WO2005053144A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2005053144A1
WO2005053144A1 PCT/JP2004/017184 JP2004017184W WO2005053144A1 WO 2005053144 A1 WO2005053144 A1 WO 2005053144A1 JP 2004017184 W JP2004017184 W JP 2004017184W WO 2005053144 A1 WO2005053144 A1 WO 2005053144A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power converter
diode
side connection
converter according
Prior art date
Application number
PCT/JP2004/017184
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Nakamura
Masafumi Hashimoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/580,272 priority Critical patent/US7468897B2/en
Priority to AU2004310594A priority patent/AU2004310594B2/en
Priority to ES04819326.2T priority patent/ES2659044T3/es
Priority to CN2004800341212A priority patent/CN1883108B/zh
Priority to EP04819326.2A priority patent/EP1693949B1/en
Publication of WO2005053144A1 publication Critical patent/WO2005053144A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a power conversion device that steps down an AC to convert it to a DC.
  • a power supply voltage of an outdoor unit is 200V three-phase alternating current
  • a power supply of a communication system provided in an indoor unit or the like may require 60V DC.
  • FIG. 24 is a circuit diagram of a conventional power converter.
  • the alternating current supplied from the alternating current power source S via the first and second input side connection portions Tl and T2 is converted into direct current by half-wave rectification while being stepped down, and the first and second outputs are converted.
  • the load not shown
  • side connections T3, T4 are provided to the load (not shown) via side connections T3, T4.
  • a step-down resistor unit RU having a plurality of resistors, and a diode D11.
  • the diode D11 has a forward direction from the first input side connection part T1 to the second input side connection part T2 side.
  • a plurality of Zener diodes ZD11 to ZD13 connected in series are connected in parallel to a capacitor C11.
  • the Zener diodes ZD11 to ZD13 have a forward direction from the second input side connection part T2 side to the first input side connection part T1 side.
  • the discharging resistor Rl 1 of the capacitor C11 is connected in parallel with the capacitor C11.
  • the first output side connection part T3 is connected to a connection part downstream of the diode Dl1 in the forward direction, and the second output side connection part T4 is connected to the second input side connection part T2. I have.
  • an AC voltage of 200 V peak value
  • a resistor unit RU with the necessary resistance to reduce the voltage from 200V AC to 60V DC is used. It is.
  • the capacitance of the capacitor CI1 is 470 / zF, and the zener voltage of the Zener diodes ZD11 and ZD13 is 20V.
  • the AC voltage supplied from the AC power supply S is stepped down by the resistance unit RU, passed through the diode D11, half-wave rectified, and stabilized by the capacitor C11 and the Zener diode ZD11-ZD13. Output to the load side as a DC voltage of 60V.
  • FIG. 25 and FIG. 26 are waveform diagrams illustrating the potential change and the current change of each part on the circuit of FIG. 24.
  • the waveform WD11 in FIG. 25 shows the potential change of the first input side connection T1 based on the potential of the second input side connection T2, and the waveform WD12 in the same figure is the voltage across the resistor RU.
  • the waveform WD13 in the figure shows the potential change of the second output side connection portion T3 with reference to the potential of the second input side connection portion T2. In the region where the waveform WD12 is positive, Joule loss occurs in the resistance unit RU.
  • the waveform WD14 in FIG. 26 is transmitted from the AC power source S to the first input side connection portion T1 when the direction of the current flowing from the first input side connection portion T1 to the AC power source S side is positive.
  • the change in the flowing current is shown.
  • the waveform WD15 in the figure indicates a change in the current supplied to the capacitor C11 when the direction of the current flowing to the capacitor C11 via the first diode D11 is positive.
  • the waveform WD16 in the figure shows a change in the current flowing through the Zener diodes ZD11 and ZD13 when the direction of the current flowing in the forward direction of the Zener diodes ZD11 to ZD13 is positive.
  • Patent Document 1 As a prior art for keeping the terminal voltage of the smoothing capacitor constant, there is one described in Patent Document 1 in a full-wave rectifier circuit.
  • Patent Document 1 JP-A-6-284729
  • the step-down is performed by the resistance unit RU, so that the Joule loss in the resistance unit RU is large, the efficiency is low, and the large-capacity resistance unit is expensive and large. RUs must be used, and there are problems with efficiency, cost, and device size.
  • the invention according to claim 1 is a power converter for converting an alternating current (S) into a direct current by stepping down the alternating current (S), wherein the first and second input-side connecting portions (Tl, T2) and a first electrical connection path (L1) between the first input side connection part (T1) and the second input side connection part (T2), the first input side connection part A first capacitor (C1) and a second capacitor (C2) interposed in series from the side, and the first capacitor and the second capacitor in the first electrical connection path, A first diode (D1) interposed in a forward direction toward a second input-side connection portion; and a first capacitor and the first diode in the first electric connection path.
  • a second electrical connection path (L2) connecting the second input side connection portion to the second input side connection portion so as to be in the opposite direction toward the second input side connection portion side.
  • the invention according to claim 2 is the power converter according to claim 1, wherein the first output side connection part (T3) and the second output side connection part (T4) It further includes a zener diode (ZD) interposed in the forward direction toward the first output side connection portion.
  • ZD zener diode
  • the invention according to claim 3 is the power conversion device according to claim 2, wherein the second electric connection path (L2) is connected to the first electric connection path (L1) from a connection position where the second electric connection path (L2) is connected. And a resistor (R) inserted on the first input side connection portion side.
  • the invention according to claim 4 is the power converter according to claim 3, wherein the resistor is a thermistor.
  • the invention according to claim 5 is the power conversion device according to claim 3, wherein the third input terminal is connected between one end of the resistor (R) and the second input-side connection portion (T2). And a capacitor (C3).
  • the invention according to claim 6 is the power converter according to claim 5, wherein the resistance (R
  • the invention according to claim 7 is the power conversion device according to claim 5, wherein the resistance (R ) Is the end on the first input side connection portion (T1) side.
  • the invention according to claim 8 is the power conversion device according to claim 5, wherein the capacitance ratio between the first capacitor and the third capacitor is set to be substantially the same.
  • the invention according to claim 9 is the power converter according to claim 6, wherein the capacitance ratio between the first capacitor and the third capacitor is set to be substantially equal.
  • the capacitance ratio between the first capacitor and the third capacitor is set to be substantially equal.
  • An invention according to claim 11 is the power conversion device according to claim 1, wherein the first electric connection path (L1) is connected to the second electric connection path (L2) at a position where the second electric connection path (L2) is connected. And a resistor (R) inserted on the first input side connection portion side.
  • the invention according to claim 12 is the power converter according to claim 11, wherein the resistor is a thermistor.
  • the invention according to claim 13 is the power converter according to claim 11, wherein the resistance
  • the invention according to claim 14 is the power conversion device according to claim 13, wherein the resistance
  • the one end of (R) is an end on the side of the second input side connection portion (T2).
  • the invention according to claim 15 is the power conversion device according to claim 13, wherein the resistance
  • the one end of (R) is an end on the side of the first input side connection portion (T1).
  • the invention according to claim 16 is the power conversion device according to claim 13, wherein the capacitance ratio between the first capacitor and the third capacitor is set to be substantially the same.
  • the invention according to claim 17 is the power converter according to claim 14, wherein the capacitance ratio between the first capacitor and the third capacitor is set to be substantially the same.
  • the capacitance ratio between the first capacitor and the third capacitor is set to be substantially the same.
  • the invention according to claim 19 is the power conversion device according to any one of claims 1 to 18, wherein the capacitance ratio between the first capacitor and the second capacitor is set to 1: 1000. I have. [0033] According to the invention described in claim 1, the alternating current supplied through the first and second input-side connection portions is divided (stepped down) by the first and second capacitors to form the first AC. The current can be supplied directly to the load via the first and second output-side connection portions while being converted into a direct current by the diode and smoothed by the second capacitor.
  • the mounting area of components can be reduced, and the device configuration such as a printed circuit board can be reduced in size, which is advantageous in terms of structure and cost.
  • a stable DC voltage can be output by the zener diode.
  • a rush current flowing through the first and second electric connection paths is effectively suppressed by a resistor, for example, a thermistor. This comes out.
  • the fifth and thirteenth aspects of the invention it is possible to suppress an overcurrent in the first electric connection path, which is caused when a pulsation exists in the alternating current.
  • the heat load can be reduced.
  • the influence of AC pulsation can be effectively suppressed by the time constant of the CR series circuit formed by the first capacitor and the resistor.
  • the AC pulsation amplitude is about twice the output DC voltage. Also, unnecessary current flowing through the Zener diode can be suppressed.
  • the input alternating current can be effectively divided into a direct current by the first and second capacitors.
  • FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment of the present invention.
  • FIG. 2 is a waveform diagram illustrating a potential change of each part on the circuit of FIG. 1.
  • FIG. 3 is a waveform diagram illustrating a change in a current flowing through a first input side connection portion on the circuit in FIG. 1.
  • FIG. 4 is a waveform diagram illustrating a current change of each part on the circuit of FIG. 1.
  • FIG. 5 is a graph showing characteristics of the power converter according to the first embodiment.
  • FIG. 6 is a graph showing characteristics of the power converter according to the first embodiment.
  • FIG. 7 is a graph showing characteristics of the power converter according to the first embodiment.
  • FIG. 8 is a graph showing characteristics of the power converter according to the first embodiment.
  • FIG. 9 is a circuit diagram of a power converter according to a second embodiment of the present invention.
  • FIG. 10 is a graph showing characteristics of a power converter according to a second embodiment.
  • FIG. 11 is a graph showing characteristics of the power converter according to the second embodiment.
  • FIG. 12 is a graph showing a comparison between the characteristics of the power converter according to the first embodiment and the characteristics of the power converter according to the second embodiment.
  • FIG. 13 is a graph showing characteristics of a power converter according to a second embodiment.
  • FIG. 14 is a graph showing characteristics of the power converter according to the second embodiment.
  • FIG. 15 is a graph showing a comparison between the characteristics of the power converter according to the first embodiment and the characteristics of the power converter according to the second embodiment.
  • FIG. 16 is a circuit diagram of a power converter according to a third embodiment of the present invention.
  • FIG. 17 is a graph showing characteristics of a power converter according to a third embodiment.
  • FIG. 18 is a graph showing characteristics of a power converter according to a third embodiment.
  • FIG. 19 is a graph showing characteristics of a power converter according to a third embodiment.
  • FIG. 20 is a graph showing characteristics of the power converter according to the third embodiment.
  • FIG. 21 is a graph showing characteristics of a power converter according to a second embodiment.
  • FIG. 22 is a graph showing characteristics of the power converter according to the second embodiment.
  • FIG. 23 is a graph showing a comparison between characteristics of a power conversion device according to the second embodiment and characteristics of a power conversion device according to the third embodiment.
  • FIG. 24 is a circuit diagram of a conventional power converter.
  • FIG. 25 is a waveform diagram illustrating a potential change of each unit on the circuit of FIG. 24.
  • FIG. 26 is a waveform diagram illustrating a current change of each part on the circuit of FIG. 24.
  • FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment of the present invention.
  • This power converter reduces the AC supplied from the AC power supply S, converts it to DC, and outputs it.
  • first and second input-side connection portions Tl and T2 for inputting AC
  • first and second output-side connection portions T3 and T4 for outputting DC
  • It includes first and second capacitors CI and C2, first and second diodes Dl and D2, a plurality of Zener diodes ZD1 to ZD4, and a thermistor TH.
  • the first and second capacitors CI and C2 are connected in this order to a first electric connection path connecting between the first input side connection part T1 and the second input side connection part T2.
  • L1 is inserted in series from the first input side connection unit side.
  • the first capacitor C1 is provided for voltage drop by voltage division, and the second capacitor C2 is provided for smoothing.
  • the capacitance ratio of the first capacitor C to the second capacitor C2 is set to, for example, 1: 1000.
  • the first diode D1 is connected between the first capacitor C1 and the second capacitor C2 in the first electric connection path L1 to perform the half-wave rectification.
  • the force is also inserted so as to be in the forward direction toward the second input side connection portion T2.
  • the second diode D2 is for discharging the first capacitor C1, and is provided between the first capacitor C1 and the first diode D1 in the first electric connection path L1 and the second diode D2.
  • the second input side connection part T2 is connected to the second electric connection path L2 for connection to the second input side connection part T2 in the reverse direction toward the second input side connection part T2 side.
  • the first output side connection portion T3 is connected between the first diode D1 and the first capacitor C1 in the first electric connection path L1, and the second output side connection portion T4 is , The second input side Connected to connection part T2.
  • the plurality of Zener diodes ZD1 to ZD4 are provided between the first output side connection part # 3 and the second output side connection part # 4, and have a second output side connection part # 4 side power plate first output.
  • the side connection part is inserted in series so as to be in the forward direction toward the third side.
  • the thermistor ⁇ ⁇ ⁇ is for suppressing inrush current, and is connected to the first input side connection part T1 more than the connection position where the second electric connection part L2 is connected in the first electric connection path L1. It is inserted on the side. In the configuration of FIG. 1, the thermistor ⁇ is inserted through the second input side connection portion # 2 of the capacitor C1. However, the thermistor ⁇ may be inserted through the first input side connection portion T1 of the capacitor C1.
  • D2 and Zener diode ZD1-D4 may be configured by incorporating them into a single hybrid IC (HIC)! / ⁇ .
  • this power converter converts an AC voltage of, for example, 200 V (peak value) supplied by an AC power supply S into a DC voltage of 60 V.
  • an AC voltage of 200 V is applied to the first input side connection part T1 while the second input side connection part T2 is kept at the ground potential.
  • the capacity of the first capacitor C1 is 0. F
  • the maximum allowable voltage is 250V
  • the capacity of the second capacitor C2 is 470F
  • the maximum allowable voltage is 100V.
  • the maximum allowable voltage and current of the first and second diodes Dl and D2 are 600 V and 1 A, respectively.
  • Zener diodes ZD1-1ZD4 each having a Zener voltage of 15V are used by connecting them in series.
  • three zener diodes having a zener voltage of 20 V may be connected in series and used.
  • the case where the AC voltage supplied by AC power supply S is 200 V (peak value) will be described, but the case where the AC voltage supplied by AC power supply S is 283 V (peak value), that is, the effective value is 200 V Can be applied almost in the same manner.
  • thermistor TH for example, a thermistor having a resistance value of 3.73 ⁇ or more and 47 ⁇ or less in an operating ambient temperature range (eg, ⁇ 20 ° C. to 70 ° C.) is used. More specifically, for example, a product of the product number: NTPA7220LBMB0 manufactured by Murata Manufacturing Co., Ltd. is used. Note that 3.73 ⁇ The lower limit is set based on the magnitude of the inrush current that can occur when the power is turned on and the current resistance of the first and second diodes Dl and D2.The upper limit of 47 ⁇ is set for the capacitors C1 and C2. This is to make the impedance negligible. Alternatively, a resistor of about 22 ⁇ may be used instead of the thermistor TH!
  • the operation principle of the power converter will be described.
  • the AC voltage supplied from the AC power supply S via the first and second input side connection portions Tl and T2 is divided (stepped down) by the first and second capacitors CI and C2.
  • the first and second output side connection portions T3, T4 are controlled by the first diode D1 and smoothed by the second capacitor C2, and at the output voltage (60 V) defined by the zener diodes ZD1 to ZD4. Is supplied to the load side via.
  • the first and second capacitors C1 and C2 are both charged such that the first input side connection portion T1 side has a higher potential than the second input side connection portion T2 side.
  • the capacitor C2 is charged to the voltage specified by the Zener diodes ZD1 to ZD4.
  • the capacitance ratio of both capacitors CI and C2 is set to a large value, for example, 1: 1000, sufficient step-down is performed by the first capacitor C1, and 60V is secured by the second capacitor C2 Is done.
  • FIGS. 2 to 4 are waveform diagrams illustrating the potential change and the current change of each part on the circuit of FIG.
  • the values of each element adopt the values exemplified above.
  • the waveform WD1 in FIG. 2 indicates a change in the potential of the first input side connection portion T1
  • the waveform WD2 in the same diagram indicates a change in the voltage across the first capacitor C1
  • the waveform WD3 in the same diagram indicates the second change.
  • 5 shows a potential change of the output side connection portion T3 of FIG.
  • the waveform WD2 is positive when the first input side connection portion T1 has a higher potential than the second input side connection portion T2.
  • the waveform WD4 of FIG. 3 flows from the AC power supply S to the first input side connection part T1 when the direction of the current flowing from the AC power supply S to the first input side connection part T1 is positive. It shows the change in current.
  • the waveform WD5 in FIG. 4 indicates that the direction of the current flowing in the forward direction of the first diode D1 is positive. 5 shows a change in the current flowing through the first diode Dl in the case where.
  • a waveform WD6 in the same figure shows a change in the current flowing through the second diode D2 when the direction of the current flowing through the second diode D2 in the reverse direction is positive.
  • the waveform WD7 in the figure shows the change in the current supplied to the second capacitor C2 when the direction of the current flowing from the first diode D1 side to the second capacitor C2 side is positive.
  • the waveform WD8 in the figure shows the change in the current flowing through the Zener diodes ZD1 to ZD4 when the direction of the current flowing forward through the Zener diodes ZD1 to ZD4 is positive.
  • FIG. 2 will be described.
  • the forward voltage of the diode is ignored.
  • Zener diode ZD Zener diode
  • capacitor C2 a series connection of Zener diodes ZD1 to ZD4 (hereinafter collectively referred to as Zener diode ZD) and a parallel connection of capacitor C2. Therefore, a reverse voltage of 60 V is applied to the diode D2 and the diode D2 is not conducting, and the voltage between both ends of the capacitor C1 takes 140 V as shown by the waveform WD2 at the time tl. That is, the anode potential of the diode D1 becomes 60V.
  • the waveform WD4 indicates a positive current value, and if it is, the diode D1 is conducting and the current is negative. This is the period during which the diode D2 conducts.
  • waveforms WD5 and WD6 correspond to the positive and negative current values of waveform WD4, respectively. In both waveforms, the peak is suppressed by the function of the force thermistor TH, which slightly overshoots when the conduction of the diodes Dl and D2 starts.
  • the current supplied to the second capacitor C2 (waveform D7) is shifted more negatively than the current flowing through the diode D1 (waveform D5).
  • the diode D1 does not conduct after the anode potential of the diode D1 reaches 60V. There is no path to move the charge stored by the capacitor C1. Since the voltage between both ends keeps 140V, the anode potential of the diode D1 changes between -340-60V. In this case, since there is no path for charging the capacitor C1, the voltage that can be applied to the load is reduced.
  • the presence of the diode D2 discharges the capacitor C1 without extracting the charge of the capacitor C2, and further charges the capacitor C1 in the opposite direction. Therefore, the voltage across the capacitor C1 decreases, the diode D1 becomes conductive, and the capacitor C2 becomes chargeable.
  • the voltage drop is reduced by the first capacitor C1 instead of the resistor. Therefore, there is no need to consider thermal measures for peripheral components because Joule loss does not occur when the voltage drops and the efficiency is high.
  • low cost dangling can be achieved without the necessity of using an expensive large-capacity step-down resistor as in the conventional case.
  • the mounting area of components can be reduced, and the device configuration such as a printed circuit board can be reduced in size, which is advantageous in terms of structure and cost.
  • a stable DC voltage can be output by the Zener diode ZD.
  • the inrush current flowing through the first and second electric connection paths LI, L2 can be effectively suppressed by the thermistor TH.
  • the voltage across the capacitor C1 fluctuates due to the change in the AC voltage supplied from the AC power supply S via the first and second input side connection portions Tl, T2. Therefore, even when a large pulsation occurs with respect to the alternating current, charge and discharge of the capacitor C1 are caused, and the current flowing through the Zener diode ZD increases. This increases the thermal load on the Zener diode ZD and can lead to thermal destruction.
  • the AC voltage input from AC power supply S sharply rises at a point near 200V.
  • the anode potential of the diode D1 also rises rapidly, and the diode D1 conducts.
  • the potential of the first output connection T3, which is to be pulled up by the conduction of the diode D1, (that is, the force source potential of the diode D1) is maintained at 60 V by the conduction of the zener diode ZD. That is, a phenomenon similar to the charging of the capacitor C1 at the time tO-tl is caused by the pulsation.
  • the strong phenomenon is not limited to the case where the AC voltage is rapidly increasing near 200 V, but may occur when the pulsation causes the anode potential of the diode D1 to rise above 60V.
  • the anode potential of the diode D1 is clamped at OV, and the force source potential is clamped at 60V. If the potential pulsates from these, the charge and discharge of the capacitor C1 pulsates and occurs. Unnecessary current flows through the Zener diode ZD.
  • FIG. 5 to FIG. 8 are graphs illustrating the force phenomenon.
  • FIGS. 5 and 6 show the characteristics of the power converter shown in the first embodiment when there is no pulsation in the AC voltage.
  • FIGS. 7 and 8 show characteristics of the power converter shown in the first embodiment when the AC voltage has a pulsation.
  • the capacitance of the first capacitor C1 was 0.47 ⁇ F
  • the capacitance of the second capacitor C2 was 470 ⁇ F
  • the resistance value of the thermistor TH was 22 ⁇ .
  • the waveform WD80 shows the change in the current flowing through the Zener diode ZD when the direction of the current flowing through the zener diode ZD in the reverse direction is positive, and the waveform WD8 (Fig. 4) has a sign. Is the opposite.
  • Waveform WD60 shows a change in the current flowing through the second diode D2 when the direction of the current flowing in the forward direction through the second diode D2 is positive, and the sign is opposite to that of the waveform WD6 (FIG. 4).
  • the waveform WD10 is a force indicating the potential change of the first input side connection portion T1 similarly to the waveform WD1 (FIG. 2).
  • Waveform WD12 is the anode potential of diode D1 and corresponds to the difference between the values shown in waveforms WD1 and WD2.
  • first and second output-side connection sections are irrespective of the presence or absence of pulsation.
  • the voltage between T3 and T4 is maintained at 60V.
  • FIGS. 5 and 6 show the same contents as FIGS. 4 and 2, respectively, although the peak value of the AC voltage is different and the sign of the waveform is changed.
  • Waveform WD12 fluctuates between 0-60V.
  • FIGS. 7 and 8 illustrate a case where a pulsation having a peak value of 50 V and a frequency of 1000 Hz is superimposed on the AC voltage.
  • the waveform S in Fig. 8 indicates that the charge and discharge of the capacitor C1 are repeated.
  • the current flowing through the Zener diode ZD also has a pulsation, and clearly increases as compared with the waveform WD80 in FIG.
  • the second embodiment provides a technique for suppressing an increase in the current flowing through the Zener diode ZD even when the pulsation occurs.
  • FIG. 9 is a circuit diagram of a power converter according to a second embodiment of the present invention.
  • This power converter employs a resistor R instead of the thermistor TH of the power converter according to the first embodiment, and further has one end of the resistor R on the first input side connection portion T1 side and a second input. It has a configuration in which the capacitor C3 connected between the side connection portion T2 and the side connection portion T2 is added.
  • the resistance R is irrelevant. However, in order to actually limit both the steady state current and the inrush current, the resistance R is about one digit larger than that of the first embodiment. For example, it is desirable to increase the CR time constant by adopting a resistance of 220 ⁇ .
  • Figs. 10 and 11 show that the power converter according to the second embodiment has power supply distortion. It is a graph which shows the waveform when there is no.
  • Capacitors CI and C2 have the same capacitance as in the first embodiment shown in FIGS. 5 to 8, capacitor C3 has a capacitance of 0.33 F, and resistor R has a resistance of 220 ⁇ m. ⁇ was adopted.
  • Waveform symbols are used in common with FIGS.
  • the waveforms shown in FIGS. 10 and 11 are almost the same as the waveforms (FIGS. 5 and 6) when the power converter according to the first embodiment has no power supply distortion.
  • FIG. 12 shows a case where there is no pulsation in the AC voltage, and shows a comparison of the waveform WD80 at the beginning of a positive period.
  • Graphs LI and L2 are respectively obtained in the first embodiment and the second embodiment.
  • FIGS. 13 and 14 illustrate a case where a pulsation having a peak value of 50 V and a frequency of 100000 Hz is superimposed on the AC voltage, and correspond to FIGS. 7 and 8 relating to the first embodiment, respectively.
  • the voltage between the first and second output side connection portions T3 and T4 is maintained at 60 V regardless of the presence or absence of force pulsation, which is not shown.
  • FIG. 15 compares the waveforms WD80 at the beginning of the period in which the AC voltage is positive in FIGS. 7 and 13, and the graphs L3 and L4 show the first embodiment and the second embodiment, respectively. Waveform equivalent to WD80. It can be seen that the current flowing through the Zener diode ZD can be significantly reduced in the second embodiment as compared with the first embodiment.
  • FIG. 16 is a circuit diagram of a power conversion device according to the third embodiment of the present invention. This power conversion device differs from the power conversion device according to the second embodiment in the connection point between the capacitor C3 and the resistance scale. That is, the capacitor C3 is connected between one end of the resistor R on the second input side connection part T2 side and the second input side connection part T2.
  • Figs. 17 and 18 are graphs showing waveforms when there is no power supply distortion in the power converter according to the third embodiment.
  • the same specifications as in the second embodiment were adopted for the capacitors CI, C2, C3, and the resistor R. Waveform symbols are used in common with FIG. 5 to FIG. 8, FIG. 10, and FIG.
  • the waveforms shown in FIGS. 17 and 18 are almost the same as the waveforms (FIGS. 10 and 11) obtained when the power converter according to the second embodiment has no power supply distortion.
  • the same specifications as in the second embodiment were adopted for the capacitors CI, C2, C3, and the resistor R. Waveform symbols are used in common with FIG. 5 to FIG. 8, FIG. 10, and FIG.
  • the waveforms shown in FIGS. 17 and 18 are almost the same as the waveforms (FIGS. 10 and 11) obtained when the power converter according to the second embodiment has no power supply distortion.
  • Figs. 19 to 22 illustrate the case where a pulsation of a peak value of 75V and a frequency of 1000Hz is superimposed on the AC voltage.
  • Figs. 19 and 20 show the characteristics of the power converter according to the third embodiment.
  • FIG. 21 and FIG. 22 show the characteristics of the power converter according to the second embodiment.
  • the voltage between the first and second output-side connection portions T3 and T4 is maintained at 60 V regardless of the presence or absence of a force pulsation, which is not shown.
  • FIG. 23 is a comparison of the waveforms WD80 at the beginning of the period in which the AC voltage is positive in FIGS. 19 to 22, and graphs L5 and L6 show the second embodiment and the third embodiment, respectively. Waveform corresponds to WD80. It can be seen that the third embodiment is able to significantly reduce the current flowing through the Zener diode ZD as compared to the second embodiment.
  • the power converter that works on the second embodiment is more preferable. Even when the charge transfer between the capacitors CI and C3 via the resistor R is not remarkable and the pulsating frequency is high, the current flowing through the resistor R is a force that can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 この電力変換装置では、交流を入力する第1及び第2の入力側接続部(T1,T2)の間に、降圧用の第1のコンデンサ(C1)、半波整流用の第1のダイオード(D1)及び平滑用の第2のコンデンサ(C2)を介挿するとともに、第2の入力側接続部(T2)と第1のダイオード(D1)との入力端との間に、第1のコンデンサ(C1)の放電用の第2のダイオード(D2)を介挿している。そして、交流電源(S)から与えられる交流が、第1及び第2のコンデンサ(C1,C2)により分圧(降圧)されて第1のダイオード(D1)によって直流化され、第2のコンデンサ(C2)により平滑化されつつ、ツェナーダイオード(ZD1~ZD4)により規定される出力電圧で、第1及び第2の出力側接続部(T3,T4)を介して負荷側に供給される。

Description

明 細 書
電力変換装置
技術分野
[0001] 本発明は、交流を降圧して直流に変換する電力変換装置に関する。
背景技術
[0002] 例えば、エアコン等においては、室外機の電源電圧が 200Vの 3相交流であるのに 対して、室内機等に備えられる通信系統の電源には 60Vの直流が必要となる場合が ある。このような場合、 200Vの 3相交流を 60Vの直流に変換して通信系統に供給す る必要がある。
[0003] 図 24は、従来の電力変換装置の回路図である。この電力変換装置では、交流電 源 Sから第 1及び第 2の入力側接続部 Tl, T2を介して与えられる交流が、降圧され つつ半波整流により直流に変換され、第 1及び第 2の出力側接続部 T3, T4を介して 負荷(図示せず)に与えられる。
[0004] 第 1及び第 2の入力側接続部 Tl, T2の間には、第 1の入力側接続部 T1側から順 に、複数の抵抗を備える降圧用の抵抗ユニット RUと、ダイオード D11と、コンデンサ C11とがこの記載順序で直列に介挿されている。ダイオード D 11は、第 1の入力側接 続部側 T1から第 2の入力側接続部 T2側に向けて順方向となっている。また、直列接 続された複数のツエナーダイオード ZD 11— ZD 13力 コンデンサ C 11に並列に接続 されている。このツエナーダイオード ZD11— ZD13は、第 2の入力側接続部 T2側か ら第 1の入力側接続部 T1側に向けて順方向になっている。さらに、コンデンサ C11 の放電用の抵抗 Rl 1がコンデンサ C 11に並列に接続されて!、る。
[0005] 第 1の出力側接続部 T3はダイオード Dl 1の順方向下流側の接続部と接続されて おり、第 2の出力側接続部 T4は第 2の入力側接続部 T2と接続されている。
[0006] より具体的には例えば、第 2の入力側接続部 T2の電位を基準として第 1の入力側 接続部 T1に対して 200V (波高値)の交流電圧が、交流電源 Sから印加される。そし てこれを変換して 60Vの直流電圧に変換される。これに対応して、抵抗ユニット RU は 200Vの交流を 60Vの直流に降圧するために必要な抵抗値を有するものが用いら れる。コンデンサ CI 1の容量としては 470 /z Fが採用され、ツエナーダイオード ZD11 一 ZD13のッヱナ一電圧はいずれも 20Vが採用されている。
[0007] そして、交流電源 Sから与えられる交流電圧が抵抗ユニット RUで降圧されつつダイ オード D11に通されて半波整流され、コンデンサ C 11及びツエナーダイオード ZD 11 一 ZD 13で安定化されて、 60Vの直流電圧として負荷側に出力される。
[0008] ここで、図 25及び図 26は、図 24の回路上における各部の電位変化及び電流変化 を例示した波形図である。図 25の波形 WD11は第 2の入力側接続部 T2の電位を基 準とした第 1の入力側接続部 T1の電位変化を示し、同図の波形 WD12は抵抗ュ- ット RUの両端電圧の変化を示し、同図の波形 WD13は第 2の入力側接続部 T2の電 位を基準とした第 2の出力側接続部 T3の電位変化を示している。波形 WD12が正 の領域では、抵抗ユニット RUにお 、てジュール損が発生する。
[0009] また、図 26の波形 WD14は、第 1の入力側接続部 T1から交流電源 S側に流れる電 流の向きを正とした場合における交流電源 Sから第 1の入力側接続部 T1に流れる電 流の変化を示している。同図の波形 WD15は、第 1のダイオード D11を介してコンデ ンサ C11側に流れる電流の向きを正とした場合におけるコンデンサ C11に供給され る電流の変化を示している。同図の波形 WD16は、ツエナーダイオード ZD 11— ZD 13の順方向に流れる電流の向きを正とした場合におけるツエナーダイオード ZD11 一 ZD 13に流れる電流の変化を示して 、る。
[0010] なお、平滑コンデンサの端子電圧を一定にする先行技術としては、全波整流回路 における特許文献 1に記載のものがある。
[0011] 特許文献 1 :特開平 6— 284729号公報
発明の開示
[0012] 図 24に示す従来の電力変換装置では、抵抗ユニット RUにより降圧を行うため、抵 抗ユニット RUでのジュール損失が大きぐ効率が悪いとともに、高価でしかも大型で ある大容量の抵抗ユニット RUを使用しなけらばならず、効率、コスト及び装置サイズ 等の点で問題がある。
[0013] そこで、本願発明の解決すべき課題は、高効率化、低コストィ匕及び小型化等が図 れる電力変換装置を提供することである。 [0014] 請求項 1にかかる発明は、交流 (S)を降圧して直流に変換する電力変換装置であ つて、前記交流の出力を入力する第 1及び第 2の入力側接続部 (Tl, T2)と、前記第 1の入力側接続部 (T1)と前記第 2の入力側接続部 (T2)との間の第 1の電気接続路 (L1)に、前記第 1の入力側接続部側から順に直列に介挿された第 1のコンデンサ( C1)及び第 2のコンデンサ(C2)と、前記第 1の電気接続路における第 1のコンデンサ と前記第 2のコンデンサとの間に、前記第 2の入力側接続部側に向けて順方向となる ように介挿された第 1のダイオード (D1)と、前記第 1の電気接続路における前記第 1 のコンデンサと前記第 1のダイオードとの間と、前記第 2の入力側接続部とを接続す る第 2の電気接続路 (L2)に、前記第 2の入力側接続部側に向けて逆方向になるよう に介挿された第 2のダイオード (D2)と、前記第 1の電気接続路における前記第 1の ダイオードと前記第 2のコンデンサとの間と接続された前記直流の出力用の第 1の出 力側接続部 (T3)と、前記第 2の入力側接続部と接続された前記直流の出力用の第 2の出力側接続部 (T4)とを備える。
[0015] 請求項 2にかかる発明は、請求項 1に記載の電力変換装置において、前記第 1の 出力側接続部 (T3)と前記第 2の出力側接続部 (T4)との間に、前記第 1の出力側接 続部側に向けて順方向になるように介挿されたツ ナーダイオード (ZD)をさらに備 える。
[0016] 請求項 3にかかる発明は、請求項 2に記載の電力変換装置において、前記第 1の 電気接続路 (L1)における前記第 2の電気接続路 (L2)が接続された接続位置よりも 前記第 1の入力側接続部側に介挿された抵抗 (R)をさらに備える。
[0017] 請求項 4にかかる発明は、請求項 3に記載の電力変換装置において、前記抵抗は サーミスタである。
[0018] 請求項 5にかかる発明は、請求項 3に記載の電力変換装置において、前記抵抗 (R )の一端と前記第 2の入力側接続部 (T2)との間に接続された第 3のコンデンサ (C3) を更に備える。
[0019] 請求項 6にかかる発明は、請求項 5に記載の電力変換装置において、前記抵抗 (R
)の前記一端は前記第 2の入力側接続部 (T2)側の端である。
[0020] 請求項 7にかかる発明は、請求項 5に記載の電力変換装置において、前記抵抗 (R )の前記一端は前記第 1の入力側接続部 (T1)側の端である。
[0021] 請求項 8にかかる発明は、請求項 5に記載の電力変換装置において、前記第 1のコ ンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0022] 請求項 9にかかる発明は、請求項 6に記載の電力変換装置において、前記第 1のコ ンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0023] 請求項 10にかかる発明は、請求項 7に記載の電力変換装置において、前記第 1の コンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0024] 請求項 11にかかる発明は、請求項 1に記載の電力変換装置において、前記第 1の 電気接続路 (L1)における前記第 2の電気接続路 (L2)が接続された接続位置よりも 前記第 1の入力側接続部側に介挿された抵抗 (R)をさらに備える。
[0025] 請求項 12にかかる発明は、請求項 11に記載の電力変換装置において、前記抵抗 はサーミスタである。
[0026] 請求項 13にかかる発明は、請求項 11に記載の電力変換装置において、前記抵抗
(R)の一端と前記第 2の入力側接続部 (T2)との間に接続された第 3のコンデンサ (C 3)を更に備える。
[0027] 請求項 14にかかる発明は、請求項 13に記載の電力変換装置において、前記抵抗
(R)の前記一端は前記第 2の入力側接続部 (T2)側の端である。
[0028] 請求項 15にかかる発明は、請求項 13に記載の電力変換装置において、前記抵抗
(R)の前記一端は前記第 1の入力側接続部 (T1)側の端である。
[0029] 請求項 16にかかる発明は、請求項 13に記載の電力変換装置において、前記第 1 のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0030] 請求項 17にかかる発明は、請求項 14に記載の電力変換装置において、前記第 1 のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0031] 請求項 18にかかる発明は、請求項 15に記載の電力変換装置において、前記第 1 のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定されている。
[0032] 請求項 19にかかる発明は、請求項 1ないし 18のいずれかに記載の電力変換装置 において、前記第 1のコンデンサと前記第 2のコンデンサとの容量比力 1対 1000に 設定されている。 [0033] 請求項 1に記載の発明によれば、第 1及び第 2の入力側接続部を介して与えられる 交流を、第 1及び第 2のコンデンサにより分圧(降圧)して第 1のダイオードによって直 流化し、第 2のコンデンサにより平滑ィ匕しつつ、第 1及び第 2の出力側接続部を介し て負荷側に供給することができる。
[0034] このように、電圧降下を抵抗でなくコンデンサにより行うため、電圧降下時にジユー ル損失が発生せず高効率であるので、周辺部品に対する熱対策を考慮する必要が ない。また従来のように高価な大容量の降圧用抵抗を使用する必要がなぐ低コスト 化が図れる。
[0035] また、大型化しやすい降圧用抵抗を使用する必要がないため、部品の実装面積を 小さくでき、プリント基板等の装置構成の小型化が図れ、構造面及びコスト面で有利 である。
[0036] 請求項 2に記載の発明によれば、ツ ナーダイオードにより安定した直流電圧を出 力することができる。
[0037] 請求項 3、請求項 4、請求項 11、請求項 12に記載の発明によれば、抵抗、例えば サーミスタにより第 1及び第 2の電気接続路に流れる突入電流を効果的に抑制するこ とがでさる。
[0038] 請求項 5、請求項 13に記載の発明によれば、交流に脈動が存在した場合に招来さ れる、第 1の電気接続路での過電流を抑制することができる。特にツエナーダイォー ドを採用している場合には、その熱負荷を軽減することができる。
[0039] 請求項 6、請求項 14に記載の発明によれば、第 1コンデンサと抵抗とが成す CR直 列回路の時定数により、交流の脈動の影響を効果的に抑制できる。
[0040] 請求項 7、請求項 15に記載の発明によれば、交流が脈動する周波数が高い場合 であっても、抵抗の定格を大きくする必要がない。
[0041] 請求項 8、請求項 9、請求項 10、請求項 16、請求項 17、請求項 18に記載の発明 によれば、交流の脈動振幅が出力される直流電圧の二倍程度あってもツエナーダイ オードに流れる不要な電流を抑制できる。
[0042] 請求項 19に記載の発明によれば、入力される交流を、第 1及び第 2のコンデンサに より効果的に分圧して直流化することができる。 [0043] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。
図面の簡単な説明
[0044] [図 1]本発明の第 1の実施の形態に係る電力変換装置の回路図である。
[図 2]図 1の回路上における各部の電位変化を例示した波形図である。
[図 3]図 1の回路上における第 1の入力側接続部に流れる電流の変化を例示した波 形図である。
[図 4]図 1の回路上における各部の電流変化を例示した波形図である。
[図 5]第 1の実施の形態に係る電力変換装置の特性を示すグラフである。
[図 6]第 1の実施の形態に係る電力変換装置の特性を示すグラフである。
[図 7]第 1の実施の形態に係る電力変換装置の特性を示すグラフである。
[図 8]第 1の実施の形態に係る電力変換装置の特性を示すグラフである。
[図 9]本発明の第 2の実施の形態に係る電力変換装置の回路図である。
[図 10]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 11]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 12]第 1の実施の形態に力かる電力変換装置の特性と第 2の実施の形態に力かる 電力変換装置の特性とを比較して示すグラフである。
[図 13]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 14]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 15]第 1の実施の形態に力かる電力変換装置の特性と第 2の実施の形態に力かる 電力変換装置の特性とを比較して示すグラフである。
[図 16]本発明の第 3の実施の形態に係る電力変換装置の回路図である。
[図 17]第 3の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 18]第 3の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 19]第 3の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 20]第 3の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 21]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。
[図 22]第 2の実施の形態に力かる電力変換装置の特性を示すグラフである。 [図 23]第 2の実施の形態に力かる電力変換装置の特性と第 3の実施の形態に力かる 電力変換装置の特性とを比較して示すグラフである。
[図 24]従来の電力変換装置の回路図である。
[図 25]図 24の回路上における各部の電位変化を例示した波形図である。
[図 26]図 24の回路上における各部の電流変化を例示した波形図である。
発明を実施するための最良の形態
[0045] 第 1の実施の形態.
図 1は本発明の第 1の実施の形態に係る電力変換装置の回路図である。この電力 変換装置は、交流電源 Sから与えられる交流を降圧して直流に変換して出力する。 その構成要素として、図 1に示すように、交流を入力する第 1及び第 2の入力側接続 部 Tl, T2と、直流を出力する第 1及び第 2の出力側接続部 T3, T4と、第 1及び第 2 のコンデンサ CI, C2と、第 1及び第 2のダイオード Dl, D2と、複数のツエナーダイォ ード ZD1— ZD4と、サーミスタ THを備えている。
[0046] 第 1及び第 2のコンデンサ CI, C2は、この記載の順序で、第 1の入力側接続部 T1 と第 2の入力側接続部 T2との間を接続する第 1の電気接続路 L1に第 1の入力側接 続部側から順に直列に介挿されている。第 1のコンデンサ C1は分圧による電圧降下 を行うため、第 2のコンデンサ C2は平滑ィ匕のため、それぞれ設けられている。第 1の コンデンサ C1での電圧降下を有効に行うため、第 1のコンデンサ Cの容量と第 2のコ ンデンサ C2の容量比は、例えば 1対 1000に設定される。
[0047] 第 1のダイオード D1は半波整流を行うために、第 1の電気接続路 L1における第 1 のコンデンサ C1と第 2のコンデンサ C2との間に、第 1の入力側接続部 T1側力も第 2 の入力側接続部 T2側に向けて順方向となるように介挿されて 、る。
[0048] 第 2のダイオード D2は、第 1のコンデンサ C1の放電用のためのものであり、第 1の 電気接続路 L1における第 1のコンデンサ C1と第 1のダイオード D1との間と、第 2の 入力側接続部 T2とを接続する第 2の電気接続路 L2に、第 2の入力側接続部 T2側 に向けて逆方向〖こなるように介挿されて ヽる。
[0049] 第 1の出力側接続部 T3は、第 1の電気接続路 L1における第 1のダイオード D1と第 1のコンデンサ C1との間と接続されており、第 2の出力側接続部 T4は、第 2の入力側 接続部 T2と接続されている。
[0050] 複数のツエナーダイオード ZD1— ZD4は、第 1の出力側接続部 Τ3と第 2の出力側 接続部 Τ4との間に、第 2の出力側接続部 Τ4側力ゝら第 1の出力側接続部 Τ3側に向 けて順方向になるように直列に介挿されて 、る。
[0051] サーミスタ ΤΗは、突入電流抑制のためのものであり、第 1の電気接続路 L1におけ る第 2の電気接続部 L2が接続された接続位置よりも第 1の入力側接続部 T1側に介 挿される。図 1の構成では、サーミスタ ΤΗをコンデンサ C1の第 2の入力側接続部 Τ2 側に介挿して ヽるが、コンデンサ C 1の第 1の入力側接続部 T1側に介挿してもょ 、。
[0052] ここで、図 1に示す回路の構成要素のうち、少なくとも第 1及び第 2のダイオード D1
, D2及びツエナーダイオード ZD1— D4については単一のハイブリッド IC (HIC)に 組み込んで構成してもよ!/ヽ。
[0053] より具体的には、この電力変換装置は、交流電源 Sが供給する例えば 200V (波高 値)の交流電圧を 60Vの直流電圧に変換する。例えば第 2の入力側接続部 T2がグ ランド電位に保たれた状態で、第 1の入力側接続部 T1に対して 200Vの交流電圧が 印加される。
[0054] これに対応して、例えば、第 1のコンデンサ C1の容量は 0. F、最大許容電圧 は 250Vであり、第 2のコンデンサ C2の容量は 470 F、最大許容電圧が 100Vであ る。また例えば、第 1及び第 2のダイオード Dl, D2の最大許容電圧及び電流は、そ れぞれ 600V、 1Aである。
[0055] 60Vの直流電圧を安定して得るために、いずれもツエナー電圧が 15Vであるツエナ 一ダイオード ZD 1一 ZD4を 4つ直列に接続して用いているが、!、ずれもツエナー電 圧が 20Vであるツエナーダイオードを 3つ直列に接続して用いてもよい。なお、ここで は交流電源 Sの供給する交流電圧が 200V (波高値)の場合について説明するが、 交流電源 Sの供給する交流電圧が 283V (波高値)の場合、即ち実効値が 200Vの 場合についてもほぼ同様に適用可能である。
[0056] サーミスタ THには、例えば、使用周囲温度範囲(例えば、— 20°C— 70°C)にて抵 抗値が 3. 73 Ω以上、かつ 47 Ω以下の値をとるものが用いられ、より具体的には例え ば村田製作所製の品番: NTPA7220LBMB0の製品が用いられる。なお、 3. 73 Ωの 下限値は、電源投入時に生じ得る突入電流の大きさと第 1及び第 2のダイオード Dl , D2の電流耐性とを基準に設定されたものであり、 47 Ωの上限値は、コンデンサ C1 , C2のインピーダンスに対して無視し得る値とするためである。あるいはサーミスタ T Hの代わりに 22 Ω程度の抵抗を採用してもよ!、。
[0057] 次に、この電力変換装置の動作原理について説明する。大略的には、交流電源 S から第 1及び第 2の入力側接続部 Tl, T2を介して与えられる交流電圧が、第 1及び 第 2のコンデンサ CI, C2により分圧(降圧)されて第 1のダイオード D1によって直流 ィ匕され、第 2のコンデンサ C2により平滑化されつつ、ツエナーダイオード ZD1— ZD4 により規定される出力電圧(60V)で、第 1及び第 2の出力側接続部 T3, T4を介して 負荷側に供給される。
[0058] より詳細には、交流電源 Sが第 1の入力側接続部 T1側に対して正極性であるとき、 第 1の電気接続路 L 1にて、第 1のコンデンサ C 1及び第 1のダイオード D 1を介して第 2のコンデンサ C2側に電流(電荷)が流れる。これにより、第 1及び第 2のコンデンサ C 1, C2にはいずれも第 1の入力側接続部 T1側が第 2の入力側接続部 T2側よりも高 電位となる充電が行われる。この際、コンデンサ C2はツエナーダイオード ZD1— ZD 4により規定される電圧まで、充電される。上述のように両コンデンサ CI, C2の容量 比が大きぐ例えば 1対 1000に設定されているため、第 1のコンデンサ C1にて十分 な降圧が行われ、かつ第 2のコンデンサ C2で 60Vが確保される。
[0059] ここで、図 2ないし図 4は、図 1の回路上における各部の電位変化及び電流変化を 例示した波形図である。各素子の値は上記で例示した値を採用している。図 2の波 形 WD1は第 1の入力側接続部 T1の電位変化を示し、同図の波形 WD2は第 1のコ ンデンサ C 1の両端電圧の変化を示し、同図の波形 WD3は第 2の出力側接続部 T3 の電位変化を示している。但し、波形 WD2は第 1の入力側接続部 T1側が第 2の入 力側接続部 T2側よりも高電位となる場合を正に採っている。
[0060] また、図 3の波形 WD4は、交流電源 Sから第 1の入力側接続部 T1側に流れる電流 の向きを正とした場合における交流電源 Sから第 1の入力側接続部 T1に流れる電流 の変化を示している。
[0061] また、図 4の波形 WD5は、第 1のダイオード D1の順方向に流れる電流の向きを正 とした場合における第 1のダイオード Dlに流れる電流の変化を示している。同図の波 形 WD6は、第 2のダイオード D2に逆方向に流れる電流の向きを正とした場合におけ る第 2のダイオード D2に流れる電流の変化を示している。同図の波形 WD7は、第 1 のダイオード D1側から第 2のコンデンサ C2側に流れる電流の向きを正とした場合に おける第 2のコンデンサ C2に供給される電流の変化を示している。同図の波形 WD8 は、ツエナーダイオード ZD1— ZD4に順方向に流れる電流の向きを正とした場合に おけるツエナーダイオード ZD1— ZD4に流れる電流の変化を示している。
[0062] まず図 2について説明する。以下、簡単のためにダイオードの順方向電圧は無視 する。波形 WD1として示されるように、交流電源 Sが出力する交流電圧は周期 Tで変 動し、時刻 tOにおいて電圧値 0を採り、時刻 tl =tO+TZ4において極大値を採る。
[0063] 時刻 tlではツエナーダイオード ZD1— ZD4の直列接続(以下ツエナーダイオード Z Dと総称する)とコンデンサ C2との並列接続によって 60Vの電圧が支えられて 、る。 従って、ダイオード D2には 60Vの逆方向電圧が印可されていて導通しておらず、コ ンデンサ C1の両端電圧は、時刻 tlにおける波形 WD2が示すように、 140Vを採るこ とになる。つまりダイオード D1のアノード電位は 60Vとなる。
[0064] その後、交流電源 Sが出力する交流電圧が低下すると、ダイオード D1のアノード電 位が低下するので非導通であり、コンデンサ C1を放電する経路がないので、コンデ ンサ C 1の両端電圧が 140Vを維持したままダイオード D 1のアノード電位が低下し続 ける。つまり時刻 tl一 t2においてはダイオード Dl, D2のいずれもが非導通となる。
[0065] そして時刻 t2において交流電圧が 140Vにまで低下すると、ダイオード D2が導通 する。これによりダイオード D1のアノード電位は急激にほぼ零にまで低下し、コンデ ンサ C2とツエナーダイオード ZDとの並列接続がダイオード D1の力ソード電位を 60V 程度に維持しているので、依然としてダイオード D1は非導通状態が維持される。よつ てその後に交流電圧が低下しても、ダイオード D2が導通している限り、コンデンサ C 1の両端電圧は交流電源 Sが出力する交流電圧と一致し続け、時刻 t3 = tO + 3TZ 4において 200Vとなる。この間、ダイオード D1のアノード電位は零である。
[0066] その後、時刻 t3から交流電圧が上昇し始めると、コンデンサ C1で電圧が保持され たままダイオード D1のアノード電位が上昇し、ダイオード D2は導通しない。ダイォー ド Dlも導通していないので、コンデンサ C1の両端電圧は 200Vに維持されたまま である。
[0067] そして時刻 t4において交流電圧が—140Vにまで上昇すると、コンデンサ C1の両 端電圧が—200Vを維持していたので、ダイオード D1のアノード電位は(一 140) (一 200) =60[V]となって、ダイオード D1が導通する。つまり時刻 t3—4においてはダ ィオード Dl, D2のいずれもが非導通であった力 時刻 t4以降はダイオード D1が導 通している。
[0068] その後、交流電圧とコンデンサ C1の両端電圧とは 60Vの差を維持したまま時刻 tO
+Tに至る。
[0069] 図 3にお!/、て波形 WD4が正の電流値を示して!/、る場合はダイオード D1が導通し て 、る期間であり、負の電流値を示して 、る場合はダイオード D2が導通して 、る期 間である。図 4において波形 WD5, WD6は、それぞれ波形 WD4の正の電流値、負 の電流値に対応している。いずれの波形もダイオード Dl, D2の導通開始時に幾分 はオーバーシュートしている力 サーミスタ THの機能により、そのピークは抑制され ている。
[0070] ッヱナ一ダイオード ZDに逆方向に電流が流れ (波形 WD8)、第 1及び第 2の出力 側接続部 T3, T4を介して接続される負荷に電流が供給されるので、図 4において、 第 2のコンデンサ C2に供給される電流 (波形 D7)がダイオード D1に流れる電流 (波 形 D5)よりも負側にシフトしている。
[0071] もしダイオード D2がなければ、ダイオード D1のアノード電位が 60Vになった後はダ ィオード D1は導通しない。コンデンサ C1が蓄積する電荷を移動させる経路がなぐ その両端電圧は 140Vを維持し続けるため、ダイオード D1のアノード電位は—340— 60Vの間で遷移するカゝらである。この場合、コンデンサ C1を充電する経路も存在し ないので、負荷に与えうる電圧は低下することになる。
[0072] これに対し、ダイオード D2が存在することにより、コンデンサ C2の電荷を引き抜くこ となくコンデンサ C1を放電し、更に逆方向に充電する。よってコンデンサ C1の両端 電圧は低下し、ダイオード D1の導通が可能となり、コンデンサ C2が充電可能となる。
[0073] 以上のように、本実施の形態によれば、電圧降下を抵抗でなく第 1のコンデンサ C1 により行うため、電圧降下時にジュール損失が発生せず高効率であるので、周辺部 品に対する熱対策を考慮する必要がない。また、従来のように高価な大容量の降圧 用抵抗を使用する必要がなぐ低コストィ匕が図れる。
[0074] また、大型化しやすい降圧用抵抗を使用する必要がないため、部品の実装面積を 小さくでき、プリント基板等の装置構成の小型化が図れ、構造面及びコスト面で有利 である。
[0075] また、ツエナーダイオード ZDにより安定した直流電圧を出力することができる。
[0076] また、サーミスタ THにより第 1及び第 2の電気接続路 LI, L2に流れる突入電流を 効果的に抑制することができる。
[0077] また、第 1及び第 2のコンデンサ CI, C2の容量比が 1対 1000に設定されているた め、入力される交流を、第 1及び第 2のコンデンサ CI, C2により効果的に分圧して直 流ィ匕することができる。
[0078] 第 2の実施の形態.
上述のように、交流電源 Sから第 1及び第 2の入力側接続部 Tl, T2を介して与えら れる交流電圧の変化により、コンデンサ C1の両端電圧は変動する。そのため、上記 交流に対して大きな脈動が発生した場合にもコンデンサ C1の充放電が招来され、ッ ェナーダイオード ZDに流れる電流が多くなる。これはツエナーダイオード ZDの熱負 荷を高め、熱破壊を招来する可能性もある。
[0079] 例えば第 1の実施の形態において、交流電源 Sから入力される交流電圧が 200V 近傍にある時点で急激に上昇した場合を想定する。この場合、コンデンサ C1が支え ていた約 140Vの両端電圧が保れるので、ダイオード D1のアノード電位も急激に上 昇し、ダイオード D1は導通する。ダイオード D1の導通によって引き上げられようとす る第 1の出力側接続部 T3の電位 (即ちダイオード D1の力ソード電位)は、ツエナーダ ィオード ZDの導通により 60Vに維持される。つまり時刻 tO— tlにおけるコンデンサ C 1の充電と類似した現象が当該脈動によって招来される。力かる現象は交流電圧が 2 00V近傍で急激に上昇にある場合に限らず、当該脈動によってダイオード D1のァノ ード電位が 60Vを越えて上昇する局面で生じ得る。
[0080] 逆に、ダイオード D1のアノード電位が 0Vを下回って下降する局面でも生じ得る。 交流電圧の急激な減少によりダイオード Dlのアノード電位が急激に低下してかかる 局面を迎えると、ー且、ダイオード D2が導通する。そして時刻 t2— 3におけるコンデ ンサ C 1の放電及び逆方向の充電と類似した現象によってダイオード D 1のアノード 電位は OVに戻る。しカゝし交流電圧の急激な減少から本来の交流電圧の電位に回復 すれば、コンデンサ C1で支えていた分圧が不足しているため、ダイオード D1のァノ ード電位は急激に上昇してダイオード D1、ツエナーダイオード ZDが導通する。
[0081] 観点を変えれば、ダイオード D1のアノード電位は OVに、力ソード電位は 60Vに、そ れぞれクランプされるので、これらから電位が脈動すればコンデンサ C1の充放電が 脈動して発生し、ツエナーダイオード ZDに不要な電流が流れることになる。
[0082] 図 5乃至図 8は力かる現象を説明するグラフである。図 5及び図 6は第 1の実施の形 態で示された電力変換装置において、交流電圧に脈動が無い場合の特性を示して いる。図 7及び図 8は第 1の実施の形態で示された電力変換装置において、交流電 圧に脈動が有る場合の特性を示している。但し第 1のコンデンサ C1の容量は 0. 47 μ F、第 2のコンデンサ C2の容量は 470 μ F、サーミスタ THの抵抗値は 22 Ωとした。
[0083] これらの図において波形 WD80はッヱナ一ダイオード ZDに逆方向に流れる電流 の向きを正とした場合におけるツエナーダイオード ZDに流れる電流の変化を示して おり、波形 WD8 (図 4)とは符号が反対となる。波形 WD60は第 2のダイオード D2に 順方向に流れる電流の向きを正とした場合における第 2のダイオード D2に流れる電 流の変化を示しており、波形 WD6 (図 4)とは符号が反対となる。波形 WD10は波形 WD1 (図 2)と同様に第 1の入力側接続部 T1の電位変化を示す力 ここでは交流電 圧として波高値 283V、周波数 50Hzを採用した場合が示されている。波形 WD12は ダイオード D1のアノード電位であり、波形 WD1, WD2で示される値の差に相当する
[0084] なお、図示は省略しているが、脈動の有無によらず、第 1及び第 2の出力側接続部
T3, T4間の電圧は 60Vが維持されている。
[0085] 図 5及び図 6は、交流電圧の波高値が相違し、波形の正負を替えているものの、そ れぞれ図 4及び図 2と同じ内容が示されている。波形 WD12は 0— 60Vの間で推移 する。 [0086] 図 7及び図 8は波高値 50V、周波数 1000Hzの脈動が交流電圧に重畳した場合が 例示されている。図 8の波形 WD12からコンデンサ C1の充放電が繰り返されているこ と力 S判る。図 7の波形 WD80に示されるようにツエナーダイオード ZDに流れる電流に も脈動が生じており、図 5の波形 WD80と比較して明らかに増大している。
[0087] そこで第 2の実施の形態では、上記脈動が生じてもツエナーダイオード ZDに流れる 電流の増量を抑制する技術を提供する。
[0088] 図 9は本発明の第 2の実施の形態に係る電力変換装置の回路図である。この電力 変換装置は、第 1の実施の形態に係る電力変換装置のサーミスタ THの代わりに抵 抗 Rを採用し、更に抵抗 Rの第 1の入力側接続部 T1側の一端と第 2の入力側接続部 T2との間に接続されたコンデンサ C3を追カロした構成を有している。
[0089] コンデンサ C3の存在により、ダイオード Dl, D2及びッヱナ一ダイオード ZD以外に コンデンサ C 1の電荷の移動を許す経路が得られる。つまりコンデンサ C 1が支えて ヽ た両端電圧は、交流電圧の脈動に応じて変動可能となる。
[0090] これを定式ィ匕すれば次のようになる。脈動の振幅電圧 Vd、ツエナーダイオード ZD によって支えられていた電圧 Vzを導入し、コンデンサ CI, C3の容量値も同じ記号を 採用すれば、この脈動によってコンデンサ C1から移動する電荷量は Q1 = C1 ' (Vd Vd)である。この電荷量が、電圧 Vzでコンデンサ C3に充電されていた電荷 Q3 = C 3 'Vzでまかなわれれば、ツエナーダイオード ZDを経由した電荷の移動、即ち電流を 低減できる。よって C3≥C1 ' (Vd— Vz) ZVzとすればよい。つまりコンデンサ CI, C 3の容量値を同程度に設定すれば、交流電圧の脈動振幅が、出力される直流電圧 の二倍程度あってもツエナーダイオード ZDに流れる不要な電流を抑制できる。
[0091] 例えば上述の例では 100Vの振幅で脈動が生じるので、容量値 0. 47 μ Fのコンデ ンサ C1を採用する場合には、コンデンサの規格値の系列を考慮して容量値 0. 33 Fのコンデンサ C3を採用することができる。
[0092] なお、上述の計算では抵抗 Rは無関係となっているが、実際には定常時や突入時 の両方の電流を制限するため、第 1の実施の形態よりも 1桁程度大きめの、例えば 22 0 Ωの抵抗を採用して CR時定数を大きくすることも望ましい。
[0093] 図 10及び図 11は第 2の実施の形態に力かる電力変換装置において電源歪みが 無い場合の波形を示すグラフである。コンデンサ CI, C2には図 5乃至図 8で示され た第 1の実施の形態と同じ容量値を採用し、コンデンサ C3には容量値 0. 33 Fを 採用し、抵抗 Rには抵抗値 220 Ωを採用した。波形の記号は図 5乃至図 8と共通して 用いている。図 10及び図 11で示される波形は、第 1の実施の形態に力かる電力変 換装置にぉ 、て電源歪みが無 、場合の波形(図 5及び図 6)とほぼ同じである。
[0094] 図 12は交流電圧に脈動が無い場合であって、これが正である周期の初期におい て波形 WD80を比較したものであり、グラフ LI, L2がそれぞれ第 1の実施の形態、 第 2の実施の形態の波形 WD80に相当する。脈動が無い場合においてさえ、第 2の 実施の形態の方が、第 1の実施の形態と比較してツエナーダイオード ZDに流れる電 流を低減できて ヽることが判る。
[0095] 図 13及び図 14は波高値 50V、周波数 lOOOHzの脈動が交流電圧に重畳した場 合が例示され、第 1の実施の形態に関する図 7及び図 8とそれぞれ対応する。なお、 図示は省略している力 脈動の有無によらず、第 1及び第 2の出力側接続部 T3, T4 間の電圧は 60Vが維持されて!、る。
[0096] 図 15は図 7,図 13の交流電圧が正である周期の初期において波形 WD80を比較 したものであり、グラフ L3, L4がそれぞれ第 1の実施の形態、第 2の実施の形態の波 形 WD80に相当する。第 2の実施の形態の方が、第 1の実施の形態と比較してツエ ナーダイオード ZDに流れる電流を大きく低減できていることが判る。
[0097] 第 3の実施の形態.
図 16は本発明の第 3の実施の形態に係る電力変換装置の回路図である。この電 力変換装置は、第 2の実施の形態に係る電力変換装置のコンデンサ C3と抵抗尺の 接続箇所が異なって 、る。つまり抵抗 Rの第 2の入力側接続部 T2側の一端と第 2の 入力側接続部 T2との間にコンデンサ C3が接続されている。
[0098] 図 17及び図 18は第 3の実施の形態に力かる電力変換装置において電源歪みが 無い場合の波形を示すグラフである。コンデンサ CI, C2, C3、抵抗 Rには第 2の実 施の形態と同じ仕様を採用した。波形の記号は図 5乃至図 8、図 10及び図 11等と共 通して用いている。図 17及び図 18で示される波形は、第 2の実施の形態に力かる電 力変換装置にぉ 、て電源歪みが無 、場合の波形(図 10及び図 11)とほぼ同じであ る。
[0099] 図 19乃至図 22では波高値 75V、周波数 1000Hzの脈動が交流電圧に重畳した 場合が例示されており、図 19及び図 20は第 3の実施の形態に力かる電力変換装置 の特性であり、図 21及び図 22は第 2の実施の形態に力かる電力変換装置の特性で ある。なお、図示は省略している力 脈動の有無によらず、第 1及び第 2の出力側接 続部 T3, T4間の電圧は 60Vが維持されている。
[0100] 図 23は図 19乃至図 22の交流電圧が正である周期の初期において波形 WD80を 比較したものであり、グラフ L5, L6がそれぞれ第 2の実施の形態、第 3の実施の形態 の波形 WD80に相当する。第 3の実施の形態の方が、第 2の実施の形態と比較して ツエナーダイオード ZDに流れる電流を大きく低減できていることが判る。
[0101] これはコンデンサ CI, C3間の電荷の移動において、第 3実施の形態の方が、第 2 の実施の形態と比較して抵抗 Rによる時定数の効果を大きく得ているためと考えられ る。換言すれば、コンデンサ C1と抵抗 Rとが成す CR直列回路の時定数により、交流 の脈動の影響を効果的に抑制できる。
[0102] し力しながら、抵抗 Rの電力定格を下げ、部品の寸法を小さくできる点では第 2の実 施の形態に力かる電力変換装置の方が望ましい。抵抗 Rを介したコンデンサ CI, C3 間の電荷の移動が顕著でなぐ従って脈動する周波数が高い場合であっても、抵抗 Rに流れる電流は小さくできる力 である。
[0103] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。

Claims

請求の範囲 [1] 交流 (s)を降圧して直流に変換する電力変換装置であって、 前記交流の出力を入力する第 1及び第 2の入力側接続部 (Tl, T2)と、 前記第 1の入力側接続部 (T1)と前記第 2の入力側接続部 (T2)との間の第 1の電 気接続路 (L1)に、前記第 1の入力側接続部側から順に直列に介挿された第 1のコン デンサ(C1)及び第 2のコンデンサ(C2)と、 前記第 1の電気接続路における第 1のコンデンサと前記第 2のコンデンサとの間に、 前記第 2の入力側接続部側に向けて順方向となるように介挿された第 1のダイオード
(D1)と、
前記第 1の電気接続路における前記第 1のコンデンサと前記第 1のダイオードとの 間と、前記第 2の入力側接続部とを接続する第 2の電気接続路 (L2)に、前記第 2の 入力側接続部側に向けて逆方向になるように介挿された第 2のダイオード (D2)と、 前記第 1の電気接続路における前記第 1のダイオードと前記第 2のコンデンサとの 間と接続された前記直流の出力用の第 1の出力側接続部 (T3)と、
前記第 2の入力側接続部と接続された前記直流の出力用の第 2の出力側接続部( T4)と、
を備える、電力変換装置。
[2] 請求項 1に記載の電力変換装置にお!、て、
前記第 1の出力側接続部 (T3)と前記第 2の出力側接続部 (T4)との間に、前記第 1の出力側接続部側に向けて順方向になるように介挿されたッヱナ一ダイオード (ZD )をさらに備える、電力変換装置。
[3] 請求項 2に記載の電力変換装置において、
前記第 1の電気接続路 (L1)における前記第 2の電気接続路 (L2)が接続された接 続位置よりも前記第 1の入力側接続部側に介挿された抵抗 (R)をさらに備える、電力 変換装置。
[4] 請求項 3に記載の電力変換装置において、
前記抵抗はサーミスタである、電力変換装置。
[5] 請求項 3に記載の電力変換装置において、 前記抵抗 (R)の一端と前記第 2の入力側接続部 (T2)との間に接続された第 3のコ ンデンサ (C3)を更に備える、電力変換装置。
[6] 請求項 5に記載の電力変換装置において、
前記抵抗 (R)の前記一端は前記第 2の入力側接続部 (T2)側の端である、電力変 換装置。
[7] 請求項 5に記載の電力変換装置において、
前記抵抗 (R)の前記一端は前記第 1の入力側接続部 (T1)側の端である、電力変 換装置。
[8] 請求項 5に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[9] 請求項 6に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[10] 請求項 7に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[11] 請求項 1に記載の電力変換装置にぉ 、て、
前記第 1の電気接続路 (L1)における前記第 2の電気接続路 (L2)が接続された接 続位置よりも前記第 1の入力側接続部側に介挿された抵抗 (R)をさらに備える、電力 変換装置。
[12] 請求項 11に記載の電力変換装置にぉ 、て、
前記抵抗はサーミスタである、電力変換装置。
[13] 請求項 11に記載の電力変換装置にぉ 、て、
前記抵抗 (R)の一端と前記第 2の入力側接続部 (T2)との間に接続された第 3のコ ンデンサ (C3)を更に備える、電力変換装置。
[14] 請求項 13に記載の電力変換装置において、
前記抵抗 (R)の前記一端は前記第 2の入力側接続部 (T2)側の端である、電力変 換装置。
[15] 請求項 13に記載の電力変換装置において、
前記抵抗 (R)の前記一端は前記第 1の入力側接続部 (T1)側の端である、電力変 換装置。
[16] 請求項 13に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[17] 請求項 14に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[18] 請求項 15に記載の電力変換装置において、
前記第 1のコンデンサと前記第 3のコンデンサとの容量比はほぼ同程度に設定され ている、電力変換装置。
[19] 請求項 1な!、し 18の 、ずれかに記載の電力変換装置にぉ 、て、
前記第 1のコンデンサと前記第 2のコンデンサとの容量比力 1対 1000に設定され ている、電力変換装置。
PCT/JP2004/017184 2003-11-27 2004-11-18 電力変換装置 WO2005053144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/580,272 US7468897B2 (en) 2003-11-27 2004-11-18 Rectifier without active switches
AU2004310594A AU2004310594B2 (en) 2003-11-27 2004-11-18 Electric power converter apparatus
ES04819326.2T ES2659044T3 (es) 2003-11-27 2004-11-18 Aparato de convertidor de potencia eléctrica
CN2004800341212A CN1883108B (zh) 2003-11-27 2004-11-18 电力转换装置
EP04819326.2A EP1693949B1 (en) 2003-11-27 2004-11-18 Electric power converter apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-396613 2003-11-27
JP2003396613 2003-11-27
JP2004-086472 2004-03-24
JP2004086472A JP4543718B2 (ja) 2003-11-27 2004-03-24 電力変換装置

Publications (1)

Publication Number Publication Date
WO2005053144A1 true WO2005053144A1 (ja) 2005-06-09

Family

ID=34635610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017184 WO2005053144A1 (ja) 2003-11-27 2004-11-18 電力変換装置

Country Status (8)

Country Link
US (1) US7468897B2 (ja)
EP (1) EP1693949B1 (ja)
JP (1) JP4543718B2 (ja)
KR (1) KR100767160B1 (ja)
CN (1) CN1883108B (ja)
AU (1) AU2004310594B2 (ja)
ES (1) ES2659044T3 (ja)
WO (1) WO2005053144A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791247A2 (de) * 2005-11-29 2007-05-30 Robert Bosch Gmbh Netzteil für eine Gleichspannungsversorgung mit geringer Restwelligkeit und deutlich verringerter Einschaltverzögerung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131822A (ja) * 2006-11-24 2008-06-05 Mitsubishi Electric Corp コンデンサドロップ式電源回路及び空気調和機
JP4901783B2 (ja) * 2008-02-21 2012-03-21 京楽産業.株式会社 パチンコ遊技機
JP5392281B2 (ja) * 2011-02-25 2014-01-22 ダイキン工業株式会社 電源回路およびヒートポンプユニット
US10298071B2 (en) * 2014-03-05 2019-05-21 Ricoh Co., Ltd DC-DC boost converter
CN106452015A (zh) * 2016-10-18 2017-02-22 合肥浮点信息科技有限公司 一种具有大功率负载的电子产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843182A (ja) * 1981-09-04 1983-03-12 Omron Tateisi Electronics Co 直流電源回路
JPH11285254A (ja) * 1998-03-26 1999-10-15 Mitsubishi Electric Corp 電源装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535612A (en) * 1968-12-17 1970-10-20 Bell Telephone Labor Inc Inverter starting circuit
JPS6114893U (ja) * 1984-07-02 1986-01-28 東芝機器株式会社 降圧形電源装置
JPH0245810A (ja) * 1988-08-08 1990-02-15 Nippon Dennetsu Co Ltd 温度制御装置
CN2045557U (zh) * 1988-08-17 1989-10-04 中国电子进出口总公司深圳工贸公司工程开发部 照明灯自动关断开关装置
JPH03124782U (ja) * 1990-03-27 1991-12-17
JPH06284729A (ja) * 1993-03-29 1994-10-07 Toshiba Lighting & Technol Corp 電源回路
JPH0744250A (ja) * 1993-08-02 1995-02-14 Nippon Dennetsu Co Ltd 直流電源回路
US7259479B1 (en) * 1999-02-18 2007-08-21 Robertshaw Controls Company Transformerless power supply, dual positive or dual negative supplies
JP3236573B2 (ja) * 1999-02-25 2001-12-10 長野日本無線株式会社 スイッチング電源装置
JP2000299985A (ja) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd 電源回路及びそれを用いた電源装置
DE10002650C2 (de) * 2000-01-21 2003-04-10 Niels Dernedde Schaltungsanordnung zur Reduktion der Wirkleistung in einer stabilisierten Gleichspannungsversorgung mittels eines Vorschaltkondensators
JP2004242485A (ja) * 2003-02-05 2004-08-26 Odeo:Kk 電磁弁用電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843182A (ja) * 1981-09-04 1983-03-12 Omron Tateisi Electronics Co 直流電源回路
JPH11285254A (ja) * 1998-03-26 1999-10-15 Mitsubishi Electric Corp 電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791247A2 (de) * 2005-11-29 2007-05-30 Robert Bosch Gmbh Netzteil für eine Gleichspannungsversorgung mit geringer Restwelligkeit und deutlich verringerter Einschaltverzögerung
EP1791247A3 (de) * 2005-11-29 2010-06-23 Robert Bosch Gmbh Netzteil für eine Gleichspannungsversorgung mit geringer Restwelligkeit und deutlich verringerter Einschaltverzögerung

Also Published As

Publication number Publication date
KR20060086431A (ko) 2006-07-31
KR100767160B1 (ko) 2007-10-15
AU2004310594B2 (en) 2008-05-15
US20070133237A1 (en) 2007-06-14
US7468897B2 (en) 2008-12-23
CN1883108A (zh) 2006-12-20
JP2005185082A (ja) 2005-07-07
JP4543718B2 (ja) 2010-09-15
EP1693949B1 (en) 2018-01-24
ES2659044T3 (es) 2018-03-13
CN1883108B (zh) 2011-08-10
EP1693949A4 (en) 2010-06-23
AU2004310594A1 (en) 2005-06-09
EP1693949A1 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US6465990B2 (en) Power factor correction circuit
RU2274939C2 (ru) Источник питания с двумя входами по переменному и постоянному току с программируемым выходом по постоянному току, использующий вторичный понижающий преобразователь
US9166483B2 (en) Single stage AC-DC power converter with flyback PFC and improved THD
JP2012521628A (ja) 供給回路
US8957600B1 (en) Two-stage led driver with buck PFC and improved THD
US20150092458A1 (en) Two-stage ac-dc power converter with buck pfc and improved thd
JP2010135473A (ja) 発光ダイオード駆動用電源装置
CN101267161A (zh) 开关电源装置
KR20150083039A (ko) 제로 크로싱 보상 전류 및 저항기에 의한 케이블 보상
US20090009153A1 (en) Multiple output ac/dc power adapter
CN103236786B (zh) 一种均压电路及逆变器
US6646450B2 (en) Method and apparatus for near losslessly measuring inductor current
JPH10506257A (ja) 高効率電圧変換器および調整器回路
WO2005053144A1 (ja) 電力変換装置
US9510403B2 (en) Two-stage LED driver with buck PFC and improved THD
JP2008131822A (ja) コンデンサドロップ式電源回路及び空気調和機
CN110971124A (zh) 一种直流变换器
JP3402031B2 (ja) 直流電源装置
EP2003769A2 (en) Power supply input device
WO2019211284A1 (en) Bidirectional switched mode ac-dc converter and method for operating a bidirectional switched mode ac-dc converter
CN114002489B (zh) 交流电的过流检测电路和过流检测系统
WO2002065225A2 (en) Switching power supply
JP3263194B2 (ja) 電源平滑回路
JP3590152B2 (ja) 直流電源装置
JP2012135080A (ja) 力率改善回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034121.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067009546

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007133237

Country of ref document: US

Ref document number: 10580272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004310594

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004819326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004310594

Country of ref document: AU

Date of ref document: 20041118

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004310594

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067009546

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10580272

Country of ref document: US