WO2005045063A1 - 細胞及び組織の損傷を評価する方法及びその測定装置 - Google Patents

細胞及び組織の損傷を評価する方法及びその測定装置 Download PDF

Info

Publication number
WO2005045063A1
WO2005045063A1 PCT/JP2004/016397 JP2004016397W WO2005045063A1 WO 2005045063 A1 WO2005045063 A1 WO 2005045063A1 JP 2004016397 W JP2004016397 W JP 2004016397W WO 2005045063 A1 WO2005045063 A1 WO 2005045063A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
artificial
cells
cell
cultured
Prior art date
Application number
PCT/JP2004/016397
Other languages
English (en)
French (fr)
Inventor
Katsumi Mochitate
Original Assignee
National Institute For Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Environmental Studies filed Critical National Institute For Environmental Studies
Publication of WO2005045063A1 publication Critical patent/WO2005045063A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates

Definitions

  • the present invention automatically measures the electrical resistance value of cells and tissues without taking them out of the culture device by culturing the cells and tissues in a culture vessel equipped with electrodes in advance.
  • the present invention relates to a method for measuring and evaluating and a measuring device therefor.
  • Living organisms have the ability to restore the original state by preventing the internal environment from being modulated by fluctuations or stimuli in the external environment, and by adjusting individual responses even when the internal environment is modulated. are doing. In general, this function is called homeostasis (homeostasis), and life activity is always maintained normally by this function.
  • homeostasis homeostasis
  • epithelial tissue is a tissue that is in direct contact with the external environment and is constantly exposed to invasion by foreign substances, contaminants, or microorganisms in the environment. is there.
  • vascular endothelial tissue it is necessary to always maintain an appropriate amount of fluid in the tissue so that edema of surrounding tissues is not unnecessarily increased due to increased fluid permeability even in pathological conditions such as infection and inflammation. It has been demanded.
  • tissue homeostasis is only possible when cells are tightly bound together to form a barrier to the external environment and body fluids.
  • tissue forces in the body that form an internal environment different from that of the surrounding tissues due to intercellular connections. Even in such tissues, if the intercellular junctions are weakened and the barrier by tight junctions is broken, maintenance of the internal environment and eventually tissue homeostasis will be impaired.
  • cell-cell junctions include "cell adherence junction" in which cadherin molecules mediate and mechanically connect both cells, and the like.
  • Tight junctions do not have the function of mechanically strengthening cell-cell junctions, unlike cell-cell adhesion junctions. Rather, it largely depends on the presence or absence of intercellular tight junctions.
  • adhesion between cells does not play a role as a barrier to the penetration of small molecules like tight junctions.
  • Cell-cell binding is based on the type of extracellular matrix that cells adhere to at the basal plane, and the basal plane-localized molecules acting on the cell-matrix junction (ceU-matrix junction). Integrin, syndecan, etc., are affected by the type of adhesion molecules. In other words, on extracellular matrices other than the basement membrane, such as type I collagen fibronectin, actin fibers that form the cytoskeleton are used as receptors for binding to the extracellular matrix, and are tightly bound to most integrin molecules. It accumulates like thick rod-shaped fibers (stress fibers) inside the basal plane.
  • actin fibers naturally bind to cadherin molecules and accumulate in the form of a belt on the inner surface of cells (actin belt), thereby mechanically strengthening the cell-cell binding by cadherin molecules.
  • actin belt When it is associated with actin fibril force S integrin and accumulates on the basolateral side, it should accumulate The location, the actin belt structure of the answer formed behind the cadherin molecule, becomes dilute. As a result, the intercellular junctions are mechanically weakened, and the tight junctions are also affected, resulting in a structure that is susceptible to fragile external stimuli (see A in Figure 1).
  • syndecan which has affinity for laminin, a component of the basement membrane, is used as a receptor, and actin fibers are slightly integrin molecules. Does not connect with Rather, they form actin belts by binding to cadherin molecules, the original binding partners, and mechanically strengthen intercellular junctions. As a result of the normal formation of adjacent cell adhesions, tight junctions are also believed to be more stable and strong V to external stimuli (see FIG. 1B).
  • Electric resistance is generated between the upper surface side and the basal surface side of the epithelial cells or endothelial cells.
  • a cell is an electrical non-conductor that is essentially surrounded by a lipid bilayer membrane due to its selective permeability through receptors localized on the cell surface. Therefore, if there is no abnormality or damage in the tight connection, a high electric resistance is generated between the upper surface side and the base surface side. Therefore, by monitoring the electric resistance value, it is possible to determine the force at which the tight junction is working normally and, consequently, the homeostasis of the tissue internal environment.
  • test substance added to the culture solution of the epithelial tissue model and measuring the electric resistance between the upper surface side and the basal plane side of the epithelial cells. It describes the possibility of testing (for example, JP-A-2003-169847, Am. Rev. Respir. Dis. 133: 875-81 (1986) and Exp. Lung Res. 16: 561-). 575 (1990)).
  • a millicell ERS resistance value measuring device manufactured by Millipore
  • Millipore a millicell ERS resistance value measuring device
  • the cells being cultured are placed in a CO incubator.
  • the cultured cells are exposed to 5% CO atmospheric environmental power of about 0% CO by this movement, and the C cells dissolved in the medium are exposed.
  • the electrode is connected to the upper surface side (apical surface) of the tissue (the reference numeral 42 in FIG. 2 (the same applies in the following description)) and the upper space (22). (Including the basal surface (43), extracellular matrix (43 and the area surrounded by 43 and 41), and the lower space (23))
  • a method for assessing tissue damage which comprises measuring the electrical resistance value of a cultured tissue in a cultured incubator; The evaluation method described in (1), which is a cultured tissue containing the extracellular matrix adhered in 43), or the evaluation method described in (1), which is a cultured tissue, an artificial tissue or an artificial organ described in (2).
  • the epithelial cells are epidermal cells, corneal epithelial cells, alveolar epithelial cells, digestive mucosal epidermal cells, renal spheroid epithelial cells, or hepatic parenchymal cells; 8) The evaluation method according to (6), wherein the endothelial cells are kidney glomerular hair cells, vascular endothelial cells, pulmonary artery vascular endothelial cells, placental vein vascular endothelial cells, or aortic vascular endothelial cells, (1) The present invention relates to the evaluation method described in any one of (1)-(8) above, which is a petri dish or a flask.
  • the present invention further provides (11) an apparatus for measuring tissue damage characterized by being an electrode, an electric resistance measuring instrument, and a program control device installed in an incubator;
  • the distance to the top surface is 1 m to 20 mm.
  • the measurement device described in (13) or (15) The electrode installed on the basal surface of the cultured tissue touches the bottom surface (41) of the cultured tissue.
  • the base surface (43) is installed so as not to contact it.
  • the measuring device according to any one of (14) and (16) installed on the basal surface side of the cultured tissue.
  • the electrode force is 0 to 20 mm from the bottom surface of the cultured tissue.
  • the measuring device described in (15) or (17) the electric resistance measuring instrument can program the method of measuring and accumulating electric resistance, It relates to the measurement device described in any of (11)-(15), which is a data port logger that has the function of transferring measured values to a computer (PC) or personal digital assistant (PDA) when necessary.
  • PC computer
  • PDA personal digital assistant
  • FIG. 1 is a diagram showing the effect of cell-substrate binding on tight junctions and cell-cell interactions. is there.
  • A is the case where the extracellular matrix is other than basement membrane such as collagen and fibronectin, B is
  • FIG. 3 is a diagram showing an example of the cell damage automatic measurement device of the present invention.
  • the upper part shows the overall appearance, and the lower part shows the culture dish with electrodes.
  • [4] A schematic diagram of the alveoli (A) and a diagram showing the generation of reactive oxygen species in the process of killing alveolar macrophages (B).
  • FIG. 6 is a graph showing the damage of alveolar epithelial cells by super 1-year-old oxide generated by stimulating alveolar macrophages with microorganism-derived endotoxin.
  • the tissue used in the evaluation of the present invention may be a cell layer formed by cell culture, or any tissue containing a cell layer and an extracellular matrix adhered on the basal plane of the cell layer.
  • a cultured tissue such as an artificial tissue of human or the like or an artificial organ is used, for example, an artificial epidermal tissue, an artificial corneal epithelial tissue, an artificial alveolar epithelial tissue, an artificial airway epithelial tissue, or an artificial airway epithelial tissue.
  • Artificial tissue such as renal glomerular tissue, artificial liver parenchymal tissue or artificial vascular endothelial tissue
  • tissues and artificial organs such as artificial blood vessels, artificial lungs, artificial livers, artificial kidneys, artificial skins, and artificial corneas.
  • epithelial tissue and endothelial tissue are preferably used for regenerative medicine, which has recently attracted attention.
  • the cells used for cell culture include, for example, epithelial cells or endothelial cells
  • the epithelial cells include, for example, epidermal cells, corneal epithelial cells, alveolar epithelial cells, Gastrointestinal mucosal epithelial cells, renal glomerular epithelial cells or liver parenchymal cells, etc.
  • endothelial cells include, for example, renal glomerular hair cells, vascular endothelial cells, pulmonary artery vascular endothelial cells, placental vein vascular endothelial cells or Aortic vascular endothelial cells and the like can be more specifically exemplified.
  • epithelial cells and endothelial cells can be used alone or in co-culture with other cells.
  • mesenchymal cells can co-culture with epithelial cells or endothelial cells to reduce epithelial or endothelial tissue in culture. It can be closer to a tissue in a living body.
  • mesenchymal cells include fibroblasts, muscle cells, adipocytes, glial cells, Schwann cells, and nerve cells (neurons).
  • the extracellular matrix used for tissue formation was smeared with laminin, a component of basement membrane, type IV collagen and matrigel, type I collagen, fibronectin, and vitronectin-fibrin, which are components of mesenchyme. Examples include a sample, a collagen or fibrin sample formed with fibers, and the like.
  • the basement membrane structure formed by epithelial cells and endothelial cells can be used as a culture substrate (Japanese Patent Application Laid-Open No. 2003-169846).
  • a conjugate obtained by binding a cell adhesion peptide to a polymer having an affinity for a culture matrix can also be used.
  • the tissue composed of a cell layer used for the evaluation may be any tissue composed of any cell layer, such as one in which cells are seeded and cultured directly on an incubator or on a sheet-like membrane such as plastic. May be.
  • Epithelial cells, endothelial cells, and the like are seeded and cultured on a culture substrate coated with a compound to which a peptide-bound compound is applied, and a tissue in which extracellular matrix such as a basement membrane component is accumulated immediately below the cells can be mentioned.
  • Examples of the incubator used in the present invention include a culture dish (well), a Petri dish, a flask, and the like.
  • the culture dish is preferably used in order to efficiently evaluate a large number of tissue damages.
  • the evaluation of tissue damage is performed by culturing target cells in an incubator in which electrodes are placed in advance so that the electrodes are attached to the upper surface side and the basal surface side of the tissue. This can be done by measuring the electric resistance value. In addition, the measurement of the electric resistance value is performed in a state where the cultured cells are allowed to stand still in the culture apparatus without interrupting the culture or changing the culture conditions, and during the cell culture or after the completion of the culture, etc. This can be done continuously and as needed.
  • cells are electrical nonconductors surrounded by a lipid bilayer membrane. Therefore, high electrical resistance is generated between the upper surface and the basal surface of a tissue, which is a group of cells, unless the tight junction is abnormal or damaged. If any damage occurs to the tissue, the electrical resistance will decrease. By monitoring this electric resistance value, the homeostasis of the environment inside the cultured tissue can be determined. Therefore, the evaluation method of the present invention can be used for various purposes such as a toxicity test of a substance, a side effect test of a drug, quality control of an artificial tissue, and the like.
  • Target cells for drugs are epithelial and endothelial tissues (skin, cornea, mucosal tissues, respiratory organs, circulatory system) rather than stromal cells (muscle tissue, bone tissue, fibroblasts, mesenchymal cells, etc.). , Digestive organs, liver, kidney, bladder, and other cells). Tight junctions are a necessary structure for these cells to work properly. Decreasing electrical resistance is a simple and good method to examine general cytotoxicity.
  • an artificial tissue In the quality control of an artificial tissue, it can be a general quality control method as an organization to be satisfied by the constructed artificial tissue.
  • Fig. 2 shows a conceptual diagram of the measuring device of the present invention
  • Fig. 3 shows an example of the measuring device.
  • the electrode (10) installed on the incubator (20) is such that one of the electrodes (10A) is in contact with the bottom of the incubator and is not in contact with the bottom (41) of the cultured tissue. Place the other (10B) so that it does not contact the upper surface of the cultured tissue.
  • the shape of the electrode is not particularly limited, but the electrode (10A) has a tip located near the center of the culture dish and has a flat plate shape.
  • the electrode (10B) is located at the center of the culture dish and has a cylindrical shape or tip. Disc-shaped ones are preferred.
  • the bottom surface of the cultured tissue (40) must be measured. 41) is in contact with the electrode (10A) of the incubator, at a distance of 0-20 mm.
  • the upper surface of the cultured tissue (42) is not in contact with the tip of the electrode (10B), and is 1 ⁇ m-20 mm. It is preferred that In this case, the thickness of the extracellular matrix (the area surrounded by 43 and 43 and 41) is about 1 ⁇ m It is about the thickness (: m-lmm).
  • the distance between the electrode (10A) and the bottom of the tissue (41) approaches 0 m, and finally, the base of the tissue (43) and the electrode (10A) ) Should be about 1 ⁇ m-20 mm in the same way as the top side.
  • the electrode (10) can measure the electric resistance of the cultured tissue (40) by connecting to the electric resistance measuring device (30).
  • any device having a function capable of programming the measurement and accumulation of the electric resistance value and transferring it to a computer (PC) or a personal digital assistant (PDA) when necessary can be used.
  • a measuring instrument may be used, for example, a data port gir (Model CR10X manufactured by Campbell Scientific Inc.) can be used.
  • the electrode (10) and the electric resistance measuring device (30) may be connected by a normal lead wire, but there are a plurality of incubators, or a plurality of reaction vessels like a culture dish. As shown in Fig. 3, operability is improved if multiple lead wires are bundled and connected to the data port logger via a connector.
  • the data port logger one that can install and control a driving program on a PC is used.
  • the data port logger and the PC can be connected by either a wired or wireless connection.
  • an RS232C cable can be used.
  • the incubator is always a culture device such as a CO incubator.
  • Measurement can be performed while standing still in the chamber, repeated measurement of the electric resistance value in seconds by repeating the operation of flowing a pulse current for an extremely short time, and measuring multiple incubators under the same conditions It has the features that it can be performed and that the measured values are automatically and real-time displayed on the display by program-controlling the operation of the data porter with a personal computer.
  • the alveolar epithelial cells cannot defend themselves against oxidative stress and maintain their integrity as epithelial tissue (nobleness, integrity, and integrity), their tissue homeostasis Sex goes to collapse.
  • active oxygen is artificially generated in the alveolar epithelial cell culture system, and cytotoxicity depends on the extracellular matrix. The difference in the degree of receiving is described in the following examples. The evaluation of cell damage was performed by the evaluation method of the present invention using the measuring device of the present invention.
  • DMEM medium containing 10% FBS, 0.2 mM ascorbic acid-2-phosphate (Asc-P), and 0.25 ng Zml amphotericin B (Am-B) on a plastic membrane with a large number of 3 m-diameter holes. 5.
  • OxlO 4 cells suspended in the suspension were directly inoculated with 0.5 ml of alveolar epithelial cells.
  • the culture was continued for another 3 days with the FBS concentration changed to 1%, and it was confirmed that the alveolar epithelial cells became confluent on the plastic membrane. Therefore, only the culture insert dishes inside the culture (22), 0.
  • alveolar epithelial cells were stimulated with active oxygen under conditions closer to the living body rather than artificially generating active oxygen by an enzymatic reaction.
  • alveolar macrophages were stimulated with endotoxin (endotoxin) produced by microorganisms that invade the alveoli to generate superoxide, one of the active oxygen species.
  • T2 In a single culture of alveolar epithelial cells, the cells were seeded according to the method of Example 1 and cultured for one week.
  • Collagen fiber matrix (fib) is prepared by pouring 70 ⁇ l of 0.3 mg Zml type I collagen solution onto a porous plastic membrane (3 ⁇ m in diameter) and allowing it to stand in a CO incubator.
  • Fgel Lung fibroblasts were prepared by culturing in DMEM supplemented with 10% FBS. next, Fibroblasts 2. suspended in Type I collagen neutral solution of lmg / ml at a concentration of 5xl0 5 / ml, poured 140 1 to porous plastic film, and allowed to stand for 1 hour in a CO 2 incubator
  • Fgel was prepared. After the preparation, the cells were cultured in a DMEM medium supplemented with 10% FBS, 0.2 mM Asc-P and 0.25 ng / ml Am-B for 3 days.
  • T2-Fgel Alveolar epithelial cells were seeded on Fgel cultured for 3 days in the same manner as in single culture, and cultured at 1% FBS concentration for 1 week.
  • T2-fib-Fcm Fgel was prepared on the bottom of the culture dish and cultured for 3 days. Next, alveolar epithelial cells were seeded on the fib prepared on the porous plastic membrane in the same manner as in the single culture, integrated with Fgel, and co-cultured for 1 week.
  • the white (leftmost) mouth in the case of kamuri without AM
  • the blue (second from left) mouth in the case of adding AM
  • the yellow (second from right) b LA Pre-treated force AM not added
  • red (right end) mouth Pre-treated with LA and AM added.
  • endotoxin is ancillary! ]did.
  • T2-Fgel in which alveolar epithelial cells are seeded on collagen gel (Fgel) in which cultured fibroblasts are embedded, or alveolar epithelial cells seeded on collagen fibrils (fib) are used for When co-cultured (T2-fib-Fcm) with collagen gel (Fgel) embedded with blast cells for 2 weeks, a basement membrane structure is formed immediately below alveolar epithelial cells (Cell Struct. Funct., 22: 603) -614, 2002) o
  • actin fibers and molecules such as ZO-1 involved in tight junctions were well accumulated on the cell adhesion surface.
  • actin fibers and molecules such as ZO-1 involved in tight junctions were well accumulated on the cell adhesion surface.
  • the added alveolar macrophage was stimulated with endotoxin, it showed resistance to active oxygen regardless of the presence or absence of green leaf alcohol.
  • the alveoli are tissues that perform gas exchange, and are constantly exposed to invasion of foreign substances.
  • Alveolar macrophages play a role in removing such foreign substances, and are essential for maintaining the homeostasis of the alveoli (see Fig. 4).
  • active oxygen and lysosomal-derived degrading enzymes produced during the process of removing foreign matter.
  • our ancestors have identified the need for active oxygen by efficiently removing foreign substances from alveolar macrophages during evolution.
  • the alveolar macrophage has approximately lZio of its ability to generate active oxygen, the monocyte that is its precursor cell.
  • the green leaf alcohol exemplified here is one of volatile alcohols that evaporates from plants and is a natural chemical substance that is common in the atmosphere. For us, inhaling these substances is very common in the natural environment. However, it usually does not damage the alveoli of us or animals. From this viewpoint, when examining the results of the sensitivity of alveolar epithelial cells cultured on plastic membranes or collagen fibers to active oxygen, it is unnatural and irrational. On the other hand, the sensitivity of alveolar epithelial cells on the basement membrane structure is sufficiently suppressed, which is consistent with the in vivo situation.
  • tissue culture the cultured tissue is damaged by pH, waste products produced during the culture, or oxidative damage due to active oxygen.
  • the use of tissues created in vitro is increasing.
  • the use of epithelial and endothelial tissues in regenerative medicine has attracted attention.
  • the method of the present invention is used as an evaluation method for production control and quality control in the production of these tissues.
  • toxicity of chemical substances using cultured tissue It can also be used for tests and pharmacological tests.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】 培養細胞および組織を培養装置内に静置した状態で、電気抵抗値を測定し、細胞および組織の損傷を評価する方法および電気抵抗値の測定用装置を提供するものである。電極を組織の上面側(上面(apical surface)42とその上部空間22を含む)と基底面側(基底面(basal surface)43、細胞外基質43及び43と41に囲まれた部分、その下部空間23を含む)とに装着されるように設置した培養器で、培養した組織の電気抵抗値を測定する。

Description

細胞及び組織の損傷を評価する方法及びその測定装置
技術分野
[0001] 本発明は、細胞及び組織の損傷を、電極を予め設置した培養器で細胞や組織を培 養することにより、培養装置内から出すことなく細胞及び組織の電気抵抗値を自動的 に測定し、評価する方法及びその測定装置に関する。
背景技術
[0002] 生体は、外部環境の変動あるいは刺激によって内部環境が変調を来さないように、ま た変調を来した場合でも個々の反応を調節することによって、元の状態まで復元する 能力を有している。一般に、この働きは生体恒常性 (ホメォスタシス; homeostasis)と 呼ばれ、この働きによって生命活動は常に正常に維持されている。
[0003] 生体恒常性は、生体を構成する各臓器や各組織の恒常性の上に成立している。各 々の組織もまた、内部環境の調節 Z変動による影響を最小限に抑えながら、各組織 に固有の機能が十分発揮出来るように構築されて 、る。
[0004] 特に、上皮組織は、外部環境に直接接する組織であり、環境中の異物や汚染物質 、あるいは微生物等による侵襲に常に曝されていることから、組織恒常性が一層強く 求められる組織でもある。また、血管内皮組織では、感染や炎症等病的な状態にお いても、体液の浸透性昂進による周辺組織の浮腫をいたずらに増大することなぐ組 織中の体液量を常に適正に保つことが求められている。この様な組織恒常性は、細 胞同士が強く結合し合って、外部環境や体液に対する障壁 (バリアー)を形成するこ とによって、初めて可能になる。これ以外にも、細胞 細胞間結合により、周囲の組織 と異なる内部環境を形成している組織力、体内には数多くある。この様な組織におい ても、細胞間結合が脆弱になり密着結合 (tight junction)による障壁が破られると、内 部環境の維持ひいては組織恒常性が支障をきたす。
[0005] 細胞は、周囲と隔絶して存在することはできない。生存には栄養塩や他の細胞から の成長因子等を必要とする一方で、生成した老廃物や代謝物を排出する必要がある 力 である。しかし、個々の細胞が生存し機能するための周囲環境は、個々の臓器 や組織あるいは細胞塊毎に異なる。この相反する条件を満たすため、個々の組織や 細胞塊毎に障壁を形成し物質の移動を制限する一方で、他方では特定の物質に対 する受容体 (リセプター)を、障壁を形成する細胞の表面に局所的に発現させて選択 的透過性を実行している。そして、両者が相まって、各々の組織にとって恒常性維持 に最適な内部環境を形成して ヽる。
[0006] 上皮組織において細胞間に間隙があると、外部環境中の異物等は、選択的透過 性による制御を経ることなぐ無秩序に侵入するようになる。また、体液中の水分、栄 養塩等も無秩序に失われる。内皮組織においても、細胞間に間隙があると体液や血 球は無秩序に組織中へと浸透し、浮腫等の病変を生ずる。この様な結果、組織恒常 性が失われ生命活動に支障が生じるのを防ぐため、細胞間の間隙を塞ぐ役割を有す る細胞-細胞間結合が、 "密着結合"である。即ち、組織恒常性が正常に機能してい る力否かを推定する上で、密着結合の働き度合いは重要な指標となる。
[0007] この外にも、細胞 細胞間結合には、カドヘリン (cadherin)分子を仲立ちとして両細 胞を機械的に結合させる"細胞間接着結合 (cell adherence junction) "等があり、密 着結合に隣接して存在する。密着結合には、細胞間接着結合の様に、細胞 細胞間 結合を機械的に強化する働きは無い。むしろ、細胞間接着結合の有無に大きく依存 している。他方、細胞間接着結合は、密着結合の様に、低分子の透過に対する障壁 の役割は無い。
[0008] 細胞 細胞間の結合は、細胞が基底面で接着して!/ヽる細胞外基質の種類、及び細 胞一基質間結合 (ceU-matrix junction)に働く基底面局在性分子、インテグリン( integrin)、シンデカン (syndecan)等と 、つた接着分子の種類によって影響を受ける。 即ち、 I型コラーゲンゃフイブロネクチンといった基底膜以外の細胞外基質上では、細 胞骨格を形成するァクチン線維は、細胞外基質に結合するためのリセプターに使わ れ、大部分のインテグリン分子と強固に結び付いて、基底面内側に太い棒状線維 (ス トレスファイバー; stress fiber)の様に集積する。し力し、本来ァクチン線維は生体内 では、カドヘリン分子に結合して細胞内側面にベルト状に集積し (ァクチンベルト; actin belt),カドヘリン分子による細胞 細胞間結合を機械的に強化している。しかし 、ァクチン線維力 Sインテグリンと結びついて基底面側に集積すると、本来集積すべき 場所、即ちカドヘリン分子の裏側に形成する答のァクチンベルト構造は希薄になる。 その結果、細胞間結合は機械的に脆弱化し、密着結合もまたその影響を受けて壊れ 易ぐ外部刺激に対して弱い構造になる (図 1の A参照)。逆に、上皮細胞や内皮細胞 にとつて、本来の接着基質である基底膜上では、基底膜構成成分のラミニンに親和 性のあるシンデカンがリセプタ一として使われ、ァクチン線維は僅かし力インテグリン 分子と結びつかない。むしろ、本来の結合相手であるカドヘリン分子と結びついてァ クチンベルトを形成し、細胞間結合を機械的に強化している。隣接する細胞接着結 合が正常に形成される結果、密着結合もまた一層安定化され、外部刺激に対して強 V、構造になると考えられて 、る (図 1の B参照)。
[0009] 上皮細胞や内皮細胞の上面側と基底面側との間には、電気抵抗が生じる。細胞は 、細胞表面に局在するリセプターによる選択的透過性による電気伝導はある力 本 来は脂質二重層の膜で囲まれた電気的不導体である。この為、密着結合に異常や 傷害が無ければ、上面側と基底面側間には高い電気抵抗が生ずる。従って、この電 気抵抗値をモニターすることにより、密着結合が正常に働いている力、ひいては組織 内部環境の恒常性を判定できる。
[0010] また、被検物質を上皮組織モデルの培養液に添加し、上皮細胞の上面側と基底面 側間の電気抵抗を測定することにより、上皮組織に対する被検物質の安全性や毒性 を試験することができる可能性について記載されている(例えば、特開 2003— 1698 47号公報、 Am. Rev. Respir. Dis. 133: 875-81 (1986)及び Exp. Lung Res. 16: 561-575 (1990)参照)。
[0011] 上面側一基底面側間の電気抵抗を測定する機器としては、例えば、ミリセル ERS 抵抗値測定装置 (Millipore社製)が市販されている。しかし、従来の測定装置は、測 定の目的によっては、必ずしも満足できる装置ではない。
[0012] 例えば、培養している細胞を、電気抵抗を測定する度毎に COインキュベーターか
2
ら取り出し、クリーンベンチ内に移動する必要がある。即ち、培養細胞はこの移動によ つて、 5%CO大気環境力 約 0%COに曝されることになり、培地中に溶け込んだ C
2 2
Oは空気中に飛散し、培地の pHは速やかに上昇する。また、培地の温度も 37°Cか
2
ら室温に低下し始める。この為、電気抵抗値の正確かつ精密な測定には困難を伴う 。更に、この測定操作を頻繁に行うと、培養細胞の細胞傷害の発生及び修復過程に も影響することが考えられる。まして複数の培養細胞についてこの操作を行う際には 、各サンプルの測定時刻にずれが生じ、上述の影響の程度が異なって測定される問 題点も発生する。
[0013] また、従来の方法では電気抵抗値の時間変化を連続的に測定することはできない 。細胞傷害がどの様な時間軸で現れるかは、試験物質の特性によって異なる。しかし 、室温下、通常の大気環境中に置いたのでは、正常な細胞培養は不可能である。こ の為、従来は時間間隔を十分に開けた断続的測定しか行うことができな力 た。しか し、この問題点を解決するために、培養細胞及び組織の損傷を、通常の培養環境下 で、連続して、自動的に測定できる方法及びその測定装置については知られていな かった。
[0014] 本発明の課題は、培養細胞及び組織を培養装置内に静置した状態で、電気抵抗 値を測定し、細胞及び組織の損傷を評価する方法及び電気抵抗値の測定用装置を 提供することにある。
[0015] 本発明者らは、培養器に電極を設置し、両電極からリード線を延長して電気抵抗を 測定する機器データ口ガー(data logger)に接続し、それをさらにパソコンでプロダラ ム制御する方法を見い出し、本発明を完成するに至った。
発明の開示
[0016] すなわち本発明は、(1)電極が、組織の上面側(上面(apical surface) (図 2の符号( 以下の説明にお ヽても同様) 42)とその上部空間(22)を含む)と基底面側 (基底面( basal surface) (43)、細胞外基質 (43及び 43と 41に囲まれた部分)、その下部空間( 23)を含む)とに装着されるように設置した培養器で、培養した組織の電気抵抗値を 測定することを特徴とする組織の損傷を評価する方法や、(2)組織が、細胞層あるい は細胞層と該細胞層の基底面 (43)で接着して ヽる細胞外基質とを含む培養組織 (4 0)である(1)記載の評価方法や、(3)培養組織力、人工組織又は人工臓器である(2 )記載の評価方法や、(4)人工組織が、人工表皮組織、人工角膜上皮組織、人工肺 胞上皮組織、人工気道上皮組織、人工腎糸球体組織、人工肝実質組織又は人工血 管内皮組織である(3)記載の評価方法や、(5)人工臓器が、人工血管、人工肺、人 工肝、人工腎臓、人工皮膚又は人工角膜である(3)記載の評価方法や、(6)細胞層 における細胞力 上皮細胞、内皮細胞又は間充織細胞である(2)記載の評価方法 や、(7)上皮細胞が、表皮細胞、角膜上皮細胞、肺胞上皮細胞、消化器系の粘膜上 皮細胞、腎臓子球体上皮細胞又は肝実質細胞である(6)記載の評価方法や、 (8) 内皮細胞が、腎臓子球体毛細胞、血管内皮細胞、肺動脈血管内皮細胞、胎盤静脈 血管内皮細胞又は大動脈血管内皮細胞である(6)記載の評価方法や、(9)培養器 力 培養皿(ゥエル)、シャーレ又はフラスコである(1)一(8)のいずれか記載の評価 方法に関する。
[0017] また本発明は、(10)電極が、細胞培養して形成される組織の上面側(上面 (apical surface) (42)とその上部空間(22)を含む)と基底面側(基底面(basal surface) (43) 、細胞外基質 (43及び 43と 41に囲まれた部分)、その下部空間(23)を含む)とに装 着されるように設置されて ヽることを特徴とする培養器に関する。
[0018] さらに本発明は、(11)培養器に設置した電極、電気抵抗測定器及びプログラム制 御装置力なることを特徴とする組織の損傷を測定する装置や、(12)培養器に設置し た電極が、細胞培養して形成される組織の上面と底面とに装着されるように設置され ている (11)記載の測定装置や、(13)培養組織の上面に設置されている電極が、培養 組織の上面に接触しな ヽように設置されて ヽる(11)又は (12)記載の測定装置や、 (1 4)培養組織の上面側に設置されている電極力 培養組織の上面までの距離が 1 m— 20mmである (13)記載の測定装置や、(15)培養組織の基底面側に設置されて いる電極が、培養組織の底面 (41)には接触しても基底面 (43)には接触しないよう に設置されている (11)一(14)のいずれか記載の測定装置や、(16)培養組織の基底 面側に設置されている電極力 培養組織の底面までの距離が 0— 20mmである (15) 記載の測定装置や、(17)電気抵抗測定器が、電気抵抗値の測定と蓄積の方法をプ ログラミングでき、必要時には測定値をコンピュータ (PC)や携帯情報端末 (PDA)に 移せる機能を持つデータ口ガーである (11)一(15)のいずれか記載の測定装置に関 する。
図面の簡単な説明
[0019] [図 1]細胞 -基質間結合が及ぼす密着結合及び細胞 -細胞間への影響を示す図で ある。 Aは、細胞外基質がコラーゲン、フイブロネクチン等基底膜以外の場合を、 Bは
、細胞外基質が基底膜構造体の場合を示している。
[図 2]本発明の細胞傷害自動測定装置の概念図を示す図である。
[図 3]本発明の細胞傷害自動測定装置の一例を示す図である。上段は、全体の外観 図を、下段は、電極付きの培養皿を示している。
圆 4]肺胞の模式図 (A)及び肺胞マクロファージの殺菌過程における活性酸素の発 生を示す図(B)である。
[図 5]キサンチンーキサンチンォキシダーゼ酵素反応により、発生させたスーパーォキ シドによる肺胞上皮細胞の傷害を示す図である。
[図 6]肺胞マクロファージを微生物由来のエンドトキシンで刺激し、発生させたスーパ 一才キシドによる肺胞上皮細胞の傷害を示す図である。
符号の説明
[0020] 10 電極
20 培養器 (培養皿)
21 培養挿入皿
22 培養挿入皿 (21)の内側 (組織の上面側)の細胞培養液
23 培養挿入皿 (21)の外側 (組織の基底面側)の細胞培養液
30 電気抵抗測定器
40 培養組織
41 培養組織の底面
42 培養組織の上面
43 細胞外に分泌された細胞外基質の沈着物又は基底膜構造体
発明を実施するための最良の形態
[0021] 本発明の評価に用いられる組織としては、細胞培養で形成される細胞層ある 、は 細胞層と該細胞層の基底面で接着している細胞外基質とを含む組織であればどのよ うなものでもよいが、好ましくは、ヒト等の人工組織又は人工臓器等の培養組織が用 いられ、例えば、人工表皮組織、人工角膜上皮組織、人工肺胞上皮組織、人工気道 上皮組織、人工腎糸球体組織、人工肝実質組織又は人工血管内皮組織等の人工 組織や、人工血管、人工肺、人工肝、人工腎臓、人工皮膚又は人工角膜等の人工 臓器を具体的に挙げることができる。特に、近年注目されている再生医療には、上皮 組織や内皮組織が好ましく用いられる。
[0022] また、細胞培養に用いられる細胞としては、例えば、上皮細胞又は内皮細胞等を挙 げることができ、上皮細胞としては、例えば、表皮細胞、角膜上皮細胞、肺胞上皮細 胞、消化器系の粘膜上皮細胞、腎臓子球体上皮細胞又は肝実質細胞等を、内皮細 胞としては、例えば、腎臓子球体毛細胞、血管内皮細胞、肺動脈血管内皮細胞、胎 盤静脈血管内皮細胞又は大動脈血管内皮細胞等をより具体的に例示することがで きる。これら上皮細胞や内皮細胞は、単独もしくは他細胞と共培養することができ、例 えば、間充織細胞は、上皮細胞や内皮細胞と共培養することにより、培養中の上皮 組織や内皮組織を一層生体中の組織に近づけることができる。間充織細胞としては 、例えば、線維芽細胞、筋細胞、脂肪細胞、グリア細胞、シュワン細胞又は神経細胞 (ニューロン)等を具体的に例示することができる。
[0023] 組織形成に用いられる細胞外基質としては、基底膜の構成成分であるラミニン、 IV 型コラーゲンやマトリゲル、間充織の構成成分である I型コラーゲン、フイブロネクチン 、ビトロネクチンゃフイブリン等を塗抹した標品、及び線維を形成させたコラーゲンや フイブリン標品等が挙げられる。さら〖こは、上皮細胞や内皮細胞が形成した基底膜構 造体を培養基質として利用することもできる(特開 2003— 169846号公報)。また、生 物由来の細胞外基質に代わって、培養基質に親和性のあるポリマーに細胞接着べ プチドを結合させたィ匕合物を用いることもできる。
[0024] 評価に用いられる細胞層からなる組織としては、培養器に直接、あるいはプラスチ ック等のシート状の膜に、細胞を播種し、培養したもの等、何れの細胞層からなる組 織でもよい。
[0025] また、細胞層に細胞外基質を有する組織としては、特に制限されな!、が、例えば、 任意の上皮細胞や内皮細胞等を用いて、基底膜構造体を有する上皮細胞や内皮 細胞等を培養して得られる組織 (例えば、特開 2003— 93050号公報、特開 2003— 9 3053号公報、特開 2003— 169846号公報、特開 2003— 169847号公報参照)、及 び、肺胞 Π型上皮細胞と肺線維芽細胞との共培養組織 (Cell Struct. Funct., 22: 603-614, 2002)、該培養系にマトリゲル(Matrigel ; Becton Dickinson社の登録商標)( J. Cell Sci" 113: 859-868, 2000)やサイト力イン、 TGF— j8 (Eur. J. Cell. Biol, 78: 867-875, 1999)等を添加し、肺胞上皮細胞直下に基底膜構造体を形成させる方法 等で得られる組織、さらには、培養基質に親和性のあるポリマーに細胞接着ペプチド を結合させた化合物を塗布した培養基質に上皮細胞、内皮細胞等を播種して培養 し、細胞直下に基底膜成分等の細胞外基質が集積した組織を挙げることができる。
[0026] 本発明に用いられる培養器としては、培養皿(ゥエル)、シャーレ又はフラスコ等が 例示されるが、特に培養皿は、多数の組織損傷を効率よく評価するためには、好適 に用いられる。
[0027] 組織損傷の評価は、予め電極を設置した培養器中で、組織の上面側と基底面側と に電極が装着されるように目的とする細胞を培養し、該形成された組織の電気抵抗 値を測定することにより行うことができる。また、電気抵抗値の測定は、培養を中断し たり、培養条件を変えることなぐ培養細胞を培養装置内に静置した状態で、測定目 的に応じ、細胞培養中あるいは培養終了後等、また必要により連続的に、適宜行うこ とがでさる。
[0028] 本来、細胞は脂質二重層の膜で囲まれた電気的不導体である。従って、細胞の集 団である組織は、その密着結合に異常や傷害がなければ、上面側と基底面側との間 に高い電気抵抗が生じる。組織に何らかの損傷が生じると電気抵抗は小さくなる。こ の電気抵抗値をモニターすることにより、培養組織内部環境の恒常性を判定できる。 従って、本発明の評価方法は、例えば、物質の毒性試験、薬物の副作用試験、人工 組織の品質管理等、種々の目的に利用可能である。
[0029] 物質の毒性試験においては、工業生産に伴う廃棄物を、総体として毒性が有るか 否かを速やかに判定することができる。培養液中に所定の濃度の廃棄物抽出液を添 加し、 24時間後の電気抵抗値を測定することによって、許容範囲カゝ否かを判断する 。この方法は、法律で決められた特定物質を管理する方法ではないが、廃棄物総体 としての安全性が速やかに判断できる点で優れている。
[0030] 薬物の副作用試験については、薬は本来、決められた範囲内では効能を示すが、 それを超えると重篤な副作用を示すことがよくある。副作用を簡便に調べる方法とし ては、生存率や細胞増殖に対する影響を調べるのが一般的である。しかし、より軽微 な影響を調べるには、個々の遺伝子発現や蛋白生合成に着目せざるを得ず、個々 の変化が細胞全体に及ぼす影響を正確に把握するのは難 U、。薬の標的細胞は、 間質系細胞 (筋肉組織、骨組織、線維芽細胞、間充織等の細胞)よりは、上皮組織 や内皮組織 (皮膚、角膜、粘膜組織、呼吸器官、循環器系、消化器官、肝臓、腎臓、 膀胱等の細胞)が圧倒的に多い。密着結合は、これらの細胞が正常に働くために必 要な構造である。電気抵抗値の低下は、一般的な細胞毒性を調べるには簡便で良 い方法である。
[0031] これら、物質の毒性試験あるいは薬物の副作用試験等における化学物質の安全性 評価において、動物実験をできるだけ少なくしょうとする試みがなされている。その実 験動物の代替が in vitroでの試験であり、本発明の評価方法は有用となる。
[0032] また、人工組織の品質管理においては、構築した人工組織が満たすべき組織とし ての一般的な品質管理方法となり得る。
[0033] 本発明の損傷した組織の評価方法においては、培養細胞を培養装置内に静置し た状態で、電気抵抗値を測定する必要があるため、本発明の測定装置は、培養器に 電極を設置し、両電極からリード線を延長して電気抵抗を測定する機器データロガ 一に接続し、それをさらにパソコンでプログラム制御する装置力もなる。本発明の測 定装置の概念図を図 2に、また、測定装置の例を図 3に示す。
[0034] 図 2において、培養器(20)に設置した電極(10)とは、電極の一方(10A)を培養 器の底面に接触し、培養組織の底面 (41)に接触しないように設置し、他方(10B)を 培養組織の上面に接触しないように設置する。電極の形態は、特に制限はないが、 電極(10A)は先端が培養皿の中央近くに位置し平板状の形状のもの力 電極(10B )は培養皿の中央に位置し円筒状や先端が円盤状のものが好ましい。また、電気抵 抗値を安定して測定し、しかも組織傷害を測定する範囲を局所的から培養挿入皿 (2 1)の底面全体に亘つて測定するには、培養組織 (40)の底面 (41)が培養器の電極 (10A)に接触している力、 0— 20mmの距離にあり、培養組織の上面(42)が電極( 10B)の先端に接触せず 1 μ m— 20mmの距離であるのが好ましい。この場合、細胞 外基質 (43及び 43と 41に囲まれた部分)の厚さは、 1 μ m程度力 細胞層の数倍の 厚さ程度(: m— lmm)である。この細胞外基質の厚さが厚いほど、電極(10A)と 組織の底面 (41)との距離は 0 mに近づくことになり、最終的には、組織の基底面( 43)と電極(10A)との距離を、上面側と同様に 1 μ m— 20mm程度にする。
[0035] 電極としては、白金や金電極の他に、ステンレス等の安価な材料でも用いることが できる。電極(10A)は必ずしも培養皿の内側を這わせる必要は無ぐ底面に穴を開 けて設置しても構わない。また、(10A)に繋がるリード線を 1本に統合することもでき る。
[0036] 電極(10)は、電気抵抗測定器(30)と接続することにより、培養組織 (40)の電気抵 抗を測定することができる。
[0037] 電気抵抗測定器 (30)としては、電気抵抗値の測定と蓄積をプログラミングでき、必 要時にはコンピュータ (PC)や携帯情報端末 (PDA)に移せる機能を持つものであれ ば、何れの測定器でもいいが、例えば、データ口ガー(Campbell Scientific Inc.社製 、モデル CR10X)を用いることができる。
[0038] 電極(10)と電気抵抗測定器(30)とは、通常のリード線で接続すればいいが、複数 の培養器ある 、は培養皿のように複数の反応曹につ 、ては、図 3のように複数のリー ド線を束ねコネクターを介してデータ口ガーと接続するようにすると操作性が向上する
[0039] データ口ガーは、駆動プログラムを PCにインストールして制御することができるもの を用いる。データ口ガーと PCとは、有線 ·無線どちらの接続方法でも構わないが、例 えば RS232Cケーブルで接続する方法を上げることができる。
[0040] 本発明の測定装置においては、培養器は、常に COインキュベータ一等の培養装
2
置内に静置した状態で測定できること、パルス電流を極短時間流す操作を繰り返す ことにより、電気抵抗値の秒単位の変化を連続して測定できること、複数の培養器を 、同一の条件で測定できること、及びデータ口ガーの動作をパソコンでプログラム制 御することにより、測定値がディスプレイ上に自動的かつリアルタイムで表示されるこ と等の特徴を有する。
[0041] 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこ れらの例示に限定されるものではない。 呼吸によって、ガス交換を行う場である肺胞には、空気と共に自然界由来の種々の 異物や微生物が侵入する(図 4参照)。この様な異物を除去するため、肺胞には肺胞 マクロファージ(alveolar macrophage)が存在する。このマクロファージの貪食 ·殺菌作 用の過程で発生する活性酸素 (スーパーォキシド; superoxide, とこれから派生した 反応性の高い酸化物)によって、肺胞表面を覆う肺胞上皮細胞は、常に酸化的刺激 を受けている。その刺激によって上皮組織の傷害が顕在化しないのは、通常上皮組 織が十分な耐性を有して 、るためである。肺胞上皮細胞が酸ィ匕的ストレスに対して自 己防衛し、上皮組織としての integrity (高潔性 Z完全性、しつカゝりしていること)を保 持できなければ、その組織恒常性は崩壊へと向かう。細胞外基質が、上皮組織や内 皮組織等の integrityの保持に与える効能を明確にするため、肺胞上皮細胞培養系 において活性酸素を人工的に発生させ、細胞外基質に依存して細胞傷害を受ける 程度が異なることを、以下の実施例で説明する。細胞傷害の評価は、本発明の測定 装置を用い、本発明の評価方法で行った。
実施例 1
(細胞外基質の役割を無視した培養方法)
直径 3 mの孔が多数開いているプラスチック膜上に、 10%FBS、0. 2mMァスコ ルビン酸- 2-リン酸 (Asc— P)、 0.25ngZmlアンホテリシン B (Am— B)を含む DME M培地に懸濁した 5. OxlO4個 Z0. 5mlの肺胞上皮細胞を直接播種した。 1日後に FBS濃度を 1%に変えて更に 3日間培養を継続し、肺胞上皮細胞がプラスチック膜 上で confluentになったことを確認した。そこで、培養挿入皿内部の培養液(22)に のみ、 0. ImMヒポキサンチン(hypoxanthine)及び 10— 1— 10— 6単位 Zmlのキサンチ ンォキシダーゼ (xanthine oxidase)を含む培地に交換し、培養挿入皿の外側の培養 液(23)は通常の培地交換を行った。 2時間毎にヒポキサンチン及びキサンチンォキ シダーゼを含む培地に 4回交換した。また、一方の培養系では、 ImMの青葉アルコ ールも添カ卩した培地と交換し、青葉アルコール力ヒポキサンチンーキサンチンォキシ ダーゼによって発生した活性酸素による毒性発現にどの様に影響する力検討した。 培養 6時間及び 24時間後の培養細胞の損傷程度を、電気抵抗値として測定した結 果を図 5に示す。 [0043] キサンチンォキシダーゼ (xanthine oxidase)でキサンチン (xanthine)を分解すると、酵 素反応によりスーパーォキシドが発生する。肺胞上皮細胞の培養液中に、一定量の キサンチンと種々の濃度のキサンチンォキシダーゼ (xanthine oxidase)を添カ卩すると、 酵素量に逆比例して極めて短時間に細胞の許容量を超える高濃度の活性酸素が発 生する。その結果、肺胞上皮細胞は傷害を受け、密着結合も影響を受ける。即ち、肺 胞上皮組織としての integrityが低下し、上面一基底面間の電気抵抗値 (TER; transepithelial electric resistance)は低下する。因みに、この傷害は遅発性で、 6時 間では最大酵素量で僅かに認めるのみだが、 24時間経過するとより低濃度の酵素 量、即ちより低濃度の活性酸素濃度でも認められる。
[0044] 自然界で草木カゝら飛散する揮発性有機化合物の一つに、青葉アルコール (LA
:leaf alcohol)が有る。これ自身に顕著な毒性は無い。 ImMの青葉アルコールを肺胞 上皮細胞の培養系に添加しても、密着結合は影響を受けない。しかし、活性酸素が 共存すると、青葉アルコール分子の 2重結合に活性酸素が付加'開裂して、より毒性 の高いアルデヒド分子が発生する。その結果、より低濃度の酵素量でも、即ちより緩 慢に活性酸素が発生された低濃度の状態でも、肺胞上皮細胞は傷害を受け電気抵 抗値は低下する。
実施例 2
[0045] (細胞外基質の役割を重視した培養方法)
本実施例で下記に示した培養方法では、活性酸素を酵素反応により人工的に発 生させるのではなぐより生体の条件に近づけた条件で肺胞上皮細胞を活性酸素で 刺激した。即ち、肺胞に侵入する微生物が出す内毒素 (エンドトキシン)で肺胞マクロ ファージを刺激し、活性酸素の一つスーパーォキシドを発生させるようにした。
[0046] T2 :肺胞上皮細胞単独培養は、実施例 1の方法に準じて播種し、 1週間培養した。
T2— fib:コラーゲン線維基質 (fib)は、 0. 3mgZmlの I型コラーゲン溶液 70 μ 1を 多孔性プラスチック膜 (直径 3 μ m)上に注ぎ、 COインキュベーター内でー晚静置し
2
てゲル化させた後、クリーンベンチ内で風乾して作製した。使用前に fibを PBS (—)で リンスし、単独培養と同様に肺胞上皮細胞を播種し、 1週間培養した。
Fgel :肺線維芽細胞は、 10%FBSを添カ卩した DMEMで培養して調製した。次に、 線維芽細胞を 2. 5xl05/mlの濃度で lmg/mlの I型コラーゲン中性溶液に懸濁し 、 140 1を多孔性プラスチック膜に注ぎ、 COインキュベーター内で 1時間静置して
2
、 Fgelを作製した。作製後、 10%FBS、 0. 2mM Asc— P、 0.25ng/ml Am— Bを 添加した DMEM培地で 3日間培養した。
T2-Fgel: 3日間培養した Fgel上に、肺胞上皮細胞を単独培養と同様に播種し、 F BS濃度を 1 %にして 1週間培養した。
T2-fib-Fcm:培養皿の底面に Fgelを作製し、 3日間培養した。次に、多孔性ブラ スチック膜上に作製した fib上に、単独培養と同様に肺胞上皮細胞を播種し、 Fgelと 統合して 1週間共培養した。
肺胞マクロファージ:ラットから肺胞マクロファージ (AM)を調製した (J. Health Sci., 14: 302-309, 2001)。次に、 7. 5x105個 Zmlの細胞を、それぞれの培養系、 T2、 Τ 2— fib、 T2— Fgel、 F2— fib— Fcmの肺胞上皮細胞層上に添カ卩して、 AM— T2、 AM T2— fib、 AM— T2— Fgel、 AM— T2— fib— Fcmを作製した。
エンドトキシン及び青葉アルコール: AMの添加後、さら〖こ 3日間培養を継続した後 、 5 /z gZmlのエンドトキシン(LPS、 lipopolysaccharide)を培養皿の内側にのみ添カロ した。青葉アルコールは、エンドトキシン添カ卩の 1日前から、培養挿入皿の内側(22) 及び外側(23)の培養液に、 ImM添加した。
電気伝導度 (TER):エンドトキシン添加後、 24時間培養を継続し、電気伝導度を 測定した結果を図 6に示す。
[0047] 図中、白 (左端)の口: AMを無添カ卩の場合、青 (左から 2番目)の口: AMを添加した 場合、黄色 (右から 2番目)のロ: LAで前処理をした力 AMは添加しなカゝつた場合、 赤 (右端)の口: LAで前処理をし、 AMを添加した場合を示す。何れの場合も、エンド トキシンは添力!]した。
[0048] AMを添カ卩しな 、場合は、 LA前処理を行っても電気抵抗値は低下しな 、。 AMを 添カロした場合、 AM— T2は、何れも電気抵抗値は低下したが、 AM— T2— fibは、 LA で前処理した場合のみ、電気抵抗値は低下した。 AM - T2 - Fgel及び AM - T2 - fib Fcmは、何れの場合も低下しな力つた。
[0049] 肺胞上皮細胞単独 (T2)では、基底膜成分の沈着が起こるが、基底膜構造体は形 成されない。形態学的にはかす力に密着結合が認められる力 免疫染色によるとァク チンベルトの形成や細胞接着面における密着結合に関わる ZO— 1分子等の集積も 悪力つた。この状態で、肺胞マクロファージをエンドトキシンで活性ィ匕すると、発生し たスーパーォキシドによって、電気抵抗値 (TER)は 6時間目力 低下が認められ、 2 4時間後には著しく低下した。しかし、プラスチック膜からの肺胞上皮細胞の乖離は 無かった。
[0050] コラーゲン線維上の培養条件下 (T2— fib)では、形態学的には密着結合の形成を 一応観察することができる(Cell Struct. Funct., 22: 603-614, 2002) 0し力し、 T2単 独の場合よりは改善されているが、ァクチン線維や ZO— 1分子等の細胞接着面への 集積は、完全では無力ゝつた。その結果、青葉アルコールを添加しない場合には、肺 胞マクロファージをエンドトキシンで刺激しても、活性酸素による細胞傷害 (電気抵抗 の低下)は発生しなかった。しかし、 ImM青葉アルコールを添加すると、 24時間後 には上面一基底面間の電気抵抗値は低下した。しかし、上皮細胞自体は、コラーゲ ン線維基質 (fib)から剥離するような傷害像を示すことは無かった。
[0051] 培養線維芽細胞を包埋したコラーゲンゲル (Fgel)上に肺胞上皮細胞を播種した 培養 (T2-Fgel)、又は、コラーゲン線維 (fib)上に播種した肺胞上皮細胞を、線維 芽細胞を包埋したコラーゲンゲル (Fgel)と 2週間共培養 (T2-fib-Fcm)すると、肺 胞上皮細胞直下には基底膜構造体が形成される(Cell Struct. Funct., 22: 603-614, 2002) oまた、ァクチン線維や密着結合に関わる ZO— 1等の分子は、細胞接着面に 良く集積した。この様な肺胞上皮組織においては、その後添加した肺胞マクロファー ジをエンドトキシンで刺激しても、青葉アルコールの有無に拘わらず、活性酸素に対 して耐性を示した。
[0052] 肺胞は、ガス交換を行う組織であり、常に異物の侵襲に曝されて 、る。その異物を 除去する役割が肺胞マクロファージであり、肺胞という組織の恒常性を維持する為に は必須の存在である(図 4参照)。しかし、異物を除去する過程で自分自身が産生し た活性酸素及びライソゾーム由来の分解酵素等により、自分自身もまた傷害を受ける リスクが発生する。活性酸素の有する諸刃の刃の効果と影響に対して我々の祖先は 、進化の過程で肺胞マクロファージの異物除去を効率良くすることで活性酸素の必 要量を軽減し、活性酸素漏出の低減を計った (参考までに:肺胞マクロファージの活 性酸素発生能は、その前駆細胞である単球の発生能の約 lZioである。また、肺胞 マクロファージの貪職能は、単球より高い。 )0他方、酸化的刺激に対する肺胞上皮 細胞の耐性を向上させたと考えられている。現在では、活性酸素を殺菌作用に用い て効率的に異物除去ができるメリットを享受しなら、自分自身が傷害を受けるリスクを 極力低減することに成功している。その結果我々は、自然界の大気の恵みを余すこ と無く享受できる。
[0053] ここに例示した青葉アルコールは、植物力 蒸散する揮発性アルコールの一つで あり、大気中にありふれて存在する天然化学物質である。我々にとつて、この様な物 質を吸入することは自然環境の中では、ごくありふれたことである。しかし、それによつ て我々や動物の肺胞が傷害を受けることは、通常無い。この観点で、プラスチック膜 やコラーゲン線維上で培養した肺胞上皮細胞の活性酸素に対する感受性の結果を 検討すると、如何にも不自然で合理性を欠く。他方、基底膜構造体上における肺胞 上皮細胞の感受性は充分抑制されており、 in vivoの実態とも整合する。肺胞上皮組 織を in vitroで構築して種々の試験物質の毒性を検討する場合、細胞直下の細胞 外基質の構造、即ち基底膜構造体もまた in vivoと同様に再現されていることが重要 であると、本実施例の結果は示唆している。
[0054] 生体中では、上皮細胞と同様に血管内皮細胞等の直下にも基底膜構造体が存在 し、内皮細胞間の結合や血液成分の漏出を制御している。また、傷害を受けた細胞 の周囲の細胞が遊走して速やかに傷を修復する際にも、細胞直下の基底膜の状態 が影響すると考えられている。従って、本発明の評価方法及び装置は、係る細胞傷 害による電気抵抗値の変化を測定するために、有効に用いることができる。
産業上の利用可能性
[0055] 組織培養にお!ヽて、培養組織は、 pH、培養中に産生する老廃物あるいは活性酸 素による酸ィ匕傷害などにより傷害を受ける。また、再生医療の発展に伴い、 in vitroで 作成した組織の利用が高まっている。特に、上皮組織や内皮組織の再生医療への 使用が注目されている。本発明の方法は、これらの組織の製造において、製造管理 や品質管理の評価方法として用いられる。また、培養組織を用いた化学物質の毒性 試験や、薬理作用試験等にも利用できる。
また、本発明の装置を用いると、多数の試験物質について組織損傷を効率良く評 価することができる。

Claims

請求の範囲
[I] 電極が、組織の上面側(上面(apical surface) (図 2の符号(以下の説明においても同 様) 42)とその上部空間(22)を含む)と基底面側(基底面 (basal surface) (43)、細胞 外基質 (43及び 43と 41に囲まれた部分)、その下部空間(23)を含む)とに装着され るように設置した培養器で、培養した組織の電気抵抗値を測定することを特徴とする 組織の損傷を評価する方法。
[2] 組織が、細胞層あるいは細胞層と該細胞層の基底面 (43)で接着して 、る細胞外基 質とを含む培養組織 (40)である請求項 1記載の評価方法。
[3] 培養組織が、人工組織又は人工臓器である請求項 2記載の評価方法。
[4] 人工組織が、人工表皮組織、人工角膜上皮組織、人工肺胞上皮組織、人工気道上 皮組織、人工腎糸球体組織、人工肝実質組織又は人工血管内皮組織である請求項
3記載の評価方法。
[5] 人工臓器が、人工血管、人工肺、人工肝、人工腎臓、人工皮膚又は人工角膜である 請求項 3記載の評価方法。
[6] 細胞層における細胞力 上皮細胞、内皮細胞又は間充織細胞である請求項 2記載 の評価方法。
[7] 上皮細胞が、表皮細胞、角膜上皮細胞、肺胞上皮細胞、消化器系の粘膜上皮細胞 、腎臓子球体上皮細胞又は肝実質細胞である請求項 6記載の評価方法。
[8] 内皮細胞が、腎臓子球体毛細胞、血管内皮細胞、肺動脈血管内皮細胞、胎盤静脈 血管内皮細胞又は大動脈血管内皮細胞である請求項 6記載の評価方法。
[9] 培養器が、培養皿(ゥエル)、シャーレ又はフラスコである請求項 1一 8の 、ずれか記 載の評価方法。
[10] 電極が、細胞培養して形成される組織の上面側(上面(apical surface) (42)とその上 部空間(22)を含む)と基底面側(基底面 (basal surface) (43)、細胞外基質 (43及び 43と 41に囲まれた部分)、その下部空間(23)を含む)とに装着されるように設置され て!、ることを特徴とする培養器。
[I I] 培養器に設置した電極、電気抵抗測定器及びプログラム制御装置カゝらなることを特 徴とする組織の損傷を測定する装置。
[12] 培養器に設置した電極が、細胞培養して形成される組織の上面と底面とに装着され るように設置されて!、る請求項 11記載の測定装置。
[13] 培養組織の上面側に設置されている電極が、培養組織の上面 (符号 42)に接触しな
V、ように設置されて 、る請求項 11又は請求項 12記載の測定装置。
[14] 培養組織の上面に設置されている電極カゝら培養組織の上面までの距離が 1 μ m— 2
Ommである請求項 13記載の測定装置。
[15] 培養組織の基底面側に設置されて!ヽる電極が、培養組織の底面 (41)には接触して も基底面 (43)には接触しな 、ように設置されて!、る請求項 11一 14の 、ずれか記載 の測定装置。
[16] 培養組織の基底面側に設置されて!、る電極から培養組織の底面までの距離が 0— 2
Ommである請求項 15記載の測定装置。
[17] 電気抵抗測定器が、電気抵抗値の測定と蓄積をプログラミングでき、必要時には測 定値をコンピュータ (PC)や携帯型情報端末 (PDA)に移せる機能を持つデータロガ 一である請求項 11一 15の 、ずれか記載の測定装置。
PCT/JP2004/016397 2003-11-07 2004-11-05 細胞及び組織の損傷を評価する方法及びその測定装置 WO2005045063A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003379084A JP2005137307A (ja) 2003-11-07 2003-11-07 細胞及び組織の損傷を評価する方法及びその測定装置
JP2003-379084 2003-11-07

Publications (1)

Publication Number Publication Date
WO2005045063A1 true WO2005045063A1 (ja) 2005-05-19

Family

ID=34567198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016397 WO2005045063A1 (ja) 2003-11-07 2004-11-05 細胞及び組織の損傷を評価する方法及びその測定装置

Country Status (2)

Country Link
JP (1) JP2005137307A (ja)
WO (1) WO2005045063A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230644A1 (ja) * 2019-05-16 2020-11-19 株式会社Screenホールディングス インサートウェル

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176835A (ja) * 2005-12-27 2007-07-12 Pola Chem Ind Inc 皮膚バリア機能を向上させるための皮膚外用剤とその製造法
JP2009294202A (ja) * 2008-05-09 2009-12-17 Pola Chem Ind Inc タイトジャンクションの物質輸送への関与の鑑別法
JP2010082244A (ja) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd 細胞活性度低減方法及びその装置
US20140045252A1 (en) * 2011-04-28 2014-02-13 Hitachi, Ltd. Cell cultivation container and cell culturing apparatus
CA2838335A1 (en) * 2011-05-04 2012-11-08 Dxupclose Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity
JP2015047086A (ja) * 2013-08-30 2015-03-16 浜松ホトニクス株式会社 分子標的薬の皮膚系細胞に対する傷害性を定量評価する方法
KR101796143B1 (ko) * 2016-01-27 2017-12-01 한양대학교 에리카산학협력단 통합형 세포 배양 및 노출 평가 장치
JP7232078B2 (ja) 2019-02-26 2023-03-02 株式会社Screenホールディングス 電極基板、測定装置および測定方法
JP2023012914A (ja) 2021-07-14 2023-01-26 株式会社Screenホールディングス 培養デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOCHITATE K. ET AL.: "Kankyo kagaku busshitsu ni tasuru bio effect sensor no kaihatsu", KOKURITSU KIKAN GENSHIRYOKU SHIKEN KENKYU SEIKA HOKOKUSHO, vol. 36, 1997, pages 76.1 - 76.4, XP002989319 *
MOCHITATE K. ET AL.: "Kankyo kagaku gbusshitsu ni taisuru bio effect sensor no kaihatsu", KOKURITSU KIKAN GENSHIRYOKU SHIKEN KENKYU SEIKA HOKOKUSHO, vol. 40, 2001, pages 82.1 - 82.4, XP002989318 *
MOCHITATE K.: "Collagen haiho johi saibo ni yoru kiteimaku no keisei", ELECTRON-MICROSCOPY, vol. 35, no. 3, 2000, pages 251 - 253, XP002989320 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230644A1 (ja) * 2019-05-16 2020-11-19 株式会社Screenホールディングス インサートウェル

Also Published As

Publication number Publication date
JP2005137307A (ja) 2005-06-02

Similar Documents

Publication Publication Date Title
Virumbrales-Muñoz et al. Microfluidic lumen-based systems for advancing tubular organ modeling
Larkin et al. Structure and functional evaluation of tendon–skeletal muscle constructs engineered in vitro
US8673634B2 (en) Method for the treatment of hearing loss
Lee et al. NiCHE platform: nature-inspired catechol-conjugated hyaluronic acid environment platform for salivary gland tissue engineering
JP2024016026A (ja) 細胞加齢の反転のための一過性細胞リプログラミング
WO2005045063A1 (ja) 細胞及び組織の損傷を評価する方法及びその測定装置
US20200199541A1 (en) Blood vessel organoid, methods of producing and using said organoids
CA3135597C (en) Compositions and methods of using partial gel layers in a microfluidic device
LaPlaca et al. Three-dimensional neuronal cultures
US20190382731A1 (en) Artificial Brain Tissue
BR112015003839B1 (pt) Método para produzir lâmina de células do epitélio pigmentar da retina
Arenholt‐Bindslev et al. Characterization of two types of human oral fibroblast with a potential application to cellular toxicity studies: tooth pulp fibroblasts and buccal mucosa fibroblasts
Ma et al. Deleterious mtDNA mutations are common in mature oocytes
Li et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids
Xue et al. Regulation of Schwann cell and DRG neurite behaviors within decellularized peripheral nerve matrix
Kim et al. Real‐time functional assay of volumetric muscle loss injured mouse masseter muscles via nanomembrane electronics
JP2019528795A (ja) 細胞培養における化学的微小環境のインビトロでの制御のための組成物、装置及び方法
Frampton et al. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes
US20050112106A1 (en) Novel methods for the in-vitro identification, isolation and differentiation of vasculogenic progenitor cells
US10793816B2 (en) Tissue culture chip
CA3120817A1 (en) Microphysiological choroid model
JP2019122335A (ja) 人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法
Natarajan et al. Matrix stiffness regulates liver sinusoidal endothelial cell function mimicking responses in fatty liver disease
Koeneman et al. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures
JP7462411B2 (ja) 歯周病様状態に誘導された三次元歯肉上皮モデルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase