WO2005056494A1 - Verfahren zur herstellung einer precursor-keramik - Google Patents

Verfahren zur herstellung einer precursor-keramik Download PDF

Info

Publication number
WO2005056494A1
WO2005056494A1 PCT/DE2004/002234 DE2004002234W WO2005056494A1 WO 2005056494 A1 WO2005056494 A1 WO 2005056494A1 DE 2004002234 W DE2004002234 W DE 2004002234W WO 2005056494 A1 WO2005056494 A1 WO 2005056494A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
precursor
ceramic
pyrolysis
matrix
Prior art date
Application number
PCT/DE2004/002234
Other languages
English (en)
French (fr)
Inventor
Alexander Klonczynski
Ralf Riedel
Martin Koehne
Herwig Schiefer
Rahul Harshe
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP04789943A priority Critical patent/EP1704129A1/de
Publication of WO2005056494A1 publication Critical patent/WO2005056494A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the invention relates to a method for producing a precursor ceramic according to the preamble of the independent claim.
  • amorphous SiOC ceramics are obtained through the pyrolysis of organic precursors.
  • Advantages of the precursor thermolysis process compared to conventional manufacturing processes for ceramics (sintering) are the significantly lower process temperatures and the easy processability and formability of polysiloxane resins.
  • the electrical and physical property profile of the ceramic composite material of the glow plug resulting after pyrolysis is tailored exactly to the requirement profile.
  • the use of an oxygen-containing polysiloxane precursor as the starting material enables easy processing in air and thus the production of inexpensive products.
  • the pyrolysis product of the filled polysiloxane has good strength, high chemical stability (oxidation, Corrosion) and is harmless to health.
  • one of the great advantages of the precursor thermolysis process over the conventional manufacturing processes (sintering) for ceramic composite materials is the possibility that a larger spectrum of fillers is available.
  • the influence of the matrix on the respective property must be as low as possible. Since the matrix forms a coherent network in all of the composites of the ceramic glow plug, a problem arises for the production of the insulating intermediate layer of the glow plug if the matrix has a too low specific electrical resistance after the production process. Another problem arises in the event that the matrix or the composite loses high-temperature strength and thermal shock resistance due to phase changes, crystallization and oxidation. The problem of the low specific electrical resistance and the undesired crystallization of the matrix material could be significantly reduced by using boron-containing fillers. However, the presence of an amorphous glass can lead to insufficient creep resistance of the matrix material at high temperatures. This can have an effect in particular on the local deformation of the material in the hot areas of the glow pencil.
  • the aim of the present invention is therefore to increase and stabilize the specific electrical resistances of the material used and to achieve an increase in the high-temperature creep resistance.
  • the process according to the invention for the production of precursor ceramics by pyrolysis of oxygen-containing elemental organic precursor polymers has the advantage over the prior art that the resulting material has an increased specific resistance.
  • Another advantage is that the resulting material does not undergo phase changes in the material that lead to its mechanical destruction (durability).
  • an advantage of the method according to the invention is that there is no aging of the specific electrical resistance and therefore no aging of the functional properties of the resulting material.
  • the essence of the invention is the use of aluminum as an additive by modifying the polymer and / or by adding as an additive in the form of aluminum-containing fillers.
  • the modification is a synthesis (for example sol-gel synthesis) of an aluminum-containing polymer.
  • synthesis for example sol-gel synthesis
  • the reaction of the aluminum with the oxygen from the SiOC matrix can be regarded as decisive here. This reaction leads to the formation of a mullite which is significantly more resistant to high temperatures and especially more resistant to high temperatures than amorphous SiOC glass. This improves the durability of the resulting material and the aging of the electrical resistance is reduced.
  • Al C samples There are aluminum-containing SiO (Al) C samples, which were produced either by adding aluminum nanopowder to the polysiloxane or by modifying the polymeric precursors, in an atmosphere intended for the application (i.e., under
  • Argon, H 2 , N 2 , CH 4 , etc. pyrolyzed in the temperature range between 600 ° C - 1400 ° C.
  • the procedure is as follows: In insulation materials, ie materials that are electrically insulating after heat treatment (ceramic materials with a specific electrical resistance R> 10 3 ⁇ cm) or conductive materials, ie materials that are electrically conductive after heat treatment (ceramic materials with a specific electrical resistance R ⁇ 10 ° ⁇ cm), the glow plug is incorporated with aluminum-containing additives during processing.
  • the amount of aluminum incorporated is in the range from 0.1 to 60% by mass, preferably between 0.1 and 5% by mass.
  • the pyrolysis of the insulation materials were all carried out under standard conditions (heating from 20 ° C. to 1300 ° C. at 30 K / h, holding for 1 h at 1300 ° C., and cooling at 300 K / h) in order to compare them with the property profile more conventionally To ensure standard dimensions.
  • Composition 1 65% by volume of polymer (MK-polymer polysilsesquioxane) / 30% by volume of SiO 2/5 vol% aluminum nanopowder mass 2: 65% by volume of polymer (MK-polymer polysilsesquioxane) / 25% by volume of SiO 2 / 10 vol% aluminum nanopowder
  • the masses were prepared by grinding the powders in the planetary ball mill and then sieving them with a mesh size between approximately 100 ⁇ m and approximately 500 ⁇ m. The samples were then shaped and cross-linked using a hot pressing process. The pyrolysis of the samples was carried out at heating rates in the range of 25 K / h in order to ensure compact samples.
  • the pyrolysis was carried out at 1100 ° C, 1200 ° C, 1300 ° C and 1400 ° C.
  • Aluminum-containing conductive masses and insulation masses for a ceramic glow plug with a diameter of approximately 3 mm were produced.
  • the production was carried out by grinding the fillers in the planetary ball mill and then sieving with a mesh size of 150 ⁇ m.
  • the samples were then shaped and crosslinked using a hot press process.
  • the compositions of the ceramic starting materials were in the following range:
  • polysiloxane 50-80% by volume of polysiloxane with an amount of 5% by volume of aluminum nanopowder already contained in the polymer and 1% by weight of zirconium acetylacetonate (based on the amount of polymer) 0-10% by volume SiC 0-20% by volume Al 2 O 3 0-30% by volume MoSi 2 0-5% by mass boron
  • the pyrolysis was carried out with a heating rate of 25K / h to 1300 ° G, an hour of holding time at the final temperature and an argon flow of 2 l / h.
  • the degree of filling in a graphite furnace from FCT was 12%.
  • the samples were then exposed to air in a Nabertherm oven for 8h / 1350 ° C.
  • Insulation material can be stabilized to a value above 10 ohm cm even when aluminum is added. Even after aging at 1350 ° C, no resistance aging can be seen.
  • the very low post-shrinkage of the material after aging at 1350 ° C indicates a significantly higher creep resistance of the matrix material.
  • An aluminum modified resin was made using a sol-gel process.
  • MK polymer with 1% by mass of zirconium acetylacetonate as catalyst was dissolved in isopropanol and a proportion of 9.1% by mass of alumatran (AKA005 from ABCR) (based on the polymer) was added. After gelling, the gel was dried at 120 ° C for 5 hours.
  • the dried gel was then ground and then hot pressed at 180 ° C.
  • Pyrolysis temperature was 1100 ° C in an argon atmosphere.
  • the glass transition temperature of aluminosilicate glasses is T> 1500 ° C and thus at least 150 ° C higher than that of SiO 2 or borosilicate glasses.
  • the achievable strength level of a mullite / SiC composite is considerably higher (approximately 400 MPa) than that of pure SiOC ceramics (approximately 150 MPa).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Products (AREA)

Abstract

Es wird ein Verfahren zur Herstellung einer Precursor-Keramik durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren vorgestellt. Die Precursor-Polymere enthalten Aluminium als Additiv.

Description

Verfahren zur Herstellung einer Precursor-Keramik
Die Erfindung betrifft ein Verfahren zur Herstellung einer Precursor-Keramik nach dem Oberbegriff des unabhängigen Anspruchs.
Stand der Technik
Bei der Herstellung von keramischen Glühstiftkerzen aus Keramik- Verbundwerkstoffen werden durch die Pyrolyse von elementorganischen Precursoren amorphe SiOC - Keramiken gewonnen. Vorteile des Precursor-Thermolyse- Verfahrens gegenüber den konventionellen Herstellungsverfahren für Keramiken (Sintern) sind die wesentlich niedrigeren Prozesstemperaturen und die einfache Verarbeitbarkeit und Formbarkeit von Polysiloxanharzen.
Die Herstellung von Formkörpern ist aber nur bei Einsatz von zusätzlichen Füllstoffen möglich, da sonst Schwindungsrisse und Poren während der Pyrolyse auftreten. Mittels geeigneter Füllstoffe lassen sich auf diese Weise die Eigenschaften (Wärmeausdehnungskoeffizient, Wärmeleitfähigkeit, spezifischer elektrischer Widerstand) des Komposits genau einstellen. Hierbei ist es möglich, wie in der EP-B-0 412 428 offenbart, reaktive Füller einzusetzen, um eine bessere Anbindung der Füllstoffe an die Matrix zu erreichen oder auch inerte Füllstoffe zu verwenden.
Durch die Wahl der Füllstoffe wird das elektrische und physikalische Eigenschaftsprofil des nach der Pyrolyse resultierenden Keramik- Verbundwerkstoffes der Glühstiftkerze exakt auf das Anforderungsprofil zugeschnitten. Die Verwendung eines sauerstoffhaltigen Polysiloxan- Precursors als Ausgangsmaterial ermöglicht die einfache Verarbeitbarkeit unter Luft und damit die Herstellung kostengünstiger Produkte. Das Pyrolyse-Produkt des gefüllten Polysiloxans besitzt dabei eine gute Festigkeit, hohe chemische Stabilität (Oxidation, Korrosion) und ist gesundheitlich unbedenklich. Allgemein liegt einer der großen Vorteile des Precursor-Thermolyse-Verfahrens gegenüber den konventionellen Herstelllungsverfahren (Sintern) für Keramik- Verbund- Werkstoffe in der Möglichkeit, daß ein größeres Spektrum von Füllstoffen zur Verfügung steht. Zum einen, weil die Pyrolyse im allgemeinen bei wesentlich niedrigeren Temperaturen abläuft als der Sinterprozeß, wodurch bei Sintertemperaturen flüssige oder flüchtige Füllstoffe bei dem Precursor-Pyrolyse-Prozeß noch verwendet und zudem bei höheren Temperaturen auftretende Phasenreaktionen vermieden werden können; zum anderen, weil die Polysiloxanharze als schmelzbare duroplastische und in organischen Lösungsmitteln lösliche Polymere ein einfaches und extrem homogenes Einarbeiten von Füllstoffen in den Precursor ermöglichen (Kneten, Lösen). Dies ist deshalb so interessant, weil mit einer großen Auswahl an Füllern die Eigenschaften des Precursor- Verbund- Werkstoffes über ein weites Spektrum eingestellt werden können.
Um jedoch die Einstellung der Eigenschaften über die Füllstoffe zu gewährleisten, muss der Einfiuss der Matrix auf die jeweilige Eigenschaft möglichst gering sein. Da die Matrix in allen hergestellten Verbunden der keramischen Glühstiftkerze ein zusammenhängendes Netzwerk bildet, ergibt sich für die Herstellung der isolierenden Zwischenschicht des Glühstifts ein Problem, falls die Matrix nach dem Herstellungsprozess einen zu niedrigen spezifischen elektrischen Widerstand besitzt. Ein weiteres Problem ergibt sich für den Fall, dass die Matrix beziehungsweise der Verbund aufgrund von Phasenumwandlungen, Kristallisation und Oxidation an Hochtemperaturfestigkeit und Thermoschockbeständigkeit verliert. Die Problematik des niedrigen spezifischen elektrischen Widerstands sowie der unerwünschten Kristallisation des Matrixmaterials konnte durch den Einsatz von borhaltigen Füllstoffen wesentlich eingeschränkt werden. Das Vorliegen eines amorphen Glases kann jedoch bei hohen Temperaturen zu einer nur unzureichenden Kriechbeständigkeit des Matrixmaterials führen. Dies kann sich insbesondere in der lokalen Verformung des Materials in den heißen Bereichen des Glühstifts auswirken.
Ziel der vorliegenden Erfindung ist es daher, die spezifischen elektrischen Widerstände des verwendeten Materials zu erhöhen und zu stabilisieren und eine Erhöhung der Hochtemperaturkriechbeständigkeit zu erzielen. Vorteile der Erfindung
Das erfindungsgemäße Verfahren zur Herstellung von Precursor-Keramiken durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren hat gegenüber dem Stand der Technik den Vorteil, dass das entstehende Material einen erhöhten spezifischen Widerstand aufweist.
Weiterhin ist vorteilhaft, dass es eine wesentlich verbesserte Hochtemperatur- Kriechbeständigkeit zeigt.
Ein weiterer Vorteil liegt darin, dass das enstehende Material keine Phasenumwandlungen im Material erfährt, die zu seiner mechanischen Zerstörung führen (Dauerhaltbarkeit).
Zudem liegt ein Vorteil des erfindungsgemäßen Verfahrens darin, dass keine Alterung des spezifischen elektrischen Widerstands und somit keine Alterung der Funktionseigenschaften des entstehenden Materials auftritt.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
Ausführungsbeispiele
Kern der Erfindung ist die Verwendung von Aluminium als Zusatz durch eine Modifizierung des Polymers und/oder durch Zusatz als Additiv in Form aluminiumhaltiger Füllstoffe. Bei der Modifizierung handelt es sich um eine Synthese (bspw. Sol-Gel-Synthese) eines aluminiumhaltigen Polymers. Bei der Verwendung als Additiv ist aufgrund des niedrigen Schmelzpunkts des Aluminiums die Verwendung als feinstes Nanopulver eine Grundvoraussetzung, die gewünschten Effekte zu erzielen. Als entscheidend kann hierbei die Reaktion des Aluminiums mit dem Sauerstoff aus der SiOC Matrix angesehen werden. Diese Reaktion führt zur Bildung eines Mullits, der wesentlich hochtemperaturbeständiger und speziell hochtemperaturkriech-beständiger ist als amorphes SiOC-Glas. Damit verbessert sich die Dauerhaltbarkeit des entstehenden Materials und die Alterung des elektrischen Widerstandes wird verringert.
Es werden aluminiumhaltige SiO(Al)C Proben, die entweder durch Zusatz von Aluminiumnanopulver zum Polysiloxan oder durch Modifizierung der polymeren Vorstufen hergestellt wurden, in einer für den Anwendungsfall bestimmten Atmosphäre (d.h., unter
Argon, H2, N2, CH4, etc.) im Temperaturbereich zwischen 600°C - 1400°C pyrolisiert. Dabei ist das Vorgehen wie folgt: In Isolationsmassen, d.h., Massen, die nach einer Wärmebehandlung elektrisch isolierend sind (keramische Materialien mit einem spezifischen elektrischen Widerstand R> 103 Ωcm), beziehungsweise Leitmassen, d.h., Massen, die nach einer Wärmebehandlung elektrisch leitfähig sind (keramische Materialien mit einem spezifischen elektrischen Widerstand R < 10° Ωcm), der Glühstiftkerze werden während der Aufbereitung aluminiumhaltige Zusätze eingearbeitet.
Die Menge an eingearbeitetem Aluminium liegt im Bereich von 0,1 bis 60 Masse-%, vorzugsweise zwischen 0,1 und 5 Masse-%.
Die Pyrolysen der Isolationsmassen wurden alle unter Standardbedingungen (Aufheizen von 20°C auf 1300°C mit 30 K/h, Halten für 1 h bei 1300°C, und Abkühlen mit 300 K/h) durchgeführt, um den Vergleich mit dem Eigenschaftsprofil herkömmlicher Standardmassen zu gewährleisten.
Beispiel 1 :
Herstellung von zwei Massen mit gleichem Volumenanteil an Füllstoffen:
Masse 1 : 65 Vol-% Polymer (MK-Polymer, Polysilsesquioxan) / 30 Vol-% SiO2 / 5 Vol% Aluminiumnanopulver Masse 2: 65 Vol-% Polymer (MK-Polymer, Polysilsesquioxan) / 25 Vol-% SiO2 / 10 Vol% Aluminiumnanopulver Die Aufbereitung der Massen erfolgte über das Einmahlen der Pulver in der Planetenkugelmühle und anschließendem Sieben mit einer Maschenweite zwischen ungefähr lOOμm und ungefähr 500 μm. Danach wurden die Proben mit Hilfe eines Warmpressvorgangs formgegeben und vernetzt. Die Pyrolyse der Proben erfolgte mit Aufheizraten im Bereich 25 K/h, um kompakte Proben zu gewährleisten.
Um die Phasenentwicklung bei steigender Pyrolyseendtemperatur zu beobachten, wurden die Pyrolysen bei 1100°C, 1200°C, 1300°C und 1400°C durchgeführt.
Die Röntgenbeugungs-Untersuchungen an den Materialien zeigen die Reaktion des Aluminiums mit dem Sauerstoff der SiOC Matrix zu Mullit sowie die gleichzeitige Bildung von SiC. Dies deutet daraufhin, dass es durch den Einsatz von Aluminiumnanopulver möglich ist, den überschüssigen Kohlenstoff aus der Matrix zu binden. Somit leistet offenbar der Kohlenstoff keinen Beitrag zur Leitfähigkeit.
Da die Separation des Kohlenstoffs als Hauptgrund für die Verringerung des spezifischen elektrischen Widerstandes angesehen werden kann, ließ sich durch die Messung des spezifischen elektrischen Widerstandes der Proben eine Korrelation zur Ausscheidung beziehungsweise Entwicklung des freien Kohlenstoffs in der SiOC-Keramik nachweisen. Es zeigt sich, dass sich der spezifische elektrische Widerstand der Proben auch bei Pyrolysetemperaturen oberhalb 1300°C nicht verringert. Weiterhin ist zu erkennen, dass das Niveau des spezifischen Widerstandes mit 106 Ωcm um 3-4 Größenordnungen höher liegt als für aluminiumfreie SiOC/SiO2-Komposite.
Beispiel 2:
Es wurden aluminiumhaltige Leitmassen und Isolationsmassen für eine keramische Glühstiftkerze mit einem Durchmesser von ungefähr 3 mm hergestellt. Die Herstellung erfolgte über das Einmahlen der Füllstoffe in der Planetenkugelmühle und anschließendem Sieben mit einer Maschenweite von 150μm. Danach wurden die Proben mittels eines Warmpres Vorgangs formgegeben und vernetzt. Die Zusammensetzungen der keramischen Ausgangsmassen lagen im folgendem Bereich:
50-80 Vol-% Polysiloxan mit einem bereits im Polymer enthaltenen Anteil an Aluminiumnanopulver von 5 Vol-% sowie 1 Masse-% Zirkonacetylacetonat (bezogen auf den Polymeranteil) 0-10 Vol.-% SiC 0-20 Vol.-% Al2O3 0-30 Vol.-% MoSi2 0-5 Masse-% Bor
Die Pyrolyse wurde mit einer Aufheizrate von 25K/h bis 1300°G, einer Stunde Haltezeit bei Endtemperatur und einem Argonfluß von 2 1/h durchgeführt. Der Füllgrad in einem Graphitofen der Firma FCT betrug 12%. Danach wurden die Proben in einem Nabertherm Ofen für 8h / 1350°C an Luft ausgelagert.
Es konnte gezeigt werden, dass sich der spezifische elektrische Widerstand des
Isolationsmaterials auch bei Zugabe von Aluminium auf einem Wert oberhalb 10 Ohm cm stabilisieren läßt. Auch nach Auslagerungstemperaturen von 1350°C ist keine Widerstandsalterung zu erkennen.
Die nur sehr geringe Nachschwindung des Materials bei Auslagerungen von 1350°C deutet auf eine signifikant höhere Kriechbeständigkeit des Matrixmaterials hin.
Die Alterung der elektrischen Eigenschaften des leitfähigen Materials ergibt sich zu einem großen Teil durch die Nachschwindung des Matrixmaterials und der damit einhergehenden Annäherung der MoSi2-Partikel (Verschiebung der Perkolationskurve). Daher folgt aus einer geringeren Nachschwindung gleichzeitig eine geringe Alterung des spezifischen elektrischen Widerstands der Leitmassen.
Dies ist der entscheidende Vorteil zur Verwendung von Aluminium als Additiv zur Erhöhung der Hochtemperaturstabilität. Das Kristallisationsverhalten bezüglich der Bildung von Cristobalit wurde anhand von dilatometrischen Messungen untersucht. Damit kom te gezeigt werden, dass sich auch bei Temperaturen von 1350°C an Luft kein Cristobalit im Bulk der unterschiedlichen Materialen gebildet hat. Cristobalit besitzt nämlich einen wesentlich höheren
Wärmeausdehnungskoeffizienten als die anderen Materialien in den entsprechenden Massen. Im Vergleich zu den Systemen ohne Aluminium lassen diese Ergebnisse auf eine wesentlich verbesserte Thermowechselbeständigkeit schließen.
Beispiel 3:
Es wurde ein aluminiummodifiziertes Harz über einen Sol-Gel-Prozeß hergestellt. Hierzu wurde MK-Polymer mit 1 Masse-% Zirkonacetylacetonat als Katalysator in Isopropanol gelöst und ein Anteil von 9,1 Masse-% Alumatran (AKA005 der Firma ABCR) (bezogen auf das Polymer) zugegeben. Nach der Gelierung wurde das Gel bei 120°C 5h lang getrocknet.
Danach wurde das getrocknete Gel gemahlen und anschließend bei 180°C warmgepresst. Die
Pyrolysetemperatur betrug 1100°C in Argonatmosphäre.
Die Proben wurden nach der Pyrolyse für ungefähr 10 bis ungefähr 50 Stunden bei
Temperaturen von 1200°C - 1700°C in Argonatmosphäre nachbehandelt.
In den Röntgenbeugungsdiagrammen für unterschiedliche Auslagerungstemperaturen ist zu erkennen, dass sich ein Mullit/SiC-Gefüge in einer amorphen Matrix bildet. Gleichzeitg ist festzustellen, dass auch bei Temperaturen von 1700°C ein großer Anteil des Materials amorph vorliegt.
Die Proben lagen nach der thermischen Behandlung rissfrei vor. Sie zeigten keinerlei Anzeichen von carbothermischer Reduktion, was auf eine signifikante Verbesserung der
Hochtemperaturbeständigkeit im Vergleich zu aluminiumfreien SiOC-Materialien hindeutet.
Mit aluminiummodifizierten Polymeren sowie bei der Verwendung von Alumiumnanopulver als Füllstoff lassen sich somit signifikant verbesserte Hochtemperatureigenschaften bei Temperaturen > 1600°C erreichen. Durch Verwendung von Aluminiumnanopulver ist eine signifikante Steigerung des spezifischen elektrischen Widerstandes der SiOC Matrix möglich. Die Reaktion des Aluminium mit dem Sauerstoff aus der SiOC Matrix führt dabei zur Bildung eines stabilen Mullit/SiC-Verbundes.
Die Glasübergangstemperatur von Alumosilikatgläsern liegt nach Literaturangaben bei T > 1500°C und damit mindestens 150°C höher als bei SiO2 beziehungsweise Borosilikatgläsern. Gleichzeitig liegt das erreichbare Festigkeitsniveau von einem Mullit/SiC- Verbund wesentlich höher (ungefähr 400 MPa) als das von reinen SiOC-Keramiken (ungefähr 150 MPa).
Bei der Verwendung von Aluminiumadditiven im Verbundmaterial von zum Beispiel Glühstiftkerzen konnten auch nach längeren Auslagerungszeiten (1400°C/50h) keine anderen Oxidationsprodukte (z.B. MoO3, Mo5Si3, SiO2) im Bulk des Materials nachgewiesen werden.
Die mit dem erfindungsgemäßen Verfahren erreichbaren Verbesserungen durch Einbau von Aluminium in die Polymermatrix sind:
Bildung von Aluminiumoxid mit dem Sauerstoff aus der SiOC-Matrix und dem elementaren Aluminium als Füllstoff. Aus den zusätzlichen freien Bindungen am Silizium die vorher durch Sauerstoff belegt waren, bildet sich mit dem überschüssigen Kohlenstoff aus der SiOC-Matrix Siliziumcarbid. Dies führt zu einer Erhöhung des spezifischen elektrischen Widerstands des Materials unabhängig von den noch zusätzlich verwendeten Füllstoffen Wesentlich verbesserte Hochtemperaturkriechbeständigkeit durch Bildung eines Mullit/SiC-Komposits mit signifikant erhöhter Glasübergangstemperatur [Werte?] Keine Bildung von Cristobalit und damit eine verbesserte Dauerhaltbarkeit Insbesondere aufgrund der höheren Glasübergangstemperatur ergibt sich aufgrund der geringen Neigung zur Nachschwindung keine Alterung des spezifischen elektrischen Widerstands des Leitmaterials und damit keine Alterung der Funktionseigenschaften des entstehenden Materials bezüglich Aufheizzeit und Glühtemperatur

Claims

Ansprüche
1. Verfahren zur Herstellung einer Precursor-Keramik durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren, dadurch gekennzeichnet, dass die Precursor-Polymere Aluminium als Additiv enthalten.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Aluminium in Form von Aluminum-Nanopulver als Füllstoff den Precursor-Polymeren zugegeben wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aluminiummodifizierte elementorganische Precursor-Polymere als Ausgangsstoffe verwendet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Aluminium mit dem Sauerstoff des elementorganischen Precursor-Polymeren zu Mullit reagiert.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der überschüssige Kohlenstoff des elementorganischen Precursor-Polymeren unter Bildung von SiC reagiert.
6. Verfahren nach Anspruch 4 und 5, dadurch gekennzeichnet, dass sich ein stabiler Mullit/SiC-Verbund bildet.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der spezifische Widerstand der Precursor-Keramik > 106 Ohm cm beträgt.
8. Verwendung von aluminiumhaltigen Precursor-Keramiken zur Herstellung von Glühstiftkerzen.
PCT/DE2004/002234 2003-12-09 2004-10-08 Verfahren zur herstellung einer precursor-keramik WO2005056494A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04789943A EP1704129A1 (de) 2003-12-09 2004-10-08 Verfahren zur herstellung einer precursor-keramik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003157354 DE10357354A1 (de) 2003-12-09 2003-12-09 Verfahren zur Herstellung einer Precursor-Keramik
DE10357354.2 2003-12-09

Publications (1)

Publication Number Publication Date
WO2005056494A1 true WO2005056494A1 (de) 2005-06-23

Family

ID=34638503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002234 WO2005056494A1 (de) 2003-12-09 2004-10-08 Verfahren zur herstellung einer precursor-keramik

Country Status (3)

Country Link
EP (1) EP1704129A1 (de)
DE (1) DE10357354A1 (de)
WO (1) WO2005056494A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418298A (en) * 1993-03-19 1995-05-23 Regents Of The University Of Michigan Neutral and mixed neutral/anionic polymetallooxanes
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
WO2002038520A2 (de) * 2000-11-07 2002-05-16 Robert Bosch Gmbh Keramischer verbundwerkstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
US5418298A (en) * 1993-03-19 1995-05-23 Regents Of The University Of Michigan Neutral and mixed neutral/anionic polymetallooxanes
WO2002038520A2 (de) * 2000-11-07 2002-05-16 Robert Bosch Gmbh Keramischer verbundwerkstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKOLTORN OPORNSAWAD ET AL.: "Formation and structure of tris(alumatranyloxy-i-propyl)amine", EUROPEAN POLYMER JOURNAL, vol. 37, no. 9, September 2001 (2001-09-01), pages 1877 - 1885, XP004247429 *

Also Published As

Publication number Publication date
DE10357354A1 (de) 2005-07-07
EP1704129A1 (de) 2006-09-27

Similar Documents

Publication Publication Date Title
DE2449662C2 (de) Verfahren zum Herstellen eines dichten Gegenstandes aus Siliziumkarbidkeramik sowie vorgeformter, drucklos gesinterter keramischer Gegenstand aus Siliziumkarbid
DE4113059C2 (de) Verfahren zur Herstellung von Schwarzglas
DE69129994T2 (de) Herstellung von überwiegend kristallinen Siliciumcarbidfasern aus Polycarbosilan
EP1339652A2 (de) Keramischer verbundwerkstoff
DE4016569A1 (de) Silizium-oxy-carbid-glas und verfahren zu dessen herstellung
DE3041762A1 (de) Polysilanmasse, verfahren zu ihrer herstellung und ihre verwendung zur herstellung keramischer materialien aus siliciumcarbid
EP0431165A1 (de) Verfahren zur herstellung keramischen kompositmaterials
DE69503644T2 (de) Verfahren zur herstellung von keramischen gegenständen aus bornitrid
DE4105325C2 (de) Verfahren zur Herstellung eines bearbeitbaren Borcarbidgrünkörpers, Verfahren zur Herstellung eines gesinterten Borcarbidkörpers sowie einheitliche Mischung, umfassend Borcarbidpulver und ein präkeramisches Organosiliciumpolymer
EP0022522B1 (de) Dichte Formkörper aus polykristallinem Beta-Siliciumcarbid und Verfahren zu ihrer Herstellung durch Heisspressen
DE3877072T2 (de) Keramische stoffe.
WO2005056494A1 (de) Verfahren zur herstellung einer precursor-keramik
DE4445377A1 (de) Abrasionsfeste Oxidationsschutzschicht für SiC-Körper
DE69508001T2 (de) Herstellung von Titandiboridkeramik hoher Dichte mit vorkeramischen Polymerbindern
DE3220559C2 (de)
EP1472197A1 (de) Keramischer verbundwerkstoff, verfahren zu dessen herstellung und glühstiftkerze mit einem solchen verbundwerkstoff
EP1651583A1 (de) Verfahren zur herstellung einer precursor-keramik
WO2006134086A1 (de) Leiterpaste zum herstellen einer elektrischen leiterbahn und herstellverfahren der elektrischen leiterbahn unter verwendung der leiterpaste
DE10243017B4 (de) Keramischer Verbundwerkstoff und Glühstiftkerze mit einem solchen Verbundwerkstoff
WO2006018347A1 (de) Keramischer elektrischer widerstand
WO2019042764A1 (de) Verbundwerkstoff und verfahren zu seiner herstellung
DE4201240C2 (de) Verfahren zur Herstellung eines Formkörpers und Formkörper aus Siliciumcarbid
EP1144337A2 (de) Reaktionsgebundene werkstoffe auf basis von siliciumnitrid und verfahren zu deren herstellung
DE102008059780B3 (de) Keramischer Widerstandsheizkörper und Verfahren zu seiner Herstellung
WO2006032559A1 (de) Verfahren zur herstellung einer precursorkeramik

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004789943

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004789943

Country of ref document: EP