WO2005043256A1 - 多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置 - Google Patents

多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置 Download PDF

Info

Publication number
WO2005043256A1
WO2005043256A1 PCT/JP2004/012850 JP2004012850W WO2005043256A1 WO 2005043256 A1 WO2005043256 A1 WO 2005043256A1 JP 2004012850 W JP2004012850 W JP 2004012850W WO 2005043256 A1 WO2005043256 A1 WO 2005043256A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic recording
light
reproducing
recording layer
information
Prior art date
Application number
PCT/JP2004/012850
Other languages
English (en)
French (fr)
Inventor
Takuya Tsukagoshi
Jiro Yoshinari
Hideaki Miura
Tetsuro Mizushima
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/577,245 priority Critical patent/US7760407B2/en
Publication of WO2005043256A1 publication Critical patent/WO2005043256A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2605Arrangement of the sub-holograms, e.g. partial overlapping
    • G03H2001/261Arrangement of the sub-holograms, e.g. partial overlapping in optical contact
    • G03H2001/2615Arrangement of the sub-holograms, e.g. partial overlapping in optical contact in physical contact, i.e. layered holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • Multilayer holographic recording medium manufacturing method thereof, multilayer holographic recording / reproducing method, multilayer holographic memory reproducing apparatus, and multilayer holographic recording / reproducing apparatus
  • the present invention relates to a multilayer holographic recording medium in which a number of holographic recording layers each capable of forming interference fringes by irradiation with object light and reference light are laminated, a method for manufacturing the same, and a multilayer holographic recording medium.
  • the present invention relates to a method and an apparatus for recording and reproducing information on a recording medium.
  • each recording layer can be selectively selected only by vertical movement of a converging optical system, an enlarging optical system, and a correction optical system that does not require moving a two-dimensional optical detector up and down. It is disclosed that it can be played back.
  • the present invention has been made in view of the above problems, and has a multilayer holographic recording medium capable of further improving a recording density and a data transfer rate, a method for manufacturing the same, and a multilayer holographic recording medium. It is an object to provide a recording / reproducing method, a multilayer holographic memory reproducing device, and a multilayer holographic recording / reproducing device. [0006] As a result of earnest studies, the present inventor has made one irradiation condition of the reference light and the object light constant for a large number of holographic recording layers, and modulated the other for each holographic recording layer.
  • one object beam or reference beam By recording information so as to have the Bragg condition, at the time of reproducing information, one object beam or reference beam generates diffracted beams from each holographic recording layer at the same time. It has been found that by individually reproducing, the recording density and data transfer rate of the multilayer holographic recording medium can be greatly improved.
  • Multilayer holographic recording and reproducing method comprising a, a process of reproducing simultaneously or individually information from the diffracted light at each Horogurafuitsu click recording layer by irradiation light.
  • the irradiation condition of the reference light is kept constant, the object light is modulated for each holographic recording layer to record information, and the same irradiation condition as the reference light is recorded. Then, a laser beam for reproduction is irradiated on the laminated holographic recording layer, and the diffracted light in each holographic recording layer by the irradiated light is emitted by the same number of the two-dimensional photodetectors as the holographic recording layer.
  • the beam diameter of the reproduction laser light is enlarged, and a part of the reproduction laser light is changed from a different position within the enlarged beam diameter to the holographic recording layer.
  • the object light is intensity-modulated according to the information to be recorded, and the reference light is subjected to phase spatial light modulation for each holographic recording layer, thereby performing holographic recording.
  • Information is recorded such that interference fringes have different phase code patterns for each graphic recording layer, and the reproduction laser light is applied to each holographic recording layer for reproducing information when reproducing the information.
  • the irradiation condition of the laser beam is modulated for each holographic recording layer so that information is recorded on each holographic recording layer with different Bragg conditions
  • the reproducing laser optical system is A holographic recording / reproducing apparatus, wherein the irradiation conditions are the same as the predetermined irradiation conditions.
  • the reference optical system is configured such that irradiation conditions of the reference light are constant, and the object optical system is configured to modulate the object light for each holographic recording layer.
  • a reproducing device wherein the reproducing laser optical system is configured to irradiate the laminated holographic recording layer with the reproducing laser light under the same irradiation conditions as the reference light, and the two-dimensional photodetector is provided.
  • the multi-layer holographic recording / reproducing apparatus according to (9), wherein diffracted light from each of the holographic recording layers due to the irradiation light is separately received.
  • the object optical system and the reference optical system are configured to shift-multiplex record the information for each holographic recording layer over the entire surface thereof (9) or (10). 2.
  • the multilayer holographic recording / reproducing apparatus according to item 1.
  • the other of the object optical system and the reference optical system includes an angle modulation device that performs angle modulation of the other of the object light or the reference light for each holographic recording layer during the holographic recording.
  • a beam expander for expanding a beam diameter of the reproduction laser light, and a part of the reproduction laser light having a different position within the expanded beam diameter.
  • the reproducing laser light is applied to a rotating mirror and a concave mirror.
  • the object optical system has an amplitude spatial light modulator that intensity-modulates the object light according to information to be recorded at the time of holographic recording of the information
  • the reference optical system includes: A phase spatial light modulator for performing phase spatial light modulation for each holographic recording layer so that the reference light has a different phase code pattern for each holographic recording layer, and the reproducing laser optical system.
  • the reproducing laser light is subjected to phase spatial light modulation so that the reproducing laser light has a corresponding phase code pattern for each holographic recording layer for reproducing information.
  • a holographic recording / reproducing device for irradiating a reproducing laser beam to reproduce recorded information, comprising: an object optical system and a reference optical system for guiding the object light and the reference light to the multilayer holographic recording medium.
  • a reproducing laser optical system for irradiating a reproducing laser beam to the laminated holographic recording layer; and a diffraction optical system for reproducing information from diffracted light in each holographic recording layer by the reproducing laser beam.
  • the object optical system modulates the intensity of the object light according to the information to be recorded, and adjusts the incident angle for each holographic recording layer.
  • the reference optical system has a phase spatial light according to an address to which the reference light is applied so that the holographic recording layer has a different phase code pattern for each address.
  • a reproducing laser optical system that modulates the reproducing laser light so as to have the phase code pattern with the phase laser beam when reproducing the information.
  • a multilayer holographic recording / reproducing device comprising a phase spatial light modulator.
  • a large number of holographic recording layers are stacked, and one irradiation condition of the object light and the reference light from the laser light source is made constant, and the other irradiation condition is made for each holographic recording layer. Due to the modulation, each holographic recording layer has information with different Bragg conditions.
  • a holographic memory reproducing apparatus for reproducing a recorded information by irradiating a reproduction laser light from a reproduction laser optical system onto a multilayer holographic recording medium on which information is recorded, wherein each of the reproduction laser lights is used.
  • a holographic memory playback device characterized by the following conditions.
  • the reproducing laser optical system is configured to irradiate the laminated holographic recording layer with the reproducing laser light under the same irradiation conditions as the reference light, and the two-dimensional photodetector
  • the multi-layer holographic memory reproducing device according to (17) wherein diffracted light in each holographic recording layer by the irradiation light is separately received.
  • the information in the multilayer holographic recording medium is angle-multiplexed and recorded by angle-modulating the other of the object light and the reference light for each holographic recording layer, and the reproducing laser optical system
  • (17) or (18) comprising a spatial light modulator for spatially modulating a reproduction laser beam having a reduced beam diameter.
  • a reproduction laser light angle modulation device for reflecting the reproduction laser light by a rotating mirror and a concave mirror to enter the holographic recording layer is provided, (17) or (17).
  • the reference light is subjected to phase spatial light modulation for each holographic recording layer, and information is recorded with a phase code pattern in which interference fringes are different.
  • the reproducing laser optical system when reproducing the information, reproduces the laser light for phase spatial light modulation of the reproducing laser light so as to have a corresponding phase code pattern for each holographic recording layer for reproducing the information.
  • Has a phase spatial light modulator The multi-layer holographic memory reproducing device according to (17), wherein:
  • a plurality of holographic recording layers each capable of forming an interference fringe are laminated, and the object light corresponds to information to be recorded.
  • the incident angle is modulated for each holographic recording layer while the intensity is modulated in the same way, and the reference light is phase spatial light modulated according to the address to be applied so that the holographic recording layer has a different phase code pattern for each address.
  • a holographic memory reproducing apparatus for irradiating a laser beam for reproduction to a multilayer holographic recording medium on which information has been recorded, thereby reproducing the recorded information.
  • a multi-layer holographic memory reproducing apparatus having a reproducing laser light phase spatial light modulator for spatial light modulation.
  • a multilayer holographic recording medium in which interference fringes due to irradiation with object light and reference light are formed by laminating a large number of holodala recording layers formed on each of the holographic recording layers. Is characterized in that one irradiation condition of the object light and the reference light is fixed and the other irradiation condition is modulated for each holographic recording layer, and information is recorded under different Bragg conditions. Holographic recording medium.
  • a multilayer holographic recording medium in which interference fringes due to irradiation with object light and reference light are formed by laminating a large number of holodala recording layers formed on the respective layers.
  • the information is differently multiplexed and recorded in the holographic recording layer, and is recorded with a different phase code pattern for each address in the same holographic recording layer.
  • Multi-layer holographic recording medium Multi-layer holographic recording medium.
  • (29) a step of forming a holographic recording layer on a substrate, a step of irradiating the holographic recording layer with an object beam and a reference beam, and performing shift multiplex recording over the entire surface; Forming a next holographic recording layer on the holographic recording layer, irradiating the next holographic recording layer with object light and reference light, and performing shift multiplex recording over the entire surface; Is sequentially repeated to stack a predetermined number of holographic recording layers subjected to shift multiplex recording, wherein the object light and the reference light are irradiated with one of the irradiation conditions being constant.
  • the irradiation condition was modulated for each holographic recording layer and irradiation was performed, and information was recorded so that each holographic recording layer had a different Bragg condition.
  • the method of manufacturing holographic recording media was used to form a holographic recording layer on a substrate, a step of irradiating the holographic recording layer with an object beam and
  • the holographic recording layer on which the shift multiplex recording has been performed is post-exposed to leave The method for producing a holographic recording medium according to (29), further comprising a step of completely consuming the photosensitive component.
  • the steps of applying and irradiating a phase code pattern and performing shift multiplex recording over the entire surface are sequentially repeated to laminate a predetermined number of holographic recording layers on which shift multiplex and phase code multiplex recording have been performed (29) to (29).
  • FIG. 1 is a perspective view schematically showing a multilayer holographic recording medium according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the relationship between a holographic recording layer, reference light, and object light in the multilayer holographic recording medium.
  • FIG. 3 is a cross-sectional view schematically showing a state of diffraction light when a holographic recording layer is irradiated with a reproducing laser beam in Example 1.
  • FIG. 4 is an enlarged cross-sectional view schematically showing a method for manufacturing a holographic recording medium according to Embodiment 2 of the present invention.
  • FIG. 5 is an optical system diagram showing the same manufacturing method and a multilayer holographic recording device used for holographic recording.
  • FIG. 6 is an optical system diagram showing a changed state of the multilayer holographic recording device of FIG. 5.
  • FIG. 7 is an optical system diagram showing a multi-layer holographic memory reproducing device for reproducing information of a holographic recording medium manufactured and recorded by the manufacturing method and the multi-layer holographic recording device.
  • FIG. 8 is a schematic perspective view showing a multilayer holographic memory reproducing device according to a third embodiment.
  • FIG. 9 is an optical system diagram showing in detail a multilayer holographic memory reproducing device according to Embodiment 3.
  • FIG. 10 is an optical system diagram showing a multilayer holographic memory reproducing device according to a fourth embodiment.
  • FIG. 11 is an optical system diagram showing a multilayer holographic recording / reproducing apparatus according to a fifth embodiment.
  • FIG. 12 is an enlarged plan view showing an example of a phase code pattern according to the fifth embodiment.
  • FIG. 13 is an enlarged cross-sectional view schematically showing a multilayer holographic recording medium in which interference fringes have been formed by the apparatus of Example 5.
  • FIG. 14 is an optical system diagram showing a multilayer holographic recording device according to a sixth embodiment.
  • FIG. 15 is an optical system diagram showing a multilayer holographic memory reproducing device according to Example 6.
  • the irradiation angle of the object light is adjusted for each of the holographic recording media in which a plurality of holographic recording layers each capable of forming interference fringes are laminated. Shift multiplex recording is performed for each holographic recording layer, and angle multiplex recording is performed in the thickness direction, while changing for each graphic recording layer and using a common reference beam.
  • a laser beam for reproduction under the same irradiation conditions as the reference light is irradiated onto the multilayer holographic recording medium, and diffracted light is simultaneously formed in different directions from each holographic recording layer.
  • the object is achieved by reproducing a large number of information (equal to the number of holographic recording layers) at the same time by detecting with a photodetector.
  • Example 1 of the present invention will be described in detail with reference to the drawings.
  • the multilayer holographic recording medium 10 shown in FIG. 1 has a recording structure in which a large number of holographic recording layers 14A, 14B,... Are laminated between a pair of substrates 12A and 12B made of, for example, glass. Layer 14 is sandwiched and formed.
  • Each of the holographic recording layers 14 ⁇ , 14 ⁇ ⁇ ⁇ ⁇ ,... Of the recording layer 14 has a common reference beam Re and a different holographic recording layer at the same location along the surface of each layer.
  • the multilayer holographic recording medium 10 in which the holographic recording layers 14A and 14B on which the interference fringes are formed under the above conditions is laminated. Then, when the reproduction laser light Rp is irradiated under the same irradiation conditions as the reference light Re, first, FIG.
  • diffracted light Di is generated, and the 0th-order light (transmitted light) of the holographic recording layer 14B is transmitted to the next holography.
  • the recording layer 14A is irradiated, thereby forming diffracted light Di. In this way, each holo
  • Diffracted light Di, Di, ⁇ ⁇ ⁇ is generated in the graphic recording layers 14 ⁇ , 14 ⁇ , ⁇ ⁇ ⁇ . [0048] These diffracted light beams Di, Di, ⁇ ⁇ ⁇ ⁇ emit the object light Ob, Ob, ⁇ ⁇ ⁇ during recording.
  • the diffracted lights from the holographic recording layers 14A, 14B,... All have different emission directions.
  • each diffracted light will be received and the information recorded on multiple holographic recording layers 14A, 14B, The ability to regenerate.
  • each holographic recording layer can be reproduced by the photodetector 17. In this case, since simultaneous reproduction is not possible, sequential reproduction is performed.
  • a process of recording information on the multilayer holographic recording medium 10 while recording information on the multilayer holographic recording medium 10 and a recording / reproducing apparatus will be described.
  • a holographic recording layer 14A is formed on a substrate 12A, and the holographic recording layer 14A is formed on the holographic recording layer 14A in a direction perpendicular to the surfaces of the substrate 12A and the holographic recording layer 14A, for example.
  • the multilayer holographic recording device 20 irradiates the object light and the reference light while rotating the substrate 12A on which the holographic recording layer 14A is formed by the motor 22. In this way, shift multiplex recording is performed.
  • post-exposure is performed on the holographic recording layer 14A to completely consume the remaining photosensitive components.
  • the same light source as for recording or reproduction may be used, but from the viewpoint of uniform exposure, a more incoherent light source (white light, LED, etc.) is used. Is preferred.
  • the next holographic recording layer 14B is formed on the holographic recording layer 14A after the post-exposure.
  • a spacer layer is provided between the holographic recording layers 14A and 14B to suppress optical interference between the recording layers and to reduce the flatness, parallelism, and optical intensity characteristics of the recording layers. You may make it improve.
  • the spacer layer may be formed before or after recording on the recording layer 14A, or may be shifted.
  • the reference light is common to the above-mentioned holographic recording layer 14B as shown in FIG. 4 (A), and as shown in FIG. 5 (B).
  • the holographic recording layer 1 Under the Bragg condition different from the interference fringes of the recording layer 14A, the holographic recording layer 1
  • Shift multiplex recording is performed as in 4A. Accordingly, shift multiplex recording is performed over the entire area of each holographic recording layer.
  • FIGS. 4 (A)-(D) show gratings (interference fringes) on a plane by parallel light. Is a curved grating formed by spherical waves.
  • the holographic recording layer 14B After information is recorded on the holographic recording layer 14B, the holographic recording layer 14B, the holographic recording layer
  • the holographic recording layer 14C is irradiated with object light at an incident angle ⁇ ⁇ ⁇ (see FIG. 6C) different from that of the holographic recording layers 14A and 14B (see FIG. 6C).
  • the information is shifted and multiplex-recorded by interference fringes.
  • a required number of holographic recording layers are stacked (in this embodiment, a case of a four-layer structure is shown), a grating is formed, and post exposure is performed (FIG. 4 ( F), (G)).
  • the final holographic recording layer 14D has the object angle ⁇ shown in Fig. 6 (D).
  • a protective layer 18 is formed on the holographic recording layer 14D, and if necessary, an anti-reflection layer 19 is formed on both sides of the whole.
  • the multilayer holographic recording device 20 transmits a laser light source 24 and one of linearly polarized light having a vibration plane perpendicular to the laser light source 24, for example, a p-polarized component, and an s-polarized component.
  • a polarizing beam splitter 26 for reflecting light, and the polarizing beam splitter 26 A reference optical system 28 for guiding the transmitted p-polarized light component to the substrate 12A and the holographic recording layer laminated thereon, and the s-polarized light component reflected from the polarization beam splitter 26 is laminated on the substrate 12A and the holographic recording layer.
  • an object optical system 30 for guiding to the holographic recording layer. 6C and 6D, the p-polarized light component transmitted through the polarizing beam splitter 26 is referred to as object light, and the reflected s-polarized light component is referred to as reference light.
  • the reference optical system 28 includes a mirror 28A, a half-wave plate 28B, and a condenser lens 28C in this order from the polarization beam splitter 26 side.
  • the object optical system 30 is provided with a mirror 30A, a spatial light modulator 30B, and a Fourier lens 30C in this order from the polarizing beam splitter 26 side.
  • the entire object optical system 30 is supported by an incident angle modulator 32 that can modulate the incident angle of the object light with respect to the holographic recording layer (the angle with respect to the optical axis of the reference light).
  • the mirror 30A is supported by an incident angle modulator 32 so that the reflection angle can be adjusted.
  • Reference numeral 34 in FIGS. 5 (A), 5 (B), 6 (C), and 6 (D) indicates a pulse control device for controlling the pulse light emission of the laser light source 24.
  • the multilayer holographic memory reproducing device 36 includes a laser light source 38 that emits a laser beam having the same wavelength as the laser light source 24 in the multilayer holographic recording device 20, and a reproducing device that is emitted from the laser light source 38.
  • a reproduction laser optical system 40 for guiding a laser beam to the multilayer holographic recording medium 10 under the same irradiation conditions (incident angle) as the reference light in the reference optical system 28 in the multilayer holographic recording device 20;
  • a motor (not shown) for driving (shifting) the holographic recording medium 10 and irradiation of the multilayer holographic recording medium 10 with a reproduction laser beam generate the holographic recording layers 14A-14D.
  • two-dimensional photodetectors 16A, 16B, 16C and 16D for receiving the diffracted light.
  • the reproducing laser optical system 40 is configured to apply the reproducing laser light from the laser light source 38 to a multilayer hologram.
  • a mirror 40A for reflecting in the direction of the graphic recording medium 10 and a condenser lens 40B provided between the mirror 40A and the multilayer holographic recording medium 10 are provided.
  • Imaging lenses 44A, 44B, 44C and 44D are provided, respectively.
  • Reference numeral 39 in FIG. 7 indicates a pulse control device for controlling the laser light source 38.
  • the reproduction laser light is converged by the condenser lens 40 B and enters the multilayer holographic recording medium 10.
  • This laser beam for reproduction has the same wavelength as the reference light at the time of recording, and the angle of incidence on the multilayer holographic recording medium 10 is also the same as that of the reference light. It generates diffracted light in the same direction as the object light in D).
  • the diffracted light is received by the two-dimensional photodetector 16D via the imaging lens 44D, whereby the reproduced image is decoded and the reproduced information is obtained.
  • the reproduction laser light (0th-order diffracted light) transmitted through the holographic recording layer 14D becomes the reproduction laser light in the next holographic recording layer 14C. Then, the light is received by the two-dimensional photodetector 16C.
  • diffracted light is sequentially generated toward the corresponding two-dimensional photodetectors 16B and 16A by the 0th-order diffracted light from the upper layers. .
  • each of the holographic recording layers 14A, 14B, 14C, and 14D multiplex recording of the volume hologram (here, shift multiplex recording) is performed independently, so that diffraction per hologram is performed. efficiency is 10- 4 degree and Teire,.
  • diffracted light is sequentially generated in the holographic recording layers 14D to 14A.
  • diffracted light is simultaneously generated in each holographic recording layer. Therefore, the reproduction information obtained by the two-dimensional photodetectors 16A to 16D can be obtained at the same time. Therefore, the transfer rate of information is significantly increased as compared with the case of sequential reproduction.
  • the reference beam is fixed so as to be perpendicularly incident on the multilayer holographic recording medium 10, and the incident angle of the object beam is modulated.
  • the information of the multilayer holographic recording medium 51 in which the object light is incident vertically and the incident angle of the reference light is modulated to perform the shift multiplex recording (angle multiplex recording in the stacking direction) is obtained. To play.
  • the information reproducing principle of this multi-layer holographic memory reproducing device 50 is, as shown in FIG. 8, a reproducing laser beam Rp, Rp, Rp, Rp at a different angle for each holographic recording layer.
  • the generated diffracted light is received by the two-dimensional photodetector 52.
  • a system 56 and the two-dimensional photodetector 52 are provided.
  • the reproducing laser optical system 56 includes a beam expander 56A that expands the beam diameter of the reproducing laser light emitted from the laser light source 54, and a beam in which a part of the reproducing laser light is expanded.
  • a spatial light modulator 56B that spatially modulates the reproduction laser light having the expanded beam diameter so as to be incident on the holographic recording layer of the multilayer holographic recording medium 51 from different positions within the diameter;
  • a condenser lens 56C for condensing the parallel light from the modulator 56B into the multilayer holographic recording medium 51.
  • reference numeral 58 denotes the multilayer holographic recording medium 51 and the two-dimensional photodetector 52. And an image forming lens arranged between them.
  • a part of the multi-layer holographic memory recording medium 51B transmits a reproducing laser beam and a part transmits the reproducing laser beam.
  • the laser beam for reproduction Rp, Rp, Rp, Rp is changed on the multilayer holographic recording medium 51 at different incident angles as shown in FIG. It is made to enter as.
  • the apparatus can be simply configured.
  • the volume of the device can be reduced.
  • the proportion of the laser light for reproduction cut off by the spatial light modulator 56B increases, It is conceivable that the utilization efficiency of the laser light for use is reduced.
  • the holographic memory reproducing device 60 according to the fourth embodiment is configured so that the use efficiency of the reproducing laser beam does not decrease even when the number of holographic recording layers is large.
  • the holographic memory reproducing device 60 corresponds to a laser light source 62 and a holographic recording layer in the multilayer holographic recording medium 51 by reflecting a reproducing laser beam emitted from the laser light source 62.
  • the lens 58 is provided.
  • the reproducing laser light angle modulation device 64 includes a rotating mirror 64A for reflecting the laser light emitted from the laser light source 62, and a reproducing laser light reflected by the rotating mirror 64A, And a concave mirror 64B formed so that reflected light is reflected toward a predetermined position in the multilayer holographic recording medium 51 in accordance with Yes.
  • the specific shape of the concave mirror 64B is the inner peripheral surface of a part of the elliptical cylinder, and the two focal points of the ellipse, the rotation center of the rotating mirror 64A, and the reproducing mirror in the multilayer holographic recording medium 51.
  • the irradiation points of the laser light are made to coincide.
  • the reproduction laser beam that has entered the rotary mirror 64 at one focal position of the ellipse is reflected, and further reflected by the concave mirror 64B, is always at the other focal point of the ellipse, ie, the multilayer holographic recording.
  • the laser beam is incident on the medium 51 at a position where the reproduction laser beam is irradiated.
  • the rotation angle of the rotating mirror 64A by controlling the rotation angle of the rotating mirror 64A, the position of the reflection point of the reproducing laser beam reflected by the rotating mirror 64A on the concave mirror 64B is modulated. Accordingly, the angle of incidence on the multilayer holographic recording medium 51 is adjusted for each holographic recording layer.
  • the concave mirror 64B also has a function of a condensing lens, and the reproducing laser beam irradiated to the multilayer holographic recording medium 51 has a curved wavefront.
  • the holographic recording medium 51 By driving the holographic recording medium 51 in a predetermined direction, shift multiplex recording becomes possible.
  • the utilization efficiency of the reproducing laser beam is the same as that of the second embodiment shown in FIG. 7, but in the second embodiment, both the recording density and the data transfer rate are improved. On the other hand, in the fourth embodiment, only the recording density is improved. On the other hand, there is an advantage that the detection optical system has a simple configuration.
  • the multilayer holographic recording / reproducing apparatus 70 performs shift multiplex recording in the moving direction of the multilayer holographic recording medium 72 and phase code multiplex recording in the laminating direction of the holographic recording layers, and performs reproduction. Is what you do.
  • the multilayer holographic recording / reproducing device 70 transmits a laser light source 74 and a reproducing laser beam emitted from the laser light source 74 to, for example, p-polarized light, out of two linearly polarized lights whose vibration planes are orthogonal to each other. And a polarization beam splitter 76 that reflects the s-polarized light, and guides the laser light transmitted through the polarization beam splitter 76 to the multilayer holographic recording medium 72 as reference light.
  • Illumination optical system 78 object optical system 80 that guides the reflected s-polarized light to multilayer holographic recording medium 72, and diffracted light generated when laser beam for reproduction is irradiated to multilayer holographic recording medium 72
  • detection optical system 82 for
  • the reference optical system 78 includes a mirror 78A, a half-wave plate 78B, a phase spatial light modulator 78C, and a Fourier lens 78D from the polarization beam splitter 76 side.
  • the object optical system 80 includes a spatial light modulator 80 A and a Fourier lens 80 B in this order from the polarization beam splitter 76 side.
  • the detection optical system 82 includes a two-dimensional photodetector 82A and an imaging lens 82B disposed between the two-dimensional photodetector 82A and the multilayer holographic recording medium 72. It is configured with.
  • the phase spatial light modulator 78C of the reference optical system 78 is a device that modulates the phase of passing light for each pixel.
  • the phase spatial light modulator 78C gives a phase difference ⁇ to a part or all of the eight pixels.
  • a phase difference ⁇ is provided between a white pixel W and a pixel G indicated by oblique lines.
  • the spatial light modulator 80 # in the object optical system 80 modulates the intensity of the object light according to the data to be recorded.
  • the reproduction laser light emitted from the laser light source 74 is transmitted through the polarization beam splitter 76 as ⁇ -polarized light, and enters the reference optical system 78.
  • the s-polarized light is reflected and enters the object optical system 80.
  • the ⁇ -polarized light that has entered the reference optical system 78 is reflected by a mirror 78 °, converted into s-polarized light by a half-wave plate 78 °, and then enters the phase spatial light modulator 78C.
  • phase spatial light modulator 78C modulates the phase of the passing laser light with one-dimensional eight pixels as shown in, for example, FIG. 12 ( ⁇ )-(D).
  • phase-modulated reference light is applied to a multilayer holographic recording medium by a Fourier lens 78D.
  • the light is condensed in the vicinity of 72, and its intensity distribution is subjected to Fourier transform, and is applied to the multilayer holographic recording medium 72.
  • the s-polarized object light reflected by the polarization beam splitter 76 is provided with data in the form of intensity modulation by the spatial light modulator 80A, and then the Fourier lens 80
  • the reference light and the object light are both s-polarized light
  • optical interference occurs in a region where the reference light and the object light intersect, and this is recorded on the multilayer holographic medium 72 as a diffraction grating.
  • Such recording is performed by shift multiplex recording for each holographic recording layer in the multilayer holographic recording medium 72.
  • the first The interference fringes recorded on the fourth holographic recording layers 72A, 72B, 72C, and 72D are, for each layer, for example, a one-dimensional eight-pixel phase code as shown in FIGS. 12A to 12D, respectively. Contains any of the patterns.
  • this phase code pattern for example, a one-dimensional eight-component Wolsh Hadamard orthogonal code is used.
  • a laser beam for reproduction is irradiated from the reference optical system 78 to the multilayer holographic recording medium 72 under the same conditions as the reference light. .
  • the phase spatial light modulator 78C reproduces the phase modulated by one of the phase code patterns shown in FIG. 12 (A)-(D). By irradiating the laser beam, it is possible to reproduce the information recorded on the target holographic recording layer.
  • the multilayer holographic recording / reproducing device 70 of the fifth embodiment does not need to provide a mechanically movable part in both recording and reproduction, so that the recording density and the data transfer rate can be improved. .
  • phase code mask may be used instead of the phase spatial light modulator 78C. Good.
  • the phase code mask is a plate-shaped optical component that is transparent to the wavelength of the recording / reproducing band of the reproducing laser beam and gives a fixed phase pattern to the reproducing laser beam by passing through it.
  • a parallel flat plate made of BK7 material may be provided with a step of ⁇ ⁇ ( ⁇ : wavelength of the reproducing laser beam in a vacuum, ⁇ : refractive index of the phase code mask), and FIG. As shown in (D), a change in refractive index may be given to each pixel.
  • phase code recording is performed for each holographic recording layer in the multilayer holographic recording medium, and the holographic recording layer is stacked in the laminating direction.
  • a description will be given of a multilayer holographic recording apparatus for performing angle multiplex recording by modulating an incident angle of an object beam and an apparatus for reproducing information from a multilayer holographic recording medium on which information is recorded.
  • the multilayer holographic recording device 90 includes a laser light source 92, a beam expander 94 for expanding the beam diameter of the laser light emitted from the laser light source 92, and an expanded beam diameter.
  • An object optical system 102 for guiding a laser beam to a multilayer holographic recording medium 98 is provided.
  • the reference optical system 100 includes a phase spatial light modulator 100 ° and a Fourier lens 100B in this order from the beam splitter 96 side.
  • the object optical system 102 includes a mirror 102 #, a spatial light modulator 102 #, and a Fourier lens 102C in this order from the beam splitter 96 side.
  • the entirety of the object optical system 102 is attached to the incident angle modulation device 101, and the mirror 102A is capable of adjusting the reflection angle thereof.
  • the incident angle of the object light on the multilayer holographic recording medium 98 can be modulated for each holographic recording layer. That is, angle multiplex recording is enabled.
  • the laser beam emitted from the laser light source 92 is The beam diameter is enlarged, and the beam enters the beam splitter 96.
  • the incident laser light is split into transmitted light and reflected light, and the reflected light enters the reference optical system 100 as reference light. Further, the transmitted light enters the object optical system 102 as object light.
  • the reference light is two-dimensionally phase-modulated by the phase spatial light modulator 100A to be provided with a phase code pattern. After passing through the Fourier lens 100B, the reference light is condensed on the multilayer holographic recording medium 98. Irradiated.
  • the object light is reflected by the mirror 102A and enters the spatial light modulator 102B, where it is two-dimensionally amplitude-modulated according to data (information) to be recorded, and further subjected to a Fourier lens 102C.
  • the light is irradiated onto the multilayer holographic recording medium 98 while being focused.
  • the two-dimensional amplitude modulation pattern is Fourier-transformed at the rear focal point of the Fourier lens 102C.
  • the object light and the reference light are irradiated on the same area of the holographic recording layer on the multilayer holographic recording medium 98, a three-dimensional interference pattern is formed in this area.
  • the interference pattern is recorded on the holographic recording layer as a change in the refractive index.
  • the phase code is used in a plurality of types for each holographic recording layer. That is, one phase code pattern set is assigned to each holographic recording layer.
  • the phase code pattern may be different for each recording layer as described above. However, in consideration of the phase code modulation efficiency and the function of simultaneous reproduction, a set of a plurality of types of phase codes is used. It is preferably used for each recording layer.
  • the multi-layer holographic memory reproducing device 104 includes a laser light source 106 and the laser light source
  • the multi-layer holographic recording medium 98 is provided with a detection optical system 110 for reproducing information from diffracted light generated by irradiating the multi-layer holographic recording medium 98 with reproduction laser light.
  • the reproducing laser optical system 108 includes a beam expander 108 A for expanding the beam diameter of the reproducing laser light emitted from the laser light source 106, and a reproducing laser light passing through the beam expander 108 A.
  • a mirror 108B that reflects the laser beam at a right angle, a phase spatial light modulator 108C on which the reproducing laser beam reflected by the mirror 108B enters, and a reproducing holographic laser beam that has passed through the phase spatial And a Fourier lens 108D for condensing the light inside.
  • the detection optical system 110 includes two-dimensional photodetectors 110A and 110D, each of which is disposed at a position where the object light at the time of recording is an extension of the incident optical axis for each holographic recording layer. I have. Further, between the two-dimensional photodetectors 110A-110D and the multilayer holographic recording medium 98, imaging lenses 111A-111D are respectively arranged.
  • this multi-layer holographic memory reproducing device 104 an arbitrary phase code pattern in a set of a plurality of types of phase codes is reproduced by using the same laser beam for reproduction as the reference light at the time of recording.
  • diffraction images produced images from all recording layers are simultaneously generated.
  • a two-dimensional photodetector 110A-110D is provided on an extension of the optical path of the object light at the time of recording, and an imaging lens 111A-111D is provided. If the imaging lens system is configured as described above, the spatial light modulator at the time of recording will appear as a real image on the imaging surface of the imaging lens system. Therefore, by arranging the two-dimensional photodetectors 110A to 110D on the image plane, a plurality of reproduced images can be detected simultaneously.
  • each holographic recording layer in a multilayer holographic recording medium has different Bragg conditions and can simultaneously form diffracted light under a common reproduction condition. Therefore, as a result, the recording density and data transfer rate of the holographic recording medium can be significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

 記録密度及びデータ転送レートを大幅に向上させた多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置を提供する。多層ホログラフィックメモリ再生装置36により情報を再生するための多層ホログラフィック記録媒体10は、複数のホログラフィック記録層14A、14B、14C・・・を積層してなり、その各々は、記録時における参照光が共通で、物体光がその入射角度を各ホログラフィック記録層毎に変調されていて、再生時には、記録時の参照光と同一条件の再生用レーザ光を照射することによって、各ホログラフィック記録層14A、14B、・・・から各々、記録時の物体光の入射方向と同一方向に、同時に回折光が発生する。

Description

明 細 書
多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録 再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再 生装置
技術分野
[0001] この発明は、物体光と参照光との照射により、各々に干渉縞が形成可能な多数の ホログラフィック記録層を積層してなる多層ホログラフィック記録媒体、その製造方法 、この多層ホログラフィック記録媒体に情報を記録し、再生する方法及び装置に関す る。
背景技術
[0002] 従来、この種の多層ホログラフィック記録媒体に記録した情報を読み出すための情 報読出し装置として、例えば特開 2000-149318号公報に記載されるように、光源と 対物レンズを移動させて所望の記録層に光を入射させ、集光光学系、拡大光学系及 び 2次元光検出器を一体で上下させることにより、多層型ホログラムの各記録層を選 択的に再生することができるようにしたものがある。
[0003] 又、特開 2000 - 149318号公報には、集光光学系、拡大光学系及び 2次元光検 出器を上下させる必要がなぐ補正光学系の上下動だけで各記録層を選択的に再 生できるようにしたものが開示されている。
[0004] 上記特開 2000-149318号公報記載の情報読出し装置の場合は、集光光学系、 拡大光学系及び 2次元光検出器を一体で上下動させるか、これらを上下動させること なぐ補正光学系のみを上下動させるかのいずれかが必要であり、これらの上下動の 精度、速度により、記録密度及びデータ転送レートの向上には限界があった。
発明の開示
[0005] この発明は、上記問題点に鑑みてなされたものであって、記録密度及びデータ転 送レートを更に向上させることができるようにした多層ホログラフィック記録媒体、その 製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置 及び多層ホログラフィック記録再生装置を提供することを目的とする。 [0006] 本発明者は、鋭意研究の結果、多数のホログラフィック記録層に、参照光及び物体 光の一方の照射条件を一定にし、他方を各ホログラフィック記録層毎に変調して、異 なるブラッグ条件を持つように情報を記録することによって、情報再生の際は、 1つの 物体光又は参照光により、各ホログラフィック記録層から同時に回折光を発生させて 、この回折光から情報を同時又は個別に再生することによって、多層ホログラフィック 記録媒体の記録密度及びデータ転送レートを大幅に向上させ得ることが分かった。
[0007] 即ち、以下の本発明により上記目的を達成することができる。
[0008] (1)レーザ光を分岐した物体光と参照光との照射により、各々に干渉縞が形成可能 な多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報 をホログラフィック記録し、且つ、再生用レーザ光を照射して記録された情報を再生 する方法であって、前記物体光と参照光の一方の照射条件を一定にし、他方を各ホ ログラフィック記録層ごとに変調して、各ホログラフィック記録層が異なるブラッグ条件 を持つように情報を記録する過程と、前記照射条件を一定にされた物体光または参 照光と同一照射条件で、再生用レーザ光を、前記積層されたホログラフィック記録層 に照射して、上層のホログラフィック記録層に回折光を発生させるとともに透過した 0 次光を順次下層のホログラフィック記録層に照射し、各照射光による各ホログラフイツ ク記録層での回折光から情報を同時又は個別に再生する過程と、を有してなる多層 ホログラフィック記録再生方法。
[0009] (2)前記ホログラフィック記録時に、前記参照光の照射条件を一定にするとともに、 前記物体光を各ホログラフィック記録層ごとに変調して情報を記録し、前記参照光と 同一照射条件で、再生用レーザ光を、前記積層されたホログラフィック記録層に照射 して、その照射光による各ホログラフィック記録層での回折光を、前記ホログラフィック 記録層と同数の 2次元光検出器により受光し、これらの受光信号により情報を再生す ることを特徴とする(1)に記載の多層ホログラフィック記録再生方法。
[0010] (3)前記情報は、ホログラフィック記録層ごとに、その全面にわたってシフト多重記 録されることを特徴とする(1)又は(2)に記載の多層ホログラフィック記録再生方法。
[0011] (4)前記ホログラフィック記録時に、前記物体光と参照光の他方をホログラフィック 記録層ごとに角度変調することを特徴とする(1)、 (2)又は(3)に記載の多層ホロダラ フィック記録再生方法。
[0012] (5)前記情報の再生時に、前記再生用レーザ光のビーム径を拡大して、該再生用 レーザ光の一部が前記拡大されたビーム径内の異なる位置から前記ホログラフィック 記録層に入射するように、空間光変調することを特徴とする (4)に記載の多層ホログ ラフィック記録再生方法。
[0013] (6)前記情報の再生時に、前記再生用レーザ光を、回転ミラー及び凹面ミラーによ り反射して前記ホログラフィック記録層に入射させることを特徴とする(4)に記載の多 層ホログラフィック記録再生方法。
[0014] (7)前記情報のホログラフィック記録時に、前記物体光を、記録すべき情報に応じ て強度変調し、前記参照光を、ホログラフィック記録層ごとに位相空間光変調して、ホ ログラフィック記録層ごとに、干渉縞が異なる位相コードパターンを持つように情報を 記録し、前記情報の再生時に、前記再生用レーザ光を、情報を再生するホログラフィ ック記録層ごとに、対応する位相コードパターンを持つように、位相空間光変調して 前記ホログラフィック記録層に照射することを特徴とする(1)に記載の多層ホログラフ イツク記録再生方法。
[0015] (8)レーザ光を分岐した物体光と参照光との照射により、各々に干渉縞が形成可能 な多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報 をホログラフィック記録し、且つ、記録された情報を再生する方法であって、前記物体 光を、記録すべき情報に応じて強度変調しつつホログラフィック記録層ごとに入射角 度を変調し、前記参照光を、付与するアドレスに応じて位相空間光変調し、ホロダラ フィック記録層がアドレスごとに異なる位相コードパターンを持つように情報を記録し 、前記情報の再生時に、前記再生用レーザ光を、前記参照光と同一照射条件で、且 つ、前記位相コードパターンを持つように位相空間光変調して前記ホログラフィック 記録層に照射することを特徴とする多層ホログラフィック記録再生方法。
[0016] (9)レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な 多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を 記録し、且つ、再生用レーザ光を照射して、記録した情報を再生するホログラフィック 記録再生装置であって、前記物体光及び参照光を前記多層ホログラフィック記録媒 体に導ぐ物体光学系及び参照光学系と、再生用レーザ光を、前記積層されたホロ グラフィック記録層に照射する再生用レーザ光学系と、前記再生用レーザ光による各 ホログラフィック記録層での回折光から情報を再生するための、該回折光と同数の 2 次元光検出器と、を有してなり、前記物体光学系及び参照光学系の一方は、レーザ 光の照射条件が一定にされ、他方は、レーザ光の照射条件が、ホログラフィック記録 層ごとに変調されて、各ホログラフィック記録層に異なるブラッグ条件を持って情報を 記録するようにされ、且つ、前記再生用レーザ光学系は前記一定の照射条件と同一 の照射条件とされたことを特徴とするホログラフィック記録再生装置。
[0017] (10)前記参照光学系は、前記参照光の照射条件が一定となるように構成され、前 記物体光学系は、前記物体光を各ホログラフィック記録層ごとに変調する物体光変 調装置を有し、前記再生用レーザ光学系は、前記参照光と同一照射条件で、再生 用レーザ光を前記積層されたホログラフィック記録層に照射するようにされ、前記 2次 元光検出器は、前記照射光による各ホログラフィック記録層での回折光を、別個に受 光するようにされたことを特徴とする(9)に記載の多層ホログラフィック記録再生装置
[0018] (11)物体光学系及び参照光学系は、前記情報を、ホログラフィック記録層ごとに、 その全面にわたってシフト多重記録するように構成されたことを特徴とする(9)又は( 10)に記載の多層ホログラフィック記録再生装置。
[0019] (12)前記物体光学系及び参照光学系の他方は、前記ホログラフィック記録時に、 前記物体光又は参照光の他方をホログラフィック記録層ごとに角度変調する角度変 調装置を有することを特徴とする(9)又は(10)に記載の多層ホログラフィック記録再 生装置。
[0020] (13)前記情報の再生時に、前記再生用レーザ光のビーム径を拡大するビームェ キスパンダと、該再生用レーザ光の一部が前記拡大されたビーム径内の異なる位置 力 前記ホログラフィック記録層に入射するように、該拡大されたビーム径の再生用レ 一ザ光を空間光変調する空間光変調器とを有することを特徴とする(12)に記載の多 層ホログラフィック記録再生装置。
[0021] (14)前記情報の再生時に、前記再生用レーザ光を、回転ミラー及び凹面ミラーに より反射して前記ホログラフィック記録層に入射させる再生用レーザ光角度変調装置 を有することを特徴とする(12)に記載の多層ホログラフィック記録再生装置。
[0022] (15)前記物体光学系は、前記情報のホログラフィック記録時に、前記物体光を記 録すべき情報に応じて強度変調する振幅空間光変調器を有し、前記参照光学系は 、前記参照光を、ホログラフィック記録層ごとに、干渉縞が異なる位相コードパターン を持つように、ホログラフィック記録層ごとに位相空間光変調する位相空間光変調器 を有し、前記再生用レーザ光学系は、前記情報の再生時に、情報を再生するホログ ラフィック記録層ごとに、対応する位相コードパターンを持つように、前記再生用レー ザ光を、位相空間光変調する再生用レーザ光位相空間光変調器と、を有することを 特徴とする(9)に記載の多層ホログラフィック記録再生装置。
[0023] (16)レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な 多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を 記録し、且つ、再生用レーザ光を照射して、記録した情報を再生するホログラフィック 記録再生装置であって、前記物体光及び参照光を前記多層ホログラフィック記録媒 体に導ぐ物体光学系及び参照光学系と、再生用レーザ光を、前記積層されたホロ グラフィック記録層に照射する再生用レーザ光学系と、前記再生用レーザ光による各 ホログラフィック記録層での回折光から情報を再生するための、該回折光と同数の 2 次元光検出器と、を有してなり、前記物体光学系は、前記物体光を、記録すべき情 報に応じて強度変調しつつホログラフィック記録層ごとに入射角度を変調する物体光 角度変調器を有し、前記参照光学系は、ホログラフィック記録層がアドレスごとに異な る位相コードパターンを持つように、前記参照光を、付与するアドレスに応じて位相 空間光変調する位相空間光変調器を有し、前記再生用レーザ光学系は、前記情報 の再生時に、前記再生用レーザ光を、前記位相コードパターンを持つように位相空 間光変調する再生用レーザ光位相空間光変調器を有することを特徴とする多層ホロ グラフィック記録再生装置。
[0024] (17)多数のホログラフィック記録層を積層してなり、レーザ光源からの物体光と参 照光の一方の照射条件が一定にされ、他方の照射条件が、ホログラフィック記録層ご とに変調されることにより、各ホログラフィック記録層に異なるブラッグ条件を持って情 報が記録された多層ホログラフィック記録媒体に、再生用レーザ光学系からの再生用 レーザ光を照射して、記録した情報を再生するホログラフィックメモリ再生装置であつ て、前記再生用レーザ光による各ホログラフィック記録層での回折光から情報を再生 するための、該回折光と同数の 2次元光検出器を有してなり、前記再生用レーザ光 学系は前記一定の照射条件と同一の照射条件とされたことを特徴とするホログラフィ ックメモリ再生装置。
[0025] (18)前記再生用レーザ光学系は、前記参照光と同一照射条件で、再生用レーザ 光を前記積層されたホログラフィック記録層に照射するようにされ、前記 2次元光検出 器は、前記照射光による各ホログラフィック記録層での回折光を、別個に受光するよ うにされたことを特徴とする(17)に記載の多層ホログラフィックメモリ再生装置。
[0026] (19)前記情報は、前記ホログラフィック記録媒体におけるホログラフィック記録層ご とに、その全面にわたってシフト多重記録されていることを特徴とする(17)又は(18) に記載の多層ホログラフィックメモリ再生装置。
[0027] (20)前記多層ホログラフィック記録媒体における情報が、前記物体光又は参照光 の他方がホログラフィック記録層ごとに角度変調して、角度多重記録され、前記再生 用レーザ光学系は、前記再生用レーザ光のビーム径を拡大するビームエキスパンダ と、該再生用レーザ光の一部が前記拡大されたビーム径内の異なる位置から前記ホ ログラフィック記録層に入射するように、該拡大されたビーム径の再生用レーザ光を 空間光変調する空間光変調器とを有することを特徴とする(17)又は(18)に記載の 多層ホログラフィックメモリ再生装置。
[0028] (21)前記再生用レーザ光を、回転ミラー及び凹面ミラーにより反射して前記ホログ ラフィック記録層に入射させる再生用レーザ光角度変調装置を有することを特徴とす る(17)又は(18)の多層ホログラフィックメモリ再生装置。
[0029] (22)前記多層ホログラフィック記録媒体には、前記参照光を、ホログラフィック記録 層ごとに位相空間光変調して、干渉縞が異なる位相コードパターンを持って情報が 記録されていて、前記再生用レーザ光学系は、前記情報の再生時に、情報を再生 するホログラフィック記録層ごとに、対応する位相コードパターンを持つように、前記 再生用レーザ光を位相空間光変調する再生用レーザ光位相空間光変調器を有する ことを特徴とする(17)に記載の多層ホログラフィックメモリ再生装置。
[0030] (23)レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な 多数のホログラフィック記録層を積層してなり、前記物体光は、記録すべき情報に応 じて強度変調しつつホログラフィック記録層ごとに入射角度を変調され、前記参照光 は、ホログラフィック記録層がアドレスごとに異なる位相コードパターンを持つように、 付与するアドレスに応じて位相空間光変調して情報が記録された多層ホログラフイツ ク記録媒体に、再生用レーザ光を照射して、記録した情報を再生するホログラフイツ クメモリ再生装置であって、前記再生用レーザ光を、前記積層されたホログラフィック 記録層に照射する再生用レーザ光学系と、前記再生用レーザ光による各ホログラフ イツク記録層での回折光から情報を再生するための、該回折光と同数の 2次元光検 出器と、を有してなり、前記再生用レーザ光学系は、前記情報の再生時に、前記再 生用レーザ光を、前記位相コードパターンを持つように位相空間光変調する再生用 レーザ光位相空間光変調器を有することを特徴とする多層ホログラフィックメモリ再生 装置。
[0031] (24)物体光と参照光との照射による干渉縞が、各々に形成された多数のホロダラ フィック記録層を積層してなる多層ホログラフィック記録媒体であって、前記各ホログ ラフィック記録層には、物体光と参照光の一方の照射条件を一定にし、他方の照射 条件を各ホログラフィック記録層ごとに変調して、異なるブラッグ条件を持って情報が 記録されていることを特徴とするホログラフィック記録媒体。
[0032] (25)前記情報が、ホログラフィック記録層ごとに、その全面にわたってシフト多重記 録されることを特徴とする(24)に記載の多層ホログラフィック記録媒体。
[0033] (26)前記情報が、ホログラフィック記録層ごとに角度変調して角度多重記録されて レ、ることを特徴とする(24)又は(25)に記載の多層ホログラフィック記録媒体。
[0034] (27)前記情報が、ホログラフィック記録層ごとに、干渉縞が異なる位相コードパター ンを持って記録されてレ、ることを特長とする(24)に記載の多層ホログラフィック記録 媒体。
[0035] (28)物体光と参照光との照射による干渉縞が、各々に形成された多数のホロダラ フィック記録層を積層してなる多層ホログラフィック記録媒体であって、前記各ホログ ラフィック記録層には、前記情報が、ホログラフィック記録層ごとに異なって角度多重 記録され、且つ、同一のホログラフィック記録層ではアドレスごとに異なる位相コード パターンを持って記録されていることを特徴とする多層ホログラフィック記録媒体。
[0036] (29)基板上にホログラフィック記録層を形成する工程と、このホログラフィック記録 層に対して、物体光と参照光とを照射して、全面にわたりシフト多重記録をする工程 と、前記ホログラフィック記録層上に次のホログラフィック記録層を形成する工程と、該 次のホログラフィック記録層に対して、物体光と参照光とを照射して、全面にわたりシ フト多重記録をする工程と、を順次繰り返して、シフト多重記録をした所定の数のホロ グラフィック記録層を積層する多層ホログラフィック記録媒体の製造方法であって、前 記物体光と参照光は、一方の照射条件を一定にし、且つ、他方の照射条件を各ホロ グラフィック記録層ごとに変調して照射し、各ホログラフィック記録層が異なるブラッグ 条件を持つように情報を記録したことを特徴とするホログラフィック記録媒体の製造方 法。
[0037] (30)前記ホログラフィック記録層にシフト多重記録をした後で、次のホログラフィック 記録層を形成する前に、シフト多重記録をした前記ホログラフィック記録層をポスト露 光して、残留感光成分を完全に消費させる工程を有することを特徴とする(29)に記 載のホログラフィック記録媒体の製造方法。
[0038] (31)前記ホログラフィック記録層のポスト露光を、インコヒーレント光により行うことを 特徴とする(30)に記載のホログラフィック記録媒体の製造方法。
[0039] (32)前記各ホログラフィック記録層の間に、各ホログラフィック記録層間の光学的 干渉を抑制するとともに、各ホログラフィック記録層の平坦度、平行度及び機械的強 度を補なうスぺーサ層を形成する工程を有することを特徴とする(29)、 (30)又は(3 1)に記載のホログラフィック記録媒体の製造方法。
[0040] (33)前記基板上にホログラフィック記録層を形成する工程と、このホログラフィック 記録層に対して、参照光にアドレスごとに異なる位相コードパターンを付与して物体 光と共に照射して、全面にわたりシフト多重記録をする工程と、前記ホログラフィック 記録層上に次のホログラフィック記録層を形成する工程と、該次のホログラフィック記 録層に対して、物体光の入射角度を変調して、且つ、参照光にアドレスごとに異なる 位相コードパターンを付与して照射し、全面にわたりシフト多重記録をする工程と、を 順次繰り返して、シフト多重及び位相コード多重記録をした所定の数のホログラフイツ ク記録層を積層する(29)乃至(32)のいずれかに記載の多層ホログラフィック記録媒 体の製造方法。
図面の簡単な説明
[図 1]本発明の実施例 1における多層ホログラフィック記録媒体を模式的に示す斜視 図である。
[図 2]同多層ホログラフィック記録媒体におけるホログラフィック記録層と参照光及び 物体光との関係を模式的に示す拡大断面図である。
[図 3]実施例 1におけるホログラフィック記録層に対する再生用レーザ光照射時の回 折光の状態を模式的に拡大して示す断面図である。
[図 4]本発明の実施例 2に係るホログラフィック記録媒体の製造方法を模式的に示す 拡大断面図である。
[図 5]同製造方法及びホログラフィック記録に用いる多層ホログラフィック記録装置を 示す光学系統図である。
[図 6]図 5の多層ホログラフィック記録装置の変化した状態を示す光学系統図である。
[図 7]上記製造方法及び多層ホログラフィック記録装置によって製造且つ記録された ホログラフィック記録媒体の情報を再生するための多層ホログラフィックメモリ再生装 置を示す光学系統図である。
[図 8]実施例 3に係る多層ホログラフィックメモリ再生装置を示す略示斜視図である。
[図 9]実施例 3に係る多層ホログラフィックメモリ再生装置を詳細に示す光学系統図で ある。
[図 10]実施例 4に係る多層ホログラフィックメモリ再生装置を示す光学系統図である。
[図 11]実施例 5に係る多層ホログラフィック記録再生装置を示す光学系統図である。
[図 12]同実施例 5における位相コードパターンの例を示す拡大平面図である。
[図 13]同実施例 5の装置により干渉縞が形成された状態の多層ホログラフィック記録 媒体を模式的に示す拡大断面図である。
[図 14]実施例 6に係る多層ホログラフィック記録装置を示す光学系統図である。 [図 15]同実施例 6に係る多層ホログラフィックメモリ再生装置を示す光学系統図であ る。
発明を実施するための最良の形態
[0042] 本発明の最良の実施形態では、各々に干渉縞が形成可能な多数のホログラフイツ ク記録層を積層してなる多層ホログラフィック記録媒体に対して、物体光の照射角度 を、各ホログラフィック記録層毎に変えて、且つ参照光は共通として、ホログラフィック 記録層毎にシフト多重記録をし、厚さ方向には角度多重記録をする。再生時には、 前記参照光と同一照射条件の再生用レーザ光を多層ホログラフィック記録媒体に照 射して、各ホログラフィック記録層から同時に異なる方向に回折光を形成させ、各回 折光を別個の 2次元光検出器によって検出することにより、同時に多数の(ホログラフ イツク記録層の数と等しい)情報を再生することにより上記目的を達成する。
[0043] 以下本発明の実施例 1について図面を参照して詳細に説明する。
[0044] まず、図 1、図 2を参照して、本発明の多層ホログラフィック記録再生方法の基本的 原理について説明する。
[0045] 図 1に示される多層ホログラフィック記録媒体 10は、例えばガラスからなる一対の基 板 12A、 12Bの間に多数のホログラフィック記録層 14A、 14B、 · · ·を積層してなる記 録層 14が挟み込まれて形成されてレヽる。
[0046] この記録層 14における各ホログラフィック記録層 14Α、 14Β、 · · ·には、各層の表面 に沿った同一箇所において、共通の参照光 Reと、各ホログラフィック記録層毎に異
1
なる照射角度の物体光 Ob、 Ob、 · · ·との干渉縞が記録されている(図 2 (A)、 (B)
1 2
参照)。
[0047] 上記のような条件で干渉縞が形成されている各ホログラフィック記録層 14A、 14B を積層した多層ホログラフィック記録媒体 10に対して、図 2 (C)、 (D)に示されるよう に、前記参照光 Reと同一照射条件で、再生用レーザ光 Rpを照射すると、まず、図
1 1
において再生用レーザ光 Rpの入射側のホログラフィック記録層 14Bにおいて回折光 Diが発生し、更に、ホログラフィック記録層 14Bの 0次光(透過光)が次のホログラフィ
2
ック記録層 14Aを照射し、これにより、回折光 Diを形成する。このようにして、各ホロ
1
グラフィック記録層 14Α、 14Β、 · · ·において回折光 Di、 Di、 · · ·が発生する。 [0048] これらの回折光 Di、 Di、 · · ·は、その出射方向が、記録時の物体光 Ob、 Ob、 · ·
1 2 1 2
•と同一である。即ち、ホログラフィック記録層 14A、 14B、 · · ·からの回折光は、全て その出射方向が異なる。
[0049] 図 3 (A)に示されるように、回折光 Di、 Di、 · · ·をそれぞれ個別に受光する、例え
1 2
ば CCDからなる 2次元光検出器 16A、 16B、 · · ·を設けておけば、各回折光を受光 して、複数のホログラフィック記録層 14A、 14B、 · · ·に記録された情報を同時に再生 すること力 Sできる。
[0050] 又、上記ホログラフィック記録層 14Α、 14Β、 · · ·に対してホログラフィック記録の際 に、物体光を共通として、参照光による照射条件をホログラフィック記録層毎に変え れば、再生時には、図 3 (B)に示されるように、各参照光に対応した再生用レーザ光 L、 Lの照射によって、記録時の物体光と同一方向に回折光を得て、 1つの 2次元
1 2
光検出器 17により各ホログラフィック記録層に記録された情報を再生することができ る。この場合、同時再生はできないので、順次再生となる。
[0051] 上記のような、多層ホログラフィック記録媒体 10に、実施例 2の製造方法により、情 報を記録しつつ製造する過程及び記録再生装置について説明する。
[0052] まず、図 4 (A)に示されるように、基板 12A上にホログラフィック記録層 14Aを形成 し、ここに、例えば該基板 12A及びホログラフィック記録層 14Aの表面と直交する方 向から参照光を、又、この参照光に対して Θ の角度から物体光を、それぞれ照射し て、両者の干渉縞を形成する。このとき、図 5 (A)に示されるように、多層ホログラフィ ック記録装置 20により、ホログラフィック記録層 14Aが形成された基板 12Aをモータ 2 2により回転させながら物体光と参照光を照射することによってシフト多重記録を行な う。
[0053] 次に、図 4 (B)に示されるように、ホログラフィック記録層 14Aに対してポスト露光を 行ない、残留感光成分を完全に消費する。このポスト露光(後工程でのポスト露光も 含む)には、記録あるいは再生と同じ光源を用いてもよいが、一様に露光するという 観点からは、よりインコヒーレントな光源(白色光、 LED等)が好ましい。
[0054] これは、入射光、グレーティングによって回折 ·散乱された光、界面で反射した光等 の間の干渉によって、不要な強度分布むらが記録されてしまうことを防止するためで ある。
[0055] 次に、ポスト露光を終了したホログラフィック記録層 14A上に、図 4 (C)に示されるよ うに、次のホログラフィック記録層 14Bを形成する。このとき、ホログラフィック記録層 1 4A、 14Bの間にスぺーサ層を設けて、各記録層間の光学的な干渉を抑制したり、記 録層の平坦度、平行度、光的強度特性を向上させるようにしてもよい。スぺーサ層の 形成は記録層 14Aの記録の前又は後のレ、ずれでもよレ、。
[0056] 図 4 (D)に示されるように、前記ホログラフィック記録層 14Bに対して、参照光は前 記図 4 (A)と共通、且つ、図 5 (B)のように物体光の入射角を Θ として、ホログラフイツ
2
ク記録層 14Aの干渉縞とは異なるブラッグ条件の下で、前記ホログラフィック記録層 1
4Aと同様にシフト多重記録を行なう。従って、各ホログラフィック記録層毎にその全 域に亘つてシフト多重記録されることになる。
[0057] なお、説明を簡単にするために、図 4 (A)—(D)においては平行光による平面上の グレーティング (干渉縞)が示されているが、シフト多重記録の場合、実際には球面波 による曲面状のグレーティングとなる。
[0058] ホログラフィック記録層 14Bに情報が記録された後は、前記ホログラフィック記録層
14Aの場合と同様に、図 4 (E)に示されるように、ポスト露光を行なう。
[0059] 更に、このポスト露光終了後、ホログラフィック記録層 14Cに対して、前記ホログラフ イツク記録層 14A、 14Bとは異なる入射角 Θ (図 6 (C)参照)で物体光を照射し (参
3
照光は共通)、干渉縞により情報をシフト多重記録する。
[0060] このようにして、必要な数だけホログラフィック記録層を重ね(この実施例では 4層構 造の場合を示す)、グレーティングを形成し、且つ、ポスト露光をしていく(図 4 (F)、 ( G)参照)。最後のホログラフィック記録層 14Dは、図 6 (D)に示される入射角 Θ で物
4 体光を照射する。ポスト露光後にホログラフィック記録層 14D上に保護層 18を形成し 、更に必要であれば、反射防止層 19を、全体の両面に形成する。
[0061] 次に、図 5に示される、多層ホログラフィック記録装置 20について説明する。
[0062] この多層ホログラフィック記録装置 20は、レーザ光源 24と、このレーザ光源 24から のレーザ光の、振動面が直交する直線偏光の一方、例えば p偏光成分を透過し、且 つ s偏光成分を反射する偏光ビームスプリッタ 26と、前記偏光ビームスプリッタ 26を 透過した p偏光成分を前記基板 12A及びその上に積層されたホログラフィック記録層 に導く参照光学系 28と、偏光ビームスプリッタ 26から反射された s偏光成分を前記基 板 12A及びこれに積層されたホログラフィック記録層に導く物体光学系 30と、を備え て構成されている。なお、説明の都合上、図 6 (C)及び (D)では、前記偏光ビームス プリッタ 26を透過した p偏光成分を物体光、反射した s偏光成分を参照光としてレ、る。
[0063] 前記参照光学系 28は、前記偏光ビームスプリッタ 26側から、ミラー 28A、 1/2波 長板 28B、集光レンズ 28Cをこの順で備えて構成されている。又、前記物体光学系 3 0は、偏光ビームスプリッタ 26側から、ミラー 30A、空間光変調器 30B、フーリエレン ズ 30Cをこの順で備えて構成されてレ、る。
[0064] 前記物体光学系 30は、全体が、ホログラフィック記録層に対する物体光の入射角 度 (参照光の光軸に対する角度)を変調可能な入射角度変調装置 32によって支持さ れている。又、ミラー 30Aは反射角調整可能な状態で入射角度変調装置 32支持さ れている。
[0065] 図 5 (A)、 (B)、図 6 (C)、(D)の符号 34は、レーザ光源 24のパルス発光を制御す るためのパルス制御装置を示す。
[0066] 次に、図 7を参照して前記多層ホログラフィック記録媒体 10にホログラフィック記録 された情報を再生するための多層ホログラフィックメモリ再生装置 36について説明す る。
[0067] この多層ホログラフィックメモリ再生装置 36は、前記多層ホログラフィック記録装置 2 0におけるレーザ光源 24と同一の波長のレーザ光を出射するレーザ光源 38と、この レーザ光源 38から出射された再生用レーザ光を前記多層ホログラフィック記録装置 2 0における参照光学系 28での参照光と同一の照射条件 (入射角度)で多層ホロダラ フィック記録媒体 10に導くための再生用レーザ光学系 40と、該多層ホログラフィック 記録媒体 10を駆動(シフト)させるためのモータ(図示省略)と、前記多層ホログラフィ ック記録媒体 10への、再生用レーザ光の照射によって、各ホログラフィック記録層 14 A— 14D力 発生した回折光を受光するための 2次元光検出器 16A、 16B、 16C、 1 6Dと、を備えて構成されている。
[0068] 前記再生用レーザ光学系 40は、レーザ光源 38からの再生用レーザ光を多層ホロ グラフィック記録媒体 10方向に反射するためのミラー 40Aと、このミラー 40Aと多層ホ ログラフィック記録媒体 10との間に設けられた集光レンズ 40Bとを備えている。
[0069] 又、前記多層ホログラフィック記録媒体 10から、 2次元光検出器 16A、 16B、 16C、
16Dへの回折光の光路上には、各々結像レンズ 44A、 44B、 44C、 44Dが設けられ ている。図 7の符号 39はレーザ光源 38を制御するためのパルス制御装置を示す。
[0070] この実施例において、再生用レーザ光は、集光レンズ 40Bによって収束光となり、 多層ホログラフィック記録媒体 10に入射する。この再生用レーザ光は、前記記録時 の参照光と同一波長であり、且つ多層ホログラフィック記録媒体 10への入射角度も 前記参照光と同一であるので、ホログラフィック記録層 14Dにおいて前記図 6 (D)に おける物体光と同一方向の回折光を発生する。
[0071] この回折光は、結像レンズ 44Dを介して 2次元光検出器 16Dに受光され、これによ つて、再生像が復号化されて、再生情報が得られることになる。
[0072] 次に、ホログラフィック記録層 14Dを透過した再生用レーザ光(0次の回折光)は、 次のホログラフィック記録層 14Cにおける再生用レーザ光となるので、ここでも、回折 光が発生して、 2次元光検出器 16Cに受光される。
[0073] このようにして、順次、ホログラフィック記録層 14B、 14Aにおいても、その上層から の 0次の回折光によって、対応する 2次元光検出器 16B及び 16Aに向けて回折光が 発生される。
[0074] ここで、各ホログラフィック記録層 14A、 14B、 14C、 14D内では、独立に体積ホロ グラムの多重化記録 (ここではシフト多重記録)が行なわれているため、ホログラム 1 枚当たりの回折効率は 10— 4程度と低レ、。この実施例では説明の都合上ホログラフイツ ク記録層を 4層としたが、より多数の積層数であってもよぐ例えば 100層のホログラフ イツク記録層を積層した場合でも、最下層へ到達する再生用レーザ光は、最初のホロ グラフィック記録層 14Aに比べて、 10— 4 X 100 = 0. 01、即ち約 1 %しか減少していな いので、各ホログラフィック記録層 14A、 14B、 · · ·から得られる回折光の強度がほと んど同一である。
[0075] 上記のように、ホログラフィック記録層 14D— 14Aにおいて、順次回折光が発生す るように説明したが、実際は、各ホログラフィック記録層において同時に回折光が発 生するので、 2次元光検出器 16A— 16Dによって得られる再生情報も、同時に得ら れることになる。従って、情報の転送レートが、順次再生する場合に比較して、格段 に増大されることになる。
[0076] 又、各ホログラフィック記録層に情報を記録し、且つ再生する際に、記録光学系や 再生光学系を機械的に光軸方向に駆動する必要が無いので、分解能が機械的精度 に影響されることなぐ記録密度を大幅に向上させることができる。
[0077] 次に図 8、図 9を参照して、実施例 3に係る多層ホログラフィックメモリ再生装置 50に ついて説明する。
[0078] 上記実施例 2の場合は、参照光を多層ホログラフィック記録媒体 10に対して垂直に 入射するように固定し、物体光の入射角度を変調するようにしたものであり、これに対 して、実施例 3は、物体光を垂直に入射させ、且つ参照光の入射角度を変調してシ フト多重記録 (積層方向には角度多重記録)をした多層ホログラフィック記録媒体 51 の情報を再生するものである。
[0079] この多層ホログラフィックメモリ再生装置 50の情報再生原理は、図 8に示されるよう に、ホログラフィック記録層の層毎に異なる角度で再生用レーザ光 Rp、 Rp、 Rp、 R
1 2 3
Pを入射し、且つ多層ホログラフィック記録媒体 51をシフト多重記録時と同様に駆動
4
して、発生した回折光を 2次元光検出器 52によって受光するものである。
[0080] 具体的には、図 9に示されるように、レーザ光源 54と、このレーザ光源 54からの再 生用レーザ光を前記多層ホログラフィック記録媒体 51に照射するための再生用レー ザ光学系 56と、前記 2次元光検出器 52とを備えて構成されている。
[0081] 前記再生用レーザ光学系 56は、レーザ光源 54から出射された再生用レーザ光の ビーム径を拡大するビームエキスパンダ 56Aと、該再生用レーザ光の一部が前記拡 大されたビーム径内の異なる位置から前記多層ホログラフィック記録媒体 51における ホログラフィック記録層に入射するように、該拡大されたビーム径の再生用レーザ光 を空間光変調する空間光変調器 56Bと、この空間光変調器 56Bからの平行光を多 層ホログラフィック記録媒体 51内に集光させる集光レンズ 56Cと、を含んで構成され ている。
[0082] 図 8、図 9の符号 58は、前記多層ホログラフィック記録媒体 51と 2次元光検出器 52 との間に配置された結像レンズである。
[0083] この実施例 3の多層ホログラフィックメモリ再生装置 50は、空間光変調器 56Bにお いて、その一部が再生用レーザ光を透過し、且つ透過する部分が多層ホログラフイツ ク記録媒体 51のホログラフィック記録層毎に、前記参照光に応じて変化するようにし て、図 8に示されるように、異なる入射角で多層ホログラフィック記録媒体 51に再生用 レーザ光 Rp、 Rp、 Rp、 Rpとして入射するようにされている。
1 2 3 4
[0084] 従って、ホログラフィック記録層に応じた再生光を照射すると、この再生光に対応す る再生像だけが現われ、各ホログラフィック記録層からの再生像力 同一位置、即ち 前記 2次元光検出器 52の位置に結像する。
[0085] この実施例 3の場合、多層ホログラフィック記録媒体 51からの回折光を検出する検 出光学系及び 2次元光検出器 52は 1組でよいので、装置を簡単に構成することがで きると共に、装置容積を小さくすることができる。
[0086] 次に、図 10に示される実施例 4に係るホログラフィックメモリ再生装置 60について説 明する。
[0087] 上記実施例 3において、多層ホログラフィック記録媒体 51におけるホログラフィック 記録層の積層数が多い場合は、空間光変調器 56Bにおいて遮断される再生用レー ザ光の割合が大きくなり、該再生用レーザ光の利用効率が低下することが考えれる。
[0088] この実施例 4に係るホログラフィックメモリ再生装置 60は、ホログラフィック記録層数 が多い場合にも、再生用レーザ光の利用効率が低下しないようにしたものである。
[0089] このホログラフィックメモリ再生装置 60は、レーザ光源 62と、このレーザ光源 62から 出射される再生用レーザ光を反射して前記多層ホログラフィック記録媒体 51におけ るホログラフィック記録層に対応して角度を変えて入射させる再生用レーザ光角度変 調装置 64と、前記図 8、図 9に示された多層ホログラフィックメモリ再生装置 50におけ ると同様の 2次元光検出器 52及び結像レンズ 58とを備えて構成されている。
[0090] 前記再生用レーザ光角度変調装置 64は、レーザ光源 62から出射されたレーザ光 を反射するための回転ミラー 64Aと、この回転ミラー 64Aで反射された再生用レーザ 光を、その入射角度に応じて反射光が前記多層ホログラフィック記録媒体 51内の所 定位置に向けて反射されるように形成された凹面ミラー 64Bと、を備えて構成されて いる。
[0091] 前記凹面ミラー 64Bの具体的な形状は、楕円筒の一部の内周面であり、楕円の 2 つの焦点と前記回転ミラー 64Aの回転中心及び多層ホログラフィック記録媒体 51に おける再生用レーザ光の照射ポイントが一致するようにされてレ、る。
[0092] 従って、楕円の一方の焦点位置にある回転ミラー 64に入射し、反射され、更に、凹 面ミラー 64Bで反射された再生用レーザ光は必ず楕円の他の焦点、即ち多層ホログ ラフィック記録媒体 51の再生レーザ光照射位置に入射される。
[0093] この実施例 4においては、回転ミラー 64Aの回転角度を制御することによって、該 回転ミラー 64Aによって反射された再生用レーザ光の、凹面ミラー 64Bでの反射点 の位置を変調し、これによつて、多層ホログラフィック記録媒体 51への入射角度が、 ホログラフィック記録層毎に調整される。
[0094] 更に、前記凹面ミラー 64Bは、集光レンズの機能も有し、多層ホログラフィック記録 媒体 51へ照射される再生用レーザ光は、曲面状の波面を有しているので、該多層ホ ログラフィック記録媒体 51を所定方向に駆動することによって、シフト多重記録が可 能となる。
[0095] この実施例 4の場合、再生用レーザ光の利用効率は図 7に示される実施例 2と同等 であるが、実施例 2では記録密度とデータ転送レートの両方が向上されているのに対 して、実施例 4では、記録密度だけが向上されている。その一方で、検出光学系が簡 単な構成となるという利点がある。
[0096] 次に、図 11一図 13を参照して、本発明の実施例 5に係る多層ホログラフィック記録 再生装置 70について説明する。
[0097] この多層ホログラフィック記録再生装置 70は、多層ホログラフィック記録媒体 72の 移動方向にはシフト多重記録、且つ、ホログラフィック記録層の積層方向には位相コ ード多重記録をし、且つ再生するものである。
[0098] 多層ホログラフィック記録再生装置 70は、レーザ光源 74と、このレーザ光源 74から 出射された再生用レーザ光を、振動面が直交する 2つの直線偏光のうち、例えば p偏 光を透過し、 s偏光を反射する偏光ビームスプリッタ 76と、この偏光ビームスプリッタ 7 6を透過したレーザ光を参照光として前記多層ホログラフィック記録媒体 72に導く参 照光学系 78と、反射された s偏光を多層ホログラフィック記録媒体 72に導く物体光学 系 80と、多層ホログラフィック記録媒体 72に再生用レーザ光を照射したときに発生す る回折光を検出するための検出光学系 82と、を備えて構成されている。
[0099] 前記参照光学系 78は、前記偏光ビームスプリッタ 76側から、ミラー 78A、 1/2波 長板 78B、位相空間光変調器 78C、フーリエレンズ 78Dを備えて構成されている。
[0100] 前記物体光学系 80は、前記偏光ビームスプリッタ 76側から、空間光変調器 80A、 フーリエレンズ 80Bをこの順で備えて構成されている。
[0101] 又、前記検出光学系 82は、 2次元光検出器 82Aと、この 2次元光検出器 82Aと前 記多層ホログラフィック記録媒体 72との間に配置された結像レンズ 82Bと、を備えて 構成されている。
[0102] 前記参照光学系 78の位相空間光変調器 78Cは、通過する光の位相を画素毎に 変調するデバイスである。ここでは、説明を簡単にするために、図 12 (A)に示される ような、 1次元の 8画素変調をする構成とする。具体的には、この位相空間光変調器 7 8Cは、前記 8画素のうちの一部又は全部に位相差 πを与えるものである。具体的に は、例えば図 12 (A)— (D)に示されるように、白色の画素 Wと斜線で示した画素 Gと の間に位相差 πを与えるようにされている。
[0103] 又、前記物体光学系 80における空間光変調器 80Αは、記録すべきデータに応じ て、物体光を強度変調するものである。
[0104] この多層ホログラフィック記録再生装置 70により、多層ホログラフィック記録媒体 72 に情報を記録する過程について説明する。
[0105] レーザ光源 74から出射された再生用レーザ光は、偏光ビームスプリッタ 76におい て Ρ偏光が透過され、これが参照光学系 78に入射する。又、 s偏光は反射され、物体 光学系 80に入射する。
[0106] 前記参照光学系 78に入射した ρ偏光は、ミラー 78Αで反射され、 1/2波長板 78Β において s偏光に変換され、前記位相空間光変調器 78Cに入射する。
[0107] この位相空間光変調器 78Cは、前記のように、通過するレーザ光の位相を、例えば 図 12 (Α)— (D)に示されるような 1次元の 8画素変調をする。
[0108] 位相変調された参照光は、フーリエレンズ 78Dにより多層ホログラフィック記録媒体 72近傍で集光されると共に、その強度分布がフーリエ変換され、該多層ホログラフィ ック記録媒体 72に照射される。
[0109] 一方、前記偏光ビームスプリッタ 76において反射された s偏光である物体光は、空 間光変調器 80Aにおレ、て強度変調の形でデータを付与された後、フーリエレンズ 80
Bによって集光且つ強度分布のフーリエ変換を受けて、多層ホログラフィック記録媒 体 72内で前記照射された参照光と交差する。
[0110] 前記参照光及び物体光は共に s偏光であるので、両者の交差する領域で光学的干 渉を生じ、これが回折格子として多層ホログラフィック媒体 72に記録される。このよう な記録を多層ホログラフィック記録媒体 72におけるホログラフィック記録層毎にシフト 多重記録をしていく。
[0111] 図 13に示されるように、前記多層ホログラフィック記録媒体 72におけるホログラフィ ック記録層の層数を、説明を簡単にするために 4層とした場合、基板 12A側から、第 1一第 4のホログラフィック記録層 72A、 72B、 72C、 72Dに記録された干渉縞は、各 層毎に、例えば図 12 (A)—(D)にそれぞれ示されるような 1次元 8画素の位相コード パターンのいずれかを含んでいる。この位相コードパターンとしては、例えば 1次元 8 成分の Wolsh Hadamard直交コードを利用する。
[0112] 上記のように記録した多層ホログラフィック記録媒体 72の情報を再生する場合は、 前記参照光学系 78から前記参照光と同一条件で再生用レーザ光を多層ホログラフ イツク記録媒体 72に照射する。
[0113] このとき、再生しょうとする記録層に対応して、前記位相空間光変調器 78Cにおい て前記図 12 (A)— (D)のいずれかの位相コードパターンで位相変調された再生用 レーザ光を照射すれば、 目的のホログラフィック記録層に記録された情報を再生する こと力 Sできる。
[0114] この実施例 5の多層ホログラフィック記録再生装置 70は、記録及び再生の両方に おいて、機械的な可動部を設ける必要がないので、記録密度及びデータ転送レート を向上させることができる。
[0115] なお、多層ホログラフィック記録媒体 72におけるホログラフィック記録層の積層数が 少ない場合は、前記位相空間光変調器 78Cに代えて、位相コードマスクを用いても よい。
[0116] この位相コードマスクは、再生用レーザ光の、記録再生帯域の波長に対して透明で 、これを通過することによって、再生用レーザ光に固定位相パターンを与える板状の 光学部品である。例えば、 BK7材からなる平行平板に; ΐ Ζη ( λ;再生用レーザ光の 真空中での波長、 η ;位相コードマスクの屈折率)の段差を設けてもよいし、図 12 (A) 一 (D)に示されるように、画素毎に屈折率変化を与えたものでもよい。
[0117] 次に、実施例 6を示す図 14、図 15を参照して、多層ホログラフィック記録媒体にお けるホログラフィック記録層毎に位相コード記録をし、且つホログラフィック記録層の 積層方向には物体光の入射角を変調して角度多重記録をするようにした多層ホログ ラフィック記録装置及びこれによつて情報を記録した多層ホログラフィック記録媒体の 情報を再生する装置について説明する。
[0118] この実施例 6に係る多層ホログラフィック記録装置 90は、レーザ光源 92と、このレー ザ光源 92から出射されたレーザ光のビーム径を拡大するビームエキスパンダ 94と、 ビーム径が拡大された再生用レーザ光を、透過光と反射光に分岐するビームスプリツ タ 96と、ビームスプリッタ 96で反射された再生用レーザ光を多層ホログラフィック記録 媒体 98に導く参照光学系 100と、透過した再生用レーザ光を多層ホログラフィック記 録媒体 98に導く物体光学系 102とを備えて構成されている。
[0119] 前記参照光学系 100は、ビームスプリッタ 96側から、位相空間光変調器 100Α、フ 一リエレンズ 100Bをこの順で備えて構成されている。又、前記物体光学系 102はビ 一ムスプリッタ 96側から、ミラー 102Α、空間光変調器 102Β、フーリエレンズ 102Cを この順で備えて構成されてレ、る。
[0120] 更に、前記物体光学系 102は、全体が入射角度変調装置 101に取り付けられ、且 つ、ミラー 102Aは、その反射角度が調節可能とされ、これによつて、物体光学系 10 2は、物体光の、多層ホログラフィック記録媒体 98への入射角度を、ホログラフィック 記録層毎に変調できるようにされている。即ち、角度多重記録が可能とされている。
[0121] 次に、この多層ホログラフィック記録装置 90により、多層ホログラフィック記録媒体 9 8に情報を記録する過程について説明する。
[0122] レーザ光源 92から出射されたレーザ光はビームエキスパンダ 94によってそのビー ム径が拡大され、ビームスプリッタ 96に入射する。
[0123] ビームスプリッタ 96では、入射するレーザ光が透過光と反射光とに分岐され、反射 光は参照光として参照光学系 100に入射する。又、透過光は物体光として物体光学 系 102に入射する。
[0124] 参照光は、位相空間光変調器 100Aにより 2次元的に位相変調されることにより位 相コードパターンが付与され、フーリエレンズ 100Bを通過した後に集光しながら多層 ホログラフィック記録媒体 98に照射される。
[0125] 一方、物体光は、ミラー 102Aで反射され、空間光変調器 102Bに入射し、ここで、 記録すべきデータ(情報)に応じて 2次元的に振幅変調され、更にフーリエレンズ 10 2Cによって集光されながら多層ホログラフィック記録媒体 98に照射される。このとき、 前記 2次元的振幅変調パターンは、フーリエレンズ 102Cの後側焦点においてフーリ ェ変換される。
[0126] 従って、多層ホログラフィック記録媒体 98には、物体光及び参照光がホログラフイツ ク記録層の同一領域に照射されるので、この領域内で 3次元的な干渉パターンが形 成され、この干渉パターンが屈折率変化としてホログラフィック記録層に記録される。
[0127] 前記位相コードは、各ホログラフィック記録層毎に複数種のセットで用いられる。即 ち、 1つの位相コードパターンセットは、各ホログラフィック記録層に、それぞれ 1つ割 り当てられることになる。
[0128] なお、位相コードパターンは、上記のように記録層毎に異なるようにしてもよいが、 位相コードの変調効率や同時再生の機能を考慮すると、複数種類の位相コードのセ ットを各記録層毎に用いるのが好ましい。
[0129] 上記のように、各ホログラフィック記録層毎に複数種類の位相コードのセットで記録 し、これを各層毎に繰り返して、全部のホログラフィック記録層での記録を終了するこ とにより、多層ホログラフィック記録媒体 98への情報の記録が終了する。
[0130] 次に、図 15を参照して、前記多層ホログラフィック記録媒体 98に記録された情報を 再生するための、多層ホログラフィックメモリ再生装置 104について説明する。
[0131] この多層ホログラフィックメモリ再生装置 104は、レーザ光源 106と、このレーザ光源
106からの再生用レーザ光を多層ホログラフィック記録媒体 98に導くための再生用レ 一ザ光学系 108と、該多層ホログラフィック記録媒体 98への再生用レーザ光の照射 によって発生する回折光から情報を再生するための検出光学系 110と、を備えて構 成されている。
[0132] 前記再生用レーザ光学系 108は、レーザ光源 106から出射された再生用レーザ光 のビーム径を拡大するためのビームエキスパンダ 108Aと、このビームエキスパンダ 1 08Aを通った再生用レーザ光を直角に反射するミラー 108Bと、ミラー 108Bで反射 した再生用レーザ光が入射する位相空間光変調器 108Cと、位相空間光変調器 10 8Cを通過した再生用レーザ光を多層ホログラフィック記録媒体 98内に集光させるフ 一リエレンズ 108Dと、を備えて構成されている。
[0133] 前記検出光学系 110は、記録時の前記物体光の、各ホログラフィック記録層毎の 入射光軸の延長上となる位置に、各々配置された 2次元光検出器 110A 110Dを 備えている。又、これら 2次元光検出器 110A— 110Dと前記多層ホログラフィック記 録媒体 98との間には、結像レンズ 111 A— 111Dが各々配置されてレ、る。
[0134] この多層ホログラフィックメモリ再生装置 104においては、記録時の参照光と同様の 再生用レーザ光を用い複数種類の位相コードのセットの中の任意の位相コードパタ ーンを、位相空間光変調器 108Cを経て照射すれば全ての記録層からの回折像(再 生像)が同時に生成される。
[0135] 体積ホログラムの原理によれば、回折像は、(レーザ光強度は別として)記録時の物 体光を再現したものとなるので、同時に生成する再生像はそれぞれ異なった方向に 出射することになる。この実施例では、記録時の物体光の光路の延長線上に 2次元 光検出器 110A—110Dを設けると共に、結像レンズ 111A— 111Dを設け、この結 像レンズ 111A— 111D力 記録時のフーリエレンズと結像レンズ系を構成するように しておけば、この結像レンズ系の結像面に記録時の空間光変調器が実像として現わ れることになる。従って、前記 2次元光検出器 110A— 110Dを、前記結像面に配置 することによって、複数の再生像を同時に検出することができる。
産業上の利用可能性
[0136] 本発明においては、多層ホログラフィック記録媒体における各ホログラフィック記録 層が異なるブラッグ条件を持ち、且つ共通の再生条件で、同時に回折光を形成でき るので、結果として、ホログラフィック記録媒体の記録密度及びデータ転送レートを大 幅に向上させることができる。

Claims

請求の範囲
[1] レーザ光を分岐した物体光と参照光との照射により、各々に干渉縞が形成可能な 多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を ホログラフィック記録し、且つ、再生用レーザ光を照射して記録された情報を再生す る方法であって、
前記物体光と参照光の一方の照射条件を一定にし、他方を各ホログラフィック記録 層ごとに変調して、各ホログラフィック記録層が異なるブラッグ条件を持つように情報 を記録する過程と、
前記照射条件を一定にされた物体光または参照光と同一照射条件で、再生用レー ザ光を、前記積層されたホログラフィック記録層に照射して、上層のホログラフィック 記録層に回折光を発生させるとともに透過した 0次光を順次下層のホログラフィック記 録層に照射し、各照射光による各ホログラフィック記録層での回折光から情報を同時 又は個別に再生する過程と、
を有してなる多層ホログラフィック記録再生方法。
[2] 請求項 1において、
前記ホログラフィック記録時に、
前記参照光の照射条件を一定にするとともに、前記物体光を各ホログラフィック記 録層ごとに変調して情報を記録し、
前記参照光と同一照射条件で、再生用レーザ光を、前記積層されたホログラフイツ ク記録層に照射して、その照射光による各ホログラフィック記録層での回折光を、前 記ホログラフィック記録層と同数の 2次元光検出器により受光し、これらの受光信号に より情報を再生することを特徴とする多層ホログラフィック記録再生方法。
[3] 請求項 1において、
前記情報は、ホログラフィック記録層ごとに、その全面にわたってシフト多重記録さ れることを特徴とする多層ホログラフィック記録再生方法。
[4] 請求項 2において、
前記情報は、ホログラフィック記録層ごとに、その全面にわたってシフト多重記録さ れることを特徴とする多層ホログラフィック記録再生方法。
[5] 請求項 1乃至 4のいずれかにおいて、
前記ホログラフィック記録時に、前記物体光と参照光の他方をホログラフィック記録 層ごとに角度変調することを特徴とする多層ホログラフィック記録再生方法。
[6] 請求項 5において、
前記情報の再生時に、前記再生用レーザ光のビーム径を拡大して、該再生用レー ザ光の一部が前記拡大されたビーム径内の異なる位置から前記ホログラフィック記録 層に入射するように、空間光変調することを特徴とする多層ホログラフィック記録再生 方法。
[7] 請求項 5において、
前記情報の再生時に、前記再生用レーザ光を、回転ミラー及び凹面ミラーにより反 射して前記ホログラフィック記録層に入射させることを特徴とする多層ホログラフィック 記録再生方法。
[8] 請求項 1において、
前記情報のホログラフィック記録時に、前記物体光を、記録すべき情報に応じて強 度変調し、前記参照光を、ホログラフィック記録層ごとに位相空間光変調して、ホログ ラフィック記録層ごとに、干渉縞が異なる位相コードパターンを持つように情報を記録 し、
前記情報の再生時に、前記再生用レーザ光を、情報を再生するホログラフィック記 録層ごとに、対応する位相コードパターンを持つように、位相空間光変調して前記ホ ログラフィック記録層に照射することを特徴とする多層ホログラフィック記録再生方法。
[9] レーザ光を分岐した物体光と参照光との照射により、各々に干渉縞が形成可能な 多数のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を ホログラフィック記録し、且つ、記録された情報を再生する方法であって、
前記物体光を、記録すべき情報に応じて強度変調しつつホログラフィック記録層ご とに入射角度を変調し、前記参照光を、付与するアドレスに応じて位相空間光変調し 、ホログラフィック記録層がアドレスごとに異なる位相コードパターンを持つように情報 を記録し、
前記情報の再生時に、前記再生用レーザ光を、前記参照光と同一照射条件で、且 つ、前記位相コードパターンを持つように位相空間光変調して前記ホログラフィック 記録層に照射することを特徴とする多層ホログラフィック記録再生方法。
[10] レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な多数 のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を記録 し、且つ、再生用レーザ光を照射して、記録した情報を再生するホログラフィック記録 再生装置であって、
前記物体光及び参照光を前記多層ホログラフィック記録媒体に導ぐ物体光学系 及び参照光学系と、
再生用レーザ光を、前記積層されたホログラフィック記録層に照射する再生用レー ザ光学系と、
前記再生用レーザ光による各ホログラフィック記録層での回折光から情報を再生す るための、該回折光と同数の 2次元光検出器と、を有してなり、
前記物体光学系及び参照光学系の一方は、レーザ光の照射条件が一定にされ、 他方は、レーザ光の照射条件が、ホログラフィック記録層ごとに変調されて、各ホログ ラフィック記録層に異なるブラッグ条件を持って情報を記録するようにされ、且つ、前 記再生用レーザ光学系は前記一定の照射条件と同一の照射条件とされたことを特 徴とするホログラフィック記録再生装置。
[11] 請求項 10において、
前記参照光学系は、前記参照光の照射条件が一定となるように構成され、前記物 体光学系は、前記物体光を各ホログラフィック記録層ごとに変調する物体光変調装 置を有し、前記再生用レーザ光学系は、前記参照光と同一照射条件で、再生用レー ザ光を前記積層されたホログラフィック記録層に照射するようにされ、前記 2次元光検 出器は、前記照射光による各ホログラフィック記録層での回折光を、別個に受光する ようにされたことを特徴とする多層ホログラフィック記録再生装置。
[12] 請求項 10又は 11において、
物体光学系及び参照光学系は、前記情報を、ホログラフィック記録層ごとに、その 全面にわたってシフト多重記録するように構成されたことを特徴とする多層ホログラフ イツク記録再生装置。
[13] 請求項 10又は 11において、
前記物体光学系及び参照光学系の他方は、前記ホログラフィック記録時に、前記 物体光又は参照光の他方をホログラフィック記録層ごとに角度変調する角度変調装 置を有することを特徴とする多層ホログラフィック記録再生装置。
[14] 請求項 13において、
前記情報の再生時に、前記再生用レーザ光のビーム径を拡大するビームエキスパ ンダと、該再生用レーザ光の一部が前記拡大されたビーム径内の異なる位置から前 記ホログラフィック記録層に入射するように、該拡大されたビーム径の再生用レーザ 光を空間光変調する空間光変調器とを有することを特徴とする多層ホログラフィック 記録再生装置。
[15] 請求項 13において、
前記情報の再生時に、前記再生用レーザ光を、回転ミラー及び凹面ミラーにより反 射して前記ホログラフィック記録層に入射させる再生用レーザ光角度変調装置を有 することを特徴とする多層ホログラフィック記録再生装置。
[16] 請求項 10において、
前記物体光学系は、前記情報のホログラフィック記録時に、前記物体光を記録す べき情報に応じて強度変調する振幅空間光変調器を有し、前記参照光学系は、前 記参照光を、ホログラフィック記録層ごとに、干渉縞が異なる位相コードパターンを持 つように、ホログラフィック記録層ごとに位相空間光変調する位相空間光変調器を有 し、
前記再生用レーザ光学系は、前記情報の再生時に、情報を再生するホログラフイツ ク記録層ごとに、対応する位相コードパターンを持つように、前記再生用レーザ光を 、位相空間光変調する再生用レーザ光位相空間光変調器と、を有することを特徴と する多層ホログラフィック記録再生装置。
[17] レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な多数 のホログラフィック記録層を積層してなる多層ホログラフィック記録媒体に情報を記録 し、且つ、再生用レーザ光を照射して、記録した情報を再生するホログラフィック記録 再生装置であって、 前記物体光及び参照光を前記多層ホログラフィック記録媒体に導ぐ物体光学系 及び参照光学系と、
再生用レーザ光を、前記積層されたホログラフィック記録層に照射する再生用レー ザ光学系と、
前記再生用レーザ光による各ホログラフィック記録層での回折光から情報を再生す るための、該回折光と同数の 2次元光検出器と、を有してなり、
前記物体光学系は、前記物体光を、記録すべき情報に応じて強度変調しつつホロ グラフィック記録層ごとに入射角度を変調する物体光角度変調器を有し、前記参照 光学系は、ホログラフィック記録層がアドレスごとに異なる位相コードパターンを持つ ように、前記参照光を、付与するアドレスに応じて位相空間光変調する位相空間光 変調器を有し、前記再生用レーザ光学系は、前記情報の再生時に、前記再生用レ 一ザ光を、前記位相コードパターンを持つように位相空間光変調する再生用レーザ 光位相空間光変調器を有することを特徴とする多層ホログラフィック記録再生装置。
[18] 多数のホログラフィック記録層を積層してなり、レーザ光源からの物体光と参照光の 一方の照射条件が一定にされ、他方の照射条件が、ホログラフィック記録層ごとに変 調されることにより、各ホログラフィック記録層に異なるブラッグ条件を持って情報が記 録された多層ホログラフィック記録媒体に、再生用レーザ光学系からの再生用レーザ 光を照射して、記録した情報を再生するホログラフィックメモリ再生装置であって、 前記再生用レーザ光による各ホログラフィック記録層での回折光から情報を再生す るための、該回折光と同数の 2次元光検出器を有してなり、
前記再生用レーザ光学系は前記一定の照射条件と同一の照射条件とされたことを 特徴とするホログラフィックメモリ再生装置。
[19] 請求項 18において、
前記再生用レーザ光学系は、前記参照光と同一照射条件で、再生用レーザ光を 前記積層されたホログラフィック記録層に照射するようにされ、前記 2次元光検出器 は、前記照射光による各ホログラフィック記録層での回折光を、別個に受光するよう にされたことを特徴とする多層ホログラフィックメモリ再生装置。
[20] 請求項 18又は 19において、 前記情報は、前記ホログラフィック記録媒体におけるホログラフィック記録層ごとに、 その全面にわたってシフト多重記録されていることを特徴とする多層ホログラフィックメ モリ再生装置。
[21] 請求項 18又は 19において、
前記多層ホログラフィック記録媒体における情報が、前記物体光又は参照光の他 方がホログラフィック記録層ごとに角度変調して、角度多重記録され、前記再生用レ 一ザ光学系は、前記再生用レーザ光のビーム径を拡大するビームエキスパンダと、 該再生用レーザ光の一部が前記拡大されたビーム径内の異なる位置から前記ホログ ラフィック記録層に入射するように、該拡大されたビーム径の再生用レーザ光を空間 光変調する空間光変調器とを有することを特徴とする多層ホログラフィックメモリ再生 装置。
[22] 請求項 18又は 19において、
前記再生用レーザ光を、回転ミラー及び凹面ミラーにより反射して前記ホログラフィ ック記録層に入射させる再生用レーザ光角度変調装置を有することを特徴とする多 層ホログラフィックメモリ再生装置。
[23] 請求項 18において、
前記多層ホログラフィック記録媒体には、前記参照光を、ホログラフィック記録層ごと に位相空間光変調して、干渉縞が異なる位相コードパターンを持って情報が記録さ れていて、
前記再生用レーザ光学系は、前記情報の再生時に、情報を再生するホログラフイツ ク記録層ごとに、対応する位相コードパターンを持つように、前記再生用レーザ光を 位相空間光変調する再生用レーザ光位相空間光変調器を有することを特徴とする 多層ホログラフィックメモリ再生装置。
[24] レーザ光源からの物体光と参照光の照射により、各々に干渉縞が形成可能な多数 のホログラフィック記録層を積層してなり、前記物体光は、記録すべき情報に応じて 強度変調しつつホログラフィック記録層ごとに入射角度を変調され、前記参照光は、 ホログラフィック記録層がアドレスごとに異なる位相コードパターンを持つように、付与 するアドレスに応じて位相空間光変調して情報が記録された多層ホログラフィック記 録媒体に、再生用レーザ光を照射して、記録した情報を再生するホログラフィックメモ リ再生装置であって、
前記再生用レーザ光を、前記積層されたホログラフィック記録層に照射する再生用 レーザ光学系と、
前記再生用レーザ光による各ホログラフィック記録層での回折光から情報を再生す るための、該回折光と同数の 2次元光検出器と、を有してなり、
前記再生用レーザ光学系は、前記情報の再生時に、前記再生用レーザ光を、前 記位相コードパターンを持つように位相空間光変調する再生用レーザ光位相空間光 変調器を有することを特徴とする多層ホログラフィックメモリ再生装置。
[25] 物体光と参照光との照射による干渉縞が、各々に形成された多数のホログラフイツ ク記録層を積層してなる多層ホログラフィック記録媒体であって、
前記各ホログラフィック記録層には、物体光と参照光の一方の照射条件を一定にし 、他方の照射条件を各ホログラフィック記録層ごとに変調して、異なるブラッグ条件を 持って情報が記録されていることを特徴とするホログラフィック記録媒体。
[26] 請求項 25において、
前記情報が、ホログラフィック記録層ごとに、その全面にわたってシフト多重記録さ れることを特徴とする多層ホログラフィック記録媒体。
[27] 請求項 25又は 26において、
前記情報が、ホログラフィック記録層ごとに角度変調して角度多重記録されているこ とを特徴とする多層ホログラフィック記録媒体。
[28] 請求項 25において、
前記情報が、ホログラフィック記録層ごとに、干渉縞が異なる位相コードパターンを 持って記録されていることを特長とする多層ホログラフィック記録媒体。
[29] 物体光と参照光との照射による干渉縞が、各々に形成された多数のホログラフイツ ク記録層を積層してなる多層ホログラフィック記録媒体であって、
前記各ホログラフィック記録層には、前記情報が、ホログラフィック記録層ごとに異な つて角度多重記録され、且つ、同一のホログラフィック記録層ではアドレスごとに異な る位相コードパターンを持って記録されていることを特徴とする多層ホログラフィック 記録媒体。
[30] 基板上にホログラフィック記録層を形成する工程と、
このホログラフィック記録層に対して、物体光と参照光とを照射して、全面にわたりシ フト多重記録をする工程と、
前記ホログラフィック記録層上に次のホログラフィック記録層を形成する工程と、 該次のホログラフィック記録層に対して、物体光と参照光とを照射して、全面にわた りシフト多重記録をする工程と、
を順次繰り返して、シフト多重記録をした所定の数のホログラフィック記録層を積層 する多層ホログラフィック記録媒体の製造方法であって、
前記物体光と参照光は、一方の照射条件を一定にし、且つ、他方の照射条件を各 ホログラフィック記録層ごとに変調して照射し、各ホログラフィック記録層が異なるブラ ッグ条件を持つように情報を記録したことを特徴とするホログラフィック記録媒体の製 造方法。
[31] 請求項 30において、
前記ホログラフィック記録層にシフト多重記録をした後で、次のホログラフィック記録 層を形成する前に、シフト多重記録をした前記ホログラフィック記録層をポスト露光し て、残留感光成分を完全に消費させる工程を有することを特徴とするホログラフィック 記録媒体の製造方法。
[32] 請求項 31において、
前記ホログラフィック記録層のポスト露光を、インコヒーレント光により行うことを特徴 とするホログラフィック記録媒体の製造方法。
[33] 請求項 30、 31又は 32において、
前記各ホログラフィック記録層の間に、各ホログラフィック記録層間の光学的干渉を 抑制するとともに、各ホログラフィック記録層の平坦度、平行度及び機械的強度を補 なうスぺーサ層を形成する工程を有することを特徴とするホログラフィック記録媒体の 製造方法。
[34] 請求項 30、 31又は 32において、
前記基板上にホログラフィック記録層を形成する工程と、 このホログラフィック記録層に対して、参照光にアドレスごとに異なる位相コードパタ ーンを付与して物体光と共に照射して、全面にわたりシフト多重記録をする工程と、 前記ホログラフィック記録層上に次のホログラフィック記録層を形成する工程と、 該次のホログラフィック記録層に対して、物体光の入射角度を変調して、且つ、参 照光にアドレスごとに異なる位相コードパターンを付与して照射し、全面にわたりシフ ト多重記録をする工程と、
を順次繰り返して、シフト多重及び位相コード多重記録をした所定の数のホログラフ イツク記録層を積層する多層ホログラフィック記録媒体の製造方法。
請求項 33において、
前記基板上にホログラフィック記録層を形成する工程と、
このホログラフィック記録層に対して、参照光にアドレスごとに異なる位相コードパタ ーンを付与して物体光と共に照射して、全面にわたりシフト多重記録をする工程と、 前記ホログラフィック記録層上に次のホログラフィック記録層を形成する工程と、 該次のホログラフィック記録層に対して、物体光の入射角度を変調して、且つ、参 照光にアドレスごとに異なる位相コードパターンを付与して照射し、全面にわたりシフ ト多重記録をする工程と、
を順次繰り返して、シフト多重及び位相コード多重記録をした所定の数のホログラフ イツク記録層を積層する多層ホログラフィック記録媒体の製造方法。
PCT/JP2004/012850 2003-10-31 2004-09-03 多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置 WO2005043256A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/577,245 US7760407B2 (en) 2003-10-31 2004-09-03 Multilayer holographic recording medium and manufacturing method of the same, multilayer holographic recording and reproducing method, multilayer holographic memory reproducing apparatus, and multilayer holographic recording and reproducing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-372672 2003-10-31
JP2003372672A JP4358602B2 (ja) 2003-10-31 2003-10-31 多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置

Publications (1)

Publication Number Publication Date
WO2005043256A1 true WO2005043256A1 (ja) 2005-05-12

Family

ID=34544043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012850 WO2005043256A1 (ja) 2003-10-31 2004-09-03 多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置

Country Status (3)

Country Link
US (1) US7760407B2 (ja)
JP (1) JP4358602B2 (ja)
WO (1) WO2005043256A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1949185A2 (en) * 2005-11-03 2008-07-30 Bruce Ha Method and system for producing multiple images in a single image plane using diffraction
CN100419874C (zh) * 2005-08-17 2008-09-17 上海理工大学 斜入射多层光盘的调焦方法
CN100442363C (zh) * 2005-08-17 2008-12-10 上海理工大学 多层光盘调焦的斜入射富科棱镜方法
US20090207714A1 (en) * 2006-10-31 2009-08-20 Fujitsu Limited Hologram recording/reproducing optical element and hologram recording/reproducing device
CN101320571B (zh) * 2007-06-08 2011-05-18 索尼株式会社 记录设备、再现设备、记录方法、再现方法和记录介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734530B2 (ja) * 2005-09-09 2011-07-27 新オプトウエア株式会社 検索方法
DE102007005822A1 (de) * 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
US8324529B2 (en) * 2007-11-14 2012-12-04 Hamamatsu Photonics K.K. Laser machining device with a converged laser beam and laser machining method
JP4937147B2 (ja) * 2008-01-22 2012-05-23 日本発條株式会社 情報読み取り方法、情報読み取り装置およびプログラム
JP2009295233A (ja) * 2008-06-05 2009-12-17 Tdk Corp 光記録媒体及び光記録媒体の製造方法
KR20100065780A (ko) * 2008-12-08 2010-06-17 삼성전자주식회사 홀로그래픽 정보 기록 방법 및 홀로그래픽 정보 기록/재생 장치
WO2012033171A1 (ja) * 2010-09-08 2012-03-15 大日本印刷株式会社 投射装置および投射型映像表示装置
CN111063374A (zh) * 2019-12-31 2020-04-24 广东紫晶信息存储技术股份有限公司 一种增加存储容量的全息复用记录方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195019A (ja) * 1992-12-24 1994-07-15 Central Glass Co Ltd ホログラフィックオーナメント
JPH08220976A (ja) * 1995-02-09 1996-08-30 Dainippon Printing Co Ltd 連続的フィルムラミネート及び剥離システム
JPH11224043A (ja) * 1998-02-05 1999-08-17 Nippon Telegr & Teleph Corp <Ntt> カード形ホログラム記録媒体及びその製造方法ならびにその再生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265613A (ja) 1986-05-13 1987-11-18 Rikagaku Kenkyusho 光ビ−ムの2次元町偏向装置
JP2000105529A (ja) 1998-09-30 2000-04-11 Fuji Xerox Co Ltd 光記録媒体、光記録方法および光記録装置
JP3522552B2 (ja) 1998-11-16 2004-04-26 日本電信電話株式会社 情報読出装置
JP3530106B2 (ja) 2000-05-15 2004-05-24 日本電信電話株式会社 データ記録媒体
US6721076B2 (en) * 2001-08-03 2004-04-13 Inphase Technologies, Inc. System and method for reflective holographic storage with associated multiplexing techniques
US6844949B2 (en) * 2002-11-05 2005-01-18 Daewoo Electronics Corporation Method and apparatus for storing and retrieving digital page data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195019A (ja) * 1992-12-24 1994-07-15 Central Glass Co Ltd ホログラフィックオーナメント
JPH08220976A (ja) * 1995-02-09 1996-08-30 Dainippon Printing Co Ltd 連続的フィルムラミネート及び剥離システム
JPH11224043A (ja) * 1998-02-05 1999-08-17 Nippon Telegr & Teleph Corp <Ntt> カード形ホログラム記録媒体及びその製造方法ならびにその再生装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419874C (zh) * 2005-08-17 2008-09-17 上海理工大学 斜入射多层光盘的调焦方法
CN100442363C (zh) * 2005-08-17 2008-12-10 上海理工大学 多层光盘调焦的斜入射富科棱镜方法
EP1949185A2 (en) * 2005-11-03 2008-07-30 Bruce Ha Method and system for producing multiple images in a single image plane using diffraction
EP1949185A4 (en) * 2005-11-03 2009-11-18 Bruce Ha METHOD AND SYSTEM FOR THE PRODUCTION OF MULTIPLE IMAGES IN A SINGLE IMAGE PLAN BY DIFFRACTION
US7830573B2 (en) 2005-11-03 2010-11-09 Stamper Technologies, Inc. Method and system for producing multiple images in a single image plane using diffraction
US8717650B2 (en) 2005-11-03 2014-05-06 Stamper Technology, Inc. Method and system for producing multiple images in a single image plane using diffraction
US20090207714A1 (en) * 2006-10-31 2009-08-20 Fujitsu Limited Hologram recording/reproducing optical element and hologram recording/reproducing device
CN101320571B (zh) * 2007-06-08 2011-05-18 索尼株式会社 记录设备、再现设备、记录方法、再现方法和记录介质

Also Published As

Publication number Publication date
JP4358602B2 (ja) 2009-11-04
JP2005134762A (ja) 2005-05-26
US7760407B2 (en) 2010-07-20
US20070081439A1 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP3924549B2 (ja) ホログラム記録再生方法及び装置
US7869106B2 (en) Holographic recording method, holographic recording apparatus, holographic recording and reproducing method, holographic recording and reproducing apparatus, and holographic recording medium
JP4267407B2 (ja) ホログラフィック記録媒体、その製造方法、ホログラフィック記録再生システム
JP6653505B2 (ja) ホログラム記録再生方法およびホログラム記録再生装置
WO2005043256A1 (ja) 多層ホログラフィック記録媒体、その製造方法、多層ホログラフィック記録再生方法、多層ホログラフィックメモリ再生装置及び多層ホログラフィック記録再生装置
WO2005078534A1 (ja) ホログラフィック記録方法、ホログラフィック記録装置、ホログラフィック記録媒体、ホログラフィックメモリ再生方法及び装置
US7839750B2 (en) Holographic recording apparatus, holographic reproducing apparatus and holographic recording and reproducing apparatus
JP3729477B2 (ja) ホログラム作成装置および方法
JP4748043B2 (ja) 光記録装置、光記録方法、記録媒体及び再生方法
JP6667177B2 (ja) ホログラム記録再生方法およびホログラム記録再生装置
US7796486B2 (en) Optical information reproducing apparatus and optical information recording apparatus using holography
JP2007025417A (ja) ホログラム記録装置及び方法
WO2005029202A1 (ja) ホログラフィック記録方法、その装置及びホログラフィック記録再生装置
JP5462556B2 (ja) 三次元カラー表示装置及び三次元カラー映像表示方法
JP6894110B2 (ja) ホログラム記録再生装置
JP2009020134A (ja) ホログラム素子、ホログラム素子作製装置、ホログラム素子作製方法、およびホログラム再生装置
JP4234112B2 (ja) ホログラム作成装置
US7525894B2 (en) Apparatus and method for recording and reproducing optical information
JP4419616B2 (ja) ホログラフィック記録システム
JP4128964B2 (ja) 記録再生装置
JP2010033700A (ja) ホログラフィック情報記録方法
JP2008090157A (ja) 光情報記録再生方法及び装置
JP5541439B2 (ja) ホログラム複製装置、ホログラム複製方法及びそれにより複製されたホログラム
JP2008097759A (ja) 情報記録再生装置および情報記録再生方法
JP2007242145A (ja) 情報記録装置および情報再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007081439

Country of ref document: US

Ref document number: 10577245

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10577245

Country of ref document: US