WO2005051671A1 - 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置 - Google Patents

光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置 Download PDF

Info

Publication number
WO2005051671A1
WO2005051671A1 PCT/JP2004/017426 JP2004017426W WO2005051671A1 WO 2005051671 A1 WO2005051671 A1 WO 2005051671A1 JP 2004017426 W JP2004017426 W JP 2004017426W WO 2005051671 A1 WO2005051671 A1 WO 2005051671A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
recording medium
layer
protective layer
optical
Prior art date
Application number
PCT/JP2004/017426
Other languages
English (en)
French (fr)
Inventor
Hiroshi Miura
Makoto Harigaya
Eiko Hibino
Kazunori Ito
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to EP04819379A priority Critical patent/EP1695839A1/en
Publication of WO2005051671A1 publication Critical patent/WO2005051671A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material

Definitions

  • the present invention relates to a light capable of performing at least one of recording, reproducing, erasing, and rewriting of information by irradiating a laser beam to cause a material constituting a recording layer to undergo an optical change.
  • Recording medium hereinafter sometimes referred to as “phase-change optical information recording medium”, “phase-change optical recording medium”, “optical information recording medium”, “information recording medium”
  • the present invention relates to a method, a sputtering target, a method for using an optical recording medium, and an optical recording / reproducing apparatus.
  • DVD + RW is a type of optical recording medium of the phase change type. It is a medium that can be repeatedly recorded with high compatibility with DVD + ROM, and is specified in “DVD + RW 4.7 Gbytes Basic Format Specifications System Description”.
  • the phase-change optical recording medium is heated by irradiating a recording layer on a substrate with a laser beam and irradiating the recording layer with a laser beam. Then, by changing the phase of the recording layer structure between crystalline and amorphous, the reflectivity is changed to record and erase information.
  • DVD + RW handles a large amount of data
  • an optical recording medium capable of recording and reproducing at higher speed is required. Under such circumstances, an optical recording medium capable of recording at a higher linear velocity has been developed.
  • Patent Document 1 discloses an improved AglnSbTe-based recording material used for CD as a recording layer material used in the current DVD + RW, and a high linear velocity recording area (recording line). It has been proposed that data can be recorded and erased up to a speed of about 8.5 mZs).
  • the AglnSbTe-based recording material has a higher Sb content than the CD-RW compatible recording material in order to correspond to the recording speed in the high linear velocity recording area.
  • a material with a high Sb composition ratio promotes the crystallization speed, it has a problem that the crystallization temperature is lowered. It has been confirmed that the lowering of the curing temperature leads to poor storage reliability, but the problem of storage reliability is due to the increase of Ag in the recording material or the addition of the fifth element such as Ge. If it does not pose a practical problem, it will be kept to a minimum.
  • the limit recording speed is about 20 mZs in DVD recording density.
  • Patent Document 2 has a recording layer represented by a general formula (In Sb) M, wherein X and Y in the general formula are 55 mass% ⁇ X ⁇ 80 mass%, An optical recording medium has been proposed in which 0% by mass ⁇ Y ⁇ 20% by mass and ⁇ represents at least one selected from Au, Ag, Ge, and.
  • Patent Document 3 discloses that the recording layer is irradiated with light energy under different conditions to selectively change the two stable states of the crystal, comprising an alloy force of In20-60 atomic% and Sb40-80 atomic%.
  • Optical recording media for recording and erasing information by causing them have been proposed.
  • the related technology has not been provided yet, and further improvement and development are currently desired.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-322740
  • Patent Document 2 Japanese Patent Publication No. 3-52651
  • Patent Document 3 Japanese Patent Publication No. 4-1933
  • An object of the present invention is to provide an optical recording medium capable of coping with a recording speed in a range, a method for manufacturing the optical recording medium, a sputtering target, a method for using the optical recording medium, and an optical recording / reproducing apparatus.
  • the present invention is based on the above findings by the present inventors, and the means for solving the above problems are as follows. That is,
  • a substrate and at least a first protective layer, a recording layer, a second protective layer, and a reflective layer on the substrate in any of the above-described order and the reverse order.
  • represents one of Si and Cr.
  • M represents an element other than In, Sb, Si, and Cr, and at least one element selected from a mixture power of the elements.
  • An optical recording medium that can support a wide range of recording speeds (5 to 56 mZs or more) can be obtained.
  • optical recording medium according to ⁇ 1>, wherein the optical recording medium represents at least one element selected from the group consisting of Ge, Al, Ag, Mn, Cu, Au, and N.
  • the recording layer is represented by the following formula: In Sb Si M (where M is Ge
  • Au and N force Represents at least one element selected.
  • ⁇ , ⁇ , ⁇ , and ⁇ represent the atomic percent of each element, and are 0.73 ⁇
  • 8) ⁇ 0.90, 2 ⁇ ⁇ ⁇ 10, and 0 ⁇ ⁇ ⁇ 20 and ⁇ + j8 + ⁇ + ⁇ 100).
  • the optical recording medium according to any one of ⁇ 1> to ⁇ 2>.
  • V A high-quality optical recording medium that can support the recording speed can be obtained.
  • the reduction of the reflectivity of the crystal part can be suppressed by adding Si as an additive element, but the mechanism of the decrease in the reflectivity is due to structural instability of the crystal phase due to lattice defects and the like. If it is considered that this is due to qualitative and structural relaxation, it is considered that the crystal structure is stabilized by filling the lattice defects with Si.
  • the recording layer is represented by the following formula: In Sb Cr M (where M is Ge, Al, Ag, Mn, Cu, A
  • u and N force Represents at least one element selected.
  • V A high-quality optical recording medium that can support the recording speed can be obtained.
  • ⁇ and j8 force Optical recording according to any one of ⁇ 1> to ⁇ 4>, which satisfies the following equation: 0.80 ⁇
  • the recording layer performs at least one of recording, reproducing, erasing, and rewriting of information by utilizing a reversible phase change between an amorphous phase and a crystalline phase due to irradiation of electromagnetic waves.
  • An optical recording medium according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The optical recording medium according to any one of ⁇ 1> to ⁇ 6>, wherein a crystallization temperature of the recording layer at a rate of temperature rise of 10 ° CZ is 150 to 250 ° C.
  • the crystallization temperature of the recording layer at a heating rate of 10 ° CZ for 150 to 250 ° C is sufficient to ensure sufficient amorphous mark stability. Can be.
  • ⁇ 8> The optical recording medium according to any one of ⁇ 1> to ⁇ 7>, wherein the thickness of the recording layer is 8 to 22 nm.
  • ⁇ 8> is the optical recording medium described in any of the above.
  • the first protective layer and the second protective layer in the optical recording medium according to ⁇ 9> contain a mixture of ZnS and SiO.
  • the mixture of 22 is excellent in heat resistance, low thermal conductivity, and chemical stability, and has small residual stress in the film.Recording Z It also has excellent adhesion to the recording layer, and has advantages.
  • the optical recording medium described in 10> can realize a quenching structure suitable for forming an amorphous mark immediately after the recording layer reaches a high temperature during recording when pure Ag or an Ag alloy has extremely high thermal conductivity, Good reflection layer can be formed
  • optical recording medium according to ⁇ 10>, further comprising a third protective layer containing no sulfur between the second protective layer and the reflective layer.
  • ⁇ 13> The optical recording medium according to any one of ⁇ 11> to ⁇ 12>, wherein the thickness of the third protective layer is 2 to 10 nm.
  • the reflective layer such as the optical recording medium according to any one of ⁇ 11> to ⁇ 13>, particularly contains Ag
  • a material containing sulfur such as a mixture of ZnS and SiO is used for the second protective layer. If used, sulfur reacts with Ag and corrodes the reflective layer.
  • represents an element other than ⁇ , Sb, Si, and Cr, and a mixture of the elements, and at least one element selected.
  • ⁇ , ⁇ , ⁇ , and ⁇ represent the atomic percent of each element, 0.73 ⁇
  • the sputtering target according to ⁇ 15> which represents at least one element selected from the group consisting of Ge, Al, Ag, Mn, Cu, Au, and N.
  • a desired recording layer composition is obtained by performing the formation of the recording layer by using a sputtering method using an alloy target having a predetermined composition.
  • Can be a DVD 1x 1x 16x It is possible to stably provide an optical recording medium capable of supporting a wide range of recording speeds (recording linear velocity about 3.5-56 mZs or more).
  • a method for manufacturing an optical recording medium having at least a first protective layer, a recording layer, a second protective layer, and a reflective layer on a substrate in any of the above-described order and the reverse order >
  • a method for producing an optical recording medium comprising a recording layer forming step of forming a recording layer by a sputtering method using the sputtering target according to any one of>.
  • a recording layer is formed by a sputtering method using the sputtering target of the present invention.
  • ⁇ 21> At least one of recording, reproducing, erasing, and rewriting of information by irradiating a laser beam from the first protective layer side of the optical recording medium according to any one of ⁇ 21> to ⁇ 14>. Is a method for using an optical recording medium.
  • At least one of recording, reproducing, erasing, and rewriting of information is performed by irradiating the optical recording medium of the present invention with a laser beam.
  • the optical recording / reproducing apparatus of the present invention is an optical recording / reproducing apparatus which irradiates a laser beam from a light source to an optical recording medium to record and / or reproduce information on the optical recording medium.
  • the optical recording medium of the present invention is used.
  • at least one of recording and reproducing of information can be performed stably and reliably.
  • FIG. 1 is a schematic sectional view showing an example of the optical recording medium of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the optical recording medium of the present invention.
  • the optical recording medium of the present invention comprises a substrate and at least a first protective layer, a recording layer, a second protective layer, and a reflective layer on the substrate in any one of the above-mentioned order and a reverse order. And, if necessary, other layers.
  • the optical recording medium performs at least one of recording, reproducing, erasing, and rewriting of information by irradiating a laser beam from the first protective layer side.
  • the recording layer records and erases signals by irradiating a laser beam to change the phase between a crystalline phase and an amorphous phase.
  • the crystal phase and the amorphous phase have different reflectivities, but the unrecorded state is usually made into a high-reflectivity crystal phase, and this crystal phase is irradiated with a high-power laser pulse to heat and rapidly cool the recording layer. By doing so, an amorphous mark with low reflectance is recorded as a signal.
  • an InSb-based material is used as a base material because the crystallization speed is high and the recording sensitivity is high.
  • storage reliability is improved by adding at least one element selected from Ge, Al, Ag, Mn, Cu, Au, and N as an additive element based on In and Sb. And the like can be further improved.
  • optical recording media using this material have a problem in storage characteristics.
  • Si or Cr based on the binary material of In and Sb, it is possible to suppress a decrease in the reflectivity of the crystal part and to eliminate a problem associated with the decrease in the reflectivity. Further, since Si or Cr also has an effect of improving the storage reliability of the amorphous state, the stability of the amorphous mark can also be improved.
  • the element M is added to a recording material composed of In, Sb, and Si or Cr, the characteristics can be further improved.
  • M is at least one element selected from Ge, Al, Ag, Mn, Cu, Au, and N, each of which is an additive element suitable for achieving both high-speed crystallization and amorphous mark stability. is there.
  • the recording layer is represented by the following formula: In Sb AM (where A represents any one of Si and Cr.
  • represents an element other than In, Sb, Si, and Cr, and represents at least one element selected mixtures or these elements (chi, beta, gamma, and ⁇ represent atomic 0/0 of the respective elements, 0. 73 ⁇
  • 8 ) ⁇ 0.90, 2 ⁇ 10, and 0 ⁇ 20, and ⁇ ++ ⁇ + ⁇ 100).
  • the ⁇ is preferably at least one element selected from Ge, Al, Ag, Mn, Cu, Au and N.
  • the recording layer has the following formula: In Sb Si M (where M is Ge, Al, Ag, Mn, Cu
  • Au and N force represent at least one element selected.
  • ⁇ , j8, ⁇ , and ⁇ represent the atomic percent of each element, 0.73 ⁇
  • 8) ⁇ 0.90, 2 ⁇ 10, and 0 ⁇ 20, and ⁇ + j8 + ⁇ + ⁇ 100).
  • the recording layer is represented by the following formula: In Sb Cr M (where M represents at least one element selected from Ge, Al, Ag, Mn, Cu, Au, and N force.
  • A, ⁇ , ⁇ and ⁇ represent the atomic percent of each element, 0.73 ⁇
  • 8) ⁇ 0.90, 2 ⁇ 10, and 0 ⁇ 20, and ⁇ + j8 + ⁇ + ⁇ 100).
  • the a and j8 satisfy 0.73 ⁇
  • j8 ⁇ ( ⁇ + j8) to 0.80 ⁇ ⁇ / ( ⁇ + ⁇ ) ⁇ 0.90, a margin in the design of the optical recording medium is widened by giving a margin to the crystallization speed. For example, when forming an optical recording medium, the margin of the film thickness of the recording layer, or the material and the film thickness of other layers is widened.
  • the added amount ⁇ of Si or Cr is set to 2 ⁇ ⁇ ⁇ 10 because the overwriting property is deteriorated when it exceeds 10 atomic%, and the addition effect is not clearly exhibited when it is less than 2 atomic%. It is preferable that 2 ⁇ 6.
  • the crystallization temperature of the recording layer at a heating rate of 10 ° CZ is preferably 150 to 250 ° C, more preferably 165 to 225 ° C. Thereby, sufficient stability of the amorphous mark can be secured.
  • the crystallization temperature of the recording layer can be set within the above-mentioned temperature range by adjusting the amount of Si or Cr or the added element M.
  • the crystallization temperature can be measured by, for example, a differential scanning calorimeter (DSC220, manufactured by Seiko Denshi Co., Ltd.).
  • various vapor phase growth methods for example, a vacuum evaporation method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam evaporation method and the like are used.
  • the sputtering method is superior in terms of mass productivity, film quality, and the like.
  • the film thickness of the recording layer is preferably from 10 to 18 nm, more preferably from 8 to 22 nm.
  • the film thickness is less than 8 nm, the heat capacity of the recording layer can be reduced, so that the sensitivity of the optical recording medium can be increased.
  • the optical distance the distance through which the reproduction light passes
  • the film thickness exceeds 22 nm, the contrast of the reflectance can be kept high, but the sensitivity may deteriorate due to the large volume of the recording layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical recording medium of the present invention, and shows a substrate 1, a first protective layer 2, a recording layer 3, a second protective layer 4, and a reflective layer on the substrate 1. 5 and a resin protection layer 6 are laminated in this order.
  • FIG. 2 is a schematic cross-sectional view showing an example of the optical recording medium of the present invention, and shows a substrate 1, a first protective layer 2, a recording layer 3, a second protective layer 4, and a third protective layer 8 on the substrate 1. , A reflection layer 5 and a resin protection layer 6 are laminated in this order.
  • laminated substrate may be bonded on the resin protective layer 6 as needed to further reinforce or protect the optical recording medium.
  • the substrate 1 needs to be made of a material that can secure the mechanical strength of the optical recording medium. There is. In addition, when light used for recording and reproduction enters through a substrate, the light must be sufficiently transparent in the wavelength range of the light used.
  • the substrate material glass, ceramics, resin, and the like are usually used, and a resin substrate is preferable from the viewpoint of formability and cost.
  • the resin include a polycarbonate resin, an acrylic resin, an epoxy resin, a polystyrene resin, an acrylonitrile styrene copolymer, a polyethylene resin, a polypropylene resin, a silicone resin, a fluorine resin,
  • ABS resin urethane resin and the like.
  • polycarbonate resin and acrylic resin are particularly preferable in terms of moldability, optical properties, and cost.
  • the thickness of the substrate 1 is determined by the wavelength of a commonly used laser and the focusing characteristics of a pickup lens, which are not particularly limited.
  • a substrate with a thickness of 1.2 mm is used for a CD system with a wavelength of 780 nm, and a substrate with a thickness of 0.6 mm is used for a DVD system with a wavelength of 650 to 665 nm.
  • a polycarbonate resin substrate having a guide groove for tracking on the surface a disk shape of 12 cm in diameter and 0.6 mm in thickness, and excellent in processability and optical characteristics is preferable.
  • the tracking guide groove is preferably a meandering groove having a pitch of 0.74 ⁇ 0.03 ⁇ m, a groove depth of 22-40 ⁇ m, and a groove width of 0.2-0.4 / zm. In particular, by increasing the depth of the groove, the reflectivity of the optical recording medium decreases, and the degree of modulation can be increased.
  • the bonding layer for bonding the substrate 1 on which the information signal is written and the bonding substrate is a double-sided adhesive sheet in which an adhesive is applied to both sides of the base film, a thermosetting resin or It is formed by UV curing resin.
  • the thickness of the adhesive layer is usually about 50 m.
  • the bonding substrate does not need to be transparent when an adhesive sheet or a thermosetting resin is used as an adhesive layer, but when an ultraviolet-curable resin is used for the adhesive layer. It is preferable to use a transparent substrate that transmits ultraviolet light.
  • the thickness of the bonding substrate is preferably 0.6 mm, which is the same as that of the transparent substrate 1 on which information signals are written.
  • the first protective layer 2 preferably has good adhesion to the substrate and the recording layer, and preferably has high heat resistance. Further, the first protective layer 2 functions as a light interference layer that enables effective light absorption of the recording layer. Therefore, it is preferable to have optical characteristics suitable for repetitive recording at a high linear velocity.
  • the material of the first protective layer for example, SiO, SiO, ZnO, SnO, Al O, TiO
  • Metal oxides such as, InO, MgO, ZrO; nitrides such as SiN, A1N, TiN, BN, ZrN;
  • Sulfides such as ZnS, InS and TaS; carbides such as SiC, TaC, BC, WC, TiC and ZrC
  • Diamond-like carbon or a mixture thereof.
  • a mixture of ZnS and SiO is preferred.
  • the mixture molar ratio of ZnS and SiO (ZnS: SiO) is 50-90: 50.
  • the first protective layer 2 may be formed by various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam deposition method, and the like. Is mentioned. Among these, the sputtering method is superior in terms of mass productivity, film quality, and the like.
  • the thickness of the first protective layer can be appropriately selected depending on the purpose without particular limitation, and is preferably 50 to 250 nm, more preferably 75 to 200 nm. If the film thickness is less than 50 nm, the substrate may be deformed because the substrate is heated at the same time when the recording layer is heated due to reduced heat resistance. In a film forming process by a sputtering method or the like, film peeling or cracking may occur due to an increase in film temperature, or sensitivity at the time of recording may decrease.
  • the second protective layer 4 preferably has good adhesion to the recording layer and the reflective layer, and preferably has high heat resistance. Further, the second protective layer 4 serves as a light interference layer that enables effective light absorption of the recording layer. Also, it is preferable to have optical characteristics suitable for repetitive recording at a high linear velocity.
  • the material of the first protective layer for example, SiO, SiO, ZnO, SnO, Al O, TiO
  • Metal oxides such as, InO, MgO, ZrO; nitrides such as SiN, A1N, TiN, BN, ZrN;
  • Sulfides such as ZnS, InS and TaS; carbides such as SiC, TaC, BC, WC, TiC and ZrC
  • Diamond-like carbon or a mixture thereof.
  • a mixture of ZnS and SiO is preferred.
  • the mixture molar ratio of ZnS and SiO (ZnS: SiO) is 50-90: 50.
  • the second protective layer 4 may be formed by various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam An evaporation method or the like is used.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam An evaporation method or the like is used.
  • the sputtering method is superior in terms of mass productivity, film quality, and the like.
  • the thickness of the second protective layer can be appropriately selected depending on the particular purpose, and is preferably 10 to 100 nm, more preferably 15 to 50 nm.
  • the overwrite characteristics may be repeatedly deteriorated due to a decrease in recording sensitivity, film peeling, deformation, and heat radiation due to a rise in temperature. May decrease.
  • the reflection layer 5 plays a role as a light reflection layer, and also plays a role as a heat dissipation layer for releasing heat applied to the recording layer by laser light irradiation during recording. Since the formation of an amorphous mark is greatly affected by the cooling rate due to heat radiation, the selection of a reflective layer is important for optical recording media that can handle high linear velocities.
  • the reflective layer 5 can be made of, for example, a metal material such as Al, Au, Ag, Cu, and Ta, or an alloy thereof.
  • Cr, Ti, Si, Cu, Ag, Pd, Ta, or the like can be used as an additive element to these metal materials.
  • the reflective layer constituting the optical recording medium usually has a viewpoint of thermal conductivity for adjusting a cooling rate of heat generated at the time of recording and an optical layer for improving a contrast of a reproduced signal by utilizing an interference effect. From the viewpoint, pure Ag or Ag alloy, for which a metal with high thermal conductivity and high reflectivity is desired, has an extremely high thermal conductivity of 427 WZm'K. This is because a quenching structure suitable for forming marks can be realized.
  • the addition amount of copper is preferably 0.1 to 10 atomic%, more preferably 0.5 to 3 atomic%. Excessive addition of copper may reduce the high thermal conductivity of Ag.
  • the reflective layer 5 can be formed by various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam deposition method, or the like. Among them, the sputtering method is superior in mass productivity, film quality, and the like.
  • the thickness of the reflective layer is not particularly limited and can be appropriately selected depending on the purpose. The thickness is preferably 100 to 300 nm, more preferably 120 to 250 nm. If the film thickness is less than 100 nm, a heat radiation effect cannot be obtained, and it may be difficult to form an amorphous layer. If the film thickness exceeds 300 nm, the material cost may increase and interface peeling may easily occur.
  • a third protective layer 8 between the second protective layer 4 and the reflective layer 5.
  • the third protective layer 8 As a material of the third protective layer 8, for example, Si, SiC, SiN, SiO, TiC, TiO, TiC Ti
  • TiC TiO, Si or SiC is particularly preferred in that it has a high barrier property.
  • pure Ag or Ag alloy When pure Ag or Ag alloy is used for the reflective layer, it contains sulfur such as a mixture of ZnS and SiO.
  • the third protective layer for preventing such a reaction includes (1) a barrier ability for preventing a sulfuration reaction of Ag, (2) being optically transparent to laser light, ( 3) Select an appropriate material with low thermal conductivity to form an amorphous mark, (4) good adhesion to the protective layer and reflective layer, and (5) easy layer formation. Titanium, TiO, Si or SiC that satisfies the above requirements
  • the material is preferred as a constituent material of the third protective layer.
  • Examples of the method of forming the third protective layer include various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, and an electron beam deposition method. Used. Among these, the sputtering method is superior in terms of mass productivity, film quality, and the like.
  • the thickness of the third protective layer is preferably 2-20 nm, more preferably 2-10 nm. If the film thickness is less than 2 nm, the layer may not function as a noria layer, and if it exceeds 20 nm, the degree of modulation may decrease.
  • a resin protection layer 6 can be further provided on the reflection layer 5 as needed.
  • the resin protective layer has an effect of protecting the recording layer during the process and at the time when the product is formed, and is usually formed of an ultraviolet curable resin.
  • the thickness of the resin protective layer is 2-5 / zm Is preferred.
  • the optical recording medium of the present invention has been described in detail.
  • the present invention is not limited to the above embodiment, and various changes may be made without departing from the gist of the present invention.
  • the present invention can be applied to an optical recording medium in which two identical or different optical recording media are bonded to each other via a resin protection layer, instead of a bonding substrate as seen in a DVD system.
  • the sputtering target of the present invention is used for producing a recording layer, and has the following formula: In Sb A
  • represents any element of Si and Cr.
  • M is other than In, Sb, Si, and Cr s
  • the mixture power of said elements represents at least one element selected.
  • the sputtering target of the present invention has the following formula: In Sb Si M (where M is G
  • e represents at least one element selected from Al, Ag, Mn, Cu, Au and N.
  • the sputtering target of the present invention has the following formula: In Sb Cr M (where M is
  • the ⁇ and j8 satisfy the following formula: 0.73 ⁇ j8 / ( ⁇ + j8) ⁇ 0.90, and preferably satisfy 0.80 ⁇ ⁇ / ( ⁇ + ⁇ ) ⁇ 0.90. .
  • the ⁇ satisfies 2 ⁇ ⁇ ⁇ 10, preferably 2 ⁇ y ⁇ 6.
  • the aforementioned ⁇ satisfies 0 ⁇ ⁇ ⁇ 20, and more preferably 1 ⁇ ⁇ ⁇ 10.
  • the method for producing the sputtering target can be appropriately selected depending on the intended purpose without particular limitation.
  • a predetermined charge is weighed in advance, and the target is heated and melted in a glass ampoule. Thereafter, this is taken out and pulverized by a pulverizer, and the obtained powder is heated and sintered to obtain a disk-shaped sputtering target.
  • an optical recording medium having excellent storage reliability can be provided.
  • a sputtering target for manufacturing an optical recording medium having the same capacity as that of a DVD-ROM and excellent repetitive recording characteristics in a wide recording linear velocity region it is possible to provide a sputtering target for manufacturing an optical recording medium having the same capacity as that of a DVD-ROM and excellent repetitive recording characteristics in a wide recording linear velocity region.
  • the method for producing an optical recording medium according to the present invention includes at least a recording layer forming step, an initial crystallization step, and further includes other steps as necessary.
  • the recording layer forming step is a step of forming a recording layer by a sputtering method using the sputtering target of the present invention.
  • the sputtering method is not particularly limited and can be appropriately selected from known methods depending on the purpose.
  • Ar gas is used as a film forming gas
  • an input voltage is 11 kW
  • a film forming gas flow rate is 10 to 10 kW.
  • 40 sccm is preferred.
  • Ar gas pressure in the chamber in one in sputtering 7. 0 X 10- 3 Torr ( mbar) or less.
  • the initial crystallization step is a step of rotating the optical recording medium at a predetermined constant linear velocity and performing initial crystallization at a predetermined power density.
  • a vapor phase method is generally used for film formation, and a low-temperature film is formed because a resin substrate is used as the substrate. Therefore, the recording layer immediately after film formation has a high energy energy. Since it is in a quenched state from a phase, it is usually in an amorphous state and has a low reflectance. Therefore, it is preferable to form an amorphous mark in a crystallized state because the reflectance of the optical recording medium can be kept higher. Therefore, initialization for crystallizing the information recording area of the optical recording medium is required. The initialization is performed by irradiating a high-power and large-diameter laser in the vicinity of the recording layer to scan and melt and slowly cool the recording layer.
  • any high-power laser and its optical system can be used.
  • a laser having a wavelength of about 800 nm is generally used.
  • the power of the laser is preferably 500-3000 mW, more preferably 1000-2,500 mW power.
  • the beam size is preferably 0.5 to 2.0 m in the scanning direction, and more preferably 30 to 200 m in the direction perpendicular to the scanning direction. By using such a rectangular or elliptical spot, the range that can be scanned at one time can be increased. For the scanning speed and irradiation power, it is necessary to set optimal conditions for the thermal characteristics and optical characteristics of the optical recording medium.
  • At least one of information recording, reproducing, erasing, and rewriting is performed by irradiating a laser beam from the first protective layer side of the optical recording medium of the present invention.
  • recording light such as a semiconductor laser is irradiated from the substrate side via an objective lens while rotating the optical recording medium at a predetermined linear velocity.
  • the recording layer absorbs the light and locally raises the temperature.
  • information is recorded by generating marks having different optical characteristics. The information recorded as described above can be reproduced by irradi
  • the optical recording / reproducing apparatus of the present invention is directed to an optical recording / reproducing apparatus that irradiates a laser beam from a light source to an optical recording medium to record and / or reproduce information on the optical recording medium. Further, the optical recording medium of the present invention is used as the optical recording medium.
  • the optical recording / reproducing apparatus can be appropriately selected according to the purpose of the present invention.
  • a laser light source which is a light source such as a semiconductor laser which emits a laser beam, and a laser beam emitted from the laser light source are spindle-shaped.
  • Condenser lens that condenses on the optical recording medium mounted on the optical disc, Optical element that guides the laser light emitted from the laser light source to the converging lens and the laser light detector, and Laser light detection that detects the reflected light of the laser light And other means as needed.
  • the laser light emitted from the laser light source is guided to a condenser lens by an optical element, and the laser light is condensed and irradiated on the optical recording medium by the condenser lens.
  • the optical recording / reproducing device guides the reflected light of the laser light to the laser single photodetector, and controls the light amount of the laser light source based on the detection amount of the laser light by the laser light detector.
  • the laser light detector converts the detected amount of the detected laser light into a voltage or a current and outputs it as a detected amount signal.
  • Examples of the other means include a control means.
  • the control means can be appropriately selected depending on the purpose without particular limitation as long as the movement of each of the means can be controlled.
  • a sequencer for irradiating and scanning an intensity-modulated laser beam there are devices such as a computer.
  • the first protective layer, recording layer, second protective layer, third protective layer, and reflective layer are sequentially laminated on the substrate by a sputtering method (sputtering apparatus, Big Sprinter, manufactured by Nuaxis Corporation). did.
  • a substrate made of polycarbonate resin having a diameter of 12 cm and a thickness of 0.6 mm and having a guide pitch of 0.74 / zm was prepared as a substrate, and the substrate was dehydrated at a high temperature.
  • the film thickness on the substrate was deposited a first protective layer by sputtering so as to 65 nm, using a sputtering target having a composition of an In Sb Cr (atomic 0/0), Arugo
  • a recording layer was formed on the first protective layer by a sputtering method at a gas pressure of 3 ⁇ 10 ⁇ 3 torr and an RF power of 300 mW so as to have a thickness of 16 nm.
  • the target of the recording layer was previously weighed, melted and heated in a glass ampoule, taken out, crushed by a crusher, and the obtained powder was heated and sintered to obtain a disc-shaped target. It was shaped.
  • the composition ratio of the recording layer after film formation was measured by inductively coupled plasma (ICP) emission spectroscopy, the composition ratio was the same as the target charge amount.
  • ICP emission spectroscopy a sequential ICP emission spectrometer (SP S4000, manufactured by Seiko Instruments Inc.) was used.
  • the alloy composition of the recording layer is the same as the alloy composition of the sputtering target.
  • the crystallization temperature of the obtained recording layer was measured by a differential scanning calorimeter (DSC220, manufactured by Seiko Denshi Co., Ltd.).
  • a second protective layer was formed on the pre-recording layer by a sputtering method so as to have a film thickness of lOnm.Then, using a sputtering target having a SiC force, the thickness of the second protective layer was reduced to nm on the second protective layer.
  • a third protective layer was formed by a sputtering method.
  • a reflective layer was formed on the third protective layer by a sputtering method so as to have a film thickness of 12 Onm, using a sputtering target having pure silver power.
  • an acrylic UV-curable resin (SD-318, manufactured by Dainippon Ink and Chemicals, Inc.) was applied to the reflective layer with a spinner so that the film thickness was 5 to 10 m. After application, the resin was cured by ultraviolet rays to form a resin protective layer.
  • Example 1 the optical recording medium of Example 1 was manufactured.
  • optical recording medium-Example 1 was repeated except that the composition of the recording layer was changed to In Sb Cr Ag Ge.
  • each optical recording medium is rotated at a constant linear velocity, and a laser beam with a power density of 10-30 mWZ ⁇ m 2 is kept constant in the radial direction. Initialization was performed by irradiating while moving with the feed amount of.
  • the recording density and recording power were set to 56 mZs or more (38 mW), the recording laser wavelength was set to 650 nm, and repeated overwriting was performed in an EFM (8-14) random pattern.
  • the jitter value of the 3T signal and the degree of modulation of the 14T signal were examined.
  • the storage reliability was evaluated based on the jitter value of the first 3T signal and the degree of modulation of the 14T signal after overwriting each optical recording medium at 80 ° C-85RH% for 100 hours.
  • Examples 1-112 show sufficient modulation and overwrite characteristics.
  • the in addition due to the effect of the addition of Cr, the reflectance is small and the storage reliability is excellent.
  • Comparative Examples 1, 2, and 5 jitter characteristics were degraded during the storage test, and in Comparative Examples 1 and 2, the reflectance was significantly reduced.
  • Comparative Examples 3, 4, and 6, the jitter increased when overwritten 1,000 times, and the overwrite characteristics were poor.
  • Comparative Example 1 the reason why the storage characteristics were poor and the reflectivity declined significantly was considered to be due to the addition of Cr.
  • Example 1 when forming the recording layer, sputtering was performed by placing a Si chip having the same composition ratio as the target recording layer composition on an InSb alloy target having the same composition ratio as the target recording layer composition.
  • sputtering was performed by placing a Si chip having the same composition ratio as the target recording layer composition on an InSb alloy target having the same composition ratio as the target recording layer composition.
  • the first protective layer, recording layer, second protective layer, third protective layer, and reflective layer are sequentially laminated on the substrate by a sputtering method (sputtering apparatus, Big Sprinter, manufactured by Nuaxis Corporation). did.
  • a substrate made of polycarbonate resin having a diameter of 12 cm and a thickness of 0.6 mm and having a guide pitch of 0.74 / zm was prepared as a substrate, and the substrate was dehydrated at a high temperature.
  • the film thickness on the substrate was deposited a first protective layer by sputtering so as to 65 nm, using a sputtering target having a composition of an In Sb Si (atomic 0/0), Arugo A recording layer was formed on the first protective layer by a sputtering method at a gas pressure of 3 ⁇ 10 torr and an RF power of 300 mW so as to have a thickness of 16 nm.
  • the target of the recording layer was previously weighed, melted and heated in a glass ampoule, taken out, crushed by a crusher, and the obtained powder was heated and sintered to obtain a disc-shaped target. It was shaped.
  • the composition ratio of the recording layer after film formation was measured by inductively coupled plasma (ICP) emission spectroscopy
  • the composition ratio was the same as the target charge amount.
  • ICP emission spectroscopy a sequential ICP emission spectrometer (SP S4000, manufactured by Seiko Instruments Inc.) was used.
  • SP S4000 sequential ICP emission spectrometer
  • the alloy composition of the recording layer is the same as the alloy composition of the sputtering target.
  • a second protective layer was formed on the pre-recording layer by a sputtering method so as to have a film thickness of lOnm.Then, using a sputtering target having a SiC force, the thickness of the second protective layer was reduced to nm on the second protective layer.
  • a third protective layer was formed by a sputtering method.
  • a reflective layer was formed on the third protective layer by a sputtering method so as to have a film thickness of 12 Onm, using a sputtering target having pure silver power.
  • an acrylic UV-curable resin (SD-318, manufactured by Dainippon Ink and Chemicals, Inc.) was applied to the reflective layer with a spinner so that the film thickness was 5 to 10 m. After application, the resin was cured by ultraviolet rays to form a resin protective layer.
  • Example 13 An optical recording medium of Example 13 was produced.
  • optical recording medium-Example 13 was repeated except that the composition of the recording layer was changed to In Sb Si Ag Ge.
  • optical recording medium-Example 13 was the same as Example 13 except that the composition of the recording layer was changed to In Sb Si Mn.
  • Example 22 An optical recording medium of Example 21 was produced.
  • Example 13 Preparation of optical recording medium-Example 13 was the same as Example 13 except that the composition of the recording layer was changed to In Sb Si Cu.
  • Example 13 Preparation of optical recording medium-Example 13 was the same as Example 13 except that the composition of the recording layer was changed to In Sb Si Cu.
  • each optical recording medium is rotated at a constant linear velocity, and a laser beam with a power density of 10-30 mWZ ⁇ m 2 is kept constant in the radial direction. Initialization was performed by irradiating while moving with the feed amount of.
  • the recording density and recording power were set to 56 mZs or more (38 mW), the recording laser wavelength was set to 650 nm, and repeated overwriting was performed in an EFM (8-14) random pattern.
  • the jitter value of the 3T signal and the degree of modulation of the 14T signal were examined.
  • the storage reliability was evaluated based on the jitter value of the first 3T signal and the degree of modulation of the 14T signal after overwriting each optical recording medium at 80 ° C-85RH% for 100 hours.
  • Examples 13 to 24 show a sufficient degree of modulation and overwrite characteristics.
  • Si due to the effect of the addition of Si, there is little decrease in reflectance and excellent storage reliability. Is recognized.
  • Comparative Examples 7, 9 and 10 the jitter characteristic was deteriorated during the storage test, and in Comparative Examples 7 and 10, the reflectance was significantly reduced. In Comparative Examples 8, 11, and 12, the jitter increased after overwriting 1000 times, and the overwriting characteristics were poor.
  • Comparative Example 7 It is considered that the reason why the storage characteristics were poor and the decrease in reflectance was large in Comparative Example 7 was that Si was added.
  • Comparative Examples 8-12 the defects in the characteristics occurred in Comparative Examples 8 and 9, in which the ratio of the amount of Sb to the sum of the amounts of In and Sb,
  • Example 13 when the recording layer was formed, a Si chip having the same composition ratio as the target recording layer composition was mounted on an InSb alloy target having the same composition ratio as the target recording layer composition, and sputtering was performed. went. However, it was difficult to obtain a recording layer having a target composition, and it was impossible to stably form a recording layer having the same composition.
  • RW discs Rewritable discs
  • CD-RW Compact Disc Rewritable
  • DVD- RW Digital Versatile Disc Rewritable
  • DVD + RW DVD-RAM
  • BD Blu-ray Disc

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 DVD−ROMと同容量であり、DVDの1.0倍速~16倍速以上(記録線速度=約3.5~56m/s以上)の広い範囲において信頼性の高い記録が可能な光記録媒体、及び該光記録媒体の製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置を提供することを目的とする。このため、基板と、該基板上に少なくとも第1保護層、記録層、第2保護層、及び反射層をこの順及び逆順のいずれかに有してなり、該記録層が、次式、InαSbβAγMδ(ただし、AはSi及びCrのいずれかの元素を表す。MはIn、Sb、Si、及びCr以外の元素、並びに該元素の混合物から選択される少なくとも1種の元素を表す。α、β、γ、及びδは、それぞれの元素の原子%を表し、0.73≦β/(α+β)≦0.90、2≦γ≦10、及び0≦δ≦20、かつα+β+γ+δ=100である)で表される組成を含有する光記録媒体を提供する。

Description

明 細 書
光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録 媒体の使用方法及び光記録再生装置
技術分野
[0001] 本発明は、レーザー光を照射することにより記録層を構成する材料に光学的な変 化を生じさせて情報の記録、再生、消去及び書換えの少なくともいずれかを行うこと が可能な光記録媒体 (以下、「相変化型光情報記録媒体」、「相変化型光記録媒体」 、「光情報記録媒体」、「情報記録媒体」と称することがある)及び該光記録媒体の製 造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装 置に関する。
背景技術
[0002] DVD+RWは、相変化型の光記録媒体の一種であり、 DVD+ROMと互換性の 高い繰り返し記録可能な媒体であり、「DVD+RW 4. 7Gbytes Basic Format Specifications System Description に規格化され、動画の記録媒体やパー ソナルコンピュータの外部記憶媒体として実用化されて 、る。この相変化型光記録媒 体は、基板上の記録層にレーザー光を照射して該記録層を加熱し、記録層構造を 結晶と非晶質間で相変化させることにより反射率を変えて情報を記録及び消去する ものである。
この DVD+RWは、大容量のデータを扱うことから、より高速で記録再生が可能な 光記録媒体が求められている。このような状況において、更なる高線速記録が可能 な光記録媒体が開発されている。
[0003] 例えば、特許文献 1には、現在の DVD+RWで用いられて ヽる記録層材料として、 CDに採用されて 、る AglnSbTe系記録材料を改良し、高線速記録領域 (記録線速 度 =約 8. 5mZs)までの記録及び消去を可能としたものが提案されている。
この AglnSbTe系記録材料は、高線速記録領域の記録スピードに対応するため、 Sbの含有量を CD— RW対応の記録材料より多くしたものである。高 Sb組成比の材料 は結晶ィ匕スピードを促進するものの、結晶化温度が低下するという問題を有し、結晶 化温度の低下は保存信頼性の悪ィ匕につながることが確認されているが、保存信頼性 の問題は、記録材料中の Agの増量、或いは Geなどの第 5元素の添カ卩により、実用 上問題にならな 、程度に抑えられて 、る。
しかし、一層の高線速記録を達成するため、更に Sb量を増加すると、最終的には S bとその他の相に分相してしまい、記録層が相変化記録層として機能しなくなってしま う。また、限界記録スピードも、 DVDの記録密度において約 20mZs前後である。
[0004] また、特許文献 2には、一般式 (In Sb ) Mで表される記録層を有してなり、 前記一般式における X及び Yは、それぞれ 55質量%≤X≤80質量%、 0質量%≤Y ≤ 20質量%であり、 Μは、 Au、 Ag、 Ge、及び から選択される少なくとも 1種を表す 光記録媒体が提案されて!ヽる。
また、特許文献 3には、 In20— 60原子%と Sb40— 80原子%との合金力らなり、記 録層に異なる条件の光エネルギーを照射して、結晶の 2つの安定状態を選択的に生 起させることにより情報を記録及び消去する光記録媒体が提案されている。
[0005] し力し、これらの光記録媒体では、現在主流となっている DVD— RAMや DVD—R W等の、高密度記録への適用可能性については十分には検討されていない。また、 何れの場合も結晶状態間の光学状態の違いに基づ!/、て記録及び消去を行うため、 記録状態と消去状態とで十分な光学的コントラストを得ることができな 、と 、う問題が ある。
[0006] したがって高密度化と、記録線速度が DVDの 1. 0倍速一 16倍速以上 (記録線速 度 =約 3. 5— 56mZs以上)の広い範囲の記録速度に対応できる光記録媒体及び その関連技術は、未だ提供されておらず、更なる改良、開発が望まれているのが現 状である。
[0007] 特許文献 1:特開 2000— 322740号公報
特許文献 2 :特公平 3— 52651号公報
特許文献 3:特公平 4-1933号公報
発明の開示
[0008] 本発明は、従来における問題を解決し、前記要望に応え、高密度化と、記録線速 度が DVDの 1. 0倍速一 16倍速以上 (記録線速度 =約 3. 5— 56mZs以上)の広い 範囲の記録速度に対応できる光記録媒体、及び該光記録媒体の製造方法、スパッ タリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置を提供する ことを目的とする。
[0009] 前記課題を解決するため本発明者らが鋭意検討を重ねた結果、 Inと Sbの 2元材料 をベースとして Cr又は Siを添加することにより、結晶部の反射率低下を抑え、反射率 低下に伴う不具合を解消することができ、更に、 Cr又は Siは、非晶質状態の保存信 頼性を向上させる作用も有していることから、アモルファスマークの安定性も向上させ ることができ、高密度化と、記録線速度が DVDの 1. 0倍速一 16倍速以上 (記録線速 度 =約 3. 5— 56mZs以上)の低速力 高速までの幅広い記録速度に対応できる高 品質な光記録媒体が得られることを知見した。
[0010] 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するた めの手段としては、以下の通りである。即ち、
< 1 > 基板と、該基板上に少なくとも第 1保護層、記録層、第 2保護層、及び反射 層をこの順及び逆順のいずれかに有してなり、該記録層力 次式、 In Sb A M (
δ ただし、 Αは Si及び Crのいずれかの元素を表す。 Mは In、 Sb、 Si、及び Cr以外の元 素、並びに該元素の混合物力 選択される少なくとも 1種の元素を表す。 α、 β、 γ、 及び δは、それぞれの元素の原子%を表し、 0. 7?»≤ β / { α + β )≤0. 90, 2≤ y≤ 10、及び 0≤ δ≤ 20、かつ α + j8 + γ + δ = 100である)で表される組成を含 有することを特徴とする光記録媒体である。
本発明の光記録媒体においては、前記記録層が、上記組成を含有しているので、 高密度化と、記録線速度が DVDの 1. 0倍速一 16倍速以上 (記録線速度 =約 3. 5 一 56mZs以上)の幅広い記録速度に対応できる光記録媒体が得られる。
[0011] < 2 > M力 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元 素を表す前記 < 1 >に記載の光記録媒体である。
[0012] < 3 > 記録層が、次式、 In Sb Si M (ただし、 Mは、 Ge
δ 、 Al、 Ag、 Mn、 Cu、
Au及び N力 選択される少なくとも 1種の元素を表す。 α、 β、 γ、及び δは、それ ぞれの元素の原子%を表し、 0. 73≤ |8 / ( α + |8 )≤0. 90、2≤ γ≤10、及び 0 ≤ δ≤20、かつ α + j8 + γ + δ = 100である)で表される組成を含有する前記く 1 >から < 2 >のいずれかに記載の光記録媒体である。
該 < 3 >に記載の光記録媒体においては、 Inと Sbの 2元材料をベースとして Siを 加えることにより、結晶部の反射率低下を抑え、反射率低下に伴う不具合を解消する ことができ、更に、 Siは、非晶質状態の保存信頼性を向上させる作用も有しているこ とから、アモルファスマークの安定性も向上させることができ、高密度化と、記録線速 度が DVDの 1. 0倍速一 16倍速以上(記録線速度 =約 3. 5— 56mZs以上)の幅広
V、記録速度に対応できる高品質な光記録媒体が得られる。
ここで、 Siを添加元素としてカ卩えることにより、結晶部の反射率低下を抑えることが できる理由は明確ではないが、反射率低下が生じるメカニズムを格子欠陥等による 結晶相の構造的な不安定性と構造緩和とに起因するものと考えた場合、 Siが格子欠 陥を埋めることにより結晶構造が安定化されるためではないかと考えられる。
[0013] < 4 > 記録層が、次式、 In Sb Cr M (ただし、 Mは Ge、 Al、 Ag、 Mn、 Cu、 A
δ
u及び N力 選択される少なくとも 1種の元素を表す。 a、 β、 γ、及び δは、それぞ れの元素の原子0 /0を表し、 0. 73≤ j8 Z ( a + j8 )≤0. 90、 2≤ γ≤ 10、及び 0≤ δ≤ 20、かつ α + j8 + γ + δ = 100である)で表される組成を含有する前記く 1 > 力 < 2 >のいずれかに記載の光記録媒体である。
該 < 4 >に記載の光記録媒体においては、 Inと Sbの 2元材料をベースとして Crを 加えることにより、結晶部の反射率低下を抑え、反射率低下に伴う不具合を解消する ことができ、更に、 Crは、非晶質状態の保存信頼性を向上させる作用も有しているこ とから、アモルファスマークの安定性も向上させることができ、高密度化と、記録線速 度が DVDの 1. 0倍速一 16倍速以上(記録線速度 =約 3. 5— 56mZs以上)の幅広
V、記録速度に対応できる高品質な光記録媒体が得られる。
ここで、 Crを添加元素としてカ卩えることにより、結晶部の反射率低下を抑えることが できる理由は、反射率低下が生じるメカニズム自体が明らかでないため明確ではな いが、記録層と保護層の界面における酸ィ匕が一因であるとすると、 Crが不動態を形 成するために耐酸ィ匕性が向上したためではな 、かと考えられる。
[0014] < 5 > α及び j8力 次式、 0. 80≤|8 Ζ ( α + |8 )≤0. 90を満たす前記く 1 >力 ら < 4 >の 、ずれかに記載の光記録媒体である。 < 6 > 記録層が、電磁波の照射による非晶質 (アモルファス)相と結晶相との可逆 的な相変化を利用して情報の記録、再生、消去及び書換えの少なくともいずれかを 行う前記く 1 >から < 5 >の 、ずれかに記載の光記録媒体である。
< 7> 記録層における昇温速度 10°CZ分での結晶化温度が 150— 250°Cであ る前記 < 1 >から < 6 >のいずれかに記載の光記録媒体である。該 < 7 >に記載の 光記録媒体においては、記録層の昇温速度 10°CZ分での結晶化温度が 150— 25 0°Cであるので、十分なアモルファスマークの安定性を確保することができる。
< 8 > 記録層の膜厚が 8— 22nmである前記 < 1 >から < 7>のいずれかに記載 の光記録媒体である。
[0015] < 9 > 第 1保護層及び第 2保護層が ZnSと SiOとの混合物を含有する前記 < 1 >
2
ら < 8 >の 、ずれかに記載の光記録媒体である。該 < 9 >に記載の光記録媒体にお ける第 1保護層及び第 2保護層は、 ZnSと SiOの混合物を含有する。該 ZnSと SiO
2 2 の混合物は、耐熱性、低熱伝導率性、化学的安定性に優れており、膜の残留応力が 小さぐ記録 Z消去の繰り返しによっても記録感度、消去比などの特性劣化が起きに くく、記録層との密着性にも優れて 、る t 、う利点がある。
< 10> 反射層が、 Ag及び Ag合金のいずれかを含有する前記 < 1 >から < 9 > のいずれかに記載の光記録媒体である。該く 10 >に記載の光記録媒体は、純 Ag 又は Ag合金は熱伝導率が極めて高ぐ記録時に記録層が高温に達した後、直ぐに 、アモルファスマーク形成に適した急冷構造を実現でき、良好な反射層を形成できる
[0016] < 11 > 第 2保護層と反射層との間に、硫黄を含まない第 3保護層を有する前記 く 10 >に記載の光記録媒体である。
< 12> 第 3保護層が SiC及び Siの少なくともいずれかを含有する前記く 11 >に 記載の光記録媒体である。
< 13 > 第 3保護層の膜厚が 2— 10nmである前記く 11 >からく 12>のいずれ かに記載の光記録媒体である。
前記く 11 >からく 13 >の 、ずれかに記載の光記録媒体のように反射層が、特に Agを含有する場合、 ZnSと SiOの混合物のような硫黄を含む材料を第 2保護層に 用いると、硫黄が Agと反応して反射層を腐食してしまうため、光記録媒体における第
3保護層を第 2保護層と反射層との間に設けることで Agの硫ィ匕を防止でき、光記録 媒体の信頼性を確保することができる。
[0017] <14> 3. 5— 56mZs以上の記録線速度で記録可能である前記く 1>からく 1
3 >の 、ずれかに記載の光記録媒体である。
[0018] <15> 次式、 In Sb A M (ただし、 Aは Si及び Crのいずれかの元素を表す。
δ
Μは Ιη、 Sb、 Si、及び Cr以外の元素、並びに該元素の混合物力 選択される少なく とも 1種の元素を表す。 α、 β、 γ、及び δは、それぞれの元素の原子%を表し、 0. 73≤ |8/(α + |8)≤0. 90、 2≤ γ≤10、及び 0≤ δ≤20、力つ α + β + γ + δ = 100である)で表される組成を含有してなり、記録層の製造に用いられることを特徴 とするスパッタリングターゲットである。
<16> Μ力 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の 元素を表す前記く 15 >に記載のスパッタリングターゲットである。
<17> 次式、 In Sb Si M (ただし、 Mは、 Ge、 Al、 Agゝ Mn、 Cu、 Au及び N
δ
力 選択される少なくとも 1種の元素を表す。 α、 j8、 γ、及び δは、それぞれの元素 の原子0 /0を表し、 0. 73≤ |8/(α + |8)≤0. 90、 2≤ γ≤10,及び 0≤ δ≤20、 かつ α + j8 + γ + δ =100である)で表される組成を含有する前記く 15 >からく 1 6 >の!、ずれかに記載のスパッタリングターゲットである。
<18> 次式、 In Sb Cr M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 Cu、 Au及び N
δ
力 選択される少なくとも 1種の元素を表す。 α、 j8、 γ、及び δは、それぞれの元素 の原子0 /0を表し、 0. 73≤ |8/(α + |8)≤0. 90、 2≤ γ≤10,及び 0≤ δ≤20、 かつ α + j8 + γ + δ =100である)で表される組成を含有する前記く 15 >からく 1 6 >の!、ずれかに記載のスパッタリングターゲットである。
<19> α及び j8力 次式、 0.80≤ |8/(α + |8)≤0. 90を満たす前記 <15> 力もく 18 >のいずれかに記載のスパッタリングターゲットである。
前記く 15>からく 19>のいずれかに記載のスパッタリングターゲットにおいては、 前記記録層の形成を所定組成の合金ターゲットを使用したスパッタリング法を用 ヽて 行うことによって、所望の記録層組成を得ることができ、 DVDの 1.0倍速一 16倍速 以上 (記録線速度 =約 3. 5— 56mZs以上)の広い範囲の記録速度に対応できる光 記録媒体を安定に提供できる。
[0019] < 20> 基板上に少なくとも第 1保護層、記録層、第 2保護層、及び反射層をこの 順及び逆順のいずれかに有してなる光記録媒体の製造方法において、前記く 15 > 力らく 19 >のいずれかに記載のスパッタリングターゲットを用いてスパッタリング法に より記録層を成膜する記録層形成工程を含むことを特徴とする光記録媒体の製造方 法である。
本発明の光記録媒体の製造方法では、前記記録層形成工程において、本発明の 前記スパッタリングターゲットを用いてスパッタリング法により記録層を成膜する。その 結果、 DVDの 1. 0倍速一 16倍速以上(記録線速度 =約 3. 5— 56mZs以上)の広 い範囲の記録速度に対応できる光記録媒体を効率よく製造することができる。
[0020] < 21 > 前記く 1 >からく 14>のいずれかに記載の光記録媒体における第 1保 護層側からレーザー光を照射して情報の記録、再生、消去及び書換えの少なくとも いずれかを行うことを特徴とする光記録媒体の使用方法である。
本発明の光記録媒体の使用方法においては、前記本発明の光記録媒体に対し、 レーザー光を照射することにより情報の記録、再生、消去及び書換えの少なくともい ずれかを行う。その結果、安定かつ確実に情報の記録、再生、消去及び書換えの少 なくともいずれ力を効率よく行うことができる。
[0021] < 22> 光記録媒体に光源からレーザー光を照射して該光記録媒体に情報の記 録及び再生の少なくとも!/ヽずれかを行う光記録再生装置にお!ヽて、前記光記録媒体 力 前記 < 1 >から < 14 >のいずれかに記載の光記録媒体であることを特徴とする 光記録再生装置である。
本発明の光記録再生装置は、光記録媒体に光源からレーザー光を照射して該光 記録媒体に情報の記録及び再生の少なくともいずれかを行う光記録再生装置にお いて、前記光記録媒体として本発明の前記光記録媒体を用いる。該本発明の光記 録再生装置においては、安定かつ確実に情報の記録及び再生の少なくともいずれ かを行うことができる。
図面の簡単な説明 [0022] [図 1]図 1は、本発明の光記録媒体の一例を示す概略断面図である。
[図 2]図 2は、本発明の光記録媒体の他の一例を示す概略断面図である。
発明を実施するための最良の形態
[0023] (光記録媒体)
本発明の光記録媒体は、基板と、該基板上に少なくとも第 1保護層、記録層、第 2 保護層、及び反射層をこの順及び逆順のいずれかに有してなり、第 3保護層、更に 必要に応じてその他の層を有してなる。
前記光記録媒体は、第 1保護層側からレーザー光を照射して情報の記録、再生、 消去及び書換えの少なくともいずれかを行うものである。
[0024] —記録層—
前記記録層は、レーザー光を照射して、結晶相とアモルファス相の間で相変化させ ることにより信号を記録及び消去する。この場合、結晶相とアモルファス相とでは反射 率が異なるが、通常は未記録状態を高反射率の結晶相とし、この結晶相に高パワー のレーザーノ ルスを照射して記録層を加熱し急冷することにより低反射率であるァモ ルファスマークを信号として記録する。
[0025] 前記記録層では、結晶化速度が大きい上に記録感度が高いことから、 InSb系材料 をベース材料とする。また、 Inと Sbをベースに添カ卩元素として、 Ge、 Al、 Ag、 Mn、 C u、 Au、及び Nカゝら選択される少なくとも 1種の元素をカ卩えることにより、保存信頼性 等の特性を更に向上させることが可能である。しかし、この材料を用いた光記録媒体 は、保存特性に問題がある。
そこで、 Inと Sbの二元材料をベースとして新たに Si又は Crをカ卩えることにより、結晶 部の反射率低下を抑え、反射率低下に伴う不具合を解消することができる。また、 Si 又は Crは、非晶質状態の保存信頼性を向上させる作用も有していることから、ァモル ファスマークの安定性も向上させることもできる。
更に、 Inと、 Sbと、 Si又は Crとからなる記録材料に、元素 Mを添加するとより特性を 向上させることが可能である。 Mは、 Ge、 Al、 Ag、 Mn、 Cu、 Au、及び Nから選択さ れる少なくとも 1種の元素であり、何れも高速結晶化とアモルファスマークの安定性を 両立させるのに適した添加元素である。 [0026] 従って、前記記録層は、次式、 In Sb A M (ただし、 Aは、 Si及び Crのいずれ かの元素を表す。 Μは、 In、 Sb、 Si、及び Cr以外の元素、並びに該元素の混合物か ら選択される少なくとも 1種の元素を表す。 (χ、 β、 γ、及び δは、それぞれの元素の 原子0 /0を表し、 0. 73≤ |8/(α + |8)≤0. 90、2≤ γ≤10、及び 0≤ δ≤20、 つ α + + γ + δ =100である)で表される組成を含有してなる。
前記 Μとしては、 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の 元素が好ましい。
また、前記記録層は、次式、 In Sb Si M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 Cu
、 Au及び N力 選択される少なくとも 1種の元素を表す。 α、 j8、 γ、及び δは、それ ぞれの元素の原子%を表し、 0. 73≤ |8/(α + |8)≤0. 90、2≤ γ≤10、及び 0 ≤ δ≤20、かつ α + j8 + γ + δ =100である)で表される組成を含有することが好 ましい。
また、前記記録層は、次式、 In Sb Cr M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 C u、 Au及び N力 選択される少なくとも 1種の元素を表す。 a、 β、 γ、及び δは、そ れぞれの元素の原子%を表し、 0. 73≤ |8/(α + |8)≤0. 90, 2≤ γ≤10,及び 0≤ δ≤20、かつ α + j8 + γ + δ =100である)で表される組成を含有することが 好ましい。
[0027] 前記 a及び j8は、 0. 73≤ |8 / + |8 )≤0. 90を満たす。前記 j8 / + j8 )が 0. 73未満であると、結晶化速度が不足し、 DVD16倍速以上の線速下でのオーバ 一ライトが難しくなることがある。一方、前記 |8 Z ( α + |8 )が 0. 90を超えると、保存 信頼性が低下することがある。前記 j8 Ζ ( α + j8 )の範囲を 0. 80≤ β/(α + β)≤ 0. 90として、結晶化速度に余裕を持たせることで光記録媒体設計上のマージンが 広がる。例えば、光記録媒体を構成する際に、記録層の膜厚、或いは他の層の材料 や膜厚のマージンが広がるので好まし 、。
[0028] 前記 Si又は Crの添加量 γは、 10原子%を超えるとオーバーライト特性が悪ィ匕し、 2 原子%未満では添加効果が明確には現れないことから、 2≤ γ≤10とし、 2≤ γ≤6 力 り好ましい。
また、前記元素 Μの添加量 δは、 20原子%を超えるとオーバーライト特性が低下 することから、 0≤ δ≤20とし、 1≤ δ≤ 10がより好ましい。
[0029] 前記記録層における昇温速度 10°CZ分での結晶化温度は 150— 250°Cが好まし く、 165— 225°Cがより好ましい。これにより、十分なアモルファスマークの安定性を 確保することができる。前記記録層の結晶化温度は、 Si又は Crや添加元素 Mの添 加量を調整することにより、上記温度範囲内とすることができる。
ここで、前記結晶化温度は、例えば、示差走査熱量測定装置 (DSC220、株式会 社セイコー電子製)により測定することができる。
[0030] 前記記録層の形成方法としては、各種気相成長法、例えば、真空蒸着法、スパッタ リング法、プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム蒸着法 などが用いられる。これらの中でも、スパッタリング法が、量産性、膜質等の点で優れ ている。
[0031] 前記記録層の膜厚は、 8— 22nmが好ましぐ 10— 18nmがより好ましい。前記膜 厚が 8nm未満であると、記録層の熱容量を下げることができるため、光記録媒体の 感度を上げることができる。しかし、光学的な距離 (再生光が通る距離)が短くなるた め十分なコントラストを得ることが困難になり、再生信頼性が低下してしまうことがある 。一方、膜厚が 22nmを超えると、反射率のコントラストは高く保てるが、記録層の体 積が大きくなるため感度が悪くなつてしまうことがある。
[0032] 次に,本発明の光記録媒体の層構成の一例を図面に基づいて説明する。
ここで、図 1は、本発明の光記録媒体の一例を示す概略断面図であり、基板 1と、該 基板 1上に第 1保護層 2、記録層 3、第 2保護層 4、反射層 5、及び榭脂保護層 6がこ の順に積層されてなる。
図 2は、本発明の光記録媒体の一例を示す概略断面図であり、基板 1と、該基板 1 上に第 1保護層 2、記録層 3、第 2保護層 4、第 3保護層 8、反射層 5、及び榭脂保護 層 6がこの順に積層されてなる。
なお、榭脂保護層 6上には、必要に応じて、光記録媒体の更なる補強又は保護の ため、別の基板 (貼り合わせ基板)を貼り合わせてもよ ヽ。
[0033] 一基板
前記基板 1は、光記録媒体の機械的強度を確保できる材料のものを選定する必要 がある。また、記録及び再生に用いる光が基板を通して入射する場合は、用いる光 の波長領域で十分に透明であることが必要である。
前記基板材料としては、通常、ガラス、セラミックス、榭脂、などが用いられるが、成 形性、コストの点から、榭脂製基板が好適である。該榭脂としては、例えば、ポリカー ボネート榭脂、アクリル榭脂、エポキシ榭脂、ポリスチレン榭脂、アクリロニトリルースチ レン共重合体、ポリエチレン榭脂、ポリプロピレン榭脂、シリコーン榭脂、フッ素榭脂、
ABS榭脂、ウレタン榭脂などが挙げられる。これらの中でも、成形性、光学特性、コス トの点から、ポリカーボネート榭脂、アクリル榭脂が特に好ましい。
[0034] 前記基板 1の厚みは、特に制限はなぐ通常使用するレーザーの波長やピックアツ プレンズの集光特性により決定される。波長 780nmの CD系では 1. 2mmの基板厚 み、波長 650— 665nmの DVD系では 0. 6mmの板厚の基板が用いられている。
[0035] 前記基板としては、例えば、表面にトラッキング用の案内溝を有し、直径 12cm、厚 さ 0. 6mmのディスク状で、加工性、光学特性に優れたポリカーボネート榭脂基板が 好適である。トラッキング用の案内溝は、ピッチ 0. 74±0. 03 ^ m,溝深さ 22— 40η m、溝幅 0. 2-0. 4 /z m範囲内の蛇行溝であることが好ましい。特に溝を深くするこ とにより、光記録媒体の反射率が下がって変調度を大きくすることができる。
[0036] なお、情報信号が書き込まれる基板 1と貼り合せ用基板とを貼り合わせるための接 着層は、ベースフィルムの両側に粘着剤を塗布した両面粘着性のシート、熱硬化性 榭脂又は紫外線硬化榭脂により形成する。前記接着層の膜厚は、通常 50 m程度 である。
[0037] 前記貼り合せ用基板 (ダミー基板)は、接着層として粘着性シート又は熱硬化性榭 脂を用いる場合は、透明である必要はないが、該接着層に紫外線硬化榭脂を用いる 場合は紫外線を透過する透明基板を用いることが好ましい。前記貼り合せ用基板の 厚みは、通常、情報信号を書き込む透明基板 1と同じ 0. 6mmのものが好適である。
[0038] 第 1保護層一
前記第 1保護層 2は、基板及び記録層との密着性が良好であり、耐熱性が高いこと が好ましぐ更に、記録層の効果的な光吸収を可能にする光干渉層としての役割も 担うことから、高線速での繰り返し記録に適した光学特性を有することが好ま 、。 前記第 1保護層の材料としては、例えば、 SiO、 SiO、 ZnO、 SnO、 Al O、 TiO
2 2 2 3 2
、 In O、 MgO、 ZrO等の金属酸化物; Si N、 A1N、 TiN、 BN、 ZrN等の窒化物;
2 3 2 3 4
ZnS、 In S、 TaS等の硫化物; SiC、 TaC、 B C、 WC、 TiC、 ZrC等の炭化物ゃダ
2 3 4 4
ィャモンド状カーボン、又はそれらの混合物が挙げられる。これらの中でも、 ZnSと Si Oの混合物が好ましい。前記 ZnSと SiOの混合モル比(ZnS : SiO )は 50— 90 : 50
2 2 2
一 10力女子ましく、 60— 90: 40— 10力 り女子まし!/ \
[0039] 前記第 1保護層 2の形成方法としては、各種気相成長法、例えば、真空蒸着法、ス パッタリング法、プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム 蒸着法などが挙げられる。これらの中でも、スパッタリング法が、量産性、膜質等の点 で優れている。
[0040] 前記第 1保護層の膜厚は、特に制限はなぐ 目的に応じて適宜選択することができ 、 50— 250nm力好ましく、 75— 200nm力より好ましい。前記膜厚が 50nm未満であ ると、耐熱性が低下して記録層が加熱されたときに、同時に基板も加熱されてしまうた め基板が変形してしまうことがあり、 250nmを超えると、スパッタリング法等による成膜 過程において膜温度の上昇により膜剥離やクラックが生じたり、記録時の感度が低下 することがある。
[0041] 第 2保護層—
前記第 2保護層 4は、記録層及び反射層との密着性が良好であり、耐熱性が高いこ とが好ましぐ更に、記録層の効果的な光吸収を可能にする光干渉層としての役割も 担うことから、高線速での繰り返し記録に適した光学特性を有することが好ま 、。 前記第 1保護層の材料としては、例えば、 SiO、 SiO、 ZnO、 SnO、 Al O、 TiO
2 2 2 3 2
、 In O、 MgO、 ZrO等の金属酸化物; Si N、 A1N、 TiN、 BN、 ZrN等の窒化物;
2 3 2 3 4
ZnS、 In S、 TaS等の硫化物; SiC、 TaC、 B C、 WC、 TiC、 ZrC等の炭化物ゃダ
2 3 4 4
ィャモンド状カーボン、又はそれらの混合物が挙げられる。これらの中でも、 ZnSと Si Oの混合物が好ましい。前記 ZnSと SiOの混合モル比(ZnS : SiO )は 50— 90 : 50
2 2 2
一 10力女子ましく、 60— 90: 40— 10力 り女子まし!/ \
[0042] 前記第 2保護層 4の形成方法としては、各種気相成長法、例えば、真空蒸着法、ス パッタリング法、プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム 蒸着法などが用いられる。これらの中でも、スパッタリング法が、量産性、膜質等の点 で優れている。
[0043] 前記第 2保護層の膜厚は、特に制限はなぐ目的に応じて適宜選択することができ 、 10— lOOnmが好ましぐ 15— 50nm力より好ましい。前記膜厚が lOOnmを超える と、記録感度の低下、温度上昇による膜剥離、変形、放熱性の低下により、繰り返し オーバーライト特性が悪くなることがあり、 lOnm未満であると、基本的に耐熱性が低 下してしまうことがある。
[0044] 一反射層—
前記反射層 5は、光反射層としての役割を果たす一方で、記録時にレーザー光照 射により記録層に加わった熱を逃がす放熱層としての役割も担っている。非晶質マ ークの形成は,放熱による冷却速度により大きく左右されるため、反射層の選択は高 線速対応の光記録媒体では重要である。
[0045] 前記反射層 5は、例えば、 Al、 Au、 Ag、 Cu、 Taなどの金属材料、又はそれらの合 金などを用いることができる。また、これら金属材料への添加元素として、 Cr、 Ti、 Si 、 Cu、 Ag、 Pd、 Taなどが使用できる。これらの中でも、 Ag及び Ag合金のいずれか を含有することが好ましい。これは、前記光記録媒体を構成する反射層は通常、記録 時に発生する熱の冷却速度を調整する熱伝導性の観点と、干渉効果を利用して再 生信号のコントラストを改善する光学的な観点から、高熱伝導率及び高反射率の金 属が望ましぐ純 Ag又は Ag合金は Agの熱伝導率が 427WZm'Kと極めて高ぐ記 録時に記録層が高温に達した後直ぐに、アモルファスマーク形成に適した急冷構造 を実現できるからである。
なお、このように高熱伝導率性を考慮すると純銀が最良であるが、耐食性を考慮し Cuを添カ卩してもよい。この場合 Agの特性を損なわないためには銅の添加量は 0. 1 一 10原子%が好ましぐ 0. 5— 3原子%がより好ましい。銅の過剰な添カ卩は Agの高 熱伝導率性を低下させてしまうことがある。
[0046] 前記反射層 5は、各種気相成長法、例えば、真空蒸着法、スパッタリング法、プラズ マ CVD法、光 CVD法、イオンプレーティング法、電子ビーム蒸着法などによって形 成できる。なかでも、スパッタリング法力 量産性、膜質等の点で優れている。 [0047] 前記反射層の膜厚は、特に制限はなぐ 目的に応じて適宜選択することができ、 10 0— 300nm力好ましく、 120— 250nm力より好ましい。前記膜厚が lOOnm未満であ ると、放熱効果が得られず、アモルファスが形成し難くなることがあり、 300nmを超え ると、材料コストがアップし、界面剥離が生じ易くなることがある。
[0048] 第 3保護層 8—
図 2に示すように、前記第 2保護層 4と前記反射層 5との間に、第 3保護層 8を設ける ことが好ましい。
第 3保護層 8の材料としては、例えば、 Si、 SiC、 SiN、 SiO、 TiC、 TiO、 TiC Ti
2 2
O、 NbC、 NbO、 NbV-NbO、 Ta O、 Al O、 ITO、 GeN、 ZrOなどが挙げられ
2 2 2 2 5 2 3 2
、これらの中でも、 TiC TiO、 Si又は SiCがバリア性が高い点で特に好ましい。
2
純 Ag又は Ag合金を反射層に用いると、 ZnSと SiOの混合物のような硫黄を含む
2
保護層を用いた場合、硫黄が Agへ拡散しディスク欠陥となる不具合が生じてしまう( Agの硫化反応)。従って、このような反応を防止する第 3保護層としては、(l)Agの 硫化反応を防ぐ、バリア能力があること、(2)レーザー光に対して光学的に透明であ ること、(3)アモルファスマーク形成のため、熱伝導率が低いこと、(4)保護層や反射 層と密着性がよいこと、(5)層形成が容易であること、などの観点力も適切な材料を 選定することが望ましぐ上記要件を満たす TiC TiO、 Si又は SiCを主成分とする
2
材料が第 3保護層の構成材料としては好まし 、。
[0049] 前記第 3保護層の形成方法としては、各種気相成長法、例えば、真空蒸着法、スパ ッタリング法、プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム蒸 着法などが用いられる。これらの中でも、スパッタリング法が、量産性、膜質等の点で 優れている。
[0050] 前記第 3保護層の膜厚は、 2— 20nmが好ましぐ 2— 10nmがより好ましい。前記 膜厚が 2nm未満であると,ノ リア層として機能しなくなることがあり、 20nmを超えると 、変調度の低下を招くおそれがある。
[0051] なお、前記反射層 5上には、更に必要に応じて榭脂保護層 6を設けることができる。
該榭脂保護層は、工程内及び製品となった時点で記録層を保護する作用効果を有 し、通常、紫外線硬化性の榭脂により形成する。前記榭脂保護層の膜厚は 2— 5 /z m が好ましい。
[0052] 以上、本発明の光記録媒体について詳細に説明したが、本発明は、上記実施の形 態に限定されず、本発明の要旨を逸脱しない範囲で種々変更しても差支えない。例 えば、 DVD系に見られるような貼り合せ用基板に代えて榭脂保護層を介し同一又は 異なる光記録媒体が互いに 2枚貼り合わされた光記録媒体等に対しても適用できる
[0053] (スパッタリングターゲット)
本発明のスパッタリングターゲットは、記録層の製造に用いられ、次式、 In Sb A
Μ (ただし、 Αは Si及び Crのいずれかの元素を表す。 Mは In、 Sb、 Si、及び Cr以外 s
の元素、並びに該元素の混合物力 選択される少なくとも 1種の元素を表す。 α、 β 、 y、及び δは、それぞれの元素の原子0 /0を表し、 0. 7?»≤ β / { α + β )≤0. 90, 2≤ γ≤10、及び 0≤ δ≤20、かつ α + j8 + γ + δ = 100である)で表される組成 を含有してなる。
Μ力 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元素を表 すことが好ましい。
また、本発明のスパッタリングターゲットは、次式、 In Sb Si M (ただし、 Mは、 G
δ
e、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元素を表す。 α、 β 、 γ、及び δは、それぞれの元素の原子0 /0を表し、 0. 7?»≤ β / { α + β )≤0. 90, 2≤ γ≤10、及び 0≤ δ≤20、かつ α + j8 + γ + δ = 100である)で表される組成 を含有することが好ましい。
また、本発明のスパッタリングターゲットは、次式、 In Sb Cr M (ただし、 Mは、
δ
Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元素を表す。 α、 β、 γ、及び δは、それぞれの元素の原子0 /οを表し、 0. 7?»≤ β / { α + β )≤0. 9 0、 2≤ γ≤10、及び 0≤ δ≤20、かつ α + β + γ + δ = 100である)で表される組 成を含有することが好まし ヽ。
[0054] 前記 α及び j8は、次式、0. 73≤ j8 / ( α + j8 )≤0. 90を満たし、 0. 80≤ β / ( α + β )≤0. 90を満たすことが好ましい。前記 γは、 2≤ γ≤ 10を満たし、 2≤ y≤ 6が好ましい。前記 δは、 0≤ δ≤ 20を満たし、 1≤ δ≤ 10がより好ましい。 [0055] 本発明のスパッタリングターゲットにおいては、以上説明したように、安定して同一 組成の記録層を形成するためには、予め目標とする記録層組成と同一組成の合金タ 一ゲットを用いることが有効である。
[0056] 前記スパッタリングターゲットの作製方法としては、特に制限はなぐ 目的に応じて 適宜選択することができ、予め所定の仕込み量を秤量し、ガラスアンプル中で加熱溶 融する。その後、これを取り出して粉砕機により粉砕し、得られた粉末を加熱焼結す ることによって、円盤状のスパッタリングターゲットを得ることができる。
[0057] 本発明によれば、記録線速度が DVDの 1. 0倍速一 16倍速以上 (記録線速度 = 約 3. 5— 56mZs以上)の広い範囲の記録速度に対応でき、繰返し記録が可能であ ると共に、保存信頼性にも優れた光記録媒体を提供できる。
また、本発明によれば、 DVD— ROMと同容量で幅広い記録線速領域で繰返し記 録特性が良好な光記録媒体を製造するためのスパッタリングターゲットを提供できる
[0058] (光記録媒体の製造方法)
本発明の光記録媒体の製造方法は、記録層形成工程を少なくとも含んでなり、初 期結晶化工程、更に必要に応じてその他の工程を含んでなる。
[0059] —記録層形成工程—
前記記録層形成工程は、本発明の前記スパッタリングターゲットを用いてスパッタリ ング法により記録層を成膜する工程である。
前記スパッタリング法としては、特に制限はなぐ公知のものの中から目的に応じて 適宜選択することができ、例えば、成膜ガスとして Arガスを用い、投入電圧 1一 5kW 、成膜ガス流量は 10— 40sccmが好ましい。スパッタリング中のチャンバ一内の Arガ ス圧が、 7. 0 X 10— 3Torr (mbar)以下が好ましい。
[0060] 初期結晶化工程
前記初期結晶化工程は、光記録媒体を所定の一定線速度で回転させ、所定のパ ヮー密度で初期結晶化を行う工程である。
上記構成の光記録媒体では成膜に気相法を用いるのが一般的であり、基板も榭脂 基板を用いるため低温成膜になる。従って、成膜直後の記録層は高エネルギーの気 相からの急冷状態にあるため、通常はアモルファス状態であり、かつ反射率の低い 状態となる。従って、結晶化状態の中にアモルファスマークを形成する方力 光記録 媒体の反射率をより高く保つことが可能となるために好ましい。そこで、光記録媒体の 情報記録領域を結晶化するための初期化が必要である。該初期化は、高出力及び 大口径のレーザーを記録層近傍に照射し走査して記録層を溶融及び徐冷すること により行う。高出力レーザー及びその光学系は任意のものを用いることができるが、 例えば、波長 800nm程度のものが一般的である。レーザーの出力は 500— 3000m Wが好ましぐ 1000— 2500mW力 Sより好ましい。ビームの大きさは、走査方向に 0. 5 一 2. 0 mが好ましく、走査方向と垂直な方向に 30— 200 mとするのが好ましい。 このような長方形又は楕円形のスポットを用いることにより、一度に走査できる範囲を 広げることができる。走査速度と照射パワーは光記録媒体の熱学的特性と光学的特 性力 最適な条件を設定する必要がある。
[0061] (光記録媒体の使用方法)
本発明の光記録媒体の使用方法は、前記本発明の光記録媒体における第 1保護 層側からレーザー光を照射して情報の記録、再生、消去及び書換えの少なくともい ずれかを行うものである。
この場合、前記光記録媒体の記録線速度は、 DVDの 1. 0倍速一 16倍速以上 (記 録線速度 =約 3. 5— 56mZs以上)の広い範囲の記録速度に対応することができる 具体的には、光記録媒体を所定の線速度にて回転させながら、基板側から対物レ ンズを介して半導体レーザー等の記録用の光を照射する。この照射光により、記録 層がその光を吸収して局所的に温度上昇し、例えば、光学特性の異なるマークを生 成することで情報が記録される。上記のように記録された情報の再生は、光記録媒体 を所定の線速度で回転させながらレーザー光を基板側力 照射して、その反射光を 検出することにより行うことができる。
[0062] (光記録再生装置)
本発明の光記録再生装置は、光記録媒体に光源からレーザー光を照射して該光 記録媒体に情報を記録及び再生の少なくともいずれかを行う光記録再生装置にお 、て、前記光記録媒体として本発明の前記光記録媒体を用いたものである。
前記光記録再生装置は、特に制限はなぐ目的に応じて適宜選択することができる 力 例えば、レーザー光を出射する半導体レーザー等の光源であるレーザー光源と 、レーザー光源から出射されたレーザー光をスピンドルに装着された光記録媒体に 集光する集光レンズ、レーザー光源から出射されたレーザー光を集光レンズとレーザ 一光検出器とに導く光学素子、レーザー光の反射光を検出するレーザー光検出器 を備え、更に必要に応じてその他の手段を有してなる。
[0063] 前記光記録再生装置は、レーザー光源から出射されたレーザー光を光学素子によ り集光レンズに導き、該集光レンズによりレーザー光を光記録媒体に集光照射して光 記録媒体に記録を行う。このとき、光記録再生装置は、レーザー光の反射光をレー ザ一光検出器に導き、レーザー光検出器のレーザー光の検出量に基づきレーザー 光源の光量を制御する。
前記レーザー光検出器は、検出したレーザー光の検出量を電圧又は電流に変換 し検出量信号として出力する。
前記その他の手段としては、制御手段等が挙げられる。前記制御手段としては、前 記各手段の動きを制御することができる限り特に制限はなぐ目的に応じて適宜選択 することができ、例えば、強度変調したレーザー光を照射及び走査するためのシーク ェンサ一、コンピュータ等の機器が挙げられる。
[0064] 本発明によれば、記録層材料として Inと Sbの二元材料をベースとして新たに Si又 は Crを加えること〖こより、 DVD— ROMと同容量で、 DVDの 1. 0倍速一 16倍速以上 (記録線速度 =約 3. 5— 56mZs以上)の広い範囲で記録が可能であり、良好な保 存特性を有する光記録媒体を提供できる。
[0065] 以下、実施例により本発明を詳細に説明するが、本発明は、下記実施例に何ら限 定されるものではない。
[0066] (実施例 1)
-光記録媒体の作製 - 基板上に、スパッタリング法 (スパッタ装置、ュナクシス社製、 Big Sprinter)により 、第 1保護層、記録層、第 2保護層、第 3保護層、及び反射層を順次積層した。 まず、基板として、直径 12cm、厚さ 0. 6mmのポリカーボネート榭脂製で、トラック ピッチ 0. 74 /z mの案内溝付き基板を用意し、この基板を高温で脱水処理した。 次に、(ZnS) (SiO ) の組成(モル0 /0)からなるスパッタリングターゲットを用い、
80 2 20
前記基板上に膜厚が 65nmとなるようにスパッタリング法により第 1保護層を成膜した 次に、 In Sb Crの組成(原子0 /0)からなるスパッタリングターゲットを用い、ァルゴ
17 77 6
ンガス圧 3 X 10— 3torr、 RFパワー 300mWでスパッタリング法により、前記第 1保護層 上に膜厚が 16nmとなるように記録層を成膜した。なお、記録層のターゲットは、予め 、仕込み量を秤量し、ガラスアンプル中で加熱溶融した後、これを取り出して粉砕機 により粉砕し、得られた粉末を加熱焼結することによって円盤状のターゲット形状とし た。成膜後の記録層の組成比を誘導結合プラズマ (ICP)発光分光分析法により測 定したところ、ターゲット仕込み量と同じ組成比であった。 ICP発光分光分析法には、 シーケンシャル型 ICP発光分光分析装置 (セイコーインスツルメンッ株式会社製、 SP S4000)を使用した。なお、後述する実施例及び比較例においても、記録層の合金 組成とスパッタリングターゲットの合金組成とは同一である。
得られた記録層の結晶化温度を示差走査熱量測定装置 (DSC220、株式会社セ イコー電子製)により測定した結果、 201°Cであった。
次に、(ZnS) (SiO ) の組成(モル0 /0)からなるスパッタリングターゲットを用い、
80 2 20
前記録層上に膜厚が lOnmとなるようにスパッタリング法により第 2保護層を成膜した 次に、 SiC力もなるスパッタリングターゲットを用い、第 2保護層上に膜厚力 nmとな るようにスパッタリング法により第 3保護層を成膜した。
次に、純銀力もなるスパッタリングターゲットを用い、前記第 3保護層上に膜厚が 12 Onmとなるようにスパッタリング法により反射層を成膜した。
次に、スピナ一によつてアクリル系紫外線硬化榭脂(大日本インキ化学工業株式会 社製、 SD— 318)含有塗布液を前記反射層上に、膜厚が 5— 10 mになるように塗 布した後、紫外線硬化させて榭脂保護層を形成した。
最後に、前記榭脂保護層上に、直径 12cm、厚さ 0. 6mmのポリカーボネート榭脂 製基板を接着シートにより貼り合せた。以上により、実施例 1の光記録媒体を作製し た。
[0067] (実施例 2)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
18 80 2
て、実施例 2の光記録媒体を作製した。
[0068] (実施例 3)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
16 75 9
て、実施例 3の光記録媒体を作製した。
[0069] (実施例 4)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
10 84 6
て、実施例 4の光記録媒体を作製した。
[0070] (実施例 5)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
23 71 6
て、実施例 5の光記録媒体を作製した。
[0071] (実施例 6)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Geとした以外は、実施例 1と同様
16 75 6 3
にして、実施例 6の光記録媒体を作製した。
[0072] (実施例 7)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Ag Geとした以外は、実施例 1と
15 76 5 2 2
同様にして、実施例 7の光記録媒体を作製した。
[0073] (実施例 8)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr A1とした以外は、実施例 1と同様
16 76 4 4
にして、実施例 8の光記録媒体を作製した。
[0074] (実施例 9)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Mnとした以外は、実施例 1と同
16 76 5 3
様にして、実施例 9の光記録媒体を作製した。
[0075] (実施例 10)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Cuとした以外は、実施例 1と同様
15 75 6 4
にして、実施例 10の光記録媒体を作製した。
[0076] (実施例 11)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Auとした以外は、実施例 1と同様
16 76 5 3
にして、実施例 11の光記録媒体を作製した。
[0077] (実施例 12)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Mn とした以外は、実施例 1と同
13 67 5 15
様にして、実施例 12の光記録媒体を作製した。
[0078] (比較例 1)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb とした以外は、実施例 1と同様にして、
22 78
比較例 1の光記録媒体を作製した。
[0079] (比較例 2)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
19 80 1
て、比較例 2の光記録媒体を作製した。
[0080] (比較例 3)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr とした以外は、実施例 1と同様に
15 69 16
して、比較例 3の光記録媒体を作製した。
[0081] (比較例 4)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
28 66 6
て、比較例 4の光記録媒体を作製した。
[0082] (比較例 5)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Crとした以外は、実施例 1と同様にし
8 86 6
て、比較例 5の光記録媒体を作製した。
[0083] (比較例 6)
-光記録媒体の作製 - 実施例 1において、記録層の組成を In Sb Cr Mn とした以外は、実施例 1と同
13 61 5 21
様にして、比較例 6の光記録媒体を作製した。
[0084] <初期化 >
初期化装置として日立コンピュータ機器株式会社製の' PCR DISK INITIALIZ ER'を使用し、各光記録媒体を一定線速度で回転させ、パワー密度 10— 30mWZ μ m2のレーザー光を、半径方向に一定の送り量で移動させながら照射することによ り初期化した。
[0085] <評価 >
初期化後の各光記録媒体について、以下のようにして、信号特性、保存信頼性、 及び結晶部の反射率低下量を評価した。結果を表 1に示す。
[0086] <信号特性の評価 >
各光記録媒体について、記録密度及び記録パワーを 56mZs以上(38mW)とし、 記録用レーザー波長を 650nmとして、 EFM (8— 14)ランダムパターンでオーバーラ イトの繰り返しを行い、再生信号特性の評価として 3T信号のジッタ値と、 14T信号の 変調度を調べた。
[0087] <保存信頼性の評価 > 保存信頼性は、各光記録媒体を 80°C— 85RH%の温湿度下で 100時間保存した 後のオーバーライト 1回目の 3T信号のジッタ値と 14T信号の変調度で評価した。
[0088] <結晶部の反射率低下量の測定 >
各光記録媒体について、結晶部の反射率低下量を、 80°C - 85RH%の温湿度下 で 100時間保存する保存試験前後での反射率差〔反射率差 (%) =保存試験前の反 射率 (%) _100時間保持後の反射率 (%;)〕として評価した。
[0089] [表 1]
Figure imgf000026_0001
表 1の結果から、実施例 1一 12は、十分な変調度、オーバーライト特性を示してい る。また、 Crの添加効果により、反射率低下が少なぐ保存信頼性にも優れている。 これに対して、比較例 1、 2、及び 5では、保存試験時におけるジッタ特性の悪ィ匕が 見られ、比較例 1及び 2では反射率低下も大きい。また、比較例 3、 4、及び 6では、 1 000回オーバーライトした際にジッタが上昇しており、オーバーライト特性が悪い。 比較例 1にお 、て保存特性が悪く反射率低下が大き ヽのは Crを添加して 、な 、た めと考えられる。比較例 2において保存特性が悪く反射率低下が大きくなり、比較例 3ではオーバーライト特性が悪力つたのは、 Crの量が 2— 15原子%の範囲外である ためと考えられる。また、比較例 4及び 5において特性に不備が生じたのは、 Inと Sb 量の和に対する Sb量の割合、即ち、 |8 (0: + |8 )が、0. 7?»≤ β / { α + β )≤0. 90の範囲外であるためと考えられる。また、比較例 6において特性に不備が生じたの は、 Μηの添カ卩量が 20原子%を超えているためと考えられる。
[0091] (製造例 1)
実施例 1において、記録層を形成する際に、目標とする記録層組成と同じ組成比の InSb合金ターゲット上に、目標とする記録層組成と同じ組成比の Siのチップを載せ てスパッタを行った。しかし、目標とする組成の記録層を得るのは困難であり、安定し て同一組成の記録層を形成することはできな力つた。
このことから、安定して同一組成の記録層を形成するためには、予め目標とする記 録層組成と同一組成の合金ターゲットを用いることが有効であることが分る。
[0092] (実施例 13)
-光記録媒体の作製 - 基板上に、スパッタリング法 (スパッタ装置、ュナクシス社製、 Big Sprinter)により 、第 1保護層、記録層、第 2保護層、第 3保護層、及び反射層を順次積層した。 まず、基板として、直径 12cm、厚さ 0. 6mmのポリカーボネート榭脂製で、トラック ピッチ 0. 74 /z mの案内溝付き基板を用意し、この基板を高温で脱水処理した。 次に、(ZnS) (SiO ) の組成(モル0 /0)からなるスパッタリングターゲットを用い、
80 2 20
前記基板上に膜厚が 65nmとなるようにスパッタリング法により第 1保護層を成膜した 次に、 In Sb Siの組成(原子0 /0)からなるスパッタリングターゲットを用い、ァルゴ ンガス圧 3 X 10 torr、 RFパワー 300mWでスパッタリング法により、前記第 1保護層 上に膜厚が 16nmとなるように記録層を成膜した。なお、記録層のターゲットは、予め 、仕込み量を秤量し、ガラスアンプル中で加熱溶融した後、これを取り出して粉砕機 により粉砕し、得られた粉末を加熱焼結することによって円盤状のターゲット形状とし た。成膜後の記録層の組成比を誘導結合プラズマ (ICP)発光分光分析法により測 定したところ、ターゲット仕込み量と同じ組成比であった。 ICP発光分光分析法には、 シーケンシャル型 ICP発光分光分析装置 (セイコーインスツルメンッ株式会社製、 SP S4000)を使用した。なお、後述する実施例及び比較例においても、記録層の合金 組成とスパッタリングターゲットの合金組成とは同一である。
得られた記録層の結晶化温度を示差走査熱量測定装置 (DSC220、株式会社セ イコー電子製)により測定した結果、 215°Cであった。
次に、(ZnS) (SiO ) の組成(モル0 /0)からなるスパッタリングターゲットを用い、
80 2 20
前記録層上に膜厚が lOnmとなるようにスパッタリング法により第 2保護層を成膜した 次に、 SiC力もなるスパッタリングターゲットを用い、第 2保護層上に膜厚力 nmとな るようにスパッタリング法により第 3保護層を成膜した。
次に、純銀力もなるスパッタリングターゲットを用い、前記第 3保護層上に膜厚が 12 Onmとなるようにスパッタリング法により反射層を成膜した。
次に、スピナ一によつてアクリル系紫外線硬化榭脂(大日本インキ化学工業株式会 社製、 SD— 318)含有塗布液を前記反射層上に、膜厚が 5— 10 mになるように塗 布した後、紫外線硬化させて榭脂保護層を形成した。
最後に、前記榭脂保護層上に、直径 12cm、厚さ 0. 6mmのポリカーボネート榭脂 製基板を接着シートにより貼り合せた。以上により、実施例 13の光記録媒体を作製し た。
(実施例 14)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
18 80 2
にして、実施例 14の光記録媒体を作製した。 [0094] (実施例 15)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
18 73 9
にして、実施例 15の光記録媒体を作製した。
[0095] (実施例 16)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
10 85 5
にして、実施例 16の光記録媒体を作製した。
[0096] (実施例 17)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
24 71 5
にして、実施例 17の光記録媒体を作製した。
[0097] (実施例 18)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Geとした以外は、実施例 13と同
16 76 5 3
様にして、実施例 18の光記録媒体を作製した。
[0098] (実施例 19)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Ag Geとした以外は、実施例 13
15 75 5 2 3
と同様にして、実施例 19の光記録媒体を作製した。
[0099] (実施例 20)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si A1とした以外は、実施例 13と同
16 76 5 3
様にして、実施例 20の光記録媒体を作製した。
[0100] (実施例 21)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Mnとした以外は、実施例 13と
16 76 4 4
同様にして、実施例 21の光記録媒体を作製した。 [0101] (実施例 22)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Cuとした以外は、実施例 13と同
15 75 5 5
様にして、実施例 22の光記録媒体を作製した。
[0102] (実施例 23)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Auとした以外は、実施例 13と同
16 76 4 4
様にして、実施例 23の光記録媒体を作製した。
[0103] (実施例 24)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Cu とした以外は、実施例 13と
13 67 5 15
同様にして、実施例 24の光記録媒体を作製した。
[0104] (比較例 7)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb とした以外は、実施例 13と同様にし
21 79
て、比較例 7の光記録媒体を作製した。
[0105] (比較例 8)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
28 67 5
にして、比較例 8の光記録媒体を作製した。
[0106] (比較例 9)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様に
9 86 5
して、比較例 9の光記録媒体を作製した。
[0107] (比較例 10)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Siとした以外は、実施例 13と同様
18 81 1
にして、比較例 10の光記録媒体を作製した。 [0108] (比較例 11)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si とした以外は、実施例 13と同様
16 73 11
にして、比較例 11の光記録媒体を作製した。
[0109] (比較例 12)
-光記録媒体の作製 - 実施例 13において、記録層の組成を In Sb Si Cu とした以外は、実施例 13と
13 61 5 21
同様にして、比較例 12の光記録媒体を作製した。
[0110] <初期化 >
初期化装置として日立コンピュータ機器株式会社製の' PCR DISK INITIALIZ ER'を使用し、各光記録媒体を一定線速度で回転させ、パワー密度 10— 30mWZ μ m2のレーザー光を、半径方向に一定の送り量で移動させながら照射することによ り初期化した。
[0111] <評価 >
初期化後の各光記録媒体について、以下のようにして、信号特性、保存信頼性、 及び結晶部の反射率低下量を評価した。結果を表 2に示す。
[0112] <信号特性の評価 >
各光記録媒体について、記録密度及び記録パワーを 56mZs以上(38mW)とし、 記録用レーザー波長を 650nmとして、 EFM (8— 14)ランダムパターンでオーバーラ イトの繰り返しを行い、再生信号特性の評価として 3T信号のジッタ値と、 14T信号の 変調度を調べた。
[0113] <保存信頼性の評価 >
保存信頼性は、各光記録媒体を 80°C— 85RH%の温湿度下で 100時間保持した 後のオーバーライト 1回目の 3T信号のジッタ値と 14T信号の変調度で評価した。
[0114] <結晶部の反射率低下量の測定 >
各光記録媒体について、結晶部の反射率低下量を、 80°C - 85RH%の温湿度下 で 100時間保存する保存試験前後での反射率差〔反射率差 (%) =保存試験前の反 射率 (%) _100時間保持後の反射率 (%;)〕として評価した。 [表 2]
Figure imgf000032_0001
表 2の結果から、実施例 13— 24は、十分な変調度、オーバーライト特性を示してい る。また、 Siの添加効果により、反射率低下が少なぐ保存信頼性にも優れていること が認められる。
これに対して、比較例 7、 9及び 10では、保存試験時におけるジッタ特性の悪化が 見られ、更に比較例 7及び 10では、反射率低下も大きい。また、比較例 8、 11及び 1 2では、 1000回オーバーライトした際にジッタが上昇しており、オーバーライト特性が 悪い。
比較例 7で保存特性が悪く反射率低下が大き ヽのは Siを添加して ヽな 、ためと考 えられる。また、比較例 8— 12において特性に不備が生じたのは、比較例 8及び 9で は、 Inと Sb量の和に対する Sb量の割合、 |8 Ζ ( α + |8 )が、 0. 73≤|8 Ζ ( α + |8 ) ≤0. 90の範囲外であるため、比較例 10及び 11では、 Siの添加量が 2— 10原子% の範囲外であるため、比較例 12では、 Cuの添カ卩量が 20原子%を超えているためで あると考えられる。
[0117] (製造例 2)
実施例 13において、記録層を形成する際に、目標とする記録層組成と同じ組成比 の InSb合金ターゲット上に、目標とする記録層組成と同じ組成比の Siのチップを載 せてスパッタを行った。しかし、目標とする組成の記録層を得るのは困難であり、安定 して同一組成の記録層を形成することはできな力つた。
このことから、安定して同一組成の記録層を形成するためには、予め目標とする記 録層組成と同一組成の合金ターゲットを用いることが有効であることが分る。
産業上の利用可能性
[0118] 本発明の光記録媒体は、 DVD— ROMと同容量であり、 DVDの 1. 0倍速一 16倍 速以上 (記録線速度 =約 3. 5— 56mZs以上)の広 、範囲にぉ 、て信頼性の高!ヽ 記録が可能であり、各種光記録媒体、特に RWディスク (Rewritableディスク)と呼ば れるものであり、 CD— RW (Compact Disc Rewritable)、 DVD— RW (Digital Versatile Disc Rewritable)、 DVD +RW、 DVD— RAM、: BD (Blu— ray Disc )などに幅広く用いられる。

Claims

請求の範囲
[1] 基板と、該基板上に少なくとも第 1保護層、記録層、第 2保護層、及び反射層をこの 順及び逆順のいずれかに有してなり、該記録層力 次式、 In Sb A M (ただし、 A
δ
は Si及び Crのいずれかの元素を表す。 Mは In、 Sb、 Si、及び Cr以外の元素、並び に該元素の混合物から選択される少なくとも 1種の元素を表す。 α、 β、 γ、及び δ は、それぞれの元素の原子%を表し、 0. 7?»≤ β / { α + β )≤0. 90, 2≤γ≤10, 及び 0≤ δ≤20、かつ α + j8 + γ + δ = 100である)で表される組成を含有するこ とを特徴とする光記録媒体。
[2] Μ力 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元素を表す 請求の範囲第 1項に記載の光記録媒体。
[3] 記録層が、次式、 In Sb Si M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 Cu、 Au及び N
δ
力 選択される少なくとも 1種の元素を表す。 α、 j8、 γ、及び δは、それぞれの元素 の原子0 /0を表し、 0. 73≤ |8 / ( α + |8 )≤0. 90、 2≤ γ≤10,及び 0≤ δ≤20、 かつ α + j8 + γ + δ = 100である)で表される組成を含有する請求の範囲第 1項か ら第 2項の 、ずれかに記載の光記録媒体。
[4] 記録層が、次式、 In Sb Cr M (ただし、 Mは Ge、 Al、 Ag、 Mn、 Cu、 Au及び N
δ
力 選択される少なくとも 1種の元素を表す。 α、 j8、 γ、及び δは、それぞれの元素 の原子0 /0を表し、 0. 73≤ |8 / ( α + |8 )≤0. 90、 2≤ γ≤10,及び 0≤ δ≤20、 かつ α + j8 + γ + δ = 100である)で表される組成を含有する請求の範囲第 1項か ら第 2項の 、ずれかに記載の光記録媒体。
[5] α及び |8が、次式、 0. 80≤ β / ( α + β )≤0. 90を満たす請求の範囲第 1項から 第 4項の 、ずれかに記載の光記録媒体。
[6] 記録層が、電磁波の照射による非晶質 (アモルファス)相と結晶相との可逆的な相変 化を利用して情報の記録、再生、消去及び書換えの少なくともいずれかを行う請求 の範囲第 1項力 第 5項のいずれかに記載の光記録媒体。
[7] 記録層における昇温速度 10°CZ分での結晶化温度が 150— 250°Cである請求の 範囲第 1項から第 6項のいずれかに記載の光記録媒体。
[8] 記録層の膜厚が 8— 22nmである請求の範囲第 1項力 第 7項のいずれかに記載の 光記録媒体。
[9] 第 1保護層及び第 2保護層が ZnSと SiOとの混合物を含有する請求の範囲第 1項か
2
ら第 8項の 、ずれかに記載の光記録媒体。
[10] 反射層が、 Ag及び Ag合金のいずれかを含有する請求の範囲第 1項力 第 9項のい ずれかに記載の光記録媒体。
[11] 第 2保護層と反射層との間に、硫黄を含まない第 3保護層を有する請求の範囲第 10 項に記載の光記録媒体。
[12] 第 3保護層が SiC及び Siの少なくともいずれかを含有する請求の範囲第 11項に記載 の光記録媒体。
[13] 第 3保護層の膜厚が 2— 20nmである請求の範囲第 11項力も第 12項のいずれかに 記載の光記録媒体。
[14] 3. 5— 56mZs以上の記録線速度で記録可能である請求の範囲第 1項力も第 13項 の!、ずれかに記載の光記録媒体。
[15] 次式、 In Sb A M (ただし、 Aは Si及び Crのいずれかの元素を表す。 Mは In、 Sb
δ
、 Si、及び Cr以外の元素、並びに該元素の混合物から選択される少なくとも 1種の元 素を表す。 α、 j8、 γ、及び δは、それぞれの元素の原子%を表し、 0. 73≤ β / ( α + β )≤0. 90、 2≤ γ≤10、及び 0≤ δ≤20、力つ α + β + γ + δ = 100であ る)で表される組成を含有してなり、記録層の製造に用いられることを特徴とするスパ ッタリングターゲット。
[16] Μ力 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択される少なくとも 1種の元素を表す 請求の範囲第 15項に記載のスパッタリングターゲット。
[17] 次式、 In Sb Si M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択さ
δ
れる少なくとも 1種の元素を表す。 α、 β、 γ、及び δは、それぞれの元素の原子% を表し、 0. 73≤ |8 / ( α + |8 )≤0. 90、 2≤ γ≤10、及び 0≤ δ≤20、力つ α + β + γ + δ = 100である)で表される組成を含有する請求の範囲第 15項力も第 16 項のいずれかに記載のスパッタリングターゲット。
[18] 次式、 In Sb Cr M (ただし、 Mは、 Ge、 Al、 Ag、 Mn、 Cu、 Au及び Nから選択さ
δ
れる少なくとも 1種の元素を表す。 α、 β、 γ、及び δは、それぞれの元素の原子% を表し、 0. 73≤ |8 / ( α + |8 )≤0. 90、 2≤ γ≤10、及び 0≤ δ≤20、力つ α + β + γ + δ = 100である)で表される組成を含有する請求の範囲第 15項力も第 16 項のいずれかに記載のスパッタリングターゲット。
[19] α及び j8が、次式、 0. 80≤ |8 / ( α + |8 )≤0. 90を満たす請求の範囲第 15項か ら第 18項の 、ずれかに記載のスパッタリングターゲット。
[20] 基板上に少なくとも第 1保護層、記録層、第 2保護層、及び反射層をこの順及び逆順 のいずれかに有してなる光記録媒体の製造方法において、請求の範囲第 15項から 第 19項のいずれかに記載のスパッタリングターゲットを用いてスパッタリング法により 記録層を成膜する記録層形成工程を含むことを特徴とする光記録媒体の製造方法。
[21] 請求の範囲第 1項力も第 14項のいずれかに記載の光記録媒体における第 1保護層 側からレーザー光を照射して情報の記録、再生、消去及び書換えの少なくともいず れかを行うことを特徴とする光記録媒体の使用方法。
[22] 光記録媒体に光源からレーザー光を照射して該光記録媒体に情報の記録及び再生 の少なくともいずれかを行う光記録再生装置において、前記光記録媒体が、請求の 範囲第 1項力も第 14項のいずれかに記載の光記録媒体であることを特徴とする光記 録再生装置。
PCT/JP2004/017426 2003-11-28 2004-11-24 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置 WO2005051671A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04819379A EP1695839A1 (en) 2003-11-28 2004-11-24 Optical recoding medium and its manufacturing method, sputtering target, usage of optical recording medium, and optical recording/reproducing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-398573 2003-11-28
JP2003398573 2003-11-28
JP2003413590 2003-12-11
JP2003-413590 2003-12-11

Publications (1)

Publication Number Publication Date
WO2005051671A1 true WO2005051671A1 (ja) 2005-06-09

Family

ID=34635624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017426 WO2005051671A1 (ja) 2003-11-28 2004-11-24 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置

Country Status (2)

Country Link
EP (1) EP1695839A1 (ja)
WO (1) WO2005051671A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815149B2 (en) 2005-12-29 2014-08-26 Mitsubishi Materials Corporation Semi-reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming semi-reflective film or reflective film for optical recording medium
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367692A (ja) * 1989-08-07 1991-03-22 Ricoh Co Ltd 光情報記録媒体及び記録方法
JP3052651B2 (ja) * 1992-06-17 2000-06-19 松下電器産業株式会社 短波長光源
JP2001331970A (ja) * 1999-06-18 2001-11-30 Matsushita Electric Ind Co Ltd 光学的情報記録媒体
JP2003094819A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 光記録媒体及び光記録媒体用スパッタリングターゲット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367692A (ja) * 1989-08-07 1991-03-22 Ricoh Co Ltd 光情報記録媒体及び記録方法
JP3052651B2 (ja) * 1992-06-17 2000-06-19 松下電器産業株式会社 短波長光源
JP2001331970A (ja) * 1999-06-18 2001-11-30 Matsushita Electric Ind Co Ltd 光学的情報記録媒体
JP2003094819A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 光記録媒体及び光記録媒体用スパッタリングターゲット

Also Published As

Publication number Publication date
EP1695839A1 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
US7438965B2 (en) Phase-change information recording medium, manufacturing method for the same, sputtering target, method for using the phase-change information recording medium and optical recording apparatus
EP1406254B1 (en) Optical recording medium
EP1566800B1 (en) Optical recording medium, process for manufacturing the same, and optical recording process using the same
US7626915B2 (en) Phase-change optical recording medium and recording and reproducing method thereof
US20060233998A1 (en) Optical recording medium, method for manufacturing the same, sputtering target, method for using optical recording medium, and optical recording apparatus
US20070009703A1 (en) Optical recording medium and two layered optical recording medium, recording and reproducing method and recording and reproducing apparatus using media
JPH11115313A (ja) 光記録媒体及びこれの記録再生方法
WO2005051671A1 (ja) 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録再生装置
WO2005022515A1 (ja) 相変化型光記録媒体、光記録方法及び光記録装置
US20080084812A1 (en) Multilayer phase-change optical storage medium
US20050195729A1 (en) Optical recording medium, method and apparatus for optical recording and reproducing using the same
JP2006095821A (ja) 光記録媒体
JP3664403B2 (ja) 相変化型光記録媒体
WO2007029759A1 (en) Multilayer optical recording medium and optical recording method
JP2005243218A (ja) 光記録媒体
WO2005037566A1 (ja) 相変化型光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置
US20060165946A1 (en) Optical storage medium
WO2005044576A1 (ja) 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置
KR20050026477A (ko) 다층 광 데이터 저장매체와 이 매체의 용도
JP2007062319A (ja) 光記録媒体
JP2005100504A (ja) 相変化型情報記録媒体とその記録再生方法
JP2003242687A (ja) 多層相変化型情報記録媒体
JP2007273070A (ja) 光記録媒体
JP2005246625A (ja) 光情報記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004819379

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004819379

Country of ref document: EP