WO2005044730A1 - n型熱電変換特性を有する複合酸化物 - Google Patents

n型熱電変換特性を有する複合酸化物 Download PDF

Info

Publication number
WO2005044730A1
WO2005044730A1 PCT/JP2004/015921 JP2004015921W WO2005044730A1 WO 2005044730 A1 WO2005044730 A1 WO 2005044730A1 JP 2004015921 W JP2004015921 W JP 2004015921W WO 2005044730 A1 WO2005044730 A1 WO 2005044730A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
thermoelectric conversion
type thermoelectric
conversion material
temperature
Prior art date
Application number
PCT/JP2004/015921
Other languages
English (en)
French (fr)
Inventor
Ryoji Funahashi
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to DE112004002101T priority Critical patent/DE112004002101T5/de
Priority to US10/577,916 priority patent/US20070157960A1/en
Priority to GB0608631A priority patent/GB2423515B/en
Publication of WO2005044730A1 publication Critical patent/WO2005044730A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/70Cobaltates containing rare earth, e.g. LaCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • C01G53/68Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2 containing rare earth, e.g. La1.62 Sr0.38NiO4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a composite oxide having excellent performance as an n-type thermoelectric conversion material, an n-type thermoelectric conversion material using the composite oxide, and a thermoelectric power generation module.
  • thermoelectric conversion which converts heat energy directly into electrical energy
  • Thermoelectric conversion is an energy conversion method that utilizes the Seebeck effect and generates power by generating a potential difference by applying a temperature difference between both ends of a thermoelectric conversion material.
  • electricity can be obtained simply by placing one end of the thermoelectric conversion material in a high-temperature portion generated by waste heat, placing the other end in the atmosphere (room temperature), and connecting conductors to both ends.
  • moving equipment such as motor bins required for general power generation. For this reason, it is possible to continuously generate power until the thermoelectric conversion material is degraded with low cost and no gas emission due to combustion.
  • thermoelectric power generation is expected to play a part in solving the energy problem of concern in the future, but in order to realize thermoelectric power generation, it has high thermoelectric conversion efficiency and heat resistance. It is necessary to supply a large amount of thermoelectric conversion materials with excellent properties and chemical durability
  • a CoO-based layered oxidized product of No. 349 has been reported (Japanese Patent No. 3069701, Japanese Unexamined Patent Publication No. 2001-22). No. 3393, Japanese Patent No. 3089301, Japanese Patent No. 3472814, International Publication WO 03/000605, etc.). However, all of these oxides have p-type thermoelectric properties, and the material having a positive Seebeck coefficient, that is, the portion located on the high temperature side becomes the low potential portion. Material.
  • thermoelectric power generation material When assembling a thermoelectric power generation module utilizing a thermoelectric conversion action, an n-type thermoelectric power generation material is indispensable in addition to a P-type thermoelectric power conversion material. Therefore, the development of an n-type thermoelectric conversion material composed of an element having a small amount of toxicity and a large abundance, having excellent heat resistance, chemical durability and the like, and having high thermoelectric conversion efficiency is expected.
  • thermoelectric conversion performance Japanese Patent Application Laid-Open No. 2003-282964.
  • thermoelectric power generation it is desired to develop n-type thermoelectric conversion materials having better thermoelectric conversion efficiency.
  • a main object of the present invention is to provide a novel material having excellent performance as an n-type thermoelectric conversion material.
  • the present invention provides the following composite oxide and an n-type thermoelectric conversion material using the composite oxide.
  • M 1 is at least one element selected from the group consisting of Na, K, Sr, Ca, Bi and Nd
  • M 2 is Ti, V, Cr, Mn, Fe, Co and Cu
  • M 1 is at least one element selected from the group consisting of Na, K, Sr, Ca, Bi and Nd
  • M 2 is Ti, V, Cr, Mn, Fe, Co and Cu
  • a composite oxide having the formula:
  • thermoelectric conversion material comprising the composite oxide according to item 1 above.
  • thermoelectric conversion material comprising the composite oxide according to item 2 above.
  • thermoelectric generation module including the n-type thermoelectric conversion material according to item 3 above.
  • thermoelectric generation module including the n-type thermoelectric conversion material according to item 4 above.
  • the composite oxide of the present invention has a composition formula: La M 1 Ni M 2 O
  • M 1 is at least one element selected from the group consisting of Na, K, Sr, Ca, Bi and Nd
  • M 2 is Ti
  • V, Cr, Mn, Fe , Co and Cu are at least one element selected from the group consisting of:
  • the subscripts in the equation are 0.5 ⁇ v ⁇ 1.2, 0 ⁇ w ⁇ 0.5, 0.5 ⁇ x ⁇ l. 2, and 0.01 ⁇ y ⁇ 0.5, 2. It is a number that satisfies 8 ⁇ z ⁇ 3.2.
  • the above composite oxide has a negative Seebeck coefficient, and when a temperature difference is generated between both ends of the oxide material, the potential generated by the thermoelectromotive force is high temperature.
  • the temperature on the side is higher than that on the low-temperature side, indicating characteristics as an n-type thermoelectric conversion material.
  • the composite oxide has a negative Seebeck coefficient at a temperature of 100 ° C. or higher.
  • the above-mentioned composite oxide has a very low electric resistivity, and has an electric resistivity of 10 m ⁇ cm or less at a temperature of 100 ° C or more.
  • FIG. 1 shows an X-ray diffraction pattern of the composite oxide obtained in Example 1 described later among the above-mentioned composite oxidants. From this X-ray diffraction pattern, it is recognized that the composite oxide of the present invention has a perovskite crystal structure.
  • FIG. 2 shows a schematic diagram of the crystal structure of the composite oxide of the present invention. As shown in FIG. 2, the composite oxidized product has a perovskite-type LaNiO structure, and the La site is unsubstituted or
  • M 1 Some were replaced by M 1 and some of the Ni sites were replaced by M 2 .
  • the method for producing the composite oxidized product of the present invention is not particularly limited as long as it can produce a single crystal or a polycrystal having the above composition.
  • a single crystal production method such as a flux method, a zone melt method, a pulling method, a glass anneal method via a glass precursor, a solid state reaction method, a powder production method such as a sol-gel method, a sputtering method, a laser method.
  • a composite oxide having a crystal structure having the above composition may be produced by a known method such as a thin film production method such as a brazing method and a chemical 'vapor-deposition' method.
  • the above-mentioned composite oxidized product can be produced, for example, by mixing and firing the raw materials so as to have the same element component ratio as the target composite oxide. .
  • the firing temperature and the firing time are not particularly limited as long as the conditions for forming the target composite oxide are not limited. For example, in a temperature range of about 700 to 1200 ° C, 10 to 40 hours. What is necessary is just to bake it.
  • a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form the target composite oxide.
  • calcining may be performed at about 700 to 900 ° C. for about 10 hours and then under the above-described conditions.
  • the firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted.
  • the firing atmosphere is usually an oxidizing atmosphere such as an oxygen stream or air.However, when the raw material contains a sufficient amount of oxygen, the firing can be performed, for example, in an inert atmosphere. .
  • the amount of oxygen in the generated composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, and the like. The higher the oxygen partial pressure, the higher the oxygen ratio in the above general formula. it can.
  • the raw material powder is pressed into a compact to promote the solid-phase reaction efficiently. It is preferable to bake. In this case, the obtained molded body may be pulverized into a powder having a required particle size.
  • the raw material is not particularly limited as long as it can form an oxidized product by firing, and may be a simple metal, an oxide, various oxidized products (such as carbonates) and the like.
  • La sources include lanthanum oxylan (La O), lanthanum carbonate (La (CO)), lanthanum nitrate (La (NO)),
  • Ni sources include nickel oxide (NiO),
  • Nickel acid Ni (NO)
  • nickel chloride NiCl
  • nickel hydroxide Ni (OH)
  • oxidized products chlorides, carbonates, nitrates, hydroxides, alkoxides, and the like can be used.
  • a compound containing two or more constituent elements of the composite oxide of the present invention may be used.
  • the target composite acidified product can be obtained in the same manner.
  • a water-soluble compound such as nitrate
  • the composite oxidized product of the present invention obtained in this manner has a negative Seek coefficient at a temperature of 100 ° C or higher and a very low value of 10 m ⁇ cm or less. It has electrical resistivity and can exhibit excellent thermoelectric conversion performance as an n-type thermoelectric conversion material. Further, the composite oxide has good heat resistance, chemical durability, etc., and is composed of a less toxic element, and is highly practical as a thermoelectric conversion material.
  • FIG. 3 shows a schematic diagram of an example of a thermoelectric power module using the thermoelectric conversion material comprising the composite oxide of the present invention as an n-type thermoelectric conversion element.
  • the structure of the thermoelectric power generation module is the same as that of the known thermoelectric power generation module, and the high-temperature part substrate 1, the low-temperature part substrate 2, the p-type thermoelectric conversion material 3, the n-type thermoelectric conversion material 4, the electrode 5, the conductor 6 And the like.
  • the composite oxide of the present invention is used as an n-type thermoelectric conversion material.
  • the composite oxide of the present invention has a negative Seebeck coefficient and a low electric resistivity, and is also excellent in heat resistance, chemical durability and the like.
  • the composite oxide can be effectively used as an n-type thermoelectric conversion material used in high-temperature air, which was impossible with conventional intermetallic compounds. Therefore, by incorporating the composite oxide into a system as an n-type thermoelectric conversion element of a thermoelectric power generation module, it is possible to effectively use the heat energy previously discarded in the atmosphere.
  • FIG. 1 is a drawing showing an X-ray diffraction pattern of the composite oxidized product obtained in Example 1.
  • FIG. 2 is a drawing schematically showing a crystal structure of a composite oxidized product of the present invention.
  • FIG. 3 is a schematic diagram of a thermoelectric power generation module using the composite oxide of the present invention as a thermoelectric conversion material.
  • FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient of the composite oxide obtained in Example 1 and the composite oxide of Comparative Example.
  • FIG. 5 is a graph showing the temperature dependence of the electrical resistivity of the composite oxide obtained in Example 1 and the composite oxide of Comparative Example.
  • FIG. 6 is a graph showing the temperature dependence of output factors of the composite oxide obtained in Example 1 and the composite oxide of Comparative Example.
  • thermoelectric conversion material 4 n-type thermoelectric conversion material
  • La (NO) 6 ⁇ 0 Lanthanum nitrate (La (NO) 6 ⁇ 0) as La source, Nickel nitrate (Ni (NO) 6 ⁇ ⁇ ⁇ 6) as Ni source
  • the obtained composite oxide is represented by LaNiCuO, and the X-rays shown in FIG.
  • FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient (S) of the obtained composite oxide at 100 ° C. to 700 ° C. (373 K to 973 K). From Fig. 4, it was confirmed that this composite oxide had a negative Seebeck coefficient at a temperature of 100 ° C (373 K) or higher, and was an n-type thermoelectric conversion material with a high potential on the high temperature side. .
  • FIG. 4 also shows the results of measurement of the Seebeck coefficient of LaNiO as a comparative example. Seebeck of composite oxide of Example 1
  • FIG. 5 is a graph showing the temperature dependence of the electric resistivity of the composite oxide. From Fig. 5, the electrical resistivity of the composite oxide is 100-700 ° C (373K-973K). It can be seen that the value is as low as 10 m ⁇ cm or less in all ranges. FIG. 5 also shows the measurement results of the electrical resistivity of LaNiO as a comparative example. Example 1
  • the electrical resistivity was 10 m ⁇ cm or less in the entire range of 100 to 700 ° C (373K to 973K).
  • FIG. 6 is a graph showing the temperature dependence of the output factor (S 2 / P ) for the composite oxides of Example 1 and Comparative Example. As is clear from FIG. 6, the composite oxidized product of Example 1 had a higher output factor than the composite oxide (LaNiO) of Comparative Example. See below
  • a composite oxide was produced in the same manner as in Example 1 using an aqueous solution in which the raw materials were dissolved so as to have the element ratios shown in Table 1 and Table 19 below.
  • Table 1 shows the element ratio, the Seebeck coefficient at 700 ° C., the electrical resistivity at 700 ° C., and the output factor at 700 ° C. in the obtained composite oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、 組成式 : LavM1 wNixM2 yOz (式中、M1は、Na、K、Sr、Ca、Bi及びNdからなる群から選ばれた少なくとも一種の元素であり、M2は、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選ばれた少なくとも一種の元素である。式中の添字は、それぞれ、0.5≦v≦1.2、0≦w≦0.5、0.5≦x≦1.2、0.01≦y≦0.5、2.8≦z≦3.2を満たす数である)で表される組成を有する複合酸化物を提供するものである。この複合酸化物は、100°C以上の温度で負のゼーベック係数と10mΩcm以下の電気抵抗率を有するものであり、n型熱電変換材料として優れた性能を有する新規な材料である。

Description

明 細 書
n型熱電変換特性を有する複合酸化物
技術分野
[0001] 本発明は、 n型熱電変換材料として優れた性能を有する複合酸化物、該複合酸化 物を用いた n型熱電変換材料、及び熱電発電モジュールに関する。
背景技術
[0002] 我が国では、一次供給エネルギーからの有効なエネルギーの得率は 30%程度に 過ぎず、約 70%ものエネルギーを最終的には熱として大気中に廃棄している。また、 工場やごみ焼却場などにおいて燃焼により生じる熱も他のエネルギーに変換される ことなく大気中に廃棄されている。このように、我々人類は、非常に多くの熱エネルギ 一を無駄に廃棄しており、化石エネルギーの燃焼等の行為力 僅かなエネルギーし か獲得していない。
[0003] エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギー を利用できるようにすることが有効である。そのためには熱エネルギーを直接電気工 ネルギ一に変換する熱電変換が有効な手段である。熱電変換とは、ゼーベック効果 を利用したものであり、熱電変換材料の両端で温度差をつけることで電位差を生じさ せて発電を行うエネルギー変換法である。この熱電発電では、熱電変換材料の一端 を廃熱により生じた高温部に配置し、もう一端を大気中(室温)に配置して、それぞれ の両端に導線を接続するだけで電気が得られ、一般の発電に必要なモーターゃタ 一ビン等の可動装置は全く必要ない。このためコストも安ぐ燃焼等によるガスの排出 も無ぐ熱電変換材料が劣化するまで継続的に発電を行うことができる。
[0004] このように、熱電発電は今後心配されるエネルギー問題の解決の一端を担う技術と して期待されているが、熱電発電を実現するためには、高い熱電変換効率を有し、 耐熱性、化学的耐久性等に優れた熱電変換材料を大量に供給することが必要となる
[0005] これまでに、高温の空気中で優れた熱電変換性能を示す物質として Ca Co O等
3 4 9 の CoO系層状酸ィ匕物が報告されている(特許第 3069701号公報、特開 2001— 22 3393号公報、特許第 3089301号公報、特許第 3472814号公報、国際公開 WO 0 3/000605号公報等)。し力しながら、これらの酸ィ匕物は、全て p型の熱電特性を有 するものであり、ゼーベック係数が正の値を示す材料、即ち、高温側に位置する部分 が低電位部となる材料である。
[0006] 熱電変換作用を利用した熱電発電モジュールを組み立てる場合には、 P型熱電変 換材料の他に、 n型熱電発電材料が不可欠である。そこで、毒性が少なぐ存在量の 多い元素により構成され、耐熱性、化学的耐久性等に優れ、し力も高い熱電変換効 率を有する n型熱電変換材料の開発が期待されて 、る。
[0007] これまで、 LaNiO、 La NiO等の複合酸化物の一部を Bi等の元素で置換した酸
3 2 4
化物が、 n型熱電変換性能を有することが報告されている(特開 2003— 282964号 公報)。し力しながら、熱電発電の実用化のためには、より優れた熱電変換効率を有 する n型熱電変換材料の開発が望まれて ヽる。
発明の開示
発明が解決しょうとする課題
[0008] 本発明の主な目的は、 n型熱電変換材料として優れた性能を有する新規な材料を 提供することである。
課題を解決するための手段
[0009] 本発明者は、上記した課題を達成すべく鋭意研究を重ねた結果、 La、 Ni及び Oを 必須元素として含み、その一部が特定の元素で置換された特定組成の複合酸ィ匕物 力 負のゼーベック係数を有するものであり、し力も、電気抵抗値が低ぐ n型熱電変 換材料として優れた特性を有することを見出し、ここに本発明を完成するに至った。
[0010] 即ち、本発明は、下記の複合酸化物、及び該複合酸化物を用いた n型熱電変換材 料を提供するものである。
1. 組成式: La M1 Ni M2 O
v w x y z
(式中、 M1は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選ばれた少なくとも一種の 元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選ばれた少なく とも一種の元素である。式中の添字は、それぞれ、 0. 5≤v≤l. 2、 0≤w≤0. 5、 0 . 5≤x≤l. 2、0. 01≤y≤0. 5、 2. 8≤z≤3. 2を満たす数である)で表される組成 を有し、 100°C以上の温度で負のゼーベック係数を有する複合酸ィ匕物。
2. 組成式: La M1 Ni M2 O
v w x y z
(式中、 M1は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選ばれた少なくとも一種の 元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選ばれた少なく とも一種の元素である。式中の添字は、それぞれ、 0. 5≤v≤l. 2、 0≤w≤0. 5、 0 . 5≤x≤l. 2、0. 01≤y≤0. 5、 2. 8≤z≤3. 2を満たす数である)で表される組成 を有し、 100°C以上の温度で 10m Ω cm以下の電気抵抗率を有する複合酸化物。
3. 上記項 1に記載の複合酸化物からなる n型熱電変換材料。
4. 上記項 2に記載の複合酸化物からなる n型熱電変換材料。
5. 上記項 3に記載の n型熱電変換材料を含む熱電発電モジュール。
6. 上記項 4に記載の n型熱電変換材料を含む熱電発電モジュール。
本発明の複合酸化物は、組成式: La M1 Ni M2 O
w X y zで表される組成を有するもの である。
[0011] 上記組成式において、 M1は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選ばれた 少なくとも一種の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群か ら選ばれた少なくとも一種の元素である。また、式中の添字は、それぞれ、 0. 5≤v≤ 1. 2、 0≤w≤0. 5、 0. 5≤x≤l. 2、 0. 01≤y≤0. 5、 2. 8≤z≤3. 2を満足する 数である。
[0012] 上記した複合酸ィ匕物は、負のゼーベック係数を有するものであり、該酸化物からな る材料の両端に温度差を生じさせた場合に、熱起電力により生じる電位は、高温側 の方が低温側に比べて高くなり、 n型熱電変換材料としての特性を示すものである。 具体的には、上記複合酸化物は、 100°C以上の温度において負のゼーベック係数 を有するものである。
[0013] 更に、上記複合酸化物は、電気伝導性がよぐ低い電気抵抗率を示し、 100°C以 上の温度にお!、て、 10m Ω cm以下の電気抵抗率である。
[0014] 上記した複合酸ィ匕物の内で、後述する実施例 1で得られた複合酸化物の X線回折 ノターンを図 1に示す。この X線回折パターンから、本発明の複合酸化物が、ぺロブ スカイト型の結晶構造を有することが認められる。 [0015] 図 2に、本発明の複合酸化物の結晶構造の模式図を示す。図 2に示すように、該複 合酸ィ匕物はぺロブスカイト型の LaNiO構造を有し、 Laサイトは、無置換若しくはその
3
一部が M1によって置換され、 Niサイトの一部は M2によって置換されたものである。
[0016] 本発明の複合酸ィ匕物の製造方法については、特に限定はなぐ上記した組成を有 する単結晶体又は多結晶体を製造できる方法であればよい。
[0017] 例えば、フラックス法、ゾーンメルト法、引き上げ法、ガラス前駆体を経由するガラス ァニール法等の単結晶製造法、固相反応法、ゾルゲル法等の粉末製造法、スパッタ リング法、レーザーアブレーシヨン法、ケミカル 'ベーパ一'デポジション法等の薄膜 製造法等の公知の方法によって上記組成を有する結晶構造の複合酸化物を製造す ればよい。
[0018] これらの方法の内で、固相反応法による複合酸化物の製造方法について、より詳 細に説明する。
[0019] 上記した複合酸ィ匕物は、例えば、目的とする複合酸化物の元素成分比率と同様の 元素成分比率となるように原料物質を混合し、焼成することによって製造することがで きる。
[0020] 焼成温度及び焼成時間については、目的とする複合酸化物が形成される条件とす れば良ぐ特に限定されないが、例えば、 700— 1200°C程度の温度範囲において、 10— 40時間程度焼成すれば良い。尚、原料物質として炭酸塩や有機化合物等を 用いる場合には、焼成する前に予め仮焼きして原料物質を分解させた後、焼成して 目的の複合酸化物を形成することが好ましい。例えば、原料物質として炭酸塩を用 いる場合には、 700— 900°C程度で 10時間程度仮焼きした後、上記した条件で焼 成すれば良い。焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手 段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中と すればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気 中で焼成することも可能である。生成する複合酸化物中の酸素量は、焼成時の酸素 分圧、焼成温度、焼成時間等により制御することができ、酸素分圧が高い程、上記一 般式における酸素比率を高くすることができる。固相反応法で目的とする複合酸ィ匕 物を作製するには、固相反応を効率よく進行させるために、原料粉末を加圧成形体 として焼成することが好ましい。この場合、得られた成形体を粉砕して必要な粒径の 粉体とすればよい。
[0021] 原料物質としては、焼成により酸ィ匕物を形成し得るものであれば特に限定されず、 金属単体、酸化物、各種ィ匕合物 (炭酸塩等)等を使用できる。例えば、 La源としては 酸ィ匕ランタン (La O )、炭酸ランタン (La (CO ) )、硝酸ランタン (La (NO ) )、塩ィ匕ラ
2 3 2 3 3 3 3 ンタン (LaCl )、水酸化ランタン (La (OH) ),アルコシキド化合物(トリメトキシランタン
3 3
(La (OCH ) )、トリエトキシランタン(La (OC H ) )、トリプロポキシランタン(La (OC
3 3 2 5 3 3
H ) 等)のアルコキシドィ匕合物を使用でき、 Ni源としては、酸ィ匕ニッケル (NiO)、硝
7 3
酸ニッケル(Ni (NO ) )、塩化ニッケル(NiCl )、水酸化ニッケル(Ni(OH) )、アル
3 2 2 2 コキシド化合物(ジメトキシニッケル(Ni (OCH ) )、ジエトキシニッケル(Ni (OC H )
3 2 2 5
)、ジプロポキシニッケル (Ni (OC H ) )等)等を使用できる。その他の元素につい
2 3 7 2
ても同様に酸ィ匕物、塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシドィ匕合物等を用 いることができる。また本発明の複合酸化物の構成元素を二種以上含む化合物を使 用してちょい。
[0022] また、原料物質を溶解した水溶液を出発原料として、同様の方法で目的とする複合 酸ィ匕物を得ることができる。この場合、原料物質としては、硝酸塩などの水溶性の化 合物を用いれば良ぐ金属成分のモル比が La : M1 :Ni: M2=0. 5— 1. 2 : 0— 0. 5 : 0. 5-1. 2 : 0. 01-0. 5の範囲となるように原料物質を溶解して水溶液とし、例え ば、アルミナるつぼ中でこの水溶液を加熱、撹拌して水を蒸発させた後、残渣を空気 中で 600— 800°C程度で 10時間程度加熱して仮焼粉末とした後、上記した方法と 同様にして焼成すればょ 、。
[0023] この様にして得られる本発明の複合酸ィ匕物は、 100°C以上の温度で負のゼ一べッ ク係数を有し、且つ 10m Ω cm以下と ヽぅ非常に低 ヽ電気抵抗率を有するものであり 、 n型熱電変換材料として優れた熱電変換性能を発揮できる。更に、該複合酸化物 は、耐熱性、化学的耐久性等が良好であって、毒性の少ない元素により構成されて おり、熱電変換材料として実用性の高いものである。
[0024] 本発明の複合酸化物は、上記した特性を利用して、空気中において高温で用いる n型熱電変換材料として有効に利用することができる。 [0025] 本発明の複合酸化物からなる熱電変換材料を n型熱電変換素子として用いた熱電 発電モジュールの一例の模式図を図 3に示す。該熱電発電モジュールの構造は、公 知の熱電発電モジュールと同様であり、高温部用基板 1、低温部用基板 2、 p型熱電 変換材料 3、 n型熱電変換材料 4、電極 5、導線 6等により構成される熱電発電モジュ ールであり、本発明の複合酸化物は n型熱電変換材料として使用される。
発明の効果
[0026] 本発明の複合酸化物は、負のゼーベック係数と低い電気抵抗率を有し、更に、耐 熱性、化学的耐久性などにも優れた複合酸化物である。
[0027] 該複合酸化物は、この様な特性を利用して、従来の金属間化合物では不可能であ つた、高温の空気中で用いる n型熱電変換材料として有効に利用することができる。 よって、該複合酸化物を熱電発電モジュールの n型熱電変換素子としてシステム中 に組み込むことにより、これまで大気中に廃棄されていた熱エネルギーを有効に利用 することが可能になる。
図面の簡単な説明
[0028] [図 1]図 1は、実施例 1で得られた複合酸ィ匕物の X線回折パターンを示す図面である
[図 2]図 2は、本発明の複合酸ィ匕物の結晶構造を模式的に示す図面である。
[図 3]図 3は、本発明の複合酸化物を熱電変換材料として用いた熱電発電モジユー ルの模式図である。
[図 4]図 4は、実施例 1で得られた複合酸化物及び比較例の複合酸化物のゼ一べッ ク係数の温度依存性を示すグラフである。
[図 5]図 5は、実施例 1で得られた複合酸化物及び比較例の複合酸化物の電気抵抗 率の温度依存性を示すグラフである。
[図 6]図 6は、実施例 1で得られた複合酸化物及び比較例の複合酸化物の出力因子 の温度依存性を示すグラフである。
符号の説明
[0029] 1 高温部用基板
2 低温部用基板 3 p型熱電変換材料
4 n型熱電変換材料
5 電極
6 導線
発明を実施するための最良の形態
[0030] 以下、実施例を挙げて本発明を更に詳細に説明する。
[0031] 実施例 1
La源として硝酸ランタン (La (NO ) ·6Η 0)、 Ni源として硝酸ニッケル(Ni (NO ) ·6Η
2 3 3 2 3 2 2
Ο)、 Cu源として硝酸銅 (Cu(NO ) ·3Η Ο)を用い、 La :Ni: Cu (元素比) = 1 : 0. 8 : 0.
3 2 2
2となる割合でこれらの原料を蒸留水に完全に溶解し、アルミナるつぼ中で十分に撹 拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空 気中で 600°Cで 10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、カロ 圧成形後、 300mlZ分の酸素気流中で 1000°Cで 20時間加熱して複合酸化物を合 成し 7こ。
[0032] 得られた複合酸化物は、 LaNi Cu O で表されるものであり、図 1に示す X線
0. 8 0. 2 3. 1
回折パターンを示すものであった。
[0033] 得られた複合酸化物の 100°C— 700°C (373K-973K)におけるゼーベック係数( S)の温度依存性を示すグラフを図 4に示す。図 4から、この複合酸化物が、 100°C (3 73K)以上の温度において負のゼーベック係数を有するものであり、高温側が高電 位となる n型熱電変換材料であることが確認できた。図 4には、比較例として、 LaNiO につ 、てのゼーベック係数の測定結果も示す。実施例 1の複合酸化物のゼーベック
3
係数と比較例の複合酸化物のゼーベック係数とを比較した場合に、実施例 1の酸ィ匕 物にお 、て顕著なゼーベック係数の増加は認められな力つた力 後述する実施例で は、置換元素の種類によっては明らかなゼーベック係数の増加が認められた。なお、 以下の全ての実施例においても、ゼーベック係数は、 100°C以上において、負の値 であった。
[0034] また、該複合酸化物について、電気抵抗率 )の温度依存性を示すグラフを図 5〖こ 示す。図 5から、該複合酸化物の電気抵抗率は、 100— 700°C (373K— 973K)の 全ての範囲において、 10m Ω cm以下という低い値であることが判る。図 5には、比較 例として、 LaNiOについての電気抵抗率の測定結果も示す。実施例 1の複合酸ィ匕
3
物の電気抵抗率と比較例の複合酸化物の電気抵抗率とを比較した場合に、実施例 1の複合酸ィ匕物において明らかな電気抵抗率の低下が認められた。
[0035] なお、以下の全ての実施例においても、 100— 700°C (373K— 973K)の全ての 範囲で電気抵抗率が 10m Ω cm以下であった。
[0036] また、実施例 1と比較例の複合酸化物につ 、て、出力因子(S2/ P )の温度依存性 を示すグラフを図 6に示す。図 6から明らかなように、実施例 1の複合酸ィ匕物は、比較 例の複合酸化物 (LaNiO )と比べて高い出力因子を有するものであった。後述する
3
全ての実施例の複合酸ィ匕物についても、比較例の複合酸化物 (LaNiO )と比べて
3 高い出力因子を示した。
[0037] 実施例 2— 380
下記表 1一表 19に示す元素比となるように原料物質を溶解した水溶液を用いて、 実施例 1と同様にして複合酸化物を作製した。
[0038] 焼成温度及び焼成時間については、目的とする酸化物が生成するように適宜変更 した。
[0039] 下記表 1一表 19に、得られた複合酸化物における元素比、 700°Cにおけるゼ一べ ック係数、 700°Cにおける電気抵抗率、及び 700°Cにおける出力因子を示す。
[0040] [表 1]
Lao.8-1.2M1。 Nio.5-1.2M 0.01-0.5O2.8-3.2
Figure imgf000011_0001
2]
Lao.8-1.2Na o.i Nio.5-1.2 M 0.01-0.5O2
Figure imgf000012_0001
3]
[ m [ε ]
Figure imgf000013_0001
lZ6SlO/l700Zdf/X3d oe^o/sooz OAV
Figure imgf000014_0001
Figure imgf000014_0002
]
Lao Ca o Nio 0.01-0.5O2 .2
Figure imgf000015_0001
6]
Lao.8-i.2 Bio.i Nio.5-1.2 0.01-0.5O2.8-3.2
Figure imgf000016_0001
7]
[8挲] [ 00]
Figure imgf000017_0001
lZ6ST0/t700idfX3d 91-
Figure imgf000018_0001
9]
Figure imgf000019_0001
10]
[u [oeoo]
Figure imgf000020_0001
TZ6SlO/l700Zdf/X3d 81· Lao.8-1.0 Ca 0.2 Nio.s-i.2 M 0.01-0.5O2.8-3.2
Figure imgf000021_0001
12]
Lao.8-1.0 Bio.2 Nio.5-1.2 M 0.01-0.502.8-3.2
Figure imgf000022_0001
13]
Lao -i.o Nd Ni0, M' 0.01-0.5O2 .2
Figure imgf000023_0001
14]
Figure imgf000024_0001
Figure imgf000024_0002
15]
L o _o.7K o.s io -1 M 0.01-0.5O2 .2
Figure imgf000025_0001
16]
Lao.5-0.7 Sr .5 .2 M 8-3.2
Figure imgf000026_0001
17]
Lao.5-0.7 Ca o.sNio.5-i.2 M 0.01-0.502.8-3.2
Figure imgf000027_0001
18]
[6ΐ挲] [8S00]
Figure imgf000028_0001
TZ6SlO/l700Zdf/X3d 93 oe ^o/sooz OAV Lao.5~o.7Nd o.sNio.5-1.2 M 0.01-0.5O2.8-3.2
Figure imgf000029_0001

Claims

請求の範囲
[1] 組成式: La M1 Ni M2 O
v w x y z
(式中、 M1は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選ばれた少なくとも一種の 元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選ばれた少なく とも一種の元素である。式中の添字は、それぞれ、 0. 5≤v≤l. 2、 0≤w≤0. 5、 0 . 5≤x≤l. 2、0. 01≤y≤0. 5、 2. 8≤z≤3. 2を満たす数である)で表される組成 を有し、 100°C以上の温度で負のゼーベック係数を有する複合酸ィ匕物。
[2] 組成式: La M1 Ni M2 O
v w x y z
(式中、 M1は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選ばれた少なくとも一種の 元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選ばれた少なく とも一種の元素である。式中の添字は、それぞれ、 0. 5≤v≤l. 2、 0≤w≤0. 5、 0 . 5≤x≤l. 2、0. 01≤y≤0. 5、 2. 8≤z≤3. 2を満たす数である)で表される組成 を有し、 100°C以上の温度で 10m Ω cm以下の電気抵抗率を有する複合酸化物。
[3] 請求項 1に記載の複合酸化物からなる n型熱電変換材料。
[4] 請求項 2に記載の複合酸化物からなる n型熱電変換材料。
[5] 請求項 3に記載の n型熱電変換材料を含む熱電発電モジュール。
[6] 請求項 4に記載の n型熱電変換材料を含む熱電発電モジュール。
PCT/JP2004/015921 2003-11-07 2004-10-27 n型熱電変換特性を有する複合酸化物 WO2005044730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112004002101T DE112004002101T5 (de) 2003-11-07 2004-10-27 Kompositoxid mit thermoelektrischen Umwandlungseigenschaften vom n-Typ
US10/577,916 US20070157960A1 (en) 2003-11-07 2004-10-27 Composite oxide having n-type thermoelectric conversion property
GB0608631A GB2423515B (en) 2003-11-07 2004-10-27 Composite oxide having n-type thermoelectric conversion property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-377708 2003-11-07
JP2003377708A JP4257419B2 (ja) 2003-11-07 2003-11-07 n型熱電変換特性を有する複合酸化物

Publications (1)

Publication Number Publication Date
WO2005044730A1 true WO2005044730A1 (ja) 2005-05-19

Family

ID=34567155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015921 WO2005044730A1 (ja) 2003-11-07 2004-10-27 n型熱電変換特性を有する複合酸化物

Country Status (5)

Country Link
US (1) US20070157960A1 (ja)
JP (1) JP4257419B2 (ja)
DE (1) DE112004002101T5 (ja)
GB (2) GB2449811B (ja)
WO (1) WO2005044730A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263225A (ja) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique ペロブスカイトまたは派生構造のチタン酸塩およびその用途
CN102339946A (zh) * 2010-07-20 2012-02-01 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
WO2012099089A1 (ja) * 2011-01-21 2012-07-26 株式会社村田製作所 半導体セラミックおよび半導体セラミック素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780807B1 (en) * 2004-07-01 2013-02-27 Universal Entertainment Corporation Thermoelectric conversion module
KR101303581B1 (ko) 2012-02-23 2013-09-09 세종대학교산학협력단 산화물 열전재료의 소결기술
CN105823569B (zh) * 2016-04-27 2018-10-30 西安交通大学 一种掺杂铬酸镧薄膜型热电偶及其制备方法
CN106498435B (zh) * 2016-11-24 2019-03-05 华中科技大学 一种固体氧化物电解池阴极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479019A (en) * 1987-09-21 1989-03-24 Dainichiseika Color Chem Perovskite type fine powder and its production
JPH06329463A (ja) * 1993-05-26 1994-11-29 Hitachi Metals Ltd 磁気ヘッド用非磁性基板材料
JPH11242960A (ja) * 1997-12-09 1999-09-07 Nippon Telegr & Teleph Corp <Ntt> ニッケル鉄系ペロブスカイト型固体燃料電池用空気極材料
JP2003282964A (ja) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology n型熱電特性を有する複合酸化物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479019A (en) * 1987-09-21 1989-03-24 Dainichiseika Color Chem Perovskite type fine powder and its production
JPH06329463A (ja) * 1993-05-26 1994-11-29 Hitachi Metals Ltd 磁気ヘッド用非磁性基板材料
JPH11242960A (ja) * 1997-12-09 1999-09-07 Nippon Telegr & Teleph Corp <Ntt> ニッケル鉄系ペロブスカイト型固体燃料電池用空気極材料
JP2003282964A (ja) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology n型熱電特性を有する複合酸化物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIBA R. ET AL: "Properties of La1-ySryNi1-xFexO3 as a cathode material for a low-temperature operating SOFC", SOLID STATE IONICS, vol. 152-153, 2002, pages 575 - 582, XP004398281 *
ODIER P. ET AL: "Sol-Gel Synthesis and Structural Characterization of the Perovskite Type Pseudo Solid Solution L a N i 0.5C u 0.5O3", JOURNAL OF MATERIALS CHEMISTRY, vol. 12, 2002, pages 1370 - 1373, XP002985073 *
RODRIGUEZ E. ET AL: "Structural, Electronic, and Magnetic Characterization of the Perovskite L A N i 1-x T i xO3(0-<x-<1/2)", JOURNAL OF STATE CHEMISTRY, vol. 148, 1999, pages 479 - 486, XP002985072 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263225A (ja) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique ペロブスカイトまたは派生構造のチタン酸塩およびその用途
CN102339946A (zh) * 2010-07-20 2012-02-01 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
WO2012099089A1 (ja) * 2011-01-21 2012-07-26 株式会社村田製作所 半導体セラミックおよび半導体セラミック素子
JP5737299B2 (ja) * 2011-01-21 2015-06-17 株式会社村田製作所 半導体セラミックおよび半導体セラミック素子
US9318684B2 (en) 2011-01-21 2016-04-19 Murata Manufacturing Co., Ltd. Semiconductor ceramic and semiconductor ceramic element

Also Published As

Publication number Publication date
GB0816770D0 (en) 2008-10-22
US20070157960A1 (en) 2007-07-12
DE112004002101T5 (de) 2006-09-21
GB2449811B (en) 2009-01-14
JP2005139032A (ja) 2005-06-02
GB0608631D0 (en) 2006-06-14
JP4257419B2 (ja) 2009-04-22
GB2423515B (en) 2008-11-12
GB2423515A (en) 2006-08-30
GB2449811A (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP2001223393A (ja) 高いゼーベック係数と高い電気伝導度を有する複合酸化物
JP4797148B2 (ja) 熱電変換材料接続用導電性ペースト
JP3968418B2 (ja) n型熱電特性を有する複合酸化物
JP2009117449A (ja) n型熱電特性を有する酸化物複合体
WO2005044730A1 (ja) n型熱電変換特性を有する複合酸化物
JP3069701B1 (ja) 高いゼ―ベック係数と高い電気伝導度を有する複合酸化物
JP4292390B2 (ja) n型熱電特性を有する複合酸化物
JP5024745B2 (ja) 優れた熱電変換性能を有する金属酸窒化物熱電変換材料
JP2004356476A (ja) 優れた熱電変換性能を有する複合酸化物
JP4221496B2 (ja) n型熱電特性を有する複合酸化物
JP2001019544A (ja) 熱電変換材料及び複合酸化物焼結体の製造方法
JP4239010B2 (ja) p型熱電変換特性を有する複合酸化物
JP3586716B2 (ja) 高い熱電変換効率を有する複合酸化物
JP4143724B2 (ja) 複合酸化物単結晶の製造方法
JP4193940B2 (ja) 優れた熱電変換性能を有する複合酸化物
JP3903172B2 (ja) 金属酸化物焼結体の製造方法
JP2002141562A (ja) 優れた熱電変換性能を有する複合酸化物
JP2005276959A (ja) 熱電変換材料、熱電変換素子およびこれを用いる熱電発電素子
JP3950960B2 (ja) カリウム−マンガン含有複合酸化物
JP2004107151A (ja) 金属酸化物単結晶及び金属酸化物単結晶の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007157960

Country of ref document: US

Ref document number: 10577916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 0608631.8

Country of ref document: GB

Ref document number: 0608631

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120040021014

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10577916

Country of ref document: US