WO2005054588A1 - モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法 - Google Patents

モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法 Download PDF

Info

Publication number
WO2005054588A1
WO2005054588A1 PCT/JP2004/017295 JP2004017295W WO2005054588A1 WO 2005054588 A1 WO2005054588 A1 WO 2005054588A1 JP 2004017295 W JP2004017295 W JP 2004017295W WO 2005054588 A1 WO2005054588 A1 WO 2005054588A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
cement milk
mortar
concrete
pipe
Prior art date
Application number
PCT/JP2004/017295
Other languages
English (en)
French (fr)
Inventor
Takuo Ohkura
Katsuhiro Sugimoto
Yasuyoshi Fujishima
Satoru Sakamoto
Original Assignee
Nisshoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003402123A external-priority patent/JP4274465B2/ja
Application filed by Nisshoku Corporation filed Critical Nisshoku Corporation
Publication of WO2005054588A1 publication Critical patent/WO2005054588A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/1238Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices
    • B28C5/1253Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices with discharging devices
    • B28C5/1261Applying pressure for discharging
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/202Securing of slopes or inclines with flexible securing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • B01F27/052Stirrers with replaceable wearing elements; Wearing elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0727Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis having stirring elements connected to the stirrer shaft each by two or more radial rods, e.g. the shaft being interrupted between the rods, or of crankshaft type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1123Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75455Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/1238Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices
    • B28C5/1276Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices with consecutive separate containers with rotating stirring and feeding or discharging means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/205Securing of slopes or inclines with modular blocks, e.g. pre-fabricated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/207Securing of slopes or inclines with means incorporating sheet piles or piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder

Definitions

  • the present invention relates to a mortar or concrete spraying device and a mortar or concrete spraying method using the device.
  • sand as aggregate is moved by compressed air in a transport pipe having a length of about 400 m, and the cement milk is blown about 10 m immediately before the spray nozzle at about 10 m.
  • To form mortar or concrete by mixing the mortar or concrete with the spray nozzle while holding the spray nozzle. It is to do.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-248164
  • Patent Document 2 Japanese Utility Model Registration No. 2509314
  • the mortar or concrete spraying device uses an aggregate pumping machine (a civil engineering spraying machine) as disclosed in Patent Document 2 described above. Because the amount of sprayed material sent to the pressure feeding pipe is not constant, the blowing material pumped in the pressure feeding pipe (transportation pipe) pulsates, and it is considered that this pulsation caused the clogging. It is.
  • the present invention has been made in consideration of the above-mentioned matters, and has as its object to provide a mortar or a mortar capable of spraying mortar or concrete smoothly and reliably even for long-distance conveyance.
  • An object of the present invention is to provide a concrete spraying apparatus and a method for spraying mortar or concrete using the apparatus.
  • the mortar or concrete spraying apparatus of the present invention is characterized in that the aggregate and cement milk constituting the mortar or concrete are separately pumped, and then mixed.
  • a mortar or concrete spraying device for spraying together comprising: an aggregate pumping device for pumping the aggregate; and a transport pipe connected to the aggregate pumping device.
  • a closing body is arranged below the bottom wall of the shuttle so as to close a part of the communication port (claim 2).
  • a mortar or concrete spraying device for separately feeding and then spraying the aggregate and cement milk constituting the mortar or concrete, wherein the aggregate feeder for pumping the aggregate is provided.
  • a conveying pipe connected to the aggregate pumping machine, wherein the aggregate pumping machine is opened and closed with the upper and lower pots so that the inside of the upper pot communicates with the outside and is isolated from the outside.
  • a first opening / closing means for switching to an open state, a second opening / closing means for opening / closing between the upper hook and the lower hook, and a state communicating with the inside of the lower hook via a communication port below the lower hook.
  • a mortar or concrete spraying device for separately feeding the aggregate and cement milk constituting the mortar or concrete, and then mixing and blowing the same, wherein a cement milk delivery pipe for conveying the cement milk is provided.
  • a conveying pipe for conveying the aggregate wherein the conveying pipe is connected to a downstream end of the cement milk delivery pipe. It may have an introduction portion, and may be configured so that the inner diameter of the portion on the downstream side from the cement milk introduction portion is larger than the inner diameter of the portion on the upstream side (claim 4).
  • a mortar or concrete spraying device for separately feeding aggregates and cement milk constituting mortar or concrete, and then spraying the mixture, wherein a cement milk delivery pipe for transporting the cement milk is provided.
  • a transport pipe for transporting the aggregate the transport pipe having a cement milk introduction section to which a downstream end of the cement milk delivery pipe is connected, and the cement milk introduction section being closer to the downstream side.
  • a tapered portion having an increased inner diameter is formed, and cement milk delivery is performed such that the flowing direction of the aggregate and the flowing direction of the cement milk are substantially perpendicular to the tapered portion in a longitudinal section. Even if the user is required to connect the pipes (claim 5).
  • a mortar or concrete spraying device for separately supplying the aggregate and cement milk constituting the mortar or concrete, and then spraying the mixed aggregate and cement milk, wherein the conveying pipe transports the mixed aggregate and cement milk.
  • a nozzle portion is provided at the downstream end of the nozzle portion.
  • the nozzle portion has, in order from the upstream side, a widening portion whose inner diameter increases toward the downstream side, and a throttle portion whose inner diameter decreases toward the downstream side.
  • the inner diameter of the downstream end of the portion may be configured to be equal to or slightly larger than the inner diameter of the transfer pipe (claim 6).
  • a mortar or concrete spraying method according to claim 7 is characterized in that mortar or concrete is sprayed by using the spraying device according to any one of claims 11 to 16.
  • a mortar or concrete spraying apparatus capable of smoothly and reliably performing mortar or concrete spraying even during long-distance conveyance. It is possible to do.
  • the opening area of the communication port is configured to be equal to or less than the flow path area in the transfer pipe, the amount of bone less than the limit of the transfer force of the transfer pipe is set. In this way, a large amount of aggregate exceeding the limit of the transfer force of the transfer pipe flows into the transfer pipe at once, causing clogging and pulsation in the transfer pipe. This can be reliably prevented.
  • the closing body that closes a part of the communication port is disposed below the bottom wall of the shuttle, the closing of the communication port can be easily performed only by adjusting the opening area of the communication port.
  • a pool is formed above the body where the aggregates are accumulated, and the aggregates accumulated in the pools continue to flow to the delivery section, so that the continuity of the transport of the aggregates can be improved, and clogging and the like in the transport pipe can be improved. Preventing the pulsation of the aggregate is very favorable in terms of the surface, and provides an effect.
  • the compressed air supply means increases the pressure in the upper kettle from the compressed air supply means.
  • the compressed air starts to be sent to the upper kettle, it is possible to prevent the compressed air in the lower kettle having a higher pressure than in the upper kettle from flowing to the upper kettle, thereby keeping the conveying force of the aggregate large. Stable continuous conveyance can be achieved, and even with such a configuration, clogging and pulsation in the conveyance pipe can be prevented, and variations in the quality of the formed mortar or concrete can be prevented.
  • the conveyed material flowing through the conveyance tube in the cement milk introduction portion is not used.
  • the conveyed material flowing in the conveying pipe becomes a mixture of the aggregate and the cement milk, and the volume and weight of the conveyed material increase accordingly.
  • the conveyance speed of the conveyed material on the downstream side of the cement milk introduction part is reduced, and due to the delay of conveyance of the conveyed material, the conveyed material (aggregate) is also upstream of the cement milk introduction part in the conveyance pipe.
  • the transport speed was reduced, and blockage sometimes occurred with the reduced transport speed.
  • the downstream part of the conveying pipe from the cement milk introduction part is provided.
  • the passage of the compressed air of the compressed air supply means power it is possible to secure the passage of the compressed air of the compressed air supply means power, and also to suppress the reduction in the transport speed of the goods passing through the transport pipe. Therefore, it is possible to reliably prevent the inside of the conveying pipe from being blocked by the aggregate and the cement milk, and it is possible to perform a spraying operation smoothly.
  • the cement milk introduction part in the conveying pipe is not formed with a tapered portion whose inner diameter becomes larger toward the downstream side, and the cement milk introduction part is formed into a cylindrical shape having the same diameter from the upstream side to the downstream side.
  • the cement milk introduction part which has a cylindrical shape rather than a tapered shape, has such a force that the aggregate conveyed in the conveying pipe easily hits the cement milk introduction part. It has been difficult to achieve vigorous and long-time continuous transport.
  • the cement milk discharged to the cement milk introduction section has a curtain shape, and the compressed air flowing through the transport pipe for transporting the aggregate is transferred by the cement milk curtain. As a result, the conveying force of the compressed air is reduced, which may cause blockage in the conveying pipe.
  • a cement milk delivery pipe is connected to the cement milk introduction section at an acute angle, and the cement milk delivery pipe is connected in the conveying direction of the aggregate. It is conceivable that the cement milk is introduced along the inner wall of the cement milk introduction part by reducing the angle formed by the introduction direction of the cement milk, but in this case, the cement milk introduction part is cylindrical rather than tapered. Therefore, the area of the opening for introducing the cement milk from the cement milk delivery pipe formed in the cement milk introduction section becomes large, and the opening force also causes the compressed air flowing through the transport pipe to enter. This could hinder the introduction of cement milk.
  • a tapered portion having an inner diameter that increases toward the downstream side is formed, and the cement milk delivery pipe is connected to the tapered portion. It is difficult for the aggregate transported to directly hit the ground, the wear of the cement milk introduction part is reduced, and continuous transport for a long time can be realized.
  • the cement milk delivery pipe is connected to the cement milk introduction portion at an acute angle, and the angle formed by the cement milk introduction direction with respect to the aggregate transport direction is formed. Since the portion to which the cement milk delivery pipe is connected is formed as a tapered portion, the area of the opening formed in the tapered portion for introducing the cement milk from the cement milk delivery pipe is made smaller than before. Accordingly, it is possible to prevent compressed air flowing in the transport pipe from entering through the opening, and it is possible to smoothly introduce the cement milk.
  • the following effects can be obtained.
  • the restricting of the tip of the nozzle is changed by spraying material (aggregate and aggregate) conveyed in the conveying pipe. (Cement mix), the compressed air was reduced, and the aggregate being transported was sometimes clogged in the transport pipe.
  • the spraying material force was also separated in the conveying pipe immediately before spraying. The component force was again mixed with the spraying material, making it difficult to apply mortar or concrete with good quality.
  • the diameter of the tip portion of the nozzle portion is reduced so as to be slightly larger than the inner diameter of the transfer tube, the spray material conveyed through the transfer tube is reduced. There is no resistance, the compressed air is not reduced, and the aggregate being transported can be prevented from clogging in the transport pipe.
  • the flow velocity of the spray material does not increase unnecessarily, the silt that had been separated in the transport pipe immediately before spraying was separated while maintaining the rectifying effect of the spray material to some extent. Also, the tip force of the nozzle part can be discharged, and construction using high-quality mortar or concrete can be performed.
  • the amount of aggregate that is less than the limit of the conveying force of the conveying pipe can be flowed by a fixed amount, so that clogging and pulsation in the conveying pipe may occur. It is possible to spray mortar or concrete without making it work, and it is possible to perform construction using high quality mortar or concrete.
  • FIG. 1 is an explanatory view schematically showing a configuration of a mortar or concrete spraying apparatus according to one embodiment of the present invention.
  • FIG. 2 is an explanatory view schematically showing a configuration of an aggregate pumping machine in the embodiment.
  • FIG. 3 is an exploded perspective view schematically showing a configuration of a stirring blade of the upper kettle in the embodiment.
  • FIG. 4 is an exploded perspective view schematically showing a configuration of a stirring blade of a lower kettle in the embodiment.
  • FIGS. 5 (A) and 5 (B) are explanatory views schematically showing a configuration of a modified example and a further modified example of the closing body in the above embodiment.
  • FIGS. 6 (A) and (B) are a longitudinal sectional view and an explanatory view schematically showing a configuration of a cement milk introduction part in the above embodiment.
  • FIG. 7 is an explanatory view schematically showing a configuration of a modified example of the cement milk introduction section.
  • FIG. 8 is an explanatory view schematically showing a configuration of a nozzle section in the embodiment.
  • FIG. 9 is an explanatory view schematically showing a configuration of a spray frame method using the spray apparatus.
  • FIG. 10 is an explanatory view schematically showing a configuration of a main part of the spraying method frame method.
  • FIG. 11] (A)-(C) are explanatory views schematically showing a configuration of a rock bonding method using the spraying device.
  • FIG. 12 is an explanatory view schematically showing a configuration of an example of a tunnel forming work using the spraying device.
  • FIG. 1 shows a mortar or concrete spraying apparatus (hereinafter referred to as a spraying apparatus) according to one embodiment of the present invention.
  • FIG. 4 is an explanatory diagram schematically showing a configuration of a method D and a method.
  • the spraying device D is an aggregate feeder as an aggregate supply means that supplies aggregate (sand (fine aggregate) for mortar M, sand and crushed stone (coarse aggregate) for concrete). 2, an air compressor 3 as compressed air supply means connected to the aggregate pump 2 and a pump for cement milk delivery as cement milk delivery means for delivering cement milk 6 obtained by mixing cement 4 and water 5.
  • the upstream end thereof is connected to the downstream side of the provided conveying pipe 8 and the pump for pumping 7, and the downstream end thereof is connected to the downstream side of the conveying pipe 8 via the cement milk introducing section 9.
  • Cement milk delivery Tube 10 is provided.
  • the spraying device D separately feeds the aggregate 1 and the cement milk 6, and mixes the two with each other just before spraying from the downstream portion of the conveying pipe 8. belongs to.
  • the aggregate feeder 2 discharges the aggregate 1 to the downstream side together with compressed air (also referred to as compressed air or high-pressure air) supplied from the air compressor 3, as described above.
  • compressed air also referred to as compressed air or high-pressure air
  • the aggregate 1 discharged to the outlet is guided into the transport pipe 8 and sent to the downstream side of the transport pipe 8 by the high-pressure air.
  • FIG. 2 is an explanatory view schematically showing a configuration of the aggregate pumping machine 2.
  • the aggregate pumping machine 2 is isolated from the outside in a state where the inside of the upper cooker 1 la communicates with the outside by opening and closing the opening and closing of the shuttle 11 having the upper pot 11a and the lower pot lib for accommodating the aggregate.
  • a first opening / closing means for example, an opening / closing plate 12 for switching to a state
  • a second opening / closing means for example, an opening / closing plate 13 for opening / closing between an upper hook 11a and a lower hook lib
  • a delivery section 15 is provided below the ib) so as to communicate with the inside of the hook 11 (lower hook ib) via a communication port 14 and to which the transfer pipe 8 is connected.
  • An air bleeding pipe 17 for drawing out air to the outside and decompressing the air is connected, and a charging hopper 18 for charging the aggregate 1 is provided above the upper pot 11a.
  • Means 12 are provided. Further, the stored aggregate 1 is stirred inside the upper pot 11a. Stirring blades 19 are provided.
  • the upstream end of the pressurizing noise 16 is connected to the air compressor 3, and in the middle thereof, the compressed air from the air compressor 3 is supplied to the downstream side in the upper pot 11a and is not supplied.
  • a switching means for example, a switching valve
  • the air vent pipe 17 has a switching means (for example, a switching valve) 17a for switching between a state in which the air in the upper hook 11a is led out and a state in which the air is not led out.
  • a switching means for example, a switching valve
  • FIG. 3 is an exploded perspective view schematically showing a configuration of the stirring blade 19.
  • the stirring blade 19 includes a rotating shaft 20 that rotates around its axis, and two blades 21 and 21 fixed to the rotating shaft 20.
  • the blade 21 includes a fixed portion 22 having a substantially U-shaped cross section fixed to the rotating shaft 20, two arm portions 23, 23 connected to the fixed portion 22, and an arm portion. 23, an arc-shaped portion 24 provided at the tip of 23.
  • the arc-shaped portion 24 includes a first arc portion 24a continuously provided at the tip of the arm portions 23, 23, a second arc portion 24b having substantially the same shape as the first arc portion 24a, and It is formed one size larger than the one arc portion 24a and the second arc portion 24b, and includes a third arc portion 24c sandwiched between the first arc portion 24a and the second arc portion 24b.
  • the third circular arc portion 24c that comes into direct contact with the inner wall of the upper hook 11a is formed of a material having some elasticity, such as rubber.
  • the fixing of the fixed portion 22 to the rotating shaft 20 and the fixing of the three arc portions 24a, 24b, 24c are performed, for example, by bolts 34b and nuts 34c screwed via C-rings 34a. Can be performed.
  • Compressed air from the air compressor 3 is introduced into the lower pot lib to pressurize the inside of the lower pot 11b.
  • An air release pipe 26 is connected to the outside to reduce the pressure, and the upper shuttle 11 a is connected to the upper portion of the lower shuttle ib via a second on-off valve 13. Further, a stirring blade 27 for stirring the stored aggregate 1 is provided inside the lower pot lib.
  • the upstream end of the pressurizing noise 25 is connected to the air compressor 3, and in the middle thereof, the compressed air from the air compressor 3 is supplied to the downstream side in a state where the compressed air is supplied into the lower tank lib.
  • a switching means for example, a switching valve
  • a check valve (not shown) are provided.
  • the air vent pipe 26 has a switching means (for example, a switching valve) 26a for switching between a state in which the air in the lower tank lib is led out and a state in which the air is not led out.
  • a switching means for example, a switching valve
  • FIG. 4 is an exploded perspective view schematically showing a configuration of the stirring blade 27.
  • the stirring blade 27 includes a rotating shaft 28 that rotates around its axis, and two blades 29 fixed to the rotating shaft 28.
  • the rotating shaft 28 has arm portions 30 and 31 connected to both ends thereof, and the arm portion 30 provided at one end and the arm portion 31 provided at the other end are rotated. It is arranged to be on the opposite side with respect to the shaft 28. Two arm portions 32 and 33 are also provided at the center of the rotating shaft 28 so as to be on opposite sides of the rotating shaft 28.
  • One of the blades 29 is fixed in a state of bending from the arm portion 30 to the arm portion 32, and the other blade 29 is fixed in a state of bending from the arm portion 33 to the arm portion 31. .
  • Each of the blades 29 has a first curved portion 29a connected to the end of the arm portion 30, 32 (or the arm portion 33, 31), and a second curved portion 29a having substantially the same shape as the first curved portion 29a.
  • a curved portion 29b, and a third curved portion 29c which is formed to be slightly larger than the first curved portion 29a and the second curved portion 29b and is sandwiched between the first curved portion 29a and the second curved portion 29b. It has.
  • the third curved portion 29c that comes into direct contact with the inner wall of the lower hook lib is made of a material having some elasticity, such as rubber.
  • the three curved portions 29a, 29b, and 29c can be fixed using, for example, a bolt 34b and a nut 34c that are screwed via a washer 34a.
  • a closing body 35 is disposed below the bottom wall of the shuttle 11 (lower shuttle rib) so as to close a part of the communication port 14.
  • the closing body 35 is a plate-shaped member provided with a circular through-hole 35a in the center, and is equal to or less than the flow path area (internal cross-sectional area). (Internal cross-sectional area) is about 1Z4-about the flow area (internal cross-sectional area).
  • the cross section of the flow path formed in the transfer pipe 8 is circular and the inner diameter is 42 mm
  • the communication port 14 is circular and the diameter is 69 mm.
  • the diameter of the through-hole 35a of the closing body 35 can be set to 24 mm.
  • a pressurized nozzle 36 for sending compressed air from the air compressor 3 is connected.
  • the aggregate pumping machine 2 is in a state of being mounted on a movable carriage 37.
  • the aggregate pumping machine 2 has pressure gauges 38, 38 for measuring and displaying the pressure inside the upper and lower shuttles 11a and 11b.
  • the first opening / closing means 12 is opened, and the aggregate 1 is charged from the charging hopper 18 into the upper hook 11a.
  • the second opening / closing means 13 is closed, and the aggregate 1 is stored in the lower pot 11b.
  • the aggregate 1 put in the ladle 1 la as described above is stirred by the stirring blade 19.
  • the first opening / closing means 12 is closed, and when the aggregate 1 in the lower pot lib is charged into the delivery section 15 and the remaining amount thereof is reduced to some extent, (3) the air release is performed.
  • the switching means 17a provided in the pipe 17 and opening the switching means 16a provided in the pressurizing pipe 16 the compressed air from the air compressor 3 is supplied to the upper tank 11 and then pressurize the upper pot 11a.
  • the operation returns to the operation (1) again.
  • the aggregate pumping machine 2 by repeating the operations (1) and (5), the aggregate 1 is conveyed. It is a configuration that continues to be performed.
  • the aggregate 1 in the lower pot lib guided to the outlet 14 by the stirring blade 27 flows from the communication port 14 to the lower sending part 15.
  • the closing body 35 is disposed below the communication port 14, and the opening area force of the communication port 14 is equal to or less than the flow path area (internal cross-sectional area) in the transfer pipe 8. Since the flow path area (internal cross-sectional area) is configured to be approximately 1Z4 one flow path area (internal cross-sectional area), the amount of aggregate 1 that is less than the limit of the transfer force of the transfer pipe 8 is transferred to the lower pot l ib. From the feed pipe 15 to the delivery section 15, and a large amount of aggregate 1 exceeding the limit of the transfer power of the transfer pipe 8 flows into the transfer pipe 8 at a time as in the related art. It is possible to reliably prevent clogging and pulsation.
  • a closing member 35 for closing a part of the communication port 14 is disposed below the communication port 14, whereby the aggregate 1 is provided above the closing member 35. Since the accumulation portion is formed, the force for introducing the aggregate 1 into the communication port 14 in the lower pot l ib does not become intermittent due to the rotation of the stirring blade 27, but is generated by the stirring blade 27. Even when the aggregate 1 is not introduced into the communication port 14, the aggregate 1 accumulated in the accumulation portion continues to flow to the delivery section 15, thereby improving the continuity of the transport of the aggregate 1. This is very effective in preventing clogging in the transport pipe 8 and pulsation of the aggregate 1.
  • the pressure applied to the upper kettle l la, the lower kettle l ib and the conveying pipe 8 (to send compressed air) is a single air compressor 3, so that the pressure applied to the upper kettle 11a (or A is the pressure of the compressed air sent to 11a), A is the pressure applied to 1 lb of the lower pot (or the compressed air flow sent to 1 lb of the lower pot), B is the pressure applied to the conveying pipe 8 or the delivery unit 15 (some ⁇ is the conveying pipe 8 or Assuming that the compressed air flow rate sent to the unit 15) is C, the total pressure (total compressed air flow rate) applied by the air compressor 3 is A + B + C.
  • each air is preferably provided with an air chamber (not shown) in the aggregate pumping machine 2 and supplied through the air chamber.
  • the lower hook 1 lb Since the internal pressure B is greater than the pressure A in the upper ladle 1 la, the compressed air in the lower pan lib flows through the pressurized pipes 25 and 16 into the upper pan 11a, and the pressure drops in the lower pan lib This causes a decrease in the discharge amount of the aggregate 1 carried out from the lower pot l ib, leading to a reduction in the conveying force of the aggregate 1 and a variation in the quality of the formed mortar or concrete.
  • the non-return pipe is connected to the pressurizing pipe 25 connected to the lower pot lib so as to suppress the fluctuation of the pressure (flow rate) of the compressed air sent from the air compressor 3 to the lower pot 1 lb.
  • the valve Since the valve is provided, the compressed air in the lower pot l ib can be prevented from flowing to the upper pot 11a, whereby the conveying force of the aggregate 1 can be kept large, and stable continuous conveyance becomes possible. Also, according to such a configuration, it is possible to prevent clogging and pulsation from occurring in the transport pipe 8, and also to prevent variations in the quality of the formed mortar or concrete. is there.
  • the opening area (total opening area) of the communication port 14 should be as small as possible, and the number of blades 29 of the stirring blade 27 should be increased. Is preferred.
  • the opening area of the communication port 14 is such that the flow area in the transport pipe 8 Since it is larger than the road area (internal cross-sectional area), the force of providing the closing body 35 to reduce the opening area thereof is not limited to such a configuration.
  • the opening area may be equal to or less than the flow path area (internal cross-sectional area) in the transfer pipe 8, more specifically, about 1Z4 of the flow path area (internal cross-sectional area) —the flow path area (internal cross-sectional area). Yo! /.
  • the number of the communication ports 14 is not limited to one, but may be plural.
  • the total area of the openings of the communication ports 14, 14,... Is equal to or smaller than the flow path area (internal cross-sectional area) in the transfer pipe 8, and more specifically, 1Z4 ⁇ If the total area is too large to be configured so as to be approximately the flow path area (inner cross-sectional area), a part of the plurality of communication ports 14, 14, ... is closed by the closing body 35. do it.
  • the closing body 35 is not limited to a plate-like member having a circular through-hole 35a at the center as described above.
  • a normal plate not having the through-hole 35a may be used.
  • the closing body 35 may be configured by a member having a shape of a circle, and the closing body 35 may be arranged so as to close a part of the communication port 14 as shown in FIG. 5B.
  • a part of the communication port 14 may be closed by using a plurality of closing bodies 35 having the above-described configuration.
  • the transfer pipe 8 includes, for example, a connecting hose section 8a connecting a plurality of flexible hoses of about 20 m, and the cement milk introduction pipe provided downstream of the connecting hose section 8a.
  • a part 9 and a nozzle part 39 provided downstream of the cement milk introduction part 9 for discharging the aggregate 1 and the cement milk 6 mixed in the cement milk introduction part 9 are provided.
  • the transfer pipe 8 for example, a normal mortar or a hose for spraying concrete can be used.
  • the distance from the cement milk introduction section 9 to the nozzle section 39 is a length necessary for the aggregate 1 and the cement milk 6 to be sufficiently mixed. It is configured to be 20m (preferably about 3-10m).
  • the connecting hose portion 8a is configured to have a length of, for example, about 100 m. However, it is possible to have a horizontal distance of 700 m on a flat ground, a straight height of 200 m on a slope, and a horizontal distance of about 400 m. .
  • the inner diameter of the portion is configured to be larger than the inner diameter of the upstream portion (see FIG. 6 (A)).
  • the inside diameter of the upstream portion of the transfer pipe 8 (connection hose portion 8a) may be 42 mm
  • the inside diameter of the downstream portion may be 50 mm
  • the upstream portion of the transfer tube 8 (connection hose portion 8a) may be used.
  • the inside diameter of the part may be 38 mm
  • the inside diameter of the downstream part may be 42 mm.
  • the cement milk delivery pipe 10 is formed so that the inner diameter thereof is, for example, about 13 cm, and the downstream portion is bifurcated.
  • the downstream portion is located downstream of the cement milk delivery pipe 19, for example, when there is a concern that the hardening of the cement milk (mortar milk) 6 is not necessarily divided into two parts (for example, at the time of high temperature or working in a high temperature environment). Divide the part into two, it is better, sometimes.
  • FIGS. 6 (A) and 6 (B) are a longitudinal sectional view and an explanatory view schematically showing the configuration of the cement milk introducing section 9.
  • the cement milk introduction section 9 is for mixing the cement milk 6 flowing in the cement milk delivery pipe 10 with the aggregate 1 flowing in the transport pipe 8 and the connection hose section. It is arranged so as to be interrupted in the middle of 8a, and is almost cylindrical. The cement milk introducing section 9 is also formed with a metal force such as aluminum.
  • the cement milk introduction section 9 is formed with a tapered section 9a whose inner diameter increases toward the downstream side.
  • the cement milk introducing portion 9 in the present embodiment is formed as a tapered portion 9a whose inner diameter becomes larger toward the downstream side.
  • each downstream portion of the cement milk delivery pipe 10 is connected so as to have an angle of 10 to 40 degrees, preferably 15 to 30 degrees.
  • each downstream portion of the cement milk delivery pipe 10 is moved so that the cement milk 6 flowing into the transfer pipe 8 spirals along the inner wall of the transfer pipe 8.
  • the tapered portion 9a is connected at an angle to the tapered portion 9a.
  • mortar M (or concrete) is formed by mixing cement milk 6 and aggregate 1 in cement milk introduction section 9.
  • Cement 4 aggregate (sand) 1, water 5 and admixture as appropriate.
  • cement 4: aggregate (sand) 1: water 5 1: 4: 0.45-0.6
  • Those having a weight ratio are desirable.
  • part of the above sand is replaced with crushed stones as appropriate.
  • the cement milk introduction part 9 is not limited to a tapered part 9a whose entire inner diameter becomes larger toward the downstream side, but has the tapered part 9a as a part. May be available.
  • the upstream-side force may include the tapered portion 9a and the reverse tapered portion 9b whose inner diameter becomes smaller toward the downstream side.
  • FIG. 8 is an explanatory view schematically showing the configuration of the nozzle section 39.
  • the nozzle portion 39 has, in order from the upstream side, a widened portion 39a whose inner diameter becomes larger toward the downstream side, and a constricted portion 39b whose inner diameter becomes smaller toward the downstream side, and the inner diameter of the downstream end of the constricted portion 39b is reduced. It is configured to be equal to or slightly larger than the inner diameter of the transfer pipe 8.
  • the method of placing the mortar concrete is such that the aggregate pumping machine 2 and the air compressor 13 and the pumping pump 7 are driven to move the nozzle 39 of the transport pipe 8 to an appropriate position. Can be implemented.
  • the cement milk 6 is sent into the cement milk delivery pipe 10 and reaches the cement milk introduction section 9. [0088] Then, the cement milk 6 and the aggregate 1 are further mixed with each other and further flow from the cement milk introduction part 9 to the downstream side, and finally, each grain of the aggregate 1 is pressed by the cement.
  • the aggregate 1 and the cement milk 6 are uniformly and uniformly mixed.
  • the cement milk 6 and the aggregate 1 are mixed in an appropriate ratio, whereby the mortar M (or concrete) is formed, and the formed mortar M (or concrete) is formed. Is discharged from the nozzle section 39 downstream of the cement milk introduction section 9 to a mortar (or concrete) casting position.
  • the closing body 35 is disposed below the communication port 14, and the opening area of the communication port 14 is Since it is configured to be equal to or less than the flow path area (internal cross-sectional area) of the flow path area (internal cross-sectional area) in the transfer pipe 8, the flow path area (internal cross-sectional area) is about 1Z4—the flow path area (internal cross-sectional area).
  • An amount of the aggregate 1 less than the limit of the transfer force of the transfer pipe 8 can be flowed from the lower pot lib to the delivery unit 15 by a fixed amount, and exceeds the limit of the transfer force of the transfer pipe 8 as in the related art. It is possible to reliably prevent a large amount of the aggregate 1 from flowing into the transport pipe 8 each time and clogging the transport pipe 8 or causing pulsation.
  • a closing body 35 for closing a part of the communication port 14 is disposed below the communication port 14, thereby forming a pool portion for storing the aggregate 1 above the closing body 35. Therefore, the force for introducing the aggregate 1 into the communication port 14 in the lower pot l ib does not become intermittent due to the rotation of the stirring blade 27, but the communication port 14 for the aggregate 1 by the stirring blade 27. Since the aggregate 1 accumulated in the accumulation portion continues to flow to the delivery section 15 even when the introduction into the accumulation section is not performed, the continuity of the transportation of the aggregate 1 can be improved, and Prevention of clogging and pulsation of the aggregate 1 is very effective in terms of surface.
  • the cement milk introducing portion 9 Immediately after the cement milk 6 was introduced into the aggregate 1 as the conveyed material flowing in the conveying pipe 8, the conveyed material flowing in the conveying pipe 8 became a mixture of the aggregate 1 and the cement milk 6, As a result, the volume and weight of the conveyed material increase, so that the speed of conveyance of the conveyed material on the downstream side of the cement milk introduction section 9 decreases.
  • the conveying speed of the conveyed material (aggregate 1) also decreases on the upstream side of the milk introduction section 9, and blockage may occur due to the lowering of the conveying speed.
  • the inside diameter of the portion of the transport pipe 8 downstream of the cement milk introduction portion 9 is increased, so that Of the compressed air can be secured, and a decrease in the transport speed of the conveyed material passing through the transport pipe 8 can be suppressed, so that the transport pipe 8 is blocked by the aggregate 1 and the cement milk 6. Can be reliably prevented, and smooth spraying can be performed.
  • the cement milk introduction part 9 has a tapered portion 9a having an inner diameter that increases toward the downstream side.
  • Each of the downstream portions of the cement milk delivery pipe 10 is formed such that the direction in which the aggregate 1 flows and the direction in which the cement milk 6 flows with respect to the tapered portion 9a are vertical and acute.
  • Each downstream portion of the cement milk delivery pipe 10 is connected to the tapered portion so that the cement milk 6 flowing into the transfer pipe 8 spirals along the inner wall of the transfer pipe 8. Since the connection is made at an angle to 9a, the following effects can be obtained.
  • the cement milk introduction part 9 in the conveying pipe 8 does not have a tapered portion 9a whose inner diameter becomes larger toward the downstream side, and the diameter of the cement milk introduction part from the upstream side to the downstream side is the same.
  • the aggregate conveyed in the conveying pipe easily comes into contact with the cement milk introducing portion, which is not a tapered shape but a cylindrical shape. It was difficult to achieve long-term continuous transfer, which was severely worn.
  • the cement milk discharged to the cement milk introduction section has a curtain shape, and the compressed air flowing through the transport pipe for transporting the aggregate is conveyed by the curtain of the cement milk. As a result, the conveying force of the compressed air is reduced, which may cause blockage in the conveying pipe.
  • the cement milk delivery pipe is connected to the cement milk introduction section at an acute angle, and the cement milk delivery pipe is connected to the aggregate conveyance direction. It is conceivable to introduce the cement milk along the inner wall of the cement milk introduction part by reducing the angle formed by the introduction direction of the cement milk, but in this case, the cement milk introduction part is not tapered. The opening area for introducing the cement milk of the cement milk delivery pipe formed in the cement milk introduction part becomes large because the cylindrical area is not formed. The air could easily enter, which could hinder the introduction of cement milk.
  • the tapered portion 9a whose inner diameter becomes larger toward the downstream side is formed, and the cement milk delivery pipe 10 is connected to the tapered portion 9a.
  • the tapered portion 9a having an inner diameter that increases toward the downstream side is formed, and the flow direction of the aggregate 1 and the cement milk 6 are defined with respect to the tapered portion 9a.
  • the downstream direction of the cement milk delivery pipe 10 is connected so that the flowing direction of the cement milk is perpendicular to the vertical section, and the cement milk 6 flowing into the transport pipe 8 is further connected to the inner wall of the transport pipe 8. Since each downstream portion of the cement milk delivery pipe 10 is connected at an angle to the tapered portion 9a so as to draw a spiral along the cement milk 6, the cement milk 6 is supplied with cement milk.
  • the compressed air flowing through the transport pipe 8 for transporting the aggregate 1 that is introduced along the inner wall of the part 9 and does not become a curtain has little resistance. Low power Is, when causing closing Infarction in the transport tube! /, Ukoto is prevented.
  • the cement milk delivery pipe 10 is connected to the cement milk introduction part 9 at an acute angle, and the angle formed by the introduction direction of the cement milk 6 with respect to the transport direction of the aggregate 1 is reduced. Since the portion to which the cement milk delivery pipe 10 is connected is a tapered section 9a, the cement milk delivery pipe 10 formed in the cement milk introduction section 9 (tapered section 9a) introduces a strong amount of cement milk 6. The area of the opening can be made smaller than before, so that the opening force can also prevent the compressed air flowing through the conveying pipe 8 from entering, and the cement milk 6 can be introduced smoothly. .
  • the nozzle portion 39 is provided, in order from the upstream side, with a widened portion 39a whose inner diameter becomes larger toward the downstream side, and a throttle portion 39b whose inner diameter becomes smaller toward the downstream side. Since the inner diameter of the downstream end is configured to be equal to or slightly larger than the inner diameter of the transfer pipe 8, the following effects can be obtained.
  • the throttle at the tip of the nozzle portion 39 is transported in the transport pipe 8. Due to the resistance of the sprayed material (aggregate 1 and cement milk 6), the compressed air was reduced, and the aggregate 1 being conveyed was sometimes clogged in the conveying pipe 8. Further, the silt component 40 that has been separated from the spray material in the transport pipe 8 immediately before spraying is mixed with the spray material again, Construction using mortar or concrete has become difficult.
  • the diameter of the tip of the nozzle portion 39 is reduced so as to be approximately the same as or slightly larger than the inner diameter of the conveying pipe 8.
  • the sprayed material (aggregate 1 and cement milk 6) conveyed inside 8 does not become a resistance, the compressed air is not reduced, and the aggregate 1 being conveyed can be prevented from being clogged in the conveying pipe 8.
  • the force of the spray material is separated in the transport pipe 8 immediately before spraying, as shown in Fig. 8, while obtaining a certain rectifying effect of the spray material.
  • the tip force of the nozzle portion 39 can also be discharged while the silt component 40 is separated as it is, and construction using high-quality mortar or concrete can be performed.
  • FIG. 9 is an explanatory view schematically showing a configuration of an example of a spraying method frame method using the spraying device D.
  • a reticulated body 41 such as a rhombus or a turtle-shaped body is placed on the slope N to be protected.
  • the mesh body 41 is fixed to the slope N by placing the auxiliary anchor 42 on the slope N at an appropriate interval.
  • the reticulated body 41 is composed of, for example, a strand having a diameter of about 0.8 to 1.6 mm and a mesh size of about 2 to 6 cm.
  • a plurality of wire rods 43 made of reinforcing steel may be placed on the mesh body 41 at least in the vertical direction (a contour line of the slope N). It is arranged so as to be parallel to each other in the vertical direction) or in the horizontal direction (the direction parallel to the contour line of the slope N), preferably arranged in a lattice shape, and a frame for forming a slope in the longitudinal direction of the wire rod 43.
  • the body 44 is set up, and the wire 43 is lifted and held by the frame body 44.
  • the frame body 44 for forming a legal frame can hold the wire 43, for example, its height is about 15 to 20 cm, its width is about 30 to 35 cm, and its length is about 30 to 35 cm. It is about 30-60cm and consists of a combination of welded wires.
  • a pair of semicircular frame members 45, two connecting members 46 integrating the pair of frame members 45, and a wire rod extending between the two connecting members 46 are provided.
  • a holding member 47 a holding member 47.
  • a curing sheet 48 is arranged on the net 41 at this site so that the site surrounded by the wires 43 arranged in a lattice is a vegetation area.
  • the mortar M or concrete is used as a guide of the spray width and the spraying height of the frame body 44 for forming the legal frame, and The grid-shaped wire rod 43 and the frame body 44 for forming the frame are sprayed so as to be embedded, and the grid-shaped normal frame 49 is formed on the slope N by mortar M or concrete swelling.
  • the mortar or mortar is difficult to be sprayed with a conventional spraying device, such as near a mountaintop in a steep mountainous area.
  • M or concrete is sprayed to form the lawn 49, which can be prevented from collapsing.Furthermore, after the formation of the lawn 49, the preservation of the landscape by plants and the slope N Restoration to the natural state can be achieved early
  • FIGs. 11 (A)-11 (C) schematically show an example of the configuration of a rock bonding method using the spraying device D described above. It is explanatory drawing shown roughly.
  • a second step cleaning step
  • air or water is blown at a high pressure to bond the surface (the surface to be bonded with mortar M or the like).
  • Perform cleaning As a result, soil, moss, and the like existing on the bonding surface are removed.
  • a filling material 52 is appropriately filled in, for example, the vicinity of the opening of the cracked portion 51 of the rock mass G '.
  • This step is performed in order to form the mortar M in the next step (fourth step) which corresponds to a bank for preventing the mortar M or the like from flowing out of the cracked portion 51, and the filling material 52 is formed of the mortar M or the like.
  • Any material may be used as long as it has good adhesion to the substrate. It is desirable from the viewpoint of economy and adhesion to perform filling using mortar M or the like, which is the same material.
  • this third step can be omitted.
  • the spraying device D according to the present invention is also applicable to retaining wall construction in mountainous areas, for example, a retaining wall construction method disclosed in Japanese Patent Application Laid-Open No. 6-294139.
  • a retaining wall construction method basically, a cut or embankment slope and a retaining wall that is erected at an interval from the slope are formed.
  • a retaining wall is constructed by placing mortar M or concrete between the board and the formwork.
  • the mortar M or the concrete material can be transported over a long distance for casting without having to lift and transport the spraying device D near the retaining wall construction point, and a high-quality retaining wall can be constructed.
  • the spraying device D according to the present invention can also be applied to construction work of a dam dam for the purpose of sabo control in mountainous areas, for example, a construction method described in Japanese Patent Application Laid-Open No. 10-266168 or the like. It is.
  • dam mortar M or concrete is basically placed between the forming plates (form: sandbag in the above-mentioned publication) of the dam body surface standing on the front and back surfaces of the dam body.
  • the dam is constructed by casting.
  • the mortar M or the concrete material can be transported over a long distance and cast without having to lift and transport the spraying device D close to the construction site of the weir, and a high-quality weir can be constructed.
  • FIG. 12 is an explanatory view schematically showing a configuration of an example of a tunnel forming work using the spraying device D.
  • the spray device according to the present invention exerts its superiority even in such tunnel forming work. Specifically, the main process of tunnel construction is
  • process 1 Process of excavating ground 53 and transporting the excavated earth and sand outside the tunnel (hereinafter referred to as process 1)
  • step 2 Step of spraying concrete 54 onto ground excavation surface 55 (hereinafter referred to as step 2)
  • step 3 A step of placing the lock bolt 56 on the ground 53 so as to be radial in the cross section of the tunnel.
  • Step 4 A step of applying a waterproof treatment such as attaching a waterproof sheet (not shown) to the concrete surface 54 formed in Step 2 (hereinafter referred to as Step 4).
  • step 1 is excavation, and steps 2 and 3 are support (so that the excavated ground does not collapse).
  • steps 4 and 5 are called oversteps (steps to cover and reinforce the supports), and in tunnel formation work, tunnels are formed by repeating these steps sequentially.
  • the amount of aggregate that is less than the limit of the transfer force of the transfer pipe can be flowed from the shuttle to the delivery section by a fixed amount, and the clogging of the transfer pipe and pulsation can be reliably prevented, so that the length can be reduced. Even when transporting over long distances, the mortar or concrete can be sprayed smoothly and reliably, and the mortar or concrete can be transported to places where carry-in of machinery is restricted, such as near steep mountain peaks. Can be sprayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

 長距離搬送であっても、スムーズかつ確実にモルタルまたはコンクリートの吹き付け施工を行うことを可能とするモルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法を提供する。  モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記骨材を圧送するための骨材圧送機と、この骨材圧送機に接続される搬送管とを備え、前記骨材圧送機が、骨材を収容する釜と、この釜の下側に連通口を介して釜内部と連通する状態で設けられ、前記搬送管が接続される送出部とを備え、前記釜内から釜の底壁に設けられた連通口を通って前記送出部に投下された骨材が、搬送管内に送出されるようにしてあり、前記連通口の開口面積を、前記搬送管内の流路面積以下となるように構成してあることを特徴とするモルタルまたはコンクリート吹付け装置。

Description

明 細 書
モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタル またはコンクリート吹付け方法
技術分野
[0001] 本発明は、モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタ ルまたはコンクリート吹付け方法に関する。
背景技術
[0002] 高所法面に予め形成された型枠に対してモルタルまたはコンクリートを吹付けて格 子状の法枠を形成する際、水と、セメントと、骨材とを事前に混練させて吹付け材料 を形成し、搬送管を用いて前記吹付け材料を圧送する旧来のモルタルまたはコンクリ ート吹付け装置では、搬送管内を通る前記吹付け材料の圧送抵抗が非常に大きぐ 思うような吹付け材料の吐出量 (圧)を得ることができず、そのため、高所の吹付施工 や粒径の大きな骨材を用いた吹付施工が困難あるいは不可能であった。
[0003] そこで、本出願人は、より高所の吹付施工やより大きな骨材を用いた吹付施工を効 率よく行うために、上記特許文献 1に示すような、モルタルまたはコンクリートを構成す るセメントミルクおよび骨材を別々に圧送する別圧送方式吹付け装置を開発中である
[0004] 上記別圧送方式吹付け装置は、例えば骨材としての砂を圧縮エアによって 400m 程度の長さの搬送管中を移動させ、吹付けノズルの直前一手前 10m程度の所でセ メントミルクと混ぜることによりモルタルまたはコンクリートを得るようにし、命綱によって 支えられた作業者が前記吹付けノズルを持ちながら前記型枠に対してモルタルまた はコンクリートを吹付けることにより、格子状の法枠を形成するというものである。
[0005] 上記別圧送吹き付け装置によれば、吹付けノズルの手前付近まで、セメントミルク および骨材を別々に圧送することから、前記搬送管内における骨材の圧送抵抗が小 さくなるため、吐出量 (圧)をより大きくすることができ、高い位置へのモルタルまたは コンクリートの吹き付け施工や、粒径の大きい骨材を用いた吹き付け施工が可能とな る。 特許文献 1:特開 2001—248164号公報
特許文献 2:実用新案登録第 2509314号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、上記別圧送方式のモルタルまたはコンクリート吹付け装置では、セメントミル クと混ざる前および混ざった後の骨材が前記搬送管内において詰まりやすぐスムー ズに吹付施工を行えな ヽと 、う問題があった。
[0007] 前記詰まりの原因の 1つが、前記骨材を圧送するための骨材圧送機にあると本出 願人は考えている。すなわち、前記モルタルまたはコンクリート吹付け装置には、上 記特許文献 2に示すような骨材圧送機 (土木用吹付機)が用いられて ヽたのであるが 、前記骨材圧送機では、下釜力 圧送管へと送られる吹付材料の量が一定でないこ となどから、圧送管 (搬送管)内を圧送される吹付材料が脈動し、この脈動が前記詰 まりの原因となっていたと考えているのである。
[0008] また、他に考えられる前記詰まりの原因として、上記モルタルまたはコンクリート吹付 け装置では、前記搬送管内を流れる骨材にセメントミルクを加えた際に、流れる骨材 の体積 '重量が急激に増力 tlして、搬送スピードが低下し、これによつて、搬送管内が 前記骨材およびセメントミルクによって閉塞するということが考えられる。
[0009] 従って、険しい山間部の山頂付近等、機械の持ち込みが制限される場所に、モル タルまたはコンクリートを搬送して吹き付けることができず、そのような場所にある法面 は、モルタルまたはコンクリートを用いた法面保護のための施工がなされることなく放 置されていた。
[0010] この発明は、上述の事柄に留意してなされたもので、その目的は、長距離搬送であ つても、スムーズかつ確実にモルタルまたはコンクリートの吹き付け施工を行うことを 可能とするモルタルまたはコンクリート吹付け装置およびその装置を用いたモルタル またはコンクリート吹付け方法を提供することである。
課題を解決するための手段
[0011] 上記目的を達成するために、本発明のモルタルまたはコンクリート吹付け装置は、 モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記骨材を圧送す るための骨材圧送機と、この骨材圧送機に接続される搬送管とを備え、前記骨材圧 送機が、骨材を収容する釜と、この釜の下側に連通口を介して釜内部と連通する状 態で設けられ、前記搬送管が接続される送出部とを備え、前記釜内から釜の底壁に 設けられた連通口を通って前記送出部に投下された骨材力 搬送管内に送出される ようにしてあり、前記連通口の開口面積を、前記搬送管内の流路面積以下となるよう に構成してある(請求項 1)。
[0012] また、前記釜の底壁の下側に、前記連通口の一部を閉塞するように閉塞体が配置 されて 、るのが好まし 、(請求項 2)。
[0013] さらに、モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送し た後、混合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記骨材を 圧送するための骨材圧送機と、この骨材圧送機に接続される搬送管とを備え、前記 骨材圧送機が、上釜および下釜と、開閉することで上釜の内部が外部に連通する状 態と外部から隔離された状態とに切り換わる第 1開閉手段と、上釜と下釜との間を開 閉する第 2開閉手段と、前記下釜の下側に連通口を介して下釜内部と連通する状態 で設けられ、前記搬送管が接続される送出部と、前記上釜,下釜および送出部に圧 搾空気を供給するための圧搾空気供給手段とを備え、上釜で骨材を攪拌した後、第 1および第 2開閉手段を閉じた状態で前記上釜の内部に前記圧搾空気を導入して圧 力を加えて第 2開閉手段を開くことにより、上釜内の骨材を下釜内に投下し、その後 、この下釜の下側に設けられた連通ロカも前記送出部に投下された骨材が、搬送管 内に送出され、前記圧搾空気供給手段力 の圧搾空気により下流側へと搬送される ようにしてあり、前記圧搾空気供給手段力 圧搾空気流通路を介して下釜へ送られ る圧搾空気の圧力の変動を抑えるよう、下釜に接続された圧搾空気流通路の途中に 逆止弁を設けたとしてもよ!/ヽ (請求項 3)。
[0014] また、モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した 後、混合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記セメントミ ルクを搬送するためのセメントミルク送出管と、前記骨材を搬送するための搬送管とを 備え、前記搬送管は、前記セメントミルク送出管の下流端が接続されるセメントミルク 導入部を有するとともに、このセメントミルク導入部より下流側の部分の内径力 上流 側の部分の内径よりも大きくなるように構成してあるとしてもょ ヽ (請求項 4)。
[0015] また、モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した 後、混合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記セメントミ ルクを搬送するためのセメントミルク送出管と、前記骨材を搬送するための搬送管とを 備え、前記搬送管は、前記セメントミルク送出管の下流端が接続されるセメントミルク 導入部を有し、このセメントミルク導入部に、下流側ほど内径の大きくなるテーパ状部 分が形成されているとともに、前記テーパ状部分に対して、骨材の流れる方向とセメ ントミルクの流れる方向とが縦断面にぉ 、て鋭角となるようにセメントミルク送出管を 接続するよう〖こしたとしてもよ 、(請求項 5)。
[0016] また、モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した 後、混合して吹付けるモルタルまたはコンクリート吹付け装置であって、混合された骨 材およびセメントミルクを搬送する搬送管の下流端にノズル部が設けられており、この ノズル部力 上流側から順に、下流側ほどその内径が大きくなる広がり部分と、下流 側ほどその内径が小さくなる絞り部分とを有し、この絞り部分の下流端の内径が、前 記搬送管の内径と同等またはそれよりも若干大きくなるように構成してあるとしてもよ い(請求項 6)。
[0017] 請求項 7に記載のモルタルまたはコンクリート吹付け方法は、請求項 1一 6のいずれ かに記載の吹付け装置を用 、てモルタルまたはコンクリ一トを吹付けることを特徴とし ている。
発明の効果
[0018] 上記の構成カゝらなる本発明によれば、長距離搬送であっても、スムーズかつ確実に モルタルまたはコンクリートの吹き付け施工を行うことを可能とするモルタルまたはコン クリート吹付け装置を提供することが可能となる。
[0019] すなわち、請求項 1に係る発明では、連通口の開口面積が、搬送管内の流路面積 以下となるように構成してあることから、搬送管の搬送力の限界を下回る量の骨材を 釜力 送出部へと定量ずつ流すことができ、従来のように、搬送管の搬送力の限界を 上回る大量の骨材が一度に搬送管内に流れ込み、搬送管内の詰まりや、脈動を生じ させるといったことを確実に防ぐことができる。
[0020] 請求項 2に係る発明では、釜の底壁の下側に連通口の一部を閉塞する閉塞体を配 置するので、連通口の開口面積の調整が容易になるだけでなぐ閉塞体の上方に骨 材が溜まる溜まり部分が形成され、この溜まり部分に溜まった骨材が送出部へと流れ 続けるため、骨材の搬送の連続性を向上させることができ、搬送管内の詰まりや骨材 の脈動を防止すると 、う面で非常に好ま 、効果が得られる。
[0021] 請求項 3に係る発明では、下釜に接続された圧搾空気流通路の途中に逆止弁を設 けてあることから、上釜内の圧を高めるために圧搾空気供給手段から上釜へ圧搾空 気を送り始めたときに、上釜内よりも圧の高い前記下釜内の圧搾空気が上釜へと流 れることを防止でき、これにより、前記骨材の搬送力を大きく保ち、安定した連続搬送 ができ、また、このような構成によっても、搬送管内において詰まりや脈動が生じること を防止することができ、形成されたモルタルまたはコンクリートの品質にバラツキが生 じることち防止でさる。
[0022] 請求項 4に係る発明では、以下のような効果が得られる。すなわち、搬送管のセメン トミルク導入部より下流側の部分の内径と、上流側の部分の内径とを等しくしてある従 来の吹付け装置では、セメントミルク導入部において、搬送管内を流れる搬送物とし ての骨材にセメントミルクを導入した直後に、搬送管内を流れる搬送物が、骨材とセメ ントミルクとの混合物となり、これに伴って、搬送物の体積と重量とが増加するため、 前記セメントミルク導入部の下流側における搬送物の搬送スピードが低下し、この搬 送物の搬送の滞りの影響により、搬送管におけるセメントミルク導入部の上流側にお いても搬送物 (骨材)の搬送スピードが低下することとなり、この搬送スピードの低下 に伴って閉塞が生じることもあった。
[0023] また、セメントミルクの導入により搬送管に対する搬送物の量が多すぎる状態となる ほど増加した場合には、前記骨材およびセメントミルクを下流側へと流すための圧搾 空気供給手段 (例えばエアコンプレッサー)からの圧搾空気の通り道が無くなってしま い、搬送管内が前記搬送物 (すなわち、骨材およびセメントミルク)によって閉塞して しまうこととなっていた。
[0024] しかし、請求項 4に係る発明では、搬送管におけるセメントミルク導入部よりも下流 側の部分の内径を大きくしてあることにより、圧搾空気供給手段力 の圧搾空気の通 り道を確保することができ、また、搬送管内を通る搬送物の搬送スピードの低下も抑 えることができるため、骨材およびセメントミルクによって搬送管内が閉塞することを確 実に防止することができ、スムーズな吹付施工を行うことが可能となる。
[0025] 請求項 5に係る発明では、以下のような効果が得られる。すなわち、搬送管におけ るセメントミルク導入部に下流側ほど内径の大きくなるテーパ状部分を形成せず、セ メントミルク導入部を、上流側から下流側までの径が同一である円筒状にしてある従 来の吹付け装置では、テーパ状ではなく円筒状である前記セメントミルク導入部に対 して、搬送管内を搬送される骨材が当たりやす力つたことから、セメントミルク導入部 の磨耗が激しぐ長時間の連続搬送を実現することが困難であった。
[0026] また、上記従来の吹付け装置では、セメントミルク導入部に吐出されたセメントミルク がカーテン状となり、このセメントミルクのカーテンが骨材を搬送するために搬送管内 を流れている前記圧搾空気の抵抗となり、その結果、前記圧搾空気の搬送力を低下 させ、搬送管内にお 、て閉塞を生じさせることがあった。
[0027] そこで、セメントミルク導入部内に導入したセメントミルクがカーテン状とならないよう にするために、セメントミルク送出管をセメントミルク導入部に対して鋭角に接続し、骨 材の搬送方向に対してセメントミルクの導入方向がなす角度を小さくすることによって 、セメントミルクをセメントミルク導入部の内壁に沿わせて導入することが考えられるが 、この場合、前記セメントミルク導入部がテーパ状ではなく円筒状であったことから、こ のセメントミルク導入部に形成されるセメントミルク送出管からのセメントミルクを導入 するための開口の面積が大きくなつてしまい、この開口力も搬送管内を流れる圧搾空 気が進入しやすくなつて、セメントミルクの導入に支障をきたすおそれがあった。
[0028] しかし、請求項 5に係る発明では、下流側ほど内径の大きくなるテーパ状部分を形 成し、このテーパ状部分に対してセメントミルク送出管を接続するようにしてあるので、 搬送管内を搬送される骨材が直接当たりにくくなり、セメントミルク導入部の磨耗が軽 減され、長時間の連続搬送を実現することができる。
[0029] さらに、請求項 5に係る発明では、セメントミルク送出管をセメントミルク導入部に対 して鋭角に接続し、骨材の搬送方向に対してセメントミルクの導入方向がなす角度を 小さくするとともに、セメントミルク送出管が接続される部分をテーパ状部分としてある ので、このテーパ状部分に形成されるセメントミルク送出管からのセメントミルクを導入 するための開口の面積を従来より小さくすることができ、これにより、開口から搬送管 内を流れる圧搾空気が進入することを防止でき、セメントミルクの導入をスムーズに行 うことができる。
[0030] また、請求項 6に係る発明では、以下のような効果が得られる。すなわち、ノズル部 の先端部の径が搬送管の内径より小さく絞られていた従来の吹付け装置では、ノズ ル部の先端部の絞りが、搬送管内を搬送されてきた吹付材料 (骨材およびセメントミ ルク)の抵抗となり、圧搾空気が減勢されて、搬送中の骨材が搬送管内で詰まること があった。また、吹付け直前の搬送管内で前記吹付材料力も折角分離されていたシ ルト分力 再び吹付材料に混合され、質のよいモルタルまたはコンクリートを用いた施 ェが困難となっていた。
[0031] しかし、請求項 6に係る発明では、ノズル部の先端部の径を搬送管の内径と同程度 力 若干大きめとなるように絞っているので、搬送管内を搬送されてきた吹付材料の 抵抗とならず、圧搾空気も減勢されず、搬送中の骨材が搬送管内で詰まることを防止 できる。また、不必要に吹付材料の流速が上昇しなくなるので、ある程度の吹付材料 の整流効果を得ながら、吹付け直前の搬送管内で吹付材料力 分離されていたシ ルト分を、そのまま分離した状態で、ノズル部の先端力も排出することができ、質のよ いモルタルまたはコンクリートを用いた施工を行うことができる。
[0032] 請求項 7に係るモルタルまたはコンクリートの吹付け方法によれば、搬送管の搬送 力の限界を下回る量の骨材を定量ずつ流すことができるので、搬送管内の詰まりや 、脈動を生じさせることなぐモルタルまたはコンクリートの吹付けを行なうことができ、 質のよいモルタルまたはコンクリートを用いた施工を行うことができる。
図面の簡単な説明
[0033] [図 1]本発明の一実施例に係るモルタルまたはコンクリート吹付け装置の構成を概略 的に示す説明図である。
[図 2]上記実施例における骨材圧送機の構成を概略的に示す説明図である。
[図 3]上記実施例における上釜の攪拌羽根の構成を概略的に示す分解斜視図であ る。
[図 4]上記実施例における下釜の攪拌羽根の構成を概略的に示す分解斜視図であ る。
[図 5] (A)および (B)は、上記実施例における閉塞体の変形例および更なる変形例 の構成を概略的に示す説明図である。
[図 6] (A)および (B)は、上記実施例におけるセメントミルク導入部の構成を概略的に 示す縦断面図および説明図である。
[図 7]前記セメントミルク導入部の変形例の構成を概略的に示す説明図である。
[図 8]上記実施例におけるノズル部の構成を概略的に示す説明図である。
[図 9]上記吹付け装置を用いる吹付法枠工法の構成を概略的に示す説明図である。
[図 10]上記吹付法枠工法の要部の構成を概略的に示す説明図である。
[図 11] (A)一 (C)は、上記吹付け装置を用いる岩盤接着工法の構成を概略的に示 す説明図である。
[図 12]上記吹付け装置を用いるトンネル形成工事の一例の構成を概略的に示す説 明図である。
符号の説明
[0034] 1 骨材
2 骨材圧送機
6 セメントミルク
8 搬送管
11 釜
14 連通口
15 送出部
D 吹付け装置
M モノレタノレ
発明を実施するための最良の形態
[0035] 以下、本発明の実施の形態を図面に基づいて説明する。
図 1は、本発明の一実施例に係るモルタルまたはコンクリート吹付け装置(以下、吹 付け装置という) Dおよび方法の構成を概略的に示す説明図である。
吹付け装置 Dは、骨材 (モルタル Mの場合は砂 (細骨材)、コンクリートの場合は前 記砂および砕石 (粗骨材)) 1を供給する骨材供給手段としての骨材圧送機 2と、この 骨材圧送機 2に接続された圧搾空気供給手段としてのエアコンプレッサー 3と、セメン ト 4および水 5を混合してなるセメントミルク 6を送出するセメントミルク送出手段として の圧送用ポンプ (例えば、ピストン式ポンプ,スクイズ式ポンプ) 7と、前記骨材圧送機 2の下流側に接続され、その途中部分に、モルタル M (またはコンクリート)を混合す るためのセメントミルク導入部 9が設けられている搬送管 8と、前記圧送用ポンプ 7の 下流側にその上流端が接続され、前記搬送管 8の下流部に、前記セメントミルク導入 部 9を介してその下流端が接続されたセメントミルク送出管 10とを備えている。
[0036] 前記吹付け装置 Dは、前記骨材 1とセメントミルク 6とを別圧送し、前記搬送管 8の下 流部からの吹き付けを行う寸前にて両者 1, 6を混合する別圧送タイプのものである。
[0037] 前記骨材圧送機 2は、前記骨材 1を、前記エアコンプレッサー 3から供給される圧搾 空気 (圧縮エアーまたは高圧エアーともいう)とともに下流側へと吐出するものであり、 上記のように吐出された骨材 1は、前記搬送管 8内に導出され、前記高圧エアーによ り搬送管 8の下流側へと送られることとなる。
[0038] 図 2は、前記骨材圧送機 2の構成を概略的に示す説明図である。
そして、前記骨材圧送機 2は、骨材を収容する上釜 11aおよび下釜 l ibを有する釜 11と、開閉することで上釜 1 laの内部が外部に連通する状態と外部から隔離された 状態とに切り換わる第 1開閉手段 (例えば、開閉板) 12と、上釜 11aと下釜 l ibとの間 を開閉する第 2開閉手段 (例えば、開閉板) 13と、前記釜 11 (下釜 l ib)の下側に連 通口 14を介して釜 11 (下釜 l ib)内部と連通する状態で設けられ、前記搬送管 8が 接続される送出部 15とを備えている。
[0039] 前記上釜 11aには、前記エアコンプレッサー 3からの圧搾空気を導入して、上釜 11 a内を加圧するための圧搾空気流通路としての加圧パイプ 16と、上釜 11a内の空気 を外部に導出して減圧するためのエア抜きパイプ 17とが接続されており、また、上釜 11aの上部には、前記骨材 1を投入するための投入ホッパー 18と、前記第 1開閉手 段 12とが設けられている。さらに、上釜 11aの内部には、収容した骨材 1を攪拌する ための攪拌羽根 19が設けられている。
[0040] 前記加圧ノイブ 16の上流端は、前記エアコンプレッサー 3に接続されており、その 途中には、エアコンプレッサー 3からの圧搾空気を下流側の上釜 11a内に供給する 状態と供給しない状態とに切り換えるための切換手段 (例えば、切換弁) 16aが設け られている。
[0041] 前記エア抜きパイプ 17は、上釜 11a内の空気を外部に導出する状態と導出しない 状態とに切り換えるための切換手段 (例えば、切換弁) 17aを有している。
[0042] 図 3は、前記攪拌羽根 19の構成を概略的に示す分解斜視図である。
前記攪拌羽根 19は、その軸まわりに回転する回転軸体 20と、この回転軸体 20に 固定される 2つの羽根 21, 21とを備えている。
[0043] 前記羽根 21は、前記回転軸体 20に固定される断面ほぼへの字形状の固定部分 2 2と、この固定部分 22に連設された 2つのアーム部分 23, 23と、アーム部分 23, 23 の先端に設けられる円弧状部分 24とを有している。
[0044] 前記円弧状部分 24は、前記アーム部分 23, 23の先端に連設される第一円弧部分 24aと、この第一円弧部分 24aとほぼ同じ形状の第二円弧部分 24bと、前記第一円 弧部分 24aおよび第二円弧部分 24bよりも一回り大きく形成されており、前記第一円 弧部分 24aおよび第二円弧部分 24bにより挟持される第三円弧部分 24cとを備えて いる。そして、前記上釜 11aの内壁に直接当接することとなる前記第三円弧部分 24c は、ゴムなどのある程度の弾力性を持った材料力 形成されて 、る。
[0045] なお、前記回転軸体 20に対する固定部分 22の固定および前記 3つの円弧部分 2 4a, 24b, 24cの固定は、例えば、 Cリング 34aを介して螺合するボルト 34bおよびナ ット 34cを用いて行うことができる。
[0046] 前記下釜 l ibには、前記エアコンプレッサー 3からの圧搾空気を導入して、下釜 11 b内を加圧するための圧搾空気流通路としての加圧パイプ 25と、下釜 l ib内の空気 を外部に導出して減圧するためのエア抜きパイプ 26とが接続されており、また、下釜 l ibの上部には、前記上釜 11aが第 2開閉弁 13を介して接続されている。さらに、下 釜 l ibの内部には、収容した骨材 1を攪拌するための攪拌羽根 27が設けられている [0047] 前記加圧ノイブ 25の上流端は、前記エアコンプレッサー 3に接続されており、その 途中には、エアコンプレッサー 3からの圧搾空気を下流側の下釜 l ib内に供給する 状態と供給しない状態とに切り換えるための切換手段 (例えば、切換弁) 25aと、逆止 弁(図示せず)とが設けられて 、る。
[0048] 前記エア抜きパイプ 26は、下釜 l ib内の空気を外部に導出する状態と導出しない 状態とに切り換えるための切換手段 (例えば、切換弁) 26aを有している。
[0049] 図 4は、前記攪拌羽根 27の構成を概略的に示す分解斜視図である。
前記攪拌羽根 27は、その軸まわりに回転する回転軸体 28と、この回転軸体 28に 固定される 2つの羽根 29, 29とを備えている。
[0050] 前記回転軸体 28は、両端部にアーム部分 30, 31が連設されており、一端部に設 けられたアーム部分 30と他端部に設けられたアーム部分 31とは、回転軸体 28を挟 んで反対側となるように配置されている。また、回転軸体 28の中央部にも、回転軸体 28を挟んで反対側となるように 2つのアーム部分 32, 33が連設されている。そして、 一方の羽根 29は、前記アーム部分 30からアーム部分 32にかけて湾曲する状態で 固定されており、他方の羽根 29は、前記アーム部分 33からアーム部分 31にかけて 湾曲する状態で固定されて ヽる。
[0051] 前記羽根 29はそれぞれ、前記アーム部分 30, 32 (またはアーム部分 33, 31)の先 端に連設される第一湾曲部分 29aと、この第一湾曲部分 29aとほぼ同じ形状の第二 湾曲部分 29bと、前記第一湾曲部分 29aおよび第二湾曲部分 29bよりも一回り大きく 形成されており、前記第一湾曲部分 29aおよび第二湾曲部分 29bにより挟持される 第三湾曲部分 29cとを備えている。そして、前記下釜 l ibの内壁に直接当接すること となる前記第三湾曲部分 29cは、ゴムなどのある程度の弾力性を持った材料力 形 成されている。
[0052] なお、前記 3つの湾曲部分 29a, 29b, 29cの固定は、例えば、ヮッシャ 34aを介し て螺合するボルト 34bおよびナット 34cを用いて行うことができる。
[0053] また、前記釜 11 (下釜 l ib)の底壁の下側には、前記連通口 14の一部を閉塞する ように閉塞体 35が配置されている。この閉塞体 35は、中央に円形状などの貫通孔 3 5aが設けられた板状の部材であり、流路面積(内断面積)以下、詳しくは、流路面積 (内断面積)の 1Z4—流路面積(内断面積)程度となるように構成するためのもので ある。
[0054] 例えば、前記搬送管 8内に形成される流路の断面が円形状で、その内径が 42mm であるのに対して、前記連通口 14は円形状で、その径が 69mmである場合には、前 記閉塞体 35の貫通孔 35aの径を 24mmとすることができる。
[0055] 前記送出部 15またはこの送出部 15に接続される搬送管 8の上流端部には、前記 エアコンプレッサー 3からの圧搾空気を送る加圧ノィプ 36が接続される。
[0056] また、前記骨材圧送機 2は、移動台車 37上に載置された状態となっている。
[0057] さらに、前記骨材圧送機 2は、前記上釜 11aおよび下釜 l ibの内部の圧を計測し、 表示するための圧力計 38, 38を有している。
[0058] 次に、上記の構成力もなる骨材圧送機 2の動作について説明する。
(1)まず、前記第 1開閉手段 12を開き、前記投入ホッパー 18から上釜 11a内に骨 材 1を投入する。このとき、第 2開閉手段 13を閉じた状態としておくのであり、下釜 11 b内には骨材 1が収容された状態となって 、る。上記のように上釜 1 la内に投入され た骨材 1は前記攪拌羽根 19により攪拌されることとなる。
[0059] (2)そして、前記第 1開閉手段 12を閉じ、前記下釜 l ib内の骨材 1が送出部 15へ と投入されてその残量がある程度少なくなつたら、(3)前記エア抜きパイプ 17中に設 けられた切換手段 17aを閉状態にするとともに、前記加圧パイプ 16中に設けられた 切換手段 16aを開状態とすることで、エアコンプレッサー 3からの圧搾空気を上釜 11 a内に導入し、上釜 11a内を加圧する。
[0060] その後、上釜 11a内の圧力 予め加圧されている下釜 l ib内の圧とほぼ等しくなれ ば、(4)前記切換手段 16aを閉状態として、上釜 11a内へのエアコンプレッサー 3か らの圧搾空気の導入を停止し、前記第 2開閉手段 13を開いて、上釜 11a内の骨材 1 を下釜 l ib内に投入する。
[0061] そして、前記上釜 11aから下釜 l ibへ骨材 1の投入が終了すれば、(5)前記第 2開 閉手段 13を閉じ、前記エア抜きパイプ 17の切換手段 17aを開状態とし、上釜 11a内 の空気を外部に導出し、上釜 11a内の圧が外部の圧と等しい状態に戻すのであり、 これにより、前記投入ホッパー 18から上釜 11a内への骨材 1の投入を再び行える状 態となる。
[0062] 上記操作の後、再び、上記(1)の操作へと戻るのであり、前記骨材圧送機 2では、 上記(1)一(5)の操作を繰り返すことにより、骨材 1が搬送され続ける構成となってい る。
[0063] 一方、前記上釜 11aから骨材 1が投入された下釜 l ib内では、前記攪拌羽根 27に より骨材 1が攪拌されつつ、下釜 l ibの底壁に設けられた連通口 14から前記送出部 15に骨材 1が投下される。そして、送出部 15に投下された骨材 1は、前記搬送管 8内 に送出され、その下流側に送られることとなる。
[0064] 上記の構成力もなる骨材圧送機 2では、前記攪拌羽根 27により導出口 14へと導か れた下釜 l ib内の骨材 1が、前記連通口 14から下方の送出部 15へと投入されること となるが、前記連通口 14の下側に閉塞体 35を配置し、連通口 14の開口面積力 前 記搬送管 8内の流路面積(内断面積)以下、詳しくは、流路面積(内断面積)の 1Z4 一流路面積(内断面積)程度となるように構成してあることから、前記搬送管 8の搬送 力の限界を下回る量の骨材 1を下釜 l ibから送出部 15へと定量ずつ流すことができ 、従来のように、前記搬送管 8の搬送力の限界を上回る大量の骨材 1がー度に搬送 管 8内に流れ込み、搬送管 8内の詰まりや、脈動を生じさせるといったことを確実に防 ぐことが可能となっている。
[0065] また、前記骨材圧送機 2では、連通口 14の下方に連通口 14の一部を閉塞する閉 塞体 35を配置し、これにより、閉塞体 35の上方に前記骨材 1が溜まる溜まり部分を形 成してあることから、下釜 l ib内の骨材 1の連通口 14への導入力 前記攪拌羽根 27 の回転に伴った間欠的なものとはならず、攪拌羽根 27による骨材 1の連通口 14への 導入が行われていない間にも、前記溜まり部分に溜まった骨材 1が送出部 15へと流 れ続けるため、骨材 1の搬送の連続性を向上させることができ、搬送管 8内の詰まり や骨材 1の脈動を防止するという面で非常に効果的である。
[0066] ここで、図 5 (A)に示すように、前記閉塞体 35に、前記貫通孔 35aに近い部分ほど 下側に位置するような傾斜を設けた場合には、前記閉塞体 35の溜まり部分に溜まつ た骨材 1がより下方の送出部 15へと落下しやすくなり、骨材 1の搬送の連続性がより 向上することとなる。 [0067] また、上記の構成カゝらなる骨材圧送機 2では、前記加圧パイプ 25に逆止弁を設け てあることから、以下のような効果が得られる。すなわち、前記上釜 l la、下釜 l ibお よび搬送管 8へと圧をかける (圧搾空気を送る)のは、一台のエアコンプレッサー 3で あるため、上釜 11aにかける圧力(あるいは上釜 11aに送る圧搾空気流量)を A,下 釜 1 lbにかける圧力(あるいは下釜 1 lbに送る圧搾空気流量)を B,搬送管 8または 送出部 15にかける圧力(ある ヽは搬送管 8または送出部 15に送る圧搾空気流量)を Cとすると、前記エアコンプレッサー 3によりかけられる総圧力(圧搾空気の総流量)は 、 A+B + Cとなる。ここで、各エアーは、骨材圧送機 2にエアーチャンバ一(図示せ ず)を装備し、このエアーチャンバ一を介して供給するのが好ましい。
[0068] そして、上記(3)の操作において、上釜 11a内の圧を高めるためにエアコンプレツ サー 3から上釜 1 laへ圧搾空気を送り始めると、前記下釜 1 lbに接続される加圧パイ プ 25と上釜 11aに接続される加圧ノィプ 16とが連通しているため、前記逆止弁をカロ 圧パイプ 25に設けて!/、な!/、場合には、下釜 1 lb内の圧 Bが上釜 1 la内の圧 Aよりも 大きいことから、下釜 l ib内の圧搾空気が加圧パイプ 25, 16を経て上釜 11a内へと 流れ、下釜 l ib内において圧力低下が起こり、これが下釜 l ibより搬出される骨材 1 の吐出量の減少を生じさせ、骨材 1の搬送力の低下や形成されたモルタルまたはコ ンクリートの品質のバラツキにつながることとなる。しかし、上述したように、前記エアコ ンプレッサー 3から下釜 1 lbへと送られる圧搾空気の圧力(流量)の変動を抑えるよう に、前記下釜 l ibに接続される加圧パイプ 25に前記逆止弁を設けてあることから、 下釜 l ib内の圧搾空気が上釜 11aへと流れることが防止でき、これにより、前記骨材 1の搬送力を大きく保ち、安定した連続搬送が可能となっているのであり、また、この ような構成によっても、前記搬送管 8内において詰まりや脈動が生じることを防止する ことができ、形成されたモルタルまたはコンクリートの品質にバラツキが生じることも防 止できるのである。
[0069] なお、骨材 1のより均一な搬送を達成するためには、前記連通口 14の開口面積(開 口総面積)をできるだけ小さくし、攪拌羽根 27の羽根 29の枚数を多くすることが好ま しい。
[0070] また、上記骨材圧送機 2では、前記連通口 14の開口面積が前記搬送管 8内の流 路面積(内断面積)よりも大きいことから、その開口面積を小さくするために前記閉塞 体 35を設けている力 このような構成に限るものではなぐ前記連通口 14自体を小さ くして、その開口面積が前記搬送管 8内の流路面積(内断面積)以下、詳しくは、流 路面積(内断面積)の 1Z4—流路面積(内断面積)程度となるように構成してもよ!/、。
[0071] また、前記連通口 14の数は、 1つに限るものではなぐ複数であってもよい。この場 合には、連通口 14, 14· · ·の開口の総面積が前記搬送管 8内の流路面積(内断面積 )以下、詳しくは、流路面積(内断面積)の 1Z4—流路面積(内断面積)程度となるよ うに構成すればよぐ前記総面積が大きすぎる場合には、前記閉塞体 35により複数 の連通口 14, 14· · ·のうちの一部を閉塞すればよい。
[0072] また、前記閉塞体 35は、上述したような、中央に円形状の貫通孔 35aが設けられた 板状の部材に限られず、例えば、前記貫通孔 35aを有していない通常の板状の部材 によって前記閉塞体 35を構成し、図 5 (B)に示すように、前記連通口 14の一部を閉 塞するように前記閉塞体 35を配置するようにしてもよい。もちろん、上記のような構成 を有する閉塞体 35を複数用いて前記連通口 14の一部を閉塞するようにしてもよい。
[0073] 前記搬送管 8は、例えば、 20m程度の複数の可撓性を有するホースを連結してな る連結ホース部 8aと、この連結ホース部 8aの下流側に設けられた前記セメントミルク 導入部 9と、このセメントミルク導入部 9の下流側に設けられ、セメントミルク導入部 9に おいて混合した骨材 1およびセメントミルク 6を吐出するためのノズル部 39とを備えて いる。
[0074] なお、前記搬送管 8として、例えば、通常のモルタルまたはコンクリート吹付け用の ホースを使用することが可能である。また、前記搬送管 8において、セメントミルク導入 部 9からノズル部 39までの距離は、骨材 1とセメントミルク 6とが十分混合されるのに必 要な長さとなっており、例えば、 1一 20m (好ましくは約 3— 10m)となるように構成さ れている。
[0075] 前記連結ホース部 8aは、例えば、 100m程度の長さとなるように構成されているが、 平坦地では水平距離で 700m、斜面では直高で 200m*水平距離で 400m程度でも 可能である。
[0076] そして、前記搬送管 8 (連結ホース部 8a)の前記セメントミルク導入部 9より下流側の 部分の内径が、上流側の部分の内径よりも大きくなるように構成されている(図 6 (A) 参照)。例えば、前記搬送管 8 (連結ホース部 8a)の上流側の部分の内径を 42mm, 下流側の部分の内径を 50mmとしてもよいし、前記搬送管 8 (連結ホース部 8a)の上 流側の部分の内径を 38mm,下流側の部分の内径を 42mmとしてもよい。
[0077] 前記セメントミルク送出管 10は、その内径が例えば 1一 3cm程度となるように形成さ れており、また、下流部が二股に分かれている。なお、この下流部は、必ずしも二股 に分けなくともよぐセメントミルク (モルタルミルク) 6の硬化が懸念される場合 (例えば 、高温時,高温環境における作業時)など、前記セメントミルク送出管 19の下流部を 二股に分けな 、ほうが好ま 、場合もある。
[0078] 図 6 (A)および (B)は、前記セメントミルク導入部 9の構成を概略的に示す縦断面 図および説明図である。
前記セメントミルク導入部 9は、前記搬送管 8内を流れる骨材 1に、前記セメントミル ク送出管 10内を流れてきたセメントミルク 6を混合するためのものであり、前記連結ホ ース部 8aの途中に割り込む状態で配置され、ほぼ筒状をしている。なお、前記セメン トミルク導入部 9は、例えば、アルミニウムなどの金属力も形成されている。
[0079] 詳しくは、前記セメントミルク導入部 9には、下流側ほど内径の大きくなるテーパ状 部分 9aが形成されている。なお、図 6 (A)に示すように、本実施例におけるセメントミ ルク導入部 9は、その全体が下流側ほど内径の大きくなるテーパ状部分 9aとして形 成されている。
[0080] また、図 6 (A)に示すように、前記セメントミルク導入部 9のテーパ状部分 9aに対し て、骨材 1の流れる方向とセメントミルク 6の流れる方向とが縦断面において鋭角(例 えば、 10— 40度、好ましくは 15— 30度)となるように前記セメントミルク送出管 10の 各下流部を接続するようにしている。そして、さらに、図 6 (B)に示すように、前記搬送 管 8内に流れ込むセメントミルク 6が搬送管 8の内壁に沿って螺旋を描くように、前記 セメントミルク送出管 10の各下流部を前記テーパ状部分 9aに対して角度をつけて接 続するようにしてある。
[0081] ここで、前記セメントミルク導入部 9において、セメントミルク 6および骨材 1を混合す ることによって、モルタル M (またはコンクリート)を形成するのであり、このモルタル M としては、セメント 4,骨材 (砂) 1,水 5と、適宜混和剤を用い、例えば、セメント 4 :骨材 (砂) 1 :水 5 = 1 : 4 : 0. 45-0. 6の重量配合比を持ったものが望ましい。コンクリート の場合は、上記砂の一部を適宜砕石におきかえる。
[0082] なお、上記セメントミルク導入部 9は、その全体が下流側ほど内径の大きくなるテー パ状部分 9aとして形成されているものに限られず、前記テーパ状部分 9aを一部に有 しているものであってもよい。例えば、図 7に示すように、上流側力も順に、前記テー パ状部分 9aと、下流側ほど内径の小さくなる逆テーパ状部分 9bとを有していてもよ い。
[0083] また、前記セメントミルク導入部 9の内面を耐磨耗性ゴムや合成樹脂でライニングす ることが、骨材 1による磨耗を軽減する上で好ましい。
[0084] 図 8は、前記ノズル部 39の構成を概略的に示す説明図である。
前記ノズル部 39は、上流側から順に、下流側ほどその内径が大きくなる広がり部分 39aと、下流側ほどその内径が小さくなる絞り部分 39bとを有し、この絞り部分 39bの 下流端の内径が、前記搬送管 8の内径と同等またはそれよりも若干大きくなるように 構成してある。それによつて、モルタル Mの材料となる骨材 1およびセメントミルク 6の 混合物の搬送中に分離したシルト分 40が再びノズル部 39内で前記混合物と混合さ れにくくなり、分離された前記シルト分 40がノズル部 39の吐出口から落下分離される という効果が得られる。
[0085] 次に、上記の構成力もなる吹付け装置 Dを用いて実施されるモルタルコンクリートの 打設方法について説明する。
前記モルタルコンクリートの打設方法は、前記骨材圧送機 2およびエアコンプレッサ 一 3と、圧送用ポンプ 7とを駆動させ、前記搬送管 8の前記ノズル部 39を適宜の位置 に移動させることにより、実施できる。
[0086] すなわち、前記骨材圧送機 2およびエアコンプレッサー 3を駆動することにより、前 記骨材 1は、高圧エアーとともに搬送管 8内に送られ、前記セメントミルク導入部 9内 へと至る。
[0087] 一方、前記圧送用ポンプ 7を駆動することにより、前記セメントミルク 6は、セメントミ ルク送出管 10内に送られ、前記セメントミルク導入部 9へと至る。 [0088] そして、前記セメントミルク 6と骨材 1とは、互いに混合されつつ、セメントミルク導入 部 9からさらにその下流側へと向かい、最終的には、骨材 1の各粒がしつ力りセメントミ ルク 6によりコーティングされ、前記骨材 1とセメントミルク 6とはムラなく均一に混合さ れた状態となる。
[0089] 上記のようにして、セメントミルク 6および骨材 1が適宜の割合で混合され、これによ つて、前記モルタル M (またはコンクリート)が形成され、形成されたモルタル M (また はコンクリート)は、セメントミルク導入部 9の下流側の前記ノズル部 39からモルタル( またはコンクリート)の打設位置に吐出されるのである。
[0090] 上記の構成力 なる吹付け装置 Dによれば、長距離搬送であっても、スムーズかつ 確実にモルタルまたはコンクリートの吹き付け施工を行うことが可能となる。
[0091] すなわち、上記吹付け装置 Dでは、骨材 1を圧送するための骨材圧送機 2において 、前記連通口 14の下側に閉塞体 35を配置し、連通口 14の開口面積が、前記搬送 管 8内の流路面積(内断面積)以下、詳しくは、流路面積(内断面積)の 1Z4—流路 面積(内断面積)程度となるように構成してあることから、前記搬送管 8の搬送力の限 界を下回る量の骨材 1を下釜 l ibから送出部 15へと定量ずつ流すことができ、従来 のように、前記搬送管 8の搬送力の限界を上回る大量の骨材 1がー度に搬送管 8内 に流れ込み、搬送管 8内の詰まりや、脈動を生じさせるといったことを確実に防ぐこと が可能となっている。
[0092] また、前記連通口 14の下方に連通口 14の一部を閉塞する閉塞体 35を配置し、こ れにより、閉塞体 35の上方に前記骨材 1が溜まる溜まり部分を形成してあることから、 下釜 l ib内の骨材 1の連通口 14への導入力 前記攪拌羽根 27の回転に伴った間 欠的なものとはならず、攪拌羽根 27による骨材 1の連通口 14への導入が行われてい ない間にも、前記溜まり部分に溜まった骨材 1が送出部 15へと流れ続けるため、骨材 1の搬送の連続性を向上させることができ、搬送管 8内の詰まりや骨材 1の脈動を防 止すると 、う面で非常に効果的である。
[0093] さらに、前記加圧パイプ 25に逆止弁を設けてあることから、上釜 11a内の圧を高め るためにエアコンプレッサー 3から上釜 1 laへ圧搾空気を送り始めたときに、上釜 1 la 内よりも圧の高い前記下釜 l ib内の圧搾空気が上釜 11aへと流れることを防止でき、 これにより、前記骨材 1の搬送力を大きく保ち、安定した連続搬送が可能となっている のであり、また、このような構成によっても、前記搬送管 8内において詰まりや脈動が 生じることを防止することができ、形成されたモルタルまたはコンクリートの品質にバラ ツキが生じることも防止できるのである。
[0094] また、前記搬送管 8 (連結ホース部 8a)の前記セメントミルク導入部 9より下流側の部 分の内径が、上流側の部分の内径よりも大きくなるように構成してあることから、以下 のような効果が得られる。
[0095] すなわち、前記搬送管 8の前記セメントミルク導入部 9より下流側の部分の内径と、 上流側の部分の内径とを等しくしてある従来の吹付け装置では、セメントミルク導入 部 9において、搬送管 8内を流れる搬送物としての骨材 1にセメントミルク 6を導入した 直後に、搬送管 8内を流れる搬送物が、骨材 1とセメントミルク 6との混合物となり、こ れに伴って、搬送物の体積と重量とが増加するため、前記セメントミルク導入部 9の下 流側における搬送物の搬送スピードが低下し、この搬送物の搬送の滞りの影響により 、搬送管 8におけるセメントミルク導入部 9の上流側においても搬送物(骨材 1)の搬 送スピードが低下することとなり、この搬送スピードの低下に伴って閉塞が生じることも めつに。
[0096] また、上記セメントミルク 6の導入により搬送管 8に対する搬送物の量が多すぎる状 態となるほど増加した場合には、前記骨材 1およびセメントミルク 6を下流側へと流す ためのエアコンプレッサー 3からの圧搾空気の通り道が無くなってしまい、搬送管 8内 が前記搬送物(すなわち、骨材 1およびセメントミルク 6)によって閉塞してしまうことと なっていた。
[0097] しかし、上記の構成を有する吹付け装置 Dでは、前記搬送管 8におけるセメントミル ク導入部 9よりも下流側の部分の内径を大きくしてあることにより、前記エアコンプレツ サー 3からの圧搾空気の通り道を確保することができ、また、搬送管 8内を通る搬送物 の搬送スピードの低下も抑えることができるため、前記骨材 1およびセメントミルク 6に よって搬送管 8内が閉塞することを確実に防止することができ、スムーズな吹付施工 を行うことが可能となる。
[0098] また、前記セメントミルク導入部 9に、下流側ほど内径の大きくなるテーパ状部分 9a を形成し、このテーパ状部分 9aに対して、骨材 1の流れる方向とセメントミルク 6の流 れる方向とが縦断面にぉ 、て鋭角となるように前記セメントミルク送出管 10の各下流 部を接続するようにし、さらに、前記搬送管 8内に流れ込むセメントミルク 6が搬送管 8 の内壁に沿って螺旋を描くように、前記セメントミルク送出管 10の各下流部を前記テ ーパ状部分 9aに対して角度をつけて接続するようにしてあることから、以下のような 効果が得られる。
[0099] すなわち、前記搬送管 8におけるセメントミルク導入部 9に下流側ほど内径の大きく なるテーパ状部分 9aを形成せず、セメントミルク導入部を、上流側から下流側までの 径が同一である円筒状にしてある従来の吹付け装置では、テーパ状ではなく円筒状 である前記セメントミルク導入部に対して、搬送管内を搬送される骨材が当たりやす 力つたことから、セメントミルク導入部の磨耗が激しぐ長時間の連続搬送を実現する ことが困難であった。
[0100] また、上記従来の吹付け装置では、セメントミルク導入部に吐出されたセメントミルク がカーテン状となり、このセメントミルクのカーテンが骨材を搬送するために搬送管内 を流れている前記圧搾空気の抵抗となり、その結果、前記圧搾空気の搬送力を低下 させ、搬送管内にお 、て閉塞を生じさせることがあった。
[0101] そこで、セメントミルク導入部内に導入したセメントミルクがカーテン状とならないよう にするために、前記セメントミルク送出管をセメントミルク導入部に対して鋭角に接続 し、骨材の搬送方向に対してセメントミルクの導入方向がなす角度を小さくすることに よって、セメントミルクをセメントミルク導入部の内壁に沿わせて導入することが考えら れるが、この場合、前記セメントミルク導入部がテーパ状ではなく円筒状であったこと から、このセメントミルク導入部に形成されるセメントミルク送出管力ゝらのセメントミルク を導入するための開口の面積が大きくなつてしまい、この開口力 搬送管内を流れる 圧搾空気が進入しやすくなつて、セメントミルクの導入に支障をきたすおそれがあつ た。
[0102] しかし、上記の構成を有する吹付け装置 Dでは、下流側ほど内径の大きくなるテー パ状部分 9aを形成し、このテーパ状部分 9aに対して前記セメントミルク送出管 10を 接続するようにしてあることから、搬送管 8内を搬送される骨材 1が直接当たりにくくな り、セメントミルク導入部 9の磨耗が軽減され、長時間の連続搬送を実現することも可 能となる。
[0103] また、上記の構成を有する吹付け装置 Dでは、下流側ほど内径の大きくなるテーパ 状部分 9aを形成し、このテーパ状部分 9aに対して、骨材 1の流れる方向とセメントミ ルク 6の流れる方向とが縦断面にぉ 、て鋭角となるように前記セメントミルク送出管 10 の各下流部を接続するようにし、さらに、前記搬送管 8内に流れ込むセメントミルク 6 が搬送管 8の内壁に沿って螺旋を描くように、前記セメントミルク送出管 10の各下流 部を前記テーパ状部分 9aに対して角度をつけて接続するようにしてあることから、セ メントミルク 6は、セメントミルク導入部 9の内壁に沿わせて導入され、カーテン状となる ことがなぐ骨材 1を搬送するために搬送管 8内を流れている前記圧搾空気の抵抗と はほとんどならないため、前記圧搾空気の搬送力を低下させ、搬送管内において閉 塞を生じさせると!/、うことが防止される。
[0104] また、前記セメントミルク送出管 10をセメントミルク導入部 9に対して鋭角に接続し、 骨材 1の搬送方向に対してセメントミルク 6の導入方向がなす角度を小さくしてあるが 、前記セメントミルク送出管 10が接続される部分をテーパ状部分 9aとしてあることから 、前記セメントミルク導入部 9 (テーパ状部分 9a)に形成されるセメントミルク送出管 10 力ものセメントミルク 6を導入するための開口の面積を従来より小さくすることができ、 これにより、前記開口力も搬送管 8内を流れる圧搾空気が進入することを防止でき、 セメントミルク 6の導入をスムーズに行うことが可能となる。
[0105] また、前記ノズル部 39に、上流側から順に、下流側ほどその内径が大きくなる広が り部分 39aと、下流側ほどその内径が小さくなる絞り部分 39bとを設け、この絞り部分 39bの下流端の内径が、前記搬送管 8の内径と同等またはそれよりも若干大きくなる ように構成してあることから、以下のような効果が得られる。
[0106] すなわち、前記ノズル部 39の先端部の径が搬送管 8の内径より小さく絞られていた 従来の吹付け装置では、前記ノズル部 39の先端部の絞りが、搬送管 8内を搬送され てきた吹付材料 (骨材 1およびセメントミルク 6)の抵抗となり、圧搾空気が減勢されて 、搬送中の骨材 1が搬送管 8内で詰まることがあった。また、吹付け直前の搬送管 8内 で前記吹付材料から折角分離されていたシルト分 40が、再び吹付材料に混合され、 質のょ 、モルタルまたはコンクリートを用いた施工が困難となって 、た。
[0107] しかし、上記の構成を有する吹付け装置 Dでは、前記ノズル部 39の先端部の径を 搬送管 8の内径と同程度か、若干大きめとなるように絞っていることから、搬送管 8内 を搬送されてきた吹付材料 (骨材 1およびセメントミルク 6)の抵抗とならず、圧搾空気 も減勢されず、搬送中の骨材 1が搬送管 8内で詰まることを防止できる。また、不必要 に吹付材料の流速が上昇することがないため、ある程度の吹付材料の整流効果を得 ながら、図 8に示すように、吹付け直前の搬送管 8内で吹付材料力 分離されていた シルト分 40を、そのまま分離した状態で、ノズル部 39の先端力も排出することができ 、質のよいモルタルまたはコンクリートを用いた施工を行うことが可能となる。
[0108] 上記構成の吹付け装置 Dを用いることで、険しい山間部の山頂付近等で機械の持 ち込みが困難な場所など、従来施工が極めて困難或いは不可能で放置するしかな いような箇所でも、高品質なモルタルまたはコンクリートを用いて保護することが可能 となる。
[0109] そして、例えば、崩落の恐れの有る斜面 (法面)に対し緑ィ匕による景観保護を行い た 、場合などには、上記吹付け装置 Dを用いてモルタルまたはコンクリートを吹付け ることで格子状法枠を形成すると共に、植生基材をその法枠内に吹付けて斜面の緑 化保護を図る方法が採用できる。以下、そのような方法の具体例について説明する。
[0110] 図 9は、上記吹付け装置 Dを用いる吹付法枠工法の一例の構成を概略的に示す説 明図である。
この実施例の吹付法枠工法は、まず、第一工程 (網状体設置工程)として、緑ィ匕保 護の対象とする法面 N上に、例えば菱形や亀甲形などの網状体 41を載置し、かつ、 補助アンカー 42を適宜の間隔で法面 Nに打ち込んで、この網状体 41を法面 Nに固 定する。なお、前記網状体 41は、例えば、直径が 0. 8-1. 6mm程度の素線で構成 され、目合いが 2— 6cm程度となっている。
[0111] 続いて、第二工程 (枠体設置工程)として、網状体 41上に、鉄筋 (その他、例えばヮ ィヤーロープ等でもよい)による複数の線材 43を少なくとも縦方向(法面 Nの等高線と 垂直な方向)または横方向(法面 Nの等高線と平行な方向)に互いに平行になるよう に配置し、望ましくは格子状に配置して、この線材 43の長手方向に法枠形成用の枠 体 44を設置し、かつ、線材 43を持ち上げて、これを枠体 44に保持させる。
[0112] ここで、法枠形成用の枠体 44は、線材 43を保持することが可能であり、例えばその 高さが 15— 20cm程度で、幅が 30— 35cm程度であり、長さは 30— 60cm程度のも のであって、溶接による針金の組み合わせ構造からなる。具体的には、図 10に示す ように、一対の半円形状を呈する枠部材 45と、一対の枠部材 45を一体化させる二本 の連結部材 46と、二本の連結部材 46間にわたる線材保持部材 47とからなる。
[0113] 従って、線材 43を跨ぐように枠体 44を設置した上で、線材 43を線材保持部材 47 側に持ち上げて、これを番線 bなどによって線材保持部材 47に結束させることで、線 材 43は法面 N上の所定の高さの位置に保持されることになる。
[0114] 次に、第三工程として、格子状に配置された線材 43で囲われた部位を植生域とす るように、この部位の網状体 41上に養生シート 48を配置する。その後、第四工程 (吹 付工程)として、吹付け装置 Dを用いて、モルタル Mまたはコンクリートを、法枠形成 用の枠体 44を吹付け幅および吹付け高さの目安にして、かつ、格子状の線材 43な らびに法枠形成用の枠体 44を埋め込むように吹き付けて、法面 N上に、モルタル M またはコンクリートの盛り上げによる格子状の法枠 49を形成する。
[0115] 最後に、第五工程として、モルタル Mまたはコンクリートの所定の養生後に養生シ ート 48を取り外して、上記の植生域に植生基材 50を客土する。
[0116] 上記の構成力 なる吹付法枠工法では、険 ヽ山間部の山頂付近など従来の吹 付け装置ではモルタルまたはコンクリートの吹付け施工が極めて困難或いは不可能 であった法面 Nに、モルタル Mまたはコンクリートを吹き付け施工して法枠 49を形成 し、この法枠 49によりその崩壊を防止することができ、さらに、法枠 49の形成後、植 物による景観の保全と、法面 Nの自然状態への復元とを早期に達成することができる
[0117] また、例えば、急斜面の上部に崩落の恐れの有る岩盤があり、かつ、その除去を行 うこと自体が却って危険である場合には、その岩盤の崩落防止のために、上記吹付 け装置 Dを用いてモルタル M等を搬送し、岩盤の亀裂部に充填することで岩盤の接 合を図る方法が採用できる。以下、そのような方法の具体例について説明する。
[0118] 図 11 (A)— (C)は、上記吹付け装置 Dを用いる岩盤接着工法の一例の構成を概 略的に示す説明図である。
この実施例の岩盤接着工法は、まず、第一工程として、岩盤 G全体の崩落の危険 性がある場合、その基部に上記吹付け装置 Dを用いてモルタル Mなどを充填して安 定させる。
[0119] 続いて、図 11 (A)に示すように、第二工程 (清掃工程)として、エア若しくは水を高 圧で吹き付けることにより、接着面 (モルタル M等により接着を図ろうとする面)の清掃 を行う。これにより、接着面に存在する土砂や苔などが取り除かれる。
[0120] 次に、図 11 (B)に示すように、第三工程(間詰め工程)として、岩盤 G'岩塊の亀裂 部 51の例えば開口部付近に間詰材 52を適宜詰める。この工程を行うのは、次工程( 第四工程)のモルタル Mなどが亀裂部 51から流出するのを防止する堤に相当するも のを形成するためであり、間詰材 52はモルタル M等との付着性が良好であれば何を 用いてもよい。同素材であるモルタル M等を用いて間詰を行うことが、経済性及び付 着性の面カゝら望ましい。尚、次工程 (第四工程)において、亀裂部 51からのモルタル M等の流出の恐れが無 、場合、この第三工程は省くことができる。
[0121] 最後に、図 11 (C)に示すように、第四工程 (注入工程)として、上記吹付け装置 Dを 用 、てモルタル Mまたはコンクリートを前記亀裂部 52に流し込む。この工程で使用 するモルタル Mまたはコンクリートは、亀裂細部にまで充填する必要があるので、配 合を適宜調整して流動性を高めて!/ヽる。
[0122] 上記の構成力もなる岩盤接着工法では、険しい山間部の山頂付近など従来の吹 付け装置ではモルタルまたはコンクリートの搬送が不可能であったり、施工するには 吹付け装置を不安定な山腹に設置する必要のある法面 Nに存在し、落石の恐れの ある巨岩'岩盤 G ·岩塊に対して、上記吹付け装置 Dを用 ヽてモルタル Mまたはコン クリートを長距離搬送することができ、前記巨岩'岩盤 G'岩塊の亀裂部 52をモルタル Mまたはコンクリートで接着'充填することにより法面 N全体を安定ィ匕させることができ る。
[0123] また、本発明による吹付け装置 Dは、山間部における擁壁工事、例えば、特開平 6 —294139号等の公報に示される土留擁壁工法にも適用可能である。擁壁工法の場 合、基本的に、切土または盛土斜面と、斜面と間隔を保って立設した擁壁面の成形 板 (型枠)との間に、モルタル Mまたはコンクリートを打設することにより擁壁を構築す る。
この場合、吹付け装置 Dを擁壁構築箇所近くまで持ち上げ運搬しなくとも、モルタ ル Mまたはコンクリート材料を長距離搬送して打設が行えるとともに、高品質な擁壁 を構築することができる。
[0124] また、本発明による吹付け装置 Dは、山間部における砂防等を目的とした堰ゃダム の構築工事、例えば、特開平 10— 266168号等の公報に記載された工法にも適用 可能である。堰ゃダムの構築工法の場合、基本的に、堰体の表面及び裏面に立設し た堰体面の成形板 (型枠:前記公報の場合は土嚢)間に、モルタル Mまたはコンクリ ートを打設することにより堰体を構築する。
この場合、吹付け装置 Dを堰体構築箇所近くまで持ち上げ運搬しなくとも、モルタ ル Mまたはコンクリート材料を長距離搬送して打設が行えるとともに、高品質な堰体 を構築することができる。
[0125] 図 12は、上記吹付け装置 Dを用いるトンネル形成工事の一例の構成を概略的に示 す説明図である。
本発明による吹付け装置は、このようなトンネル形成工事にぉ ヽてもその優位性を 発揮する。詳しくは、トンネル工事の主な工程は、
(1)地山 53を掘削すると共に掘削した土砂をトンネル外に運搬する工程 (以下、工程 1という)
(2)コンクリート 54を地山掘削面 55に吹付ける工程 (以下、工程 2という)
(3)ロックボルト 56をトンネル断面視で放射線状となるように地山 53に打設する工程 (以下、工程 3という)
(4)工程 2で形成したコンクリート面 54に防水シート(図示していない)を取り付けるな ど防水処理を施す工程 (以下、工程 4という)
(5)トンネル用の型枠 (セントル)を用いてコンクリート 57を打ち込む工程 (以下、工程 5と!ヽぅ)
に分けることができる。
[0126] そして、前記工程 1は掘削ェ、工程 2· 3は支保ェ (堀った地山が崩壊しないように 支えて保つ工程)、工程 4· 5は覆ェ (支保ェを覆って補強する工程)と呼ばれ、トンネ ル形成工事ではこれらの工程を順次繰り返しながらトンネルを形成していくことになる
[0127] ここで、工程 2及び 5においてコンクリート 54, 57を用いることになる力 従来はコン クリートをミキサー車で施工箇所まで運搬した後に吹付けていたため、まだ完全には 自立しておらず、狭小なトンネル内において、ミキサー車の運転は困難且つ危険で あり、運搬に時間が力かることで施工性が低下していた。しかし、コンクリートの長距 離搬送が可能な本発明の吹付け装置 Dを用いることで、安全で作業空間の広いトン ネル外部にプラントを設置することができると同時に、取扱いが容易なゴムホースをプ ラントから施工箇所まで延長させるだけで従来通りの吹付けが可能となると共に、高 品質なコンクリート吹付が可能となるため、トンネル形成工事の安全性及び施工性の 向上に寄与することができるのである。
産業上の利用可能性
[0128] 搬送管の搬送力の限界を下回る量の骨材を釜から送出部へと定量ずつ流すことが でき、搬送管内の詰まりや、脈動を生じさせるといったことを確実に防ぐことにより、長 距離搬送であっても、スムーズかつ確実にモルタルまたはコンクリートの吹き付け施 ェを行うことを可能とし、険しい山間部の山頂付近等、機械の持ち込みが制限される 場所にも、モルタルまたはコンクリートを搬送して吹き付けることができる。

Claims

請求の範囲
[1] モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記骨材を圧送す るための骨材圧送機と、この骨材圧送機に接続される搬送管とを備え、前記骨材圧 送機が、骨材を収容する釜と、この釜の下側に連通口を介して釜内部と連通する状 態で設けられ、前記搬送管が接続される送出部とを備え、前記釜内から釜の底壁に 設けられた連通口を通って前記送出部に投下された骨材力 搬送管内に送出される ようにしてあり、前記連通口の開口面積を、前記搬送管内の流路面積以下となるよう に構成してあることを特徴とするモルタルまたはコンクリート吹付け装置。
[2] 前記釜の底壁の下側に、前記連通口の一部を閉塞するように閉塞体が配置されて V、る請求項 1に記載のモルタルまたはコンクリート吹付け装置。
[3] モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記骨材を圧送す るための骨材圧送機と、この骨材圧送機に接続される搬送管とを備え、前記骨材圧 送機が、上釜および下釜と、開閉することで上釜の内部が外部に連通する状態と外 部力 隔離された状態とに切り換わる第 1開閉手段と、上釜と下釜との間を開閉する 第 2開閉手段と、前記下釜の下側に連通口を介して下釜内部と連通する状態で設け られ、前記搬送管が接続される送出部と、前記上釜,下釜および送出部に圧搾空気 を供給するための圧搾空気供給手段とを備え、上釜で骨材を攪拌した後、第 1およ び第 2開閉手段を閉じた状態で前記上釜の内部に前記圧搾空気を導入して圧力を 加えて第 2開閉手段を開くことにより、上釜内の骨材を下釜内に投下し、その後、この 下釜の下側に設けられた連通ロカ 前記送出部に投下された骨材が、搬送管内に 送出され、前記圧搾空気供給手段力 の圧搾空気により下流側へと搬送されるよう にしてあり、前記圧搾空気供給手段力 圧搾空気流通路を介して下釜へ送られる圧 搾空気の圧力の変動を抑えるよう、下釜に接続された圧搾空気流通路の途中に逆 止弁を設けたことを特徴とするモルタルまたはコンクリート吹付け装置。
[4] モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記セメントミルクを 搬送するためのセメントミルク送出管と、前記骨材を搬送するための搬送管とを備え、 前記搬送管は、前記セメントミルク送出管の下流端が接続されるセメントミルク導入部 を有するとともに、このセメントミルク導入部より下流側の部分の内径力 上流側の部 分の内径よりも大きくなるように構成してあることを特徴とするモルタルまたはコンクリ ート吹付け装置。
[5] モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、前記セメントミルクを 搬送するためのセメントミルク送出管と、前記骨材を搬送するための搬送管とを備え、 前記搬送管は、前記セメントミルク送出管の下流端が接続されるセメントミルク導入部 を有し、このセメントミルク導入部に、下流側ほど内径の大きくなるテーパ状部分が形 成されているとともに、前記テーパ状部分に対して、骨材の流れる方向とセメントミル クの流れる方向とが縦断面にぉ 、て鋭角となるようにセメントミルク送出管を接続する ようにしたことを特徴とするモルタルまたはコンクリート吹付け装置。
[6] モルタルまたはコンクリートを構成する骨材およびセメントミルクを別圧送した後、混 合して吹付けるモルタルまたはコンクリート吹付け装置であって、混合された骨材およ びセメントミルクを搬送する搬送管の下流端にノズル部が設けられており、このノズル 部が、上流側から順に、下流側ほどその内径が大きくなる広がり部分と、下流側ほど その内径力 、さくなる絞り部分とを有し、この絞り部分の下流端の内径が、前記搬送 管の内径と同等またはそれよりも若干大きくなるように構成してあることを特徴とする モルタルまたはコンクリート吹付け装置。
[7] 請求項 1一 6のいずれかに記載の吹付け装置を用いてモルタルまたはコンクリート を吹付けることを特徴とするモルタルまたはコンクリート吹付け方法。
PCT/JP2004/017295 2003-12-01 2004-11-19 モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法 WO2005054588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003402123A JP4274465B2 (ja) 2002-12-02 2003-12-01 モルタルまたはコンクリート吹付け装置
JP2003-402123 2003-12-01

Publications (1)

Publication Number Publication Date
WO2005054588A1 true WO2005054588A1 (ja) 2005-06-16

Family

ID=34650001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017295 WO2005054588A1 (ja) 2003-12-01 2004-11-19 モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法

Country Status (4)

Country Link
KR (1) KR100704794B1 (ja)
CN (1) CN100465387C (ja)
TW (1) TW200523435A (ja)
WO (1) WO2005054588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051551A1 (de) 2010-11-18 2012-05-24 Wirtgen Gmbh Bodenbearbeitungsmaschine sowie Verfahren zum Fräsen von Böden oder Verkehrsflächen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350780B (zh) * 2015-12-03 2017-08-25 中国长江三峡集团公司 多用途组合浇筑设备及其施工方法
CN106245660B (zh) * 2016-08-30 2018-08-31 中建路桥集团有限公司 一种高速公路挂网和喷播的自动化施工装置
CN111622779B (zh) * 2020-05-15 2022-06-24 中国矿业大学 一种脉冲式压力补偿长距离混凝土输送装置及使用方法
CN114474403B (zh) * 2021-12-31 2023-11-21 平湖市开元混凝土股份有限公司 一种混凝土配送系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509314Y2 (ja) * 1993-05-10 1996-09-04 日本植生株式会社 土木用吹付機
JP2003328367A (ja) * 2002-05-17 2003-11-19 Nisshoku Corp モルタルまたはコンクリート吹付け方法およびその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1022640C (zh) * 1989-11-09 1993-11-03 朱清玉 湿式混凝土喷射机组
DE4439930C2 (de) * 1994-11-08 1996-10-10 Hudelmaier Ulrike Vorrichtung zum Pumpen von Beton
DE69718729D1 (de) * 1996-09-10 2003-03-06 Kyokuto Rubber Co Reinigungsanlage für Wärmetauscher und Verfahren zur Reinigung eines Wärmetauschers
JP3592604B2 (ja) * 2000-03-03 2004-11-24 日本植生株式会社 混合物の吹き付け工法とその装置
TWI241996B (en) * 2001-01-16 2005-10-21 Plibrico Japan Company Ltd Spray method for monolithic refractories
KR100781820B1 (ko) * 2001-02-21 2007-12-03 시부야 코교 가부시키가이샤 기체액체 혼합류의 분사장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509314Y2 (ja) * 1993-05-10 1996-09-04 日本植生株式会社 土木用吹付機
JP2003328367A (ja) * 2002-05-17 2003-11-19 Nisshoku Corp モルタルまたはコンクリート吹付け方法およびその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051551A1 (de) 2010-11-18 2012-05-24 Wirtgen Gmbh Bodenbearbeitungsmaschine sowie Verfahren zum Fräsen von Böden oder Verkehrsflächen

Also Published As

Publication number Publication date
CN100465387C (zh) 2009-03-04
TWI319453B (ja) 2010-01-11
CN1886560A (zh) 2006-12-27
KR20060109488A (ko) 2006-10-20
KR100704794B1 (ko) 2007-04-09
TW200523435A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
JP5033942B2 (ja) 緑化補強土基盤造成方法
KR101076217B1 (ko) 분말공급장치를 갖춘 습식 숏크리트 시공장비 시스템
KR101359929B1 (ko) 강섬유 공급호퍼가 장착된 이동식 믹서를 이용한 터널 시공 방법 및 이를 이용한 터널구조물
CA1338560C (en) Apparatus for pneumatically discharging a hardening building material, in particular, a hydraulic air-placed concrete or mortar
JP3592604B2 (ja) 混合物の吹き付け工法とその装置
WO2005054588A1 (ja) モルタルまたはコンクリート吹付け装置およびその装置を用いたモルタルまたはコンクリート吹付け方法
JP2006274794A (ja) モルタルまたはコンクリート吹付け装置
JP4700649B2 (ja) モルタルまたはコンクリート吹付け装置
JP4274465B2 (ja) モルタルまたはコンクリート吹付け装置
JP2000104258A (ja) 法面吹付工法
JP5679794B2 (ja) モルタルまたはコンクリート吹付け方法およびその装置
JP2007327329A (ja) モルタルまたはコンクリート吹付け装置
JP3974927B2 (ja) モルタルまたはコンクリート吹付け装置
JPH06264449A (ja) モルタルまたはコンクリートの吹付工法
JP4229260B2 (ja) モルタルまたはコンクリート吹付け方法およびその装置
KR101285090B1 (ko) 강섬유 공급호퍼 및 이를 장착한 이동식 믹서
JP2005213732A (ja) モルタル又はコンクリート用吹付け装置
CN210814762U (zh) 一种喷射混凝土速凝剂混合器
KR101348533B1 (ko) 지반보강을 위한 주입관 장치 및 지반보강 시스템
JP2757335B2 (ja) エア流動物合流圧送管およびそれを使用する流動物圧送装置およびそれらの使用方法
CN111906940A (zh) 胶凝砂砾石坝搅浆喷浆机
JP3344965B2 (ja) 法面の安定化工法
JPH0598648A (ja) コンクリートまたはモルタル吹付け方法およびその装置
JP3003751B2 (ja) 法枠構築工法
CN219583233U (zh) 多物料均质化防板结搅拌装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035531.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067011712

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067011712

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020067011712

Country of ref document: KR