WO2005057104A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2005057104A1
WO2005057104A1 PCT/JP2004/017549 JP2004017549W WO2005057104A1 WO 2005057104 A1 WO2005057104 A1 WO 2005057104A1 JP 2004017549 W JP2004017549 W JP 2004017549W WO 2005057104 A1 WO2005057104 A1 WO 2005057104A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
cooler
refrigerator
heat insulation
temperature
Prior art date
Application number
PCT/JP2004/017549
Other languages
English (en)
French (fr)
Inventor
Masashi Yuasa
Yoshitaka Tada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003410057A external-priority patent/JP2005172303A/ja
Priority claimed from JP2004003876A external-priority patent/JP2005195293A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005057104A1 publication Critical patent/WO2005057104A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention relates to a refrigerator having a refrigerator room cooled by a direct cooling system, a freezing room cooled by an indirect cooling system, and a warming room.
  • this type of refrigerator has a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser, a throttle valve, and a cooler, and returns to the compressor again, and has a cooling wall cooled by the cooler.
  • refrigerant discharged from a compressor passes through a condenser, a throttle valve, and a cooler, and returns to the compressor again, and has a cooling wall cooled by the cooler.
  • FIG. 16 is a schematic sectional view of a conventional refrigerator described in the above publication.
  • the refrigeration zone and the freezing zone are vertically divided by a partition plate 345 having an insulating effect, and further, the inside of the refrigeration zone is divided into a refrigeration room 306 and a refrigeration room partition plate 346.
  • Vegetable room 347 is vertically formed.
  • a first freezing room 349 and a second freezing room 350 are each partitioned by a freezing room partition plate 348.
  • a cooling pipe 351 is arranged on the wall surface of the inner box 302 of the refrigerator compartment 306, and a cooler 319 and a cooling fan 318 are provided on the back of the freezing zone.
  • the temperature of the vegetable compartment in the refrigeration zone depends on the temperature of the refrigeration compartment. Absent.
  • the first freezer compartment 349 is also affected by the temperature of the second freezer compartment 350 and thus has a drawback that the temperature control is difficult and thus the use is restricted, and the usability is not favorable. .
  • the present invention solves the above-mentioned conventional problems, and provides an inexpensive refrigerator that has an independent heat insulation room, improves the freshness of food, and is easy to use than controlling them at a set temperature.
  • the purpose is to:
  • a refrigerator of the present invention includes a refrigerator room cooled by a direct cooling system, a freezing room cooled by an indirect cooling system, and a heat insulation room. It has a cooler that generates cool air for cooling the inside, a cooling fan placed above the cooler, a defrost heater that heats the cooler and defrosts, and a cooler cover on the front of the cooler. And a cooler room for storing the cooler. Further, the heat insulation room is cooled by a control panel including a duct connected to the cooler room, a discharge port, and a damper for controlling the air flow inside, and a temperature compensation heater is installed in the heat insulation room.
  • the refrigerator compartment and the freezer compartment are independently cooled, so that the temperature in each compartment can be maintained at a predetermined temperature without any influence on each other.
  • the humidity inside the refrigerator compartment can be maintained by the moisture adhering to the surface of the direct cooling plate, and the temperature of the refrigerator compartment is slightly lower than that of the refrigerator compartment.
  • Cooling of the independently formed heat insulation room around ° c is controlled by controlling the amount of cool air within the set temperature (operating temperature) of the damper in the control panel, and controlling the duty ratio of the heater for temperature compensation. By keeping the temperature in the heat insulation room at a constant temperature, the temperature of the food can be kept constant.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a refrigeration cycle according to a first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a refrigerator according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view around a machine room damper of a refrigerator according to a third embodiment of the present invention.
  • FIG. 5 is a cross-sectional view around a machine room damper of a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view around a machine room damper of a refrigerator according to a fifth embodiment of the present invention.
  • FIG. 7 is a sectional view around a cooling fan of a refrigerator in a sixth embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view of a refrigerator in a seventh embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a refrigeration cycle according to a seventh embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view of a refrigerator in an eighth embodiment of the present invention.
  • FIG. 11 is a longitudinal sectional view of a refrigerator in a ninth embodiment of the present invention.
  • FIG. 12 is a longitudinal sectional view of a refrigerator in a tenth embodiment of the present invention.
  • FIG. 13 is a longitudinal sectional view of a refrigerator in an eleventh embodiment of the present invention.
  • FIG. 14 is a longitudinal sectional view of a refrigerator in a twelfth embodiment of the present invention.
  • FIG. 15 is a longitudinal sectional view of a refrigerator in a thirteenth embodiment of the present invention.
  • FIG. 16 is a longitudinal sectional view of a refrigerator according to the prior art.
  • FIG. 1 shows a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention.
  • a refrigerator main body 1 shows a refrigerator constituted by an insulating box 5 in which a heat insulating material 4 is filled between an inner box 2 and an outer box 3.
  • the refrigerator body 1 has a refrigerator room 6, a warm room 7, and a freezer room 8 from the top, and a refrigerator room open / close door 9, a warm room open / close door 10, and a freezer room open / close door 11 at the front.
  • the refrigerating room 6 and the warming room 7 are separated by a partition plate 12 having a heat insulating effect, and the warming room 7 and the freezing room 8 are partitioned by a partition plate 13 having a heat insulating effect. Behind the partition 13, a duct 14 connected to the freezing room 8 is provided.
  • a tube-on-seat 15 (evaporator) is arranged in contact with the wall surface on the back of the inner box 2 of the refrigerator compartment 6, and the refrigerator compartment 6 has a cooling wall cooled by the tube-on sheet 15. It has a configuration.
  • a cooler room 16 in the freezer room 8 is partitioned by a cooler cover 17.
  • a cooling fan 18, a cooler 19 and a defrost heater 20 are arranged in the cooler room 16.
  • the cooler cover 17 forms a discharge port 22 for discharging the cool air discharged from the cooling fan 18 to the food storage case 21 in the freezing room 8 and a heat insulating room at the back of the partition plate 13.
  • a duct 14 leading to 7 is also configured.
  • a control panel 25 having a mechanical damper 24 inside is arranged inside the heat insulation room 7, and on the back surface.
  • the control panel 25 is connected to the duct 14 at the back of the partition plate 13, and has a discharge port 26 configured to discharge into the heat retaining chamber 7 downstream of the mechanical damper 24.
  • the partition plate 13 between the heat retaining room 7 and the freezing room 8 has a structure in which a heat insulating material 29 is filled between a bottom wall 27 of the heat retaining room 7 and a top wall 28 of the freezing room 8.
  • the bottom wall 27 A temperature compensation heater 30 is arranged in contact with the wall surface, and the inside of the heat retaining room 7 has a heating wall surface heated by the temperature compensation heater 30.
  • FIG. 2 shows a refrigeration cycle.
  • the refrigerant discharged from the compressor 31 is condensed in the condenser 32, and the flow path is switched by the three-way valve 33.
  • the pressure is reduced by the capillary tube 34, evaporates in the tube-on-sheet 15, the cooler 19, and returns to the compressor 31 again through the accumulator 35 to form a simultaneous cooling cycle of the refrigerator compartment and freezer compartment.
  • a freezing room single cooling cycle is configured in which the pressure is reduced by the capillary tube 34, evaporated in the cooler 19, and returned to the compressor 31 via the accumulator 35. Therefore, the refrigerator compartment 6 is cooled by the tube-on sheet 15 in contact with the back of the inner box 2, and the freezer compartment 8 is cooled by stirring the latent heat of vaporization of the cooler 19 by the cooling fan 18.
  • the refrigerant is compressed, condensed, and decompressed, so that the sheet-on-tube 15 or the cooler 19 is cooled by latent heat of evaporation.
  • the sheet-on-tube 15 is in contact with the back of the inner box 2 of the refrigerator compartment 6, and the back of the inner box 2 of the refrigerator compartment 6 serves as a cooling wall to cool the refrigerator compartment 6.
  • cool air is discharged by the cooling fan 18, passes through the air passage in the cooler cover 17, and is discharged from the discharge port 22 to the food storage case 21. The discharged cool air exchanges heat with the food storage case 21 and then is sucked from the lower part of the cooler cover 17.
  • the cool air discharged by the cooling fan 18 passes through the air passage in the cooler cover 17, but a part of the cool air flows into the duct 14 at the back of the partition plate 13, It circulates to the control panel 25 on the back.
  • the cool air flowing into the control panel 25 passes through the mechanical damper 24, is discharged from the discharge port 26 to the food storage case 23, and exchanges heat with the food storage case 23, and then an air passage (not shown) on the rear surface. It is further sucked in and returned to the cooler room 16.
  • the heat-sensitive part of the mechanical damper 24 detects the temperature in the thermal insulation room 7 and passes through the mechanical damper within the set temperature (operating temperature) range of the mechanical damper 24 due to the temperature change of the thermal insulation room 7. It controls the amount of cold air generated and keeps the temperature constant.
  • the temperature of the refrigerator compartment 6 is around 3 ° C
  • the temperature of the warming room 7 is around 0 ° C
  • the temperature of the freezing compartment 8 is around -20 ° C.
  • the cooling is controlled.
  • the temperature compensation heater 30 is in contact with the wall surface of the bottom wall 27 of the heat insulation room 7, and the bottom wall 27 of the heat insulation room 7 becomes a heating wall surface, and heats the food storage case 23 in the heat insulation room 7. Therefore, the heat value of the temperature compensation heater 30 is changed depending on the operating conditions of the compressor 31 and the like.
  • the refrigerator compartment 6 and the freezer compartment 8 are cooled independently of each other, so that the temperature in each refrigerator can be maintained at a predetermined temperature without any influence on each other.
  • the humidity inside the refrigerator compartment can be kept high by moisture adhering to the surface of the direct cooling plate.
  • the cooling of the independently formed heat retaining chamber 7 at a temperature slightly lower than that of the refrigerator compartment 6 at around 0 ° C. is circulated through the latent heat of vaporization of the cooler into the heat retaining chamber by the cooling fan 18.
  • the temperature of the warming room 7 can be kept constant, and the temperature of the food in the food storage case can be kept constant. It becomes possible and the freshness of food can be improved.
  • the heat retaining chamber 7 can be heated, and the food in the food storage case can be further heated.
  • the temperature can be kept constant, and the freshness of the food can be improved
  • FIG. 3 is a longitudinal sectional view of a refrigerator according to a second embodiment of the present invention. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the refrigerator main body 1 has a configuration in which a heat insulating box 5 filled with a heat insulating material 4 between an inner box 2 and an outer box 3 and an outside air temperature sensor 36 for detecting the outside air temperature.
  • the refrigerating cycle of the refrigerator of the present embodiment has the same configuration as the refrigerating cycle of the first embodiment shown in FIG.
  • the outside air temperature detection sensor 36 detects the outside air temperature and turns on the temperature compensation heater 30.
  • the heating rate of the temperature compensation heater 30 is changed by adjusting the rate.
  • the temperature compensation heater 30 is in contact with the wall surface of the bottom wall 27 of the heat insulation room 7, and the bottom wall 27 of the heat insulation room 7 serves as a heating wall surface, and heats the food storage case 23 in the heat insulation room 7.
  • the energization rate of the temperature compensation heater is adjusted by means of detecting the outside air temperature.
  • the heat insulation room can be heated, and the temperature of the food in the food storage case can be kept more constant.
  • FIG. 4 is a cross-sectional view around a mechanical damper of a refrigerator according to a third embodiment of the present invention.
  • the same components as those in the first embodiment or the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the cooler room 16 in the freezing room is partitioned by a cooler cover.
  • a cooling fan 18, a cooler 19 and a defrost heater 20 are arranged in the cooler room 16.
  • the cooler cover forms a freezer compartment discharge port through which cool air discharged from the cooling fan 18 is discharged to the food storage case inside the freezer compartment, and to the duct 14 that connects to the warming room at the back of the partition plate 13. It forms a connected airway.
  • control panel 25 having a mechanical damper 24 inside is arranged on the back surface.
  • the control panel 25 is connected to the duct 14 at the back of the partition plate 13, and has a discharge port 26 configured to discharge into the heat insulation chamber downstream of the mechanical damper 24.
  • the refrigerating cycle of the refrigerator of the present embodiment has the same configuration as the refrigerating cycle of the first embodiment shown in FIG.
  • the heat sensing part of the mechanical damper 24 detects the temperature in the heat insulation room, and the temperature change of the heat insulation room causes the cold air passing through the mechanical damper 24 within the set temperature (operating temperature) range of the mechanical damper 24. Control the volume and keep the temperature constant.
  • the provision of the traps before and after the mechanical damper makes it difficult for hot and humid air to flow in, so that frost formation reliability can be reduced at low cost without employing a frost prevention heater. Can be secured.
  • FIG. 5 is a cross-sectional view around a machine room damper of a refrigerator according to a fourth embodiment of the present invention.
  • the same components as those of the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the cooler room 16 in the freezing room is partitioned by a cooler cover.
  • a cooling fan 18, a cooler 19 and a defrost heater 20 are arranged in the cooler room 16.
  • the cooler cover 17 forms a freezer compartment discharge port for discharging the cool air discharged from the cooling fan 18 to the food storage case in the freezer compartment, and a duct leading to the warming room at the back of the partition plate 13. It constitutes an airway leading to 14.
  • the refrigerating cycle of the refrigerator of the present embodiment has the same configuration as the refrigerating cycle of the first embodiment shown in FIG.
  • the defrost heater 20 is energized at regular operation times to defrost the cooler 19.
  • the heater is heated by a defrosting heater 20 disposed below the cooler 19, and the frost on the cooler 19 becomes water droplets and is removed from the cooler 19.
  • This defrost heater 20 By the heating of this defrost heater 20, The entire inside of the cooler room 16 is heated.
  • the warm and humid air in the cooler room 16 naturally rises, passes through the cooling fan 18, and tries to flow into the control panel 25 which is discharged into the warm room.
  • frost forms around the mechanical damper, which had been cooled during the operation of the compressor, and a heater for preventing frost formation is installed as a measure to prevent it.
  • a heater for preventing frost formation is installed as a measure to prevent it.
  • it by making the position of the duct 14 eccentric with the cooling fan 18, it is difficult to flow into the control panel 25.
  • the duct connected to the heat insulation room is decentered with the cooling fan, so that the hot and humid air at the time of defrost flows into the machine room damper. It is possible to secure frosting reliability at low cost without installing a heater, and it is also possible to suppress a rise in the temperature of the heat insulation room.
  • FIG. 6 is a cross-sectional view of the vicinity of a machine room damper of a refrigerator according to a fifth embodiment of the present invention.
  • the same components as those of the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the cooler room 16 in the freezer compartment is partitioned by a cooler cover.
  • a cooling fan 18, a cooler, and a defrost heater 20 are arranged in the cooler room 16, a cooling fan 18, a cooler, and a defrost heater 20 are arranged.
  • the cooler cover 17 forms a freezer discharge port for discharging the cool air discharged from the cooling fan 18 to the food storage case in the freezer compartment, and also has a duct 14 for connecting to a warming room at the back of the partition plate 13.
  • the control panel 25 is connected to the duct 14 at the back of the partition plate 13, and has a discharge port 26 for discharging into the heat insulation chamber 7 downstream of the mechanical damper 24.
  • the cooler cover incorporates a resin cooler cover surface 39 and a heat insulating member 40 to form a discharge air passage 41 for the heat insulation room and a discharge air passage 42 for the freezer room.
  • the cooler cover is located in front of the cooler, and has a freezer compartment discharge port at an upper portion of the cooler cover and a freezer compartment return air passage (not shown) at a lower portion.
  • the cool air that has flowed out of the cooling fan 18 is provided with a trap c43 in the discharge duct 41 for the warming room in the cooling cover, and is connected to the duct 14 leading to the warming room.
  • the defrost heater 20 is energized to defrost the cooler. At that time, the entire interior of the cooler chamber 16 is heated by the heating of the defrost heater 20. The warm and humid air in the cooler room 16 naturally rises, passes through the cooling fan 18 and tries to rise further. However, by providing the trap c43 in the air path in the cooling cover, warm and humid air flows into the dat 14 connected to the heat insulation room.
  • the trap c between the cooling fan and the discharge air path for the warming room connected to the warming room, the warm and humid air at the time of defrost flows further to the machine room damper. It is difficult to get in and it is possible to secure frosting reliability at low cost without installing a frost prevention heater. Further, it is also possible to suppress a rise in the temperature of the heat insulation room.
  • FIG. 7 shows a cross-sectional view around a cooling fan of a refrigerator according to a sixth embodiment of the present invention.
  • the same components as those in the fifth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a cooler room 16 in the freezing room is partitioned by a cooler cover 17.
  • a cooling fan 18, a cooler 19, and a defrost heater 20 are arranged in the cooler room 16.
  • the cooler cover 17 forms a discharge port for discharging the cool air discharged from the cooling fan 18 to the food storage case inside the freezer compartment, and an air passage leading to the duct connected to the warming room at the back of the partition plate.
  • Inside the insulated room, there is a food storage case, and on the back, an air passage with a mechanical damper inside is arranged inside.
  • the air passage is connected to a duct at the back of the partition plate, and a discharge port is formed downstream of the mechanical damper to discharge into the heat insulation room.
  • the cooler cover 17 is formed by incorporating a cooler cover surface 39 made of resin and a heat insulating member 40.
  • the cooler cover 17 is located in front of the cooler 19, and has a freezer compartment discharge port 22 at an upper portion of the cooler cover 17 and a freezer compartment return air passage (not shown) at a lower portion.
  • Cooling fan The cool air discharged from the cooling chamber 18 is provided with a trap c in the cooling cover 17 in the discharge passage for the warming room, and is connected to a duct leading to the warming room.
  • a trap d44 is disposed in the discharge air passage 42 for the freezer compartment that guides cool air into the freezer compartment, in the front in the discharge direction.
  • the refrigeration cycle of the refrigerator of the present embodiment has the same configuration as the refrigeration cycle of the first embodiment shown in FIG.
  • the defrost heater is energized to perform defrosting of the cooler.
  • the entirety of the cooler room is heated by the heating of the defrost heater.
  • the warm and humid air inside the cooler room naturally rises and passes through the cooling fan, and then tries to rise further.
  • the trap c in the discharge air passage for the heat retaining room in the cooling cover it becomes more difficult for warm and humidity to flow into the duct leading to the heat retaining room.
  • the trap d44 is disposed in the freezer compartment discharge air passage 42 that guides cool air into the freezer compartment in the discharge direction, so that the inflow of warm and humid air from the freezer compartment outlet 22 to the freezer compartment 8 is prevented. As a result, it is possible to prevent a rise in the temperature in the freezer compartment and frost formation in the air passage and near the discharge port.
  • the trap c in the cooling fan and the discharge passage for the warming room connected to the warming room, the warm and humid air during the defrosting is further applied to the machine room damper. It is difficult to flow in, and frost formation reliability can be secured at low cost without installing a frost prevention heater.
  • the trap d in the freezer compartment discharge air duct that guides cool air into the freezer compartment, it is possible to prevent the flow of warm and humid air from the freezer compartment discharge port into the freezer compartment, and to increase the temperature inside the freezer compartment. And frost formation in the air passage and near the discharge port can be prevented.
  • FIG. 8 shows a longitudinal sectional view of a refrigerator according to a seventh embodiment of the present invention.
  • a cabinet 101 shows a refrigerator constituted by an insulating box 108 in which a heat insulating material 107 is filled between an inner box 105 and an outer box 106.
  • the refrigerator has a refrigerator room 121, a warm room 131, and a freezer room 141 from the top, and a refrigerator room open / close door 102, a warm room open / close door 103, and a freezer room open / close door 104 at the front.
  • the refrigerating room 121 and the warming room 131 are separated by a partition plate 109 having a heat insulating effect, and the warming room 131 and the freezing room 141 are partitioned by a partition plate 110 having a heat insulating effect.
  • a duct 111 connected to the freezer compartment 141 is provided behind the partition plate 110.
  • a refrigerator compartment shelf 122 for storing food and a refrigerator compartment case 123 are arranged in the refrigerator compartment 121.
  • a tube-on-seat 119 (evaporator) is disposed in contact with the wall surface on the back of the inner box 105 of the refrigerator compartment 121, and the refrigerator compartment 121 has a configuration having a cooling wall cooled by the tube-on-seat 119. Te, ru.
  • the cooler room 151 in the freezing room 141 is partitioned by a partition plate 144 having an insulating effect.
  • a cooling fan 152, an evaporator 153, and a defrost heater 154 are arranged in the cooler room 151.
  • the partition plate 144 has a discharge port 143 for discharging the cool air discharged from the cooling fan 152 to the freezer compartment 142 for storing the food in the freezer compartment 141, and the inner side of the partition plate 110.
  • ⁇ ⁇ ⁇ Air duct is also configured.
  • FIG. 9 shows a refrigeration cycle according to the present embodiment.
  • the refrigerant discharged from the compressor 161 is condensed in the condenser 162 and the flow path is switched by the three-way valve 163.
  • the pressure is reduced by the capillary tube 164, evaporated by the tube-on-seat 119 and the evaporator 153, and returned to the compressor 161 again through the accumulator 166. I have.
  • the pressure in the chiller tube 165 is reduced, evaporated in the evaporator 153, and returned to the compressor 161 via the accumulator 166 to form a cooling cycle for the freezing chamber alone.
  • the refrigerator compartment 121 is cooled by the tube-on sheet 119 which is in contact with the back of the inner box 105, and the freezer compartment 141 is cooled by stirring the latent heat of evaporation of the evaporator 153 by the cooling fan 152.
  • a heat insulation room case 132 for storing food, and a duct 133 having a mechanical damper 134 inside is arranged on the back surface.
  • the duct 133 is connected to the duct 111 at the back of the partition plate 110, and has a discharge port 135 for discharging into the heat retaining chamber 131 downstream of the mechanical damper 134.
  • the back surface of the inner box 105 of the refrigerator compartment 121 is in contact with the back surface of the inner box 105 of the refrigerator compartment 121, and the back surface of the inner box 105 of the refrigerator compartment 121 serves as a cooling wall surface.
  • Room case 123 is being cooled.
  • cool air is discharged by the cooling fan 152, passes through the air passage in the partition plate 144, and is discharged from the discharge port 143 to the freezer compartment case 142. You. The discharged cool air exchanges heat with the freezer compartment case 142 and then is sucked from the lower part of the partition plate 144.
  • the cool air discharged by the cooling fan 152 passes through the air passage in the partition plate 144.
  • a part of the cool air flows into the duct 111 at the back of the partition plate 110, and is located at the back of the heat insulation chamber 131. Circulates to duct 133.
  • the cool air flowing into the duct 133 passes through the mechanical damper 134, is discharged from the discharge port 135 to the heat insulation room case 132, exchanges heat with the heat insulation room case 132, is sucked through the duct 133 on the back surface, and is cooled. Returned to 151.
  • the heat-sensitive part of the mechanical damper 134 detects the temperature in the heat insulation room 131, and the temperature change of the heat insulation room 131 causes the mechanical damper 134 to operate within the set temperature (operating temperature) range of the mechanical damper 134.
  • the amount of cool air passing through is controlled, and the temperature of the heat insulation room 131 is kept constant.
  • the latent heat of evaporation of the evaporator 153 is circulated into the heat retaining chamber 131 by the cooling fan 152, and the mechanical damper 134 that detects the temperature of the heat retaining chamber 131 is also provided.
  • the temperature of the warming room 131 can be kept constant by keeping the temperature of the food in the warming room case 132 constant, and the freshness of the food can be improved. Can be.
  • the restriction on the set temperature (operating temperature), which was the mechanical damper 134, is eliminated, and the temperature of the heat insulation chamber 131 can be controlled to an arbitrary temperature. And it is possible to create temperatures suitable for various foods. Furthermore, forced closing, which was impossible with the mechanical damper 134, becomes possible.When the heat insulation room 131 is not used, there is no need to circulate cold air into the heat insulation room 131, and by forcibly closing the electric damper, In addition, unnecessary cooling can be prevented, and power consumption can be reduced.
  • the electric damper is forcibly closed, so that the infiltration of warm and humid air into the heat insulation room 131 can be prevented. Power consumption can be reduced by improving the defrosting efficiency.
  • the mechanical damper 134 of the present embodiment as a heat retaining chamber fan whose rotation speed can be varied, the amount of cool air to the heat retaining chamber 131 is adjusted, and the set temperature (operation temperature ) Is eliminated, and the temperature of the heat insulation room 131 can be controlled to an arbitrary temperature, and a temperature suitable for various foods can be created.
  • the cooling rate such as rapid cooling and slow cooling can be controlled, and the freshness of food can be further improved.
  • FIG. 10 is a cross-sectional view of the vicinity of a heat insulation room of a refrigerator according to an eighth embodiment of the present invention. Note that the same components as those of the seventh embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the heat insulation room 131 and the freezing room 141 are partitioned by a partition plate 171 having a built-in heater 175.
  • the partition plate 171 has a structure in which a heat insulating material 174 is filled between a bottom wall 172 of the heat insulation room 131 and a top wall 173 of the freezing room 141. Further, a heater 175 is arranged in contact with the wall surface of the bottom wall 172 of the heat retaining room 131, and the inside of the heat retaining room 131 has a heating wall surface heated by the heater 175.
  • the refrigeration cycle of the refrigerator of the present embodiment has the same configuration as the refrigeration cycle of the seventh embodiment shown in FIG. 9, and thus detailed description is omitted.
  • the electric conductivity of the heater 175 is adjusted by means for detecting the temperatures of the refrigerating room 121, the warming room 131, and the freezing room 141 to change the amount of generated heat.
  • the heater 175 is in contact with the wall surface of the bottom wall 172 of the heat insulation room 131, and the bottom wall 172 of the heat insulation room 131 serves as a heating wall surface, and heats the heat insulation room case 132 in the heat insulation room 131.
  • the means for detecting the temperatures of the refrigerator compartment 121, the warming compartment 131, and the freezing compartment 141 adjusts the duty ratio of the heater 175 to control the amount of heat generated.
  • the heat insulation room 131 can be heated, and the temperature of the food in the heat insulation room case 132 can be kept constant in a temperature zone equal to or higher than the refrigerator room temperature. Further, by adjusting the calorific value of the heater 175, the heating rate of the food can be controlled, and the usability can be improved.
  • FIG. 11 is a cross-sectional view around a heat insulation room of a refrigerator according to a ninth embodiment of the present invention. Note that the same components as those in the seventh embodiment or the eighth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the warming room 131 and the freezing room 141 are partitioned by a partition plate 181 containing a heater 175.
  • the partition plate 181 has a structure in which a heat insulating material 174 is filled between a bottom wall 172 of the heat insulation room 131 and a top wall 173 of the freezing room 141. Further, a heater 175 is arranged in contact with the wall surface of the bottom wall 172 of the heat retaining room 131, and the inside of the heat retaining room 131 has a heating wall surface heated by the heater 175.
  • a duct 133 having a mechanical damper 134 therein is arranged on the back surface of the heat insulation room 131.
  • the duct 133 is connected to the duct 111 at the back of the partition plate 181, and has a discharge port 135 that discharges into the heat insulation chamber 131 downstream of the mechanical damper 134.
  • the refrigerating cycle of the refrigerator of the present embodiment has the same configuration as the refrigerating cycle of the seventh embodiment shown in FIG. 9, and therefore, the description is omitted.
  • the heat sensing part of the mechanical damper 134 detects the temperature in the heat insulation room 131, and the temperature change of the heat insulation room 131 causes the mechanical damper 134 to operate within the set temperature (operating temperature) range of the mechanical damper 134. It controls the amount of cool air passing through and keeps the temperature constant.
  • the power supply rate of the heater 175 is adjusted by means of detecting the temperatures of the refrigerator compartment 121, the warming room 131, and the freezing room 141 to change the calorific value, and the heating room case 132 in the warming room 131 is heated. The heat is going.
  • the temperature of the heat retaining chamber 131 is kept constant by controlling the amount of cool air circulated by the mechanical damper 134 that detects the temperature of the heat retaining chamber 131.
  • the heat transfer rate of the heater 175 and controlling the heat generation by means of detecting the temperature of the refrigerator compartment 121, the warming room 131, and the freezing room 141, the food in the warming room 132 can be finely regulated. It is possible to keep the temperature.
  • the temperature of the heat retaining chamber 131 can be adjusted to an arbitrary temperature, and the amount of heat generated by the heater 175 can be controlled, so that the food storage case can be obtained.
  • the food in 132 can be kept at a fine and arbitrary temperature. Further, by adjusting the opening degree of the electric damper and the calorific value of the heater 175, it is possible to heat the food, cool it, cool it, and heat it, thereby improving the processability of the food.
  • the mechanical damper 134 of the present embodiment as a heat insulation room fan, the number of revolutions of the heat insulation room fan is varied, and the heat generation amount of the heater 175 is controlled, so that the food in the heat insulation room case 132 Can be maintained at a fine and arbitrary temperature.
  • rapid cooling, slow cooling, rapid heating, slow heating, and other cooling and heating rates can be controlled, and further improvement in freshness and processability of food can be achieved.
  • FIG. 12 shows a cross-sectional view around a heat insulation room of a refrigerator according to a tenth embodiment of the present invention.
  • the same components as those in the seventh, eighth, or ninth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the refrigerating room 121 and the heat retaining room 131 are separated by a partition plate 191 having a top surface duct 194.
  • the partition plate 191 has a structure in which a heat insulating material 195 is filled between a bottom wall 192 of the refrigerator compartment 121 and a top wall 193 of the heat insulation room 131. Further, a part of the heat insulating material 195 is removed into a concave shape, and a top surface duct 194 is formed between the heat insulating material 195 and the top surface wall 193 of the heat insulation room 131.
  • the back of the top surface duct 194 is the mechanical It is connected to the par 134 exit side airway. And, the thermal insulation room which constitutes the top surface duct 194 1
  • a plurality of discharge ports 196 are formed in the top wall 193.
  • the refrigeration cycle of the refrigerator of the present embodiment has the same configuration as that of the refrigeration cycle of the seventh embodiment shown in Fig. 9, and thus the description thereof is omitted.
  • a part of the cool air discharged by the cooling fan 152 flows into the duct 111 behind the partition plate 181 and circulates to the duct 133 on the back of the heat insulation room 131.
  • the cool air flowing into the duct 133 passes through the mechanical damper 134 and is sent to the top surface duct 194.
  • Top surface duct 1 Discharges from the upper part of the heat insulation room case 132 through the discharge port 196 of the top surface wall 193 of the heat insulation room 131 constituting the heat insulation room 131, exchanges heat with the heat insulation room case 132, and sucks it through the duct 133 on the back. It is returned to the cooler room 151.
  • the cool air that has passed through the mechanical damper 134 passes through the top surface duct 194, and is discharged from the discharge port 196 of the top surface wall 193 of the heat insulation room 131, so that the heat insulation room 1 It is possible to cool the inside of the case 31 by the shower method, reduce the temperature distribution in the heat insulation case 132, and keep the food at a uniform and constant temperature regardless of the position.
  • the electric damper as the mechanical damper 134 of the present embodiment, it is possible to maintain a fine and uniform arbitrary temperature regardless of the position of the food. Further, by using the mechanical damper 134 of the present embodiment as a warming room fan, it is possible to maintain a uniform and arbitrary temperature with fineness and power, regardless of the position of the food as described above. Become.
  • FIG. 13 is a cross-sectional view of the vicinity of a heat insulation room of a refrigerator according to an eleventh embodiment of the present invention. Note that the same components as those in the seventh, eighth, ninth, or tenth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a stirring fan 1 for the heat insulation room is provided on the rear side of the heat insulation room case 132 in the heat insulation room 131. 36 are arranged.
  • the refrigeration cycle of the refrigerator of the present embodiment has the same configuration as that of the refrigeration cycle of the seventh embodiment shown in Fig. 9, and thus the description is omitted.
  • the atmosphere around the insulated room case 132 can be stirred by rotating the insulated room stirring fan 136, and the temperature distribution in the insulated room case 132 Variations can be reduced, and it is possible to maintain a uniform and constant temperature regardless of where the food is placed. Furthermore, by the circulation of the atmosphere, local heating by the heater 175 can also be prevented, and the temperature distribution in the heat insulation chamber case 132 can be further reduced.
  • FIG. 14 is a cross-sectional view of the vicinity of a heat insulation room of a refrigerator according to a twelfth embodiment of the present invention.
  • the same components as those in the seventh, eighth, ninth, tenth, or eleventh embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. .
  • the refrigerating room 121 and the heat retaining room 131 are separated by a partition plate 201.
  • the partition plate 201 has a structure in which a heat insulating material 205 is filled between a bottom wall 202 of the refrigerator compartment 121 and a top wall 203 of the heat insulation room 131. Further, a part of the heat insulating material 205 is removed in a concave shape, and a top surface duct 204 is formed between the heat insulation room 131 and the top surface wall 203.
  • the back of the top surface dat 204 is connected to the air passage on the exit side of the mechanical damper 134 of the heat insulation room 131 rear duct 133 and the return air passage returning to the cooler room 151.
  • An aluminum plate 206 is fitted in the heat insulation room 131 and the top wall 203 constituting the top surface duct 204.
  • the refrigeration cycle of the refrigerator of the present embodiment has the same configuration as the refrigeration cycle of the seventh embodiment shown in Fig. 9, and a description thereof will be omitted.
  • the refrigerator of the present embodiment configured as described above is different from the seventh, eighth, ninth, tenth, or eleventh embodiments below. The operation and operation will be described focusing on the part.
  • the cool air that has passed through the mechanical damper 134 passes through the top surface dat 204, and is heated by the heat insulation room 131, the top surface wall 203.
  • the heat insulation room 131 By cooling the heat insulation room 131, natural convection is used to cool the inside of the heat insulation room 131, and the cool air is not circulated directly into the heat insulation room 131, so that the humidity inside the heat insulation room 131 can be suppressed from decreasing and drying of food can be reduced. It becomes.
  • FIG. 15 shows a sectional view around a freezer compartment of a refrigerator according to a thirteenth embodiment of the present invention. Note that the same components as those of the seventh, eighth, ninth, tenth, eleventh, or twelfth embodiments are denoted by the same reference numerals, and are denoted by the same reference numerals. Detailed description is omitted.
  • a cooler room 151 in a freezing room 141 has a partition plate having an insulating effect.
  • a cooling fan 211 whose rotation speed is variable is fitted into the partition plate 212.
  • An evaporator 153 and a defrost heater 154 are arranged in the cooler room 151.
  • the partition plate 212 forms a discharge port 143 for discharging the cool air discharged from the variable-speed cooling fan 211 to a freezing compartment case 142 in the freezing compartment 141, and is provided at the back of the partition plate 110.
  • An air passage leading to the duct 111 leading to the heat insulation room 131 is also formed.
  • cool air is discharged by the variable-speed cooling fan 211, passes through the air path in the partition plate 212, and flows from the discharge port 143 to the freezer compartment case 142. Discharged. The discharged cool air exchanges heat with the freezer compartment case 142, and is then sucked from the lower part of the partition plate 212.
  • the cool air discharged by the variable-speed cooling fan 211 passes through the air passage in the partition plate 212, but a part of the cool air flows into the duct 111 behind the partition plate 110, and the heat insulation room 131 It circulates to the duct 133 on the inner back.
  • the rotation speed can be changed by using the cooling fan as the cooling fan whose rotation speed can be changed. Therefore, when foods that need to be cooled are put into the warming room 131 and the freezing room 141, the rotation speed of the variable speed cooling fan 211 is increased, and the cool air to the warming room 131 and the freezing room 141 is increased. The food in the warming room 131 and the freezing room 141 can be rapidly cooled.
  • the rotation speed of the variable rotation speed cooling fan 211 is reduced and the input is reduced, so that the consumption of the variable rotation speed cooling fan 211 is reduced.
  • the amount of power can be reduced.
  • the noise of the variable-speed cooling fan 211 can be reduced, and the noise can be reduced.
  • the refrigerator compartment and the freezer compartment are independently cooled, the temperature in each compartment can be maintained at a predetermined temperature without any influence on each other.
  • it has an independent heat insulation room, which can improve the freshness of food, control the temperature of the room, and provide an inexpensive refrigerator that is easy to use and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 直接冷却方式にて冷却される冷蔵室(6)と、間接冷却方式にて冷却される冷凍室(8)と、保温室(7)とより成る冷蔵庫であって、庫内を冷却するための冷気を生成する冷却器(19)と、冷却器の上方に配置した冷却用ファン(18)と、冷却器を暖めて除霜する除霜用ヒータ(20)と、冷却器前面に冷却器カバーを有し冷却器を収納する冷却器室(16)とを備える。更に、冷却器室と繋がるダクト(14)と、吐出口(26)と、内部に風量を制御するダンパー(24)とを備えたコントロールパネル(25)により保温室を冷却するとともに、保温室に温度補償用ヒータ(30)を設置している。

Description

明 細 書
冷蔵庫
技術分野
[0001] 本発明は、直接冷却方式にて冷却される冷蔵室と、間接冷却方式にて冷却される 冷凍室と保温室とを有する冷蔵庫に関するものである。
背景技術
[0002] 従来、この種の冷蔵庫は、圧縮機から吐出された冷媒が凝縮器、絞り弁、冷却器を 通過し、再び圧縮機に戻る冷凍サイクルを構成し、冷却器で冷却された冷却壁面に より庫内を冷却する直接冷却式と、冷却器で冷却された冷気を庫内へ循環させて庫 内を冷却する間接冷却式がある。例えば、 日本特許出願特開 2000-28257号公報 に開示された内容について、以下、図面を参照しながら上記従来の冷蔵庫を説明す る。
[0003] 図 16は、上記公報に記載された従来の冷蔵庫の概略断面図である。図 16に示す ように、従来の冷蔵庫は、断熱効果のある仕切り板 345によって、冷蔵ゾーンと冷凍 ゾーンとが上下に区画され、さらに、冷蔵ゾーン内は冷蔵室内仕切り板 346によって 、冷蔵室 306と野菜室 347とが上下に区画形成されている。
[0004] また、冷凍ゾーンでは、冷凍室内仕切り板 348によって、第 1冷凍室 349と第 2冷凍 室 350にそれぞれ仕切られている。そして、冷蔵室 306の内箱 302壁面に冷却パイ プ 351が配置され、冷凍ゾーン背面には冷却器 319と冷却用ファン 318を備えた構 成となっている。
[0005] しかしながら、上記従来の構成では、冷蔵ゾーンにある野菜室の温度は冷蔵室の 温度に依存してしまうため温度コントロールが難しぐ野菜の保鮮劣化を早めてしま レ、、食品保存上好ましくない。
[0006] 一方、第 1冷凍室 349においても、第 2冷凍室 350の温度の影響を受けるため温度 コントロールが難しぐ使用上の制約を受けてしまい、使い勝手が好ましくないという 欠点を有していた。
発明の開示 [0007] 本発明は上記従来の課題を解決するもので、独立した保温室を有し、それらを設 定温度にコントロールするより、食品の保鮮を向上し、使い勝手の良い安価な冷蔵庫 を提供することを目的とする。
[0008] 上記従来の課題を解決するために、本発明の冷蔵庫は、直接冷却方式にて冷却さ れる冷蔵室と、間接冷却方式にて冷却される冷凍室と、保温室とを備え、庫内を冷却 するための冷気を生成する冷却器と、冷却器の上方に配置した冷却用ファンと、冷 却器を暖めて除霜する除霜用ヒータと、冷却器前面に冷却器カバーを有し冷却器を 収納する冷却器室とを備える。更に、冷却器室と繋がるダクトと、吐出口と、内部に風 量を制御するダンパーとを備えたコントロールパネルにより保温室を冷却するとともに 、保温室に温度補償用ヒータを設置している。
[0009] 上記構成により、冷蔵室および冷凍室はそれぞれ独立して冷却することで、互いに 影響なくそれぞれの庫内の温度を所定の温度に保つことができる。特に、冷蔵室を 直冷冷却板等で冷却する直接冷却方式の場合、直冷冷却板の表面に付着した水分 により冷蔵室内を高湿度に保つことができるとともに、冷蔵室より若干低い温度の o°c 付近にする独立して形成した保温室の冷却を、コントロールパネル内にあるダンパー の設定温度(動作温度)範囲内で冷気量をコントロールし、また温度補償用ヒータの 通電率をコントロールすることで、保温室を一定温度に保つことにより、食品の温度を 一定に保つことができる。
図面の簡単な説明
[0010] [図 1]図 1は本発明の第 1の実施形態における冷蔵庫の縦断面図である。
[図 2]図 2は本発明の第 1の実施形態における冷凍サイクルの構成図である。
[図 3]図 3は本発明の第 2の実施形態における冷蔵庫の縦断面図である。
[図 4]図 4は本発明の第 3の実施形態における冷蔵庫の機械室ダンパー周辺の断面 図である。
[図 5]図 5は本発明の第 4の実施形態における冷蔵庫の機械室ダンパー周辺の断面 図である。
[図 6]図 6は本発明の第 5の実施形態における冷蔵庫の機械室ダンパー周辺の断面 図である。 園 7]図 7は本発明の第 6の実施形態における冷蔵庫の冷却用ファン周辺の断面図 である。
園 8]図 8は本発明の第 7の実施形態における冷蔵庫の縦断面図である。
園 9]図 9は本発明の第 7の実施形態における冷凍サイクルの構成図である。 園 10]図 10は本発明の第 8の実施形態における冷蔵庫の縦断面図である。
園 11]図 11は本発明の第 9の実施形態における冷蔵庫の縦断面図である。
園 12]図 12は本発明の第 10の実施形態における冷蔵庫の縦断面図である。 園 13]図 13は本発明の第 11の実施形態における冷蔵庫の縦断面図である。 園 14]図 14は本発明の第 12の実施形態における冷蔵庫の縦断面図である。 園 15]図 15は本発明の第 13の実施形態における冷蔵庫の縦断面図である。 園 16]図 16は従来技術における冷蔵庫の縦断面図である。
符号の説明
1 冷蔵庫本体
6, 121 冷蔵室
7, 131 保温室
8, 141 冷凍室
14, 111 , 133 ダクト
15, 119 チューブオンシート
16, 151 冷却器室
17 冷却器カバー
18, 152, 211 冷去用ファン
19, 153 冷却器
20, 154 除霜用ヒータ
22, 26, 135, 143, 196 P土出口
24, 134 ダンパー
25 コントロールパネル
30 温度補償用ヒータ
36 外気温度検知用センサ 37, 38, 43, 44 卜ラップ
41 保温室用吐出風路
42 冷凍室用吐出風路
136 保温室内攪拌用ファン
発明を実施するための最良の形態
[0012] 以下、本発明の実施形態について、図面を用いて説明する。
[0013] (第 1の実施形態)
図 1は、本発明の第 1の実施形態に係る冷蔵庫の縦断面図を示すものである。図 1 において、冷蔵庫本体 1は、内箱 2と外箱 3との間に断熱材 4が充填された断熱箱体 5によって構成された冷蔵庫を示している。冷蔵庫本体 1は上から冷蔵室 6、保温室 7 、冷凍室 8を有しており、前面は冷蔵室開閉扉 9、保温室開閉扉 10、冷凍室開閉扉 1 1となっている。
[0014] 冷蔵室 6と保温室 7は断熱効果を有する仕切り板 12によって、保温室 7と冷凍室 8 は断熱効果を有する仕切り板 13によって仕切られている。仕切り板 13の奥には、冷 凍室 8と繋がるダクト 14が設置されている。また、冷蔵室 6の内箱 2背面には、壁面に 接してチューブオンシート 15 (蒸発器)が配置され、冷蔵室 6庫内はチューブオンシ ート 15によつて冷却される冷却壁面を有する構成となつている。
[0015] 冷凍室 8内にある冷却器室 16は、冷却器カバー 17によって仕切られている。冷却 器室 16内には、冷却用ファン 18と冷却器 19と除霜用ヒータ 20が配置されている。冷 却器カバー 17には、冷却用ファン 18から吐出された冷気を冷凍室 8内にある食品収 納ケース 21へ吐出される吐出口 22を構成するとともに、仕切り板 13の奥にある保温 室 7へ繋がるダクト 14も構成している。
[0016] 保温室 7内は、食品収納用ケース 23があり、背面には機械式ダンパー 24を内部に 有したコントロールパネル 25が配置されている。コントロールパネル 25には、仕切り 板 13の奥にあるダクト 14と接続され、また、機械式ダンパー 24下流側に、保温室 7 内へ吐出する吐出口 26が構成されてレ、る。
[0017] 保温室 7と冷凍室 8との仕切り板 13は、保温室 7の底面壁 27と冷凍室 8の天面壁 2 8の間に断熱材 29が充填された構造となっている。さらに、保温室 7の底面壁 27の 壁面に接して温度補償用ヒータ 30が配置され、保温室 7庫内は温度補償用ヒータ 30 によって加熱される加熱壁面を有する構成となっている。
[0018] 図 2は冷凍サイクルを示すものである。圧縮機 31から吐出された冷媒は、凝縮器 3 2で凝縮され、三方弁 33にて流路を切り替えている。一方は、キヤビラリ一チューブ 3 4で減圧され、チューブオンシート 15、冷却器 19にて蒸発し、アキュームレータ一 35 を介して、再度、圧縮機 31へ戻る冷蔵室 ·冷凍室同時冷却サイクルが構成されてい る。また、他方は、キヤピラリーチューブ 34で減圧され、冷却器 19にて蒸発し、アキュ 一ムレーター 35を介して、圧縮機 31へ戻る冷凍室単独冷却サイクルが構成されてい る。したがって、冷蔵室 6は内箱 2背面に接しているチューブオンシート 15により冷却 され、冷凍室 8は冷却器 19の蒸発潜熱を冷却用ファン 18により撹拌し冷却している
[0019] 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。まず、 圧縮機 31が稼動することで、冷媒が圧縮、凝縮、減圧されることによりシートオンチュ ーブ 15又は冷却器 19が蒸発潜熱によって冷却される。シートオンチューブ 15おい ては、冷蔵室 6の内箱 2の背面に接しており、冷蔵室 6の内箱 2の背面が冷却壁面と なり、冷蔵室 6の冷却を行っている。一方、冷却器室 16内にある冷却器 19において は、冷却用ファン 18によって冷気を吐出させ、冷却器カバー 17内の風路を通過し、 吐出口 22より食品収納ケース 21へ吐出される。吐出した冷気は食品収納ケース 21 と熱交換した後、冷却器カバー 17下部より吸い込まれる。
[0020] さらに、冷却用ファン 18によって吐出された冷気は冷却器カバー 17内の風路を通 過するが、一部冷気は仕切り板 13の奥にあるダクト 14へ流入し、保温室 7内背面に あるコントロールパネル 25へ循環していく。コントロールパネル 25に流入した冷気は 、機械式ダンパー 24を通過し、吐出口 26より食品収納ケース 23に吐出され、食品収 納ケース 23と熱交換した後、背面にある風路(図示せず)より吸い込まれ、冷却器室 16へ戻される。このとき、機械式ダンパー 24の感熱部は保温室 7内の温度を検知し ており、保温室 7の温度変化により、機械式ダンパー 24の設定温度(動作温度)範囲 内で機械式ダンパーを通過する冷気量をコントロールし、温度を一定に保っている。
[0021] 上記作用により、冷蔵室 6は 3°C前後に、保温室 7は 0°C前後、冷凍室 8は - 20°Cに 冷却制御されるものである。
[0022] さらに、温度補償用ヒータ 30は保温室 7の底面壁 27の壁面に接しており、保温室 7 の底面壁 27が加熱壁面となり、保温室 7内の食品収納ケース 23の加熱を行っており 、温度補償用ヒータ 30の発熱量を圧縮機 31の運転条件等により変化させる。
[0023] 以上のように、本実施の形態では、冷蔵室 6および冷凍室 8はそれぞれ独立して冷 却することで、互いに影響なくそれぞれの庫内の温度を所定の温度に保つことができ る。特に、冷蔵室 6を冷媒管を配した直冷冷却板等で冷却する直接冷却方式の場合 、直冷冷却板の表面に付着した水分により冷蔵室内を高湿度に保つことができるとと もに、冷蔵室 6より若干低い温度の 0°C付近にする独立して形成した保温室 7の冷却 を、冷却器の蒸発潜熱を冷却用ファン 18にて保温室内へ循環させ、さらに、保温室 7の温度を検知している機械式ダンパー 24にて循環する冷気量をコントロールするこ とにより保温室 7の温度を一定に保つことができ、食品収納ケース内の食品の温度を 一定に保つことが可能となり、食品の保鮮性を向上することができる。
[0024] また、圧縮機の運転条件等により温度補償用ヒータ 30の通電率を調整し、発熱量 をコントロールすることにより、保温室 7を加熱することができ、より食品収納ケース内 の食品の温度を一定に保つことが可能となり、食品の保鮮性を向上することができる
[0025] (第 2の実施形態)
図 3は、本発明の第 2の実施形態に係る冷蔵庫の縦断面図を示すものである。なお 、第 1の実施形態と同一構成については、同一符号を付してその詳細な説明は省略 する。図 3において、冷蔵庫本体 1は、内箱 2と外箱 3との間に断熱材 4が充填された 断熱箱体 5と、外気温度を検知する外気温検知センサ 36を有する構成となっている
[0026] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 2に示す第 1の実施形態の冷凍 サイクルと同一構成であるため、説明は除く。
[0027] 以上のように構成された本実施形態の冷蔵庫について、以下、第 1の実施形態と 異なる部分を中心に、その動作、作用を説明する。
[0028] 外気温度検知センサ 36は外気温度を検知することで、温度補償用ヒータ 30の通電 率を調整し、温度補償用ヒータ 30の発熱量を変化させる。温度補償用ヒータ 30は保 温室 7の底面壁 27の壁面に接しており、保温室 7の底面壁 27が加熱壁面となり、保 温室 7内の食品収納ケース 23の加熱を行っている。
[0029] 以上のように、本実施形態では、一般に外気温度が低いと吸熱負荷量が減り、庫 内温度が低くなるが、外気温度を検知する手段により、温度補償用ヒータの通電率を 調整し発熱量をコントロールすることにより、保温室を加熱することができ、食品収納 ケース内の食品の温度をさらに一定に保つことがさらに可能となる。
[0030] (第 3の実施形態)
図 4は、本発明の第 3の実施形態に係る冷蔵庫の機械式ダンパー周辺の断面図を 示すものである。なお、第 1の実施形態もしくは第 2の実施形態と同一構成について は、同一符号を付してその詳細な説明は省略する。
[0031] 図 4において、冷凍室内にある冷却器室 16は、冷却器カバーによって仕切られて いる。冷却器室 16内には、冷却用ファン 18と冷却器 19と除霜用ヒータ 20が配置され ている。冷却器カバーには、冷却用ファン 18から吐出された冷気を冷凍室内にある 食品収納ケースへ吐出される冷凍室吐出口を構成するとともに、仕切り板 13の奥に ある保温室へ繋がるダクト 14へ繋がる風路を構成している。
[0032] 保温室内は、食品収納用ケースがあり、背面には機械式ダンパー 24を内部に有し たコントロールパネル 25が配置されている。コントロールパネル 25には、仕切り板 13 の奥にあるダクト 14と接続され、また、機械式ダンパー 24下流側に、保温室内へ吐 出する吐出口 26が構成されてレ、る。
[0033] なお、本実施の形態の冷蔵庫の冷凍サイクルは、図 2に示す第 1の実施形態の冷 凍サイクルと同一構成であるため、説明は除く。
[0034] 以上のように構成された本実施形態の冷蔵庫について、以下、第 1の実施形態もし くは第 2の実施形態と異なる部分を中心に、その動作、作用を説明する。
[0035] 冷却用ファン 18によって吐出された一部冷気が仕切り板 13の奥にあるダクト 14へ 流入し、保温室 7背面にあるコントロールパネル 25へ循環していく。コントロールパネ ル 25に流入した冷気は、機械式ダンパー 24を通過し、吐出口 26より食品収納ケー スに吐出され、食品収納ケースと熱交換した後、背面にある風路より吸い込まれ、冷 却器室 16へ戻される。このとき、機械式ダンパー 24の感熱部は保温室内の温度を 検知しており、保温室の温度変化により、機械式ダンパー 24の設定温度(動作温度) 範囲内で機械式ダンパー 24を通過する冷気量をコントロールし、温度を一定に保つ ている。
[0036] 一般には、庫内が所定の温度に達すると圧縮機が停止し、圧力バランスをしょうと 保温室の暖湿気が吐出口 26より機械式ダンパー 24側へ逆流しょうとし、その時圧縮 機運転中に冷却されていた機械室ダンパー周辺に着霜するため、その防止策として 着霜防止用ヒータが設置されている。しかし、機械式ダンパー 24前後の風路内にトラ ップ a37、トラップ b38を設けることで、暖湿気が流入しに《なる。
[0037] 以上のように、本実施の形態では、機械式ダンパー前後にトラップを設けることで、 暖湿気が流入しにくくなり、着霜防止用ヒータを採用することなぐ安価に着霜信頼性 を確保することができる。
[0038] (第 4の実施形態)
図 5は、本発明の第 4の実施形態に係る冷蔵庫の機械室ダンパー周辺の断面図を 示すものである。なお、第 3の実施形態と同一構成については、同一符号を付してそ の詳細な説明は省略する。
[0039] 図 5において、冷凍室内にある冷却器室 16は、冷却器カバーによって仕切られて いる。冷却器室 16内には、冷却用ファン 18と冷却器 19と除霜用ヒータ 20が配置され ている。冷却器カバー 17には、冷却用ファン 18から吐出された冷気を冷凍室内にあ る食品収納ケースへ吐出される冷凍室吐出口を構成するとともに、仕切り板 13の奥 にある保温室へ繋がるダクト 14へ繋がる風路を構成している。
[0040] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 2に示す第 1の実施形態の冷凍 サイクルと同一構成であるため、説明は除く。
[0041] 以上のように構成された本実施形態の冷蔵庫について、以下、第 3の実施形態と 異なる部分を中心に、その動作、作用を説明する。
[0042] 一定の運転時間ごとに除霜用ヒータ 20に通電して冷却器 19の除霜をおこなう。除 霜運転は冷却器 19の下方に配置された除霜用ヒータ 20により加熱され冷却器 19に 付いた霜が水滴になり冷却器 19から除去される。この除霜用ヒータ 20の加熱により、 冷却器室 16内全体が加熱される。冷却器室 16内の暖湿気は自然に上昇していき、 冷却用ファン 18を通過し、保温室内へ吐出するコントロールパネル 25へ流入しようと する。一般には、風路へ暖湿気が流入すると、圧縮器運転中に冷却されていた機械 式ダンパー周辺に着霜し、その防止策として着霜防止用ヒータが設置されている。し かし、ダクト 14の位置を冷却ファン 18と偏心させることで、コントロールパネル 25内に 流入しにくくしている。
[0043] 以上のように、本実施形態では、保温室へ繋がるダクトを冷却ファンと偏心させるこ とで、除霜時の暖湿気が機械室ダンパーには流入しに《なり、着霜防止用ヒータが 設置することなく安価で着霜信頼性を確保することができ、また保温室の温度上昇を 抑制することが可能となる。
[0044] (第5の実施形態)
図 6は、本発明の第 5の実施形態に係る冷蔵庫の機械室ダンパー周辺の断面図を 示すものである。なお、第 3の実施形態と同一構成については、同一符号を付してそ の詳細な説明は省略する。
[0045] 図 6において、冷凍室内にある冷却器室 16は、冷却器カバーによって仕切られて いる。冷却器室 16内には、冷却用ファン 18と冷却器と除霜用ヒータ 20が配置されて いる。冷却器カバー 17には、冷却用ファン 18から吐出された冷気を冷凍室内にある 食品収納ケースへ吐出される冷凍室吐出口を構成するとともに、仕切り板 13の奥に ある保温室へ繋がるダクト 14へ繋がる風路を構成している。保温室内は、食品収納 用ケースがあり、背面には機械式ダンパー 24を内部に有したコントロールパネル 25 が配置されている。コントロールパネル 25には、仕切り板 13の奥にあるダクト 14と接 続され、また、機械式ダンパー 24下流側に、保温室 7内へ吐出する吐出口 26が構 成されている。
[0046] 冷却器カバーは樹脂製の冷却器カバー表面 39と断熱部材 40を組み込み、保温 室用吐出風路 41と冷凍室用吐出風路 42を形成している。冷却器カバーは冷却器前 面に位置し、冷却器カバーの上部には冷凍室吐出口を、下部には冷凍室戻り風路( 図示せず)を有している。冷却用ファン 18から出た冷気は冷却カバー内の保温室用 吐出風路 41内にトラップ c43を設け、保温室内へ繋がるダクト 14へ連結している。 [0047] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 2に示す第 1の実施形態の冷凍 サイクルと同一構成であるため、説明は除く。
[0048] 以上のように構成された本実施形態の冷蔵庫について、以下、第 3の実施形態と 異なる部分を中心に、その動作、作用を説明する。
[0049] 一定の運転時間ごとに除霜用ヒータ 20に通電して冷却器の除霜をおこなうが、そ の時除霜用ヒータ 20の加熱により、冷却器室 16内全体が加熱される。冷却器室 16 内の暖湿気は自然に上昇していき、冷却用ファン 18を通過しさらに上昇しょうとする 。しかし、冷却カバー内の風路内にトラップ c43を設けることで、保温室内へ繋がるダ タト 14へは暖湿気がさらに流入しに《なる。
[0050] 以上のように、本実施形態では、冷却用ファンと保温室内へ繋がる保温室用吐出 風路間にトラップ cを設置することで、除霜時の暖湿気がさらに機械室ダンパーに流 入しにくくなり、着霜防止用ヒータを設置することなぐ安価で着霜信頼性を確保する こと力 Sできる。また、保温室の温度上昇を抑制することも可能となる。
[0051] (第 6の実施形態)
図 7は、本発明の第 6の実施形態に係る冷蔵庫の冷却用ファン周辺の断面図を示 すものである。なお、第 5の実施形態と同一構成については、同一符号を付してその 詳細な説明は省略する。
[0052] 図 7において、冷凍室内にある冷却器室 16は、冷却器カバー 17によって仕切られ ている。冷却器室内 16には、冷却用ファン 18と冷却器 19と除霜用ヒータ 20が配置さ れている。冷却器カバー 17には、冷却用ファン 18から吐出された冷気を冷凍室内に ある食品収納ケースへ吐出される吐出口を構成するとともに、仕切り板の奥にある保 温室へ繋がるダクトへ繋がる風路を構成している。保温室内は、食品収納用ケースが あり、背面には機械式ダンパーを内部に有した風路が配置されている。風路には、仕 切り板の奥にあるダクトと接続され、また、機械式ダンパー下流側に、保温室内へ吐 出する吐出口が構成されてレ、る。
[0053] 冷却器カバー 17は樹脂製の冷却器カバー表面 39と断熱部材 40を組み込み形成 している。冷却器カバー 17は冷却器 19前面に位置し、冷却器カバー 17の上部には 冷凍室吐出口 22を、下部には冷凍室戻り風路(図示せず)を有している。冷却用ファ ン 18から出た冷気は冷却カバー 17内の保温室用吐出風路内にトラップ cを設け、保 温室内へ繋がるダクトへ連結している。また、冷凍室内へ冷気を導く冷凍室用吐出 風路 42内にトラップ d44を吐出方向前方に配置させている。
[0054] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 2に示す第 1の実施形態の冷凍 サイクルと同一構成であるため、説明は除く。
[0055] 以上のように構成された本実施形態の冷蔵庫について、以下、第 5の実施形態と 異なる部分を中心に、その動作、作用を説明する。
[0056] 一定の運転時間ごとに除霜用ヒータに通電して冷却器の除霜をおこなうが、その時 除霜用ヒータの加熱により、冷却器室内全体が加熱される。冷却器室内の暖湿気は 自然に上昇していき、冷却用ファンを通過しさらに上昇しょうとする。しかし、冷却カバ 一内の保温室用吐出風路内にトラップ cを設けることで、保温室内へ繋がるダクトへ は暖湿気がさらに流入しにくくなる。
[0057] また、冷凍室内へ冷気を導く冷凍室用吐出風路 42内にトラップ d44を吐出方向前 方に配置させることで、冷凍室吐出口 22から冷凍室 8への暖湿気流入を防止するこ とができ、冷凍室庫内の温度上昇や風路内ゃ吐出口付近の着霜を防止することがで きる。
[0058] 以上のように、本実施形態では、冷却用ファンと保温室内へ繋がる保温室用吐出 風路内にトラップ cを設置することで、除霜時の暖湿気がさらに機械室ダンパーには 流入しにくくなり、着霜防止用ヒータが設置することなく安価で着霜信頼性を確保す ることができる。また、冷凍室内へ冷気を導く冷凍室用吐出風路内にトラップ dを配置 させることで、冷凍室吐出口から冷凍室への暖湿気流入を防止することができ、冷凍 室庫内の温度上昇や風路内ゃ吐出口付近の着霜を防止することができる。
[0059] (第 7の実施形態)
図 8は、本発明の第 7の実施形態に係る冷蔵庫の縦断面の図を示すものである。図 8において、キャビネット 101は、内箱 105と外箱 106との間に断熱材 107が充填され た断熱箱体 108によって構成された冷蔵庫を示している。冷蔵庫は上から冷蔵室 12 1、保温室 131、冷凍室 141を有しており、前面は冷蔵室開閉扉 102、保温室開閉 扉 103、冷凍室開閉扉 104となっている。 [0060] 冷蔵室 121と保温室 131は断熱効果を有する仕切り板 109によって、保温室 131と 冷凍室 141は断熱効果を有する仕切り板 110によって仕切られている。仕切り板 11 0の奥には、冷凍室 141と繋がるダクト 111が設置されている。
[0061] 冷蔵室 121内には食品を収納するための冷蔵室棚 122及び、冷蔵室ケース 123が 配置されている。また、冷蔵室 121の内箱 105背面には、壁面に接してチューブオン シート 119 (蒸発器)が配置され、冷蔵室 121庫内はチューブオンシート 119によって 冷却される冷却壁面を有する構成となってレ、る。
[0062] 冷凍室 141内にある冷却器室 151は、断熱効果を有する仕切り板 144によって仕 切られている。冷却器室 151内には、冷却用ファン 152と蒸発器 153と除霜用ヒータ 154が配置されている。仕切り板 144には、冷却用ファン 152から吐出された冷気を 冷凍室 141内にある食品を収納するための冷凍室ケース 142へ吐出される吐出口 1 43を構成するとともに、仕切り板 110の奥にある保温室 131へ繋がるダクト 111へ繋 力 ¾風路も構成している。
[0063] 図 9は、本実施形態における冷凍サイクルを示すものである。圧縮機 161から吐出 された冷媒は、凝縮器 162で凝縮され、三方弁 163にて流路を切り替えている。一方 は、キヤビラリ一チューブ 164で減圧され、チューブオンシート 119、蒸発器 153にて 蒸発し、アキュームレータ一 166を介して、再度、圧縮機 161へ戻る冷蔵室'冷凍室 同時冷却サイクルを構成している。また、他方は、キヤビラリ一チューブ 165で減圧さ れ、蒸発器 153にて蒸発し、アキュームレータ一 166を介して、圧縮機 161へ戻る冷 凍室単独冷却サイクルを構成している。したがって、冷蔵室 121は内箱 105背面に 接しているチューブオンシート 119により冷却され、冷凍室 141は蒸発器 153の蒸発 潜熱を冷却用ファン 152により撹拌し冷却している。
[0064] 保温室 131内は、食品を収納するための保温室ケース 132があり、背面には機械 式ダンパー 134を内部に有したダクト 133が配置されている。ダクト 133には、仕切り 板 110の奥にあるダクト 111と接続され、また、機械式ダンパー 134下流側に、保温 室 131内へ吐出する吐出口 135が構成されている。
[0065] 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。まず、 圧縮機 161が稼動することで、冷媒が圧縮、凝縮、減圧されることによりチューブオン シート 119、蒸発器 153が蒸発潜熱によって冷却される。
[0066] チューブオンシート 119においては、冷蔵室 121の内箱 105の背面に接しており、 冷蔵室 121の内箱 105の背面が冷却壁面となり、冷蔵室 121内の冷蔵室棚 122、冷 蔵室ケース 123の冷却を行っている。
[0067] 一方、冷却器室内 151にある蒸発器 153においては、冷却用ファン 152によって冷 気を吐出させ、仕切り板 144内の風路を通過し、吐出口 143より冷凍室ケース 142へ 吐出される。吐出した冷気は冷凍室ケース 142と熱交換した後、仕切り板 144下部よ り吸い込まれる。
[0068] さらに、冷却用ファン 152によって吐出された冷気は仕切り板 144内の風路を通過 する力 一部冷気は仕切り板 110の奥にあるダクト 111へ流入し、保温室 131内背面 にあるダクト 133へ循環していく。ダクト 133に流入した冷気は、機械式ダンパー 134 を通過し、吐出口 135より保温室ケース 132に吐出され、保温室ケース 132と熱交換 した後、背面にあるダクト 133より吸い込まれ、冷却器室 151へ戻される。このとき、機 械式ダンパー 134の感熱部は保温室 131内の温度を検知しており、保温室 131の 温度変化により、機械式ダンパー 134の設定温度 (動作温度)範囲内で機械式ダン パーを通過する冷気量をコントロールし、保温室 131の温度を一定に保っている。
[0069] 以上のように、本実施形態では蒸発器 153の蒸発潜熱を冷却用ファン 152にて保 温室 131内へ循環させ、さらに、保温室 131の温度を検知している機械式ダンパー 1 34にて循環する冷気量をコントロールすることにより保温室 131の温度を一定に保 つことで、保温室ケース 132内の食品の温度を一定に保つことが可能となり、食品の 保鮮性を向上することができる。
[0070] また、本実施形態の機械式ダンパー 134を電動式ダンパーにすることにより、特に 、機械式ダンパー 134であった設定温度(動作温度)の制約がなくなり、保温室 131 を任意温度にコントロールすることができ、様々な食品に適した温度を作り出すことが 可能となる。さらに、機械式ダンパー 134では不可能であった強制閉が可能となり、 保温室 131を使用しない場合は、保温室 131に冷気を循環する必要がなくなり、強 制的に電動式ダンパーを閉じることにより、無駄な冷却を防止し、消費電力量を抑制 できる。 [0071] また、冷却器室 151内の蒸発器 153を除霜する際、電動式ダンパーを強制閉する ことにより、保温室 131への暖湿気侵入を防止することができ、着霜防止及び、除霜 効率向上による消費電力量抑制が可能となる。
[0072] また、本実施形態の機械式ダンパー 134を回転数可変可能な保温室ファンにする ことにより、保温室 131への冷気量を調整し、機械式ダンパー 134であった設定温度 (動作温度)の制約がなくなり、保温室 131を任意温度にコントロールすることも可能 となり、様々な食品に適した温度を作り出すことが可能となる。また、急速冷却、緩慢 冷却等の冷却速度もコントロールでき、さらなる食品の保鮮度向上を図ることができる
[0073] (第 8の実施形態)
図 10は、本発明の第 8の実施形態に係る冷蔵庫の保温室周辺の断面図を示すも のである。尚、第 7の実施形態と同一構成については、同一符号を付してその詳細な 説明は省略する。
[0074] 図 10において、保温室 131と冷凍室 141は、ヒータ 175を内蔵した仕切り板 171に て仕切られている。仕切り板 171は、保温室 131の底面壁 172と冷凍室 141の天面 壁 173の間に断熱材 174が充填されてた構造となっている。さらに、保温室 131の底 面壁 172の壁面に接してヒータ 175が配置され、保温室 131内はヒータ 175によって 加熱される加熱壁面を有する構成となってレ、る。
[0075] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 9に示す第 7の実施形態の冷凍 サイクルと同一構成であるため、詳細な説明は省略する。
[0076] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態と 異なる部分を中心に、その動作、作用を説明する。
[0077] 冷蔵室 121、保温室 131、冷凍室 141の温度を検知する手段によりヒータ 175の通 電率を調整し、発熱量を変化させる。ヒータ 175は保温室 131の底面壁 172の壁面 に接しており、保温室 131の底面壁 172が加熱壁面となり、保温室 131内の保温室 ケース 132の加熱を行っている。
[0078] 以上のように、本実施形態では、冷蔵室 121、保温室 131、冷凍室 141の温度を検 知する手段により、ヒータ 175の通電率を調整し発熱量をコントロールすることにより、 保温室 131を加熱することができ、保温室ケース 132内の食品の温度を冷蔵室温度 以上の温度帯で一定に保つことが可能となる。また、ヒータ 175の発熱量を調整する ことで、食品の加熱速度のコントロールができ、使い勝手を向上することが可能となる
[0079] (第 9の実施形態)
図 11は、本発明の第 9の実施形態に係る冷蔵庫の保温室周辺の断面図を示すも のである。尚、第 7の実施形態もしくは第 8の実施形態と同一構成については、同一 符号を付してその詳細な説明は省略する。
[0080] 図 11において、保温室 131と冷凍室 141は、ヒータ 175を内蔵した仕切り板 181に て仕切られている。仕切り板 181は、保温室 131の底面壁 172と冷凍室 141の天面 壁 173の間に断熱材 174が充填されてた構造となっている。さらに、保温室 131の底 面壁 172の壁面に接してヒータ 175が配置され、保温室 131内はヒータ 175によって 加熱される加熱壁面を有する構成となってレ、る。
[0081] 保温室 131の背面には機械式ダンパー 134を内部に有したダクト 133が配置され ている。ダクト 133には、仕切り板 181の奥にあるダクト 111と接続され、また、機械式 ダンパー 134下流側に、保温室 131内へ吐出する吐出口 135が構成されている。
[0082] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 9に示す第 7の実施形態の冷凍 サイクノレと同一構成であるため、説明は省略する。
[0083] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態もし くは第 8の実施形態と異なる部分を中心に、その動作、作用を説明する。
[0084] 冷却用ファン 152によって吐出された一部冷気が仕切り板 181の奥にあるダクト 11 1へ流入し、保温室 131背面にあるダクト 133へ循環していく。ダクト 133に流入した 冷気は、機械式ダンパー 134を通過し、吐出口 135より保温室ケース 132に吐出さ れ、保温室ケース 132と熱交換した後、背面にあるダクト 133より吸い込まれ、冷却器 室 151へ戻される。このとき、機械式ダンパー 134の感熱部は保温室 131内の温度 を検知しており、保温室 131の温度変化により、機械式ダンパー 134の設定温度(動 作温度)範囲内で機械式ダンパー 134を通過する冷気量をコントロールし、温度を一 定に保っている。 [0085] さらに、冷蔵室 121、保温室 131、冷凍室 141の温度を検知する手段によりヒータ 1 75の通電率を調整し、発熱量を変化させ、保温室 131内の保温室ケース 132の加 熱を行っている。
[0086] 以上のように、本実施形態では、保温室 131の温度を検知している機械式ダンパ 一 134にて循環する冷気量をコントロールすることにより保温室 131の温度を一定に 保ち、さらに、冷蔵室 121、保温室 131、冷凍室 141の温度を検知する手段によりヒ ータ 175の通電率を調整し、発熱量をコントロールすることにより、保温室 132内の食 品をきめ細やかな一定温度に保つことが可能となる。
[0087] また、本実施形態の機械式ダンパー 134を電動式ダンパーにすることにより、保温 室 131を任意温度に調整し、さらに、ヒータ 175の発熱量をコントロールすることによ り、食品収納ケース 132内の食品をきめ細やかな任意温度に保つことが可能となる。 また、電動式ダンパーの開度率、ヒータ 175の発熱量を調整することで、食品の加熱 →冷却、冷却→加熱することが可能となり、食品の加工性を向上することが可能とな る。
[0088] また、本実施形態の機械式ダンパー 134を保温室ファンにすることにより、保温室 ファンの回転数を可変し、ヒータ 175の発熱量をコントロールすることにより、保温室 ケース 132内の食品をきめ細やかな任意温度に保つことが可能となる。また、急速冷 却、緩慢冷却、急速加熱、緩慢加熱等の冷却、加熱速度もコントロールでき、さらな る食品の保鮮度、加工性向上を図ることができる。
[0089] (第 10の実施形態)
図 12は、本発明の第 10の実施形態に係る冷蔵庫の保温室周辺の断面図を示すも のである。尚、第 7の実施形態、第 8の実施形態もしくは第 9の実施形態と同一構成 につレ、ては、同一符号を付してその詳細な説明は省略する。
[0090] 図 12において、冷蔵室 121と保温室 131は、天面ダクト 194を有した仕切り板 191 にて仕切られている。仕切り板 191は、冷蔵室 121の底面壁 192と保温室 131の天 面壁 193の間に断熱材 195が充填された構造となっている。さらに、断熱材 195の一 部を凹型に削除して、保温室 131の天面壁 193の壁面との間に天面ダクト 194を構 成している。また、天面ダクト 194の奥は、保温室 131の背面ダクト 133の機械式ダン パー 134出口側風路と繋がっている。そして、天面ダクト 194を構成している保温室 1
31天面壁 193には、複数の吐出口 196が形成されている。
[0091] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 9に示す第 7の実施形態の冷凍 サイクノレと同一構成であるため、説明は省略する。
[0092] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態、第
8の実施形態もしくは第 9の実施形態と異なる部分を中心に、その動作、作用を説明 する。
[0093] 冷却用ファン 152によって吐出された一部冷気が仕切り板 181の奥にあるダクト 11 1へ流入し、保温室 131背面にあるダクト 133へ循環していく。ダクト 133に流入した 冷気は、機械式ダンパー 134を通過し、天面ダクト 194へ送り込まれる。天面ダクト 1 94を構成している保温室 131の天面壁 193の吐出口 196より保温室ケース 132の上 方から吐出され、保温室ケース 132と熱交換した後、背面にあるダクト 133より吸い込 まれ、冷却器室 151へ戻される。
[0094] 以上のように、本実施形態では、機械式ダンパー 134を通過した冷気は、天面ダク ト 194を通過、保温室 131天面壁 193の吐出口 196より吐出することにより、保温室 1 31内へシャワー方式で冷却することができ、保温室ケース 132内の温度分布を低減 することが可能となり、食品をどの位置に配置しても均一な一定温度に保つことが可 能となる。
[0095] また、本実施形態の機械式ダンパー 134を電動式ダンパーにすることにより、食品 をどの位置に配置しても、きめ細やかなで、且つ均一な任意温度に保つことが可能と なる。また、本実施形態の機械式ダンパー 134を保温室ファンにすることにより、上述 同様に食品をどの位置に配置しても、きめ細や力なで、且つ均一な任意温度に保つ ことが可能となる。
[0096] (第 11の実施形態)
図 13は、本発明の第 11の実施形態に係る冷蔵庫の保温室周辺の断面図を示すも のである。尚、第 7の実施形態、第 8の実施形態、第 9の実施形態もしくは第 10の実 施形態と同一構成については、同一符号を付してその詳細な説明は省略する。図 1 3において、保温室 131内にある保温室ケース 132背面に、保温室内攪拌用ファン 1 36を配置している。
[0097] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 9に示す第 7の実施形態の冷凍 サイクノレと同一構成であるため、説明は省略する。
[0098] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態、第
8の実施形態、第 9の実施形態もしくは第 10の実施形態と異なる部分を中心に、その 動作、作用を説明する。
[0099] 保温室内攪拌用ファン 136を回転することにより、保温室ケース 132周辺の雰囲気 が攪拌される。
[0100] 以上のように、本実施の形態では、保温室内攪拌用ファン 136を回転することにより 、保温室ケース 132周辺の雰囲気を攪拌することができ、保温室ケース 132内の温 度分布のバラツキを低減することが可能となり、食品をどの位置に配置しても均一な 一定温度に保つことが可能となる。さらに、雰囲気の循環により、ヒータ 175による局 部的な加熱も防止することができ、より保温室ケース 132内の温度分布を低減するこ とが可能となる。
[0101] (第 12の実施形態)
図 14は、本発明の第 12の実施形態に係る冷蔵庫の保温室周辺の断面図を示すも のである。尚、第 7の実施形態、第 8の実施形態、第 9の実施形態、第 10の実施形態 もしくは第 11の実施形態と同一構成については、同一符号を付してその詳細な説明 は省略する。
[0102] 図 14において、冷蔵室 121と保温室 131は、仕切り板 201にて仕切られている。仕 切り板 201は、冷蔵室 121の底面壁 202と保温室 131天面壁 203の間に断熱材 20 5が充填されてた構造となっている。さらに、断熱材 205の一部を凹型に削除して、 保温室 131天面壁 203の壁面との間に天面ダクト 204を構成している。また、天面ダ タト 204の奥は、保温室 131背面ダクト 133の機械式ダンパー 134出口側風路、冷 却器室 151へ戻す戻り風路と繋がっている。そして、天面ダクト 204を構成している 保温室 131天面壁 203には、アルミプレート 206が嵌め込まれている。
[0103] なお、本実施形態の冷蔵庫の冷凍サイクルは、図 9に示す第 7の実施形態の冷凍 サイクノレと同一構成であるため、説明は省略する。 [0104] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態、第 8の実施形態、第 9の実施形態、第 10の実施形態もしくは第 11の実施形態と異なる 部分を中心に、その動作、作用を説明する。
[0105] 冷却用ファン 152によって吐出された一部冷気が仕切り板 181の奥にあるダクト 11 1へ流入し、保温室 131背面にあるダクト 133へ循環していく。ダクト 133に流入した 冷気は、機械式ダンパー 134を通過し、天面ダクト 204へ送り込まれる。天面ダクト 2 04を構成している保温室 131の天面壁 203のアルミプレート 206が通過する冷気に より冷却され、下方にある保温室ケース 132は自然対流にて冷却される。天面ダクト 2 04を通過した冷気は、背面にあるダクト 133の戻り風路を通過し、冷却器室 151へ戻 される。
[0106] 以上のように、本実施の形態では、機械式ダンパー 134を通過した冷気は、天面ダ タト 204を通過し、保温室 131天面壁 203【こ ίまめ込まれてレヽるァノレミプレート 206を 冷却することにより、保温室 131内を自然対流方式で冷却し、保温室 131内へ直接 冷気を循環させないため、保温室 131内の湿度を低下抑制でき、食品の乾燥を低減 することが可能となる。
[0107] (第 13の実施形態)
図 15は、本発明の第 13の実施形態に係る冷蔵庫の冷凍室周辺の断面図を示すも のである。尚、第 7の実施形態、第 8の実施形態、第 9の実施形態、第 10の実施形態 、第 11の実施形態もしくは第 12の実施形態と同一構成については、同一符号を付 してその詳細な説明は省略する。
[0108] 図 15において、冷凍室 141内にある冷却器室 151は、断熱効果を有する仕切り板
212によって仕切られている。仕切り板 212には、回転数可変な冷却用ファン 211が 嵌め込まれている。冷却器室 151内には、蒸発器 153と除霜用ヒータ 154が配置さ れている。仕切り板 212には、回転数可変冷却用ファン 211から吐出された冷気を冷 凍室 141内にある冷凍室ケース 142へ吐出される吐出口 143を構成するとともに、仕 切り板 110の奥にある保温室 131へ繋がるダクト 111へ繋がる風路も構成してレ、る。
[0109] 以上のように構成された本実施形態の冷蔵庫について、以下、第 7の実施形態、第
8の実施形態、第 9の実施形態、第 10の実施形態、第 11の実施形態もしくは第 12の 実施形態と異なる部分を中心に、その動作、作用を説明する。
[0110] 冷却器室内 151にある蒸発器 153においては、回転数可変冷却用ファン 211によ つて冷気を吐出させ、仕切り板 212内の風路を通過し、吐出口 143より冷凍室ケース 142へ吐出される。吐出した冷気は冷凍室ケース 142と熱交換した後、仕切り板 212 下部より吸い込まれる。
[0111] さらに、回転数可変冷却用ファン 211によって吐出された冷気は仕切り板 212内の 風路を通過するが、一部冷気は仕切り板 110の奥にあるダクト 111へ流入し、保温室 131内背面にあるダクト 133へ循環していく。
[0112] 以上のように、本実施形態では、冷却用ファンを回転数可変可能な冷却用ファンと することにより、回転数を可変することが可能となる。したがって、保温室 131、冷凍 室 141内に冷却必要な食品を投入された場合には回転数可変冷却用ファン 211の 回転数を上昇させ、保温室 131、冷凍室 141への冷気を増加し、急速に保温室 131 、冷凍室 141内の食品を冷却することができる。
[0113] さらに、保温室 131、冷凍室 141が十分冷却されている場合、回転数可変冷却用 ファン 211の回転数を低下し、入力を低下することで、回転数可変冷却用ファン 211 の消費電力量低減を図ることができる。そして、回転数可変冷却用ファン 211の回転 数を低下することで、回転数可変冷却用ファン 211の騒音の低減も図ることができ、 低騒音化が可能になる。
産業上の利用可能性
[0114] 本発明に係る冷蔵庫は、冷蔵室および冷凍室はそれぞれ独立して冷却することで 、互いに影響なくそれぞれの庫内の温度を所定の温度に保つことができる。また独立 した保温室を有し、それらを設定温度にコントロールするより、食品の保鮮を向上し、 使レ、勝手の良レ、安価な冷蔵庫を提供することができる。

Claims

請求の範囲
[1] 直接冷却方式にて冷却される冷蔵室と、間接冷却方式にて冷却される冷凍室と、保 温室とを備え、庫内を冷却するための冷気を生成する冷却器と、前記冷却器の上方 に配置した冷却用ファンと、前記冷却器を暖めて除霜する除霜用ヒータと、前記冷却 器前面に冷却器カバーを有し冷却器を収納する冷却器室とを有する冷蔵庫におい て、前記冷却器室と繋がるダクトと、吐出口と、内部に風量を制御するダンパーとを備 えたコントロールパネルにより前記保温室を冷却するとともに、前記保温室に温度補 償用ヒータを設置したことを特徴とする冷蔵庫。
[2] 更に、外気温度を検知するための外気温度検知用センサを設け、前記温度補償用ヒ 一タの通電率を前記外気温度検知用センサの検知温度によりコントロールし、保温 室の温度コントロールをすることを特徴とする請求項 1記載の冷蔵庫。
[3] 前記コントロールパネル内のダンパーの前後に、更に、トラップを設けたことを特徴と する請求項 1記載の冷蔵庫。
[4] 前記冷却器室と繋がるダクトは、垂直軸において前記冷却用ファンから偏った位置 に設置されることを特徴とする請求項 1記載の冷蔵庫。
[5] 前記冷却器カバーは冷却器カバー表面と断熱部材とで構成し、前記冷却器カバー 表面には冷凍室吐出口と、保温室内へ冷気を導く保温室用吐出風路を設け、前記 保温室用吐出風路内に前記トラップを設けたことを特徴とする請求項 3の冷蔵庫。
[6] 前記冷却器カバーは、冷却器カバー表面と断熱部材とで構成し、前記冷却器カバ 一表面には冷凍室内へ冷気を導く冷凍室用吐出風路を設け、前記冷凍室用吐出風 路内に前記トラップを設けたことを特徴とする請求項 3に記載の冷蔵庫。
[7] 直接冷却方式にて冷却される冷蔵室と、間接冷却方式にて冷却される冷凍室と、保 温室とを備え、庫内を冷却するための冷気を生成する冷却器と、前記冷却器の上方 に配置した冷却用ファンと、前記冷却器前面に冷却器カバーを有し冷却器を収納す る冷却器室とを有する冷蔵庫において、前記冷却器室と繋がるダクトと、冷気の吐出 吸込口と、ダクト内にダンパー又は保温室ファンのいずれか一方を設けた風路を構 成し、前記風路を保温室内に設置したことを特徴とする冷蔵庫。
[8] 前記ダンパーは、機械式ダンパーまたは電動式ダンパーのいずれか一方であること を特徴とする請求項 7記載の冷蔵庫。
[9] 前記保温室内に、更に、ヒータを設けたことを特徴とする請求項 7記載の冷蔵庫。
[10] 前記保温室の天面に、更に、吐出ダクトと、吐出口とを設けたことを特徴とする請求 項 7記載の冷蔵庫。
[11] 前記保温室内に、更に、保温室内攪拌用ファンを設けたことを特徴とする請求項 7記 載の冷蔵庫。
[12] 前記保温室の天面に、アルミプレートとダクトとによる風路を構成したことを特徴とする 請求項 7記載の冷蔵庫。
[13] 前記冷却用ファンは、回転数可変可能であることを特徴とする請求項 7記載の冷蔵 庫。
PCT/JP2004/017549 2003-12-09 2004-11-26 冷蔵庫 WO2005057104A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-410057 2003-12-09
JP2003410057A JP2005172303A (ja) 2003-12-09 2003-12-09 冷蔵庫
JP2004003876A JP2005195293A (ja) 2004-01-09 2004-01-09 冷蔵庫
JP2004-003876 2004-01-09

Publications (1)

Publication Number Publication Date
WO2005057104A1 true WO2005057104A1 (ja) 2005-06-23

Family

ID=34680614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017549 WO2005057104A1 (ja) 2003-12-09 2004-11-26 冷蔵庫

Country Status (2)

Country Link
CN (1) CN100504258C (ja)
WO (1) WO2005057104A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110622A2 (de) 2008-04-15 2009-10-21 Liebherr-Hausgeräte Lienz GmbH Kühl- und/oder Gefriergerät
JP2013061126A (ja) * 2011-09-14 2013-04-04 Mitsubishi Electric Corp 冷凍冷蔵庫
CN109751833A (zh) * 2017-11-01 2019-05-14 青岛海尔特种电冰柜有限公司 多温区风冷酒柜

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451500C (zh) * 2005-11-08 2009-01-14 财团法人工业技术研究院 小型恒温冷冻器
KR100803574B1 (ko) * 2006-10-11 2008-02-15 엘지전자 주식회사 냉장고의 팬 모터 운전제어장치
CN102778097B (zh) * 2009-07-27 2014-07-23 日立空调·家用电器株式会社 冰箱
JP5530850B2 (ja) * 2010-07-30 2014-06-25 日立アプライアンス株式会社 冷蔵庫
JP5639811B2 (ja) * 2010-07-30 2014-12-10 日立アプライアンス株式会社 冷蔵庫
JP6344895B2 (ja) * 2013-09-10 2018-06-20 アクア株式会社 冷蔵庫

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286770A (ja) * 1994-04-15 1995-10-31 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JPH09113089A (ja) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd 冷蔵庫
JPH10332241A (ja) * 1997-05-29 1998-12-15 Toshiba Corp 冷蔵庫
JPH11325695A (ja) * 1998-05-08 1999-11-26 Fukushima Kogyo Kk 間接冷却式の冷蔵庫
JP2000028257A (ja) * 1998-07-07 2000-01-28 Toshiba Corp 冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286770A (ja) * 1994-04-15 1995-10-31 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JPH09113089A (ja) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd 冷蔵庫
JPH10332241A (ja) * 1997-05-29 1998-12-15 Toshiba Corp 冷蔵庫
JPH11325695A (ja) * 1998-05-08 1999-11-26 Fukushima Kogyo Kk 間接冷却式の冷蔵庫
JP2000028257A (ja) * 1998-07-07 2000-01-28 Toshiba Corp 冷蔵庫

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110622A2 (de) 2008-04-15 2009-10-21 Liebherr-Hausgeräte Lienz GmbH Kühl- und/oder Gefriergerät
EP2110622A3 (de) * 2008-04-15 2012-01-18 Liebherr-Hausgeräte Lienz GmbH Kühl- und/oder Gefriergerät
JP2013061126A (ja) * 2011-09-14 2013-04-04 Mitsubishi Electric Corp 冷凍冷蔵庫
AU2012211467B2 (en) * 2011-09-14 2013-08-15 Mitsubishi Electric Corporation Refrigerator-freezer
CN109751833A (zh) * 2017-11-01 2019-05-14 青岛海尔特种电冰柜有限公司 多温区风冷酒柜
CN109751833B (zh) * 2017-11-01 2024-02-20 青岛海尔特种电冰柜有限公司 多温区风冷酒柜

Also Published As

Publication number Publication date
CN100504258C (zh) 2009-06-24
CN1627009A (zh) 2005-06-15

Similar Documents

Publication Publication Date Title
US8074464B2 (en) Ice producing apparatus
JP4833337B2 (ja) 温度制御室を有する冷蔵庫
AU2007339559B2 (en) Cooling a separate room in a refrigerator
JP4781395B2 (ja) 冷蔵庫
KR20130019307A (ko) 냉장고 및 그 제어방법
JP4520287B2 (ja) 冷蔵庫
US20040237568A1 (en) Methods and apparatus for controlling heating within refrigerators
JP4088474B2 (ja) 冷蔵庫
JP2005172303A (ja) 冷蔵庫
WO2005057104A1 (ja) 冷蔵庫
US5992164A (en) Apparatus for and method of supplying cold air in refrigerators
US2900806A (en) Self-defrosting two-temperature refrigerator
JPH11311473A (ja) 冷蔵庫の制御方法
JP2000258028A (ja) 冷蔵庫
JP2005195293A (ja) 冷蔵庫
JP2009243872A (ja) 冷蔵庫
JP3549358B2 (ja) 冷蔵庫
US7260957B2 (en) Damper for refrigeration apparatus
KR100678777B1 (ko) 냉장고
JP3819693B2 (ja) 冷蔵庫の運転制御装置
JP7475869B2 (ja) 冷蔵庫
CN220624579U (zh) 冷热柜
JP2023112855A (ja) 冷蔵庫
KR19990042749A (ko) 다기능 식품저장고
JP2003287330A (ja) 冷蔵庫

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase