (EPA)の合成経路
ァラキドン酸及びエイコサペンタエン酸 (EPA)は、それぞれリノール酸及び α -リノ レン酸を起点として、 Δ 6不飽和化、 Δ 6鎖長延長及び Δ 5不飽和化という 3つの連 続した反応により、生合成されると考えられる。これらの反応は、それぞれ Δ 6不飽和 化酵素、 Δ 6鎖長延長酵素及び Δ 5不飽和化酵素により触媒され、それぞれ、 n-6 経路 (ァラキドン酸合成経路)及び n— 3経路 (EPA合成経路)と呼ばれて ヽる。
[0051] これまでに報告されて 、る Δ 6不飽和化酵素、 Δ 6鎖長延長酵素及び、 Δ 5不飽和 化酵素は、いずれも n— 6及び n— 3経路の両方に関与していることが示されている。す なわち、 Δ 6不飽和化酵素は、 n-6経路ではリノール酸(18:2DW2、 18は炭素数を表 し、 2は二重結合の数を表し、 9、 12は二重結合の位置を表す。以下同様である。)を g-リノレン酸(GLA; 18:3D6'9'12)に変換し、 n— 3経路では a-リノレン酸 (ALA; 18:3D 9'12'15)をステアリドン酸(STA; 18:4D6'9'12'15)に変換する。 Δ 6鎖長延長酵素は、 n - 6経 路では GLAをジホモ- γ -リノレン酸 (DGLA; 20:3 Δ8,11,14)に変換し、 η— 3経路では STAをエイコサテトラェン酸 (ΕΤΑ; 20:4厶8'11'14'17)に変換する。 Δ 5不飽和化酵素は、 n— 6経路では DGLAをァラキドン酸 (20:4 Δ ½11'14)に、 η— 3経路では ΕΤΑをエイコサ ペンタエン酸 (ΕΡΑ; 20:5 Δ 5,8,11,14,17)に変換する。
[0052] (2)本発明に係る遺伝子
〔本発明に係る Δ 6不飽和化酵素遺伝子〕
本発明に係る Δ 6不飽和化酵素遺伝子は、 Δ 6脂肪酸不飽和化活性を有するたん ばく質をコードするゼニゴケ目生物由来の遺伝子であり、以下の条件に適合する遺 伝子であればよい。
[0053] 1.配列番号 1に示される塩基配列を有する遺伝子。
[0054] 2.配列番号 1に示される塩基配列力 なる DNA、又は当該 DNAと相補的な塩基 配列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0055] 3.配列番号 1に示される塩基配列力 なる DNAの一部、又は当該 DNAと相補的 な塩基配列カゝらなる DNAの一部とストリンジェントな条件でノヽイブリダィズする遺伝 子。
[0056] 4.配列番号 1に示される塩基配列のうち、 253ないし 1698番目の塩基配列を有 する遺伝子。なお、配列番号 1に示される塩基配列の 253ないし 1698番目の塩基 配列は配列番号 2に示されるアミノ酸配列力 なるたんぱく質に翻訳される領域であ る。
[0057] 5.配列番号 1に示される塩基配列のうち、 253ないし 1698番目の塩基配列からな る DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条件 でノヽイブリダィズする遺伝子。
[0058] 6.配列番号 2に示されるアミノ酸配列力 なるたんぱく質をコードする遺伝子。
[0059] 7.配列番号 2に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失
、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[0060] 〔本発明に係る Δ 6鎖長延長酵素遺伝子〕
本発明に係る Δ 6鎖長延長酵素遺伝子は、 Δ 6脂肪酸鎖長延長酵素活性を有する たんぱく質をコードするゼニゴケ目生物由来の遺伝子であり、以下の条件に適合す る遺伝子であればよい。
[0061] 1.配列番号 3に示される塩基配列を有する遺伝子。
[0062] 2.配列番号 3に示される塩基配列からなる DNA、又は当該 DNAと相補的な塩基 配列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0063] 3.配列番号 3に示される塩基配列力 なる DNAの一部、又は当該 DNAと相補的 な塩基配列カゝらなる DNAの一部とストリンジェントな条件でノヽイブリダィズする遺伝 子。
[0064] 4.配列番号 3に示される塩基配列のうち、 194ないし 1066番目の塩基配列を有 する遺伝子。なお、配列番号 3に示される塩基配列の 194ないし 1066番目の塩基 配列は配列番号 4に示されるアミノ酸配列力 なるたんぱく質に翻訳される領域であ る。
[0065] 5.配列番号 3に示される塩基配列のうち、 194ないし 1066番目の塩基配列からな る DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条件 でノヽイブリダィズする遺伝子。
[0066] 6.配列番号 4に示されるアミノ酸配列力 なるたんぱく質をコードする遺伝子。
[0067] 7.配列番号 4に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[0068] 〔本発明に係る Δ 5不飽和化酵素遺伝子〕 本発明に係る Δ 5不飽和化酵素遺伝子は、 Δ 5脂肪酸不飽和化活性を有するたん ばく質をコードするゼニゴケ目生物由来の遺伝子であり、以下の条件に適合する遺 伝子であればよい。
[0069] 1.配列番号 5に示される塩基配列を有する遺伝子。
[0070] 2.配列番号 5に示される塩基配列からなる DNA、又は当該 DNAと相補的な塩基 配列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[0071] 3.配列番号 5に示される塩基配列力 なる DNAの一部、又は当該 DNAと相補的 な塩基配列カゝらなる DNAの一部とストリンジェントな条件でノヽイブリダィズする遺伝 子。
[0072] 4.配列番号 5に示される塩基配列のうち、 375ないし 1829番目の塩基配列を有 する遺伝子。なお、配列番号 5に示される塩基配列の 375ないし 1829番目の塩基 配列は配列番号 6に示されるアミノ酸配列力 なるたんぱく質に翻訳される領域であ る。
[0073] 5.配列番号 5に示される塩基配列のうち、 375ないし 1829番目の塩基配列からな る DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条件 でノヽイブリダィズする遺伝子。
[0074] 6.配列番号 6に示されるアミノ酸配列力 なるたんぱく質をコードする遺伝子。
[0075] 7.配列番号 6に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[0076] なお、上記「ストリンジェントな条件」とは、少なくとも 90%の同一性、好ましくは少な くとも 95%の同一性、最も好ましくは少なくとも 97%の同一性が配列間に存在すると きにのみハイブリダィゼーシヨンが起こることを意味する。
[0077] 上記ハイブリダィゼーシヨンは、 J.Sambrook et al. Molecular Cloning.A Laboratory Manual,2d Ed., Cold Spring Harbor Laboratory (1989)に記載されている方法等、従 来公知の方法で行うことができる。通常、温度が高いほど、塩濃度が低いほどストリン ジエンシーは高くなり(ハイブリダィズし難くなる)、より相同な遺伝子を取得することが できる。ノ、イブリダィゼーシヨンの条件としては、従来公知の条件を好適に用いること ができ、特に限定しないが、例えば、 42°C、 6 X SSPC、 50%ホルムアミド、 1%SDS 、 100 ^ g/ml salmon sperm DNA、 5 Xデンハルト液(ただし、 1 X SSPE ; 0. 18M 塩化ナトリウム、 10mM リン酸ナトリウム、 pH7. 7、 ImM EDTA)が挙げられる。
[0078] 上記「ゼ -ゴケ目生物」とは、ゼ -ゴケ(Marchantia polymorpha)に限定されるもので はなぐゼニゴケ亞網ゼニゴケ目 (Marchantiales)に属する生物が含まれる。これらのう ち、 Monoclea forsten (Monocleaies)、し orsinia coriandnna (Marchantiales)、 Oximitra paleacea (Marchantiales)、 Ricciocarpos natans (Marchantiales)、 Ricca huebeneriana (Marchantiales)、 Ricca iluitans (Marchantiales)、 Ricca duplex (Marchantiales)、 Ricca canaliculata (Marchantiales)、 Ricca bilurca (Marchantiales)、 Ricca ciliifera
(Marchantiales) ^ Ricca glauca (Marchantiales)、 Ricca sorocarpa (Marchantiales)、 Ricca warnstorfii (Marchantiales)、 Ricca michelii (Marchantiales)、 Ricca papillosa (Marchantiales)及び Ricca zachariae (Marchantiales)には、超長鎖長高度不飽和脂肪 酸が存在することが知られている(Prog. Lipid Res. 32, p281, 1993参照)。これらの生 物から Δ 6不飽和化酵素、 Δ 6鎖長延長酵素及び Δ 5不飽和化酵素の遺伝子を取 得することは現在の技術水準を持ってすれば容易である。例えば、近縁生物の同じ 機能を有する酵素をコードする遺伝子は、クロスノ、イブリダィゼーシヨンすることが一 般に知られている。
[0079] 本発明の遺伝子は、 2本鎖 DNAのみならず、それを構成するセンス鎖及びアンチ センス鎖といった各 1本鎖 DNAや RNAを包含する。アンチセンス鎖は、プローブとし て又はアンチセンス化合物として利用できる。 DNAには、例えばクローニングゃィ匕学 合成技術又はそれらの組み合わせで得られるような cDNAやゲノム DNAなどが含ま れる。さらに、本発明の遺伝子は、非翻訳領域 (UTR)の配列やベクター配列 (発現 ベクター配列を含む)などの配列を含むものであってもよ!/、。
[0080] (3)本発明に係るたんぱく質
〔本発明に係る Δ 6不飽和化酵素たんぱく質〕
本発明に係る Δ 6不飽和化酵素たんぱく質は、ゼニゴケ目生物由来のたんぱく質 であって Δ 6脂肪酸不飽和化活性を有するたんぱく質であればよい。より具体的には 、以下に示すたんぱく質であればよい。
[0081] 1.上記(2)に記載した本発明に係る Δ 6不飽和化酵素遺伝子によってコードされ るたんぱく質。
[0082] 2.配列番号 2に示されるアミノ酸配列力 なるたんぱく質。
[0083] 3.配列番号 2に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失
、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質。
[0084] 〔本発明に係る Δ 6鎖長延長酵素たんぱく質〕
本発明に係る Δ 6鎖長延長酵素たんぱく質は、ゼニゴケ目生物由来のたんぱく質 であって Δ 6脂肪酸鎖長延長活性を有するたんぱく質であればよい。より具体的には
、以下に示すたんぱく質であればよい。
[0085] 1.上記(2)に記載した本発明に係る Δ 6鎖長延長酵素遺伝子によってコードされ るたんぱく質。
[0086] 2.配列番号 4に示されるアミノ酸配列力 なるたんぱく質。
[0087] 3.配列番号 4に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失
、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質。
[0088] 〔本発明に係る Δ 5不飽和化酵素たんぱく質〕
本発明に係る Δ 5不飽和化酵素たんぱく質は、ゼニゴケ目生物由来のたんぱく質 であって Δ 5脂肪酸不飽和化活性を有するたんぱく質であればよい。より具体的には
、以下に示すたんぱく質であればよい。
[0089] 1.上記(2)に記載した本発明に係る Δ 5不飽和化酵素遺伝子によってコードされ るたんぱく質。
[0090] 2.配列番号 6に示されるアミノ酸配列力 なるたんぱく質。
[0091] 3.配列番号 6に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質。
[0092] 上記「 Δ 6脂肪酸不飽和化活性」とは、リノール酸又は ex -リノレン酸に対して基質 特異性を有し、それぞれ γ -リノレン酸又はステアリドン酸に変換する作用を意味する 。また、上記「Δ 6脂肪酸鎖長延長活性」とは、 y -リノレン酸又はステアリドン酸に対 して基質特異性を有し、それぞれジホモ- y -リノレン酸又はエイコサテトラェン酸に 変換する作用を意味する。また、上記「Δ 5脂肪酸不飽和化活性」とは、ジホモ- γ -リ ノレン酸又はエイコサテトラェン酸に対して基質特異性を有し、それぞれァラキドン酸 又はエイコサペンタエン酸 (EPA)に変換する作用を意味する。
[0093] 上記「1個又はそれ以上のアミノ酸が置換、欠失、挿入、及び Z又は付加された」と は、部位特異的突然変異誘発法等の公知の変異たんぱく質作製法により置換、欠 失、挿入、及び Z又は付加できる程度の数 (好ましくは 10個以下、より好ましくは 7個 以下、さらに好ましくは 5個以下)のアミノ酸が置換、欠失、挿入、及び Z又は付加さ れることを意味する。このような変異たんぱく質は、公知の変異たんぱく質作製法によ り人為的に導入された変異を有するたんぱく質に限定されるものではなぐ天然に存 在する同様の変異たんぱく質を単離精製したものであってもよい。
[0094] なお、本発明のたんぱく質は、アミノ酸がペプチド結合してなるポリペプチドであれ ばよいが、これに限定されるものではなぐポリペプチド以外の構造を含む複合たん ばく質であってもよい。ここでいうポリペプチド以外の構造としては、糖鎖やイソプレノ イド基等を挙げることができるが、特に限定されるものではない。
[0095] また、本発明のたんぱく質は、付カ卩的なポリペプチドを含むものであってもよ!/、。こ のようなポリペプチドが付加される場合としては、例えば、 Hisや Myc、 Flag等によつ て本発明のたんぱく質がェピトープ標識されるような場合が挙げられる。
[0096] また、本発明のたんぱく質は、前述した本発明の遺伝子 (本発明のたんぱく質をコ ードする遺伝子)を宿主細胞に導入して、そのたんぱく質を細胞内発現させた状態 であってもよいし、細胞、組織など力も単離精製された状態であってもよい。また、上 記宿主細胞での発現条件によっては、本発明のたんぱく質は、他のたんぱく質とつ ながった融合たんぱく質であってもよい。さらに本発明のたんぱく質は、化学合成さ れたものであってもよい。
[0097] (4)本発明に係るたんぱく質及び遺伝子の取得方法
本発明に係るたんぱく質及び遺伝子の取得方法 (生産方法)は特に限定されるも のではないが、代表的な方法として次に示す各方法を挙げることができる。
[0098] 〔たんぱく質の取得方法〕
本発明のたんぱく質を取得する方法 (生産方法)は、上述したように特に限定される ものではないが、まず、本発明のたんぱく質を発現する細胞、組織などから単純精製 する方法を挙げることができる。精製方法も特に限定されるものではなぐ公知の方 法で細胞や組織から細胞抽出液を調製し、この細胞抽出液を公知の方法、例えば力 ラム等を用いて精製すればょ 、。
[0099] また、本発明のたんぱく質を取得する方法として、遺伝子組み換え技術等を用いる 方法も挙げられる。この場合、例えば、本発明の遺伝子をベクターなどに組み込んだ 後、公知の方法により発現可能に宿主細胞に導入し、細胞内で翻訳されて得られる 上記たんぱく質を精製するという方法などを採用することができる。
[0100] なお、このように宿主に外来遺伝子を導入する場合、外来遺伝子の発現のため宿 主内で機能するプロモーターを組み入れた発現ベクター及び宿主には様々なものが 存在するので、目的に応じたものを選択すればよい。産生されたたんぱく質を精製す る方法は、用いた宿主、たんぱく質の性質によって異なるが、タグの利用等によって 比較的容易に目的のたんぱく質を精製することが可能である。
[0101] 変異たんぱく質を作製する方法についても、特に限定されるものではない。例えば 、部位特異的突然変異誘発法(Hashimoto-Gotoh,Gene 152,271 -275(1995)他)、 PC R法を利用して塩基配列に点変異を導入し変異たんぱく質を作製する方法、あるい はトランスポゾンの挿入による突然変異株作製法などの周知の変異たんぱく質作製 法を用いることができる。変異たんぱく質の作製には市販のキットを利用してもよい。
[0102] 本発明のたんぱく質の取得方法は上述の方法限定されることはなぐ例えば、化学 合成されたものであってもよい。例えば、無細胞系のたんぱく質合成液を利用して本 発明の遺伝子力も本発明のたんぱく質を合成してもよい。
[0103] 〔遺伝子の取得方法〕
本発明の遺伝子を取得する方法 (生産方法)も特に限定されるものではないが、例 えば、ディファレンシャルスクリーニング(サブトラクシヨンクローユング)を利用する方 法を挙げることができる。この方法では、公知の技術に従って、試験管内での直接的 ハイブリダィゼーシヨンを繰り返し、目的の cDNA (本発明の遺伝子)を濃縮すればよ い。
[0104] 上記ディファレンシヤノレスクリーニングにおける各ステップについては、通常用いら れる条件の下で行えばよい。これによつて得られたクローンは、制限酵素地図の作成 及びその塩基配列決定 (シークェンシング)によって、さらに詳しく解析することができ る。これらの解析によって、本発明の遺伝子配列を含む DNA断片を取得したカゝ容易 に確認することができる。
[0105] また、本発明の遺伝子を取得する方法として、公知の技術により、本発明の遺伝子 を含む DNA断片を単離し、クローユングする方法が挙げられる。例えば、本発明の 遺伝子の塩基配列の一部と特異的にハイブリダィズするプローブを調製し、ゲノム D NAライブラリーや cDNAライブラリーをスクリーニングすればよい。このようなプロ一 ブとしては、本発明の遺伝子の塩基配列又はその相補配列の少なくとも一部に特異 的にハイブリダィズするプローブであれば、 、ずれの配列 ·長さのものを用いてもよ!ヽ
[0106] また、上記プローブの配列を、上述したゼ -ゴケ間で良好に保存されている領域の 中力も選択し、他のゼ-ゴケのゲノム DNA (又は cDNA)ライブラリーをスクリーニン グすれば、上記たんぱく質と同様の機能を有する相同分子や類縁分子をコードする 遺伝子を単離しクローユングできる。
[0107] あるいは、本発明の遺伝子を取得する方法として、 PCR等の増幅手段を用いる方 法を挙げることができる。例えば、本発明の遺伝子の cDNA配列のうち、 5'側及び 3 '側の配列 (又はその相補配列)の中からそれぞれプライマーを調製し、これらプライ マーを用いてゲノム DNA (又は cDNA)等を铸型にして PCR等を行い、両プライマ 一間に挟まれる DNA領域を増幅することで、本発明の遺伝子を含む DNA断片を大 量に取得できる。
[0108] (5)本発明に係る遺伝子及びたんぱく質の利用方法 (有用性)
(5- 1)組換え発現ベクター
本発明に係る組換え発現ベクターは、前記(2)に記載した本発明に係る遺伝子を 含むものであれば、特に限定されるものではない。例えば、 cDNAが挿入された組換 え発現ベクターが挙げられる。組換え発現ベクターの作製には、プラスミド、ファージ 、又はコスミドなどを用いることができるが特に限定されるものではない。また、作製方 法も公知の方法を用いて行えばょ 、。
[0109] ベクターの具体的な種類は特に限定されるものではなぐホスト細胞中で発現可能 なベクターを適宜選択すればよい。すなわち、ホスト細胞の種類に応じて、確実に遺 伝子を発現させるために適宜プロモーター配列を選択し、これと本発明の遺伝子を 各種プラスミド等に組み込んだものを発現ベクターとして用いればよ 、。
[0110] 本発明の遺伝子がホスト細胞に導入されたか否か、さらにはホスト細胞中で確実に 発現している力否かを確認するために、各種マーカーを用いてもよい。例えば、ホス ト細胞中で欠失している遺伝子をマーカーとして用い、このマーカーと本発明の遺伝 子とを含むプラスミド等を発現ベクターとしてホスト細胞に導入する。これによつてマ 一力一遺伝子の発現から本発明の遺伝子の導入を確認することができる。あるいは、 本発明のたんぱく質を融合たんぱく質として発現させてもよぐ例えば、ォワンクラゲ 由来の緑色蛍光たんぱく質 GFP (Green Fluorescent Protein)をマーカーとして用い 、本発明のたんぱく質を GFP融合たんぱく質として発現させてもよい。
[0111] 上記ホスト細胞は、特に限定されるものではなぐ従来公知の各種細胞を好適に用 いることができる。具体的には、例えば、大腸菌(Escherichia coli)等の細菌、酵母( 出 酵母 ¾accharomyces cerevisiae、分裂酵母 ¾chizosaccharomyces pombe)、 虫、 Caenorhabditis elegans)、アフリカッメガエル(Xenopus laevis)の卵母細胞等を挙げ ることができる力 特に限定されるものではない。
[0112] 上記発現ベクターをホスト細胞に導入する方法、すなわち形質転換方法も特に限 定されるものではなぐ電気穿孔法、リン酸カルシウム法、リポソ-ム法、 DEAEデキス トラン法等の従来公知の方法を好適に用いることができる。また、例えば、本発明の たんばく質を昆虫で転移発現させる場合には、バキュロウィルスを用 Vヽた発現系を採 用することができる。
[0113] (5- 2)形質転換体
本発明に係る形質転換体は、前記(2)に記載した本発明に係る遺伝子導入された 形質転換体であれば、特に限定されるものではない。ここで「形質転換体」とは、細胞
•組織 '器官のみならず、生物個体を含む意味である。
[0114] 形質転換体の作製方法 (生産方法)は特に限定されるものではないが、例えば、上 述した組換え発現ベクターをホスト細胞に導入して形質転換する方法を挙げることが できる。また、形質転換の対象となる生物も特に限定されるものではなぐ上記ホスト 細胞で例示した各種微生物や動物を挙げることができる。 [0115] 本発明に係る形質転換体は、本発明に係る遺伝子が発現可能に導入された植物 体、もしくは当該植物体と同一の性質を有する当該植物体の子孫となる植物体、又 は当該植物体の組織の組織であることが好ま ヽ。このような形質転,物により、 低コストかつ環境にやさしい生産プロセスでァラキドン酸や EPA等の高度不飽和脂 肪酸を生産することができる。
[0116] ここで「遺伝子が発現可能に導入された」とは、公知の遺伝子工学的手法 (遺伝子 操作技術)により、対象細胞 (宿主細胞)内に発現可能に導入されることを意味する。
[0117] 植物体の形質転換に用いられる組換え発現ベクターは、当該植物細胞内で挿入 遺伝子を発現させることが可能なものであれば特に限定しない。例えば、植物細胞 内で恒常的に遺伝子を発現させるプロモーター(例えば、カリフラワーモザイクウィル スの 35Sプロモーター)を有するベクターや、外的な刺激により誘導的に活性化され るプロモーターを有するベクターを用いることができる。なお、この植物細胞には、種 々の形態の植物細胞、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルスなど が含まれる。
[0118] 植物細胞への組み換え発現ベクターの導入には、ポリエチレングリコール法、電気 穿孔法 (エレクト口ポレーシヨン法)、ァグロバタテリゥムを介する方法、パーテイクルガ ン法など、当業者に公知の種々の方法を用いることができる。形質転換細胞から植 物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行うことが可能であ る。
[0119] 例えば、タバコにおいて形質転換植物体を作出する手法については、形質転換し たァグロバタテリゥムをタバコリーフディスクに感染させる方法、ポリエチレングリコー ルを用いてプロトプラストへ遺伝子を導入し植物体に再生させる方法、電気パルスに よりプロトプラストへ遺伝子導入し植物体を再生させる方法、パーティクルガン法によ り細胞へ遺伝子を直接導入し植物体を再生させる方法など、いくつかの技術が既に 確立されている。本発明においては、これらの方法を好適に用いることができる。
[0120] また、タバコは、シロイヌナズナと並んで遺伝子工学的手法を用いる植物育種のモ デル植物である。このタバコにおいて、ァラキドン酸や EPAの含量が増加した形質転 換体を取得できると ヽうことは、植物全般にお ヽて形質転換体を取得することができ るといっても過言ではない。なお、本明細書では、後述する実施例に示すように、タ ノ コだけでなぐイネの形質転換体をも取得しており、本発明によれば、あらゆる種類 の形質転^ ¾物体を取得できることを実証して 、る。
[0121] 例えば、イネにおいて形質転換植物体を作出する手法については、ポリエチレング リコールを用いてプロトプラストへ遺伝子を導入し、植物体に再生させる方法、電気パ ルスによりプロトプラストへ遺伝子導入し、植物体を再生させる方法、パーテイクルガ ン法により細胞へ遺伝子を直接導入し、植物体を再生させる方法など、いくつかの技 術が既に確立されている。本発明においては、これらの方法を好適に用いることがで きる。
[0122] 上記形質転換植物体力イネである場合、イネ内のァラキドン酸や EPAの含量が増 加するので、この形質転,物体から得られる種子、すなわち、米を食べることで、 容易にァラキドン酸や EPA等の高度不飽和脂肪酸を、体内に摂取することが可能に なる。したがって、イネの形質転 ^¾物体は、食糧としての価値が高ぐ食品産業、農 業分野に極めて有用である。また、現在あまり利用されていない米ぬ力 モミガラ、ヒ コバエ等でァラキドン酸や EPAを生産すれば、ここからこれら脂肪酸を抽出すること により、健康食品の原料として有効利用できる。また、家畜の飼料としても利用できる
[0123] ゲノム内に本発明の遺伝子が導入された形質転,物体がいったん得られれば、 当該植物体力 有性生殖又は無性生殖により子孫を得ることができる。また、当該植 物体、又は、その子孫、あるいは、クローンから、繁殖材料 (例えば、種子、果実、切 穂、塊茎、塊根、株、カルス、プロトプラストなど)を得て、それらを基に当該植物体を 量産することも可能である。したがって、本発明には、本発明の遺伝子が発現可能に 導入された植物体、もしくは、当該植物体と同一の性質を有する当該植物体の子孫 となる植物体、又は、当該植物体の組織、あるいは、当該植物体の繁殖材料も含ま れる。
[0124] また、当該植物体、当該植物体と同一の性質を有する当該植物体の子孫となる植 物体、及び、当該植物体の組織には、栄養増殖された植物体も含まれる。栄養増殖 は、栄養生殖、クローン成長とも呼ばれ、挿し芽、挿し木などによる増殖が一般的で あり、試験管内では、葉、茎、根などの器官力 の植物体の再分ィ匕ゃカルスによる増 殖が可能である。植物種によっては、枝の先端が特殊な冬芽を作る、腋芽が多肉化 する、花がムカゴィ匕する、芋を形成するなどの場合がある。
[0125] さらに、本発明に係る遺伝子が発現可能に導入され、脂肪酸組成が改変された植 物体、もしくは当該植物体と同一の性質を有する当該植物体の子孫となる植物体、 又は当該植物体の組織、当該植物体の繁殖材料も本発明に含まれる。「脂肪酸組 成が改変された」とは形質転換前の植物体における脂肪酸組成と形質転換後におけ る植物体の脂肪酸組成が異なっていることを意味する。例えば、本来脂肪酸組成に ァラキドン酸や EPAが含まれて ヽなカゝつた植物を本発明に係る遺伝子で形質転換 することにより、形質転換植物の脂肪酸組成にァラキドン酸や EPAが含まれる場合 等を挙げることができる。
[0126] (5— 3)脂肪酸生産方法
本発明には、本発明に係る遺伝子で形質転換され、脂肪酸組成が改変された植物 体又は植物体の組織を用いて脂肪酸を生産する方法が含まれる。
[0127] 例えば、上述のようにァラキドン酸や EPAの含量が増加した本発明に係る形質転 ^¾物から製造された食用油はァラキドン酸や EPAの含量が高ぐ価値の高いもの になる。上記形質転換植物体の種子、果実、切穂、塊茎、塊根等も、ァラキドン酸や EPAを含む食料として価値の高いものになる。
[0128] (5— 4)素材
本発明には、上述の脂肪酸生産方法により得られた物質、すなわち、 γ -リノレン酸 、ジホモ- γ -リノレン酸、ァラキドン酸、ステアリドン酸、エイコサテトラェン酸、エイコサ ペンタエン酸を少なくとも 1つ含む素材も含まれる。この「素材」とは、上述の食料とし ての種子、果実、切穂、塊茎、又は、塊根の他に、工業原料用途に利用できる素材 全般を意味する。
[0129] 上記素材としては、例えば、ァラキドン酸や ΕΡΑを含む健康食品、フィルム、生分 解性プラスチック、機能性繊維、潤滑油、洗剤の素材等が挙げられる。上記の不飽 和脂肪酸は、分子内に二重結合を複数有するという、ユニークな物性を持つ。このた め、例えば、本発明の形質転 ^¾物体により、ァラキドン酸や EPAを生産させること により、生産コストを低減できる。また、本発明により、環境にやさしい生産プロセスを 実現できる。
[0130] (5-5)脂肪酸組成改変方法
本発明には、本発明に係る遺伝子を用いて脂肪酸組成を改変する方法が含まれる 。例えば、上述のように本発明に係る遺伝子を導入した形質転換体を作製することに よりホスト細胞の脂肪酸組成を改変することが可能となる。脂肪酸組成を改変する対 象は特に限定されるものではなぐ植物以外にも動物、細菌、酵母等、あらゆる生物 を対象とすることが可能である。
[0131] (5-6)遺伝子検出器具
本発明に係る遺伝子検出器具は、本発明に係る遺伝子の少なくとも一部の塩基配 列又はその相補配列をプローブとして用いたものである。遺伝子検出器具は、種々 の条件下において、本発明の遺伝子の発現バタ-ンの検出.測定などに利用すること ができる。
[0132] 本発明の遺伝子検出器具としては、例えば、本発明の遺伝子と特異的にハイプリ ダイズする上記プローブを基盤 (担体)上に固定ィ匕した DNAチップが挙げられる。こ こで「DNAチップ」とは、主として、合成したオリゴヌクレオチドをプローブに用いる合 成型 DNAチップを意味する力 PCR産物などの cDNAをプローブに用いる貼り付 け型 DNAマイクロアレイをも包含するものとする。
[0133] プローブとして用いる配列は、 cDNA配列の中力 特徴的な配列を特定する従来 公知の方法によって決定することができる。具体的には、例えば、 SAGE : Serial Analysis of Gene Expression法(Science 276:1268, 1997; Cell 88:243, 1997; Science 270:484, 1995; Nature 389:300, 1997;米国特許第 5, 695,937号)等を挙げることが できる。
[0134] なお、 DNAチップの製造には、公知の方法を採用すればよ!、。例えば、オリゴヌク レオチドとして合成オリゴヌクレオチドを使用する場合には、フォトリソグラフィ -技術と 固相法 DNA合成技術との組み合わせにより、基盤上で該オリゴヌクレオチドを合成 すればよい。一方、オリゴヌクレオチドとして cDNAを用いる場合には、アレイ機を用 V、て基盤上に貼り付ければよ 、。 [0135] また、一般的な DNAチップと同様、パーフェクトマッチプローブ(オリゴヌクレオチド )と、該パーフェクトマッチプローブにおいて一塩基置換されたミスマッチプローブとを 配置して遺伝子の検出精度をより向上させてもよい。さらに、異なる遺伝子を並行し て検出するために、複数種のオリゴヌクレオチドを同一の基盤上に固定して DNAチ ップを構成してもよ ヽ。
[0136] 本発明に係る遺伝子検出器具は、上記例示した DNAチップに限定されるものでは なぐ本発明に係る遺伝子の少なくとも一部の塩基配列又はその相補配列をプロ一 ブとして用いたものであればょ 、。
[0137] (5 -7)抗体
本発明に係る抗体は、本発明に係るたんぱく質、又はその部分たんぱく質 ·部分べ プチドを抗原として、公知の方法によりポリクロ-ナル抗体又はモノクロ-ナル抗体とし て得られる抗体である。公知の方法としては、例えば、文献(Harlowらの「Ant¾odies: A laboratory manual(Cold pring Harbor Laboratory, New York(1988))、岩崎らの「 単クローン抗体ハイプリドーマと ELISA,講談社 (1991)」)に記載の方法が挙げられる。 このようにして得られる抗体は、本発明のたんぱく質の検出 ·測定などに利用できる。
[0138] (5 -8)スクリーニング方法
本発明に係るスクリーニング方法は、本発明に係るたんぱく質を用いて、当該たん ばく質を調節する遺伝子、又は当該たんぱく質を調節する物質をスクリーニングする 方法である。本発明のスクリーニング方法としては、物質間の結合の有無や解離の有 無を調べる従来公知の種々の方法を適用することができ、特に限定されるものでは ない。例えば、本発明に係るたんぱく質の活性(Δ 6不飽和化活性、 Δ 6鎖長延長活 性及び Z又は Δ 5不飽和化活性)を促進するような物質のスクリーニングを挙げること ができる。
[0139] また、本発明には、上記スクリーニング方法により得られた遺伝子又は物質も含ま れる。
[0140] 以下、実施例を示し、本発明についてさらに詳しく説明する力 もちろん、本発明は 以下の実施例に限定されるものではなぐ細部については様々な態様が可能である ことはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく 、請求項に示した範囲で種々の変更が可能であり、開示された技術的手段を適宜組 み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[0141] 〔実施例〕
本実施例において、実験手法は、特に断らない限り、 Molecular Cloning(Sambrook et.al. Cold Spring Harbour Laboratory Press, 1989)に記載されている方法に従った
[0142] 〔実施例 1:ゼニゴケ由来の Δ 6不飽和化酵素遺伝子の単離〕
これまでにクローユングされた Δ 6不飽和化酵素のアミノ酸配列の比較により、ァミノ 酸配列 Trp - Trp - Lys - (Glu/Asp) - Lys - His -Asn (配列番号 37)及び Trp - Phe - Thr-Gly - Gly-Leu-Asn (配列番号 38)が保存されていることがわかった。そこで、ゼ-ゴケ由 来の Δ 6不飽和化酵素遺伝子を単離するために、上記のアミノ酸配列をコードする 下記の縮退プライマーを用いた。
dD6DES-F 5' - TGGTGGAA(A/G)GA(A/G/T/C)AA(A/G)CA(T/C)AA- 3' (配列番 号 7)
dD6DES-R 5,- (A/G)TTIA(A/G)ICCICCIGT(A/G)AACCA- 3, (配列番号 8) (Iはイノシン、 ()内は複数の塩基)
[0143] 試料には E系統ゼ-ゴケ(Transgenic Res. 9, pl79, 2000参照)の葉状体を用いた。
葉状体からの poly(A)+ RNAの単離については、文献(Biosci. Biotechnol. Biochem. 67, p605, 2003; Biosci. Biotechnol. Biochem.67, pl667, 2003)に記載の方法に従つ た。単離した poly(A)+RNA 1. 5 1を、 Ready— To— Go T— primed First Strand kit ( Amersham社製)を用いて cDNAに逆転写した。 PCRは、上記 cDNA約 lOngを铸型 とし、上記プライマー(dD6DES- F及び dD6DES- R)及び酵素(Takara Ex Taq、 Takara 社製) 0. 5Uとを用いて、製造者の推奨する方法で行った。反応液量は 20 1とし、 GeneAmp PCR system 9700 (PE Applied Biosystems社製)を用いて、 94°C2分間保 持後、 94°Cで 1分間、 45°Cで 1. 5分間、 72°Cで 2分間の反応を 35回繰り返し、その 後 4°Cに冷却した。
[0144] 得られた PCR産物を l%(w/v)ァガ口-スゲルで電気泳動し、従来の Δ 6不飽和化酵 素のアミノ酸配列から予想されるサイズを有する増幅断片を、 Prep- A Gene (Bio-rad 社製)を用いてゲルより回収した。回収した増幅断片を pT7Blue Vector (Takara社製) に連結し、大腸菌 Electro- max DH10B cells (Invitrogen社製, Carlsbad, CA)に形質 転換した。
[0145] BigDye Terminator Cycle Sequencing kit (Applied Biosystems社製)及び automated sequencer ABI PRISM 377 (Applied Biosystems社製)を用いて得られた全クローンの 塩基配列を決定し、 目的の cDNA配列をもつものを探索した。
[0146] さらに、全長 cDNA配列を取得するために、 5'- RACE及び 3 '-RACEを行った。これ には、 5 -RACE system for Rapid Amplincation of cDNA Ends Version 2.0、 Invitrogen社製)、 Ready- To -Go T- primed First Strand kit (Amersham社製)及び下 記のプライマー(MpDES6-02R及び MpDES6-01F)を用い、製造者の推奨する方法で 行った。
MpDES6-02R: 5 '-AAGTTGCCTTCGATGTTTCTGG - 3 ' (配列番号 9)
MpDES6-01F: 5'- GCTCGCCTGGAGCAAGGAAATC-3' (配列番号 10)
[0147] その結果、 1種類のホモログ遺伝子候補が単離され、この遺伝子を MpDES6遺伝 子とした。単離された MpDES6遺伝子の cDNAの長さ(ポリ A部分を除く)は、 2, 52 2bpであり、そのコードする推定アミノ酸配列は 481残基であった。その塩基配列を 配列番号 1、アミノ酸配列を配列番号 2に示した。
[0148] MpDES6cDNAの推定アミノ酸配列をヒメッリガネゴケの Δ 6不飽和化酵素のアミ ノ酸配列と比較した結果、 47. 5%の同一性し力示さな力つた。
[0149] 〔実施例 2 :ゼニゴケ由来の Δ 6鎖長延長酵素遺伝子の単離〕
これまでにクローニングされた Δ 6鎖長延長酵素のアミノ酸配列の比較により、ァミノ 酸配列 Val - Glu - Phe - Met -Asp - Thr - Val (配列番号 39)及び Lys - Tyr- Leu - Phe - Trp -Gly-Arg (配列番号 40)が保存されていることがわ力つた。そこで、ゼ -ゴケ由来の Δ 6鎖長延長酵素遺伝子を単離するために、上記のアミノ酸配列をコードする下記 の縮退プライマーを用いた。
dD6ELO-F 5,- GTIGA(A/G)TT(T/C)ATGGA(T/C)ACIGT- 3, (配列番号 1 1)
dD6ELO-R 5,- C(G/T)ICCCCA(A/G)AAIA(A/G)(A/G)TA(T/C)TT- 3, (配列番号 12)
[0150] 上記のプライマー(dD6ELO- F及び dD6ELO- R)を用いて PCRを!、、得られた DNA 断片をサブクローニングした。得られたクローンの塩基配列を決定し、 目的の cDNA 配列をもつクローンについて下記のプライマー(MpELOl- 02R及び MpELOl- 01F)を 用いて完全長 cDNAを取得した。なお、実験材料及び方法は、実施例 1と同様であ る。
MpELOl- 02R: 5, -GCGAGCTTTCTCGTTCTTTCCC-3' (配列番号 13)
MpELOl-01F: 5,- TATGATTTTGAAGCGCAACACG- 3' (配列番号 14)
[0151] その結果、 1種類のホモログ遺伝子候補が単離され、この遺伝子を MpELOl遺伝 子とした。 MpELOl遺伝子の cDNAの長さ(ポリ A部分を除く)は、 l,559bpで、推 定アミノ酸配列は 290残基であった。その塩基配列を配列番号 3、アミノ酸配列を配 列番号 4に示した。
[0152] MpELOlcDNAの推定アミノ酸配列をヒメッリガネゴケの Δ 6鎖延長酵素のァミノ 酸配列と比較した結果、同一性は 62. 7%であった。
[0153] 〔実施例 3 :ゼニゴケ由来の Δ 5不飽和化酵素遺伝子の単離〕
他生物種の Δ 5不飽和化酵素は、その N末端にシトクロム b5ドメインを有する。この ことから、ゼニゴケ由来の Δ 5不飽和化酵素遺伝子は、 Δ 6不飽和化酵素遺伝子と同 じぐシトクロム b5ドメイン融合型不飽和化酵素遺伝子ファミリーに属することが予想さ れた。し力しながら、ケィ藻や真菌においては、 Δ 5不飽和化酵素及び Δ 6不飽和化 酵素間のアミノ酸配列レベルでの相同性は非常に低い。そこで、糸状菌(M. alpina) の Δ 5不飽和化酵素及び Δ 6不飽和化酵素間のアミノ酸配列を比較した結果、縮退 プライマー設計に最低限必要な 4から 5残基程度の連続した保存配列が局所的に存 在することを見出した。驚くべきことに、これらの保存配列は、異種の Δ 5不飽和化酵 素のアミノ酸配列間より、同種内の Δ 5不飽和化酵素と Δ 6不飽和化酵素との間で、 より保存されていることを見出した。このことから、シトクロム b5ドメイン融合型不飽和 化酵素遺伝子には、種特異的な保存配列が存在する場合があると考えられた。そこ で、上述の MpDES6と、 Genetics 159, p981, 2001に記載されている機能未知の Mp DESとで、塩基配列を鋭意比較検討した結果、 2箇所のアミノ酸配列( I(E/N)(G/D)KVYDV (配列番号 41)、及び、 DPDI(Q/D)(Y/T)(M/V)P (配列番号 42) )のアミノ酸配列が保存されていることを見出した。それぞれのアミノ酸配列に対応す る縮退プライマーの配列を次に示す。
dD5DES-F 5, - AT(A/T/C)(A/G)AIG(A/G)IAA(A/G)TITA(T/C)GA(T/C)GT - 3, (配列番号 15)
dD5DES-R 5, - GGIA(T/C)I(G/T)(A/T)IT(G/C)(A/G/T)AT(A/G)TCIGG(A/G)TC - 3,
(配列番号 16)
[0154] 上記プライマー(dD5DES-F及び dD5DES-R)を用いて PCRを行 、、得られた DNA 断片をサブクローニングした。得られたクローンの塩基配列を決定し、 目的の cDNA 配列をもつクローンにつ 、て下記のプライマー(MpDES5- 02R及び MpDES5- 01F)を 用いて完全長 cDNAを取得した。なお、実験材料及び方法は、実施例 1と同様であ る。
MpDES5-02R: 5, - GTGTGTACGATCCGTGGTTACC- 3, (配列番号 17)
MpDES5-01F: 5, -AAGGCGGGACAGGATTCAACAC-3' (配列番号 18)
[0155] その結果、ゼ -ゴケ由来の Δ 5不飽和化酵素の候補として、 2種類の長さの異なる クローン cl及び c2を単離した(cl : 2, 427bp、 c2 : 2, 285bp)。 clと c2との塩基酉己 列を比較したところ、 5'非翻訳領域で、オルタナティブ'スプライシング (選択的スプラ イシング)が起こっていることが明ら力となった。オルタナティブ'スプライシングによる 読み枠の変化はなく、 、ずれのクローンも 484個のアミノ酸をコードして!/、た(配列番 号 6)。以下、 2, 427bpの長さのクローン clを MpDES5遺伝子(配列番号 5)とし、 以下の実施例に用いた。
[0156] MpDES5cDNAの推定アミノ酸配列を糸状菌(M. alpina)の Δ 5不飽和化酵素の アミノ酸配列と比較した結果、 31. 4%の同一性であった。ゼ-ゴケと近縁なヒメッリガ ネゴケの Δ 5不飽和化酵素に関しては、配列情報が公表されていないため、ここでは 比較を行わな力つた。
[0157] 〔実施例 4:メタノール資化性酵母 (Pichica pastoris)を用いた機能解析〕
MpDES6、 MpELOl及び MpDES5の cDNAの機能を調べるために、まず個々 の ORFを、メタノール誘導性プロモーター AOX1の下流に配置したコンストラクトを作 製した。これらのコンストラクトをメタノール資化性酵母 (Pichia pastoris)に導入し、そ の脂肪酸組成を解析した。 MpDES6、 MpEL01、及び、 MpDES5の cDNA塩基 配列の ORF部分を、下記のプライマーを用いて、 PCRにより増幅した。
(MpDES60RF増幅用プライマー)
MpD6- 17F: 5 ' - GGAATTCGCGATGGCCTCGTCCACCACCAC - 3 ' (配列番号 19 )
MpD6- 18F: 5,- GGAATTCTACTTTCGCAGCGTATGCTACC- 3, (配列番号 20) (MpELOlORF増幅用プライマー)
MpD6EL01 - 15F: 5, - GGAATTCGCGATGGAGGCGTACGAGATGG-3' (配列番 号 21)
MpD6EL01 - 16F: 5 ' - GGAATTCTTCTGCCTTTTTGCTCTTGATC - 3 ' (配列番号 22)
(MpDES50RF増幅用プライマー)
MpD5- llF: 5' - GTTGAATTCGACAGTTATGCCGCCACACGC - 3 ' (配列番号 23 )
MpD5- 12R: 5, - GTTGAATTCAGGCCCAAAGCATGCTGTCAC - 3 ' (配列番号 24 )
[0158] これらのプライマーは、下線で示した EcoRI認識配列を含んでおり、これを以下のク ローニングに利用した。また、 PCRには Pyrobest DNA polymerase (Takara社製) 0. 5 Uを用い、製造者の推奨する方法に従って反応液量 20 1で行った。反応条件は、 9 4°Cで 2分間保持後、 94°Cで 1分間、 57°Cで 1分間、 72°Cで 1分間の反応を 25回繰 り返し、その後 4°Cに冷却した。得られた各 ORF断片を EcoRIで消化した後、実施例 1に記載の方法でゲル精製を行った。そして、メタノール資化性酵母の発現ベクター pPICZA (マーカー:ゼォシン耐性遺伝子, Invitrogen社製)内のメタノール誘導性プ 口モーター 5, AOX1下流の EcoRI部位にセンス方向に連結した。
[0159] 各々の発現コンストラクト及び対照としての pPICZAベクターを、 Pichia EasyComp kit
(Invitrogen社製)を用いてメタノール資化性酵母の PPY1系統に導入し、ゼオシン耐 性をマーカーとして形質転換体を取得した。なお、メタノール資化性酵母は、 Δ 6不 飽和化酵素の基質であるリノール酸と α—リノレン酸を合成することができる力 ァラキ ドン酸や ΕΡΑのその他の前駆体を合成することはできない。
[0160] 導入した遺伝子を発現させるため、 EasySelect Pichia Expression Kit (Invitrogen社 製)を用い、当該キットの推奨する方法に従いて、各形質転換体を 1. 0%グリセロー ルのみを炭素源とする最小培地中で OD(600nm)が 0.5になるまで培養した後、 0. 5 %メタノールのみを炭素源とする最小培地中で 30°C、 3日間、飽和状態になるまで 培養した。その後、各々の形質転換体の脂肪酸組成を、 GC-MSを用いて公知の方 法(Biosci. Biotechnol. Biochem. 67, p605, 2003)により測定した。
[0161] MpDES6遺伝子を発現させた形質転換体では、 Δ 6不飽和化酵素の反応産物で ある g-リノレン酸及びステアリドン酸が、全脂肪酸のそれぞれ 7. 4%及び 0. 7%新た に検出された。対照として pPICZAベクターを導入した酵母ではこれらは検出されなか つた。以上のことから、 MpDES6は Δ 6不飽和化酵素をコードしていることが示され た。
[0162] MpELOl遺伝子を発現させた形質転換体では、 g-リノレン酸を添加した場合にジ ホモ- g-リノレン酸が全脂肪酸の 14. 1%、ステアリドン酸を添加した場合にエイコサ テトラエン酸が 1. 5%新たに検出された。対照として pPICZAベクターを導入した酵母 では、これらは検出されな力つた。以上のことから、 MpELOlは Δ 6鎖長延長酵素を コードしていることが示された。
[0163] MpDES5遺伝子を発現させた形質転換体では、ジホモ- g-リノレン酸を添加した場 合にァラキドン酸が全脂肪酸の 1. 1%、ステアリドン酸を添加した場合にエイコサぺ ンタエン酸 (EPA)が 0. 1%検出された。対照として pPICZAベクターを導入した酵母 ではこれらは検出されなかった。以上から、 MpDES5は、 Δ 5不飽和化酵素をコード することが示された。
[0164] 以上のようにゼニゴケから、 Δ 6不飽和化酵素、 Δ 6鎖長延長酵素及び Δ 5不飽和 化酵素をコードする遺伝子として、それぞれ MpDES6、 MpELOl及び MpDES5を 取得することができた。
[0165] 〔実施例 5:メタノール資化性酵母 (P. pastoris)におけるゼ -ゴケ高度不飽和脂肪酸 生合成系の再構成〕
MpDES6、 MpELOl及び MpDES5を共発現させるために、上記実施例 4で作 製した、 EcoRI消化した MpELOl及び MpDES5の ORF増幅断片を、各々別のメタ ノール資化性酵母発現ベクター pPIC3K (マーカー: HIS4遺伝子、 Invitrogen社製社) 及び PPIC6A (マーカー:ブラスチシジン而性遺伝子、 Invitrogen社製社)の 5, AOX1 プロモーター下流の EcoRI部位にセンス方向に連結した。また、 MpDES6に関して は、実施例 4で作製した発現ベクターを用いた。以下各発現ベクターを、それぞれ pPICZA- MpDES6、 pPIC3K- MpELOl及び pPIC6A- MpDES5と表記する。
[0166] まず、 pPICZA-MpDES6、又は、対照としての pPICZAベクターのみを、上記実施例 4で用いたメタノール資化性酵母 PPY1系統と同じ脂肪酸組成を持つメタノール資化 性酵母 PPY12系統 (his4,arg4)に形質転換し、ゼォシン耐性をマーカーにして形質転 換体を取得した。続いて、 pPIC3K-MpEL01、又は、対照としての pPIC3Kベクター のみを、それぞれ、 pPICZA- MpDES6、又は pPICZAのみがゲノム中に組み込まれた 形質転換体に導入し、ヒスチジン合成能をマーカーにして形質転換体を取得した。 最後に、 pPIC6A-MpDES5、又は、対照としての pPIC6Aベクターのみを、
pPICZA-MpDES6及び pPIC3K-MpEL01又は pPICZA及び pPIC3Kがゲノム中に組 み込まれた上記形質転換体に導入し、ブラストジン耐性をマーカーとして形質転換 体を取得した。
[0167] 得られた 2種類又は 3種類の遺伝子が導入された形質転換体を用いて、ゼ -ゴケ のァラキドン酸 ZEPA生合成系の再構成実験を行った。まず、上記 2種類の遺伝子 (MpDES6及び MpELOl)を導入した。形質転換体を用いて、 MpDES6たんぱく質及 び MpELOlたんぱく質をメタノール資化性酵母内で共発現させた。その結果、 Δ 6 不飽和化反応産物である g-リノレン酸 (全脂肪酸の 2.9%)及びステアリドン酸 (全脂 肪酸の 0.4%)に加え、それらの鎖長延長反応産物であるジホモ- g-リノレン酸 (全脂 肪酸の 2.8%)及びエイコサテトラェン酸 (全脂肪酸の 0.2%)が生じた。対照とした形 質転換体では、これらの脂肪酸は検出されなかった。上記形質転換体に、さらに Mp DES5を導入した形質転換体では、 g-リノレン酸 (全脂肪酸の 2.8%)、ステアリドン酸 (全脂肪酸の 0.5%)、ジホモ- g-リノレン酸 (全脂肪酸の 1.5%)及びエイコサテトラェン 酸 (全脂肪酸の 0.1%)の 4種の脂肪酸に加えて、ァラキドン酸 (全脂肪酸の 0.1%)及 びエイコサペンタエン酸 (EPA、全脂肪酸の 0.03%)の生成が認められた。対照とし た形質転換体では、これらの脂肪酸は検出されな力つた。この結果から、ゼ-ゴケ由 来の Δ 6不飽和化酵素、 Δ 6鎖長延長酵素及び Δ 5不飽和化酵素の遺伝子を発現 させることで、ゼ -ゴケ以外の生物種においても、高度不飽和脂肪酸生合成系の再 構築が可能であることが示された。
[0168] 〔実施例 6:イネに導入するベクターの構築及び当該ベクターのイネへの導入〕
イネにおいて、 MpDES6、 MpELOl及び MpDES5遺伝子を発現させるために、 以下の (0— (iv)に示す手順で発現コンストラクトを作製した。また、作製手順を図 1に 示した。
[0169] (i)pBI221 (TOYOBO社製)のカリフラヮ -モザイクウィルス(CaMV) 35Sプロモーター 、及び、 NOSターミネータ一間に設計した以下のプライマーを用いた PCRにより、 β - Glucuronidase (GUS)遺伝子部分を除いた発現ベクター p35S-NOSを作製した。 MKOOl(F): 5,- CGGGATCCTCTCCTGGCGCACCATCGTC - 3 ' (配列番号 25) MK002(R): 5 ' - GGGGTACCAACGCGCTTTCCCACCAACG - 3 ' (配列番号 26)
[0170] なお、プライマー MKOOl(F)は下線で示す BamHI認識配列を含み、 GUS遺伝子の 3' 末端にァニールし、プライマー MK002(R)は GUS遺伝子の 5'末端にァニールする( BamHIサイトがァニール部位の上流に存在する)。 PCRには Pyrobest DNA polymerase (Takara社製) 0. 5Uを用い、製造者の推奨する方法に従って反応液量 50 1で行った。反応条件は、 96°C5分間保持後、 94°Cで 30秒間、 68°Cで 4分間の反 応を 30回繰り返し、その後 4°Cに冷却した。得られた各 ORF断片を BamHI消化した後 、実施例 1に記載の方法でゲル精製を行った後、自己連結させた。
[0171] (ii)次に P35S-NOSの Xbalサイトに、 MpDES6遺伝子、 MpELOl遺伝子及び MpD ES5遺伝子の ORFを各々連結した。 ORF増幅には、下線で示す Xbal認識配列を含 む以下のプライマーを用いた。
(MpDES6 ORF増幅用プライマー)
MpD6-21F: 5 ' - GCTCTAGAGCGATGGCCTCGTCCACCACC - 3 ' (配列番号 27) MpD6- llR: 5,- GCTCTAGACTATACTTTCGCAGCGTATGC- 3, (配列番号 28) (MpELOl ORF増幅用プライマー)
MpD6ELO 1 - 18F: 5' - GCTCTAGAGCGATGGAGGCGTACGAGATGG - 3 ' (配列 番号 29)
MpD6EL01 - 13R: 5 ' - GCTCTAGATTATTCTGCCTTTTTGCTC - 3 ' (配列番号 3 0)
(MpDES5 ORF増幅用プライマー)
MpD5-22F: 5 ' - GCTCTAGAGACAGTTATGCCGCCACACGC - 3 ' (配列番号 31) MpD5-23R: 5 ' - GCTCTAGAAGGCCCAAAGCATGCTGTCAC - 3 ' (配列番号 32) [0172] PCRには Pyrobest DNA polymerase (Takara社製) 0. 5Uを用い、製造者の推奨す る方法に従って、反応液量 20 1で行った。反応条件は、 94°Cで 2分間保持後、 94°C で 1分間、 57°Cで 1分間、 72°Cで 1分間の反応を 25回繰り返し、その後 4°Cに冷却した 。得られた各 ORF断片を Xbalで消化した後、実施例 1に記載の方法でゲル精製を行 いクロー-ングに用いた。
[0173] (iii)得られた各遺伝子の発現コンストラクト(それぞれを p35S_MpDES6、
p35S- MpEL01、 p35S- MpDES5と表記する)がいずれも CaMV35Sプロモーター 5,末 端に Pstlサイトを、 NOSターミネータ一 3'末端に EcoRIサイトを持つことを利用して、上 記 3遺伝子の発現カセットを連結した。まず、以下に示すプライマーを用いて p35S-MpDES5を铸型として PCRを行 、、 MpDES5遺伝子の発現カセット部分を増 幅し、 p35S- MpDES6の CaMV35Sプロモーター 5,末端にある Pstlサイトにクロー-ング した(図 1参照)。
(MpDES5遺伝子発現カセット増幅用プライマー)
M13R: 5 ' - CAGGAAACAGCTATGACC - 3 ' (配列番号 33)
NOS-R4-PST: 5' -AAACTGCAGATTCCCGATCTAGTAACATAG-3 ' (配列番号 3 4)
[0174] なお、 M13Rプライマーは、 CaMV35Sプロモーター上流のベクター配列にァニール する。また、 NOS-R4-PSTプライマーは、下線で示す Pstl認識配列を含み、 NOSター ミネーター 3,末端にァニールする。同じく NOSターミネータ一 3,末端に存在する EcoRIサイトは含まない。 [0175] PCRには Pyrobest DNA polymerase (Takara社製) 0. 5Uを用い、製造者の推奨す る方法に従って、反応液量 20 1で行った。反応条件は、 94°Cで 2分間保持後、 94°C で 1分間、 57°Cで 1分間、 72°Cで 1分間の反応を 25回繰り返し、その後 4°Cに冷却した 。得られた DNA断片を Pstlで消化した後、実施例 1に記載の方法でゲル精製を行い 、 MpDES6遺伝子の発現カセットを含むプラスミド(p35S-MpDES6)の Pstlサイトにク ローニングした。
[0176] (iv)上記で得られた、 MpDES5及び MpDES6遺伝子の発現カセットを連結させた コンストラクト(p35S- MpDES5/35S- MpDES6と表記する)に、さらに MpELOl遺伝子 の発現カセットを連結した。以下のプライマーを用いて p35S-MpEL01を铸型として P CRを行い、 MpELOl遺伝子の発現カセット部分を増幅し、 MpDES6遺伝子発現 カセット内の NOSターミネータ一 3'末端にある EcoRIサイトにクローユングした。
(MpELOl遺伝子発現カセット増幅用プライマー)
35S-F3-EI: 5' - CCGGAATTCGCATGCCTGCAGGTCCCCAGA-3' (配列番号 35 )
M13F: 5'- TGTAAAACGACGGCCAGT-3' (配列番号 36)
[0177] なお、 35S-F3-EIプライマーは、下線で示す EcoRI認識配列を含み、 CaMV35Sプロ モーターの 5,末端にァニールする。また、 M13Fプライマーは NOSターミネータ一下 流のベクター配列にァニールする。
[0178] PCRには Pyrobest DNA polymerase (Takara社製) 0. 5Uを用い、製造者の推奨す る方法に従って、反応液量 20 1で行った。反応条件は、 94°Cで 2分間保持後、 94°C で 1分間、 57°Cで 1分間、 72°Cで 1分間の反応を 25回繰り返し、その後 4°Cに冷却した 。得られた DNA断片を EcoRIで消化した後、実施例 1に記載の方法でゲル精製を行 い、 MpDES5及び MpDES6遺伝子の発現カセットを連結させたコンストラクト( p35S-MpDES5/35S-MpDES6)の EcoRI部位にクローユングした。
[0179] 以上の操作により、 3遺伝子の発現カセットが、 MpDES5, MpDES6, MpELOl の順で連結した発現コンストラクト(p35S-MpDES5/35S-MpDES6/p35S-MpEL01)を 作製した。
[0180] このようにして得られた上記コンストラクトを、公知の方法(Genes Genet. Syst. 73, p219, 1998)で、ビアラフォスを選抜マーカーとして持つプラスミドとともに、パーテイク ルガンでイネに導入し、形質転換イネを取得した。
[0181] 〔実施例 7 :タバコ(N. tabacum SR-1)におけるゼ -ゴケ高度不飽和脂肪酸合成系の 再構成〕
本実施例では、上述のゼ -ゴケ由来の不飽和脂肪酸合成酵素遺伝子、すなわち、 MpDES6遺伝子、 MpDES5遺伝子、および MpELO遺伝子が、植物体中で良好 に機能することを確認した。
[0182] 具体的には、タバコに MpDES6遺伝子、 MpDES5遺伝子、および MpELO遺伝 子を導入し、このタバコ中でァラキドン酸等が生産されることを確認した。比較対照と して、糸状菌(M.alpina)由来の Δ 6不飽和化酵素遺伝子(MaDES6)、 Δ 5不飽和 化酵素遺伝子 (MaDES5)、 Δ 6脂肪酸鎖長延長酵素 (MaELO)の 3遺伝子を導入 したタノ =3を作製した。
[0183] (0糸状菌由来遺伝子を含むベクター (pSPB1519)の構築
pE2113 (Mitsuhara et al. Plant Cell Physiol. 37, 45-59 1996)は、ェンハンサー配 列の繰り返しを有するカリフラワーモザイクウィルス 35S (E1235S)プロモーター、お よび、ノパリンシンターゼ(nos)ターミネータ一を有する。
[0184] pE2113を SnaBIで消化した後、 Xholリンカ一(TAKARA社)と連結することで、 プラスミドを作製した。このプラスミドを Saclで消化後、平滑末端化し、さらに BamHI リンカ一(TAKARA社)と連結することによって、 pUE7を作製した。 pUE7を Hindll Iと EcoRIで消化することによって得られる DNA断片のうち E1235Sプロモーターを 有する断片と、 Hindlllと EcoRIで消化した植物形質転換用バイナリーベクター pBI NPLUS (van Engelen et al. Transgenic research 4, p288, 1995)とを連結することで 、 pSPB505を作製した。
[0185] 一方、 MaDES6遺伝子を含むプラスミドである pMLDlOlを Xholで消化後、さら に BamHIで部分消化することで、約 1. 6kbの DNA断片を得た。この断片と、 pSPB 505を Xholと BamHIで消化して得られるバイナリーベクター部分の DNA断片とを 連結することで、 PSPB559を作製した。
[0186] pUCAP (van Engelen et al. Transgenic research 4, p288, 1995)を Asclで消化し た後平滑末端化し、 Paclリンカ一と連結することで、 pUCAPPを作製した。
[0187] pE2113を SnaBIで消化した後、 BamHIリンカ一(TAKARA社)と連結することで 、 pUE6を作製した。 pUE6を Saclで消化した後、平滑末端化し、 Sailリンカ一(TA KARA社)と連結することで、 pUE8を作製した。 pUE8を Hindlllおよび EcoRIで消 化して得られる DNA断片のうち E1235Sプロモーターを有する断片を、 pUCAPPの Hindlll— EcoRI間に挿入することで、プラスミドを作製した。このプラスミドを BamHI と Sailで消化して得られた DNA断片と、 MaELO遺伝子の cDNAを BamHIおよび Xholで消化して得られた DNA断片とを連結し、 pSPB1130を作製した。 pSPB113 0を Paclで消化し、得られる約 2. 3kbの DNA断片を、 pBINPLUSの Paclサイトに 挿入した。 MaELO遺伝子の転写方向と、 pBINPLUS上の nptll遺伝子の転写方 向と力 同じ向きになっているプラスミドを選択し、そのプラスミドを pSPB1157Pとし た。
[0188] また、上述した pSPB559を Paclで消化した後、平滑末端化し、 Asclリンカ一と連 結することで、 pSPB559Aを作製した。そして、 pSPB559Aを Asclで消化して得ら れる MaDES6遺伝子を含む DNA断片を、 pSPB1157Pの Asclサイトに挿入するこ とで、 pSPB1157を作製した。
[0189] pCGP 1364 (Plant Cell Physiol. 36, 1023, 1995)を Hindlllおよび SacIIで消化し て得られる約 1. 3kbの DNA断片と、 pCGP1364を Pstlで消化し、平滑末端化した 後さらに SacIIで消化して得られる約 2. 9kbの DNA断片と、 pUCAPAを Saclで消 化し、平滑末端ィ匕した後さらに Hindlllで消化して得られる約 2. 7kbの DNA断片と を連結することにより、 PSPB184を得た。
[0190] 一方、 MaDES5遺伝子がサブクロー-ングされた pCRIIベクターから、 Xbalと Kpn Iによる消化によって MaDES5遺伝子を含む DNA断片を切り出した。この DNA断 片と、上述の pSPB184を Xbalと Kpnlで消化して得られた DNA断片とを連結するこ とで、 pSPB1519Aを作製した。 pSPB1519Aを Asclで消化し、得られた DNA断片 を pSPBl 157の Asclサイトに挿入し、 pSPB1519を作製した。この pSPB1519上で 、 MaDES6遺伝子、 MaDES5遺伝子、および MaELO遺伝子は、同じ向きに転写 され、同じ構成的プロモーターの制御下にある。 [0191] (ii)ゼ -ゴケ由来遺伝子のベクター(PSPB2368)の構築
pUCAP (van Engelen et al. Transgenic Research 4, 288-290, 1995)を Asclで消 化した後 Sgflリンカ一と連結し、さらに、 Paclで消化した後 Fselリンカ一と連結するこ とで、 pUCSAPFを作製した。また、 pBINPLUSにも同様の処理を施し、 pBINSAP Fを作製した。
[0192] 他にサブクローユング用のベクターとして、 pUC19を Hindlllで消化した後、 Paclリ ンカーと連結し、さらに EcoRIで消化した後 Fselリンカ一と連結することで、 pUCPF を作製した。また、 pUC19を Hindlllで消化した後 Sgflリンカ一と連結し、さらに、 Ec oRIで消化した後 Asclリンカ一と連結することで、 pUCSAを作製した。 pUCSAPF の Hindlll— Xbal間に E1235Sを、 Sacl— EcoRI間にマノピン合成酵素(mas)遺伝 子ターミネータ一をそれぞれ挿入したベクターを、 Xbalおよび Saclで消化した後、末 端を平滑化することで、 pSPB2353Aを得た。 pSPB2353Aの平滑末端に、 p35S— MpDES6から Xbalで切り出して末端を平滑化した MaDES6遺伝子を含む DNA断 片を連結し、 PSPB2353作製した。
[0193] pUCS Aの Hindlll— Xbal間に E1235Sを、 Sacl— EcoRI間にマノピン合成酵素(m as)遺伝子ターミネータ一をそれぞれ挿入したベクターを、 Xbal, Saclで消化するこ とで、 pSPB2355Aを作製した。
[0194] 一方、 p35S—MpEL01を铸型として、下記のプライマー、 XbaMpELOl^よび
SacMpELOrを用いて PCRを行った。
XbaMpELOf: 5 '― AGTCTCTAGAGCGATGGAGGCGTACG— 3,(配列番号 43) SacMpELOr: 5 '― CAGTGAGCTCGGTGTCTTATTCTGCC— 3,(配列番号 44)
[0195] PCRには、酵素として高精度な KOD + DNAポリメラーゼ (東洋紡)を用い、 94°C で 2分間保持した後、 94°Cで 15秒、 68°Cで 1—3分のサイクルを 25回繰り返した。こ のようにして調製された MpELODNA断片を Xbalおよび Saclで消化したものを、上 述の PSPB2355A【こ連結し、 pSPB2355を作製した。さら【こ、 pSPB2355を Sgfl、 Asclで消化して得られた DNA断片を、 Sgflおよび Asclで消化した pSPB2353に 連結し、 PSPB2361を作製した。
[0196] pUCPFの Hindlll— Xbalサイトに E1235Sを、 Sacl— EcoRIサイトにマノピン合成 酵素(mas)遺伝子ターミネータ一をそれぞれ挿入したベクターを、 Xbalおよび Sacl で消化することで、 PSPB2352Aを作製した。
[0197] 一方、 p35S— MpDES5を铸型に、下記のプライマー、 XbaMpD51¾よび SacMpD5r を用いて PCRを行った。 PCRの反応条件は、上記の PCR条件と同様である。
XbaMpD5f: 5, - AGCTTCTAGAGCCATGCCGCCACACGCCC- 3 ' (配列番号 45) SacMpD5r: 5, - CAGTGAGCTCTCAGCCATCCAGTCGT- 3, (配列番号 46)
[0198] PCRによって調製された MpD5DNA断片を Xbal、 Saclで消化したものを、 pSPB 2352Aに連結し、 pSPB2352を作製した。
[0199] pBINSAPFを Paclおよび Fselで消化して得られた DNA断片に、 pSPB2352より Paclおよび Fselで切り出した MpDES5遺伝子を含む DNA断片を連結し、 pSPB2 368Aを作製した。さらに pSPB2368Aを Sgflおよび Paclで消化したものに、 pSPB 2361より Sgflおよび Paclで切り出された MpDES6遺伝子および MpELO遺伝子を 含む DNA断片を連結することで、 pSPB2368を得た。このプラスミド上で MpDES6 遺伝子、 MpDES5遺伝子、および MpELO遺伝子は、同じ向きに転写され、同じ構 成的プロモーターの制御下にある。
[0200] (iii)タバコへの遺伝子導入
引き続いて、公知の方法(Plant J. 5, 81, 1994)に基づいて、 pSPB2368または pS PBlSlS^rffil^ Agrobacterium tumefaciens iliife AglC Lazo et al. 1991, Biotechnology9:963-967) )を形質転換した。この pSPB2368または pSPB 1519を有 する形質転換体ァグロバタテリゥムを、タバコリーフディスクに感染させた。このように して得られた組換えタバコの葉から、 RNeasyPlantminiKit (キアゲン)を用いて RN Aを抽出し、定法に従って、 RT— PCRにより、導入した遺伝子が発現している系統を 選択した。
[0201] このようにして得られた糸状菌由来の酵素遺伝子力も成る pSPB 1519を導入した タバコ(pSPB1519形質転換タバコ)、ゼ -ゴケ由来の酵素遺伝子力も成る pSPB23 68を導入したタバコ(pSPB2368形質転換タバコ)の葉から、公知の方法 (藤野安彦 編(1978)生物化学実験法 9学会出版センター、山田晃弘編(1989)生物化学 実験法 24学会出版センター)にしたがって、脂質の抽出を行った。得られた脂質を ガスクロマトグラフィー(Hewlett Packard社 HP— 6800)で分析し、その結果を表 1 に示す。
[0202] なお、コントロールとして、遺伝子が導入されて 、な 、タバコの葉を用いて、同様の 分析を行った。
[0203] [表 1]
Figure imgf000038_0001
[0204] 本実施例のガスクロマトグラフィーによる分析条件を以下に示す。
(ガスクロマトグラフィー分析条件)
カラム: Supelco SP— 2330、 Fused Silica Capillary Column, 30m x 0. 32 mm ID、 0. 2 ^ m
温度: Inj : 240。C、 Det: 250。C、 Oven: 180°C 3分、 180。C→220。C (2 °C/ min)
カラム流量: 30cmZsec、圧力 200 kPa、検出器 FID
[0205] クロマトグラム中の各ピークは標準脂肪酸のメチルエステルのリテンションタイムと G
C— MASS (Hewlett Packard社、 HP— 5973)分析により決定し、またピーク面積 より各脂肪酸の割合を決定した。
[0206] 表 1において、 Controlはコントロールを、 pSPB2368は pSPB2368ff 質転換タバ コを、 PSPB1519は pSPB1519形質転換タバコを表す。
[0207] 表 1に示す結果から、糸状菌由来の酵素遺伝子力も成る pSPBl 519を導入したタ バコ(PSPB1519形質転換タバコ)では、ジホモ 0リノレン酸の蓄積は確認できたが、 ァラキドン酸の蓄積は認められな力つた。一方、ゼ -ゴケ由来の酵素遺伝子から成る PSPB2368を導入したタバコ(pSPB2368形質転換タバコ)ではァラキドン酸だけで なぐエイコサテトラェン酸およびエイコサペンタエン酸の蓄積も確認できた。このこと から、高等植物においては、糸状菌由来の酵素よりもゼ-ゴケ由来の酵素の方が機 能的に優れており、リノール酸や αリノレン酸を基質として、ァラキドン酸を始めとする 高度不飽和脂肪酸を合成できると考えられた。
[0208] Abbadiらは、ケィソゥ(Phaeodactylum tricornutum)の Δ 6不飽和化酵素、 Δ 5不飽 和化酵素、およびヒメッリガネゴケ(Physcomitrella patens)の鎖長延長酵素の遺伝子 を、タバコおよびアマ(Linum usitatissimum)に導入することで、ァラキドン酸を、タパ コの種子に 1. 5%、アマの種子に 1. 0%蓄積させたことを報告している(Amine Abbadi et al. Plant Cell 16, 2734-2748, 2004) 0
[0209] 本実施例においては、ゼニゴケ由来の Δ 6不飽和化酵素、 Δ 5不飽和化酵素およ び鎖長延長酵素をタバコに導入したことで、タバコの葉にァラキドン酸を 10%以上蓄 積させている。この結果から、本実施例の PSPB2368形質転換タバコは、上述の報 告と比較しても、より効率的に高度不飽和脂肪酸を合成できる能力があることが示唆 された。
[0210] また、ハプト藻 (Isochrysis galbana)の Δ 9鎖長延長酵素、ミドリムシ(Englena gracilis )の Δ 8不飽和化酵素、糸状菌の Δ 5不飽和化酵素の 3種類の遺伝子を用いて、シロ ィヌナズナ (Arabidopsis thaliana)で脂質の改変を行った報告では、葉中でァラキドン 酸が総脂質に対して 6. 6mol%、 C20以上の脂質が 22. 5mol%であった(Baoxiu Qi et al. Nature Biotechnology 22, 739-745, 2004) 0この報告では、 Δ 6不飽和化酵 素、 Δ 5不飽和化酵素、および鎖長延長酵素を用いる経路とは別の修飾経路で高度 不飽和脂肪酸を作っており、単純比較は出来ないが、ゼニゴケの酵素を用いたほう 力 り多くの高度不飽和脂肪酸を蓄積することがわ力つた。
[0211] 総脂質の 30%以上が改変脂肪酸になっている pSPB2368形質転換タバコでは、 形態的な異常は見られな力つた。さらに、稔性にも問題なぐ多くの種子をつけたこと から、異所的な高度不飽和脂肪酸の増加が植物の生育に及ぼす影響は少な 、と考 えられた。
[0212] これまでに報告されている遺伝子組換え植物における C20以上の高度不飽和脂肪 酸の生産は総脂質の 20%前後、ァラキドン酸に限ると 6%前後が限界である。しかし 、本実施例のように、ゼ -ゴケ由来の脂肪酸合成酵素を用いることにより、この限界を 打ち破り、より多くの高度不飽和脂肪酸を植物で生産することが出来ると考えられる。
[0213] 尚、発明を実施するための最良の形態の項においてなした具体的な実施態様また は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような 具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記 載する特許請求の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用の可能性
[0214] 本発明に係る遺伝子は、同一種のゼ-ゴケから単離された Δ 5不飽和化酵素遺伝 子、 Δ 6不飽和化酵素遺伝子及び Δ 6鎖長延長酵素遺伝子である。したがって、こ れら 3種類の遺伝子を植物内で同時に発現させた場合に、異なる生物種由来の複 数の遺伝子を発現させるより、植物内で良好に機能するという効果を奏する。さらに、 ゼ-ゴケは、高等植物のモデル系と考えられるため、これらの遺伝子は、植物以外の 生物種由来の遺伝子より植物内で良好に機能することができるという効果を奏する。
[0215] また、本発明に係る形質転換体は、ァラキドン酸やエイコサペンタエン酸 (EPA)等 の高度不飽和脂肪酸を生産することができるという効果を奏する。特に、本発明に係 る形質転^ ¾物は、低コストかつ環境にやさし 、生産プロセスでァラキドン酸や EPA 等の高度不飽和脂肪酸を生産することができるという効果を奏する。こうして得られた ァラキドン酸や EPAは、安価な多目的材料として活用できるという効果を奏する。さら に、上記形質転換植物体を食料として用いた場合、ァラキドン酸や EPAの含量が高 V、食料としての価値が高まると!、う効果を奏する。
[0216] 以上にように、本発明の遺伝子 ·たんぱく質は、ァラキドン酸や EPAの生産に有用 である。また、本発明の遺伝子を発現可能に導入した形質転換体は、製薬産業、食 品産業、各種素材産業等において、ァラキドン酸や EPAを生産するうえで、極めて 有用である。また、特に、上記形質転換体が植物体である場合、植物体内のァラキド ン酸ゃ EPAの含量が増加するので、農業分野等において非常に有用である。

Claims

請求の範囲
[1] 配列番号 1に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DN Aと相補的な塩基配列力 なる DNAの全部又は一部とストリンジヱントな条件でノヽィ ブリダィズし、かつ Δ 6脂肪酸不飽和化活性を有するたんぱく質をコードするゼ-ゴ ケ目生物由来の遺伝子。
[2] Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 1に示される塩基配列を有する遺伝子。
(b)配列番号 1に示される塩基配列からなる DNA、又は当該 DNAと相補的な塩基 配列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[3] Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 1に示される塩基配列のうち、 253ないし 1698番目の塩基配列を有 する遺伝子。
(b)配列番号 1に示される塩基配列のうち、 253ないし 1698番目の塩基配列から なる DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条 件でノ、イブリダィズする遺伝子。
[4] Δ 6脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 2に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子。
(b)配列番号 2に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[5] 配列番号 3に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DN Aと相補的な塩基配列力 なる DNAの全部又は一部とストリンジヱントな条件でノヽィ ブリダィズし、かつ Δ 6脂肪酸鎖長延長活性を有するたんぱく質をコードするゼニゴ ケ目生物由来の遺伝子。
[6] Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。 (a)配列番号 3に示される塩基配列を有する遺伝子。
(b)配列番号 3に示される塩基配列からなる DNA、又は当該 DNAと相補的な塩基 配列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[7] Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 1に示される塩基配列のうち、 194ないし 1066番目の塩基配列を有 する遺伝子。
(b)配列番号 1に示される塩基配列のうち、 194ないし 1066番目の塩基配列から なる DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条 件でノ、イブリダィズする遺伝子。
[8] Δ 6脂肪酸鎖長延長活性を有するゼニゴケ目由来のたんぱく質をコードする、下記
(a)又は (b)に記載の遺伝子。
(a)配列番号 4に示されるアミノ酸配列からなるたんぱく質、
(b)配列番号 4に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[9] 配列番号 5に示される塩基配列力 なる DNAの全部又は一部、あるいは当該 DN Aと相補的な塩基配列力 なる DNAの全部又は一部とストリンジヱントな条件でノヽィ ブリダィズし、かつ Δ 5脂肪酸不飽和化活性を有するたんぱく質をコードするゼ-ゴ ケ目生物由来の遺伝子。
[10] Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 5に示される塩基配列を有する遺伝子。
(b)配列番号 5に示す塩基配列からなる DNA、又は当該 DNAと相補的な塩基配 列からなる DNAとストリンジェントな条件でノヽイブリダィズする遺伝子。
[11] Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 5に示される塩基配列のうち、 375ないし 1829番目の塩基配列を有 する遺伝子。 (b)配列番号 5に示される塩基配列のうち、 375ないし 1829番目の塩基配列から なる DNA、又は当該 DNAと相補的な塩基配列からなる DNAとストリンジヱントな条 件でノ、イブリダィズする遺伝子。
[12] Δ 5脂肪酸不飽和化活性を有するゼニゴケ目生物由来のたんぱく質をコードする、 下記 (a)又は (b)に記載の遺伝子。
(a)配列番号 6に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子。
(b)配列番号 6に示されるアミノ酸配列の 1個又はそれ以上のアミノ酸が置換、欠失 、挿入、及び Z又は付加されたアミノ酸配列からなるたんぱく質をコードする遺伝子。
[13] 請求項 1一 12の何れか 1項に記載の遺伝子によってコードされるたんぱく質。
[14] 以下の(a)又は (b)記載のたんぱく質。
(a)配列番号 2に示されるアミノ酸配列からなるたんぱく質。
(b)配列番号 2に示されるアミノ酸配列において、 1個又はそれ以上のアミノ酸が置 換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、かつ、 Δ 6脂肪酸不飽 和化活性を有するたんぱく質。
[15] 以下の(a)又は (b)記載のたんぱく質。
(a)配列番号 4に示されるアミノ酸配列からなるたんぱく質。
(b)配列番号 4に示されるアミノ酸配列において、 1個又はそれ以上のアミノ酸が置 換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、かつ、 Δ 6脂肪酸鎖長 延長活性を有するたんぱく質。
[16] 以下の(a)又は (b)記載のたんぱく質。
(a)配列番号 6に示されるアミノ酸配列からなるたんぱく質。
(b)配列番号 6に示されるアミノ酸配列において、 1個又はそれ以上のアミノ酸が置 換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなり、かつ、 Δ 5脂肪酸不飽 和化活性を有するたんぱく質。
[17] 請求項 13— 16の何れ力 1項に記載のたんぱく質を認識する抗体。
[18] 少なくとも請求項 1一 12の何れか 1項に記載の遺伝子を含む組換え発現ベクター。
[19] 少なくとも請求項 1一 12の何れか 1項に記載の遺伝子を導入してなる形質転換体。
[20] 少なくとも請求項 1一 12の何れか 1項に記載の遺伝子が発現可能に導入された植 物体、もしくは当該植物体と同一の性質を有する当該植物体の子孫となる植物体、 又は当該植物体の組織。
[21] 少なくとも請求項 1一 12の何れか 1項に記載の遺伝子が発現可能に導入され、脂 肪酸組成が改変された植物体、もしくは当該植物体と同一の性質を有する当該植物 体の子孫となる植物体、又は当該植物体の組織。
[22] 請求項 20又は 21に記載の植物体の繁殖材料。
[23] 請求項 21に記載の植物体又は植物体の組織を用いることを特徴とする脂肪酸生 産方法。
[24] 請求項 23に記載の脂肪酸生産方法により得られた、 γ -リノレン酸、ジホモ- γ -リノ レン酸、ァラキドン酸、ステアリドン酸、エイコサテトラェン酸、およびエイコサペンタエ ン酸力 選択される少なくとも 1つ含む素材。
[25] 少なくとも請求項 1一 12の何れか 1項に記載の遺伝子を用いて脂肪酸組成を改変 する方法。
[26] 請求項 1一 12の何れか 1項に記載の遺伝子における少なくとも一部の塩基配列又 はその相補配列をプローブとして用 、た遺伝子検出器具。
[27] 請求項 13— 16の何れ力 1項に記載のたんぱく質を用いて、当該たんぱく質を調節 する遺伝子、又は当該たんぱく質を調節する物質をスクリーニングする方法。
[28] 請求項 27に記載のスクリーニング方法により得られた遺伝子又は物質。
PCT/JP2004/019196 2003-12-22 2004-12-22 ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用 WO2005061713A1 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
KR1020117013726A KR101158533B1 (ko) 2003-12-22 2004-12-22 우산이끼 유래의 불포화 지방산 합성효소 유전자 및 그 이용
US10/584,082 US7915487B2 (en) 2003-12-22 2004-12-22 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
AT04807553T ATE486939T1 (de) 2003-12-22 2004-12-22 Aus der marchantiales-pflanze stammendes gen für ungesättigte-fettsäure-synthase und dessen nutzung
JP2005516506A JP4639150B2 (ja) 2003-12-22 2004-12-22 ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用
DE602004029935T DE602004029935D1 (de) 2003-12-22 2004-12-22 Aus der marchantiales-pflanze stammendes gen für ungesättigte-fettsäure-synthase und dessen nutzung
KR1020067014762A KR101110972B1 (ko) 2003-12-22 2004-12-22 우산이끼 유래의 불포화 지방산 합성효소 유전자 및 그이용
DK04807553.5T DK1712626T3 (da) 2003-12-22 2004-12-22 Umættet fedtsyresyntasegen afledt af Marchantiales-plante og udnyttelse deraf
EP04807553A EP1712626B1 (en) 2003-12-22 2004-12-22 Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same
CA2550489A CA2550489C (en) 2003-12-22 2004-12-22 Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same
CN2004800384716A CN1898383B (zh) 2003-12-22 2004-12-22 来自地钱的不饱和脂肪酸合成系统酶基因及其利用
KR1020117013728A KR101156092B1 (ko) 2003-12-22 2004-12-22 우산이끼 유래의 불포화 지방산 합성효소 유전자 및 그 이용
AU2004303676A AU2004303676B2 (en) 2003-12-22 2004-12-22 Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same
AU2007221961A AU2007221961B2 (en) 2003-12-22 2007-10-11 Marchantiales-Derived Unsaturated Fatty Acid Synthetase Genes and Use of the Same
AU2010203054A AU2010203054B2 (en) 2003-12-22 2010-07-19 Marchantiales-Derived Unsaturated Fatty Acid Synthetase Genes and Use of the Same
US13/017,215 US8962925B2 (en) 2003-12-22 2011-01-31 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
US13/017,228 US8293978B2 (en) 2003-12-22 2011-01-31 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-425673 2003-12-22
JP2003425673 2003-12-22

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/584,082 A-371-Of-International US7915487B2 (en) 2003-12-22 2004-12-22 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
US13/017,228 Division US8293978B2 (en) 2003-12-22 2011-01-31 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
US13/017,215 Division US8962925B2 (en) 2003-12-22 2011-01-31 Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same

Publications (1)

Publication Number Publication Date
WO2005061713A1 true WO2005061713A1 (ja) 2005-07-07

Family

ID=34708827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019196 WO2005061713A1 (ja) 2003-12-22 2004-12-22 ゼニゴケ由来の不飽和脂肪酸合成系酵素遺伝子及びその利用

Country Status (14)

Country Link
US (3) US7915487B2 (ja)
EP (3) EP2206783B1 (ja)
JP (3) JP4639150B2 (ja)
KR (3) KR101158533B1 (ja)
CN (3) CN101200728B (ja)
AT (3) ATE538202T1 (ja)
AU (3) AU2004303676B2 (ja)
CA (3) CA2648274C (ja)
DE (1) DE602004029935D1 (ja)
DK (3) DK2206784T3 (ja)
MY (1) MY140210A (ja)
SG (1) SG143259A1 (ja)
TW (3) TW201142021A (ja)
WO (1) WO2005061713A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010485A1 (ja) * 2009-07-22 2011-01-27 石川県 エイコサノイド生産方法、並びにゼニゴケ由来のエイコサノイド生合成系遺伝子及びその利用
JP2011041539A (ja) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The ゼニゴケの長鎖多不飽和脂肪酸の生産方法
JP2011519552A (ja) * 2008-04-25 2011-07-14 ビーエーエスエフ プラント サイエンス ゲーエムベーハー 植物種子油
WO2015025920A1 (ja) * 2013-08-22 2015-02-26 協和発酵バイオ株式会社 アラキドン酸生産ポリケチドシンターゼ及びその利用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529572T3 (es) 2004-04-22 2015-02-23 Commonwealth Scientific And Industrial Research Organisation Síntesis de ácidos grasos poliinsaturados de cadena larga por células recombinantes
CA2563875C (en) 2004-04-22 2015-06-30 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
CN101578363A (zh) 2006-08-29 2009-11-11 联邦科学技术研究组织 脂肪酸的合成
US8809559B2 (en) 2008-11-18 2014-08-19 Commonwelath Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US20120100550A1 (en) * 2009-03-04 2012-04-26 University Of Miyazaki Method for determining fatty acid synthesis pathway of microorganism, and pcr primer set for use in the method
WO2013113030A2 (en) * 2012-01-26 2013-08-01 Cornell University Fads regulation
PL2861059T3 (pl) 2012-06-15 2017-10-31 Commw Scient Ind Res Org Wytwarzanie długołańcuchowych wielonienasyconych kwasów tłuszczowych w komórkach roślinnych
KR102535223B1 (ko) 2013-12-18 2023-05-30 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 장쇄 다중불포화 지방산을 포함하는 지질
CN105219789B (zh) 2014-06-27 2023-04-07 联邦科学技术研究组织 包含二十二碳五烯酸的提取的植物脂质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695937A (en) 1995-09-12 1997-12-09 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression
JP2003509050A (ja) * 1999-09-10 2003-03-11 セラニーズ ベンチャーズ ゲー・エム・ベー・ハー テトラヒメナから得られるδ−6−デサチュラーゼをコードする核酸、その産生と使用
JP2003523746A (ja) * 2000-02-09 2003-08-12 ビーエーエスエフ アクチェンゲゼルシャフト 新規エロンガーゼ遺伝子および高度不飽和脂肪酸の生産方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2222462T3 (es) * 1993-12-28 2005-02-01 Kirin Beer Kabushiki Kaisha Gen que codifica acido graso-desaturasa, vector que contiene dicho gen, planta que contiene dicho gen transferido a ella y procedimiento para crear dicha planta.
DE50013231D1 (de) 1999-06-07 2006-09-07 Basf Plant Science Gmbh Delta6-acetylenase und delta6-desaturase aus ceratodon purpureus
DE10102337A1 (de) * 2001-01-19 2002-07-25 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren, neue Biosynthesegene sowie neue pflanzliche Expressionskonstrukte
CA2689808A1 (en) 2001-05-14 2002-11-21 Martek Biosciences Corporation Production and use of a polar lipid-rich fraction containing stearidonic acid and gamma linolenic acid from plant seeds and microbes
EP1576166B1 (en) * 2002-12-19 2014-10-15 University Of Bristol Novel method for the production of polyunsaturated fatty acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695937A (en) 1995-09-12 1997-12-09 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression
JP2003509050A (ja) * 1999-09-10 2003-03-11 セラニーズ ベンチャーズ ゲー・エム・ベー・ハー テトラヒメナから得られるδ−6−デサチュラーゼをコードする核酸、その産生と使用
JP2003523746A (ja) * 2000-02-09 2003-08-12 ビーエーエスエフ アクチェンゲゼルシャフト 新規エロンガーゼ遺伝子および高度不飽和脂肪酸の生産方法

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
AKIHIRO YAMADA: "Seibutsu-Kagaku Jikken-ho", 1989, GAKKAI SHUPPAN CENTER
AMINE ABBADI ET AL., PLANT CELL, vol. 16, 2004, pages 2734 - 2748
ARCH. BIOCHEM. BIOPHYS., vol. 391, 2001, pages 8
BAOXIU QI ET AL., NATURE BIOTECHNOLOGY, vol. 22, 2004, pages 739 - 745
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 255, 1999, pages 575
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 67, 2003, pages 1667
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 67, 2003, pages 605
CELL, vol. 88, 1997, pages 243
CHIOU S.Y. ET AL: "Optimizing production of polyunsaturated fatty acids in Marchantia polymorpha cell suspension culture.", J. BIOTECHNOL., vol. 85, no. 3, 2001, pages 247 - 257, XP002987756 *
FEBS LETT., vol. 439, 1998, pages 215
GENES GENET. SYST., vol. 73, 1998, pages 219
GENETICS, vol. 159, 2001, pages 981
GIRKE T. ET AL: "Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens.", PLANT J., vol. 15, no. 1, 1998, pages 39 - 48, XP000881712 *
HARLOW ET AL.: "Antibodies: A laboratory manual", 1988, COLD SPRING HARBOR LABORATORY
HASHIMOTO-GOTOH, GENE, vol. 152, 1995, pages 271 - 275
IWASAKI ET AL.: "Monoclonal antibody, hybridoma and ELIZA", 1991, KODANSHA
J. BIOL. CHEM., vol. 272, 1997, pages 7376
J. BIOL. CHEM., vol. 274, 1999, pages 37335
J. BIOL. CHEM., vol. 274, 1999, pages 471
J. BIOL. CHEM., vol. 278, 2003, pages 35115
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
KAJIKAWA M. ET AL: "Isolation and characterization of delta(6)-desaturase, an ELO-like enzyme and delta(5)-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris.", PLANT MOL. BIOL., vol. 54, no. 3, February 2004 (2004-02-01), pages 335 - 352, XP002987758 *
LAZO ET AL., BIOTECHNOLOGY, vol. 9, 1991, pages 963 - 967
MICHAELSON L.V. ET AL: "Isolation of a Delta5-fatty acid desaturase gene from Mortierella alpina.", J. BIOL. CHEM., vol. 273, no. 30, 1998, pages 19055 - 19059, XP002076636 *
MITSUHARA ET AL., PLANT CELL PHYSIOL., vol. 37, 1996, pages 45 - 59
NATURE, vol. 389, 1997, pages 300
PLANT CELL PHYSIOL., vol. 36, 1995, pages 1023
PLANT CELL, vol. 7, 1995, pages 309
PLANT J., vol. 31, 2002, pages 255
PLANT J., vol. 5, 1994, pages 81
PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6421
PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 8284
PROG. LIPID RES., vol. 32, 1993, pages 281
SAMBROOK: "Molecular Cloning", 1989, COLD SPRING HARBOUR LABORATORY PRESS
SCIENCE, vol. 270, 1995, pages 484
SCIENCE, vol. 276, 1997, pages 1268
SHINMEN Y. ET AL: "Production of arachidonic-acid and eicosapentaenoic acids by marchantia-polymorpha in cell-culture.", PHYTOCHEMISTRY, vol. 30, no. 10, 1991, pages 3255 - 3260, XP002987757 *
SPERLING P. ET AL: "A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily.", EUR. J. BIOCHEM., vol. 267, no. 12, 2000, pages 3801 - 3811, XP000941309 *
TRANSGENIC RES., vol. 9, 2000, pages L79
VAN ENGELEN ET AL., TRANSGENIC RESEARCH, vol. 4, 1995, pages 288
VAN ENGELEN ET AL., TRANSGENIC RESEARCH, vol. 4, 1995, pages 288 - 290
YASUHIKO FUJINO: "Seibutsu-Kagaku Jikken-ho", 1978, GAKKAI SHUPPAN CENTER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519552A (ja) * 2008-04-25 2011-07-14 ビーエーエスエフ プラント サイエンス ゲーエムベーハー 植物種子油
WO2011010485A1 (ja) * 2009-07-22 2011-01-27 石川県 エイコサノイド生産方法、並びにゼニゴケ由来のエイコサノイド生合成系遺伝子及びその利用
JP2011041539A (ja) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The ゼニゴケの長鎖多不飽和脂肪酸の生産方法
WO2015025920A1 (ja) * 2013-08-22 2015-02-26 協和発酵バイオ株式会社 アラキドン酸生産ポリケチドシンターゼ及びその利用
JPWO2015025920A1 (ja) * 2013-08-22 2017-03-02 協和発酵バイオ株式会社 アラキドン酸生産ポリケチドシンターゼ及びその利用

Also Published As

Publication number Publication date
CA2648274A1 (en) 2005-07-07
AU2004303676A2 (en) 2005-07-07
CA2648274C (en) 2013-06-25
AU2004303676A1 (en) 2005-07-07
MY140210A (en) 2009-11-30
AU2010203054B2 (en) 2011-12-22
AU2004303676B2 (en) 2008-06-05
KR20110079779A (ko) 2011-07-07
EP2206783B1 (en) 2011-12-21
EP2206784B1 (en) 2011-11-23
JPWO2005061713A1 (ja) 2007-12-13
KR20110079780A (ko) 2011-07-07
ATE538202T1 (de) 2012-01-15
DK2206784T3 (da) 2011-12-19
SG143259A1 (en) 2008-06-27
JP2011000123A (ja) 2011-01-06
CN101200728A (zh) 2008-06-18
JP4639150B2 (ja) 2011-02-23
JP5064544B2 (ja) 2012-10-31
CN1898383B (zh) 2011-04-13
ATE486939T1 (de) 2010-11-15
CA2550489C (en) 2013-02-19
AU2007221961A1 (en) 2007-11-01
CN1898383A (zh) 2007-01-17
CA2550489A1 (en) 2005-07-07
TW201142021A (en) 2011-12-01
DK2206783T3 (da) 2012-02-27
AU2007221961B2 (en) 2010-09-30
KR101110972B1 (ko) 2012-04-04
US7915487B2 (en) 2011-03-29
EP2206783A1 (en) 2010-07-14
KR20070009550A (ko) 2007-01-18
KR101158533B1 (ko) 2012-06-21
JP5064543B2 (ja) 2012-10-31
TW200525030A (en) 2005-08-01
ATE534740T1 (de) 2011-12-15
AU2010203054A1 (en) 2010-08-12
KR101156092B1 (ko) 2012-06-21
EP2206784A1 (en) 2010-07-14
CA2773169A1 (en) 2005-07-07
US20130152229A1 (en) 2013-06-13
US20080057495A1 (en) 2008-03-06
CN101942466B (zh) 2012-06-06
DK1712626T3 (da) 2010-12-06
DE602004029935D1 (de) 2010-12-16
EP1712626A4 (en) 2008-05-14
EP1712626B1 (en) 2010-11-03
EP1712626A1 (en) 2006-10-18
JP2010279387A (ja) 2010-12-16
TW201142022A (en) 2011-12-01
US20110191906A1 (en) 2011-08-04
CA2773169C (en) 2013-10-15
CN101200728B (zh) 2011-02-09
US8293978B2 (en) 2012-10-23
CN101942466A (zh) 2011-01-12
US8962925B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
US8962925B2 (en) Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
WO2011010485A1 (ja) エイコサノイド生産方法、並びにゼニゴケ由来のエイコサノイド生合成系遺伝子及びその利用
CN113412332A (zh) 用于在植物中产生高水平pufa的改进方法
JP4691032B2 (ja) Δ5脂肪酸不飽和化活性を有するポリペプチドおよびそのポリペプチドをコードするポリヌクレオチドならびにそれらの利用
CN112996915A (zh) 用于在植物中产生高水平pufa的改进方法
Napier Delta 6-desaturases From Primulaceae, Expressing Plants And Pufa-containing Oils (Patent WO 2003/072784 A1)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038471.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2550489

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005516506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004303676

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 4150/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020067014762

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004807553

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004303676

Country of ref document: AU

Date of ref document: 20041222

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004303676

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004807553

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014762

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10584082

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10584082

Country of ref document: US