WO2005057565A1 - 回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置 - Google Patents

回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置 Download PDF

Info

Publication number
WO2005057565A1
WO2005057565A1 PCT/JP2004/017937 JP2004017937W WO2005057565A1 WO 2005057565 A1 WO2005057565 A1 WO 2005057565A1 JP 2004017937 W JP2004017937 W JP 2004017937W WO 2005057565 A1 WO2005057565 A1 WO 2005057565A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
diffraction structure
light
diffraction
Prior art date
Application number
PCT/JP2004/017937
Other languages
English (en)
French (fr)
Inventor
Tohru Kimura
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to GB0518121A priority Critical patent/GB2414813B/en
Publication of WO2005057565A1 publication Critical patent/WO2005057565A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/139Numerical aperture control means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Diffractive optical element objective optical system
  • optical pickup device optical information recording / reproducing device
  • the present invention relates to a diffractive optical element, an objective optical system, an optical pickup device, and an optical information recording / reproducing device, and more particularly, to recording information on an optical information recording medium using light beams emitted from light sources having different wavelengths.
  • the present invention relates to an optical pickup device, an optical information recording / reproducing device, and a diffractive optical element and an objective optical system suitable for use therein.
  • an optical pickup device capable of performing recording Z reproduction on a plurality of types of optical discs having different recording densities.
  • a DVD digital versatile disk
  • a CD compact disk
  • a high-density optical disk using a blue-violet laser light source for example, a blue-violet semiconductor laser or a blue-violet SHG laser
  • a blue-violet laser Optical discs that use laser light sources are collectively referred to as “high-density optical discs” and optical pickup devices that are compatible with conventional DVDs and even CDs.
  • Patent Document 1 JP 2001-60336 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-298422
  • Patent Document 3 JP 2001-93179 A
  • the technology described in the above patent document uses a secondary (or tertiary) diffracted light as a recording Z reproducing beam for a high-density optical disk, and a primary (or tertiary) beam as a DVD recording Z reproducing beam.
  • This is a technology that uses a beam with a diffraction order lower than the diffraction order of the recording / playback beam on a high-density optical disc as a beam for recording / playback on a DVD, such as by using (second-order) diffracted light.
  • this technique it is possible to suppress a change in a focus position with respect to a minute wavelength change in a blue-violet wavelength region while securing a high diffraction efficiency for a recording Z reproduction beam of each optical disc.
  • the wavelength ⁇ of the recording Z reproducing beam of the high-density optical disk is set as DVD ⁇ Set the wavelength of the reproduction beam to 2, and the wavelength ⁇
  • the present invention has been made in view of the problems of the prior art that is powerful, and uses a plurality of types of optical discs having different recording densities using light beams of a plurality of types of light sources having large wavelength differences. While recording and Z or reproducing information, the tolerance for the wavelength of the laser light source
  • An object of the present invention is to provide an optical pickup device, an optical information recording / reproducing device, a diffractive optical element used for the same, and an objective optical system which can be largely secured.
  • information can be recorded and z / reproduced properly on multiple types of optical discs with different recording densities by using light beams of multiple types of light sources with large wavelength differences, and stable even when the temperature changes. It is also an object of the present invention to provide an optical pickup device, an optical information recording / reproducing device, a diffractive optical element used therefor, and an objective optical system that can record and Z or reproduce information.
  • the second diffraction structure that generates diffracted light of order ⁇ ( ⁇ ⁇ ⁇ ) is formed.
  • a diffractive optical element having at least one optical surface formed and each satisfying the following expression (1).
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ ⁇ ⁇ — 1
  • the spherical aberration caused by the difference in the thickness of the protective layer between the high-density optical disc of the 0.1 mm standard and the DVD for example, due to the action of the first diffraction structure.
  • Correction spherical aberration caused by chromatic dispersion due to the wavelength difference between the blue-violet wavelength and the red wavelength, and small fluctuations in the focus position due to minute wavelength changes in the blue-violet wavelength region. It becomes.
  • the diffraction structure generally has a large wavelength dependence of the spherical aberration, the spherical aberration changes greatly with respect to the wavelength change of the incident light beam of about 1Onm.
  • the value of the above equation (18) should be close to 1 so that When the diffraction order of each light is selected, or for a 0.1 mm high-density optical disc using an NAO.85 objective optical system, the tolerance for the wavelength of the blue-violet laser light source becomes tight, When the wavelength of the blue-violet laser light source changes with this, stable recording / reproducing characteristics for a high-density optical disc cannot be obtained.
  • the ratio of the wavelength to the optical path length is determined.
  • FIG. 1 is a schematic configuration diagram of a first optical pickup device PU1 according to the present embodiment.
  • FIG. 2 is a diagram showing a relationship between a numerical aperture ⁇ and an optical path difference.
  • FIG. 3 is a schematic configuration diagram of a second optical pickup device PU2 according to the present embodiment.
  • FIG. 4 is a cross-sectional view of the objective lens of Example 1.
  • FIG. 5 is a cross-sectional view of the objective lens of Example 2.
  • FIG. 6 is a cross-sectional view of the objective lens of Example 3.
  • a diffractive optical element having at least one optical surface and satisfying the following expression (4).
  • the order ⁇ of the diffracted light generated when the light beam having the wavelength ⁇ passes through the first diffraction structure, and the wavelength
  • the change in spherical aberration with respect to the change in the wavelength of the incident light beam of about ⁇ 10 nm in the blue-violet wavelength region is suppressed to a small value, and the tolerance for the oscillation wavelength of the blue-violet laser light source is relaxed.
  • This makes it possible to improve the yield in mass production of the blue-violet laser light source and to reduce the manufacturing cost of the blue-violet laser light source and the optical pickup device.
  • even when the temperature changes it is possible to stably perform information recording and reproduction on a high-density optical disk.
  • the second diffraction structure that generates diffracted light of order ⁇ ( ⁇ ⁇ ⁇ ) is formed.
  • a diffractive optical element having at least one optical surface formed and each satisfying the following expression (5).
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ ⁇ ⁇ ⁇ ( ⁇ — 1) ⁇ (3), where ⁇ and ⁇ are
  • the refractive index of the second diffraction structure, INT (X), is the integer closest to X.
  • the diffraction structure having a negative sign of 1 2 XI 2 XI 2 has a wavelength dependence of spherical aberration in which spherical aberration changes in an overcorrected direction when the wavelength of an incident light beam changes to a longer wavelength side.
  • a diffractive structure with a positive sign of ⁇ ( ⁇ ) ⁇ ⁇ changes the wavelength of the incident light beam to longer wavelengths.
  • the spherical aberration has a wavelength dependence in which the spherical aberration changes in a direction of undercorrection.
  • the wavelength dependence of the spherical aberration with respect to the wavelength change of the incident light beam of about ⁇ 10 nm in the blue-violet wavelength region is controlled.
  • even when the temperature changes it is possible to stably record and reproduce information on a high-density optical disc.
  • the fourth-order optical path difference function coefficient B of the second diffraction structure has a finite non-zero value.
  • (Claim 4) The diffractive optical element according to any one of (Claim 1) to (Claim 3) is characterized in that one of the following expressions (6) and (7) is satisfied.
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ (2)
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • both the first diffraction structure and the second diffraction structure are divided by a step in an optical axis direction. It is composed of a plurality of concentric annular zones, and has a depth d of a step closest to the optical axis among the annular zones of the first diffraction structure, and a depth d of a step closest to the optical axis among the annular zones of the second diffraction structure. Equation (8) where the depth d is
  • the condition of equation (8) is equivalent to making the manufacturing wavelengths of the first diffraction structure and the second diffraction structure different. This makes it possible to make the diffraction effects of the first diffraction structure and the second diffraction structure different, so that the wavelength dependence of the spherical aberration with respect to the change in the wavelength of the incident light beam of about ⁇ 10 nm in the blue-violet wavelength region is controlled. Alternatively, it is possible to reduce the size.
  • the diffractive optical element according to any one of (Item 1) to (Item 5) is characterized by satisfying the following expressions (9) and (10).
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • the diffraction angles of the first light beam and the second light beam in the second diffraction structure can be made substantially the same, so that the wavelength and the spherical aberration characteristics of the wavelength are not affected.
  • the diffractive optical element of (Claim 7) when the wavelength ratio of the first light flux to the second light flux is larger than 1.3 as shown in the equation (11), the equations (12) and (13) are satisfied.
  • the equations (12) and (13) are satisfied.
  • the diffraction structure determined to use the diffracted lights having different diffraction orders as the recording / reproducing beams of the respective optical discs has a larger wavelength dependence of the spherical aberration than the case where the diffraction light having the same diffraction order is used.
  • the second diffraction structure controls the wavelength dependence of spherical aberration with respect to a change in the wavelength of an incident light beam of about ⁇ 10 ⁇ m in the blue-violet wavelength region, or Since the configuration is set to be small, the tolerance for the oscillation wavelength of the blue-violet laser light source can be relaxed. In addition, even when the temperature changes, it is possible to stably perform information recording and reproduction on a high-density optical disk.
  • the wavelength ⁇ is in the range of 350 nm to 450 nm, and the wavelength is in the range of 600 nm to 700 nm.
  • the first diffraction structure receives a third light beam having a wavelength (nm) ( ⁇ > ⁇ ). ⁇ order ( ⁇ ⁇
  • a recording beam for a DVD a recording beam for a high-density optical disc, a diffracted light having a lower diffraction order than that of the reproducing beam, and a reproducing beam for a CD are used.
  • the same diffraction order or lower diffraction order as the recording Z reproduction beam for DVD as the Z reproduction beam it is possible to secure high diffraction efficiency in the wavelength region of each optical disc. It becomes.
  • the diffractive optical element described in (Item 9) is characterized in that one of the following expressions (14) and (15) is satisfied.
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • the wavelength is in a range of 350 nm to 450 nm, the wavelength is in a range of 600 nm to 700 nm, and the wave is
  • the length is in the range of 750 nm to 850 nm, and when i is 1 or 2,
  • the reference wavelength power is about 10 (nm). Diffraction of diffraction efficiency is too large for wavelength change.
  • the first light flux of the wavelength (nm) is condensed on the information recording surface of the first optical disc having the protective layer of thickness tl, and the light of the wavelength ( ⁇ ) ( ⁇ > ⁇ ) Protection of the second luminous flux with thickness t (t ⁇ t)
  • Optical structure with a second diffraction structure that generates nth-order (n ⁇ n) diffracted light
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are These are the refractive indices of the second diffraction structure with respect to ⁇ and ⁇ , respectively.
  • the operation and effect of the objective optical system are the same as those of the diffractive optical element described in (1).
  • the first light beam of the wavelength (nm) is condensed on the information recording surface of the first optical disc having the protective layer of thickness t, and the first light beam of the wavelength ( ⁇ ) ( ⁇ > ⁇ ) is collected.
  • the n-th order diffracted light is generated, and the second light beam enters.
  • Optical structure with a second diffraction structure that generates nth-order (n ⁇ n) diffracted light
  • the first light beam of the wavelength (nm) is condensed on the information recording surface of the first optical disc having the protective layer of thickness t, and the first light beam of the wavelength ( ⁇ ) ( ⁇ > ⁇ ) is collected.
  • the n-th order diffracted light is generated, and the second light beam enters.
  • Optical structure with a second diffraction structure that generates nth-order (n ⁇ n) diffracted light
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • the n-th order diffracted light is generated, and the second light beam enters.
  • Optical structure with a second diffraction structure that generates nth-order (n ⁇ n) diffracted light
  • the first diffraction structure has a spherical surface generated due to the difference between the thickness t and the thickness t.
  • the second diffraction structure has a function of correcting a difference, and the second diffraction structure has a function of controlling spherical aberration generated in the first diffraction structure when the wavelength ⁇ changes within a range of ⁇ 10 nm. I do.
  • a 0.1 mm standard high-density optical disk using an NAO.85 objective optical system has a wavelength corresponding to the oscillation wavelength of the blue-violet laser light source.
  • the tolerances will be tight.
  • the wavelength tolerance of the blue-violet laser light source becomes tighter and the wavelength of the blue-violet laser light source changes due to a change in temperature, stable recording / reproducing characteristics for a high-density optical disc cannot be obtained.
  • the second diffraction structure is used to suppress a change in spherical aberration with respect to a change in the wavelength of an incident light beam of about ⁇ 10 nm in a blue-violet wavelength region.
  • controlling spherical aberration refers to spherical aberration.
  • the case where the spherical aberration remains for a predetermined reason is also included.
  • the spherical aberration is left for a predetermined reason, for example, in order to compensate for a change in the light-collecting characteristics of the objective optical system due to a temperature change, the spherical power is shifted to a longer wavelength side.
  • the objective optical system has a spherical aberration dependency such that the aberration changes in the direction of undercorrection.
  • the first light flux of the wavelength (nm) is condensed on the information recording surface of the first optical disk having the protective layer of thickness t, and the first light flux of the wavelength (nm) ( ⁇ > ⁇ ) is collected. (2) protect the luminous flux with a protective layer of thickness t
  • the n-th order diffracted light is generated, and the second light beam enters.
  • Optical structure with a second diffraction structure that generates nth-order (n ⁇ n) diffracted light
  • the first diffraction structure due to chromatic dispersion due to the wavelength difference between the wavelength ⁇ and the ⁇
  • the second diffraction structure has a function of correcting the generated spherical aberration, and the second diffraction structure has a function of controlling the spherical aberration generated by the first diffraction structure when the wavelength ⁇ changes within a range of ⁇ 1 Onm. It is characterized by the following.
  • the spherical aberration change with respect to the wavelength change of the incident light beam of about ⁇ 10 nm in the blue-violet wavelength region is utilized by using the second diffraction structure. I try to keep it small. As a result, it is possible to improve the yield in mass production of the blue-violet laser light source and to reduce the manufacturing cost of the blue-violet laser light source and the optical pickup device. In addition, even when the temperature changes, it is possible to stably record and reproduce information on a high-density optical disc.
  • the second diffractive structure may be configured such that when the wavelength is changed within a range of ⁇ 10 nm, Since it has the function of suppressing the spherical aberration generated by one diffraction structure to a small extent, it is possible to relax the tolerance for the oscillation wavelength of the blue-violet laser light source.
  • the wavelength is changed to a longer wavelength within a range of +10 nm.
  • the spherical aberration characteristic is such that the spherical aberration changes in the direction of undercorrection, so that it is possible to compensate for a change in the light-collecting characteristic of the objective optical system caused by a temperature change.
  • the objective optical system according to (Claim 18) is characterized by having at least one plastic lens, so that it is inexpensive but causes a change in the refractive index due to a temperature change.
  • the disadvantage of the plastic material can be compensated by utilizing the function of the second diffraction structure.
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇
  • is the refractive index of the first diffraction structure with respect to
  • Each of the first diffraction structure and the second diffraction structure is constituted by a plurality of concentric annular zones divided by a step in an optical axis direction, and the annular zone of the first diffraction structure is provided.
  • the depth d of the step closest to the optical axis and the depth d of the step closest to the optical axis in the annular zone of the second diffraction structure satisfy the following expression (8): system.
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • the function and effect of the objective optical system are the same as those of the diffractive optical element described in (7).
  • the wavelength is in a range of 350 nm to 450 nm, and the wavelength is in a range of 600 nm to 700 nm.
  • the first diffraction structure receives a third light beam having a wavelength (nm) ( ⁇ > ⁇ ). ⁇ order ( ⁇ ⁇
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • the wavelength is in a range of 350 nm to 450 nm, the wavelength is in a range of 600 nm to 700 nm, and the wave is
  • the length is in the range of 750 nm to 850 nm, and when i is 1 or 2,
  • a diffractive optical element having an optical surface on which the first diffractive structure is formed, and an optical surface on which the second diffractive structure is formed, and the first light beam transmitted through the diffractive optical element And a condensing element for condensing the second light flux on the information recording surfaces of the first optical disc and the second optical disc, respectively, wherein the diffractive optical element and the condensing element are integrally formed.
  • Characteristic objective optics A first light source that emits a first light beam of a wavelength (nm), and a first light source (nm) ( ⁇ > ⁇ )
  • a second light source that emits a second light beam, and the first light beam are focused on the information recording surface of a first optical disk having a protective layer having a thickness of t to perform information recording and Z or reproduction.
  • the second light flux is transferred to the information recording surface of a second optical disc having a protective layer having a thickness t (t> t).
  • optical pickup device having an objective optical system for recording and Z or reproducing information by condensing light on the optical pickup device
  • the objective optical system generates an nth-order diffracted light when the first light flux enters
  • An optical pickup device having at least one optical surface having a structure formed therein and satisfying the following expression (1).
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ (2)
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ (3)
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • a second light source that emits a second light beam, and the first light beam are focused on the information recording surface of a first optical disk having a protective layer having a thickness of t to record or reproduce information or Z or information.
  • the second light flux is transferred to the information recording surface of a second optical disc having a protective layer having a thickness t (t> t).
  • optical pickup device having an objective optical system for recording and Z or reproducing information by condensing light on the optical pickup device
  • the objective optical system generates an nth-order diffracted light when the first light flux enters
  • the second diffraction that generates the n-th order (n ⁇ n) diffracted light It has at least one optical surface on which a structure is formed, and satisfies the following expression (4).
  • An optical pickup device having at least one formed optical surface and satisfying the following expression (5).
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ (2)
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ (3)
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • a second light source that emits a second light beam, and the first light beam are focused on the information recording surface of a first optical disk having a protective layer having a thickness of t to perform information recording and Z or reproduction.
  • the second light flux is transferred to the information recording surface of a second optical disc having a protective layer having a thickness t (t> t).
  • optical pickup device having an objective optical system for recording and Z or reproducing information by condensing light on the optical pickup device
  • the objective optical system generates an nth-order diffracted light when the first light flux enters
  • At least one optical surface on which a structure is formed wherein the first diffraction structure has a function of correcting spherical aberration generated due to the difference between the thickness t and the thickness t, Said
  • the second diffraction structure has a function of controlling a spherical aberration generated in the first diffraction structure when the wavelength changes within a range of ⁇ 10 nm.
  • a first light source that emits a first light beam with a wavelength (nm) and a wavelength (nm) ( ⁇ > ⁇
  • a second light source that emits a second light beam, and the first light beam are focused on the information recording surface of a first optical disk having a protective layer having a thickness of t to perform information recording and Z or reproduction.
  • the second light flux is transferred to the information recording surface of a second optical disc having a protective layer having a thickness t (t> t).
  • optical pickup device having an objective optical system for recording and Z or reproducing information by condensing light on the optical pickup device
  • the objective optical system generates an nth-order diffracted light when the first light flux enters
  • At least one optical surface with the structure formed is formed
  • the first diffraction structure due to chromatic dispersion due to the wavelength difference between the wavelength ⁇ and the ⁇
  • the second diffraction structure has a function of correcting the generated spherical aberration, and the second diffraction structure has a function of controlling the spherical aberration generated by the first diffraction structure when the wavelength ⁇ changes within a range of ⁇ 1 Onm. It is characterized by the following.
  • the second diffraction structure may be configured such that when the wavelength is changed within a range of ⁇ 10 nm, (1) It is characterized by having the function of suppressing the spherical aberration generated by the diffraction structure to a small value.
  • the operation and effect of the present optical pickup device are the same as those of the objective optical system described in (17).
  • the objective optical system may be configured such that the wavelength is changed to a longer wavelength within a range of +10 nm.
  • the optical pickup device according to the present invention is characterized in that the optical pickup device has a spherical aberration characteristic such that the spherical aberration changes in a direction of insufficient correction.
  • the operation and effect of the optical pickup device are the same as those of the objective optical system described in (18).
  • the optical pickup device described in (Item 35) is characterized in that it has at least one plastic lens.
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ ⁇ X / (N -1) ⁇ (3)
  • N and N are the refractive indices of the first diffraction structure with respect to each other, and N and N are the
  • both the first diffraction structure and the second diffraction structure are divided by a step in an optical axis direction. It is composed of a plurality of concentric annular zones, and has a step depth d closest to the optical axis among the annular zones of the first diffraction structure, and a depth d closest to the optical axis among the annular zones of the second diffraction structure.
  • the depth d of the step is
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • optical pickup device The operational effects of the optical pickup device are the same as those of the diffractive optical element described in (6).
  • the wavelength is in a range of 350 nm to 450 nm, and the wavelength is in a range of 600 nm to 700 nm.
  • the first diffractive structure includes a third light beam having a wavelength ( ⁇ ) ( ⁇ > ⁇ ). ⁇ order ( ⁇ ) ( ⁇ > ⁇ ).
  • the second diffractive structure emits the third light beam when the third light beam enters.
  • ⁇ ⁇ ⁇ - ⁇ ⁇ ( ⁇ -1) ⁇ / ⁇ - ⁇ ⁇ ( ⁇ —1) ⁇ (17)
  • ⁇ and ⁇ are the refractive indices of the first diffraction structure with respect to ⁇ and ⁇ , respectively, and ⁇ and ⁇ are
  • optical pickup device The operation and effect of the optical pickup device are the same as those of the diffractive optical element described in (10).
  • the wavelength ⁇ is in a range of 350 nm to 450 nm, the wavelength is in a range of 600 nm to 700 nm, Previous
  • the wavelength is in the range of 750 nm to 850 nm, and when i is 1 or 2, the n
  • the optical surface on which the first diffraction structure is formed and the second diffraction structure are different from each other.
  • a diffractive optical element having an optical surface formed thereon, and focusing the first light beam and the second light beam transmitted through the diffractive optical element on the information recording surfaces of the first optical disc and the second optical disc, respectively.
  • the diffractive optical element and the condensing element are integrally formed.
  • (Claim 46) The optical pickup device according to any one of (Claim 29) to (Claim 45) is mounted to record information on the first optical disc and the second optical disc and to record the first optical disc. And an optical information recording / reproducing apparatus capable of executing at least one of reproducing information recorded on a second optical disc.
  • the "diffraction structure" used herein refers to a portion provided with a diffraction pattern on the surface of an optical element and having a function of condensing or diverging an incident light beam by diffraction. ⁇ ⁇
  • the shape of the diffraction pattern is a plurality of concentric annular zones divided by a step in the direction of the optical axis, and when viewed in cross section on a plane including the optical axis, each annular zone has a sawtooth shape or a step shape. There is something.
  • a high-density optical disk or a first optical disk is an optical disk of the 0.1 mm standard represented by a Blu-ray Disc (BD), or an optical disk represented by an HD DVD.
  • BD Blu-ray Disc
  • An optical disk that uses a blue-violet laser light source such as a 6 mm optical disk.
  • the high-density optical disk or the first optical disk includes an optical disk having a protective film having a thickness of about several tens of nm on the information recording surface, or an optical disk having a protective layer having a thickness of zero.
  • a magneto-optical disk includes various DVD-type optical disks such as DVD-ROM, DVD-Video, DVD-Audio, DVD ⁇ R, DVD-RAM, and DVD RW.
  • the third optical disk includes various CD-type optical disks such as CD-Audio, CD-ROM, CD-R, and CD-RW.
  • FIG. 1 is a diagram schematically showing a configuration of a first optical pickup device PU 1 capable of appropriately recording and reproducing information Z from a high-density optical disk HD (first optical disk) and a DVD (second optical disk).
  • the thickness t of the protective layer PL2 is 0.6 mm, and the numerical aperture NA is 0.65. However, the wavelength,
  • the combination of the thickness of the protective layer and the numerical aperture is not limited to this.
  • the optical pickup device PU1 includes a blue-violet semiconductor laser LD1 for emitting a first light beam, a red semiconductor laser LD2 for emitting a second light beam, and a light beam shared by a high-density optical disc HD and a DVD.
  • the beam shaping element BSH for shaping the cross-sectional shape of the laser beam emitted from the detector PD and the blue-violet semiconductor laser LD1 into an elliptical force with a circular shape, the first collimating optical system COLl, the second collimating optical system COL2, 2-axis actuator AC, 1st objective optical system OBJl, 1st beam compiler BC1, 2nd beam compiler BC2, aperture ST corresponding to numerical aperture NA1 of high-density optical disc HD, dichroic filter DF, sensor optical system SEN, etc. Force is composed.
  • a blue-violet SHG laser may be used in addition to the blue-violet semiconductor laser LD1 described above.
  • the blue-violet semiconductor laser LD1 is used as shown in FIG.
  • the emitted divergent light beam is formed into a substantially parallel light beam through the first collimating optical system COL1 after the cross-sectional shape of the emitted divergent light beam is shaped by the beam shaping element BSH into an elliptical force, and the beam is converted into a substantially parallel light beam.
  • a spot formed on the information recording surface RL1 via the protective layer PL1 of the high-density optical disc HD by the first objective optical system OBJ1 is transmitted through the beam complier BC2, the beam diameter is regulated by the stop ST, and Become.
  • the first objective optical system OBJ 1 performs focusing and tracking by a two-axis actuator AC arranged around the first objective optical system OBJ 1.
  • the reflected light flux modulated by the information pits on the information recording surface RL1 passes through the first objective optical system OBJl and the aperture ST again, is reflected by the second beam complier BC2, and converges through the sensor optical system SEN. It becomes a light beam and is given astigmatism, and converges on the light receiving surface of the photodetector PD. Then, the information recorded on the high-density optical disk HD can be read using the output signal of the photodetector PD.
  • the light is emitted from the red semiconductor laser LD2 as indicated by the dotted line in FIG.
  • the divergent light beam is converted into a substantially parallel light beam through the second collimating optical system COL2, reflected by the first beam compinator BC1, then transmitted through the second beam compinator BC2, and passed through the dichroic filter DF. Is regulated, and the spot is formed on the information recording surface RL2 by the first objective optical system OBJ1 via the DVD protective layer PL2.
  • the first objective optical system OBJ1 performs focusing and tracking by a two-axis actuator AC arranged around it.
  • the reflected light flux modulated by the information pits on the information recording surface RL2 passes through the first objective optical system OBJl, the dichroic filter DF, and the aperture ST again, is reflected by the second beam compinator BC2, and passes through the sensor optical system SEN.
  • the light beam becomes a convergent light beam and is given astigmatism, and converges on the light receiving surface of the photodetector PD.
  • information recorded on the DVD can be read using the output signal of the photodetector PD.
  • the first objective optical system OBJ1 is an aspheric surface of NAO.85, which has an aberration correction element L1 which is a plastic lens and a function of condensing the laser beam transmitted through this aberration correction element L1 onto the information recording surface of the optical disk. And a light condensing element L2 which is a glass lens.
  • a blazed first diffraction structure DOE1 composed of a plurality of annular zones having a sawtooth cross section including the optical axis is formed. .
  • the optical surface S2 on the optical disk side of the aberration correction element L1 has a plurality of zonal forces having a sawtooth cross-sectional shape including the optical axis.
  • Diffraction structure DOE2 is formed. Further, the dichroic filter DF, the aberration correction element L1, and the light condensing element L2 are integrally formed via a holding member B.
  • the first diffraction structure DOE1 is a structure for correcting spherical aberration caused by a difference between the thickness t of the protective layer PL1 of the high-density optical disc HD and the thickness t of the protective layer PL2 of the DVD.
  • the first diffraction structure DOE1 is formed on an aspherical surface in order to satisfactorily correct strong spherical aberration. Also, the diffraction order n of the beam for recording Z reproduction of the high-density optical disc HD, and
  • the first diffraction structure DOE1 has a ratio of the optical path lengths of the first light flux and the second light flux expressed by the above equation (2).
  • the spherical aberration characteristic changes in the overcorrected direction.
  • the second diffraction structure DOE2 has a spherical aberration characteristic in which the spherical aberration changes in the direction of insufficient correction due to the shift of the incident light beam to the longer wavelength side.
  • beams of different diffraction orders are generated for two wavelengths having a large wavelength difference, and a value close to the ratio of the optical path lengths of the first light flux and the second light flux ⁇ ⁇ 1st to have
  • the amount of change in spherical aberration per unit wavelength change is large, but by giving the second diffraction structure DOE2 a spherical aberration characteristic opposite to that of the first diffraction structure DOE1, the solid line in FIG. 2 (c ), The wavelength dependence of the spherical aberration can be offset.
  • Fig. 3 shows the configuration of the second optical pickup device PU2 that can appropriately record information and reproduce Z information on a high-density optical disk HD (first optical disk), DVD (second optical disk), and CD (third optical disk). It is a figure which shows schematically.
  • the optical pickup device PU2 is a high-density optical disc module MD1 in which a blue-violet semiconductor laser LD1 for emitting a first light beam and a light detector PD1 are integrated, and a red semiconductor laser for emitting a second light beam.
  • a second beam complier BC2, a diaphragm ST corresponding to the numerical aperture NA1 of the high-density optical disc HD, and a liquid crystal element LCD are also configured.
  • a blue-violet SHG laser can be used in addition to the above-described blue-violet semiconductor laser LD1.
  • the optical pickup device PU2 when performing Z recording of information on the high-density optical disc HD, as shown in FIG.
  • the body laser LD1 emits light.
  • the divergent light beam emitted from the blue-violet semiconductor laser LD1 has its cross-sectional shape shaped into an elliptical force by the beam shaping element BSH, then passes through the first beam compiner BC1, passes through the collimating optical system COL, and becomes substantially parallel light beam Transmitted through the second beam composer BS2, the beam diameter is regulated by the stop ST, transmitted through the liquid crystal element LCD, and recorded by the second objective optical system OBJ2 via the protective layer PL1 of the high-density optical disk HD. It becomes a spot formed on the surface RL1.
  • the second objective optical system OBJ2 performs focusing and tracking by a two-axis actuator AC arranged around the second objective optical system OBJ2.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 passes through the first objective optical system OBJl, the liquid crystal element LCD, the aperture ST, the second beam compinator BC2, and the collimating optical system COL again, and then becomes a convergent light beam
  • the light passes through the first beam composer BS1 and converges on the light receiving surface of the photodetector PD1.
  • the information recorded on the high-density optical disk HD can be read using the output signal of the photodetector PD1.
  • the reflected light flux modulated by the information pits on the information recording surface RL2 again passes through the second objective optical system OBJ2, liquid crystal element LCD, second beam combiner BS1, and collimating optical system COL, and then becomes a convergent light beam, and becomes the first beam.
  • the light is reflected by the compiler BC1 and converges on the light receiving surface of the photodetector PD2. Then, the information recorded on the DVD can be read using the output signal of the photodetector PD2.
  • the infrared semiconductor laser LD3 emits light as indicated by the dashed-dotted line in FIG. Let it.
  • the divergent light beam emitted from the infrared semiconductor laser LD3 is reflected by the second beam combiner BC2, and the light beam diameter is regulated by the liquid crystal element LCD.
  • the spot is formed on the information recording surface RL3 by the optical system OBJ2 via the protective layer PL3 of the CD.
  • the second objective optical system OBJ2 performs focusing and tracking by a two-axis actuator AC arranged around the second objective optical system OBJ2.
  • the reflected light flux modulated by the information pits on the information recording surface RL3 passes through the second objective optical system OBJ2 and the liquid crystal element LCD again, is reflected by the second beam complier, and is reflected on the light receiving surface of the photodetector PD3. Converge. Then, the information recorded on the CD can be read using the output signal of the photodetector PD3.
  • the second objective optical system OBJ2 is composed of an aberration correcting element L1, which is a plastic lens, and an aspherical lens of NAO.85, which has a function of condensing a laser beam transmitted through the aberration correcting element L1 onto an information recording surface of an optical disk.
  • the light collecting element L2 is a plastic lens.
  • a blazed first diffraction structure DOE1 which also includes a plurality of orbicular forces having a sawtooth cross section including the optical axis. .
  • the optical surface S2 on the optical disk side of the aberration correction element L1 has a second diffraction grating composed of a plurality of blazed ring zones each having a sawtooth cross section including the optical axis. Structure D OE2 is formed.
  • the aberration correction element L1 and the condensing element L2 have flanges FL1 and FL2 integrally molded around the respective optical function parts, and a part of the flanges FL1 and FL2 is fitted and bonded.
  • the second objective optical system OBJ2 and the liquid crystal element LCD are further integrated through the holding member B.
  • the first diffraction structure DOE1 is a structure for correcting spherical aberration caused by a difference between the thickness t of the protective layer PL1 of the high-density optical disc HD and the thickness t of the protective layer PL2 of the DVD.
  • the first diffraction structure DOE1 is formed on an aspherical surface in order to satisfactorily correct strong spherical aberration.
  • spherical aberration caused by the difference between the thickness t of the protective layer PL1 of the high-density optical disc HD and the thickness t of the protective layer PL3 of the CD was corrected.
  • magnification m during Z playback is different from the magnification m during information recording on a CD Z playback.
  • a divergent light beam is incident on the second objective optical system OBJ2. Furthermore, the diffraction order n of the recording Z reproduction beam for high-density optical disc HD
  • the first diffraction structure DOE1 has a ratio of the optical path length of the first light flux and the second light flux expressed by the above equation (2),
  • the spherical aberration characteristic When the wavelength of the incident light beam shifts from the design wavelength ⁇ on the high-density optical disk side to the longer wavelength side by ⁇ , the spherical aberration characteristic has a spherical aberration characteristic that changes in the overcorrected direction. Therefore, when the ambient temperature rises, the spherical aberration in the overcorrected direction generated by the light-collecting element L2 changes, and the wavelength shift of the blue-violet semiconductor laser LD1 to the longer wavelength side due to the environmental temperature rise causes the first diffraction structure. Since the spherical aberration change in the overcorrected direction generated in DOE1 is added, it is difficult to perform stable recording / reproduction on the high-density optical disc HD when the environmental temperature rises.
  • the second objective optical system OBJ2 is used. Is obtained by forming the second diffraction structure DOE2 on the optical surface S2 on the optical disk side of the aberration correction element L1, and calculating the ratio of the optical path lengths of the first light beam and the second light beam represented by the above equation (3). ⁇ ⁇ force
  • a high-density optical disk is provided to the second objective optical system OBJ2.
  • spherical aberration characteristics can be provided in which the spherical aberration changes in the direction of undercorrection.
  • the liquid crystal element LCD is used to switch the aperture when recording and reproducing information Z on DVDs and CDs.
  • Such a technique is described in, for example, Japanese Patent Application Laid-Open No. 10-20263. Since it is described and is a well-known technique, a detailed description is omitted here.
  • the aspherical surface in each embodiment is expressed by the following formula, where X (mm) is the deformation from a plane tangent to the vertex of the surface, M mm is the height in the direction perpendicular to the optical axis, and r (mm) is the radius of curvature. Is represented by the number 1. Where ⁇ is the conic coefficient and ⁇ is the aspheric coefficient.
  • the annular structure as a diffractive structure in each embodiment is represented by an optical path difference added to a transmitted wavefront by the annular structure.
  • the optical path difference is represented by h (mm) as the height in the direction perpendicular to the optical axis, B as the optical path difference function coefficient, ⁇ (nm) as the wavelength of the incident light beam, and ⁇ (nm) as the production wavelength.
  • the present embodiment is an optical element suitable as the first objective optical system OBJ1 in the above-described optical pickup device PU1, in which lens data is shown in Table 1, and an optical path diagram is shown in FIG.
  • the optical element of this embodiment is a plastic lens in which the first diffraction structure DOE1 is formed on the optical surface S1 on the laser light source side, and the second diffraction structure DOE2 is formed on the optical surface S2 on the optical disk side.
  • the element L1 and the light condensing element L2, which is a glass lens with Power is also configured.
  • an exponent of 10 eg if, 2. 5 X 10- 3
  • E e.g., 2. 5E 3
  • R (mm) is the paraxial radius of curvature
  • d (mm) is the distance along the optical axis when using a high-density optical disc HD
  • 1 2 is the distance on the optical axis when using DVD, N is the refractive index at the wavelength, and N is the wavelength
  • V represents the Abbe number at d-line.
  • the first diffraction structure DOE1 generates second-order diffracted light with respect to the wavelength, and generates 1st-order diffracted light with respect to the wavelength.
  • the diffraction efficiencies for ⁇ 12 are 97.7% and 93.3%, respectively, indicating high diffraction efficiency for any wavelength.
  • the second diffraction structure DOE2 generates third-order diffracted light with respect to the wavelength, and the second diffractive structure DOE2 generates a third-order diffraction light.
  • This structure generates second-order diffracted light, and its manufacturing wavelength is 420 nm. ⁇ and
  • the diffraction efficiency for ⁇ 1 ⁇ is 95.0% and 94.1%, respectively.
  • Table 2 shows the RMS value of the wavefront aberration at the best image plane (total of the ninth and lower order spherical aberration components) with respect to ⁇ (nm) and ⁇ 5 (nm) of the optical element of this example.
  • ⁇ Comparative Example '' refers to an optical element having the same design wavelength, the same focal length, the same numerical aperture, and the same working distance as the optical element of the present embodiment, and having no second diffraction structure DOE2. It is. From this table, it is possible to secure a sufficiently large tolerance for the oscillation wavelength of the blue-violet laser light source and the red laser light source by using the optical element of this embodiment as the objective optical system.
  • the present embodiment is an optical element suitable as the second objective optical system OBJ2 in the optical pickup device PU2 described above.
  • Lens data is shown in Table 3, and an optical path diagram is shown in FIG.
  • the optical element of the present embodiment is an aberration correction element that is a plastic lens in which the first diffraction structure DOE1 is formed on the optical surface S1 on the laser light source side and the second diffraction structure DOE2 is formed on the optical surface S2 on the optical disk side.
  • L1 and a light condensing element L2 which is a plastic lens having both aspheric surfaces.
  • the first diffraction structure DOE1 generates second-order diffracted light with respect to the wavelength, and generates 1st-order diffracted light with respect to the wavelength.
  • the second diffraction structure DOE2 generates 10th-order diffracted light with respect to the wavelength
  • This structure generates 6th-order diffracted light for 1 2 and 5th-order diffracted light for wavelength.
  • the manufacturing wavelength is 405 nm.
  • Table 4 shows the RMS value of the wavefront aberration at the best image plane when using the high-density optical disc ⁇ D at the temperatures of 25 ° C. and 55 ° C. of the optical element of the present embodiment (the sum of the ninth-order or lower spherical aberration components). ).
  • the wavelength shift due to the temperature rise of the blue-violet semiconductor laser LD1 is +0.05 ⁇ mZ degrees
  • the refractive index change amounts of the aberration correction element L1 and the light condensing element L2 due to the temperature rise are each -1. . 08 X 10- 4 / time, as -0. 9 X 10- 4 / degree! / Ru.
  • the "it comparative example” has the same design wavelength, the same focal length, the same numerical aperture, and the same working distance as the optical element of the present example, and the second diffraction structure DOE2 is formed. This is an optical element that has not been used. From this table, it is possible to improve the recording and Z-reproduction characteristics of the high-density optical disc HD when the environmental temperature changes by using the optical element of this embodiment as the objective optical system.
  • the objective optical systems OBJ1 and OBJ2 are configured by the aberration correction element L1 and the light collection element L2.
  • the first diffraction structure DOE1 And a second diffraction structure DOE2, a high-density optical disc It is an objective optical system that can properly record and reproduce information on HD, DVD, and CD.
  • Table 5 shows lens data of this example
  • FIG. 6 shows an optical path diagram.
  • * 2 ′ represents the displacement from the second surface to the second ′ surface.
  • the optical surface on the light source side has a second surface S2 (center region) including the optical axis, a second surface S2 '(first peripheral region) around the second surface S2,
  • the surrounding area is divided into three areas of a second "surface S2" (second peripheral area).
  • the second surface is a region corresponding to the numerical aperture NA3
  • the second 'surface is a region corresponding to the numerical aperture NA2 from the numerical aperture NA3
  • the second "surface is a region corresponding to the numerical aperture NA2. It is a corresponding area.
  • a first diffraction structure DOE1 is formed on the second surface, and the first diffraction structure DOE1 generates a first-order diffraction light with respect to the wavelength ⁇ , and generates a first-order diffraction light with respect to the wavelength ⁇ .
  • wavelength ⁇ the wavelength of the first diffraction structure DOE1
  • a first-order diffracted light is generated for this, and its production wavelength is 550 nm. ⁇ , ⁇ and
  • the diffraction efficiencies for 3 ⁇ 123 are 60%, 91%, and 72%, respectively.
  • a first diffraction structure DOE1 ' is formed on the second' surface, and the first diffraction structure DOE1 'generates the 0th-order diffracted light with respect to the wavelength and the first diffraction structure with respect to the wavelength. Generates folding light and waves
  • Zero-order diffracted light is generated for the length ⁇ , and the production wavelength ⁇ is 658 nm.
  • the diffraction efficiencies for 3 ⁇ 12 are about 100%, 88%, and 100%, respectively.
  • the second "surface is an aspherical surface on which no diffractive structure is formed, and this aspherical surface shape allows a light beam having a wavelength ⁇ passing through the second" surface to be placed on the information recording surface of the high-density optical disk HD. Optimized to form a good wavefront.
  • correction is performed using the action of the first diffraction structure DOE 1, and in the second ′ plane, correction is performed using the action of the first diffraction structure DOE 1 ′.
  • the first diffraction structure DOE1 ' is a structure in which a pattern with a stepped cross section including the optical axis is arranged on a concentric circle, and for each predetermined number A of level surfaces, it corresponds to the number of level surfaces.
  • the steps are shifted by the height of the number of steps.
  • One step of the stairs is preferably twice as deep as the wavelength ⁇ in terms of optical path difference, and the number ⁇ ⁇ of the predetermined level surfaces is preferably any one of 4, 5, and 6.
  • one step of the staircase By setting one step of the staircase to be twice as deep as the wavelength in terms of optical path difference, the wavefronts of the first light beam that have passed adjacent level surfaces will overlap by two wavelengths. So The light can be transmitted as it is without being affected by diffraction. Also, due to this step, the optical path difference added to the second light beam is 1.2 times the wavelength. The optical path difference for one wavelength, which is the same phase,
  • the second light flux can be diffracted in the primary direction with high diffraction efficiency by arranging the second light flux, and a diffraction structure that selectively diffracts only the second light flux can be obtained.
  • the optical path difference of the second luminous flux in one pattern is one time of the wavelength.
  • the highest transmittance can be ensured for the second light flux.
  • the diffraction efficiency of the diffracted light of the second light flux depends only on the Abbe number of the material, not on the refractive index. Therefore, the refractive index has a relatively high degree of freedom, but the smaller the value of the refractive index is, the deeper the step becomes, and it becomes difficult to accurately manufacture the staircase shape.Therefore, when there are a plurality of materials having the same Abbe number, In this case, it is preferable to select a material with the highest refractive index.
  • the first diffraction structure DOE1 is designed with emphasis on the diffraction efficiency of wavelength ⁇ and wavelength ⁇ .
  • the diffraction efficiency of the wavelength is 60%.
  • the diffraction efficiency (transmittance) with respect to the wavelength of the first diffraction structure DOE 1 ′ was set to 100%, and the second peripheral region was formed as an aspheric surface on which no diffraction structure was formed, calculation was performed using the area-weighted average of each region.
  • the diffraction efficiency at the wavelength of interest is 86%, which enables high-speed recording and reproduction on high-density optical disc HD.
  • the numerical aperture NA of the high-density optical disc HD is larger than the numerical aperture NA of the CD.
  • the decrease in the diffraction efficiency of the first diffraction structure DOE1 does not have a significant effect.
  • a second diffraction structure DOE2 is formed on the optical surface (third surface) on the optical disk side, and the second diffraction structure DOE2 generates a 10th-order diffracted light with respect to the wavelength, and generates a second-order diffraction light. 6 for
  • Table 6 shows that the high-density optical disk of the objective optical system of the present example at a temperature of 25 degrees and 55 degrees was used.
  • the RMS value of the wavefront aberration at the best image plane when HD is used (sum of spherical aberration components of 9th order or less).
  • the wavelength shift amount + 0.05 ⁇ mZ degree with increasing temperature of the blue-violet semiconductor laser LD1 and the refractive index variation of 0.9X10- 4 Z degree with increasing temperature.
  • “Comparative Example” has the same design wavelength, the same focal length, the same numerical aperture, and the same working distance as the objective optical system of the present example, and the first diffraction structure DOE1 and the first diffraction structure DOE1 ′.
  • the objective optical system is not formed. From this table, it can be said that the objective optical system of the present example is excellent in the recording and Z reproduction characteristics for the high-density optical disc HD when the environmental temperature changes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lenses (AREA)
  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 回折光学素子に、波長λ1と波長λ2の光路長の比δφB12が、前記第1回折構造における光路長の比δφA12とは異なる第2回折構造を設け、第1回折構造と第2回折構造の回折作用の違いを利用することで、青紫色波長領域における、第1回折構造の球面収差の波長依存性を制御、或いは小さく抑えることが可能となる。これにより、青紫色レーザ光源の量産における歩留まりの向上、青紫色レーザ光源や光ピックアップ装置の製造コストの低減が可能となる。

Description

回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装 置
技術分野
[0001] 本発明は、回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生 装置に関し、特に、異なる波長の光源から出射される光束を用いて光情報記録媒体 に対して情報の記録及び Z又は再生が可能な光ピックアップ装置、光情報記録再生 装置及びそれらに用いると好適な回折光学素子並びに対物光学系に関する。
背景技術
[0002] 従来より、異なる記録密度の複数種類の光ディスクに対して記録 Z再生を行うこと が可能な光ピックアップ装置が知られている。例えば、 DVD (デジタルバーサタイル ディスク)と CD (コンパクトディスク)を 1つの光ピックアップ装置を用いて記録 Z再生 するものがある。また、近年、記録密度が異なる光ディスクとして、青紫色レーザ光源 (例えば、青紫色半導体レーザや青紫色 SHGレーザなど)を用いる高密度光デイス ク(以下、記録 Z再生用のレーザ光源として、青紫色レーザ光源を使用する光デイス クを総称して「高密度光ディスク」という)と、従来の DVD、更には CDとも互換性のあ る光ピックアップ装置が要求されてきて 、る。
[0003] 高密度光ディスクと DVDとに対して互換性を有する光ピックアップ装置として、以下 の特許文献に記載されているように、光軸を中心とする複数の輪帯力 構成される回 折構造を形成した回折光学素子を利用する技術が知られている。
特許文献 1:特開 2001-60336号公報
特許文献 2:特開 2002— 298422号公報
特許文献 3 :特開 2001— 93179号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記の特許文献に記載されている技術は、高密度光ディスクの記録 Z再生用ビー ムとして 2次 (或いは 3次)回折光を利用し、 DVDの記録 Z再生用ビームとして 1次( 或いは 2次)回折光を利用するというように、高密度光ディスクの記録 Z再生用ビーム の回折次数とよりも、低 、回折次数のビームを DVDの記録 Z再生用ビームとして利 用する技術である。この技術によると、それぞれの光ディスクの記録 Z再生用ビーム に対して高い回折効率を確保しつつ、青紫色波長領域における微小な波長変化に 対するフォーカス位置の変動を抑制することができる。
[0005] このように、記録 Z再生用ビームの波長差が大き 、光ディスクの双方に対して高 、 回折効率を確保するためには、高密度光ディスクの記録 Z再生用ビームの波長 λ とし、 DVDの記録 Ζ再生用ビームの波長え 2とし、波長え λ
1、 2に対する回折光学素 子の屈折率をそれぞれ Ν、 Νとしたとき、以下の式
1 2
δ φ = {η · λ / (Ν -1) }/{η · λ / (Ν -1) } (18)で定義される、回折構
D i l l 2 2 2
造により波長 λ の
1 光束に付加される光路差と、波長 λ の
2 光束に付加される光路差 の比 δ φ 力^に近い値となるように、高密度光ディスクの記録 Ζ再生用ビームの
D 回 折次数 ηと、 DVDの記録 Ζ再生用ビームの回折次数 ηの組合せを選択する必要が
1 2
ある。
[0006] 然るに、上記の関係を満たす回折次数 ηと回折次数 ηの組合せの回折光を発生
1 2
する回折構造においては、単位波長変化あたりの球面収差の変化量が大きくなるた め、レーザ光源の選別が必要となり、レーザ光源の製造コストの増大、光ピックアップ 装置の製造コストの増大を招来するという課題や、温度変化に伴うレーザ光源の波 長変化により、対物光学系の球面収差が大きく変化するために、安定した高密度光 ディスクに対する記録 ζ再生特性が得られな 、と 、う課題がある。
[0007] 力かる単位波長変化あたりの球面収差の変化量は対物光学系の開口数 (ΝΑ)の 4 乗に比例して増大するため、特に、高密度光ディスクの一規格であるブルーレイディ スクに代表されるような、開口数 (ΝΑ) Ο. 85の対物光学系と 0. 1mmの保護層を使 用する規格 (以下、 0. 1mm規格という)の高密度光ディスクにおいては、上記の問題 力 り一層顕在化する。
[0008] 本発明は、力かる従来技術の問題点に鑑みてなされたものであり、波長差が大きい 複数種類の光源力ゝらの光束を用いて、記録密度が異なる複数種類の光ディスク適切 に情報の記録及び Z又は再生を行えるとともに、レーザ光源の波長に対する公差を 大きく確保できる光ピックアップ装置、光情報記録再生装置及びそれに用いる回折 光学素子、並びに対物光学系を提供することを目的とする。さらに、波長差が大きい 複数種類の光源力ゝらの光束を用いて、記録密度が異なる複数種類の光ディスクに適 切に情報の記録及び z又は再生を行えるとともに、温度変化した場合でも、安定した 情報の記録及び Z又は再生を行える光ピックアップ装置、光情報記録再生装置及 びそれに用いる回折光学素子、並びに対物光学系を提供することも本発明の目的 である。
課題を解決するための手段
[0009] (項 1) 波長え (nm)の第 1光束が入射した場合には n 次の回折光を発生し、波
1 11
長え (nm) ( λ > λ )の第 2光束が入射した場合には η 次 (η ≥η )の回折光を
2 2 1 21 11 21 発生する第 1回折構造が形成された光学面と、前記波長 λ (nm)の前記第 1光束が 入射した場合には n 次の回折光を発生し、前記波長え (nm) ( λ > λ )の前記第
12 2 2 1
2光束が入射した場合には η 次 (η ≥η )の回折光を発生する第 2回折構造が形
22 12 22
成された光学面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特徴とする 回折光学素子。
[0010] δ φ ≠ δ φ (1)ただし、
A12 B12
δ φ = {η - λ -1) }/{
1 Ζ(Ν η - λ
11 21 2 Ζ(Ν - 1) } (2)
A12 11 21
δ φ = {η · λ Ζ(Ν -1) }/{η · λ — 1
12 22 2 Ζ(Ν ) } (3)であり、 Ν 、Ν は
B12 12 1 22 11 21 それぞれえ 、 λ に対する第 1回折構造の屈折率、 Ν 、Ν はそれぞれえ 、 λ に
1 2 12 22 1 2 対する第 2回折構造の屈折率である。
[0011] (項 1)に記載の回折光学素子において、たとえば第 1回折構造の作用により、 0. 1 mm規格の高密度光ディスクと DVDとの保護層の厚さの違いに起因する球面収差 の補正や、青紫色波長と赤色波長の波長差による波長分散に起因して発生する球 面収差の補正や、青紫色波長領域における微小な波長変化に対するフォーカス位 置の変動を小さく抑制することが可能となる。しかし、回折構造は、一般的に、球面収 差の波長依存性が大き 、ために、士 lOnm程度の入射光束の波長変化に対する球 面収差変化が大きくなる。特に、青紫色波長と赤色波長のように波長差が大きい光 に対して回折効率を確保するために、上記の(18)式の値が 1に近 、値となるように、 それぞれの光の回折次数を選択した場合や、 NAO. 85の対物光学系を使用する 0 . 1mm規格の高密度光ディスクにおいては、青紫色レーザ光源の波長に対する公 差が厳しくなり、また、温度変化に伴い青紫色レーザ光源の波長が変化した場合に、 安定した高密度光ディスクに対する記録 Z再生特性が得られない。
[0012] そこで、本発明による回折光学素子においては、波長え と波長え の光路長の比
1 2
δ φ I 前記第 1回折構造における光路長の比 δ φ とは異なる第 2回折構造
B12 A12
を設けた。第 1回折構造と第 2回折構造の回折作用の違いを利用することで、青紫色 波長領域における、第 1回折構造の球面収差の波長依存性を制御、或いは小さく抑 えることが可能となる。これにより、青紫色レーザ光源の量産における歩留まりの向上 、青紫色レーザ光源や光ピックアップ装置の製造コストの低減が可能となる。また、温 度が変化した場合でも高密度光ディスクに対して安定して情報の記録 Ζ再生を行う ことち可會となる。
図面の簡単な説明
[0013] [図 1]本実施の形態に力かる第 1の光ピックアップ装置 PU1の概略構成図である。
[図 2]開口数 ΝΑと光路差との関係を示す図である。
[図 3]本実施の形態に力かる第 2の光ピックアップ装置 PU2の概略構成図である。
[図 4]実施例 1の対物レンズの断面図である。
[図 5]実施例 2の対物レンズの断面図である。
[図 6]実施例 3の対物レンズの断面図である。
符号の説明
[0014] PU1 第 1の光ピックアップ装置 PU2 第 2の光ピックアップ装置 LD1 青紫色半導 体レーザ LD2 赤色半導体レーザ LD3 赤外半導体レーザ BSH ビーム成形素子 COL コリメートレンズ AC 2軸ァクチユエータ OBJ1 第 1対物光学系 BC1 第 1ビ ームコンパイナ BC2 第 2ビームコンパイナ ST 絞り DF ダイクロイツクフィルター SE N センサー光学系 LCD 液晶素子 HD 第 1光ディスク DVD 第 2光ディスク CD 第 3光ディスク
発明を実施するための最良の形態
[0015] 始めに、上述した課題を達成するための好ましい手段を記載する。 (項 2) 波長え (nm)の第 1光束が入射した場合には n 次の回折光を発生し、波長
1 11
λ (nm) ( λ > λ )の第 2光束が入射した場合には η 次 (η ≥η )の回折光を発
2 2 1 21 11 21
生する第 1回折構造が形成された光学面と、前記波長 λ (nm)の前記第 1光束が入 射した場合には n 次の回折光を発生し、前記波長え (nm) ( λ > λ )の前記第 2
12 2 2 1
光束が入射した場合には η 次 (η ≥η )の回折光を発生する第 2回折構造が形成
22 12 22
された光学面とを少なくとも 1つずつ有し、以下の (4)式を満たすことを特徴とする回 折光学素子。
[0016] η ≠η (4)
11 12
さらに、上述した課題を達成すベぐ(項 2)による回折光学素子においては、波長 λ の光束が前記第 1回折構造を通過した際に発生する回折光の次数 η と、波長え
1 11 の光束が前記第 2回折構造を通過した際に発生する回折光の次数 η と、を異なら
1 12
せることで、青紫色波長領域における ± lOnm程度の入射光束の波長変化に対する 球面収差変化を小さく抑え、青紫色レーザ光源の発振波長に対する公差を緩和した 。これにより、青紫色レーザ光源の量産における歩留まりの向上、青紫色レーザ光源 や光ピックアップ装置の製造コストの低減が可能となる。また、温度が変化した場合 でも高密度光ディスクに対して安定して情報の記録 Z再生を行うことも可能となる。
[0017] (項 3) 波長え (nm)の第 1光束が入射した場合には n 次の回折光を発生し、波
1 11
長え (nm) ( λ > λ )の第 2光束が入射した場合には η 次 (η ≥η )の回折光を
2 2 1 21 11 21 発生する第 1回折構造が形成された光学面と、前記波長 λ (nm)の前記第 1光束が 入射した場合には n 次の回折光を発生し、前記波長え (nm) ( λ > λ )の前記第
12 2 2 1
2光束が入射した場合には η 次 (η ≥η )の回折光を発生する第 2回折構造が形
22 12 22
成された光学面とを少なくとも 1つずつ有し、以下の(5)式を満たすことを特徴とする 回折光学素子。
[0018] {ΙΝΤ( δ )一 δ φ } · {ΙΝΤ( δ )一 δ φ } < 0 (5)
A12 A12 B12 B12
ただし、
δ φ = {η - λ -1)
A12 11 1 Ζ(Ν }/{η - λ
11 21 2 Ζ(Ν - 1) } (2)
21
δ φ = {η · λ Ζ(Ν -1) }/{η · λ Ζ(Ν — 1) } (3)であり、 Ν 、Ν は
B12 12 1 12 22 2 22 11 21 それぞれえ 、 λ に対する第 1回折構造の屈折率、 Ν 、Ν はそれぞれえ 、 λ に
1 2 12 22 1 2 対する第 2回折構造の屈折率、 INT(X)は Xに最も近い整数である。
[0019] さらに、上述した課題を達成すベぐ(項 3)に記載の回折光学素子においては、上 述の(5)式を満たすので、 δ φ (ただし、 Xは Α又は Β)を、第 i回折構造 (ただし、 i
XI 2
は 1又は 2)の波長え と波長え の光路長の比としたとき、 {ΐΝΤ( δ φ )~ δ }
1 2 XI 2 XI 2 の符号が負である回折構造は、入射光束の波長が長波長側に変化した場合に、球 面収差が補正過剰方向に変化する球面収差の波長依存性を有し、一方、 {ΙΝΤ( δ φ )~ δ φ }の符号が正である回折構造は、入射光束の波長が長波長側に変化
X12 X12
した場合に、球面収差が補正不足方向に変化する球面収差の波長依存性を有する こととなる。
[0020] このような球面収差の波長依存性の符号が互いに異なる回折構造を設けることによ り、青紫色波長領域における ± lOnm程度の入射光束の波長変化に対する球面収 差の波長依存性を制御、或いは小さく抑えることが可能となる。これにより、青紫色レ 一ザ光源の量産における歩留まりの向上、青紫色レーザ光源や光ピックアップ装置 の製造コストの低減が可能となる。また、温度が変化した場合でも高密度光ディスク に対して安定して情報の記録 Z再生を行うことも可能となる。
[0021] 尚、(項 1)乃至 (項 3)に記載の回折光学素子において、第 2回折構造により、第 1 回折構造の球面収差の波長依存性を制御、或いは小さく抑えるためには、第 1回折 構造、及び第 2回折構造を透過する波面に付加される光路差を、後述する [数 2]で 定義される光路差関数により表したとき、第 1回折構造の 4次の光路差関数係数 B
4A
、第 2回折構造の 4次の光路差関数係数 B がそれぞれゼロではない有限の値を有
4B
し、更に、以下の関係を満たすことが好ましい。
[0022] B ·Β < 0 (5Α)
4Α 4Β
(項 4) (項 1)乃至 (項 3)のいずれかに記載の回折光学素子において、以下の(6) 式及び (7)式の 、ずれか一方を満たすことを特徴とする。
[0023] I ΙΝΤ( δ φ )一 δ φ
A12 A12 I < 0. 4 (6)
I ΙΝΤ( δ φ )- δ 4 (7)
B12 B12 I < 0.
ただし、
δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν - 1) } (2)
A12 11 1 11 21 2 21 δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν - 1) } (3)
B12 12 1 12 22 2 22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
2
[0024] (6)式及び (7)式のいずれか一方を満たすことにより、第 1回折構造或いは第 2回 折構造の、第 1光束及び第 2光束に対する回折効率を共に高いものとすることが可能 となる。第 1光束及び第 2光束に対する、第 1回折構造及び第 2回折構造の回折効率 を共に高めるためには、(6)式及び(7)式を共に満たすのが好ま 、。
[0025] (項 5) (項 1)乃至 (項 4)のいずれかに記載の回折光学素子において、前記第 1 回折構造と前記第 2回折構造は共に、光軸方向の段差により分割された同心円状の 複数の輪帯から構成され、前記第 1回折構造の輪帯のうち最も光軸に近い段差の深 さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の深さ dが以下の(8)式
1 2
を満たすことを特徴とする。
[0026] d ≠d (8)
1 2
(8)式の条件は、第 1回折構造と第 2回折構造の製造波長を異ならしめることに相 当する。これにより、第 1回折構造と第 2回折構造の回折作用を異ならせることが可能 となるので、青紫色波長領域における ± lOnm程度の入射光束の波長変化に対す る球面収差の波長依存性を制御、或いは小さく抑えることが可能となる。
[0027] (項 6) (項 1)乃至 (項 5)のいずれかに記載の回折光学素子において、以下の(9) 式及び( 10)式を満たすことを特徴とする。
[0028] I ΙΝΤ( δ φ )- δ . 07
A12 I >0 (9)
A12
I INT( δ φ )- δ I < 0. 07 (10)
B12 B12
ただし、
δ φ = {η - λ
A12 11 1 Ζ(Ν -1) }/{η - λ
11 21 2 Ζ(Ν - 1) } (2)
21
δ φ = {η · λ -1
B12 12 1 Ζ(Ν ) }/{η · λ
12 22 2 Ζ(Ν - 1) } (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である [0029] (9)式を満たすことで、第 1回折構造の作用により、 0. 1mm規格の高密度光デイス クと DVDとの保護層の厚さの違いに起因する球面収差の補正や、青紫色波長と赤 色波長の波長差による波長分散に起因して発生する球面収差の補正を行った場合 でも、青紫色波長領域における ± 10nm程度の入射光束の波長変化に対する、第 1 回折構造の単位波長変化あたりの球面収差の変化量を大きくなり過ぎないようにす ることができるので、第 2回折構造による、第 1回折構造の球面収差の波長依存性の 制御、或いは補正の負担を低減することが可能となり、設計が容易になる。一方、(1
0)式を満たすことで、第 2回折構造における第 1光束と第 2光束の回折角をほぼ同じ とすることができるので、波長え と波長え の球面収差特性には影響を与えずに、波
1 2
長え 士 lOnmの球面収差のみを良好に制御或いは補正することが可能となる。
[0030] (項 7) (項 1)乃至 (項 6)のいずれかに記載の回折光学素子において、以下の(1
1)式乃至( 13)式を満たすことを特徴とする。
[0031] λ / % > 1. 3 (11)
2 1
η >η (12)
21
η >η (13)
12 22
(項 7)の回折光学素子によると、第 1光束と第 2光束の波長比が(11)式にあるよう に 1. 3より大きい場合には、( 12)式及び(13)式を満たすように、 DVD用の記録 Ζ 再生ビームとして、高密度光ディスク用の記録 Ζ再生ビームよりも低い回折次数の回 折光を使用することで、それぞれの光ディスクの波長領域で高い回折効率を確保す ることが可能となる。このように、回折次数の異なる回折光をそれぞれの光ディスクの 記録 Ζ再生ビームとして使用するように決定された回折構造は、同じ回折次数の回 折光を使用する場合に比べて、球面収差の波長依存性が大きくなるが、本発明によ る回折光学素子においては、第 2回折構造により、青紫色波長領域における ± 10η m程度の入射光束の波長変化に対する球面収差の波長依存性を制御、或 、は小さ く抑える構成をとつているので、青紫色レーザ光源の発振波長に対する公差を緩和 することが可能である。また、温度が変化した場合でも高密度光ディスクに対して安 定して情報の記録 Z再生を行うことも可能となる。
[0032] (項 8) (項 1)乃至 (項 7)のいずれかに記載の回折光学素子において、前記波長 λ は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nmの範囲内
1 2
にあって、 iを 1又は 2としたとき、前記 n と前記 n との組合せが、(n 、n ) = (1, 1)、
li 2i li 2i
(2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (10, 6)のい ずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする。これらの組
11 12
合せを選択することにより、それぞれの光ディスクの波長領域で高い回折効率を維持 することができる。また、回折次数 n 、n が 10より大きくなる場合であっても、それぞ
li 2i
れの光ディスクの波長領域で高い回折効率を維持することができる回折次数の組合 せは存在するが、その場合には、基準波長え 力 の ± 10 (nm)程度の波長変化に 対して回折効率変動が大きくなり過ぎるので好ましくない。
[0033] (項 9) (項 1)乃至 (項 7)のいずれかに記載の回折光学素子において、前記第 1 回折構造は、波長え (nm) ( λ > λ )の第 3光束が入射した場合には η 次 (η ≥
3 3 2 13 12 η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場合には η
13 23 次 (η ≥η )の回折光を発生することを特徴とする。
22 23
[0034] (項 9)の回折光学素子によると、 DVD用の記録 Ζ再生ビームとして、高密度光ディ スク用の記録 Ζ再生ビームよりも低い回折次数の回折光を使用し、且つ、 CD用の記 録 Z再生ビームとして、 DVD用の記録 Z再生ビームと同じ回折次数又は、より低い 回折次数の回折光を使用することで、それぞれの光ディスクの波長領域で高い回折 効率を確保することが可能となる。
[0035] (項 10) (項 9)に記載の回折光学素子において、以下の(14)式及び(15)式のい ずれか一方を満たすことを特徴とする。
[0036] ΙΝΤ( δ φ )- δ
A13 A13 I < 0. 4 (14)
ΙΝΤ( δ φ )- δ
B13 B13 I < 0. 4 (15)
ただし、
δ φ = {η - λ Ζ(Ν -1) }/{η - λ (16)
11 31 3 Ζ(Ν —1) }
A13 11 1 31
δ φ = {η - λ Ζ(Ν -1) }/{η - λ
B13 12 1 12 32 3 Ζ(Ν —1) } (17)
32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 31 1 3 12 32 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である [0037] ( 14)式及び( 15)式の 、ずれか一方を満たすことにより、第 1回折構造或!ヽは第 2 回折構造の、第 3光束に対する回折効率を共に高いものとすることが可能となる。第 3光束に対する、第 1回折構造及び第 2回折構造の回折効率を共に高めるためには , (14)式及び( 15)式を共に満たすのが好ま U、。
[0038] (項 11) (項 9)又は (項 10)に記載の回折光学素子において、前記波長え は 350 nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nmの範囲内、前記波
2
長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2としたとき、前記 nと前
3 li 記 n と前記 nの組合せが、(n 、n 、n ) = (2, 1, 1)、 (4, 2, 2)、 (6, 4, 3)、 (8,
2i 3i li 2i 3i
5, 4)、 (10, 6, 5)のいずれかである(但し、 n =n となる組み合わせを除く)ことを
11 12
特徴とする。これらの組合せを選択することにより、それぞれの光ディスクの波長領域 で高い回折効率を維持することができる。また、回折次数 n 、n 、n が 10より大きく
li 2i 3i
なる場合であっても、それぞれの光ディスクの波長領域で高 、回折効率を維持する ことができる回折次数の組合せは存在するが、その場合には、基準波長え 力もの士 10 (nm)程度の波長変化に対して回折効率変動が大きくなり過ぎるので好ましくない
[0039] (項 12) 波長え (nm)の第 1光束を厚さ tlの保護層を有する第 1光ディスクの情 報記録面上に集光し、波長え (ηπι) ( λ > λ )の第 2光束を厚さ t (t≥t )の保護
2 2 1 2 2 1
層を有する第 2光ディスクの情報記録面上に集光する対物光学系であって、 前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特徴とする。
[0040] δ ≠ δ (1)
A12 B12
ただし、
δ φ = {η - λ
A12 11 1 Ζ(Ν -1) }/{η - λ
11 21 2 Ζ(Ν - 1) } (2)
21
δ φ = {η - λ Ζ(Ν -1) }/{η - λ
B12 12 1 12 22 2 Ζ(Ν - 1) } (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ れぞれ λ 、 λ に対する第 2回折構造の屈折率である。
1 2
本対物光学系の作用効果は、(項 1)に記載の回折光学素子と同様である。
[0041] (項 13) 波長え (nm)の第 1光束を厚さ tの保護層を有する第 1光ディスクの情報 記録面上に集光し、波長え (ηπι) ( λ > λ )の第 2光束を厚さ t (t ≥t )の保護層
2 2 1 2 2 1 を有する第 2光ディスクの情報記録面上に集光する対物光学系であって、
前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、以下の (4)式を満たすことを満たすことを特徴とする。
[0042] n ≠n (4)
11 12
本対物光学系の作用効果は、(項 2)に記載の回折光学素子と同様である。
[0043] (項 14) 波長え (nm)の第 1光束を厚さ tの保護層を有する第 1光ディスクの情報 記録面上に集光し、波長え (ηπι) ( λ > λ )の第 2光束を厚さ t (t ≥t )の保護層
2 2 1 2 2 1 を有する第 2光ディスクの情報記録面上に集光する対物光学系であって、
前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、以下の(5)式を満たすことを特徴とする。
[0044] {ΙΝΤ ( δ )一 δ φ } · {ΙΝΤ ( δ )一 δ φ } < 0 (5)
A12 A12 B12 B12
ただし、
δ φ = {η · λ 1) } (2)
A12 11 1 Ζ(Ν -1) }/{η - λ
11 21 2 Ζ(Ν - 21
δ φ = {η · λ Ζ(Ν -1) }/{η · λ - 1) } (3)
B12 12 1 12 22 2 Ζ(Ν
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
1 2 本対物光学系の作用効果は、(項 3)に記載の回折光学素子と同様である。 [0045] (項 15) 波長 λ i (nm)の第 1光束を厚さ の保護層を有する第 1光ディスクの情報 記録面上に集光し、波長え (nm) ( λ > λ )の第 2光束を厚さ t (t >t )の保護層
2 2 1 2 2 1 を有する第 2光ディスクの情報記録面上に集光する対物光学系であって、
前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、
前記第 1回折構造は、前記厚さ tと前記厚さ tの違いに起因して発生する球面収
1 2
差を補正する機能を有し、前記第 2回折構造は、前記波長 λ が ± 10nmの範囲内 で変化した場合に前記第 1回折構造で発生する球面収差を制御する機能を有する ことを特徴とする。
[0046] (項 15)に記載の対物光学系において、保護層の厚さの異なる高密度光ディスクと DVDとに対して情報の記録及び Z又は再生を行う場合において、第 1回折構造の 作用により、高密度光ディスクと DVDとの保護層の厚さの違いに起因する球面収差 の補正が可能となる。しかし、回折構造は球面収差の波長依存性が大きいために、 士 lOnm程度の入射光束の波長変化に対する球面収差変化が大きくなる。かかる球 面収差の変化量は NA4に比例して増大するため、 NAO. 85の対物光学系を使用す る 0. 1mm規格の高密度光ディスクにおいては、青紫色レーザ光源の発振波長に対 する公差が厳しいものとなってしまう。青紫色レーザ光源の波長に対する公差が厳し くなり、また、温度変化に伴い青紫色レーザ光源の波長が変化した場合に、安定した 高密度光ディスクに対する記録 Z再生特性が得られない。
[0047] そこで本発明による対物光学系においては、前記第 2回折構造を利用して、青紫 色波長領域における ± 10nm程度の入射光束の波長変化に対する球面収差変化を 小さく抑えるようにしている。これにより、青紫色レーザ光源の量産における歩留まり の向上、青紫色レーザ光源や光ピックアップ装置の製造コストの低減が可能となる。 また、温度が変化した場合でも高密度光ディスクに対して安定して情報の記録 Z再 生を行うことも可能となる。尚、本明細書中、「球面収差を制御する」とは、球面収差を ほぼ完全に補正するほか、所定の理由により球面収差を残存させる場合も含む。ここ で、所定の理由により球面収差を残存させる場合としては、例えば、温度変化に伴う 対物光学系の集光特性の変化を補償するために、波長え 力も長波長側にシフトし た場合に球面収差が補正不足方向に変化するような球面収差依存性を対物光学系 に持たせる場合などがある。
[0048] (項 16) 波長え (nm)の第 1光束を厚さ tの保護層を有する第 1光ディスクの情報 記録面上に集光し、波長え (nm) ( λ > λ )の第 2光束を厚さ t (t =t )の保護層
2 2 1 2 2 1 を有する第 2光ディスクの情報記録面上に集光する対物光学系であって、
前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、
前記第 1回折構造は、前記波長 λ と前記 λ の波長差による波長分散に起因して
1 2
発生する球面収差を補正する機能を有し、前記第 2回折構造は、前記波長 λ が ± 1 Onmの範囲内で変化した場合に前記第 1回折構造で発生する球面収差を制御する 機能を有することを特徴とする。
[0049] 高密度光ディスクの一規格として、 0. 1mm規格以外に、開口数 (NA) 0. 65の対 物光学系と、 DVDと同じ 0. 6mmの保護層を使用する規格 (以下、 0. 6mm規格と いう)が提案されている。 0. 6mm規格においては、 DVDとの保護層の厚さの違いに よる球面収差を補正する必要は無!、が、青紫色波長と赤色波長の波長差による波長 分散に起因して発生する球面収差の補正を行う必要がある。項 16に記載の対物光 学系において、第 1回折構造の作用により、青紫色波長と赤色波長の波長差による 波長分散に起因して発生する球面収差の補正を行うことが可能となる。しかし、この 場合でも、青紫色波長領域における ± 10nm程度の入射光束の波長変化に対して 第 1回折構造で発生する球面収差変化が大きくなる。
[0050] そこで本発明による対物光学系においては、前記第 2回折構造を利用して、青紫 色波長領域における ± 10nm程度の入射光束の波長変化に対する球面収差変化を 小さく抑えるようにしている。これにより、青紫色レーザ光源の量産における歩留まり の向上、青紫色レーザ光源や光ピックアップ装置の製造コストの低減が可能となる。 また、温度が変化した場合でも高密度光ディスクに対して安定して情報の記録 Z再 生を行うことも可能となる。
[0051] (項 17) (項 12)乃至 (項 16)のいずれかに記載の対物光学系において、前記第 2 回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第 1回折構造 で発生する球面収差を小さく抑制する機能を有することを特徴とするので、青紫色レ 一ザ光源の発振波長に対する公差を緩和することが可能である。
[0052] (項 18) (項 12)乃至 (項 16)のいずれかに記載の対物光学系において、前記対 物光学系は、前記波長え が + 10nmの範囲内で長波長側に変化した場合に球面 収差が補正不足方向に変化するような球面収差特性をすることを特徴とするので、 温度変化に起因して生じる対物光学系の集光特性の変化を補償することが可能とな る。
[0053] (項 19) (項 18)に記載の対物光学系において、プラスチックレンズを少なくとも 1 つ有することを特徴とするので、安価であるが温度変化に起因して屈折率変化を生 じるプラスチック材料の欠点を、前記第 2回折構造の機能を利用して補うことができる
[0054] (項 20) (項 12)乃至(項 19)のいずれかに記載の対物光学系において、以下の(
6)式及び (7)式の ヽずれか一方を満たすことを特徴とする。
[0055] I ΙΝΤ( δ φ )- δ < 0. 4
A12 A12 I (6)
I ΙΝΤ( δ φ )- δ (7)
B12 B12 I < 0. 4
ただし、
δ φ = {η - λ Ζ(Ν -1) }/{η - λ
A12 11 1 11 21 2 Ζ(Ν - 1) } (2)
21
δ φ = {η - λ
12 1 Ζ(Ν -1) }/{η - λ
12 22 2 Ζ(Ν - 1) } (3)
B12 22
であり、 Ν
11、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν
21 1 2 12、Ν はそ
22 れぞれ λ、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
1 2 本対物光学系の作用効果は、(項 4)に記載の回折光学素子と同様である [0056] (項 21) 前記第 1回折構造と前記第 2回折構造は共に、光軸方向の段差により分 割された同心円状の複数の輪帯から構成され、前記第 1回折構造の輪帯のうち最も 光軸に近い段差の深さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の 深さ dが以下の(8)式を満たすことを特徴とする対物光学系。
2
[0057] d≠d (8)
1 2
本対物光学系の作用効果は、(項 5)に記載の回折光学素子と同様である。
[0058] (項 22) (項 12)乃至(項 21)のいずれかに記載の対物光学系において、以下の(
9)式及び(10)式を満たすことを特徴とする。
[0059] I ΙΝΤ( δ φ )- δ I >0. 07 (9)
A12 A12
I INT( δ φ
B12 )- δ (1
B12 I < 0. 07 0)
ただし、
δ φ = {η - λ
A12 11 1 Ζ(Ν -1) }/{η - λ
11 21 2 Ζ(Ν - 1) } (2)
21
δ φ = {η - λ
B12 12 1 Ζ(Ν -1) }/{η · λ
12 22 2 Ζ(Ν - 1) } (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である 本対物光学系の作用効果は、(項 6)に記載の回折光学素子と同様である。
[0060] (項 23) (項 12)乃至(項 22)のいずれかに記載の対物光学系において、以下の(
11)式乃至(13)式を満たすことを特徴とする。
[0061] λ / % > 1. 3 (11)
2 1
η >η (12)
11 21
η >η (13)
12 22
本対物光学系の作用効果は、(項 7)に記載の回折光学素子と同様である。
[0062] (項 24) (項 12)乃至 (項 23)のいずれかに記載の対物光学系において、前記波 長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nmの範囲
1 2
内にあって、 iを 1又は 2としたとき、前記 n と前記 n との組合せが、(n 、n ) = (1, 1
li 2i li 2i
)、 (2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (10, 6)の いずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする。 本対物光学系の作用効果は、(項 8)に記載の回折光学素子と同様である。
[0063] (項 25) (項 12)乃至 (項 23)のいずれかに記載の対物光学系において、前記第 1 回折構造は、波長え (nm) ( λ > λ )の第 3光束が入射した場合には η 次 (η ≥
3 3 2 13 12 η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場合には η
13 23 次 (η ≥η )の回折光を発生することを特徴とする。
22 23
本対物光学系の作用効果は、(項 9)に記載の回折光学素子と同様である。
[0064] (項 26) (項 25)に記載の対物光学系において、以下の(14)式及び(15)式のい ずれか一方を満たすことを特徴とする。
[0065] I ΙΝΤ( δ φ )- δ
A13 A13 I < 0. 4 (14)
I ΙΝΤ( δ φ 4 (15)ただし、
B13 )- δ B13 I < 0.
δ φ = {η - λ
1 1 Ζ(Ν -1) }/{η - λ
11 31 3 Ζ(Ν —1) } (16)
A13 1 31
δ φ = {η - λ Ζ(Ν -1) }/{η - λ
B13 12 1 12 32 3 Ζ(Ν —1) } (17)
32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 31 1 3 12 32 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である 本対物光学系の作用効果は、項 10に記載の回折光学素子と同様である。
[0066] (項 27) (項 25)又は (項 26)に記載の対物光学系において、前記波長え は 350 nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nmの範囲内、前記波
2
長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2としたとき、前記 nと前
3 li 記 n と前記 nの組合せが、(n 、n 、n ) = (2, 1, 1)、 (4, 2, 2)、 (6, 4, 3)、 (8,
2i 3i li 2i 3i
5, 4)、 (10, 6, 5)のいずれかである(但し、 n =n となる組み合わせを除く)ことを
11 12
特徴とする。
本対物光学系の作用効果は、項 11に記載の回折光学素子と同様である。
[0067] (項 28) 前記第 1回折構造が形成された光学面と、前記第 2回折構造が形成され た光学面とを有する回折光学素子と、該回折光学素子を透過した前記第 1光束及び 前記第 2光束を、それぞれ前記第 1光ディスク及び前記第 2光ディスクの情報記録面 上に集光する集光素子とから構成され、前記回折光学素子と前記集光素子は一体 化して成ることを特徴とする対物光学系。 [0068] (項 29) 波長え (nm)の第 1光束を出射する第 1光源と、波長え (nm) ( λ > λ
1 2 2 1
)の第 2光束を出射する第 2光源と、前記第 1光束を厚さ tの保護層を有する第 1光デ イスクの情報記録面上に集光することによって情報の記録及び Z又は再生を行うとと もに、前記第 2光束を厚さ t (t >t )の保護層を有する第 2光ディスクの情報記録面
2 2 1
上に集光することによって情報の記録及び Z又は再生を行う対物光学系とを有する 光ピックアップ装置にお ヽて、
前記対物光学系は、前記第 1光束が入射した場合には n 次の回折光を発生し、
11
前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 1回折構
21 11 21
造が形成された光学面と、前記第 1光束が入射した場合には n 次の回折光を発生
12
し、前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 2回折
22 12 22
構造が形成された光学面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特 徴とする光ピックアップ装置。
[0069] δ φ ≠ δ φ (1)ただし、
A12 B12
δ φ = {η - λ Ζ (Ν -1) }/{η - λ Ζ (Ν - 1) } (2)
A12 11 1 11 21 2 21
δ φ = {η · λ Ζ (Ν -1) }/{η - λ Ζ (Ν - 1) } (3)
B12 12 1 12 22 2 22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率である。
1 2
本光ピックアップ装置の作用効果は、(項 1)に記載の回折光学素子と同様である。
[0070] (項 30) 波長え (nm)の第 1光束を出射する第 1光源と、波長え (nm) ( λ > λ
1 2 2 1
)の第 2光束を出射する第 2光源と、前記第 1光束を厚さ tの保護層を有する第 1光デ イスクの情報記録面上に集光することによって情報の記録及び Z又は再生を行うとと もに、前記第 2光束を厚さ t (t >t )の保護層を有する第 2光ディスクの情報記録面
2 2 1
上に集光することによって情報の記録及び Z又は再生を行う対物光学系とを有する 光ピックアップ装置にお ヽて、
前記対物光学系は、前記第 1光束が入射した場合には n 次の回折光を発生し、
11
前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 1回折構
21 11 21
造が形成された光学面と、前記第 1光束が入射した場合には n 次の回折光を発生
12
し、前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 2回折 構造が形成された光学面とを少なくとも 1つずつ有し、以下の (4)式を満たすことを満 たすことを特徴とする。
[0071] n ≠n (4)
11 12
本光ピックアップ装置の作用効果は、(項 2)に記載の回折光学素子と同様である。
[0072] (項 31) 波長え (nm)の第 1光束が入射した場合には n 次の回折光を発生し、
1 11
波長え (nm) ( λ > λ )の第 2光束が入射した場合には η 次 (η ≥η )の回折光
2 2 1 21 11 21 を発生する第 1回折構造が形成された光学面と、前記波長 λ (nm)の前記第 1光束 が入射した場合には n 次の回折光を発生し、前記波長え (nm) ( λ > λ )の前記
12 2 2 1 第 2光束が入射した場合には η 次 (η ≥η )の回折光を発生する第 2回折構造が
22 12 22
形成された光学面とを少なくとも 1つずつ有し、以下の(5)式を満たすことを特徴とす る光ピックアップ装置。
[0073] {ΙΝΤ( δ )一 δ φ } · {ΙΝΤ( δ )一 δ φ } < 0 (5)
A12 A12 B12 B12
ただし、
δ φ = {η - λ Ζ (Ν -1) }/{η · λ Ζ (Ν - 1) } (2)
A12 11 1 11 21 2 21
δ φ = {η · λ Ζ (Ν -1) }/{η - λ Ζ (Ν - 1) } (3)
B12 12 1 12 22 2 22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
1 2 本光ピックアップ装置の作用効果は、(項 3)に記載の回折光学素子と同様である。
[0074] (項 32) 波長え (nm)の第 1光束を出射する第 1光源と、波長え (nm) ( λ > λ
1 2 2 1
)の第 2光束を出射する第 2光源と、前記第 1光束を厚さ tの保護層を有する第 1光デ イスクの情報記録面上に集光することによって情報の記録及び Z又は再生を行うとと もに、前記第 2光束を厚さ t (t >t )の保護層を有する第 2光ディスクの情報記録面
2 2 1
上に集光することによって情報の記録及び Z又は再生を行う対物光学系とを有する 光ピックアップ装置にお ヽて、
前記対物光学系は、前記第 1光束が入射した場合には n 次の回折光を発生し、
11
前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 1回折構
21 11 21
造が形成された光学面と、前記第 1光束が入射した場合には n 次の回折光を発生 し、前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 2回折
22 12 22
構造が形成された光学面とを少なくとも 1つずつ有し、前記第 1回折構造は、前記厚 さ tと前記厚さ tの違いに起因して発生する球面収差を補正する機能を有し、前記
1 2
第 2回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第 1回折 構造で発生する球面収差を制御する機能を有することを特徴とする。
本光ピックアップ装置の作用効果は、(項 15)に記載の対物光学系と同様である。
[0075] (項 33) 波長え (nm)の第 1光束を出射する第 1光源と、波長え (nm) ( λ > λ
1 2 2 1
)の第 2光束を出射する第 2光源と、前記第 1光束を厚さ tの保護層を有する第 1光デ イスクの情報記録面上に集光することによって情報の記録及び Z又は再生を行うとと もに、前記第 2光束を厚さ t (t >t )の保護層を有する第 2光ディスクの情報記録面
2 2 1
上に集光することによって情報の記録及び Z又は再生を行う対物光学系とを有する 光ピックアップ装置にお ヽて、
前記対物光学系は、前記第 1光束が入射した場合には n 次の回折光を発生し、
11
前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 1回折構
21 11 21
造が形成された光学面と、前記第 1光束が入射した場合には n 次の回折光を発生
12
し、前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 2回折
22 12 22
構造が形成された光学面とを少なくとも 1つずつ有し、
前記第 1回折構造は、前記波長 λ と前記 λ の波長差による波長分散に起因して
1 2
発生する球面収差を補正する機能を有し、前記第 2回折構造は、前記波長 λ が ± 1 Onmの範囲内で変化した場合に前記第 1回折構造で発生する球面収差を制御する 機能を有することを特徴とする。
本光ピックアップ装置の作用効果は、(項 16)に記載の対物光学系と同様である。
[0076] (項 34) (項 29)乃至(項 33)のいずれかに記載の光ピックアップ装置において、 前記第 2回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第 1 回折構造で発生する球面収差を小さく抑制する機能を有することを特徴とする。 本光ピックアップ装置の作用効果は、(項 17)に記載の対物光学系と同様である。
[0077] (項 35) (項 29)乃至(項 33)のいずれかに記載の光ピックアップ装置において、 前記対物光学系は、前記波長え が + 10nmの範囲内で長波長側に変化した場合 に球面収差が補正不足方向に変化するような球面収差特性をすることを特徴とする 本光ピックアップ装置の作用効果は、(項 18)に記載の対物光学系と同様である。
[0078] (項 36) (項 35)に記載の光ピックアップ装置において、プラスチックレンズを少な くとも 1つ有することを特徴とする。
本光ピックアップ装置の作用効果は、(項 19)に記載の対物光学系と同様である。
[0079] (項 37) (項 29)乃至(項 36)のいずれかに記載の光ピックアップ装置において、 以下の(6)式及び (7)式の 、ずれか一方を満たすことを特徴とする。
[0080] I INT( δ φ )- δ
A12 I < 0. 4 (6)
A12
I INT( δ φ )- δ (7)
B12 B12 I < 0. 4
ただし、
δ φ = {η · λ -1
11 1 Ζ(Ν ) }/{η · X / (N -1) } (2)
A12 11 21 2 21
δ φ = {η · λ Ζ(Ν -1) }/{η · X / (N -1) } (3)
2 22
であり、 N 、N はそれぞれえ 、え に対する第 1回折構造の屈折率、 N 、N はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
1 2 本光ピックアップ装置の作用効果は、(項 4)に記載の回折光学素子と同様である。
[0081] (項 38) (項 29)乃至(項 37)のいずれかに記載の光ピックアップ装置において、 前記第 1回折構造と前記第 2回折構造は共に、光軸方向の段差により分割された同 心円状の複数の輪帯から構成され、前記第 1回折構造の輪帯のうち最も光軸に近い 段差の深さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の深さ dが以
1 2 下の(7)式を満たすことを特徴とする。
[0082] d≠d (8)
1 2
本光ピックアップ装置の作用効果は、(項 5)に記載の回折光学素子と同様である。
[0083] (項 39) (項 29)乃至(項 38)のいずれかに記載の光ピックアップ装置において、 以下の(9)式及び(10)式を満たすことを特徴とする。
[0084] I ΙΝΤ( δ φ )- δ I >0. 07 (9)
A12 A12
I INT( δ φ )- δ I < 0. 07 (10) ただし、
δδ φφ = {η - λ
A Ζ(Ν -1) }/{η - λ Ζ(Ν - 1) } (2)
δ φ = {η - λ Ζ(Ν -1) }/{η - λ
B12 12 1 12 22 2 Ζ(Ν - 1) } (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
2 本光ピックアップ装置の作用効果は、(項 6)に記載の回折光学素子と同様である。
[0085] (項 40) (項 29)乃至(項 39)のいずれかに記載の光ピックアップ装置において、 以下の( 11)式乃至( 13)式を満たすことを特徴とする。
[0086] λ / % > 1. 3 (11)
2 1
η >η (12)
11 21
η >η (13)
12 22
本光ピックアップ装置の作用効果は、(項 7)に記載の回折光学素子と同様である。
[0087] (項 41) (項 29)乃至(項 40)のいずれかに記載の光ピックアップ装置において、 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nm
1 2
の範囲内にあって、 iを 1又は 2としたとき、前記 n と前記 n との組合せが、(n 、 n )
li 2i li 2i
= (1, 1)、 (2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (10
, 6)のいずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする。
11 12
本光ピックアップ装置の作用効果は、(項 8)に記載の回折光学素子と同様である。
[0088] (項 42) (項 29)乃至(項 41)のいずれかに記載の光ピックアップ装置おいて、前 記第 1回折構造は、波長え (ηπι) ( λ > λ )の第 3光束が入射した場合には η 次(
3 3 2 13 η ≥η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場合に
12 13
は η 次 (η ≥η )の回折光を発生することを特徴とする。
23 22 23
本光ピックアップ装置の作用効果は、(項 9)に記載の回折光学素子と同様である。
[0089] (項 43) (項 42)に記載の光ピックアップ装置において、以下の(14)式及び(15) 式の ヽずれか一方を満たすことを特徴とする。
[0090] I ΙΝΤ( δ φ )- δ I < 0. 4 (14)
A13 A13
I ΙΝΤ( δ φ < 0. 4
B13 )- δ B13 I (15)ただし、 δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν - 1) } (16)
δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν —1) } (17)
B13 12 1 12 32 3 32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 31 1 3 12 32 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
3 本光ピックアップ装置の作用効果は、(項 10)に記載の回折光学素子と同様である。
[0091] (項 44) (項 42)又は (項 43)に記載の光ピックアップ装置にお!、て、前記波長 λ は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700nmの範囲内、前
2
記波長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2としたとき、前記 n
3 li と前記 n と前記 n の組合せが、(n 、n 、n ) = (2, 1, 1)、 (4, 2, 2)、 (6, 4, 3)、
2i 3i li 2i 3i
(8, 5, 4)、 (10, 6, 5)のいずれかである(但し、 n =n となる組み合わせを除く)こ
11 12
とを特徴とする。
本光ピックアップ装置の作用効果は、(項 11)に記載の回折光学素子と同様である。
[0092] (項 45) (項 29)乃至(項 44)の 、ずれかに記載の光ピックアップ装置にぉ ヽて、 前記第 1回折構造が形成された光学面と、前記第 2回折構造が形成された光学面と を有する回折光学素子と、該回折光学素子を透過した前記第 1光束及び前記第 2光 束を、それぞれ前記第 1光ディスク及び前記第 2光ディスクの情報記録面上に集光 する集光素子とから構成され、前記回折光学素子と前記集光素子は一体化して成る ことを特徴とする。
[0093] (項 46) (項 29)乃至(項 45)の 、ずれか一項に記載の光ピックアップ装置を搭載 して、第 1光ディスク及び第 2光ディスクに対する情報の記録、及び、第 1光ディスク及 び第 2光ディスクに記録された情報の再生のうち、少なくとも一方を実行可能であるこ とを特徴とする光情報記録再生装置。
[0094] 本明細書中で用いる「回折構造」とは、光学素子の表面に回折パターンを設けて回 折作用によって入射光束を集光或!ヽは発散させる機能を持たせた部分のことを ヽぅ 。回折パターンの形状として、光軸方向の段差により分割された同心円状の複数の 輪帯であり、光軸を含む平面でその断面を見れば、各輪帯が鋸歯形状、或いは階段 形状となって ヽるものがある。 [0095] 本明細書中において、高密度光ディスク、或いは第 1光ディスクとは、ブルーレイデ イスク(BD ;Blu— ray Disc)に代表される 0. lmm規格の光ディスクや、 HD DVD に代表される 0. 6mm規格の光ディスクのごとき青紫色レーザ光源を用いる光デイス クをいう。また、高密度光ディスク、或いは第 1光ディスクには、情報記録面上に数一 数十 nm程度の厚さの保護膜を有する光ディスクや、保護層或!ヽは保護膜の厚さが ゼロの光ディスクや、光磁気ディスクも含まれるものとする。また、第 2光ディスクとは、 DVD-ROM, DVD-Video, DVD-Audio, DVD±R、 DVD-RAM, DVD士 R W等の各種 DVD系の光ディスクを含むものである。また、第 3光ディスクとは、 CD— Audio, CD-ROM, CD-R, CD— RW等の各種 CD系の光ディスクを含むものであ る。
[0096] 以下、図面を参照して、本発明の実施の形態を説明する。
(第 1の実施の形態)
図 1は、高密度光ディスク HD (第 1光ディスク)と DVD (第 2光ディスク)に対して適 切に情報の記録 Z再生を行える第 1光ピックアップ装置 PU 1の構成を概略的に示す 図である。高密度光ディスク HDの光学的仕様は、波長え =405nm、保護層 PL1 の厚さ t =0. lmm、開口数 NA =0. 85であり、 DVDの光学的仕様は、波長え =
1 1 2
655nm、保護層 PL2の厚さ t =0. 6mm、開口数 NA =0. 65である。但し、波長、
2 2
保護層の厚さ、及び開口数の組合せはこれに限られない。
[0097] 図 1に示すように、光ピックアップ装置 PU1は、第 1光束を射出する青紫色半導体 レーザ LD1と、第 2光束を射出する赤色半導体レーザ LD2と、高密度光ディスク HD と DVD共用の光検出器 PDと、青紫色半導体レーザ LD1から射出されるレーザ光束 の断面形状を楕円形力も円形に整形するためのビーム整形素子 BSH、第 1コリメ一 ト光学系 COLl、第 2コリメート光学系 COL2、 2軸ァクチユエータ AC、第 1対物光学 系 OBJl、第 1ビームコンパイナ BC1、第 2ビームコンパイナ BC2、高密度光ディスク HDの開口数 NA1に対応した絞り ST、ダイクロイツクフィルター DF、センサー光学系 SEN等力 構成されて ヽる。
[0098] 尚、高密度光ディスク HD用の光源として、上述の青紫色半導体レーザ LD1の他 に青紫色 SHGレーザを使用することもできる。 [0099] 光ピックアップ装置 PU1において、高密度光ディスク HDに対して情報の記録 Z再 生を行う場合には、図 1において実線でその光線経路を描いたように、青紫色半導 体レーザ LD1から射出された発散光束は、ビーム整形素子 BSHによりその断面形 状が楕円形力も円形に整形された後、第 1コリメート光学系 COL1を経て略平行光束 とされ、第 1ビームコンパイナ BC1、第 2ビームコンパイナ BC2を透過し、絞り STによ り光束径が規制され、第 1対物光学系 OBJ1によって高密度光ディスク HDの保護層 PL 1を介して情報記録面 RL 1上に形成されるスポットとなる。第 1対物光学系 OBJ 1 は、その周辺に配置された 2軸ァクチユエータ ACによってフォーカシングゃトラツキン グを行う。情報記録面 RL1で情報ピットにより変調された反射光束は、再び第 1対物 光学系 OBJl、絞り STを透過した後、第 2ビームコンパイナ BC2により反射され、セン サー光学系 SENを経ることにより収斂光束となると共に非点収差が与えられて光検 出器 PDの受光面上に収束する。そして、光検出器 PDの出力信号を用いて高密度 光ディスク HDに記録された情報を読み取ることができる。
[0100] また、光ピックアップ装置 PU1にお 、て、 DVDに対して情報の記録 Z再生を行う 場合には、図 1において点線でその光線経路を描いたように、赤色半導体レーザ LD 2から射出された発散光束は、第 2コリメート光学系 COL2を経て略平行光束とされ、 第 1ビームコンパイナ BC1で反射された後、第 2ビームコンパイナ BC2を透過し、ダイ クロイツクフィルター DFにより光束径が規制され、第 1対物光学系 OBJ1によって DV Dの保護層 PL2を介して情報記録面 RL2上に形成されるスポットとなる。第 1対物光 学系 OBJ1は、その周辺に配置された 2軸ァクチユエータ ACによってフォーカシング やトラッキングを行う。情報記録面 RL2で情報ピットにより変調された反射光束は、再 び第 1対物光学系 OBJl、ダイクロイツクフィルター DF、絞り STを透過した後、第 2ビ ームコンパイナ BC2により反射され、センサー光学系 SENを経ることにより収斂光束 となると共に非点収差が与えられて光検出器 PDの受光面上に収束する。そして、光 検出器 PDの出力信号を用いて DVDに記録された情報を読み取ることができる。
[0101] 次に、第 1対物光学系 OBJ1の構成について説明する。第 1対物光学系 OBJ1は、 プラスチックレンズである収差補正素子 L1と、この収差補正素子 L1を透過したレー ザ光束を光ディスクの情報記録面上に集光させる機能を有する NAO. 85の非球面 ガラスレンズである集光素子 L2とから構成されている。収差補正素子 L1のレーザ光 源側の光学面 S1には、光軸を含む断面形状が鋸歯形状とされた複数の輪帯から構 成されるブレーズ型の第 1回折構造 DOE1が形成されている。また、収差補正素子 L 1の光ディスク側の光学面 S2には、光軸を含む断面形状が鋸歯形状とされた複数の 輪帯力 構成されるブレーズ型の複数の輪帯力 構成される第 2回折構造 DOE2が 形成されている。また、ダイクロイツクフィルター DFと収差補正素子 L1と集光素子 L2 は、保持部材 Bを介することで一体ィ匕されている。
[0102] 第 1回折構造 DOE1は、高密度光ディスク HDの保護層 PL1の厚さ tと DVDの保 護層 PL2の厚さ tとの違いに起因する球面収差を補正するための構造であって、か
2
力る球面収差を良好に補正するために、第 1回折構造 DOE1は非球面上に形成さ れている。また、高密度光ディスク HDの記録 Z再生用ビームの回折次数 n 、及び
11
DVDの記録 Z再生用ビームの回折次数 n として、それぞれ n = 2、n = 1を選択
21 11 21 することにより、双方の光ディスクの波長領域にぉ 、て高 、回折効率を確保して 、る
[0103] 第 1回折構造 DOE1は、上述の(2)式で表される第 1光束と第 2光束との光路長の 比 δ φ 力
A12
ΙΝΤ( δ )- δ < 0 (19)を満たすので、図 2の二点鎖線 (a)に示す
A12 A12
ように、第 1回折構造 DOE1に入射する光束の波長が、高密度光ディスク側の設計 波長え から Δ λだけ長波長側にシフトした場合には、球面収差が補正過剰方向へ 変化する球面収差特性を有する。
[0104] このような第 1回折構造 DOE1の球面収差の波長依存性を補正するために、第 2回 折構造 DOE2においては、上述の(3)式で表される第 1光束と第 2光束との光路長 の比 δ φ 力
B12
ΙΝΤ( δ )- δ >0 (20)を満たすように、高密度光ディスク HDの
B12 B12
記録 Z再生用ビームの回折次数 n
12、及び DVDの記録 Z再生用ビームの回折次数 n として、それぞれ n = 3、n = 2を選択しているので、図 2の点線 (b)に示すよう
22 12 22
に、第 2回折構造 DOE2は、入射光束の長波長側へのシフトにより球面収差が補正 不足方向へ変化する球面収差特性を有する。 [0105] 上述したように、波長差の大きい 2つの波長に対して互いに異なる回折次数のビー ムを発生し、第 1光束と第 2光束との光路長の比 δ φ 力^に近い値を有する第 1回
A12
折構造 DOE1は、単位波長変化あたりの球面収差の変化量が大きいが、第 2回折構 造 DOE2に第 1回折構造 DOE 1とは逆の球面収差特性を持たせることで図 2の実線 (c)のように球面収差の波長依存性を相殺することが可能となる。
(第 2の実施の形態)
次に、本発明の第 2の実施の形態について説明するが、上記第 1の実施の形態と 同様の構成については同一の符号を付し、説明を省略する。
[0106] 図 3は、高密度光ディスク HD (第 1光ディスク)と DVD (第 2光ディスク)と CD (第 3 光ディスク)に対して適切に情報の記録 Z再生を行える第 2光ピックアップ装置 PU2 の構成を概略的に示す図である。高密度光ディスク HDの光学的仕様は、波長 λ = 405nm、保護層 PL1の厚さ t =0. lmm、開口数 NA =0. 85であり、 DVDの光学 的仕様は、波長え =655nm、保護層 PL2の厚さ t =0. 6mm、開口数 NA =0. 6
2 2 2
5であり、 CDの光学的仕様は、波長え = 785nm、保護層 PL3の厚さ t = 1. 2mm
3 3
、開口数 NA =0. 45である。但し、波長、保護層の厚さ、及び開口数の組合せはこ
3
れに限られない。
[0107] 光ピックアップ装置 PU2は、第 1光束を射出する青紫色半導体レーザ LD1と光検 出器 PD1とが一体ィ匕された高密度光ディスク用モジュール MD1、第 2光束を射出す る赤色半導体レーザ LD2と光検出器 PD2とが一体ィ匕された DVD用モジュール MD 2、第 3光束を射出する赤外半導体レーザ LD3と光検出器 PD3とが一体化された C D用モジュール MD3、青紫色半導体レーザ LD1から射出されるレーザ光束の断面 形状を楕円形力も円形に整形するためのビーム整形素子 BSH、コリメート光学系 C OL、 2軸ァクチユエータ AC、第 2対物光学系 OBJ2、第 1ビームコンパイナ BC1、第 2ビームコンパイナ BC2、高密度光ディスク HDの開口数 NA1に対応した絞り ST、液 晶素子 LCD等力も構成されている。尚、高密度光ディスク HD用の光源として、上述 の青紫色半導体レーザ LD1の他に青紫色 SHGレーザを使用することもできる。
[0108] 光ピックアップ装置 PU2において、高密度光ディスク HDに対して情報の記録 Z再 生を行う場合には、図 3において実線でその光線経路を描いたように、青紫色半導 体レーザ LD1を発光させる。青紫色半導体レーザ LD1から射出された発散光束は、 ビーム整形素子 BSHによりその断面形状が楕円形力 円形に整形された後、第 1ビ ームコンパイナ BC1を透過し、コリメート光学系 COLを経て略平行光束とされ、第 2ビ ームコンパイナ BS2を透過し、絞り STにより光束径が規制され、液晶素子 LCDを透 過し、第 2対物光学系 OBJ2によって高密度光ディスク HDの保護層 PL1を介して情 報記録面 RL1上に形成されるスポットとなる。第 2対物光学系 OBJ2は、その周辺に 配置された 2軸ァクチユエータ ACによってフォーカシングゃトラッキングを行う。情報 記録面 RL1で情報ピットにより変調された反射光束は、再び第 1対物光学系 OBJl、 液晶素子 LCD、絞り ST、第 2ビームコンパイナ BC2、及びコリメート光学系 COLを透 過した後、収斂光束となり、第 1ビームコンパイナ BS1を透過し、光検出器 PD1の受 光面上に収束する。そして、光検出器 PD1の出力信号を用いて高密度光ディスク H Dに記録された情報を読み取ることができる。
[0109] また、光ピックアップ装置 PU2にお 、て、 DVDに対して情報の記録 Z再生を行う 場合には、図 3にお ヽて点線でその光線経路を描!、たように赤色半導体レーザ LD2 を発光させる。赤色半導体レーザ LD2から射出された発散光束は、第 1ビームコンパ イナ BC1により反射され、コリメート光学系 COLを経て略平行光束とされ、第 2ビーム コンパイナ BS2を透過した後、液晶素子 LCDにより光束径が規制され、第 2対物光 学系 OBJ2によって DVDの保護層 PL2を介して情報記録面 RL2上に形成されるス ポットとなる。第 2対物光学系 OBJ2は、その周辺に配置された 2軸ァクチユエータ AC によってフォーカシングゃトラッキングを行う。情報記録面 RL2で情報ピットにより変 調された反射光束は、再び第 2対物光学系 OBJ2、液晶素子 LCD、第 2ビームコン ノイナ BS1、コリメート光学系 COLを透過した後、収斂光束となり、第 1ビームコンパ イナ BC1により反射され、光検出器 PD2の受光面上に収束する。そして、光検出器 PD2の出力信号を用いて DVDに記録された情報を読み取ることができる。
[0110] また、光ピックアップ装置 PU2において、 CDに対して情報の記録 Z再生を行う場 合には、図 3において 2点鎖線でその光線経路を描いたように赤外半導体レーザ LD 3を発光させる。赤外半導体レーザ LD3から射出された発散光束は、第 2ビームコン バイナ BC2により反射された後、液晶素子 LCDにより光束径が規制され、第 2対物 光学系 OBJ2によって CDの保護層 PL3を介して情報記録面 RL3上に形成されるス ポットとなる。第 2対物光学系 OBJ2は、その周辺に配置された 2軸ァクチユエータ AC によってフォーカシングゃトラッキングを行う。情報記録面 RL3で情報ピットにより変 調された反射光束は、再び第 2対物光学系 OBJ2、液晶素子 LCDを透過した後、第 2ビームコンパイナにより反射され、光検出器 PD3の受光面上に収束する。そして、 光検出器 PD3の出力信号を用いて CDに記録された情報を読み取ることができる。
[0111] 次に、第 2対物光学系 OBJ2の構成について説明する。第 2対物光学系 OBJ2は、 プラスチックレンズである収差補正素子 L1と、この収差補正素子 L1を透過したレー ザ光束を光ディスクの情報記録面上に集光させる機能を有する NAO. 85の非球面 ガプラスチックレンズである集光素子 L2とから構成されている。収差補正素子 L1のレ 一ザ光源側の光学面 S1には、光軸を含む断面形状が鋸歯形状とされた複数の輪帯 力も構成されるブレーズ型の第 1回折構造 DOE1が形成されている。また、収差補正 素子 L1の光ディスク側の光学面 S2には、光軸を含む断面形状が鋸歯形状とされた 複数の輪帯から構成されるブレーズ型の複数の輪帯から構成される第 2回折構造 D OE2が形成されている。また、収差補正素子 L1と集光素子 L2は、それぞれの光学 機能部の周辺に一体成形されたフランジ部 FL1、 FL2を有しており、フランジ部 FL1 、 FL2の一部同士を嵌合、接着することで一体化されており、さら〖こ、第 2対物光学 系 OBJ2と液晶素子 LCDは、保持部材 Bを介することで一体ィ匕されて 、る。
[0112] 第 1回折構造 DOE1は、高密度光ディスク HDの保護層 PL1の厚さ tと DVDの保 護層 PL2の厚さ tとの違いに起因する球面収差を補正するための構造であって、か
2
力る球面収差を良好に補正するために、第 1回折構造 DOE1は非球面上に形成さ れている。また、第 2対物光学系 OBJ2においては、高密度光ディスク HDの保護層 P L1の厚さ tと CDの保護層 PL3の厚さ tとの違いに起因する球面収差を補正するた
1 3
めに、高密度光ディスク HDに対する情報の記録 Z再生時の倍率 mと、 CDに対す る情報の記録 Z再生時の倍率 mを異ならせており、 CDに対する情報の記録 Z再生
3
時には、第 2対物光学系 OBJ2に対して発散光束が入射する構成となっている。更に 、高密度光ディスク HDの記録 Z再生用ビームの回折次数 n
11、 DVDの記録 Z再生 用ビームの回折次数 n 、及び CDの記録 Z再生用ビームの回折次数 n として、そ れぞれ n = 2、n = l、n = 1を選択することにより、それぞれの光ディスクの波長
11 21 31
領域にお 、て高 、回折効率を確保して!/、る。
[0113] 第 1回折構造 DOE1は、上述の(2)式で表される第 1光束と第 2光束との光路長の 比 δ φ 力
A12
ΙΝΤ( δ )- δ < 0 (21)を満たすので、第 1回折構造 DOE1に
A12 A12
入射する光束の波長が、高密度光ディスク側の設計波長 λ から Δ λだけ長波長側 にシフトした場合には、球面収差が補正過剰方向へ変化する球面収差特性を有する 。そのため、環境温度が上昇した場合に、集光素子 L2で発生する補正過剰方向の 球面収差変化と、環境温度上昇に伴う青紫色半導体レーザ LD1の長波長側への波 長シフトにより第 1回折構造 DOE1で発生する補正過剰方向の球面収差変化とが加 算されるため、環境温度上昇した場合に、高密度光ディスク HDに対して安定した記 録 Ζ再生を行うことが困難である。
[0114] このような第 1回折構造 DOE1の球面収差の波長依存性を制御し、環境温度変化 した場合の高密度光ディスク HDに対する記録 Ζ再生特性を向上させるために、第 2 対物光学系 OBJ2においては、第 2回折構造 DOE2を、収差補正素子 L1の光デイス ク側の光学面 S2上に形成し、上述の(3)式で表される第 1光束と第 2光束との光路 長の比 δ φ 力
B12
ΙΝΤ( δ )一 δ φ < 0 (22)を満たすように、高密度光ディスク HD
B12 B12
の記録 Ζ再生用ビームの回折次数 η
12、及び DVDの記録 Ζ再生用ビームの回折次 数 n として、それぞれ n = 10、n =6を選択した。第 2回折構造 DOE2は、入射光
22 12 22
束の長波長側へのシフトにより球面収差が補正過剰方向へ変化する球面収差特性 を有する。尚、第 2回折構造 DOE2に対して波長え の第 3光束が入射した場合には
3
、 5次回折光が発生する (n = 5)。
32
[0115] 第 1回折構造 DOE1とは逆の球面収差特性を有する第 2回折構造 DOE2により、 第 1回折構造 DOE1の球面収差特性を制御することで、第 2対物光学系 OBJ2に、 高密度光ディスク側の設計波長え 力 Δ λだけ長波長側にシフトした場合には、球 面収差が補正不足方向へ変化する球面収差特性を持たせることができる。
[0116] その結果、環境温度が上昇した場合に、集光素子 L2で発生する補正過剰方向の 球面収差変化と、環境温度上昇に伴う青紫色半導体レーザ LD1の長波長側への波 長シフトにより発生する補正不足方向の球面収差変化とを相殺されるので、環境温 度が変化した場合の高密度光ディスク HDに対する記録 Z再生特性を向上すること が可能となる。
本実施の形態では、 DVD及び CDに対して情報の記録 Z再生を行う際の開口切り 替えを、液晶素子 LCDにより行う構成としているが、かかる技術は、例えば、特開平 1 0— 20263号に記載されており、公知の技術であるので、ここでは詳細な説明は省略 する。
実施例
[0118] 以下、上述した実施の形態に好適な実施例について説明する。各実施例における 非球面は、その面の頂点に接する平面からの変形量を X (mm)、光軸に垂直な方向 の高さを Mmm)、曲率半径を r (mm)とするとき、次の数 1で表される。ただし、 κを 円錐係数、 Αを非球面係数とする。
2i
[0119] [数 1]
Figure imgf000032_0001
[0120] また、各実施例における回折構造としての輪帯構造は、この輪帯構造により透過波 面に付加される光路差で表される。かかる光路差は、光軸に垂直な方向の高さを h ( mm)、 B を光路差関数係数、入射光束の波長を λ (nm)、製造波長を λ (nm)と
2j B
するとき次の数 2で定義される光路差関数 φ で表される。
b
[0121] [数 2]
Figure imgf000032_0002
[0122] (実施例 1)
本実施例は、上述した光ピックアップ装置 PU 1における第 1対物光学系 OBJ 1とし て好適な光学素子であり、レンズデータを表 1に示し、光路図を図 4に示す。本実施 例の光学素子は、レーザ光源側の光学面 S 1上に第 1回折構造 DOE1が形成され、 光ディスク側の光学面 S2上に第 2回折構造 DOE2が形成されたプラスチックレンズ である収差補正素子 L1と、両面が非球面とされたガラスレンズである集光素子 L2と 力も構成される。尚、これ以降 (表のレンズデータ含む)において、 10のべき乗数 (例 えば、 2. 5 X 10— 3)を、 E (例えば、 2. 5E— 3)を用いて表すものとする。また、 r (mm) は近軸曲率半径、 d (mm)は高密度光ディスク HD使用時の光軸上間隔、 d (mm)
1 2 は DVD使用時の光軸上間隔、 N は波長え における屈折率、 N は波長え にお
X I 1 1 2 2 ける屈折率、 V は d線におけるアッベ数を表す。
d
[表 1]
【近轴データ】
Figure imgf000034_0001
【非球面係数】
Figure imgf000034_0002
高密度光ディスク HD使用時の光学的仕様は、波長 λ =405nm、保護層 PL1の 厚さ t =0. lmm、開口数 NA =0. 85、焦点距離 f = 1. 765mm,倍率 m =0で あり、 DVD使用時の光学的仕様は、波長え =655nm、保護層 PL2の厚さ t =0. 6 mm、開口数 NA =0. 65、焦点距離 f = 1. 819mm,倍率 m =0である。
2 2 2
[0125] 第 1回折構造 DOE1は、波長え に対して 2次回折光を発生し、波長え に対して 1
1 2 次回折光を発生する構造であり、その製造波長え は 390nmである。 λ及びえ に
Β 1 2 対する回折効率は、それぞれ 97. 7%、 93. 3%であり、いずれの波長に対しても高 い回折効率を有する。
[0126] また、第 2回折構造 DOE2は、波長え に対して 3次回折光を発生し、波長え に対
1 2 して 2次回折光を発生する構造であり、その製造波長え は 420nmである。 λ及び
Β 1 λ に対する回折効率は、それぞれ 95. 0%、 94. 1%であり、いずれの波長に対して
2
も高い回折効率を有する
表 2に、本実施例の光学素子の λ (nm)、及びえ ± 5 (nm)に対する最良像面で の波面収差の RMS値(9次以下の球面収差成分の総和)を示す。表 2において、「比 較例」は、本実施例の光学素子と同じ設計波長、同じ焦点距離、同じ開口数、同じ作 動距離を有し、第 2回折構造 DOE2が形成されていない光学素子である。この表か ら、本実施例の光学素子を対物光学系として使用することにより、青紫色レーザ光源 と赤色レーザ光源の発振波長に対する公差を十分に大きく確保することが可能とな る。
[0127] [表 2]
Figure imgf000035_0001
[0128] (実施例 2)
本実施例は、上述した光ピックアップ装置 PU2における第 2対物光学系 OBJ2とし て好適な光学素子であり、レンズデータを表 3に示し、光路図を図 5に示す。本実施 例の光学素子は、レーザ光源側の光学面 S1上に第 1回折構造 DOE1が形成され、 光ディスク側の光学面 S2上に第 2回折構造 DOE2が形成されたプラスチックレンズ である収差補正素子 L1と、両面が非球面とされたプラスチックレンズである集光素子 L2とから構成される。 [0129] [表 3]
【近軸データ】
Figure imgf000036_0001
【非球面係数】
Figure imgf000036_0002
[0130] 高密度光ディスク HD使用時の光学的仕様は、波長え =405nm、保護層 PL1の 厚さ t =0. lmm、開口数 NA =0. 85、焦点距離 f = 1. 765mm,倍率 m =0で あり、 DVD使用時の光学的仕様は、波長え =655nm、保護層 PL2の厚さ t =0. 6
2 2 mm、開口数 NA =0. 65、焦点距離 f = 1. 822mm,倍率 m =0、 CD使用時の
2 2 2
光学的仕様は、波長え = 785nm、保護層 PL3の厚さ t = 1. 2mm、開口数 NA = 0. 45、焦点距離 f = 1. 823mm,倍率 m = - 0. 173であり、設計基準温度は 25度
3 3
である。
[0131] 第 1回折構造 DOE1は、波長え に対して 2次回折光を発生し、波長え に対して 1
1 2 次回折光を発生し、波長 λ
3に対して 1次回折光を発生する構造であり、その製造波 長え は 390nmである。 λ 、 X 及びえ に対する回折効率は、それぞれ 97. 7%、 9
Β 1 2 3
3. 3%、 99. 2%であり、いずれの波長に対しても高い回折効率を有する。
[0132] また、第 2回折構造 DOE2は、波長え に対して 10次回折光を発生し、波長え に
1 2 対して 6次回折光を発生し、波長え に対して 5次回折光を発生する構造であり、その
3
製造波長え は 405nmである。 λ 、 λ 及びえ に対する回折効率は、それぞれ 100
Β 1 2 3
%、 99. 7%、 99. 6%であり、いずれの波長に対しても高い回折効率を有する。
[0133] 表 4に、本実施例の光学素子の温度 25度、及び 55度における高密度光ディスク Η D使用時の最良像面での波面収差の RMS値(9次以下の球面収差成分の総和)を 示す。ただし、青紫色半導体レーザ LD1の温度上昇に伴う波長シフト量を +0. 05η mZ度と仮定し、温度上昇に伴う収差補正素子 L1と集光素子 L2の屈折率変化量を 、それぞれ、 -1. 08 X 10— 4/度、 -0. 9 X 10— 4/度として!/ヽる。表 2にお!/ヽて、「it 較例」は、本実施例の光学素子と同じ設計波長、同じ焦点距離、同じ開口数、同じ作 動距離を有し、第 2回折構造 DOE2が形成されていない光学素子である。この表か ら、本実施例の光学素子を対物光学系として使用することにより、環境温度が変化し た場合の高密度光ディスク HDに対する記録 Z再生特性を向上することが可能となる
[0134] [表 4]
Figure imgf000037_0001
[0135] (実施例 3)
上述した実施例 1及び 2では、対物光学系 OBJ1及び OBJ2を収差補正素子 L1と集 光素子 L2とから構成したが、本実施例は、プラスチックレンズである集光素子に、第 1回折構造 DOE1と第 2回折構造 DOE2とを形成した構成を有し、高密度光ディスク HDと DVDと CDとに対して適切に情報の記録 Z再生を行える対物光学系である。 本実施例のレンズデータを表 5に示し、光路図を図 6に示す。
[0136] [表 5]
【近軸データ】
Figure imgf000038_0001
*2'は、第 2面から第 2'面までの変位を表す。
*2"は、第 2'面から第 2' '面までの変位を表す。
【非球面係数】
Figure imgf000038_0002
Figure imgf000038_0003
[0137] 高密度光ディスク HD使用時の光学的仕様は、波長え =408nm、保護層 PL1の 厚さ t =0. 0875mm,開口数 NA =0. 85、焦点距離 f = 2. 19mm,倍率 m =0 であり、 DVD使用時の光学的仕様は、波長え =658nm、保護層 PL2の厚さ t =0
2 2
. 6mm、開口数 NA 0· 66、焦点距離 f = 2. 26mm,倍率 m =0であり、 CD使
2 2 2
用時の光学的仕様は、波長え = 785nm、保護層 PL3の厚さ t = 1. 2mm、開口数
3 3
NA 0· 46、焦点距離 f = 2. 28mm,倍率 m =-0. 043であり、設計基準温度 は 25°Cである。
[0138] 実施例 3の対物光学系は、光源側の光学面が、光軸を含む第 2面 S2 (中央領域)、 その周囲の第 2'面 S2 ' (第 1周辺領域)、更にその周囲の第 2"面 S2" (第 2周辺領域 )の 3領域に分けられている。なお、第 2面は開口数 NA3内に相当する領域であり、 第 2'面は開口数 NA3から開口数 NA2に相当する領域であり、第 2"面は開口数 NA 2から開口数 NA1に相当する領域となっている。
[0139] ここで、第 2面には第 1回折構造 DOE1が形成され、この第 1回折構造 DOE1は、 波長 λ に対して 1次回折光を発生し、波長 λ に対して 1次回折光を発生し、波長え
1 2
に対して 1次回折光を発生し、その製造波長え は 550nmである。 λ 、 λ 及びえ
3 Β 1 2 3 に対する回折効率は、それぞれ、 60%、 91%、 72%である。
[0140] また、第 2'面には、第 1回折構造 DOE1 'が形成され、この第 1回折構造 DOE1 ' は、波長え に対して 0次回折光を発生し、波長え に対して 1次回折光を発生し、波
1 2
長 λ に対して 0次回折光を発生し、その製造波長 λ は 658nmである。え 、 λ 及
3 Β 1 2 びえ に対する回折効率は、それぞれ、 100%、 88%、 100%である。
3
[0141] 更に、第 2"面は回折構造が形成されない非球面となっており、この非球面形状は、 第 2"面を通過する波長 λ の光束が高密度光ディスク HDの情報記録面上に良好な 波面を形成するように最適化されて 、る。
[0142] 本実施例の対物光学系では、 t、 t及び tの差の違いに起因する球面収差を、第 2
1 2 3
面内においては、第 1回折構造 DOE 1の作用を利用して補正し、第 2'面内において は、第 1回折構造 DOE 1 'の作用を利用して補正して 、る。
[0143] ここで、第 1回折構造 DOE1 'における回折光発生の原理について説明する。第 1 回折構造 DOE1 'は、光軸を含む断面形状が階段状とされたパターンが同心円上に 配列された構造であって、所定のレベル面の個数 A毎に、そのレベル面数に対応し た段数分の高さだけ段をシフトさせた構造である。階段の 1つの段差は光路差換算 で波長 λ の 2倍の深さであって、所定のレベル面の個数 Αは、 4、 5、 6の何れかであ るのが好ましい。
[0144] 階段の 1つの段差を光路差換算で波長え の 2倍の深さに設定することで、隣接し あうレベル面を通過した第 1光束の波面は 2波長分ずれて重なり合うことになるので、 回折作用を受けずにそのまま透過させることができる。また、この段差により、第 2光 束に付加される光路差は波長え の 1. 2倍となる。等位相である 1波長分の光路差を
2
差し引いた実質的な光路差は、波長え の 0. 2倍であるので、レベル面の個数 Aを 4
2
、 5、 6の何れかに設定すれば、 1つのパターン内での第 2光束の光路差は波長え
2 の略 1倍となる。このように、波長え の略 1倍の光路差を発生させるパターンを周期
2
的に配列させることで、第 2光束を高い回折効率で 1次方向へ回折させることができ、 第 2光束のみを選択的に回折させる回折構造を得ることができる。このとき、レベル面 の個数 Aを 5に設定すると、 1つのパターン内での第 2光束の光路差を波長え の 1倍
2 に最も近づけることができるので、第 2光束に透過率を最も高く確保可能である。
[0145] なお、第 1回折構造 DOE1 'において、第 2光束の回折光の回折効率は、材料のァ ッべ数にのみに依存し、屈折率には依存しない。従って、屈折率に関しては比較的 自由度があるが、屈折率の値が小さくなるほど段差が深くなり、階段形状を精度良く 製造することが困難になるため、同じアッベ数を有する材料が複数ある場合には、屈 折率が最も大き ヽ材料を選択するのが好まし ヽ。
[0146] 尚、第 1回折構造 DOE1では、波長 λ と波長 λ の回折効率を重視した設計となつ
2 3
ているため、波長え の回折効率は 60%となる。しかるに、第 1回折構造 DOE 1 'の波 長え に対する回折効率 (透過率)を 100%とし、第 2周辺領域を回折構造が形成さ れない非球面としたため、各領域の面積加重平均により計算される波長え の回折効 率は 86%となり、高密度光ディスク HDに対する高速での記録や再生が可能である。
[0147] このように、高密度光ディスク HDの開口数 NAは CDの開口数 NAに比べて大き
1 3
いため、波長え の有効径全体で考えると第 1回折構造 DOE1の回折効率低下は、 それほど大きな影響を与えな 、。
[0148] また、光ディスク側の光学面 (第 3面)には、第 2回折構造 DOE2が形成され、この 第 2回折構造 DOE2は、波長え に対して 10次回折光を発生し、波長え に対して 6
1 2 次回折光を発生し、波長え に対して 5次回折光を発生し、その製造波長え は 408η
3 Β mである。 λ 、 λ 及びえ に対する回折効率は、それぞれ、 100%、 100%、 100%
1 2 3
である。
[0149] 表 6に、本実施例の対物光学系の温度 25度、及び 55度における高密度光ディスク HD使用時の最良像面での波面収差の RMS値(9次以下の球面収差成分の総和) を示す。但し、青紫色半導体レーザ LD1の温度上昇に伴う波長シフト量を +0.05η mZ度と仮定し、温度上昇に伴う屈折率変化量を 0.9X10— 4Z度としている。表 6 において、「比較例」は、本実施例の対物光学系と同じ設計波長、同じ焦点距離、同 じ開口数、同じ作動距離を有し、第 1回折構造 DOE1及び第 1回折構造 DOE1'が 形成されていない対物光学系である。この表から、本実施例の対物光学系は、環境 温度が変化した場合の高密度光ディスク HDに対する記録 Z再生特性に優れている ということができる。
[表 6]
実施例 3 比較例
25度 0. 00 21 RMS 0. 00 21 RMS
5 5度 0. 00 81 RMS 0. 1 6 8 1 RMS

Claims

請求の範囲
[1] 波長え (nm)の第 1光束が入射した場合には n 次の回折光を発生し、波長え (n
1 11 2 m) ( > λ )の第 2光束が入射した場合には η 次 (η ≥η )の回折光を発生する
2 1 21 11 21
第 1回折構造が形成された光学面と、前記波長え (nm)の前記第 1光束が入射した 場合には n 次の回折光を発生し、前記波長え (nm) ( λ > λ )の前記第 2光束が
12 2 2 1 入射した場合には η 次 (η ≥η )の回折光を発生する第 2回折構造が形成された
22 12 22
光学面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特徴とする回折光学 素子。
δ ≠ δ (1)
A12 B12
ただし、
δ φ ={η - λ Ζ(Ν -1)}/{η - λ
A12 11 1 11 21 2 Ζ(Ν —1) (2)
21
δ φ ={η · λ
B12 12 1 Ζ(Ν -1)}/{η · λ
12 22 2 Ζ(Ν —1) (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率である。
1 2
[2] 以下の (4)式を満たすことを特徴とする請求の範囲第 1項に記載の回折光学素子。
η ≠η (4)
11 12
[3] 以下の(5)式を満たすことを特徴とする請求の範囲第 1項に記載の回折光学素子。
{ΐΝΤ( δ )-δ }·{ΐΝΤ( δ )-δ }<0 (5)
A12 A12 B12 B12
ただし、 ΙΝΤ(Χ)は Xに最も近い整数である。
[4] 以下の(6)式及び (7)式の 、ずれか一方を満たすことを特徴とする請求の範囲第 1 項に記載の回折光学素子。
I ΙΝΤ( δ φ )一 δ φ 4 (6
A12 A12 I <0. )
I ΙΝΤ( δ φ )-δ I <0.4 (7)
B12 B12
ただし、 INT(X)は Xに最も近い整数である。
[5] 前記第 1回折構造と前記第 2回折構造は共に、光軸方向の段差により分割された 同心円状の複数の輪帯力 構成され、前記第 1回折構造の輪帯のうち最も光軸に近 い段差の深さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の深さ dが
1 2 以下の(8)式を満たすことを特徴とする請求の範囲第 1項に記載の回折光学素子。 d ≠d (8)
1 2
[6] 以下の(9)式及び(10)式を満たすことを特徴とする請求の範囲第 1項に記載の回 折光学素子。
I ΙΝΤ( δ φ )一 δ φ I >0. 07 (9)
A12 A12
I INT( δ φ )- δ I < 0. 07 (10)
B12 B12
ただし、 INT(X)は Xに最も近い整数である。
[7] 以下の(11)式乃至(13)式を満たすことを特徴とする請求の範囲第 1項に記載の 回折光学素子。
λ / % > 1. 3 (11)
2 1
η >η (12)
11 21
η >η (13)
12 22
[8] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
1 2
mの範囲内にあって、 iを 1又は 2としたとき、前記 η と前記 η との組合せが、 (η 、η
li 2i li 2i
) = (1, 1)、 (2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (1
0, 6)のいずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする請
11 12
求の範囲第 1項に記載の回折光学素子。
[9] 前記第 1回折構造は、波長え (ηπι) ( λ > λ )の第 3光束が入射した場合には η
3 3 2 13 次 (η ≥η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場
21 31
合には η 次 (η ≥η )の回折光を発生することを特徴とする請求の範囲第 1項に記
23 22 32
載の回折光学素子。
[10] 以下の( 14)式及び( 15)式の 、ずれか一方を満たすことを特徴とする請求の範囲 第 9項に記載の回折光学素子。
ΙΝΤ( δ φ )- δ I < 0. 4 (14)
A13 A13
ΙΝΤ( δ φ )- δ I < 0. 4 (15)
B13 B13
ただし、
δ φ = {η - λ Ζ(Ν -1) }/{η · λ Ζ(Ν —1) } (16)
A13 11 1 11 31 3 31
δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν —1) } (17)
B13 12 1 12 32 3 32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
3
[11] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
2
mの範囲内、前記波長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2とし
3
たとき、前記 n と前記 n と前記 nの組合せが、(n 、 n 、 n ) = (2, 1, 1)、 (4, 2, 2
li 2i 3i li 2i 3i
), (6, 4, 3)、(8, 5, 4)、(10, 6, 5)のいずれかである(但し、 n =n となる組み
11 12
合わせを除く)ことを特徴とする請求の範囲第 9項に記載の回折光学素子。
[12] 波長 λ (nm)の第 1光束を厚さ tlの保護層を有する第 1光ディスクの情報記録面 上に集光し、波長え (ηπι) (λ >λ )の第 2光束を厚さ t (t ≥t )の保護層を有す
2 2 1 2 2 1
る第 2光ディスクの情報記録面上に集光する対物光学系であって、
前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射し
11
た場合には n 次 (n ≥n )の回折光を発生する第 1回折構造が形成された光学面
21 11 21
と、前記第 1光束が入射した場合には n 次の回折光を発生し、前記第 2光束が入射
12
した場合には n 次 (n ≥n )の回折光を発生する第 2回折構造が形成された光学
22 12 22
面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特徴とする対物光学系。 δ ≠ δ (1)
A12 B12
ただし、
δ φ ={η - λ Ζ(Ν -1)}/{η - λ
A12 11 1 11 21 2 Ζ(Ν - 1) } (2)
21
δ φ ={η ·λ
B12 12 1 Ζ(Ν -1)}/{η ·λ
12 22 2 Ζ(Ν - 1) } (3)
22
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率である。
1 2
[13] 以下の (4)式を満たすことを満たすことを特徴とする請求の範囲第 12項に記載の 対物光学系。
η ≠η (4)
11 12
[14] 以下の(5)式を満たすことを特徴とする請求の範囲第 12項に記載の対物光学系。
{ΐΝΤ(δ )-δ }·{ΐΝΤ(δ )-δ }<0 (5)
A12 A12 B12 B12
ただし、 ΙΝΤ(Χ)は Xに最も近い整数である。
[15] 厚さ tと厚さ tは >t )であり、前記第 1回折構造は、前記厚さ tと前記厚さ tの
1 2 2 1 1 2 違いに起因して発生する球面収差を補正する機能を有し、前記第 2回折構造は、前 記波長 λ が ± lOnmの範囲内で変化した場合に前記第 1回折構造で発生する球面 収差を制御する機能を有することを特徴とする請求の範囲第 12項に記載の対物光 学系。
[16] 厚さ tと厚さ tは =t )であり、前記第 1回折構造は、前記波長え と前記え の波
1 2 2 1 1 2 長差による波長分散に起因して発生する球面収差を補正する機能を有し、前記第 2 回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第 1回折構造 で発生する球面収差を制御する機能を有することを特徴とする請求の範囲第 12項 に記載の対物光学系。
[17] 前記第 2回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第
1回折構造で発生する球面収差を小さく抑制する機能を有することを特徴とする請求 の範囲第 12項に記載の対物光学系。
[18] 前記対物光学系は、前記波長え が + 10nmの範囲内で長波長側に変化した場合 に球面収差が補正不足方向に変化するような球面収差特性をすることを特徴とする 請求の範囲第 12項に記載の対物光学系。
[19] プラスチックレンズを少なくとも 1つ有することを特徴とする請求の範囲第 12項に記 載の対物光学系。
[20] 以下の(6)式及び (7)式の 、ずれか一方を満たすことを特徴とする請求の範囲第 1 2項に記載の対物光学系。
I ΙΝΤ( δ φ )一 δ φ I < 0. 4 (6)
A12 A12
I ΙΝΤ( δ φ )- δ I < 0. 4 (7)
B12 B12
ただし、 INT(X)は Xに最も近い整数である。
[21] 前記第 1回折構造と前記第 2回折構造は共に、光軸方向の段差により分割された 同心円状の複数の輪帯力 構成され、前記第 1回折構造の輪帯のうち最も光軸に近 い段差の深さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の深さ dが
1 2 以下の(8)式を満たすことを特徴とする請求の範囲第 12項に記載の対物光学系。 d≠d (8)
1 2
[22] 以下の(9)式及び(10)式を満たすことを特徴とする請求の範囲第 12項に記載の 対物光学系。
I ΙΝΤ( δ φ )一 δ φ I >0. 07 (9)
A12 A12
I ΙΝΤ( δ φ )- δ B12 I < 0. 07 (10)
B12
ただし、 ΙΝΤ(Χ)は Xに最も近い整数である。
[23] 以下の(11)式乃至(12)式を満たすことを特徴とする請求の範囲第 12項に記載の 対物光学系。
λ / % > 1. 3 (11)
2 1
η >η (12)
11 21
η >η (13)
12 22
[24] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
1 2
mの範囲内にあって、 iを 1又は 2としたとき、前記 η と前記 η との組合せが、 (η 、η
li 2i li 2i
) = (1, 1)、 (2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (1
0, 6)のいずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする請
11 12
求の範囲第 12項に記載の対物光学系。
[25] 前記第 1回折構造は、波長え (ηπι) ( λ > λ )の第 3光束が入射した場合には η
3 3 2 13 次 (η ≥η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場
12 13
合には η 次 (η ≥η )の回折光を発生することを特徴とする請求の範囲第 12項に
23 22 23
記載の対物光学系。
[26] 以下の( 14)式及び( 15)式の 、ずれか一方を満たすことを特徴とする請求の範囲 第 25項に記載の対物光学系。
I ΙΝΤ( δ φ )一 δ φ
A13 A13 I < 0. 4 (14)
I INT( δ φ )- δ I < 0. 4 (15)
B13 B13
ただし、
δ φ = {η - λ -1
A13 11 1 Ζ(Ν ) }/{η - λ
11 31 3 Ζ(Ν —1) } (16)
31
δ φ = {η - λ
1 Ζ(Ν -1) }/{η - λ
12 32 3 Ζ(Ν —1) } (17)
B13 12 32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 31 1 3 12 32 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
1 3
[27] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
2
mの範囲内、前記波長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2とし
3
たとき、前記 n と前記 n と前記 n の組合せが、(n 、 n 、 n ) = (2, 1, 1)、 (4, 2, 2
li 2i 3i li 2i 3i
) , (6, 4, 3)、(8, 5, 4)、(10, 6, 5)のいずれかである(但し、 n =n となる組み
11 12
合わせを除く)ことを特徴とする請求の範囲第 25項に記載の対物光学系。
[28] 前記第 1回折構造が形成された光学面と、前記第 2回折構造が形成された光学面 とを有する回折光学素子と、該回折光学素子を透過した前記第 1光束及び前記第 2 光束を、それぞれ前記第 1光ディスク及び前記第 2光ディスクの情報記録面上に集 光する集光素子とから構成され、前記回折光学素子と前記集光素子は一体化して成 ることを特徴とする請求の範囲第 12項に記載の対物光学系。
[29] 前記回折光学素子と前記集光素子は一体化された単レンズであることを特徴とする 請求の範囲第 28項に記載の対物光学系。
[30] 波長え (nm)の第 1光束を出射する第 1光源と、波長え (ηπι) ( λ > λ )の第 2光
1 2 2 1
束を出射する第 2光源と、前記第 1光束を厚さ tの保護層を有する第 1光ディスクの 情報記録面上に集光することによって情報の記録及び Z又は再生を行うとともに、前 記第 2光束を厚さ t (t≥t )の保護層を有する第 2光ディスクの情報記録面上に集光
2 2 1
することによって情報の記録及び Z又は再生を行う対物光学系とを有する光ピックァ ップ装置において、
前記対物光学系は、前記第 1光束が入射した場合には n 次の回折光を発生し、
11
前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 1回折構
21 11 21
造が形成された光学面と、前記第 1光束が入射した場合には n 次の回折光を発生
12
し、前記第 2光束が入射した場合には n 次 (n ≥n )の回折光を発生する第 2回折
22 12 22
構造が形成された光学面とを少なくとも 1つずつ有し、以下の(1)式を満たすことを特 徴とする光ピックアップ装置。
δ ≠ δ (1)
A12 B12
ただし、
δ φ = {η - λ Ζ (Ν -1) }/{η - λ Ζ (Ν - 1) } (2)
A12 11 1 11 21 2 21
δ φ = {η · λ Ζ (Ν -1) }/{η - λ Ζ (Ν - 1) } (3) であり、 N 、N はそれぞれえ 、え に対する第 1回折構造の屈折率、 N 、N はそ
11 21 1 2 12 22 れぞれ λ 、 λ に対する第 2回折構造の屈折率である。
1 2
[31] 以下の (4)式を満たすことを満たすことを特徴とする請求の範囲第 30項に記載の 光ピックアップ装置。
η ≠η (4)
11 12
[32] 以下の(5)式を満たすことを特徴とする請求の範囲第 30項に記載の光ピックアップ
{ΐΝΤ ( δ ) - δ } · {ΐΝΤ ( δ )一 δ φ } < 0 (5)
A12 A12 B12 B12
ただし、 ΙΝΤ (Χ)は Xに最も近い整数である。
[33] 厚さ tと厚さ tは >t )であり、前記第 1回折構造は、前記厚さ tと前記厚さ tの
1 2 2 1 1 2 違いに起因して発生する球面収差を補正する機能を有し、前記第 2回折構造は、前 記波長 λ が ± lOnmの範囲内で変化した場合に前記第 1回折構造で発生する球面 収差を制御する機能を有することを特徴とする請求の範囲第 30項に記載の光ピック アップ装置。
[34] 厚さ tと厚さ tは =t )であり、前記第 1回折構造は、前記波長え と前記え の波
1 2 2 1 1 2 長差による波長分散に起因して発生する球面収差を補正する機能を有し、前記第 2 回折構造は、前記波長 λェが ± lOnmの範囲内で変化した場合に前記第 1回折構造 で発生する球面収差を制御する機能を有することを特徴とする請求の範囲第 30項 に記載の光ピックアップ装置。
[35] 前記第 2回折構造は、前記波長え が ± 10nmの範囲内で変化した場合に前記第 1回折構造で発生する球面収差を小さく抑制する機能を有することを特徴とする請求 の範囲第 30項に記載の光ピックアップ装置。
[36] 前記対物光学系は、前記波長え が + 10nmの範囲内で長波長側に変化した場合 に球面収差が補正不足方向に変化するような球面収差特性をすることを特徴とする 請求の範囲第 30項に記載の光ピックアップ装置。
[37] プラスチックレンズを少なくとも 1つ有することを特徴とする請求の範囲第 36項に記 載の光ピックアップ装置。
[38] 以下の(6)式及び (7)式の 、ずれか一方を満たすことを特徴とする請求の範囲第 3 0項に記載の光ピックアップ装置。
I ΙΝΤ( δ φ )一 δ φ
A12 A12 I < 0. 4 (6)
I ΙΝΤ( δ φ )- δ
B12 B12 I < 0. 4 (7)
ただし、 INT(X)は Xに最も近い整数である。
[39] 前記第 1回折構造と前記第 2回折構造は共に、光軸方向の段差により分割された 同心円状の複数の輪帯力 構成され、前記第 1回折構造の輪帯のうち最も光軸に近 い段差の深さ dと、前記第 2回折構造の輪帯のうち最も光軸に近い段差の深さ dが
1 2 以下の(7)式を満たすことを特徴とする請求の範囲第 30項に記載の光ピックアップ d≠d (8)
1 2
[40] 以下の(9)式及び(10)式を満たすことを特徴とする請求の範囲第 30項に記載の 光ピックアップ装置。
I ΙΝΤ( δ φ )一 δ φ I >0. 07 (9)
A12 A12
I INT( δ φ ) - δ I < 0. 07 (10)
B12 B12
ただし、 INT(X)は Xに最も近い整数である。
[41] 以下の( 11)式乃至( 13)式を満たすことを特徴とする請求の範囲第 30項に記載の 光ピックアップ装置。
λ / % > 1. 3 (11)
2 1
η >η (12)
11 21
η >η (13)
12 22
[42] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
1 2
mの範囲内にあって、 iを 1又は 2としたとき、前記 η と前記 η との組合せが、 (η 、η
li 2i li 2i
) = (1, 1)、 (2, 1)、 (3, 2)、 (4, 2)、 (5, 3)、 (6, 4)、 (7, 4)、 (8, 5)、 (9, 6)、 (1
0, 6)のいずれかである(但し、 n =n となる組み合わせを除く)ことを特徴とする請
11 12
求の範囲第 30項に記載の光ピックアップ装置。
[43] 前記第 1回折構造は、波長え (ηπι) ( λ > λ )の第 3光束が入射した場合には η
3 3 2 13 次 (η ≥η )の回折光を発生し、前記第 2回折構造は、前記第 3光束が入射した場
12 13
合には η 次 (η ≥η )の回折光を発生することを特徴とする請求の範囲第 30項に
23 22 23 記載の光ピックアップ装置。
[44] 以下の( 14)式及び( 15)式の 、ずれか一方を満たすことを特徴とする請求の範囲 第 43項に記載の光ピックアップ装置。
I ΙΝΤ( δ φ ) - δ φ < 0. 4
A13 A13 I (14)
I ΙΝΤ( δ φ
B13 )- δ < 0. 4
B13 I (15)
ただし、
δ φ = {η · λ Ζ(Ν -1) }/{η λ / (Ν -1) } (16)
A13 11 1 11 :
δ φ = {η - λ Ζ(Ν -1) }/{η - λ Ζ(Ν —1) } (17)
B13 12 1 12 32 3 32
であり、 Ν 、Ν はそれぞれえ 、え に対する第 1回折構造の屈折率、 Ν 、Ν はそ
11 31 1 3 12 32 れぞれ λ 、 λ に対する第 2回折構造の屈折率、 INT (X)は Xに最も近い整数である
[45] 前記波長え は 350nm乃至 450nmの範囲内、前記波長え は 600nm乃至 700η
1 2
mの範囲内、前記波長え は 750nm乃至 850nmの範囲内にあって、 iを 1又は 2とし
3
たとき、前記 n と前記 n と前記 nの組合せが、(n 、 n 、 n ) = (2, 1, 1)、 (4, 2, 2
li 2i 3i li 2i 3i
) , (6, 4, 3)、(8, 5, 4)、(10, 6, 5)のいずれかである(但し、 n =n となる組み
11 12
合わせを除く)ことを特徴とする請求の範囲第 43項に記載の光ピックアップ装置。
[46] 前記第 1回折構造が形成された光学面と、前記第 2回折構造が形成された光学面 とを有する回折光学素子と、該回折光学素子を透過した前記第 1光束及び前記第 2 光束を、それぞれ前記第 1光ディスク及び前記第 2光ディスクの情報記録面上に集 光する集光素子とから構成され、前記回折光学素子と前記集光素子は一体化して成 ることを特徴とする請求の範囲第 30項に記載の光ピックアップ装置。
[47] 前記回折光学素子と前記集光素子は一体化された単レンズであることを特徴とする 請求の範囲第 46項に記載の光ピックアップ装置。
[48] 請求の範囲第 30項に記載の光ピックアップ装置を搭載して、第 1光ディスク及び第 2光ディスクに対する情報の記録、及び、第 1光ディスク及び第 2光ディスクに記録さ れた情報の再生のうち、少なくとも一方を実行可能であることを特徴とする光情報記
PCT/JP2004/017937 2003-12-09 2004-12-02 回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置 WO2005057565A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0518121A GB2414813B (en) 2003-12-09 2004-12-02 Diffraction optical element, object optical system, optical pickup device and optical information recording/reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003410506A JP2005174416A (ja) 2003-12-09 2003-12-09 回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置
JP2003-410506 2003-12-09

Publications (1)

Publication Number Publication Date
WO2005057565A1 true WO2005057565A1 (ja) 2005-06-23

Family

ID=34631830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017937 WO2005057565A1 (ja) 2003-12-09 2004-12-02 回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置

Country Status (7)

Country Link
US (1) US7319655B2 (ja)
JP (1) JP2005174416A (ja)
KR (1) KR20060126853A (ja)
CN (1) CN100382171C (ja)
GB (1) GB2414813B (ja)
TW (1) TWI354282B (ja)
WO (1) WO2005057565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562187A2 (en) * 2004-02-09 2005-08-10 Konica Minolta Opto, Inc. Optical pick-up apparatus and optical information recording and/or reproducing apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005091279A1 (ja) * 2004-03-19 2008-02-07 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学系、光ピックアップ装置及び光情報記録再生装置
JP2006079671A (ja) * 2004-09-07 2006-03-23 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2006209934A (ja) * 2004-12-27 2006-08-10 Victor Co Of Japan Ltd 光ピックアップ装置
JP2006323907A (ja) * 2005-05-18 2006-11-30 Hitachi Media Electoronics Co Ltd 光ピックアップ装置
US7688701B2 (en) * 2005-06-20 2010-03-30 Konica Minolta Opto, Inc. Objective optical system and optical pickup apparatus
US7843792B2 (en) * 2006-06-21 2010-11-30 Hoya Corporation Optical information recording /reproducing device and objective lens for the same
WO2008044475A1 (fr) * 2006-10-12 2008-04-17 Konica Minolta Opto, Inc. Unité d'élément optique objectif et dispositif de capture optique
JP4981560B2 (ja) * 2007-07-13 2012-07-25 Hoya株式会社 光ピックアップ装置
JP5199655B2 (ja) * 2007-12-12 2013-05-15 Hoya株式会社 光情報記録再生装置用対物レンズおよび光情報記録再生装置
JP2009199707A (ja) * 2008-01-22 2009-09-03 Hoya Corp 光情報記録再生装置用対物光学系、および光情報記録再生装置
JP5520197B2 (ja) * 2009-11-20 2014-06-11 Hoya株式会社 光情報記録再生装置用対物光学系、及び光情報記録再生装置
JP5647547B2 (ja) * 2010-03-19 2014-12-24 Hoya株式会社 光情報記録再生装置用対物光学系、及び光情報記録再生装置
KR20180073904A (ko) 2016-12-23 2018-07-03 삼성전기주식회사 촬상 광학계

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060336A (ja) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2001093179A (ja) * 1999-09-21 2001-04-06 Pioneer Electronic Corp 光ピックアップ
JP2001209966A (ja) * 2000-01-26 2001-08-03 Pioneer Electronic Corp 光ピックアップ
JP2001272517A (ja) * 2000-03-24 2001-10-05 Fuji Photo Optical Co Ltd 回折型レンズおよびこれを用いた光ピックアップ装置
JP2001272516A (ja) * 2000-03-24 2001-10-05 Fuji Photo Optical Co Ltd 回折型レンズおよびこれを用いた光ピックアップ装置
JP2004192783A (ja) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd 光学素子、光学レンズ、光ヘッド装置、光情報装置、コンピューター、光情報媒体プレーヤー、カーナビゲーションシステム、光情報媒体レコーダー、光情報媒体サーバー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334504A (ja) * 1997-05-29 1998-12-18 Nec Corp 光ヘッド装置
JP3511913B2 (ja) * 1998-10-19 2004-03-29 日本ビクター株式会社 光ピックアップ及び光デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060336A (ja) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2001093179A (ja) * 1999-09-21 2001-04-06 Pioneer Electronic Corp 光ピックアップ
JP2001209966A (ja) * 2000-01-26 2001-08-03 Pioneer Electronic Corp 光ピックアップ
JP2001272517A (ja) * 2000-03-24 2001-10-05 Fuji Photo Optical Co Ltd 回折型レンズおよびこれを用いた光ピックアップ装置
JP2001272516A (ja) * 2000-03-24 2001-10-05 Fuji Photo Optical Co Ltd 回折型レンズおよびこれを用いた光ピックアップ装置
JP2004192783A (ja) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd 光学素子、光学レンズ、光ヘッド装置、光情報装置、コンピューター、光情報媒体プレーヤー、カーナビゲーションシステム、光情報媒体レコーダー、光情報媒体サーバー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562187A2 (en) * 2004-02-09 2005-08-10 Konica Minolta Opto, Inc. Optical pick-up apparatus and optical information recording and/or reproducing apparatus
EP1562187A3 (en) * 2004-02-09 2008-01-23 Konica Minolta Opto, Inc. Optical pick-up apparatus and optical information recording and/or reproducing apparatus

Also Published As

Publication number Publication date
TW200523913A (en) 2005-07-16
CN100382171C (zh) 2008-04-16
TWI354282B (en) 2011-12-11
US7319655B2 (en) 2008-01-15
KR20060126853A (ko) 2006-12-11
GB2414813B (en) 2007-03-14
US20050122882A1 (en) 2005-06-09
GB2414813A (en) 2005-12-07
CN1764959A (zh) 2006-04-26
JP2005174416A (ja) 2005-06-30
GB0518121D0 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US8121011B2 (en) Optical element, aberration correcting element, light converging element, objective optical system, optical pickup device, and optical information recording reproducing device
US7957231B2 (en) Optical pickup apparatus and objective optical element
JPWO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
JP2006012394A (ja) 光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2006085444A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
JP4992103B2 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
JPWO2005083694A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
WO2005057565A1 (ja) 回折光学素子、対物光学系、光ピックアップ装置及び光情報記録再生装置
JP4483864B2 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP4321217B2 (ja) 光学素子及び光ピックアップ装置
WO2005043523A1 (ja) 光ピックアップ装置及び発散角変換素子
WO2005091279A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置及び光情報記録再生装置
JPWO2006115081A1 (ja) 光ピックアップ装置用対物光学素子、光ピックアップ装置用光学素子、光ピックアップ装置用対物光学素子ユニット及び光ピックアップ装置
JP4798269B2 (ja) 光ピックアップ装置用の光学素子、及び光ピックアップ装置
JP2011165224A (ja) 光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ
JP4462108B2 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
US20050122883A1 (en) Optical pickup apparatus and optical information recording and/or reproducing apparatus
JP4400326B2 (ja) 光ピックアップ光学系、光ピックアップ装置及び光ディスクドライブ装置
JP4329031B2 (ja) 光ピックアップ装置
JP4803410B2 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2005141800A (ja) 発散角変換素子及び光ピックアップ装置
JP2005243151A (ja) 回折光学素子、対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2005129204A (ja) 光ピックアップ光学系、光ピックアップ装置及び光情報記録再生装置
JPWO2005043522A1 (ja) 光ピックアップ装置、及び光ピックアップ装置に用いる補正素子
JP2007316655A (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 0518121

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20041202

WWE Wipo information: entry into national phase

Ref document number: 0518121.9

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 20048081639

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057018126

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057018126

Country of ref document: KR

122 Ep: pct application non-entry in european phase