WO2005040664A1 - 真空断熱材と、それを用いた冷凍機器及び冷温機器 - Google Patents

真空断熱材と、それを用いた冷凍機器及び冷温機器 Download PDF

Info

Publication number
WO2005040664A1
WO2005040664A1 PCT/JP2004/011413 JP2004011413W WO2005040664A1 WO 2005040664 A1 WO2005040664 A1 WO 2005040664A1 JP 2004011413 W JP2004011413 W JP 2004011413W WO 2005040664 A1 WO2005040664 A1 WO 2005040664A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
inorganic compound
heat insulating
core material
vacuum heat
Prior art date
Application number
PCT/JP2004/011413
Other languages
English (en)
French (fr)
Inventor
Chie Hirai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE112004001930T priority Critical patent/DE112004001930T5/de
Publication of WO2005040664A1 publication Critical patent/WO2005040664A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/124Insulation with respect to heat using an insulating packing material of fibrous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention relates to a vacuum heat insulating material that can be used as a heat insulating material for refrigerators, heat insulating and cooling containers, vending machines, electric water heaters, vehicles, houses, and the like.
  • heat insulating materials such as refrigerators, freezers, and vending machines require heat insulating materials with excellent heat insulating performance from the viewpoint of efficient use of heat.
  • An example of a conventional vacuum insulation material is a core material in which inorganic fibers are bound at each intersection by components eluted from the fibers.
  • this is disclosed in Japanese Patent Application Laid-Open No. 7-167736.
  • the core material When a core material is used, in which inorganic fibers are bound by components eluted from those fibers, the core material has low strength and retains its shape when the core material is inserted into the jacket. Things that cannot be done may happen.
  • the surface of the vacuum heat insulating material may be deformed by the atmospheric pressure.
  • a binder may be used to secure the strength, but there are some which are not preferable from the environmental point of view.
  • the present invention provides a vacuum heat insulating material that can maintain strength while considering the environment in view of the above problems. Disclosure of the invention
  • the present invention is a vacuum heat insulating material comprising a core material and a jacket material covering the core material and depressurizing the inside, wherein the core material is a molded body containing inorganic fibers, and the molded body is at least water-soluble.
  • a vacuum heat insulating material formed using a compound containing an inorganic compound, wherein the water-soluble inorganic compound contains a metal element and is solid at normal temperature.
  • the present invention also includes an outer box and an inner box, wherein the vacuum heat insulating material is disposed in a space formed by the outer box and the inner box, and a foam heat insulating material is provided in the space other than the vacuum heat insulating material.
  • the present invention provides a refrigerating device and a refrigerating device that are filled with a. Brief description of the drawings.
  • FIG. 1 is a sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention. is there.
  • FIG. 2 is a cross-sectional view of a refrigerator according to Embodiment 2 of the present invention.
  • the vacuum heat insulating material of the present invention comprises a core material, and a jacket material covering the core material and depressurizing the inside, wherein the core material is a molded body containing inorganic fibers, A vacuum heat insulating material, wherein the molded body is molded using a compound containing at least a water-soluble inorganic compound, and wherein the water-soluble inorganic compound contains a metal element and is solid at normal temperature.
  • inorganic fibers used for the core material known materials such as glass wool, glass fiber, alumina fiber, silica-alumina fiber, silica fiber, and mouth wool can be used.
  • the fiber diameter is not particularly specified, but is preferably 0.1 m or more and 10 ⁇ m or less in view of heat insulation performance, handleability, availability, and the like.
  • the solid of the water-soluble inorganic compound precipitates on the fiber surface and binds the fibers.
  • the core material strength is greatly improved.
  • the flatness of the surface of the vacuum insulation material is improved.
  • the sparingly soluble compound physically inhibits binding between fibers due to components eluted from the fibers, and the core material strength is reduced.
  • the water-soluble inorganic compound preferably contains a metal element, is not polymerizable, and has a strong ionic bond.
  • the solid thermal conductivity of the inorganic compound increases, and the solid thermal conductivity of the core material may increase.
  • inorganic compounds generates less gas, so that the thermal conductivity of the vacuum insulating material is not adversely affected over time.
  • the water-soluble inorganic compound is not particularly specified as long as it satisfies the above conditions, but is not limited to sodium chloride, sodium bromide, sodium iodide, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, sodium carbonate, Sodium nitrate, sulfated lime, alum, magnesium sulfate, aluminum sulfate, etc. are preferred. Among these, those having low hygroscopicity are more preferable. If the hygroscopicity is large, it is considered that the inorganic compound precipitated on the fiber surface after molding the core material takes in moisture, weakens the bond and decreases the core material strength. In addition, even after the core material is inserted into the jacket material and evacuated, the core material may release moisture in the jacket material, and the heat insulation performance of the vacuum insulation material may be degraded.
  • a core material is prepared by mixing one or more of the above water-soluble inorganic compounds, or mixing or diluting other compounds. At this time, the inorganic compound is desirably attached to the core material in an amount of 0.5 wt% or more and 20 wt% or less.
  • the amount of the inorganic compound When the amount of the inorganic compound is small, the effect of improving the strength of the core material is reduced. Conversely, an increase in the amount of the inorganic compound may cause an increase in the thermal conductivity of the solid, which may adversely affect the heat insulating performance of the vacuum heat insulating material.
  • the method for attaching the water-soluble inorganic compound to the core material is not particularly specified, but the inorganic compound aqueous solution is applied by spraying or spraying.
  • the amount of the solvent is not particularly specified as long as the solute inorganic compound is dissolved.
  • the core material It is desirable to mold the core material to have a density of 100 k 8 111 3 to 400 kg Z ms. Density and is less than 1 0 0 kg Z m 3, difficulty to maintain the shape of the molded body Kunar. On the other hand, if it exceeds 400 kg Z m 3 , the thermal conductivity of the solid increases, and the heat insulating performance of the vacuum heat insulating material deteriorates.
  • the density may be different inside the core material.
  • a known material can be used as the jacket material.
  • a gas adsorbent a moisture adsorbent, or other gettering substances.
  • a jacket material may be prepared, and then a core material may be inserted into the jacket material, and the inside may be reduced in pressure and sealed.
  • an outer cover made of a core material and a roll-shaped or sheet-shaped laminated film is installed in a decompression tank, and the roll-shaped or sheet-shaped outer material is placed along the core material, and then the outer cover material is removed.
  • a vacuum heat insulating material may be produced by heat fusion.
  • a vacuum heat insulating material may be manufactured by directly reducing the pressure inside the jacket material in which the core material is inserted and sealing the opening of the jacket material.
  • a board-shaped core material is introduced into a container formed of a metal plate, and a vacuum pump is connected to the metal container with a pipe to reduce the pressure in the container. It is good also as a vacuum heat insulating material by sealing off the back tube.
  • the core material may be subjected to moisture drying before the sheath material is introduced, and the adsorbent may be inserted together when the sheath material is inserted.
  • the vacuum heat insulating material of the present invention is characterized in that the solubility of the water-soluble inorganic compound used is 1 g or more per 100 g of water.
  • the solubility in the present invention is a value at a temperature of 25 ° C.
  • the solubility is less than 1 g with respect to 100 g of water, it is necessary to increase the water content in order to use the inorganic compound in a dissolved state. As a result, the water content is too large and the coating efficiency is reduced.
  • the inorganic compound is applied to the fiber at a concentration that does not completely dissolve, the solid remaining as the undissolved inorganic compound (residue) inhibits the binding of the fibers due to the components eluted from the fiber, and the core material strength May be weakened.
  • the saturation concentration it is desirable to set the saturation concentration as the upper limit.
  • the vacuum heat insulating material of the present invention is characterized in that the pH is 2 or more and 10 or less when 1 g of the water-soluble inorganic compound to be used is dissolved in 100 g of water.
  • the temperature in this case ranges from 15 to 30 and the following. If the pH is less than 2, it means that there is a problem with the handling properties of a strongly acidic aqueous solution or that the device may be damaged during the production of the core material, making molding practically difficult.
  • the inorganic fibers are eroded, and the core material becomes ragged or the eroded fibers are recombined.
  • the fibers may be bonded to each other by surface contact, and the solid thermal conductivity may be significantly deteriorated.
  • the pH is preferably 2 or more and 10 or less, and more preferably 3 or more and 9 or less.
  • the vacuum heat insulating material of the present invention is characterized in that the metal element contained in the water-soluble inorganic compound used contains at least an alkali metal. By containing the alkali metal, elution from the inorganic fibers can be promoted, and the bonding between the fibers can be further strengthened to improve the core material strength.
  • water-soluble inorganic compound containing an alkali metal of the present invention examples include sodium chloride, sodium bromide, sodium iodide, potassium chloride, lithium chloride, sodium sulfate, sodium carbonate, sodium nitrate, potassium sulfate, potassium alum and the like. .
  • sodium chloride, potassium chloride and potassium alum are preferred. These compounds are used as foods and fertilizers, and can provide a safe and environmentally friendly core material. Also, even if water-soluble inorganic compounds are scattered during the production and disposal of the core material, it is safe with little effect on the human body and environment.
  • an outer box and an inner box are provided, and the vacuum heat insulating material of the present invention is arranged in a space formed by the outer box and the inner box, and a foam heat insulating material is provided in the space other than the vacuum heat insulating material. Filling can be used to compose refrigeration equipment and cooling / heating equipment.
  • the vacuum insulation is attached to the outer or inner box side of the space between the outer and inner boxes of the refrigerator, and the other space is filled with resin foam.
  • the vacuum insulation and the foamed resin are integrated
  • the foamed heat insulator is disposed in the space between the outer box and the inner box of the refrigerator.
  • it can be used in a wide range of places without special designation, such as being used for the door part or used for the partition plate.
  • the vacuum heat insulating material is used between the machine room and the inner box or around the freezing room, there is an effect that the refrigerator is particularly excellent in heat insulating efficiency and can be operated with a low power consumption.
  • the resin foam for example, rigid urethane foam, phenol foam, styrene foam and the like can be used, but they are not particularly specified.
  • Refrigerant used for refrigeration equipment and cooling / heating equipment is not specified, such as chlorofluorocarbon 134a, isobutane, n-butane, pupan bread, ammonia, carbon dioxide, etc.
  • Refrigeration equipment and cooler / heater of the present invention33 Refrigeration equipment and cooler / heater of the present invention33.
  • 3 ⁇ 4ff is the operating temperature range of 130. This is shown as an example of a machine that requires heat insulation at room temperature from c, and can be used, for example, in insulated vehicles and refrigerators that use electronic cooling
  • vending machines and other cold / hot equipment that uses hot / cold heat in the range up to t, i) n days n.
  • equipment that does not require power such as gas equipment or cooler pox, is also included.
  • the normal temperature in the present invention means a temperature in the range of 150 ° C. (Embodiment 1)
  • Embodiment 1 will be described with reference to FIG.
  • the vacuum heat insulating material 1 is obtained by inserting the core material 2 into the jacket material 3 and sealing the inside by reducing the pressure.
  • the core material 2 is constituted by laminating and molding glass wool 4 having an average fiber diameter of 5 m until a predetermined shape is obtained, and an inorganic compound 5.
  • Table 1 shows the results of an examination of each of inorganic compound 5 as sodium chloride, potassium chloride, sodium bromide, sodium sulfate, potassium alum, and aluminum sulfate.
  • PH of each aqueous solution was measured as follows. For 100 parts by weight of glass wool 4, 3 parts by weight of an inorganic compound are dissolved in 300 parts by weight of water. Then, the pH of the inorganic compound aqueous solution of 303 parts by weight is measured.
  • This aqueous solution was sprayed on both surfaces of the molded body of glass wool 4 using a spray device, and then pressed in a hot air circulating furnace at 400 ° C for 20 minutes to have a thickness of 15 mm and a density of 200 mm. Obtain a core material 2 of kg Z ms.
  • the strength of the core material 2 was measured at a compressive stress at the time of 10% strain. No problems occurred in the production of the vacuum insulation material for any of the inorganic compounds.
  • the jacket 3 is made of two laminating films with a three-side seal.
  • the configuration of the two laminated films is as follows.
  • One of them is a 50-m-thick linear low-density polyethylene film (hereinafter referred to as LLDPE) as a heat-sealing layer, and a 15-m-thick ethylene-polyvinyl alcohol copolymer film as a gas barrier layer.
  • LLDPE 50-m-thick linear low-density polyethylene film
  • EVOH ethylene-polyvinyl alcohol copolymer film
  • PET polyethylene terephthalate film
  • the aluminum deposition surfaces are bonded together.
  • LLDPE of the heat fusion layer and EVOH of the gas barrier layer are dry-laminated.
  • the other one is a 50-m-thick LLDPE heat-sealing layer, a 6-m-thick aluminum foil as a gas barrier layer, and a 12-zm-thick polyamid film as a protective layer. It is composed of a 12 m thick polyamide film.
  • the vacuum insulation material 1 is manufactured by drying the core material 2 in a drying oven at 140 ° C. for 1 hour, inserting the core material 2 into the jacket material 3, and reducing the internal pressure to 3 Pa and sealing the inside. .
  • the thermal conductivity of the vacuum heat insulating material 1 manufactured as described above was measured at an average temperature of 24 and found to be in the range of 0.022 W / mK: to 0.023 WZmK. That is, it can be seen that all of the inorganic compounds have good thermal conductivity.
  • the water component was analyzed from the used core material.
  • An example of the analysis method is shown below. First, an arbitrary part of the core material 2 is sampled to make a finely divided sample. Add 200 ml of pure water to 5 g of the sample, shake gently, elute the binder in an ultrasonic bath for 15 minutes, and filter the eluate. The filtrate was heated and dried to evaporate the water, and the water-soluble solid component used for the core material 2 was obtained. Next, elemental analysis of the obtained substance was performed by, for example, the XMA method, and it was confirmed that each was the same as the component sprayed as an aqueous solution.
  • a water-soluble inorganic compound was confirmed using the method described above.
  • this method can be applied to both the core material before the vacuum insulation material is manufactured and the core material obtained by dismantling the vacuum insulation material after the manufacture.
  • analysis method is an example, and does not particularly specify an analysis method as long as the method can identify an inorganic compound.
  • the pH of the aqueous inorganic compound solution used can also be confirmed from the core material disassembled and taken out after the production of the vacuum heat insulating material.
  • Embodiment 1 water-soluble components were confirmed in the case where sodium hydroxide and calcium carbonate were used as the inorganic compound 5 and in the case where only water without the inorganic compound was used. Other aspects are the same as in the first embodiment, and the measurement was performed in the same manner as in the first embodiment. Table 2 shows the results.
  • the pH of the aqueous sodium hydroxide solution was 13.347, and calcium carbonate was not soluble in water and hardly dissolved in water.
  • the strength of calcium carbonate and water alone is low, and the core is slightly deformed or slipped when the core is inserted into the jacket.
  • Embodiment 2 will be described with reference to FIG.
  • Refrigerator 6 is provided with vacuum heat insulating material 1 having the same configuration as in the first embodiment, inside the wall of heat insulating box 7.
  • the heat insulating box 7 is composed of an outer box 8 formed by press-forming an iron plate and an inner box 9 formed by vacuum-forming ABS resin via a flange.
  • the vacuum heat insulating material 1 is previously disposed inside the wall of the heat insulating box 7, and the space other than the vacuum heat insulating material 1 is foam-filled with rigid urethane foam 10. Cyclopentane is used as a foaming agent for the rigid urethane foam 10.
  • the heat-insulating box 7 is separated by a partition plate 12, and the upper part is a refrigerator compartment.
  • the lower part is a freezer compartment 14.
  • a damper 15 is attached to the partition plate 1 2.
  • An evaporator 16 is arranged in the refrigerator, and a compressor 17, a condenser 18, and a capillary tube 19 are sequentially connected in a ring shape to form a refrigeration cycle.
  • a refrigerant isobutane
  • the evaporator 16 may be provided at two places of the refrigerating compartment 13 and the freezing compartment 14 and connected in series or in parallel to form a refrigerating cycle.
  • the refrigerator 6 is provided with a door body 11.
  • a vacuum heat insulating material 1 is provided inside the door body 11, and a hard polyurethane foam 10 is foam-filled in spaces other than the vacuum heat insulating material.
  • the present invention comprises a core material, and a jacket material covering the core material and depressurizing the inside, wherein the core material is a molded body containing inorganic fibers, and the molded body is at least water-soluble.
  • a vacuum heat insulating material formed using a compound containing an inorganic compound, wherein the water-soluble inorganic compound contains a metal element and is solid at normal temperature.
  • the present invention can provide a vacuum heat insulating material having a significantly improved core material strength. Therefore, refrigerators, heat insulating and cooling containers, vending machines, electric water heaters, vehicles, homes, and other devices to which the vacuum heat insulating material is applied, It can be widely used in technical fields such as buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

本発明は、強度が向上し断熱性能の優れた真空断熱材を提供する。さらに、その真空断熱材を用いた冷凍機器及び冷温機器を提供する。本発明の真空断熱材は、芯材と、芯材を覆い内部を減圧した外被材とから構成される。 芯材は無機繊維を含む成形体で、成形体が少なくとも水溶性無機化合物を含む化合物を用いて成形されており、水溶性無機化合物は金属元素を含みかつ常温で固体である。

Description

明細書
真空断熱材と、 それを用いた冷凍機器及び冷温機器 技術分野
本発明は、 冷蔵庫、 保温保冷容器、 自動販売機、 電気湯沸かし 器、 車両、 及び住宅等の断熱材として使用可能な真空断熱材に関 する。 背景技術
近年、 地球温暖化防止の観点から省エネルギーが強く望まれて おり、 家庭用電化製品についても省エネルギ一化は緊急の課題と なっている。 特に、 冷蔵庫、 冷凍庫、 自動販売機等の保温保冷 機器では熱を効率的に利用するという観点から、 優れた断熱性能 を有する断熱材が求められている。
一般的な断熱材として、 グラスウールなどの繊維材ゃウレタン フォームなどの発泡体が用いられている。 しかし、 これらの断熱 材の断熱性能を向上するためには断熱材の厚さを増す必要がある。
しかし、 断熱材を充填できる空間に制限があり、 さ らに省スぺ —スゃ空間の有効利用が必要な場合には適用することができない。
そこで、 高性能な断熱材として真空断熱材が提案されている。 これは、 スぺ一サの役割を持つ芯材を、 ガスバリア性を有する 外被材中に挿入し、 内部を減圧して封止した構成を持つ断熱材で ある。
従来の真空断熱材の一例としては、 芯材として無機繊維同士が それら繊維より溶出した成分によって各交点で結着しているもの が、 特開平 7 — 1 6 7 3 7 6号公報に開示されている。
芯材として、 無機繊維同士がそれら繊維より溶出した成分によ つて結着しているものを用いると、 芯材強度が弱く、 芯材を外被 材に挿入する際に芯材が形状を保持できないことが起こる可能性 がある。
また、 芯材を外被材に揷入し内部を減圧にした後、 大気圧によ り真空断熱材表面が変形する可能性がある。
また、強度を確保するために結着剤を使用することもできるが、 環境面等で好ましくないものがある。
本発明は、 上記課題に鑑み環境に配慮しつつ強度を保持できる 真空断熱材を提供する。 発明の開示
本発明は、 芯材と、 前記芯材を覆い内部を減圧した外被材とか らなる真空断熱材であって、前記芯材が無機繊維を含む成形体で、 前記成形体が少なく とも水溶性無機化合物を含む化合物を用いて 成形されており、 前記水溶性無機化合物が金属元素を含みかつ常 温で固体であることを特徴とする真空断熱材を提供する。
また、 本発明は、 外箱と、 内箱とを備え、 前記外箱と前記内箱 によって形成される空間に上記真空断熱材を配置し、 前記真空断 熱材以外の前記空間に発泡断熱材を充填してなる冷凍機器及び冷 温機器を提供する。 図面の簡単な説明 .
図 1 は、 本発明の実施の形態 1 における真空断熱材の断面図で ある。
図 2は、本発明の実施の形態 2 における冷蔵庫の断面図である。 発明を実施するための最良の形態 本発明の真空断熱材は、 芯材と、 前記芯材を覆い内部を減圧し た外被材とからなり、 前記芯材が無機繊維を含む成形体で、 前記 成形体が少なく とも水溶性無機化合物を含む化合物を用いて成形 されており、 前記水溶性無機化合物が金属元素を含みかつ常温で 固体であることを特徴とする真空断熱材である。
前記芯材に用いる無機繊維は、 例えばグラスウール、 グラスフ アイバ一、 アルミナ繊維、 シリカアルミナ繊維、 シリカ繊維、 口 ックウールなど、 公知の材料を使用することができる。
また、 その繊維径は特に指定するものではないが、 断熱性能や 取り扱い性、 入手の容易さ等から 0 . 1 m以上 1 0 ^ m以下が 望ましい。
また、 繊維材料を用いることにより、 成形し易くかつ固体熱伝 導率が小さい、 つまり成形性及び断熱性に優れた真空断熱材を得 ることができる。
また、常温で固体である水溶性無機化合物を用いることにより、 繊維からの溶出成分による繊維同士の結着に加え、 繊維表面に水 溶性無機化合物の固体が析出し繊維同士を結着することができる ので、 芯材強度が大幅に向上する。 また、 真空断熱材の表面の 平面性も向上する。 このとき、 水に難溶性の無機化合物を用いる と、 難溶性化合物が繊維からの溶出成分による繊維同士の結着を 物理的に阻害し、 芯材強度が減少する。 また、 水溶性無機化合物は金属元素を含み、 且つ重合するもの ではなく、 イオン結合性の強いものの方が望ましい。
重合するものである場合、 無機化合物による固体熱伝導が増加 し、 芯材としての固体熱伝導率が増加する可能性がある。
また、 無機化合物を用いていることから発生ガスが少なく、 真 空断熱材の熱伝導率に経時的な悪影響を及ぼしにく レ
また、 水溶性無機化合物は上記条件のものであれば特に指定す るものではないが、 塩化ナトリウム、 臭化ナトリウム、 ヨウ化ナ トリウム、 塩化カリウム、 塩化マグネシウム、 塩化カルシウム、 硫酸ナトリウム、 炭酸ナトリウム、 硝酸ナトリウム、 硫酸力リウ ム、 ミ ヨウバン、 硫酸マグネシウム、 硫酸アルミニウム等が好ま しい。 これらの中で、 吸湿性の小さいものがより好ましい。 吸湿性が大きいと、 芯材成形後に繊維表面に析出した無機化合 物が水分を取り込み、 結合が弱くなつて芯材強度が弱くなること が考えられる。 また、 芯材を外被材に挿入し真空排気した後で も外被材内で芯材が水分を放出し、 真空断熱材の断熱性能が悪化 することが考えられる。
以上のような水溶性無機化合物を 1種、 或いは 2種以上混合、 或いはその他の化合物を混合、 或いはそれらを希釈して、 芯材を 作製する。 この時、 無機化合物は、 芯材に対し 0 . 5 w t %以 上 2 0 w t %以下となるように付着させることが望ましい。
無機化合物の量が少ないと、芯材の強度向上効果が小さくなる。 逆に、 無機化合物の量が多くなると、 固体熱伝導率の増加が懸 念され、 真空断熱材の断熱性能に悪影響を及ぼすことが考えられ る。 前記芯材材料への水溶性無機化合物付着方法としては、 特に指 定するものではないが、 前記無機化合物水溶液を塗布又は噴霧し たり して付着させる。 無機化合物を水溶液として芯材成形に使 用する場合、 溶媒の量は特に指定するものではなく、 溶質である 無機化合物が溶解するのであればよい。
芯材の密度は 1 0 0 k 8 111 3〜 4 0 0 k g Z m sとなるように 成形することが望ましい。 密度が 1 0 0 k g Z m 3 より小さい と、 成形体としての形状を保持しにく くなる。 また、 4 0 0 k g Z m 3 より大きくなると、 固体熱伝導率が大きくなり真空断熱 材の断熱性能が悪化する。
なお、 芯材内部で密度が異なっていてもよい。
また、 前記外被材についても公知のものを使用することができ る。 また、 真空断熱体の信頼性を更に向上させる場合は、 ガス 吸着剤や水分吸着剤等のゲッ夕一物質を使用することも可能であ る。
真空断熱材の製造方法は、 まず外被材を作製し、 その後外被材 中に芯材を揷入し内部を減圧し封止してもよい。
他に、 減圧槽中に芯材とロール状或いはシート状のラミネート フィルムからなる外被材を設置し、 ロール状或いはシート状の外 被材を芯材に沿わした状態にしてから外被材を熱融着することに より真空断熱材を作製してもよい。
または、 芯材を挿入した外被材内を直接減圧にして外被材開口 部を封止することにより真空断熱材を製造してもよい。
その他に、 金属板で成形した容器にボード状の芯材を揷入し、 真空ポンプと前記金属容器とを管で結んで容器内を減圧とし、 そ の後管を封止し切ることにより真空断熱材としてもよい。
上記のいずれの方法で製造してもよく、 特に指定するものでは ない。
また、 芯材は外被材揷入前に水分乾燥を行ってもよく、 また外 被材挿入時に吸着剤を一緒に挿入してもよい。
本発明の真空断熱材は、 用いる水溶性無機化合物の溶解度が、 水 1 0 0 gに対し 1 g以上であることを特徴としている。
これにより繊維同士の確実な結着が得られる。
なお、 本発明における溶解度は、 温度が 2 5 °Cにおける値であ る。 一方、 溶解度が水 1 0 0 gに対し 1 gより少ないと、 無機 化合物を溶解した状態で使用するためには、 水分量を多くする必 要がある。 その結果、 水分量が多過ぎて塗布効率が低下する。
また、 無機化合物が完全に溶解してない濃度で繊維に塗布する と、 無機化合物の溶け残り分 (残渣) の固体が、 繊維からの溶出 成分による繊維同士の結着を阻害して芯材強度が弱くなることが 考えられる。 以上の点を考慮して、 飽和濃度を上限とすること が望ましい。
また、 本発明の真空断熱材は、 用いる水溶性無機化合物の 1 g を水 1 0 0 gに溶解させたときの p Hが 2以上 1 0以下であるこ とを特徴としている。 この場合の温度は、 1 5 以上 3 0で以 下の範囲である。 p Hが 2より小さい場合、'つまり強酸性水 溶液では取り扱い性に問題があつたり、 芯材作製時に装置にダメ —ジを与えたりすることが考えられ、 成形は実用上困難である。
また、 p Hが 1 0より大きい場合、 無機繊維が浸食され、 芯材 がぼろぼろになってしまうか、 もしくは浸食された繊維が再結合 し繊維同士が面接触により結合し、 固体熱伝導率が大幅に悪化し てしまうおそれがある。
したがって、 p Hは 2以上 1 0以下であることが好ましく、 3 以上 9以下がより好ましい。
また、 本発明の真空断熱材は、 用いる水溶性無機化合物に含 まれる金属元素が、 少なく ともアルカリ金属を含むことを特徴と する。 アルカリ金属を含むことにより、 無機繊維からの溶出を 促進することが可能となり、 繊維同士の結着をより強固にして芯 材強度を向上することができる。
本発明のアルカリ金属を含む水溶性無機化合物としては、 塩化 ナトリウム、臭化ナトリウム、 ヨウ化ナトリウム、塩化カリウム、 塩化リチウム、 硫酸ナトリウム、 炭酸ナトリウム、 硝酸ナトリウ ム、 硫酸カリウム、 カリウムミ ヨウバン等があげられる。
特に、 塩化ナト リウム、 塩化カリウム、 カリウムミ ヨウバンが 好ましい。 これらの化合物は食品や肥料として使用されている ものであり、 安全でかつ環境に優しい芯材を得ることができる。 また、 芯材の製造や廃棄において水溶性無機化合物が飛散した としても、 人体や環境に影響が少なく安全である。
また、 外箱と、 内箱とを備え、 前記外箱と前記内箱によって形 成される空間に本発明の真空断熱材を配置し、 前記真空断熱材以 外の前記空間に発泡断熱材を充填して、 冷凍機器及び冷温機器を 構成することができる。
例えば冷蔵庫に適用する場合、 冷蔵庫の外箱と内箱との間の空 間の外箱側又は内箱側に、 真空断熱材を貼付しその他の空間に樹 脂発泡体を充填する。 他に、 真空断熱体と発泡樹脂体とを一体 発泡した断熱体を、冷蔵庫の外箱と内箱との間の空間に配設する。 その他に、 ドア部に同様に使用する、 或いは仕切板に使用する 等、 特に指定するものではなく広い範囲の場所に用いることがで きる。 なお、 機械室と内箱との間、 或いは冷凍室の周囲に前記 真空断熱材を用いると、 特に断熱効率に優れ、 低電力量で冷蔵庫 を運転できる効果がある。 なお、 樹脂発泡体としては、 例えば 硬質ウレタンフォーム、 フエノールフォームやスチレンフォーム などを使用することができるが、 特に指定するものではない。
また、 冷凍機器及び冷温機器に使用する冷媒は、 フロン 1 3 4 a、 イソブタン、 n —ブタン、 プ口パン 、 ァンモニァ、 二酸化炭 素等、 特に指定するものではない
本発明の冷凍機器及び冷温機 33.
¾ff は、 動作温度帯である一 3 0 。c から常温で断熱を必要とする機 の例として示したものであり、 例えば保冷車や電子冷却を利用した冷蔵庫等にも使用できる
また、 自動販売機などの、 より ^向t、 i)n日n.までの範囲で温冷熱を利用 した冷温機器も含まれる。
さらに、 ガス機器或いはク一ラーポックス等、 動力を必要とし ない機器も含まれる
その他、 パソコン、 ジャーポッ 卜、 炊飯器等にも使用すること も可能である。
以下、 本発明の実施の形態について図面を参照しながら説明す る。 なお、 図面は模式図であり 、 各位置を寸法的に正しく示し たものではない。
なお、 本発明における常温とは 1 5 3 0 °Cの範囲の温度をい つ 。 (実施の形態 1 )
図 1 を用いて、 実施の形態 1 を説明する。
図 1 に示すように、 真空断熱材 1 は芯材 2 を外被材 3中に揷入 し、 内部を減圧して密封したものである。 芯材 2は、 平均繊維 径 5 mのグラスウール 4を所定形状になるまで積層して成形し たものと、 無機化合物 5 とから構成されている。
こ こで、無機化合物 5 として、塩化ナトリウム、塩化力リウム、 臭化ナトリウム、 硫酸ナトリウム、 カリウムミ ヨウバン、 及び硫 酸アルミニウムそれぞれについて検討した結果を、 表 1 に示す。
表 1
Figure imgf000011_0001
各水溶液の P Hは以下のように測定した。 1 0 0重量部のグ ラスウール 4に対し、 3重量部の無機化合物を 3 0 0重量部の水 に溶解する。 そして、 この 3 0 3重量部の無機化合物水溶液の p Hを測定する。
この水溶液を噴霧装置にてグラスウール 4の成形体の両表面に 噴霧し、 その後 4 0 0 °Cの熱風循環炉の中で 2 0分間プレスし、 厚さが 1 5 m m、 密度が 2 0 0 k g Z m sの芯材 2 を得る。
芯材 2の強度は、 1 0 %ひずみ時の圧縮応力にて測定した。 いずれの無機化合物においても、 真空断熱材の作製において問 題は生じなかった。
外被材 3は、 2枚のラミネ一トフイルムを三方シールにて製袋 している。 2枚のラミネートフィルムの構成は次の通りである。 その 1枚は、 熱融着層として 5 0 m厚の直鎖状低密度ポリエ チレンフィルム (以下 L L D P Eと称す) と、 ガスバリァ層とし て厚み 1 5 mのエチレン一ポ U ビニルアルコール共重合体フィ ルム (以下 E V OHと称す) に膜厚 5 0 O Aのアルミ蒸着を形成 したフィルムと、 厚み 1 2 n mのポリエチレンテレフタレートフ ィルム (以下 P E Tと称す) に 5 0 O Aのアルミ蒸着を形成した フィルムとから構成されている そしてアルミ蒸着面同士貼り 合わせている。 さらに、 熱融着層の L L D P Eとガスバリア層 の E V OHを ドライラミネ一卜している。
また、 他の 1枚は、 熱融着層は厚み 5 0 mの L L D P E、 そ の上にガスバリア層として厚み 6 mのアルミ箔、 更に保護層と して厚み 1 2 z mのポリアミ フイルム、 最外層として厚み 1 2 mのポリアミ ドフィルムにより構成されている。
真空断熱材 1 の作製は、 芯材 2 を 1 4 0 °Cの乾燥炉で 1時間乾 燥した後、 外被材 3中に挿入し 、 内部を 3 P aまで減圧し封止し ておこなう。 以上のようにして作製した真空断熱材 1 の熱伝導 率を、平均温度 2 4 にて測定すると 0. 0 0 2 2 W/mK:〜 0. 0 0 2 3 WZmKの範囲内であった。 つまり、 いずれの無機化 合物においても良好な熱伝導率を有していることがわかる。
更に、 真空断熱材作製後、 使用した芯材から水溶成分の分析を 行った。 分析方法の一例を以下に示す。 まず、 芯材 2の任意の一部を採取して、 細かくちぎり試料とし る。 試料 5 gに、純水 2 0 0 m l を加え、軽く振り混ぜたのち、 1 5分間の超音波浴にてバインダを溶出させ、 その溶出液をろ過 する。 そのろ液を加熱乾燥して水分を蒸発させ、 芯材 2 に用い た水溶性固形成分を得た。 次に、 この得られた物質の元素分析を 例えば X M A法で行い、 それぞれ水溶液として噴霧した成分と同 一であることを確認した。
以上のような方法を用いて水溶性の無機化合物を確認した。
さ らに、 この方法は真空断熱材作製前の芯材、 および作製後に 真空断熱材を解体して取り出した芯材のどちらにでも適用できる。
更に、 上記の分析方法は一例であり、 無機化合物がわかる方法 であれば、 特に分析方法を指定するものではない。
また、 このようにして得た塩化ナトリウム 1 gを再び水 1 0 0 gに溶解させて p Hを測定したところ、 6 . 5 1であった。
このように、 用いた無機化合物水溶液の p Hも、 真空断熱材作 製後に解体して取り出した芯材からでも確認できる。
(比較例)
実施の形態 1 において、無機化合物 5 として水酸化ナト リウム、 炭酸カルシウムを用いる場合と、 無機化合物なしの水だけの場合 とにおいて水溶性成分を確認した。 その他の形態は実施の形態 1 と同様であり、 測定も実施の形態 1 と同様に行った。 それぞれの 結果を表 2 に示す。
- ここで、 水酸化ナトリウム水溶液の p Hは 1 3 . 4 7であり、 炭酸カルシウムは水溶性でなく ほとんど水に溶けなかった。
水酸化ナト リウムについては、 水溶液の p Hが増大したことに より侵食された繊維同士が面接触のように結合している。
その結果、 実施の形態 1 と比較して固体熱伝導率が増大し、 熱 伝導率が悪化した。
炭酸カルシウムと水のみについては強度が弱く、 芯材を外被材 中に挿入するときに芯材が少し変形したり ぐずれたりする。
さ らに、 真空断熱材としても表面に凹部が目立つものとなった。 表 2
Figure imgf000014_0001
(実施の形態 2 )
図 2 を用いて、 実施の形態 2 を説明する。
冷蔵庫 6は、 断熱箱体 7の壁の内部に、 実施の形態 1 と同様の 構成を有する真空断熱材 1 を備えている。
断熱箱体 7は、 鉄板をプレス成形した外箱 8 と A B S樹脂を真 空成形した内箱 9 とからフランジを介して構成されている。
断熱箱体 7の壁の内部にあらかじめ真空断熱材 1 を配設し、 そ して真空断熱材 1以外の空間部を、 硬質ウレタンフォーム 1 0 に て発泡充填している。 硬質ウレタンフォーム 1 0の発泡剤とし て、 シクロペンタンを使用している。 断熱箱体 7は、 仕切板 1 2 にて区切られており、 上部が冷蔵室
1 3、 下部が冷凍室 1 4 となつている。
仕切板 1 2 にはダンパ 1 5が取り付けられている。
冷蔵庫内には蒸発器 1 6が配置され、圧縮機 1 7、凝縮器 1 8、 キャピラリ一チューブ 1 9 とを順次環状に接続し、 冷凍サイクル を形成する。 冷凍サイクル内には冷媒であるィソブ夕ンが封入 されている。 なお、 蒸発器 1 6 を、 冷蔵室 1 3及び冷凍室 1 4 の 2力所に設け、 それらを直列にまた並列に繋ぎ冷凍サイクルを 形成してもよい。
また、 冷蔵庫 6 にはドア体 1 1が取り付けられている。
さらに 、 ドア体 1 1 の内部に真空断熱材 1が配設され、 真空断 熱材以外の空間部には硬質ゥレタンフォーム 1 0が発泡充填され ている。
このように構成された冷蔵庫の消費電力量を測定したところ、 真空断熱材を装着しない冷蔵庫より も 2 5 %低下しており、 断熱 効果が確 こ ノし
以上のように、 本発明は、 芯材と、 前記芯材を覆い内部を減圧 した外被材とからなり、 前記芯材が無機繊維を含む成形体で、 前 記成形体が少なく とも水溶性無機化合物を含む化合物を用いて成 形されており、 前記水溶性無機化合物が金属元素を含みかつ常温 で固体であることを特徴とする真空断熱材である。
金属元素を含みかつ常温で固体である水溶性無機化合物を用い ることにより、繊維からの溶出成分による繊維同士の結着に加え、 繊維表面に固体が析出し繊維同士を結着することにより、 芯材強 度が大幅に向上する。 産業上の利用可能性
本発明は、 芯材強度が大幅に向上した真空断熱材を提供できる ので、 冷蔵庫、 保温保冷容器、 自動販売機、 電気湯沸かし器、 車 両、 及び住宅等の真空断熱材を適用する機器, 設備, 建築物等の 技術分野において幅広く活用できる。

Claims

請求の範囲
1 . 芯材と、 前記芯材を覆い内部を減圧した外被材とからな り、 前記芯材が無機繊維を含む成形体で、 前記成形体が少なく と も水溶性無機化合物を用いて成形され、 前記水溶性無機化合物が 金属元素を含みかつ常温で固体であることを特徴とする真空断熱 材。
2 . 前記水溶性無機化合物の溶解度が、 水 1 0 0 gに対し 1 g以上であることを特徴とする請求項 1記載の真空断熱材。
3 . 前記水溶性無機化合物の p Hが、 水 1 0 0 gに対し前記 水溶性無機化合物を 1 g溶解させたときに、 2以上 1 0以下であ ることを特徴とする請求項 1 または請求項 2 に記載の真空断熱材。
4 . 前記水溶性無機化合物に含まれる金属元素は、リチウム、 ナトリウム、 カリウムからなるアルカリ金属の群のうちから選ば れる少なく とも一つであることを特徴とする請求項 1 の真空断熱 材。
5 . 前記水溶性無機化合物が、 塩化ナトリウム、 塩化力リウ ム、 ミ ヨウバンからなる群のうちから選ばれる少なく とも一つで あることを特徴とする請求項 4の真空断熱材。
6 . 外箱と、 内箱とを備え、 前記外箱と前記内箱とによって形 成される空間に真空断熱材を配設し、 前記真空断熱材以外の前記 空間に発泡断熱材を充填してなる冷凍機器及び冷温機器であって、 前記真空断熱材は芯材と、 前記芯材を覆い内部を減圧した外被材 とからなり、 前記芯材が無機繊維を含む成形体で、 前記成形体が 少なく とも水溶性無機化合物を用いて、 前記水溶性無機化合物が 金属元素を含みかつ常温で固体であることを特徴とする冷凍機器 及び冷温機器。
7 . 前記水溶性無機化合物が、 塩化ナト リウム、 塩化力リウ ム、 ミ ヨウバンからなる群のうちから選ばれる少なく とも一つで あることを特徴とする請求項 6記載の冷凍機器及び冷温機器。
PCT/JP2004/011413 2003-10-23 2004-08-03 真空断熱材と、それを用いた冷凍機器及び冷温機器 WO2005040664A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001930T DE112004001930T5 (de) 2003-10-23 2004-08-03 Vakuum-Wärme-Isolator sowie Gefriervorrichtung und Kühlvorrichtung, in denen der Isolator verwendet wird

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003363095A JP2005127409A (ja) 2003-10-23 2003-10-23 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
JP2003-363095 2003-10-23

Publications (1)

Publication Number Publication Date
WO2005040664A1 true WO2005040664A1 (ja) 2005-05-06

Family

ID=34510023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011413 WO2005040664A1 (ja) 2003-10-23 2004-08-03 真空断熱材と、それを用いた冷凍機器及び冷温機器

Country Status (5)

Country Link
JP (1) JP2005127409A (ja)
CN (2) CN2731243Y (ja)
DE (1) DE112004001930T5 (ja)
TW (1) TW200519312A (ja)
WO (1) WO2005040664A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127409A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
US9855725B2 (en) 2005-05-23 2018-01-02 Panasonic Corporation Vacuum heat insulator and testing method for the glass fiber laminate to be used in the insulator
JP4580843B2 (ja) * 2005-08-24 2010-11-17 日立アプライアンス株式会社 真空断熱材及びそれを用いた冷蔵庫
DE102005045726A1 (de) * 2005-09-23 2007-04-05 Va-Q-Tec Ag Verfahren zur Herstellung eines folienumhüllten Vakuumdämmkörpers
DE102008022380A1 (de) * 2008-05-06 2009-11-19 Va-Q-Tec Ag Staubfiltermaterial für Vakuumdämmplatten
DE102009002800A1 (de) * 2009-05-04 2010-11-18 BSH Bosch und Siemens Hausgeräte GmbH Haushaltskältegerät und wärmeisolierende Wandung eines Haushaltskältegerätes
EP2982897B1 (en) * 2013-04-05 2019-09-25 Mitsubishi Electric Corporation Vacuum heat-insulating material, thermal insulation tank provided with same, thermal insulator, and heat pump hot water heater
CN106536383B (zh) * 2014-08-21 2019-09-27 松下知识产权经营株式会社 隔热容器
CN106247087A (zh) * 2016-08-30 2016-12-21 苏州维艾普新材料股份有限公司 一种真空绝热板
CN106122686A (zh) * 2016-08-31 2016-11-16 苏州维艾普新材料股份有限公司 一种真空绝热材料及芯材
CN106884356A (zh) * 2017-02-15 2017-06-23 合肥华凌股份有限公司 芯材制造方法、芯材和真空绝热板
JP6910975B2 (ja) * 2018-02-08 2021-07-28 日立グローバルライフソリューションズ株式会社 冷蔵庫
DE102019201460A1 (de) * 2019-02-05 2020-08-06 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung von Glasfasern, die bei der Herstellung einer Stützstruktur für Vakuum-Isolationspaneele eingesetzt werden sowie damit hergestellte Glasfasern
CN112208160A (zh) * 2019-10-23 2021-01-12 四川迈科隆真空新材料有限公司 一种编织体骨架结构的真空绝热板
CN111503432B (zh) * 2020-04-24 2021-12-21 四川迈科隆真空新材料有限公司 一种真空绝热板的制造方法
CN111503433B (zh) * 2020-04-24 2021-12-21 四川迈科隆真空新材料有限公司 一种异型真空绝热板的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167799A (ja) * 1996-12-05 1998-06-23 Mitsubishi Chem Corp ケイ酸カルシウム成形体およびそれを用いた真空断熱材
JP2003042652A (ja) * 2001-07-26 2003-02-13 Matsushita Refrig Co Ltd 断熱箱体およびこの断熱箱体を備えた冷蔵庫

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167376A (ja) * 1993-12-17 1995-07-04 Nippon Muki Co Ltd 真空断熱材およびその製造方法
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3482399B2 (ja) * 2001-04-16 2003-12-22 松下冷機株式会社 真空断熱材、および、真空断熱材の製造方法、ノート型コンピュータ、冷凍機器、電気湯沸かし器、オーブンレンジ
JP3478792B2 (ja) * 2000-09-14 2003-12-15 松下冷機株式会社 冷蔵庫
JP3548151B2 (ja) * 2001-11-14 2004-07-28 日本グラスファイバー工業株式会社 真空断熱材及びその製造方法
DE60229169D1 (de) * 2002-03-13 2008-11-13 Matsushita Electric Ind Co Ltd Kühlvorrichtung
JP2005127409A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167799A (ja) * 1996-12-05 1998-06-23 Mitsubishi Chem Corp ケイ酸カルシウム成形体およびそれを用いた真空断熱材
JP2003042652A (ja) * 2001-07-26 2003-02-13 Matsushita Refrig Co Ltd 断熱箱体およびこの断熱箱体を備えた冷蔵庫

Also Published As

Publication number Publication date
JP2005127409A (ja) 2005-05-19
DE112004001930T5 (de) 2013-10-10
CN100383453C (zh) 2008-04-23
TW200519312A (en) 2005-06-16
CN1609497A (zh) 2005-04-27
CN2731243Y (zh) 2005-10-05

Similar Documents

Publication Publication Date Title
EP1510747B1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
WO2005040664A1 (ja) 真空断熱材と、それを用いた冷凍機器及び冷温機器
WO2017098694A1 (ja) 真空断熱体、それを備える断熱機器、及び真空断熱体の製造方法
EP3037261B1 (en) Insulating member and its attaching method
JP2001336691A (ja) 真空断熱材、及び真空断熱材を用いた冷蔵庫
KR20040094790A (ko) 냉장고
JP3456988B1 (ja) 真空断熱材及びその製造方法、並びに真空断熱材を用いた断熱箱体
KR20030007544A (ko) 단열 상자 및 이것에 이용하는 진공 단열재
AU2006207179A1 (en) Evacuated thermal insulation panel
JP2010008011A (ja) 真空断熱箱体
TW536614B (en) Refrigerator
JP2007238141A (ja) 真空容器
JP2004052774A (ja) 真空断熱材、およびそれを用いた冷凍機器、冷温機器、ならびに真空断熱材芯材とその製造方法
JP2010096291A (ja) 真空断熱箱体
JP3563729B2 (ja) 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
JP2004003534A (ja) 真空断熱材及び真空断熱材を使用した冷蔵庫
JP2009287791A (ja) 真空断熱箱体
JP2008208844A (ja) 真空断熱箱体
JP2001165389A (ja) 断熱箱体
JPH10253245A (ja) 断熱箱体
JP2004251304A (ja) 真空断熱材の製造方法並びに真空断熱材、および、真空断熱材を用いた断熱箱体および保温保冷機器
JP2004251303A (ja) 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
JP2009018826A (ja) 真空断熱箱体
JP3488229B2 (ja) 断熱箱体および冷蔵庫
JP3527727B2 (ja) 真空断熱材及びその真空断熱材を用いた機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120040019303

Country of ref document: DE

122 Ep: pct application non-entry in european phase