WO2005036443A1 - 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ - Google Patents

疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ Download PDF

Info

Publication number
WO2005036443A1
WO2005036443A1 PCT/JP2004/015292 JP2004015292W WO2005036443A1 WO 2005036443 A1 WO2005036443 A1 WO 2005036443A1 JP 2004015292 W JP2004015292 W JP 2004015292W WO 2005036443 A1 WO2005036443 A1 WO 2005036443A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymorphism
disease
gene
polymorphisms
risk
Prior art date
Application number
PCT/JP2004/015292
Other languages
English (en)
French (fr)
Inventor
Yoshimitsu Yamasaki
Original Assignee
Signpost Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signpost Corporation filed Critical Signpost Corporation
Priority to EP04792509A priority Critical patent/EP1684202A4/en
Priority to JP2005514661A priority patent/JP5235274B2/ja
Publication of WO2005036443A1 publication Critical patent/WO2005036443A1/ja

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/40Population genetics; Linkage disequilibrium
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Definitions

  • Method for determining genetic polymorphism for determining disease risk Method for determining disease risk, method for determining disease risk, and array for determination
  • the present invention relates to a method for determining a genetic polymorphism for determining disease risk.
  • the present invention relates to a method for determining a disease risk for each subject using a genetic polymorphism determined by a powerful method. More specifically, the present invention relates to a disease risk determination method that can be used for prevention, treatment, and diagnosis of various diseases, a disease risk determination device and a disease risk determination program that can be used to execute the method.
  • the present invention provides a disease risk judging array, a disease risk judging method, a gene marker, which can be used for judging a disease risk of an arteriosclerotic disease caused by diabetes as the above-mentioned disease. And an analysis kit.
  • the disease of the subject can be determined. If the so-called “disease risk”, such as ease of becoming and progressing, can be determined, advance measures to prevent the onset of the disease or to suppress the progress can be made. In other words, the test subject determined to have a high risk of the disease can focus on preventing daily illness at an early stage. It is also possible to predict the likelihood of disease onset, the degree of progression after onset, and the like, which enables more detailed diagnosis and treatment depending on the subject.
  • the applicant has proposed a method for determining atherosclerotic disease by combining a plurality of gene polymorphisms having a significant positive association with carotid intima-media complex thickness.
  • An international application (PCT / IB03 / 01368) was filed on April 14, 2003.
  • the literature (Non-patent Literature 2-6) listed in the international search of that international application mentions a gene polymorphism that has a significant positive association with carotid intima-media complex hypertrophy If a genetic polymorphism having a ⁇ negative association '' opposite to the ⁇ positive association '' is used in the determination of disease risk, the idea of the disease is completely described. ,.
  • Non-Patent Document 1 Yamada Y, Izawa H, Ichihara b, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.N.Engl.J .Med. 2002; 347 (24): 1916-23
  • Non-Patent Document 2 Rauramaa R, et al., Arterioscler Thromb Vase Biol. 2000 Dec, vol.20, no.12, p.2657-2662
  • Non-Patent Document 3 Chapman CM, et al "Arteriosclerosis. 2001 Nov, vol.159, no.l, p.209-217
  • Non-Patent Document 4 McQuillan BM, et al., Circulation. 1999 May 11, vol.99, no.18, p.2383-2388
  • Non-patent document 5 Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759
  • Non-patent document 6 Castellano M, et al, Circulation. 1995 Jun 1, vol.91 , no.11, p.2721-2724)
  • an object of the present invention is to provide a method of determining a genetic polymorphism for judging disease risk peculiar to various diseases.
  • the present invention provides a disease risk determination method and a disease risk determination device which can determine the likelihood of onset and progress of various diseases and can be used for the prevention and treatment of diseases. And to provide an arteriosclerotic disease risk determination program and the like.
  • the present invention relates to an arteriosclerotic disease which develops due to diabetes among diseases, specifically, a disease risk determination array, a disease risk determination method, a gene marker, and a disease-specific gene polymorphism.
  • An object of the present invention is to provide an analysis kit for detecting a gene polymorphism set.
  • the present inventors quantitatively analyzed the relationship between genetic polymorphisms and carotid intima-media complex fertility, which is an index for determining atherosclerotic disease, in diabetic patients.
  • gene polymorphisms that had a negative association (resistance) with the carotid intima-media intimal complex thickening, and a combination of two or more of these polymorphisms (gene polymorphism set).
  • subjects could explain the difficulty of atherosclerotic disease (hardness to develop).
  • a gene polymorphism or a set of polymorphisms having a positive association (sensitivity) with the carotid artery intima-media complex thickness and a gene polymorphism having the negative association (resistance) When examining the association with arteriosclerotic diseases by combining sets, it is better to determine the strength of atherosclerotic diseases than to determine the strength of only a polymorphism or a set of polymorphisms having a positive association (sensitivity). It has been found that the degree of risk can be determined with higher accuracy.
  • the present invention is based on the above findings of the present inventors, and the means for solving the above problems are as follows.
  • the second step of calculating uses a set of factors corresponding to disease indices and polymorphisms having genotypes, the relevance of the polymorphism set to the disease index and the statistical significance of the relevancy are determined.
  • the second step of calculating uses a set of factors corresponding to disease indices and polymorphisms having genotypes, the relevance of the polymorphism set to the disease index and the statistical significance of the relevancy are determined.
  • a method for determining the risk of disease having:
  • a recording unit that records a reference table in which a positive association or a negative association between the gene polymorphism set and a disease index is recorded
  • the processing unit relates to the test sample according to the positive association or the negative association of the first genetic polymorphism set.
  • An apparatus for determining a disease risk which calculates a bias.
  • a function of receiving an input of a genetic polymorphism having the genotype of the test sample
  • a first polymorphism set composed of one or more genotypes having a genotype, and a reference in which a positive association or a negative association between the polymorphism set and a disease index is associated; Function to record the table in the recording unit,
  • the bias for the test sample is calculated according to the positive association or the negative association of the first set of polymorphisms.
  • Disease risk determination program for realizing functions.
  • a function of receiving an input of a genetic polymorphism having the genotype of the test sample
  • a first set of polymorphisms comprising one or more genotypes having a genotype, and a reference associating a positive association or a negative association between the polymorphism set and a disease index. Function to record the reference table in the recording unit,
  • the bias for the test sample is calculated according to the positive association or the negative association of the first set of polymorphisms.
  • Computer-readable recording medium on which is recorded.
  • Group power of negative polymorphism set described in any of FIG. 11 to FIG. 9 Gene polymorphisms constituting at least one selected polymorphism set, or FIG. Group strength of negative polymorphism set described in any of the above.
  • Genetic markers for atherosclerotic disease resistance including polymorphisms constituting at least one selected polymorphism set, or any of Figures 56-58
  • the myocardial infarction resistance gene comprising at least one of the polymorphisms constituting the polymorphism set, wherein the group strength of the negative polymorphism set is selected.
  • the group strength of the negative polymorphism set described in any of FIGS. 38-43 is also selected.
  • a primer pair or a primer capable of specifically amplifying the genes constituting at least one polymorphism set A nucleic acid probe capable of specifically hybridizing to the gene,
  • a kit for analyzing a polymorphism in an atherosclerotic disease resistance gene comprising:
  • a primer pair or a primer pair capable of specifically amplifying a gene constituting at least one polymorphism set A myocardial infarction resistance gene polymorphism analysis kit, comprising a nucleic acid probe capable of specifically hybridizing to a gene.
  • FIG. 1-B A continuation of the above figure.
  • FIG. 2-A shows polymorphism sets negatively associated with arteriosclerosis
  • Odds —3 or less).
  • FIG. 3-A shows a set of polymorphisms that are negatively associated with atherosclerotic disease
  • Odds —4 or less).
  • FIG. 5-A shows polymorphism sets negatively associated with arteriosclerosis
  • Odds —6 or less).
  • FIG. 19-A shows a set of polymorphisms positively associated with arteriosclerosis
  • FIG. 20-A shows a set of polymorphisms positively associated with arteriosclerosis
  • FIG. 37-A lists gene polymorphisms associated with arteriosclerotic diseases.
  • FIG. 48-A shows a set of polymorphisms that are positively associated with arteriosclerosis
  • FIG. 49-A shows polymorphism sets positively associated with arteriosclerotic disease
  • FIG. 74 is a flowchart showing a method of determining a genetic polymorphism for determining disease risk according to an embodiment of the present invention.
  • FIG. 75 is a block diagram showing the entire system including the disease severity determining apparatus according to the embodiment of the present invention.
  • FIG. 76 is a flowchart showing a risk determination process performed by the disease severity determination device according to the embodiment of the present invention.
  • FIG. 77 is a drawing showing the results of Example 1.
  • the percentages of high-risk cases of arteriosclerotic disease or low-risk cases of atherosclerotic disease determined by the method of the present invention and those not matching the judgment from a clinical point of view! (Correct answer rate) "and” false positive rate (false answer rate) ".
  • Mouth is only sensitivity” explanation SSNP "
  • is resistance only” explanation SSNP "
  • reference sensitivity” explanation SSNP "and resistance.
  • Gene polymorphism refers to the diversity of genes in which two or more alleles are present at one locus within the same population. Specifically, it indicates a mutation in a gene that occurs at a certain frequency or higher in a certain population.
  • the gene mutation referred to here is not limited to the region transcribed as RNA, but includes any mutation in any DNA that can be identified on the human genome, including the promoter and regulatory regions such as Enhansa. is there. 99.9% of human genomic DNA is common among individuals, and the remaining 0.1% contributes to this diversity, as individual differences in susceptibility to specific diseases and responsiveness to drugs and environmental factors. obtain.
  • the presence of a genetic polymorphism does not necessarily mean a difference in phenotype.
  • SNP nucleotide polymorphism
  • SNP nucleotide polymorphism
  • genotype is a polymorphism homology having a base preceding a base in alphabetical order of bases (A, C, G, T) among the substituted bases.
  • “2” represents heterologous
  • “3” represents a polymorphic homozygote having a base that comes later in the alphabetical order of bases among the substituted bases.
  • the polymorphism is indicated as NCP-1 ( ⁇ -2518G)
  • the homozygous ⁇ is referred to as genotype 1
  • genotype 2 the heterozygous
  • genotype 3 represents a polymorphic homozygote having a base that comes later in the alphabetical order of bases among the substituted bases.
  • the term "gene polymorphism set" refers to a combination of a plurality of gene polymorphisms.
  • a plurality of genetic polymorphisms means two or more genetic polymorphisms having different loci.
  • the “genetic polymorphism” here takes into consideration the genotype (Genotype) and includes it. That is, in the present invention, “gene polymorphism” means a gene polymorphism having a specific genotype (Genotype).
  • the term “gene polymorphism set” particularly refers to a “gene polymorphism” showing a negative (resistance) or positive (susceptibility) relationship as a whole to a target disease.
  • Type combination " Say. Fig. 119 and Fig. 38-43 [Group of polymorphism sets negatively associated with atherosclerotic disease], Fig. 19-1 27 and Figure 48-51 (group of polymorphism sets positively associated with atherosclerotic disease), Figure 56-58 (group of polymorphism sets negatively associated with myocardial infarction) ) And FIG. 63-69 (group of polymorphism sets positively associated with myocardial infarction).
  • each row indicates a combination of polymorphisms (SNPs) that show a positive or negative association with the disease as a whole.
  • a single line may show a single gene polymorphism when two or three gene polymorphisms are indicated.
  • the gene polymorphism alone is a gene polymorphism that is positively associated with arteriosclerosis.
  • the single gene polymorphism is also described as a “gene polymorphism set” in order to avoid complicating the description.
  • each row of the figure describes a set of polymorphisms that show a negative association with an index of atherosclerotic disease.
  • CF12 FactorXII gene
  • BKR1 bodykinin B2 receptor gene
  • IL 182 Interleukin- A gene polymorphism set consisting of 18 genes
  • /? (n-182) can also be used as a set of polymorphisms.
  • “Arteriosclerotic disease” broadly includes ischemic disease and includes angina, myocardial infarction, cerebral infarction, and peripheral arterial occlusion.
  • the arteriosclerotic disease targeted by the present invention is an arteriosclerotic disease that develops particularly due to diabetes mellitus.
  • the “risk of arteriosclerotic disease” is an index indicating the ease of onset and progress of the above-mentioned arteriosclerotic disease.
  • ⁇ myocardial infarction '' is a type of atherosclerotic disease
  • ⁇ risk of myocardial infarction '' refers to myocardial infarction among arteriosclerotic diseases, indicating the likelihood of onset and progression Use indicators.
  • the method for determining a genetic polymorphism for determining disease risk is useful for determining how easily a subject is sick or how easily a disease progresses!
  • an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease having a relationship with a gene.
  • the judgment index corresponding to the disease e.g., carotid intima-media thickening for arteriosclerotic disease, urinary albumin excretion rate for nephropathy, electrocardiogram for myocardial infarction
  • the presence or absence of myocardial infarction waveform or the presence or absence of myocardial infarction may be used to evaluate the correlation described below (for example, Japanese Diabetes Association Diabetes Treatment Guide 2004-2005, Bunmitsu See temple).
  • a method for determining a genetic polymorphism for determining risk of atherosclerotic disease according to the present invention will be described with reference to the flowchart shown in FIG. Note that the processing here is described as being performed using a computer including a CPU, a memory, a recording device (for example, a hard disk), an operating device (for example, a keyboard and a mouse), and a display device (for example, a CRT display).
  • a computer including a CPU, a memory, a recording device (for example, a hard disk), an operating device (for example, a keyboard and a mouse), and a display device (for example, a CRT display).
  • the data to be processed is input to the operation unit and the like and recorded in the recording unit, and the CPU executes each process using the memory as a work area, and outputs the intermediate results and final results of the processes.
  • the result is recorded in a predetermined area of the recording unit as needed.
  • FIG. 37 lists 99 gene polymorphisms selected by experience from about 200 gene polymorphisms obtained from various documents (detailed description of FIG. 37 will be described later). It should be noted that the numbers in the respective drawings shown in this specification include all branch numbers unless the branch numbers are explicitly shown. Therefore, when it is described as FIG. 37, it means FIG. 37-A and FIG. 37-B.
  • the flowchart shown in FIG. 74 is performed using a predetermined number of gene polymorphisms selected by the above preliminary selection.
  • the recording unit includes the IMT, which is a component of the population, which is a judgment index of the disease of each individual, and the genotypes possessed by each individual (they have a genotype; the same applies hereinafter). Assume that they are associated and recorded as analyzed data.
  • the analyzed data is recorded in the form of ⁇ personal ID, IMT, multiple genetic polymorphisms ⁇ using, for example, a personal ID assigned to each person.
  • step S1 threshold values TH1 and TH2 used in the processing after step S2, the upper limit value kmax of the counter for the repetition processing are set, and 1 is set as the initial value in the counter k.
  • TH1 and TH2 are the threshold values for Odds (odds ratio) and Kai (chi-square value), respectively, described below.
  • TH1 is a value of 2 or more
  • TH2 is a threshold value for determining statistical significance, and is a value of 0 or more.
  • TH2 6.63.
  • the probability P that the target event occurs is P ⁇ 0.01.
  • the upper limit kmax is preferably 2-5, more preferably 2 or 3. Power that complicates analysis
  • Upper limit kmax is 6 or more, that is, 6 polymorphisms
  • the processing may be performed on the gene polymorphism set configured as described above.
  • step S4 calculate Odds (odds ratio) and Kai (chi-square value) for the set specified in step S2, and Odds ⁇ —TH1 and Kai ⁇ TH2 Only in the case, Odds and Kai are recorded corresponding to the set.
  • the Odds of the set are calculated using the IMT corresponding to the personal ID including all the genetic polymorphisms Gj constituting the set.
  • the calculation method of Odds (odds ratio) is described in the literature (Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorpnisms in candidate genes.
  • Odds are usually 0 or more.However, in the present specification, when Odds calculated by a known method is 1 or more, when the value is used as it is, it is less than 1 Calculate lZOdds from Odds calculated by a known method, and use this as Odds.
  • the cases where the genotypes of the genetic polymorphisms are 1 and 2 can be combined into one set, and both the case where the genotype of the genetic polymorphism is 1 and the case where 12 When Odds ⁇ TH1 and Kai ⁇ TH2, it is preferable to select according to predetermined criteria. For example, selection is made by adopting the larger Kai, the larger absolute value of Odds, or the larger third contribution ratio described later.
  • step S5 it is determined whether or not the processing of steps S2 and S4 has been completed with respect to all sets having k polymorphisms, and the processing of steps S2 to S4 is repeated until the processing is completed.
  • a set having a negative association (Odds is negative) with the disease index (here, IMT) is determined by the processing in steps S2 to S7.
  • the disease index here, IMT
  • steps S9-S14 the same processing as in steps S2-S7 is performed.
  • step S10 it is determined whether or not a gene polymorphism constituting a set determined to be significant in the processing of step S11 is included in the previous repetition processing. Also, in step S11, only when Odds ⁇ THl and Kai ⁇ TH2, Odds and Kai are recorded in association with the set.
  • the flowchart shown in FIG. 74 can be modified, for example, as described below, or can be added to the process.
  • both the disease index (here, IMT) and the positive / negative association are treated equally, but the processing may be performed with emphasis on either.
  • emphasizing negative relevance first determine the set with negative relevance, and then consider the result to determine the set with positive relevance.
  • a set having a positive relevance may be determined first, and a set having a negative relevance may be determined in consideration of the result.
  • the genes constituting the set determined to be significant in the processing of step S11 in the previous iteration processing are considered equally, but the processing may be performed with emphasis on either.
  • emphasizing negative relevance first determine the set with negative relevance, and then consider the result to determine the set with positive relevance.
  • a set having a positive relevance may be determined first, and a set having a negative relevance may be determined in consideration of the result.
  • step S4 determines whether or not the gene polymorphisms constituting the set judged to be significant in step S4 are included! Do it!
  • the Odds judgment formulas (Odds ⁇ —TH1 and Odds ⁇ TH1) in step S4 and step S11 are replaced, and in step S10, In the repetition processing before that, in addition to determining whether or not the power includes the gene polymorphisms constituting the set determined to be significant in the processing in step S11, it is determined to be significant in step S4 It is good to judge whether or not it contains the gene polymorphisms that make up the set.
  • genetic polymorphisms can be selected according to Odds.
  • An example of a method for selecting a more effective gene polymorphism set is as follows.
  • the subjects in the population were determined by a series of processes shown in FIG.
  • each gene polymorphism is arranged from the top in order of the magnitude of the second contribution rate (not shown).
  • the maximum value of the second contribution rates for each genotype of each genotype is defined as the third contribution rate of the gene polymorphism, and the genotype of the genotype showing the maximum contribution rate Is the effective genotype of the genetic polymorphism. For example, if the second contribution of ACE-DD (l) is 5,
  • the set of gene polymorphisms determined by the series of processes shown in FIG. 74 only the set containing the above-mentioned effective gene polymorphism is selected. For example, if the valid genotype of ACE is DD, the set containing the ACE genotype of DD + D / K1 + 2) is discarded.
  • the polymorphisms are arranged from the top in descending order of the third contribution rate.
  • the contribution rate indicates the relationship between each genetic polymorphism and IMT, that is, each genetic polymorphism and arterial polymorphism. It can be an index indicating a high degree of association with a sclerotic disease. Therefore, by selecting a gene polymorphism whose contribution rate is equal to or greater than a predetermined value, it is possible to determine a risk degree described later using a smaller number of gene polymorphisms. At this time, if the selection threshold is properly specified, the accuracy is hardly reduced.
  • individual genetic polymorphism information itself can be used as an ID.
  • the data to be analyzed is recorded in the form of a personal ID, a value of a disease index, a plurality of genetic polymorphisms ⁇ , and if the individual ID is assigned and managed by each hospital, the subject is If you change your personal ID, your personal ID will also change, and you will not be able to track individual histories, and you will not be able to use the analyzed data effectively.
  • genetic polymorphism information is immutable and unique to an individual, the use of genetic polymorphism information itself as an ID allows the analysis of past analyzed data, particularly the use of past disease indices, without the use of a personal ID.
  • Values (eg, IMT measurements for atherosclerotic disease) can be used.
  • analysis can be performed in consideration of the history of the individual, and a more effective gene polymorphism can be determined for determining the risk of disease.
  • the analyzed data is not limited to ⁇ individual ID, disease index value, plural gene polymorphisms ⁇ , and various clinical data may be added in addition to the disease index value.
  • the risk level can be evaluated by performing the same process as above using the presence or absence of an abnormal electrocardiogram (abnormal Q) myocardial infarction waveform as an index of disease as a disease indicator.
  • an abnormal electrocardiogram abnormal Q
  • Gene polymorphisms and a set of gene polymorphisms that are effective in the determination of the polymorphism can be determined.
  • the polymorphisms shown in Fig. 37 can be classified into the following groups.
  • the gene polymorphism group related to a certain factor is not limited to polymorphisms present in exons and introns of the gene related to the factor, and includes a promoter region, a 3 'untranslated region, and a 5' untranslated region. Polymorphisms existing in regions and the like are also included.
  • a polymorphism in the coding region may change the amino acid sequence or change the mRNA expression level, and even a polymorphism in the regulatory region may change the mRNA expression level or splice. May be changed, and in any case, the expression level and properties of the protein may be changed.
  • Gene polymorphisms belonging to the lipid-related gene polymorphism group include ABCA1, HUMPONA, PPAR gamma hep hepatic lipase (C-480T) ⁇ Apo E (Cysl l2Arg), PONl (Glyl92Arg), microsomal triglyceride transfer protein (G- 493T), CETP (Arg451Glu), lipoprotein lipase (Ser447STOP), PPARgamma (Leul62Val), ABCC6 (C3421T),
  • C766T adiponectin
  • Argl l2Cys adiponectin
  • Scavenger receptor BI CLA-l (G403A (Val 135Ile) and the like.
  • Gene polymorphisms belonging to the blood pressure-related gene polymorphism group include:
  • angiotensinogen t704c
  • HANP T2238C
  • HANP C708T
  • C-58T C-58T
  • G5665T endothelin-l
  • Gene polymorphisms belonging to the metabolism-related gene polymorphism group include:
  • CYP2J2 * 3 C14532T
  • CYP2J2 * 4 15028T
  • CYP2J2-6 A25661T
  • CYP2C9 * 3 Leu359Ile
  • CYP3A4 A-290G
  • the gene polymorphisms belonging to the insulin resistance-related gene polymorphism group include:
  • PGC-I G1302A (Thr394Thr)
  • PGC-I G1564A (Gly482Ser)
  • P-selectin A76666C (Thr715Pro)
  • fractalkine # receptor G84635A (Val249Ile)
  • connexin37 C1019T (Pro319Ser)
  • E-selectin G98T
  • E-selectin Ser 128Arg
  • ICAM1 E469K
  • GlycoproteinVI Ser219Pro
  • glycoproteinIa C807T
  • Gene polymorphisms belonging to the oxidative stress-related gene polymorphism group include:
  • IL-6 As polymorphisms belonging to the inflammatory response-related gene polymorphism group, IL-6 (G-174C), CRP (G1059C), TNFalfa (G-238A), interleukin6 (C-634G), MPO ( G-463A),
  • TNF-alfa G-308A
  • CD18 C1323T
  • LTA A252G
  • LTA C804A (Thr26Asn)
  • C-C chemokine receptor 2 G190A
  • Interleukin 10 G-1082 A
  • interleukin 1 beta C3953T
  • IL-18 C-607A
  • IL-10 C-819T
  • IL-18 G-137C
  • interleukin 1 receptor antagonist S tandem repeat (2 repeat) in intron 2.
  • Gene polymorphisms belonging to the coagulation / fibrinolysis system-related gene polymorphism group include:
  • Fib C148T
  • prothrombin G20210
  • alfa-F3 ⁇ 4 Thr312Ala
  • FactorV G1691A
  • GP Ia G873A
  • Thrombospondin4 G1186C (Ala387Pro)
  • Thrombospondin-1 A2210G
  • von Willebrand Factor G-1051A
  • Thrombopoietin A5713G
  • the gene polymorphism belonging to the obesity-related gene polymorphism group includes beta3
  • adrenoceptor Trp64Arg
  • beta2 Adrenoreceptor beta-adrenergic receptor with C791 (A46G)
  • beta2 adrenoceptor C491T
  • Gene polymorphisms belonging to the cell polymorphism or vascular growth-related gene polymorphism group include:
  • VEGF C-634G
  • C-588T Glutamate-cystein ligase
  • MCP-1 A-2518G
  • HPA-2 Thrl45Met
  • MMP7 C-153T
  • matrilyn promoter A-181G
  • AMPD C34T
  • Methionine synthase A2756G (Asp919gly)
  • matrix Gla protein G-7A
  • the present invention provides an array for determining a disease risk, which is used to determine whether a subject is susceptible to a disease or progression (disease risk) based on a genetic polymorphism possessed by the subject.
  • the array according to the present invention is obtained by arranging probes for detecting a large gene polymorphism at a high density and immobilizing them on a support such as a silicon wafer or a glass slide.
  • any probe may be used as long as it specifically recognizes and captures a specific gene polymorphism.
  • a probe having a nucleotide sequence consisting of all or a part of the nucleotide sequence corresponding to the gene polymorphism or its complementary sequence can be mentioned.
  • the present invention particularly provides an array for determining the risk of arteriosclerotic disease and an array for determining the risk of myocardial infarction.
  • the arteriosclerotic disease risk assessment array of the present invention can be used to determine the ease of onset (easiness of onset) and the ease of progression of arteriosclerotic disease. Preferably, it can be used to determine the risk of atherosclerotic disease for a subject having or having diabetes.
  • the arteriosclerotic disease risk assessment array of the present invention has a significant negative (resistance) difference between “carotid intima-media thickness (IMT)” which is an index for determining atherosclerotic disease. It has a feature that it has a probe for detecting a gene polymorphism that constitutes a “negative (resistance) gene polymorphism set” that is related.
  • Whether the polymorphism set has a “negative association” with IMT or not can also be determined by the odds ratio (Odds) power obtained by the method (1) above. In other words, if the value of Odds is negative (minus), it is determined that there is “negative association”, and if the value of Odds is positive (plus), it is determined that there is “positive association”. can do. The significance of this positive or negative association can be evaluated by Kai value.
  • FIG. 1 is composed of “FIG. 1-A” followed by “FIG. 1-B” and two figures indicated by branch numbers. However, simply “FIG. 1” refers to both “FIG. 9A” and “FIG.
  • gene polymorphism refers to a gene that includes a genotype, that is, a polymorphism having a specific genotype.
  • genotype is referred to as “gene abbreviation” and the genotype is referred to as “Genotype.” Detailed information on each gene polymorphism is as shown in FIG.
  • the array for determining risk of atherosclerotic disease of the present invention comprises a group of negative polymorphism sets described in any one of Figs. It has a probe for detecting a polymorphism constituting a type set.
  • Fig. 11-9 Preferably, it is any of FIGS. 5-9, more preferably any of FIGS. 6-9, even more preferably any of FIGS. 7-9, and even more preferably any of FIGS. 8-9.
  • the selection of the gene polymorphism set can be arbitrarily performed without any particular limitation.In this case, the Odds value and Kai value described in each figure in each gene polymorphism set are used as indices. Can be.
  • the array for determining risk of atherosclerotic disease of the present invention also evaluates the strength of Odds value and Kai value, and has a high negative (resistance) relationship to IMT, indicating that the gene polymorphisms constituting the gene polymorphism set are high. It is preferable to provide a detection probe for the mold.
  • the array for determining risk of atherosclerotic disease of the present invention uses the gene polymorphism group shown in FIG. 10, the gene polymorphism group shown in FIG. 11, and the gene polymorphism shown in FIG. 12 as detection probes.
  • FIGS. 10-18 are classified into gene polymorphisms constituting a gene polymorphism set having a negative (resistance) association with IMT for each Odds based on FIGS.
  • FIG. 10 shows the polymorphisms constituting the negative polymorphism set, in which Odds is ⁇ 2 or less (that is, the Odds ratio is “1/2” or less) based on FIG. 1,
  • FIG. 11 is based on FIG. 2 and Odds is -3 or less (that is, Odds is "1/3" or less)
  • FIG. 12 is based on FIG. 3 and Odds is -4 or less (that is, Odds is "1 / 4 "or less)
  • FIG. 13 shows Odds of -5 or less based on Fig. 4 (that is, Odds of" 1/5 "or less)
  • Fig. 14 shows Odds of -6 or less based on Fig. 5 (that is, Odds is "1/6" or less)
  • FIG. 15 is based on FIG. 6, and Odds is -7 or less (that is, Odds is "1/7” or less).
  • FIG. 16 is Odds is -8 or less based on FIG. That is, Odds is “1/8” or less)
  • FIG. 17 is based on FIG. 8, and Odds is ⁇ 9 or less (ie, Odds is “1/9” or less)
  • FIG. 10 is based on FIG. Odds less than -10 (ie, Odds less than "1/10") Those mentioned polymorphisms constituting the child polymorphism set.
  • the column is not limited, Order of It is preferable that the higher-ranking power is also selected with priority.
  • the array for determining risk of atherosclerotic disease of the present invention further comprises at least one gene from which the group strength of the negative polymorphism set described in any one of FIGS. 38 to 43 is also selected. It may also have a probe for detecting a gene polymorphism constituting a polymorphism set. It is preferable in FIGS. 38-43, that is, the deviation force in FIGS. 39-43, more preferably, any of FIGS. 40-43, further preferably, any of the forces in FIGS. 41-43, and even more preferably, in FIG. 43.
  • the evaluation array evaluates the Odds value and Kai value described for each gene polymorphism set in each figure and evaluates the polymorphisms that are highly negative (resistant) to IMT. It is preferable to provide a probe for detecting a gene polymorphism constituting a set!
  • the powerful arteriosclerosis disease risk determination array was used as a detection probe as a gene polymorphism group described in FIG. 44, a gene polymorphism group described in FIG. 45, and a gene polymorphism described in FIG. 46. Group, and half or more, preferably 60% or more, 70% or more, 80% or more, 90% or more, and more preferably all of the gene polymorphism groups selected from the gene polymorphism groups described in FIG. It is preferable to have a probe for detecting a gene polymorphism.
  • FIGS. 38-43 are diagrams in which the Odds are classified into polymorphisms that constitute a polymorphism set having a negative (resistance) association with IMT based on the above-mentioned FIGS. 38-43. is there. That is, FIG. 44 shows the gene polymorphisms constituting the negative polymorphism set based on FIG. 38, wherein V and Odds are ⁇ 2 or less (that is, Odds is “1/2” or less). Similarly, FIG. 45 shows that Odds is 3 or less based on FIG. 39 (that is, Odds is “1/3” or less), and FIG. 46 shows that Odds is -4 or less based on FIG. 40 (that is, Odds is “1”).
  • Fig. 47 shows the polymorphisms that constitute the negative polymorphism set with Odds of -5 or less (that is, Odds of" 1/5 "or less) based on Fig. 41. is there.
  • Odds of -5 or less that is, Odds of" 1/5 "or less
  • Figure 10-18 if you select more than half, more than 60%, more than 70%, more than 80%, or more than 90% of the polymorphisms shown in It is preferable that the higher-ranking power is also selected with priority according to the order of the programs.
  • the array for determining risk of atherosclerotic disease of the present invention comprises a probe for detecting a polymorphism constituting the negative (resistance) polymorphism set and a positive (sensitivity) gene polymorphism. Constructs a detection probe for a type or a set of positive (sensitive) polymorphisms It is preferable that the probe has a detection probe for the gene polymorphism.
  • the "positive (sensitive) polymorphism” is a significant positive association with "carotid intima-media complex thickness (IMT)", which is an index for determining atherosclerotic disease.
  • IMT carotid intima-media complex thickness
  • the “positive (sensitive) polymorphism set” means a “combination of genetic polymorphisms” having a significant positive (sensitive) relationship with IMT. Whether or not a gene polymorphism set has “positive association” with IMT can be determined from Odds obtained by the method described in the above (1). That is, when the value of Odds is positive (plus), it can be determined that there is “positive association”. It should be noted that whether or not this positive relevance is significant can be evaluated by Kai value.
  • Figs. 19-27 and Figs. 48-51 show a powerful "positive (sensitive) polymorphism set". More specifically, in each of FIGS. 19-27 and 48-51, the combination of genetic polymorphisms (SNPs) listed in each row (one horizontal row) indicates the positive (sensitivity) association with IMT. It means “positive (sensitive) polymorphism set”. In each figure, when a single polymorphism is indicated in one line, the polymorphism alone has a positive (sensitive) relationship with IMT. Genetic polymorphism ”(eg,“ GSY ”in FIG. 19).
  • the array for determining atherosclerotic disease of the present invention is used for detecting a gene polymorphism constituting a negative polymorphism set described in any one of FIGS. It has a probe for detecting a polymorphism constituting a positive polymorphism set described in any one of FIGS. 19 to 27 after being probed.
  • FIGS. 19 to 27 preferably, any of FIGS. 23 to 27, more preferably, any of the forces in FIGS. 24 to 27, further more preferably, any of FIGS. One of 26-27.
  • the kakar determination array is used as a probe for detecting a gene polymorphism constituting a positive gene polymorphism set, and as a detection probe, a gene polymorphism group described in FIG. 28 and described in FIG. 29.
  • Gene polymorphism group, gene polymorphism group described in FIG. 30, gene polymorphism group described in FIG. 31, gene polymorphism group described in FIG. 32, gene polymorphism group described in FIG. 33, and described in FIG. 34 Gene polymorphism group, gene polymorphism group described in FIG. 35, and gene polymorphism group power described in FIG. 36
  • Half or more of one selected gene polymorphism group preferably 60% or more, 70% or less It is preferable to have a detection probe for 80% or more, 90% or more, more preferably all gene polymorphisms.
  • FIGS. 28-36 are diagrams in which gene polymorphisms having a positive (sensitive) relationship with IMT are classified for each Odds based on FIGS. That is, FIG. 28 shows the polymorphisms constituting the positive polymorphism set in which Odds is 2 or more based on FIG. 19, and similarly, FIG. 29 shows that Odds is based on FIG.
  • Figure 30 is Odds force or more based on Figure 21
  • Figure 31 is Odds 5 or more based on Figure 22
  • Figure 32 is Odds 6 or more based on Figure 23
  • Figure 33 is Odds based on Figure 24 Is 7 or more
  • Figure 34 is Odds 8 or more based on Figure 25
  • Figure 35 is Odds 9 or more based on Figure 26
  • Figure 36 is Odds 10 or more based on Figure 27 It lists the gene polymorphisms that make up the set. If you select more than half, more than 60%, more than 70%, more than 80%, or more than 90% of the polymorphism groups shown in each of these Figures 28-36, It is preferable that the superior force is also intensively selected according to the order.
  • the array for determining arteriosclerotic disease of the present invention can be used in addition to the probe for detecting a polymorphism constituting a negative polymorphism set described in any one of Figs. 48-51, and may have a probe for detecting a polymorphism constituting the positive polymorphism set described in any one of FIGS. It should be noted that in FIGS. 48-51, the force is preferably any one of FIGS. 49-51, and more preferably any one of FIGS. 50-51.
  • the kakar determination array is described as a probe for detecting a gene polymorphism constituting a positive polymorphism set, as a detection probe, a gene polymorphism group shown in FIG. 52, and shown in FIG. 53.
  • Gene polymorphism group, gene polymorphism group described in FIG. 54, and gene polymorphism group power described in FIG. 55 Half or more of one selected gene polymorphism group, preferably 60% or more, 70% or more, It is preferable to have a probe for detection of 80% or more, 90% or more, more preferably all gene polymorphisms.
  • FIG. 52 to 55 are diagrams in which gene polymorphisms having a positive (sensitivity) association with IMT are classified for each Odds based on Figs. That is, FIG. 52 shows the polymorphisms constituting the positive polymorphism set in which Odds is 2 or more based on FIG. 48. Similarly, FIG. 53 shows a positive polymorphism in which Odds is 3 or more based on FIG. 49, FIG. 54 shows a positive genetic polymorphism in which Odds force is 5 or more based on FIG. 50, and FIG. And polymorphisms that constitute a positive polymorphism set. If you select more than half, more than 60%, more than 70%, more than 80%, or more than 90% of the polymorphism groups shown in each of these Figures 52-55, It is preferable that the higher ranks are also intensively selected according to the order of the columns.
  • the arteriosclerotic disease risk judging array of the present invention may have a detection probe for the 99 gene polymorphisms shown in FIG. 37 as a detection probe.
  • the arterial sclerosis disease risk evaluation array of the present invention can be used to evaluate the resistance (the difficulty of applying) to an arteriosclerotic disease for a subject.
  • a detection probe on an array is hybridized with a probe prepared from a test sample, and the gene polymorphism detected in the test subject is determined by a cervical index, which is a determination index of atherosclerotic disease. It can be performed by comparing with a set of polymorphisms that are negatively associated with the intima-media complex thickness (IMT). Information on whether or not the subject has a polymorphism set negatively associated with IMT is obtained as information on whether or not the subject is resistant to atherosclerotic disease Or not).
  • IMT intima-media complex thickness
  • the arterial sclerosis disease risk evaluation array of the present invention can be used to evaluate the resistance and susceptibility to atherosclerotic disease of a subject.
  • the detection probe on the array is hybridized with the probe prepared for the test sample, and the gene polymorphism detected in the subject is compared with IMT, which is a determination index of atherosclerotic disease, by a negative value. It can be carried out by comparing with a set of polymorphisms having an association and a polymorphism or a set of polymorphisms having a positive association with IMT. Information obtained at this time (if the subject has a genetic polymorphism Whether or not the subject has a polymorphism or a set of polymorphisms that are positively associated with IMT. And can be used to assess susceptibility.
  • the arteriosclerotic disease risk determination array of the present invention can be used to determine whether or not there is a risk of atherosclerotic disease for a subject, and whether the risk is high or low (existence and difficulty of progression, and the degree of progression).
  • the polymorphism set negatively associated with the IMT used for matching is the group of negative polymorphism sets described in any one of Figs.
  • the group power of the negative polymorphism set described in any one of FIGS. 38 to 43 is preferably at least one set to be selected.
  • the polymorphism or polymorphism set having a positive association with IMT used for matching is described as a negative polymorphism set above in Fig. 19!
  • the risk of arteriosclerosis can be determined, for example, as follows.
  • a polymorphism set detected in a test sample is defined as a polymorphism set having a negative association with IMT (for example, Fig. 19 or Fig. 38-43), and a gene having a positive association.
  • the total number of polymorphism sets having a positive association is Subjects (Casel) with more than the total number of mold sets are judged as high risk cases of atherosclerotic disease.
  • there is a polymorphism set with a positive association there is no polymorphism set with a negative association!
  • Subjects (Ca Se 2) also showed high risk of arteriosclerotic disease. Is determined. On the other hand, the total number of polymorphism sets with a negative association is less than the total number of polymorphism sets with a positive association! /, Subjects (Case 3) were judged to be low-risk cases of arteriosclerosis-positive disease Is done. In addition, a subject who has a negatively related polymorphism set but does not have a positively related polymorphism set (Case 4) is also determined to be a low-risk example of arteriosclerotic disease.
  • the bias of the positive association (sensitivity) and the negative association (resistance) of the gene polymorphism detected from the subject is determined, and when the positive association is significantly large, the The subject is judged to be at high risk (or onset) of atherosclerotic disease, and if the negative association is significantly high, the subject is judged to be at low risk (or non-onset) of atherosclerotic disease can do.
  • the array for determining risk of atherosclerotic disease of the present invention has a correct answer rate (probability that coincides with clinical findings) when compared with clinical findings (eg, IMT) in subjects. % Or more, preferably 65% or more, more preferably 70% or more, resulting in a false-answer rate (probability of not being consistent with clinical findings) of 45% or less, preferably 40% or less, more preferably 40% or less. Is preferably obtained.
  • Clinical findings in this case include, for example, a method in which a subject has a carotid intima-media thickness (IMT) of less than 1.1 mm as a non-atherosclerotic disease, and an IMT of 1.1 mm or more as an arteriosclerotic disease.
  • IMT carotid intima-media thickness
  • the increment of the average thickness of the intima-media complex of the carotid artery ( ⁇ ) in the multiple regression analysis is 0.2 mm or more
  • ⁇ PIMT increment of the maximum thickness of the body
  • the myocardial infarction risk assessment array of the present invention can be used to determine the ease of myocardial infarction (easiness of onset) and the ease of progression. Preferably, it can be used to determine the risk of myocardial infarction for diabetic patients or borderline diabetic patients.
  • the myocardial infarction risk assessment array of the present invention comprises genes constituting a “negative (resistance) gene polymorphism set” having a significant negative (resistance) relationship with the myocardial infarction determination index. It has the characteristic of having a probe for detecting a polymorphism.
  • the index for determining myocardial infarction is not particularly limited as long as it is commonly used in the art, but is preferably the presence or absence of an old myocardial infarction wavelength (abnormal Q) observed on an electrocardiogram.
  • a history of myocardial infarction for the subject can be used.
  • the “negative (resistance) gene polymorphism set” listed in each of FIGS. 56 to 58 can be exemplified. it can. More specifically, in each of Figs. 56-58, the combination of polymorphisms (SNPs) listed in each row (horizontal row) is one "negative (resistance) polymorphism set for myocardial infarction". Means
  • the myocardial infarction risk determination array of the present invention comprises a group of negative polymorphism sets described in any one of Figs. 56-58. It has a probe for detecting a gene polymorphism constituting a kit. Among the figures in Figure 56-58, it is one of Figure 57-58. In addition, in selecting a gene polymorphism set, the Odds value and the Kai value can be used as indices, which are described for each gene polymorphism set in each figure.
  • the myocardial infarction risk assessment array of the present invention also evaluates the strong Odds value and the Ka load, and the genes constituting a gene polymorphism set that is highly negative (resistant) to the myocardial infarction assessment index It is preferable to provide a probe for detecting a polymorphism.
  • the myocardial infarction risk assessment array of the present invention comprises, as detection probes, a gene polymorphism group consisting of the gene polymorphisms shown in FIG. 59 and a gene consisting of the gene polymorphisms shown in FIG. More than half of one polymorphism group selected from the polymorphism group, the gene polymorphism group described in FIG. 61, and the gene polymorphism group described in FIG. 62, preferably 60% or more, 70% or more, 80% As described above, it is preferable to have a probe for detection of 90% or more, more preferably all gene polymorphisms.
  • FIGS. 59-62 are classified into polymorphisms constituting a polymorphism set having a negative (resistance) association with IMT for each Odds based on FIGS. 56-68.
  • FIG. 59 lists the polymorphisms constituting the negative polymorphism set in which Odds indicates ⁇ 2 or less (that is, Odds is “1/2” or less) based on FIG. 56
  • FIG. 60 shows Odds of -3 or less (ie, Odds is “1/3” or less) based on FIG. 57
  • FIG. 61 shows Odds of -4 or less (ie, Odds of “1” based on FIG. 58). / 4 ")
  • Fig. 64 lists the polymorphisms that constitute the negative polymorphism set whose Odds are -5 or less (that is, Odds is" 1/5 "or less) based on Fig. 58. is there.
  • the myocardial infarction risk assessment array of the present invention includes a positive (sensitive) gene polymorphism in addition to the aforementioned detection probe for the polymorphisms constituting the negative (resistance) polymorphism set. It is preferable that the probe has a detection probe for a type or a detection probe for a gene polymorphism constituting a positive (sensitive) gene polymorphism set.
  • positive (sensitive) polymorphism refers to a polymorphism that has a significant positive association with a determination index of myocardial infarction.
  • the “positive (sensitive) polymorphism set” means a “combination of polymorphisms” having a significant positive (sensitivity) relationship with a judgment index of myocardial infarction.
  • Figs. 63 to 69 show a powerful "positive (sensitive) polymorphism set". More specifically, in each of Figs. 63-69, the combination of genetic polymorphisms (SNPs) listed in each row (one horizontal row) indicates the positive (sensitivity) relationship with the myocardial infarction index. Means “positive (sensitive) polymorphism set”.
  • the myocardial infarction risk determination array of the present invention may be any of the arrays shown in Figs.
  • a probe for detecting a polymorphism that constitutes the negative polymorphism set described in one figure a positive polymorphism or a polymorphism described in any one of FIGS. 63-69 It has a probe for detecting a gene polymorphism constituting a set. Note that among FIGS. 63 to 69, preferably, any of FIGS. 64 to 69, and more preferably, any of FIGS. 65 to 69.
  • the katakana determination array is described as a probe for detecting a gene polymorphism constituting a positive polymorphism set, as a detection probe, a gene polymorphism group described in FIG. 70, and described in FIG. 71.
  • Gene polymorphism group, gene polymorphism group described in FIG. 72, and gene polymorphism group power described in FIG. 73 Half or more of one gene polymorphism group selected, preferably 60% or more, 70% or more, It is preferable to have a probe for detection of 80% or more, 90% or more, more preferably all gene polymorphisms.
  • FIGS. 70-73 are diagrams in which gene polymorphisms having a positive (sensitivity) association with IMT are classified for each Odds based on FIGS. 63-69. That is, FIG. 70 shows the polymorphisms constituting the positive polymorphism set in which Odds is 2 or more based on FIG. 63, and similarly, FIG. FIG. 72 lists the gene polymorphisms constituting the positive polymorphism set whose Odds indicate 5 or more based on FIG. 66.
  • the myocardial infarction risk assessment array of the present invention has a detection probe for the 99 gene polymorphisms shown in FIG. 37 as a detection probe.
  • the myocardial infarction risk assessment array of the present invention evaluates myocardial infarction resistance (difficulty of suffering) for a subject, similarly to the aforementioned arteriosclerotic disease risk assessment array. Can be used to assess the resistance and susceptibility of a subject to myocardial infarction. Furthermore, the myocardial infarction risk assessment array of the present invention can be used to evaluate the presence or absence of a myocardial infarction risk and the level of the subject (whether or not it is easy to stiffen or progress slowly and to what extent). it can.
  • the polymorphism set having a negative association with the myocardial infarction determination index used for matching is the negative polymorphism set described in any one of Figs.
  • the group strength is also preferably at least one set to be selected.
  • the polymorphism set positively associated with the myocardial infarction judgment index used for the matching is the positive polymorphism or the polymorphism set described in any one of Figs.
  • the group strength is preferably at least one set to be selected.
  • the risk of myocardial infarction can be determined by a method similar to the aforementioned method of determining the risk of arteriosclerotic disease.
  • the array for disease risk determination of the present invention described above may be any probe other than the above within a range that achieves the object of the present invention, as long as it has a gene polymorphism detection probe corresponding to each disease. Or you may have a well-known probe suitably. Further, the gene polymorphism detection probe may be appropriately labeled and used.
  • the disease-determining array of the present invention can be prepared by a method of Affimetrix, which synthesizes the probe on the substrate, in addition to the method of immobilizing the probe prepared in a rough manner, and the method of preparing the same.
  • the substrate on which the probe is fixed is not particularly limited, and a known substrate such as a glass plate or a filter can be used.
  • the length of the probe to be immobilized and the type of nucleic acid to be used are not particularly limited as long as the gene polymorphism can be detected. It is desirable that the region containing the polymorphism be amplified by PCR in advance in terms of sensitivity.
  • a method for amplifying a region containing a gene polymorphism using a labeled primer can suitably use a point force such as sensitivity and simplicity.
  • a point force such as sensitivity and simplicity.
  • a region containing a gene polymorphism is amplified using a primer labeled with biotin, and this is added to an array to be hybridized, and then the nucleic acid that has not been hybridized is washed. Clean and remove. Next, the hybridized probe is detected with an avidin-labeled fluorescent dye.
  • gene polymorphism can be detected with high sensitivity.
  • the array for disease determination of the present invention includes the following embodiments:
  • the polymorphisms constituting at least one polymorphism set selected from the group of positive (susceptibility) polymorphism sets described in any one of FIGS. 19 to 27. Or a group of positive (sensitive) polymorphism sets having a detection probe for the polymorphism set described in any one of FIGS. 63-69.
  • (D) The force of having a probe for detecting a gene polymorphism of more than half of the gene polymorphism group described in any one of FIGS. 28-37, and the force of any one of FIGS. 52-55.
  • (F) Myocardial infarction according to (E), which has a detection probe for more than half of the gene polymorphisms of the polymorphism group described in any one of FIGS. 59-62. Degree of risk Judgment array.
  • polymorphisms constituting at least one polymorphism set selected from the group of positive (susceptibility) polymorphism sets described in any one of FIGS. 63-69.
  • the polymorphism set detected in the test sample was hybridized with the prepared probe, and the polymorphism detected in the subject was compared with the polymorphism set negatively associated with the disease.
  • the arteriosclerotic disease risk determination array according to any one of (A) to (H), which is used for evaluating the resistance to disease.
  • a set of polymorphisms having a negative association with atherosclerotic disease was selected as a group of negative polymorphism sets described in any one of Figs.
  • test sample was hybridized with the prepared probe, and the detected gene polymorphism was compared with the set of polymorphisms negatively associated with the disease and the positive association.
  • Atherosclerosis described in ( ⁇ ) to ( ⁇ ) which is used to evaluate resistance and susceptibility to disease for the set of detected polymorphisms by comparing with the set of polymorphisms Array for determining the risk of sexually transmitted diseases.
  • (L) The test sample was hybridized with the prepared probe, and the detected gene polymorphism was analyzed for the set of polymorphisms negatively associated with the disease and the positive association. Evaluate the subject's risk of disease from the bias of the negative association or positive association obtained for the set of detected polymorphisms by comparing with the set of polymorphisms An array for judging risk of atherosclerotic disease according to any one of ( ⁇ ) to ( ⁇ ), which is used for the purpose. [0135] (M) A set of polymorphisms having a negative association with atherosclerotic disease was selected from the group of negative polymorphism sets described in any one of Figs. Group of negative polymorphism sets described in at least one of FIGS.
  • the relevant polymorphism or its set is the group power of the positive polymorphism set described in any of Figs. 19-27.
  • the disease risk determination device, the determination method, and the determination program according to the present invention can determine how easily a subject has a disease, or how easily the disease progresses (disease risk). it can.
  • disease risk a disease
  • an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease associated with a gene.
  • the disease index e.g., carotid intima-media thickening for arteriosclerotic disease, albumin excretion rate in urine for nephropathy, myocardial infarction, etc.
  • the relevance described later should be evaluated by using, for example, the oldness on an electrocardiogram (abnormal Q), the presence or absence of a myocardial infarction waveform and the presence or absence of a myocardial infarction.
  • FIG. 75 is a block diagram showing an entire system including a device for determining risk of arteriosclerosis according to the present invention (hereinafter, referred to as a determination device).
  • a determination device a device for determining risk of arteriosclerosis according to the present invention
  • the blood sampling means 11 and computer 12 installed in Hospital 1
  • the genetic polymorphism analysis array 21 and computer 22 installed in analytical institution 2
  • the determination device 31 installed in service institution 3 31
  • the computers 11, 21 and the determination device 31 are connected to a communication line 4 such as the Internet.
  • the determination device 31 includes a CPU 32, a memory 33, a recording unit 34 such as a hard disk, a communication interface (hereinafter referred to as IZF) unit 35 for performing communication with the outside, an operation unit 36 such as a keyboard, It has a display section 37 such as a CRT display, an input / output IZF section 38, and an internal bus 39 for exchanging data between the sections.
  • the recording unit 34 contains information on arteriosclerotic diseases. Information on the associated polymorphism (eg, FIG. 10) or the set of polymorphisms (eg, FIG. 1) is recorded as a reference table.
  • test sample blood of a subject
  • the clinical data (subject ID, test value, medical history information, blood collection information, etc.) is recorded in the recording unit of the computer 12.
  • the test sample is provided to the analytical institution 2 and analyzed using the genetic polymorphism analysis array 21 to detect a genetic polymorphism having a genotype.
  • the gene polymorphism analysis array 21 for example, the aforementioned arteriosclerotic disease risk determination array can be used.
  • the detected gene polymorphism information is recorded in the recording means of the computer 22, and then transmitted to the determination device 31 of the service provider 3 via the communication line 4.
  • the determination device 31 receives the gene polymorphism information via the communication IZF unit 35 and temporarily records the information in the recording unit 34. After that, the determination device 31 searches the received genetic polymorphism in a reference table recorded in the recording unit 34 in advance to determine whether or not it is loose, and according to the result, determines the risk of arteriosclerotic disease. Is determined. Further, the determination device 31 transmits the determination result to the computer 12 of the hospital 1 via the communication line 4.
  • the determination result received by the computer 12 is recorded in the recording unit of the computer 12 in association with the clinical data (at least the subject ID), and is appropriately called and used (for example, presented to the subject).
  • Information specifying the computer 12 of the hospital 1 that transmits the determination result may be transmitted, for example, from the computer 12 of the hospital 1 while being included in clinical data.
  • FIG. 76 is a flowchart showing a determination process performed by the determination device 31.
  • the risk determination process by the determination device 31 will be specifically described according to the flowchart of FIG.
  • the processing performed by the CPU 32 will be described unless otherwise specified.
  • the CPU 32 uses the memory 33 as a work area or an area for temporarily storing data in the middle of processing, and records the data of the processing and the processing result in the recording unit 34 as necessary.
  • step S21 gene polymorphism information is obtained from the analysis institution 2 via the communication line 4, and is recorded in the recording unit 34.
  • the genetic polymorphism information is transmitted as a genetic polymorphism code assigned to each genetic polymorphism having a genotype.
  • step S23 it is determined whether or not the first and second flags are all 0, and if the flags are all 0, that is, if there is no set of genetic polymorphism codes in the reference table, the process proceeds to step S25. If any value other than 0 is set in any of the flags, the process proceeds to step S24.
  • step S24 the degree of risk is determined according to the result of the processing in step S22.
  • the determined risk is recorded in the recording unit 34 in association with the ⁇ hospital code, subject ID ⁇ . This risk is determined, for example, by determining the number nl of the first flags having the value “1” and the number n2 of the second flags having the value “1”, and determining the risk according to Table 1. I do.
  • the number of polymorphism sets having a positive association (n2) was greater than the number nl of polymorphism sets having a negative association (n2> nl).
  • the risk is determined to be high for sclerotic disease.
  • subjects (Case3) whose number nl of polymorphism sets with a negative association is greater than the number n2 of polymorphisms with a positive association or their sets (nl> n2) are judged to be low risk.
  • step S25 the processing of steps S22 to S24 is repeated until it is determined that the processing has been completed for all ⁇ hospital code, subject ID ⁇ .
  • step S26 the determined risk code (in the above determination example, a code indicating a high risk or a low risk) And the subject ID are transmitted to the computer 12 corresponding to the hospital code via the communication line 4.
  • the above-described risk determination processing is performed by using a general-purpose computer to read a computer program recorded on a computer-readable recording medium such as a hard disk or a CD-ROM, or execute the computer program via a communication line. It is also possible to obtain a program and execute it by the CPU.
  • the device of the present invention may be a device to which other means are appropriately added as necessary, as long as the device can realize the above-described determination function.
  • the criterion for determining the degree of risk shown in step S24 is not limited to Table 1, and the bias of the positive association and the negative association of the genetic polymorphism detected from the subject is obtained, and the positive If the association is significant, the risk of atherosclerotic disease is high (or onset); if the negative association is significant, the risk of atherosclerotic disease is low! ⁇ (or, Is non-onset).
  • the bias is not limited to the difference in the number of the corresponding set included in the positive / negative reference table, but is weighted according to the included set or is included in each gene polymorphism included. Various values can be used, such as a value calculated with appropriate weighting and a value calculated in consideration of clinical data.
  • a table corresponding to any one of Figs. 1 to 36 and Figs. 38 to 55 may be used.
  • the target of application of the apparatus, method and program for determining the risk of disease relating to the invention is not limited to atherosclerotic diseases.
  • a table corresponding to any of FIGS. 56 to 73 may be used.
  • the determination apparatus of the service providing organization uses the subject's genetic polymorphism information obtained from the analysis institution as a determination target, but is not limited thereto.
  • the previously analyzed individual genetic polymorphism information is recorded in some recording means (for example, a portable recording means such as an IC card or a memory card provided for each individual), and the genetic polymorphism information is read out from this. Then, the determination process of the disease risk may be performed. Since the genetic information of the living body does not change, if the genetic polymorphism information analyzed once is recorded, even if the reference table or the criteria for determining the degree of risk is changed and the determination accuracy is improved, the genetic information is re-established. The burden on the subject who does not need to collect blood for analysis is reduced.
  • the genetic polymorphism information of an individual obtained from an analytical institution is recorded in the database of the service provider in association with the personal ID, and the individual ID is notified to each individual. By receiving only the contact, the risk level can be determined again using the corresponding genetic polymorphism recorded in the database.
  • the genetic polymorphism information itself as an ID
  • Past analyzed data can be used in addition to the analyzed data (for example, the IMT measurement value for atherosclerotic disease). Therefore, it is possible to track the history of the accuracy of determining the risk, and to determine the risk in consideration of the history.
  • various clinical data and the like may be added to the analyzed data in addition to the value of the disease index.
  • the arteriosclerotic disease risk determination method of the present invention can be used to determine the susceptibility to arteriosclerotic disease and the ease of progression. Preferably, it can be used to determine the risk (e.g., susceptibility, progress, etc.) of arteriosclerotic disease for diabetic patients or those prone to this (diabetic borderline type).
  • the risk e.g., susceptibility, progress, etc.
  • the arteriosclerotic disease risk determination method comprises the steps of: (b) using a gene polymorphism detected in a test sample as a "carotid intima," A step of matching a set of polymorphisms that is negatively associated with “media thickness of the median complex (IMT)”.
  • the polymorphism set negatively associated with IMT is preferably a group of negative polymorphism sets described in any one of FIGS. Group power of at least one set, or negative polymorphism set described in any one of FIGS. 38-43.
  • the determination method of the present invention includes a step of matching a polymorphism set having a negative association with a determination index of arteriosclerotic disease, And a step of matching with a set of polymorphisms having the above-mentioned relationship. That is, in addition to the above step (b), a step of comparing the gene polymorphism detected in the test sample with the gene polymorphism set positively associated with IMT as the step (b '), and (c) A) comparing the negative association and the positive association with respect to the detected gene polymorphism from the results of the above (b) and (b ′), and calculating the bias thereof. It is.
  • the group strength of the positive polymorphism set described in any one of FIGS. 19 to 127 is also selected.
  • the determination method of the present invention may include a step (a) of detecting a gene polymorphism in a test sample prior to the above step (b) or (b ').
  • the powerful detection step (a) can be a detection step for two or three or more gene polymorphisms selected from the 99 gene polymorphisms shown in FIG.
  • the detection step (a) the presence of the polymorphism constituting the negative polymorphism set described in any one of Figs. 10 to 18 and the one of Figs.
  • the method may include a step of detecting the presence of a polymorphism constituting the positive polymorphism set described in the figure.
  • the gene polymorphisms described in FIG. 10 and FIG. 19 the gene polymorphisms described in FIG. 11 and FIG. 20, the gene polymorphisms described in FIG. 12 and FIG.
  • the negative gene multiplication described in any one of Figs. One having a step of detecting the presence of a gene polymorphism constituting the type set and the presence of the gene polymorphism constituting the positive gene polymorphism set described in any one of FIGS. 48-51 It may be. Specifically, the gene polymorphisms described in FIG. 38 and FIG. 48, the gene polymorphisms described in FIG. 39 and FIG. 49, the gene polymorphisms described in FIG. 40 and FIG. , The gene polymorphism described in FIG. 42 and FIG. 51, or the presence of the gene polymorphism described in FIG. 43 and FIG. 51 can be detected.
  • the detection step (a) can be performed with high accuracy by using the arteriosclerotic disease risk determination array of the present invention. That is, the detection step (a) is a step of detecting a gene polymorphism by hybridizing the probe prepared for the test sample and the gene polymorphism detection probe on the array on the disease determination array of the present invention. It can be.
  • any method can be used as long as it is a method for detecting the genotype of the subject.
  • a sample containing DNA such as a subject's blood, sputum, skin, bronchoalveolar lavage fluid, other body fluids, or tissue.
  • Many analysis methods are known, for example, the sequence method, the PCR method, the ASP-PCR method, the TaqMan method, the Invader Atssay method, the MALDI-TOFZMS method, the molecular beacon method, the ligation method, and the like. (Clin. Chem. 43: 1114-1120, 1997).
  • the sequence method is a method in which a DNA region containing a polymorphism is directly sequenced.
  • a PCR method only a certain polymorphism is specifically amplified using a primer specific to the polymorphism.
  • ASP Allele Special Primer
  • the ability to place a gene polymorphism in the primer such as in the method of arranging primers.
  • identify the gene polymorphism in the primer design such as what nucleic acid sequence to put in addition to the gene to be detected. There is no particular limitation as far as possible.
  • an allele-specific probe labeled at both ends with a fluorescent dye and a quencher is hybridized to a target site, and a PCR reaction is performed with a primer designed to amplify a region containing this site.
  • the PCR reaction from the primers allows the allele-specific probe to hybridize.
  • the 5-prime nuclease activity of Taq polymerase cleaves the fluorescent dye present at the 5 'end of the hybridized probe and generates fluorescence by leaving the quencher. This technique shows how much the allele-specific probe had hybridized.
  • an allele probe having a specific sequence at the 5 'side from the type III polymorphism site and a flap sequence at the 3' side, and an allele probe at the 3 'side Using three types of oligonucleotides, an invader probe having a specific sequence and an FRET probe containing a sequence complementary to the flap sequence, it was possible to determine which allele probe hybridized based on the same principle as the TaqMan method. Can be identified.
  • a primer adjacent to the polymorphic site is created to amplify this region, and then only one base of the polymorphic site is amplified using ddNTP.
  • a gene polymorphism is identified by identifying the type of the added ddNTP.
  • a method generally called the DNA chip method such as the Hybrigene method, an oligonucleotide probe containing a gene polymorphism is arranged on an array, and hybridization with a sample DNA subjected to PCR amplification is detected.
  • the risk of arteriosclerotic disease can be determined, for example, as follows.
  • a gene polymorphism detected in a test sample is converted into a set of polymorphisms having a negative association with IMT which is When compared with the child polymorphism set, subjects (Case 1) whose total number of positively related polymorphism sets is greater than the total number of negatively related polymorphism sets (Case 1) It is determined to be a high risk case of sexually transmitted disease. In addition, there is a positive polymorphism set, but no negative polymorphism set. (Case 2) is also determined to be a high risk case of arteriosclerotic disease.
  • subjects (Ca Se 3) whose total number of polymorphism sets with a negative association is less than the total number of polymorphism sets with a positive association Is determined.
  • the subject (Ca Se 4) was also judged to have a low risk of arteriosclerotic disease. Is performed.
  • the bias of the positive association (sensitivity) and the negative association (resistance) was determined for the gene polymorphism for which the subject power was also detected, and if the positive association was high, the arteriosclerotic disease was determined. If the risk of is high (or onset), and the negative association is high, it can be determined that the risk of atherosclerotic disease is low (or non-onset).
  • the subject is determined to be a low-risk case of arteriosclerotic disease or a high-risk case of arteriosclerotic disease based on the gene polymorphism detected for the subject, the subject is judged to have clinical findings. Therefore, the percentage of patients who are judged to be non-arteriosclerotic disease cases or arteriosclerotic disease cases (the judgment results match) is 60% or more, preferably 65% or more, more preferably 70% or more, % Or less, preferably 40% or less, more preferably 45% or less, can be evaluated as a highly accurate determination result.
  • clinical findings in this case include, for example, non-arteriosclerotic disease cases with carotid intima-media thickening (IMT) of less than 1.1 mm
  • IMT carotid intima-media thickening
  • An example is a method in which 1 mm or more is regarded as an arteriosclerosis disease example.
  • the population of arteriosclerotic disease cases and non-arteriosclerotic disease cases is preferably set to be a group of disease cases where V and deviation are also diabetes and there is no history of myocardial infarction.
  • the genetic polymorphism detected from the subject is a combination of 2 or 3 genetic polymorphisms. It is preferable to have
  • the degree of the degree of deviation (that is, the degree of risk, ) May be determined.
  • examples of the factors used for weighting include clinical findings (used as a disease determination index) closely related to a disease (or its degree).
  • a method of setting whether or not a force having a significant positive or negative relationship is 1 or 0.
  • the degree of stiffness of the carotid artery As an index indicating the degree of stiffness of the carotid artery, for example, the degree of carotid artery thickening can be mentioned.
  • the method of measuring the thickness of the strong carotid artery measurement of the thickness of the carotid intima-media complex (IMT) using an ultrasonic tomography apparatus is generally used. The method is a non-invasive and quantitative measurement method that measures the thickness of the carotid artery that can be reached ultrasonically.
  • IMT intima-media complex
  • an ultrasonic tomographic apparatus having a linear pulse echo probe having a center frequency of 7.5 MHz or more. Since the extracranial carotid artery exists in the subcutaneous shallow layer, a frequency of 7.5 MHz or higher can be used, and high resolution (0.1 mm in distance resolution) can be obtained. However, this is only an example.
  • the blood vessel wall is analyzed on an echo image as a two-layer structure of a low echo luminance layer on one side of the blood vessel lumen side and a high echo luminance layer on the other side.
  • the present inventors have observed 104 healthy cases and found that the IMT of the common carotid artery increased almost linearly with age from the age of 10 to the age of 70, and that the thickness did not exceed 1.Omm. I have confirmed.
  • the common carotid artery IMT of a healthy individual is calculated from the age as follows:
  • IMT 0.06 X Age + 0.3 (3 ⁇ Age ⁇ 80 yr).
  • An index indicating the degree of stiffness of the carotid artery other than the carotid intima-media thickness include the maximum IMT (Max—IMT), which represents the maximum value of IMT, the average IMT (AvglMT), which represents the average value of IMT, plaque score (PS), and carotid stiffness.
  • Max—IMT the maximum IMT
  • AvglMT the average IMT
  • PS plaque score
  • carotid stiffness Various measurement methods have been established for.
  • the maximum intima-media thickness in each longitudinal image of the anterior oblique, lateral and posterior oblique views is defined as Max-IMT, and the central lcm and distal lcm around the site showing the Maxl-MT is a total of 3 points.
  • the plaque score refers to the sum of both the left and right carotid arteries with a plaque thickness of 1.1mm or more at each site divided into four sections each of which is 15mm from the bifurcation. Also, the sum of the number of plaques (IMT1. Lcm or more) at each part of the above 3-4 section may be referred to as a plaque number (PN) and used as an index.
  • the carotid stiffness is a numerical value measured from the diameter of the carotid artery in the systolic and diastolic phases.
  • the method using the thickening of the far wall 10 mm centrally from the bifurcation of one carotid artery as an index is easy to measure, and it is said that the measurement error is small because the common carotid artery has few lesions.
  • IMT is an index indicating the largest lesion of the carotid artery.
  • PS can show the whole picture of the carotid artery with advanced arteriosclerosis, but it is more suitable for the measurement target and disease, for example, it is disadvantageous in that it is 0 in non-developed cases (thickness less than 1.1 mm).
  • Indicators are different.
  • the carotid artery wall is often relatively thickened in cases of diabetes or hyperlipidemia.
  • AvglMT and mean IMT are important indicators, but in cases of hypertension, plaque should be observed.
  • PS, PN and MaxIMT are effective indicators.
  • Clinical findings closely related to atherosclerotic diseases can also include an increase in carotid intima-media complex thickness.
  • an increase in carotid intima-media complex thickness an increase in average IMT ( ⁇ IMT) or an increase in maximum IMT ( ⁇ PIMT) can be used as an index.
  • ⁇ IMT average IMT
  • ⁇ PIMT increase in maximum IMT
  • ⁇ ⁇ ⁇ ⁇ represents the overall risk of atherosclerotic disease.
  • the indicator There have been many reports on the relationship between the increase in carotid intima-media complex thickness and arteriosclerotic diseases, and in particular for ⁇ ⁇ , every 0.339 mm increase in ⁇ ⁇ MT.
  • the increase in carotid intima-media complex thickness ( ⁇ and ⁇ etc.) is determined by partial regression calculated by the method of multiple regression analysis of ⁇ value or ⁇ value force measured from the population. It can be represented by a coefficient.
  • the arteriosclerotic disease risk determination method of the present invention further includes a risk determining step of determining an arteriosclerosis risk, which is an environmental factor closely related to the clinical findings and disease of the subject. Is also good.
  • the state of the subject's arteriosclerotic disease at the time of measurement alone can be understood, and the clinical findings and the power of environmental factors can predict the risk of developing the disease.
  • the method of the invention it is possible to predict the future risk of onset and the likelihood of progression based on the inherent risk of atherosclerotic disease that the subject has while confirming the current status of the subject. .
  • the fattening has progressed, and especially for young subjects, if the future risk can be predicted, it is possible to take preventive measures such as improving lifestyle when the risk is high. And prevent the onset of arteriosclerotic disease.
  • Vitelli et al. Reported in the Atherosclerosis Risk Study (ARIC Study) that there were 208 carotid thickenings (mean IMT, 1.21 mm) and non-diabetic patients and 208 thickenings.
  • Hemoglobin Ale level is an independent risk factor.
  • age, hemoglobin Ale level, nonHDL cholesterol, systolic blood pressure, and smoking history are independent risk factors.
  • systolic blood pressure and smoking have been reported as risk factors (Yamasaki Y, Diabetes 1994; 43: 634-639).
  • the arteriosclerotic disease risk determination method of the present invention even if a gene polymorphism conferring disease risk is present, the risk is offset by the presence of the gene polymorphism conferring disease resistance. In addition, it is based on the knowledge that even when a single genetic polymorphism does not confer resistance to a disease, the combination of multiple polymorphisms provides resistance to the disease. Therefore, the method of the present invention considers the genetic polymorphism as a combination (set) as a factor contributing to the resistance to the risk of atherosclerotic disease in determining the risk of disease, It has the feature of determining the risk of disease onset by combining the resistance factor and the susceptibility factor, thereby enabling highly accurate determination.
  • the method for determining the risk of arteriosclerotic disease of the present invention uses the carotid intima-media complex thickness as a disease determination index for both normal and diseased patients.
  • the carotid intima-media complex thickness is a disease determination index for both normal and diseased patients.
  • the myocardial infarction risk determination method of the present invention can be used to determine the susceptibility or progress of myocardial infarction. Preferably, it can be used to determine the risk of myocardial infarction (proneness, progress, etc.) for diabetic patients or those prone to this (borderline diabetes).
  • the myocardial infarction risk determination method comprises: (b) comparing a gene polymorphism detected in a test sample with a gene polymorphism set having a negative association with a myocardial infarction determination index. Characterized by a step of Examples of the myocardial infarction determination index include the presence or absence of an old myocardial infarction waveform on an electrocardiogram and the history of myocardial infarction as described above.
  • the gene polymorphism set negatively associated with the myocardial infarction determination index is preferably at least one set selected from the group of negative gene polymorphism sets described in any one of FIGS. Can be mentioned.
  • a step of matching with a polymorphism set having a negative association with a myocardial infarction determination index, and a step of having a positive association with a myocardial infarction determination index The present invention also includes a method for performing a combination of a gene polymorphism set and a matching step.
  • a step of comparing the gene polymorphism detected in the test sample with the gene polymorphism set positively associated with the determination index of myocardial infarction in the step (b ') And (c) a step of comparing the negative association and the positive association with respect to the detected gene polymorphism from the results of the above (b) and (b ') to calculate the bias.
  • the polymorphism set positively associated with the determination index of myocardial infarction is preferably a positive polymorphism set described in any one of FIGS. At least one gene polymorphism set from which the group strength of the gene is also selected.
  • the determination method of the present invention detects a gene polymorphism in a test sample prior to the above step (b) or (b ').
  • the step can be performed.
  • the powerful detection step (a) can be a detection step for two or three or more gene polymorphisms selected from the 99 gene polymorphisms shown in FIG.
  • the detection step (a) is based on the presence of the polymorphism constituting the negative polymorphism set described in any one of FIGS. 58-62 and the presence of the polymorphism in any one of FIGS. 70-73.
  • the method may include a step of detecting the presence of a polymorphism constituting the positive polymorphism set described in the figure. Specifically, the gene polymorphism described in FIG. 59 and FIG. 70, the gene polymorphism described in FIG. 60 and FIG. 71, the gene polymorphism described in FIG. 61 and FIG. And the step of detecting the presence of the polymorphism described in FIG. 73.
  • the detection step (a) can be performed with high accuracy by using the myocardial infarction risk assessment array of the present invention. That is, the detection step (a) is a step of detecting a gene polymorphism by hybridizing the probe prepared for the test sample and the gene polymorphism detection probe on the array on the disease determination array of the present invention. can do.
  • the myocardial infarction risk determination method of the present invention further comprises, as in the above-mentioned arteriosclerotic disease risk determination method, further the step (d) and the bias obtained in the step (c).
  • the method may include a step of determining the degree of bias (that is, the degree of risk) by weighting, and may further include environmental factors that are closely related to the clinical findings and disease of the subject.
  • the method may further include a risk determination step for determining the degree.
  • the myocardial infarction risk assessment method of the present invention can be carried out in the same manner as the above-mentioned arteriosclerosis disease risk assessment method, but by using a powerful method, the myocardial infarction risk assessment can be performed with high accuracy. Can be obtained.
  • the determination method of the present invention includes the following embodiments:
  • (A) (b) a step of comparing the gene polymorphism detected in the test sample with a gene polymorphism having a negative association with the disease determination index or a polymorphism set having a negative association with the disease determination index. How to determine the degree.
  • (B) Furthermore, (b ') a step of comparing with a gene polymorphism having a positive association with the disease determination index or a set of gene polymorphisms having a positive association, and
  • (C) The method for determining a disease risk according to (B), further comprising the step of (d) evaluating the risk power of the obtained bias force as well.
  • the target disease is an arteriosclerotic disease, and a group of negative polymorphism sets described in any of FIG. 19 as a polymorphism set negatively associated with the disease determination index.
  • (A) to (D) wherein at least one set in which the force is also selected, or at least one set in which the group power of the negative polymorphism set described in any of FIGS. 38 to 43 is also used.
  • the target disease is atherosclerotic disease
  • the gene polymorphism set negatively associated with the disease determination index is at least one set selected from the group strength of the negative gene polymorphism sets described in any of FIG. Genetic polymorphisms that have a positive association with the disease determination index or polymorphism sets that have a positive association with the positive polymorphism set described in any of Figures 19-27 were also selected. A force that is at least one set of polymorphisms or
  • the polymorphism set negatively associated with the disease determination index is at least one set selected from the group strength of the negative polymorphism sets described in any of FIGS. 38-43,
  • a gene polymorphism having a positive association with the disease determination index or a polymorphism set having a positive association is also selected from the group of positive polymorphism sets described in any of FIGS. 48-51.
  • step (F) Prior to step (b) or (b ′), any of (A) to (E) having a step of (a) detecting a gene polymorphism in a test sample Method for determining the risk of disease.
  • Detection step (a) is a detection step for 2 or 3 or more gene polymorphisms whose 99 polymorphisms shown in FIG. 37 are also selected.
  • the disease of interest is an arteriosclerotic disease
  • a probe prepared from a test sample and a probe for detecting a gene polymorphism on the array are hybridized on the array for determining risk of arteriosclerotic disease of the present invention, and the gene polymorphism is detected.
  • a probe prepared from a test sample and a probe for detecting a gene polymorphism on the array are hybridized on the myocardial infarction risk assessment array of the present invention to detect a gene polymorphism.
  • the population of ⁇ atherosclerotic disease cases and non-atherosclerotic disease cases is V, the deviation is also diabetes, and there is no history of myocardial infarction.
  • the present invention also includes a method of selecting an effective drug according to the characteristics of each subject from the classification to which the gene polymorphism detected from the subject corresponds.
  • the method is performed by selecting a drug that is considered applicable from the classification of the gene polymorphism based on the gene polymorphism detected from the test subject.
  • the above classifications a) to j) can be used.
  • Statin is an example of an effective drug for polymorphisms belonging to the lipid-related gene polymorphism group.
  • Effective drugs for polymorphisms belonging to the blood pressure-related gene polymorphism group include ACE inhibitors and angiotensin II receptor inhibitors.
  • Insulin sensitivity-improving agents are listed as effective agents for gene polymorphisms belonging to the insulin resistance-related gene polymorphism group.
  • Examples of effective drugs for gene polymorphisms belonging to the oxidative stress-related gene polymorphism group include antioxidants.
  • Effective drugs for gene polymorphisms belonging to the inflammatory response-related gene polymorphism group include immunosuppressants and statins.
  • Antiplatelet agents are effective drugs for polymorphisms belonging to the coagulation / fibrinolysis-related gene polymorphism group.
  • the present invention also provides a method for eliciting a disease resistance factor possessed by a subject and a method for manifesting a disease risk possessed by a subject from another angle.
  • the disease resistance factor manifestation method according to the present invention comprises:
  • the method has a step of manifesting the disease resistance factor in the test sample.
  • the method has a step of manifesting the disease resistance factor in the test sample.
  • the gene polymorphism detected in the test sample corresponds to any of the gene polymorphism or the gene polymorphism set negatively associated with the disease determination index. This is done by clarifying whether or not to do so.
  • the step (0) includes the steps of: It is performed by comparing with a polymorphism or a set of polymorphisms that are negatively associated with the intima-media complex thickness (IMT).
  • IMT intima-media complex thickness
  • the step (0) is carried out by converting the gene polymorphism detected in the test sample to myocardial infarction. This is done by comparing with a genetic polymorphism or a set of polymorphisms that have a negative association with the judgment index of (1). Group power of the polymorphism sets of at least one set selected.
  • the revealing method may include, prior to step (i), a step of (0) detecting a gene polymorphism in a test sample.
  • the detection step (0) can be a detection step for at least two gene polymorphisms selected from 99 polymorphisms as shown in Fig. 37.
  • the target disease is an arteriosclerotic disease (preferably, an arteriosclerotic disease caused by diabetes)
  • a gene polymorphism to be detected is selected from FIG. 10-18.
  • the gene polymorphism described in any of the figures selected from FIGS. 44-47 may be used.
  • the target disease is myocardial infarction (preferably, myocardial infarction due to diabetes)
  • the gene described in any of the figures selected from FIGS. Use polymorphism.
  • a probe prepared from a test sample and a probe for detecting a gene polymorphism on the array are hybridized on the disease risk determination array of the present invention, and the gene multiplication is performed. This can be done by detecting the type.
  • the test sample is not particularly limited, it is possible to further enjoy the benefits of the present invention when the sample is a biological sample of a diabetic patient who has no history of arteriosclerotic disease or myocardial infarction. it can.
  • the human genome has an extremely large number of genetic polymorphisms, and only one of them has low oss or ratio and limited frequency, so it is impossible to predict disease risk. You. Therefore, by looking at these gene polymorphisms separately, it is not possible to find factors associated with the disease inherent in the genetic polymorphisms possessed by the individual.
  • a disease determination index and Based on the finding that there are multiple sets of polymorphisms that have a significant negative association between, these polymorphism sets were positioned as disease resistance factors, and these Only when the existence of the genetic polymorphisms constituting the gene polymorphism set is selectively clarified, the disease resistance factor can be revealed. The manifested disease resistance factor is extremely valuable as information for determining the disease risk.
  • selective clarify means to select and clarify a specific one of an innumerable combination of gene polymorphisms.
  • a plurality of selectively identified genes can be identified.
  • a disease resistance factor disease resistance gene polymorphism set
  • the odds ratio of the frequency with a significant negative association between the genotype set and the disease judgment index This also includes the expression by
  • suppression of the increase of the disease judgment index specific to the disease resistance gene polymorphism set Representation is also included. That is, there is no particular limitation as long as it is a method that can manifest a disease-resistant gene polymorphism set in the gene polymorphism of the subject.
  • Genetic polymorphisms detected in the test sample are identified as polymorphisms or polymorphism sets negatively associated with the disease judgment index, and gene polymorphisms positively associated with the disease judgment index. Or a step of matching with a set of polymorphisms, and
  • the above risk manifestation method may further include (iii ') a step of calculating the bias between the disease resistance factor and the susceptibility factor revealed for the test sample.
  • the step G ' includes the steps of: Positive association with gene polymorphism or polymorphism set negatively associated with carotid intima-media complex thickness (IMT), which is an indicator of atherosclerotic disease, and with IMT It is performed by matching with a polymorphism or a polymorphism set.
  • the polymorphism set having a negative association may be a negative polymorphism set described in any of FIGS.
  • the set is defined as a positive polymorphism set or a polymorphism set as a positive polymorphism set described in any of FIGS. 19 to 27, or described in any of FIGS. 48 to 51.
  • a positive polymorphism set can be mentioned.
  • the step G ' is performed by converting the gene polymorphism detected in the test sample into myocardial infarction. It is performed by comparing with a polymorphism or a polymorphism set having a negative association with the judgment index of infarction, and a polymorphism or a polymorphism set having a positive association with the judgment index of myocardial infarction.
  • the set of polymorphisms having a negative association the group strength of the set of polymorphisms of the negative polymorphism described in any of Fig. 38-43 shall be at least one set selected.
  • the gene polymorphism or the gene polymorphism set having at least one set selected from the group of positive polymorphisms or gene polymorphism sets described in any of FIGS. 50 to 53 can be given. .
  • a step (0') of detecting a gene polymorphism in a test sample may be provided prior to the step (1 ').
  • the detection step (0 ′) can be a detection step for at least two gene polymorphisms selected from 99 polymorphisms shown in FIG.
  • the detection step (0 ′) may be performed, for example, using the gene polymorphisms described in FIG. 10 and FIG. And the gene polymorphism described in FIGS. 12 and 30; the gene polymorphism described in FIGS. 13 and 31; the gene polymorphism described in FIGS.
  • the detection step (0 ') may be performed, for example, by the gene polymorphism shown in Figs. A step of detecting the presence of the gene polymorphism described in FIG. 71, the gene polymorphism described in FIG. 61 and FIG. 72, or the gene polymorphism described in FIG. 62 and FIG.
  • the probe prepared as a sample sample and the gene polymorphism detection probe on the array are hybridized on the disease risk determination array according to the present invention. It can be a step of detecting a gene polymorphism.
  • the effect of the present invention can be used more effectively when the test sample is set as a biological sample.
  • the present invention has revealed, by analyzing a large number of populations, that a plurality of sets of polymorphisms having significant negative and positive associations with the disease judgment index exist. However, they are positioned as a disease resistance factor and a disease susceptibility factor, respectively, and both of the polymorphisms that constitute the two types of polymorphism sets present in the test sample are combined. This is based on the fact that it is possible for the first time to evaluate the subject's disease risk when evaluated.
  • a combination of a manifested disease resistance factor (disease resistance gene polymorphism set) and a disease susceptibility factor (disease susceptibility gene polymorphism set) is extremely valuable as information for determining disease risk. Things.
  • genotype of a plurality of selectively identified polymorphisms depends on whether or not the genotype corresponds to a desired disease gene polymorphism set. In the case of a type set, this also includes expressing by the odds ratio of the frequency having a significant negative or positive association with the disease judgment index specific to the disease-related gene polymorphism set.
  • genotype of a plurality of selectively identified polymorphisms may In the case of a gene polymorphism set, expression of the disease judgment index specific to the disease gene polymorphism set by the degree of increase or suppression of increase is also included. That is, there is no particular limitation on the genetic polymorphism of the test subject as long as the method can determine and manifest the resistance and susceptibility of the disease gene polymorphism set.
  • the present invention provides a gene marker showing atherosclerotic disease resistance.
  • the gene marker can be suitably used for detection and selection of a genetic polymorphism in arteriosclerotic disease resistance in a test sample.
  • a potent genetic marker is one that comprises at least one genetic polymorphism that is selected for neutral (resistant) gene polymorphism or a set of genetic polymorphisms.
  • the described negative polymorphism set group power also includes the polymorphisms that make up the at least one polymorphism set that is selected.
  • the present invention also provides a gene marker indicating atherosclerotic disease susceptibility.
  • the gene marker can be suitably used for detecting a genetic polymorphism susceptible to atherosclerotic disease in a test sample.
  • a genetic marker comprises at least one gene polymorphism that is neutrally selected for a positive (sensitive) polymorphism or a set of polymorphisms.
  • a gene polymorphism constituting at least one polymorphism set selected from the positive polymorphism set group described in any of FIGS. 19 to 27, or any one of FIGS. 48 to 51
  • the positive polymorphism set group power described in (1) also includes a polymorphism that constitutes at least one polymorphism set to be selected. It is preferable to use a gene marker showing atherosclerotic disease susceptibility in combination with the above-mentioned gene marker showing atherosclerotic disease resistance.
  • the gene marker for atherosclerotic disease resistance and the gene marker for atherosclerotic disease susceptibility are respectively detected and selected for atherosclerotic disease resistance gene polymorphism and selected for atherosclerotic disease susceptibility. Used to detect and select gene polymorphisms in humans Also used as genetic markers for judging and measuring arteriosclerotic diseases Can do.
  • the present invention also provides a gene marker showing myocardial infarction resistance.
  • the gene matrix can be suitably used for detection and selection of a genetic polymorphism of myocardial infarction resistance in a test sample.
  • a potent genetic marker is one that comprises at least one genetic polymorphism that is also selected for a negative (resistant) polymorphism or a neutral polymorphism set. Specifically, it includes a polymorphism constituting at least one polymorphism set selected from the negative polymorphism set groups described in any one of FIGS. 56-58.
  • the present invention also provides a gene marker showing myocardial infarction susceptibility.
  • the gene marker can be suitably used for detecting a myocardial infarction susceptibility gene polymorphism per test sample.
  • a genetic marker comprises at least one genetic polymorphism for which the neutrality of a positive (sensitive) genetic polymorphism or a set of genetic polymorphisms is also selected.
  • the positive polymorphism set group power described in any of FIGS. 63 to 68 also includes a polymorphism that constitutes at least one polymorphism set to be selected. It is preferable that such a gene marker showing myocardial infarction sensitivity is used in combination with the above-mentioned gene marker showing myocardial infarction resistance.
  • myocardial infarction resistance and myocardial infarction susceptibility are respectively used for detection and selection of myocardial infarction resistance gene polymorphism and detection and selection of myocardial infarction susceptibility gene polymorphism. In addition, it can be used as a genetic marker for determining or measuring myocardial infarction.
  • the marker of the present invention includes the following embodiments:
  • (B) (1) Group strength of negative polymorphism set described in any of FIGS. 11 to 9 Selected atherosclerotic disease resistance including polymorphisms constituting at least one polymorphism set Or a genetic marker that constitutes at least one genetic polymorphism set selected from the group of sex gene markers and positive genetic polymorphism sets described in any of FIGS. 19 to 27, or
  • the gene polymorphism analysis kit of the present invention includes a primer pair capable of specifically amplifying a gene constituting at least one gene polymorphism set selected from a negative gene polymorphism or a negative gene polymorphism set group, or It is characterized by containing a nucleic acid probe capable of specifically hybridizing to the gene.
  • the analysis kit can be suitably used as an analysis kit for detecting a disease-resistant gene polymorphism.
  • the gene polymorphism analysis kit of the present invention can specifically amplify genes constituting at least one gene polymorphism set selected from positive gene polymorphisms or positive gene polymorphism set groups.
  • One pair of primers can include a nucleic acid probe that can specifically hybridize to the gene of interest.
  • Such an analysis kit can be suitably used as an analysis kit for detecting a disease resistance gene polymorphism and a disease susceptibility gene polymorphism.
  • a negative polymorphism set the negative polymorphism described in any of Figs. At least one set of polymorphisms for which the population of the set of genes is also selected, or a group of at least one set of polymorphisms for the negative set of polymorphisms described in any of Figures 38-43.
  • An analysis kit including a primer pair capable of specifically amplifying a gene constituting a powerful gene polymorphism set or a nucleic acid probe capable of specifically hybridizing to the gene detects an arteriosclerosis disease resistance gene polymorphism. It can be suitably used as an analysis kit.
  • Such an analysis kit can be suitably used as an analysis kit for detecting atherosclerotic disease resistance gene polymorphism and atherosclerotic disease susceptibility gene polymorphism.
  • the negative gene polymorphism set there can be mentioned at least one gene polymorphism set selected from the group powers of the negative gene polymorphism sets described in any of FIGS.
  • An analysis kit containing a pair of primers capable of specifically amplifying the genes constituting the Kapoor gene polymorphism set or a nucleic acid probe capable of specifically and / or hybridizing to the gene is used to detect the myocardial infarction resistance gene polymorphism. It can be suitably used as an analysis kit for detection.
  • the kit for analysis of Kagoru can be suitably used as an analysis kit for detecting a polymorphism of a myocardial infarction resistance gene and a polymorphism of a myocardial infarction susceptibility gene.
  • a suitable primer pair or nucleic acid probe other nucleic acids or reagents may be appropriately contained within a range not to impair the object of the present invention.
  • the gene polymorphism analysis kit needs to include at least some of the primers and probes used in the step of detecting these gene polymorphisms.
  • the PCR method for detecting gene polymorphisms it is common to place the nucleic acid of the gene polymorphism at the 3 'end. Allele Specific Primer (ASP)-Like the PCR method, the 3' end
  • ASP Allele Specific Primer
  • the method of placing a primer having a gene polymorphism in the second place such as a method of placing a gene polymorphism in a region of the primer, and a primer such as a nucleic acid sequence for inserting a nucleic acid sequence other than the gene to be detected.
  • a primer such as a nucleic acid sequence for inserting a nucleic acid sequence other than the gene to be detected.
  • the analysis kit of the present invention includes the following embodiments;
  • (A) (1) Group strength of negative polymorphism set described in any of FIGS. 11 to 9 Primer pairs capable of specifically amplifying genes constituting at least one selected polymorphism set Alternatively, a nucleic acid probe capable of specifically hybridizing to the gene, or
  • a kit for analyzing a polymorphism in an atherosclerotic disease resistance gene comprising:
  • (B) (1) Group strength of negative polymorphism set described in any of Figs. 11 to 9 Primers selected to specifically amplify genes constituting at least one polymorphism set A pair! / ⁇ indicates a nucleic acid probe capable of specifically hybridizing to the gene, and a group of positive polymorphism sets described in any of FIGS. 19-127.
  • the group strength of the negative polymorphism set described in any of FIGS. 38-43 is also selected.
  • a primer pair capable of specifically amplifying a gene constituting at least one polymorphism set or the gene concerned A nucleic acid probe capable of specifically hybridizing to a group, and a group of positive polymorphism sets described in any of FIGS. 48 to 51. Primer pairs or nucleic acid probes that can specifically hybridize to the gene
  • a kit for analyzing atherosclerotic disease resistance gene polymorphism or susceptibility gene polymorphism comprising
  • (C) A group of primers capable of specifically amplifying a gene constituting at least one polymorphism set, wherein the group power of the negative polymorphism set described in any of Figs. 56-58 is also selected.
  • a kit for analyzing a myocardial infarction resistance gene polymorphism comprising a nucleic acid probe capable of specifically hybridizing to the gene.
  • Primer pairs capable of specifically amplifying the genes constituting at least one polymorphism set ⁇ represents a nucleic acid probe capable of specifically hybridizing to the gene, and a group of positive polymorphism sets described in any of FIGS. 63 to 169, and a gene constituting at least one selected polymorphism set.
  • a kit for analyzing a myocardial infarction resistance gene polymorphism or a susceptibility gene polymorphism, comprising a primer pair that can be specifically amplified or a nucleic acid probe that can specifically hybridize to the gene.
  • the carotid intima-media thickness was 0.2 mm or more thicker than the healthy group of the same age. (Unaffected case). Genetic polymorphisms were detected in the Case group (onset group) and the Control group (non-onset group) by the operation described below.
  • ACE ID an inserted gene polymorphism of the ACE gene
  • a primer having a sequence homologous to the human ACE gene sequence by the phosphoramidite method (CTGGAGACCA CTCCCATCCT TTCT) and a sequence having a sequence complementary to the human ACE gene sequence (Primer 2: GATGTGGCCATCACATTCGT CAGAT) was synthesized.
  • Primer 2 has a biotin ligated on the 5 side. Synthesis was performed according to the manual, and deprotection of various oligonucleotides was performed overnight at 55 ° C with aqueous ammonia. Oligonucleotide purification was performed using a PerkinElmer OPC column.
  • Oligonucleotide (I probe: TTACAGGCGT GATACAGTCA C) having a sequence complementary to the sequence of the human ACE gene and a linker arm at the 5 'end by a phosphoramidite method using Perkin Elmer 392 DNA synthesizer type And an oligonucleotide (D probe: GCCTATACAG TCACTTTTAT GTG) having a linker arm at the 5 ′ end having a sequence complementary to the sequence of the human ACE gene was synthesized.
  • I probe TTACAGGCGT GATACAGTCA C
  • D probe GCCTATACAG TCACTTTTAT GTG
  • the probe oligonucleotide synthesized in (2) above was bound to the inner surface of the microtiter plate via the linker arm.
  • the oligonucleotide was diluted to a concentration of 0.05 pmol / ⁇ l with a 50 mM boric acid buffer solution (pHIO) and 100 mM MgCl solution.
  • I signal is the detection signal of the amplified nucleic acid fragment that has reacted with the I probe
  • Dsignal is the detection signal of the nucleic acid fragment that has reacted with the D probe
  • the base polymorphism can be identified by taking the logarithm of the ratio of the signal obtained with each probe. . That is, those having a logarithm of the signal ratio of 0.0 or more are homogenous type I (insertion), those having a logarithm of -1.0 or less are homogenous type D (deletion), -1.0-0.0 It can be identified as a genotype and a D-type heterogenotype.
  • the “genotype” is indicated by a number from 1 to 3 according to the rules described above.
  • the ACE gene represented by iZD the ACE gene represented by iZD
  • IZD + DD (with D reel) is shown as “12”
  • II + lZD (with I reel) is shown as “23”.
  • Odds ratio means the ratio of genotype of SNP to Case or Control. If the Od ds ratio is 2, it indicates that the frequency of genotype in the case is twice as high as the control. “Kai value” means the statistical significance of the SNP genotvpe biased toward Case or Control. To taste. If the Kai value is 3.8 or more, it will be P ⁇ 0.05.
  • the difference between the Kai value and the Odds ratio is that the Odds ratio does not depend on the frequency of existence !, but the Kai value may decrease as the number of subjects increases. For example, for the A polymorphism found in 1% of the Case group when the number of subjects is 500, and the B polymorphism found in 0.5% of the Case group when the number of subjects is 5,000, even if the Odds ratio is the same, B In some cases, the polymorphism has a higher Kai value.
  • case numbers 5, 10, and 15 can be explained.
  • the first SSNP is adopted as “explanation SSNP”.
  • the second SNP can be explained as case numbers 6 and 30, which cannot be explained by the first SSNP, so it is "Explanation SSN P".
  • the fifth SSNP will not be used because anything that can be explained by it can be explained by all the first “explanatory SSNPs”. In this way, for each of the Case group and the Control group, the "explanation SSNP" was extracted from the SSNP obtained in 2-3.
  • the first SSNP [ACE-II and TT of MTHFR]
  • the second SSNP (C-reel of ACE-II and eNOS (abbreviation: N1))
  • the third SSNP (C-reel of ACE-I and eNOS (abbreviation: N1)), ACE-II is 3.5%, ACE — I reel is 0.5%. Therefore, we adopt only ACE-II and reject ACE-I reel (I think that polymorphism or I reel is more important, whichever is more important).
  • Fig. 19 shows a list of SSNPs (gene polymorphisms positively associated with arteriosclerosis), and the Control group (disease group). Explanation of unaffected group) Fig. 1 lists SSNPs (polymorphisms negatively associated with arteriosclerosis).
  • the carotid intima-media thickness was measured to be 0.2 mm or more larger than the average carotid intima-media thickness of healthy subjects. Thick cases were classified as “arteriosclerosis disease cases”, and other cases were classified as “non-atherosclerosis disease cases”.
  • the ratio at which the arteriosclerosis disease case and the non-arteriosclerosis disease case correspond to the arteriosclerosis disease high-risk case and the arteriosclerosis disease low-risk case, respectively, is referred to as the "Sensitivity ratio". (Correct answer rate) ".
  • the likelihood of disease onset, the likelihood of progression, etc. can be determined with high accuracy as a disease risk, and a disease risk determination method and disease risk that can be used for prevention and treatment of disease onset
  • a degree determination device and a disease risk determination program can be provided. This method can accurately determine the likelihood of developing or progressing atherosclerotic disease or myocardial infarction disease in diabetic patients or patients with borderline diabetes, and is effective in preventing and treating the onset of the disease Can be used for
  • the conventional method for determining the risk of disease was to determine the disease and risk using only the susceptibility (positive association) of the disease as an index, whereas in the present invention, the resistance to disease was determined. (Negative relevance) is also included in the index. As a result, in the present invention, it becomes possible to judge the disease risk not only from the susceptibility but also from the resistance, thereby making a comprehensive judgment, and to obtain a more accurate and highly accurate result of the disease risk. Will be able to
  • the present invention also provides a disease resistance factor and a susceptibility factor useful for determining the risk of arteriosclerotic disease, particularly atherosclerotic disease caused by diabetes, and myocardial infarction disease, particularly caused by diabetes.
  • the disease resistance and susceptibility factors that are useful for determining the risk of myocardial infarction disease are clarified by examining the polymorphisms of the polymorphisms, and the atherosclerosis disease resistance gene polymorphism set and the The present invention provides a gene polymorphism set, a cardiomyopathy disease resistance gene polymorphism set and a myocardial infarction disease susceptibility gene polymorphism or a gene polymorphism set.
  • the disease risk determination method provided by the present invention, a disease risk determination array, a disease resistance gene marker and a disease susceptibility gene marker, a disease resistance gene polymorphism or a kit for analyzing a disease susceptibility gene polymorphism are provided by: It is useful for determining the risk of pulse sclerosis or myocardial infarction.
  • the powerful technology of the present invention can be similarly applied to other diseases that are not limited to arteriosclerotic diseases and myocardial infarction diseases listed as examples in the present specification.
  • the present invention can be similarly applied to cerebral infarction, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and the like, which are caused by onset.

Abstract

 本発明は、疾患の発症しやすさや進行しやすさ等を疾患危険度として正確に判定でき、疾患の予防および治療に利用できる疾患危険度判定方法、該疾患危険度の判定等に使用するための疾患危険度判定用遺伝子多型を決定する方法、判定に使用するためのアレイ、遺伝子多型分析用キットおよび疾患危険度判定装置等を提供する。疾患危険度の判定の主たる特徴は、判定に疾患と負(抵抗性)の関連性を有する遺伝子多型または遺伝子多型セットを用いること、特に疾患と負の関連性を有する遺伝子多型または遺伝子多型セットと、正の関連性を有する遺伝子多型または遺伝子多型セットを組み合わせて用いることである。

Description

明 細 書
疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び 判定用アレイ
技術分野
[0001] 本発明は、疾患危険度判定用遺伝子多型の決定方法に関する。また本発明は、か 力る方法によって決定された遺伝子多型を用いて、個々の被験者について疾患危 険度を判定する方法に関する。より詳しくは各種の疾患の予防、治療および診断に 利用できる疾患危険度判定方法、それを実効するために使用できる疾患危険度判 定装置および疾患危険度判定プログラムに関する。
[0002] さらに本発明は、上記疾患として糖尿病に起因して生じる動脈硬化性疾患に関す る疾患危険度の判定に使用できる、疾患危険度判定用アレイ、疾患危険度判定方 法、遺伝子マーカー、及び分析キットに関する。
背景技術
[0003] 動脈硬化性疾患 (虚血性心疾患)の発症には、高血圧、糖尿病、高脂血症、肥満、 喫煙などの環境要件が、危険因子として関係することが知られているが、家族歴もま た、危険因子の一つである。近年の分子生物学的手法の発展により、動脈硬化に関 係する遺伝子上に存在する種々の遺伝子多型が明らかになっており、疾病への関 与が研究されている。
[0004] このような動脈硬化性疾患を始めとして、各種の疾患にっ 、て、被験者が有する個 々の疾患に関与する遺伝子多型の遺伝子型等の情報に基づいて、当該被験者の 疾患のなりやすさや進行しやすさ等の 、わゆる「疾患危険度」が判定できれば、疾患 の発症を予防したり進行を抑えるための事前対策が可能となる。すなわち、その疾患 危険度の高いと判定された被験対象は、早期に日常力 疾病の予防に心がけること ができる。また、疾患の発症の可能性や発症後の進行度なども予測することもでき、 被験者に応じてよりきめ細かい診断や治療が可能となる。
[0005] しかし、動脈硬化疾患を始めとする各種の疾患に関して、これまで報告されてきた S NPを含む遺伝子多型の臨床関連研究においては、単一の遺伝子多型を調べて、 該遺伝子多型について一の遺伝子型の集団と、他の遺伝子型の集団とにおいて、 それぞれ患者と健常者との割合を調べることにより、疾患になりやすさのォッズ比を 算出している (非特許文献 1)。このような調査方法では、ほとんどの多型は有意差が なぐ遺伝子多型力 疾患のなりやすさや進行しやすさ等の疾患危険度を予測する ことはできな力 た。
[0006] ましてや、検査を受ければ、そのうちの多くの被験者について高い確率で疾患危険 度 (疾患のなりやすさや進行しやすさ)を予測することができるような方法は全く存在 しなかった。
[0007] なお、出願人は、頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有 する複数の遺伝子多型を組み合わせて動脈硬化性疾患を判定する方法に関して、 2003年 4月 14日付けで国際出願 (PCT/IB03/01368)を行っている。その国際出願の 国際調査で挙げられた文献 (非特許文献 2— 6)は ヽずれも頸動脈内膜中膜複合体 肥厚度との間に有意な正の関連性を有する遺伝子多型に言及するものにすぎず、 疾患危険度の判定に「正の関連性」とは逆の「負の関連性」を有する遺伝子多型を用 V、ると 、う発想は全く記載されて 、な!、。
非特許文献 1: Yamada Y, Izawa H, Ichihara b, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.N.Engl.J.Med. 2002; 347(24): 1916—23
非特許文献 2 : Rauramaa R, et al., Arterioscler Thromb Vase Biol. 2000 Dec, vol.20, no.12, p.2657-2662
非特許文献 3 : Chapman CM, et al" Arteriosclerosis. 2001 Nov, vol.159, no.l, p.209-217
非特許文献 4 : McQuillan BM, et al., Circulation. 1999 May 11, vol.99, no.18, p.2383-2388
非特許文献 5 : Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759 非特許文献 6 : Castellano M, et al, Circulation. 1995 Jun 1, vol.91, no.11, p.2721-2724)
発明の開示 発明が解決しょうとする課題
[0008] 本発明は、疾患のなりやすさや進行しやすさ等の疾患危険度の判定に関する従来 の問題を解決し、以下の目的を達成することを課題とする。
[0009] すなわち、第 1に本発明は、各種の疾患について固有の疾患危険度判定用遺伝 子多型を決定する方法を提供することを目的とする。また第 2に本発明は、各種の疾 患について、発症しやすさや進行しやすさ等が判定できて、疾患の予防および治療 に利用できる疾患危険度判定方法、それに使用できる疾患危険度判定装置および 動脈硬化性疾患危険度判定プログラム等を提供することを目的とする。さらに第 3に 本発明は、疾患の中でも特に糖尿病に起因して発症する動脈硬化性疾患について 、疾患危険度判定用アレイ、疾患危険度判定方法、遺伝子マーカー、並びに疾患固 有の遺伝子多型及び遺伝子多型セットを検出するための分析キットを提供することを 目的とする。
課題を解決するための手段
[0010] 本発明者らは、糖尿病患者を対象として、遺伝子多型と、動脈硬化性疾患の判定 指標である頸動脈内膜中膜複合体肥度との関係を定量的に解析していたところ、頸 動脈内膜中膜複合体肥厚度と負の関連性 (抵抗性)を有する遺伝子多型が存在す ることを見いだし、それらの遺伝子多型の 2以上の組み合わせ (遺伝子多型セット)に より、被験者について動脈硬化性疾患の力かりにくさ (発症しにくさ)が説明できること を確認した。更に、頸動脈内膜中膜複合体肥厚度との間に正の関連性 (感受性)を 有する遺伝子多型または遺伝子多型セットと前記負の関連性 (抵抗性)を有する遺 伝子多型セットを組合せて、動脈硬化性疾患との関連を検討した場合には、正の関 連性 (感受性)を有する遺伝子多型または遺伝子多型セットだけ力も判定するよりも、 動脈硬化性疾患の疾患危険度がより高精度に判定できることを見出した。
[0011] 本発明者に力かる知見に基づいて、更に検討を進めていたところ、疾患危険度の 判定において、動脈硬化性疾患だけでなく多くの疾患について、疾患感受性遺伝子 多型 (または遺伝子多型セット)と疾患抵抗性遺伝子多型 (または遺伝子多型セット) の両方を組み合わせることにより、より精度の高い結果が得られることを確認した。ま た、本発明者は、上記研究において動脈硬化性疾患について用いた疾患感受性遺 伝子多型 (または遺伝子多型セット)と抵抗性遺伝子多型 (または遺伝子多型セット) の決定方法が、他の疾患についても同様に適用できることを確信し、各種疾患に固 有の遺伝子多型 (感受性遺伝子多型、抵抗性遺伝子多型)の決定方法を確立した。
[0012] 本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための 手段は以下のとおりである。
[0013] (1) 予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の 遺伝子多型を抜き出し、遺伝子多型セットとする第 1ステップと、
疾患の指標、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を用 いて、前記遺伝子多型セットに関して、前記疾患の指標との関連性、及び該関連性 の統計的有意性を計算する第 2ステップと、
計算された前記関連性が、負の関連性であり且つ有意である場合に、前記遺伝子 多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第 3ステップとを含む疾患危険度判定用遺伝子多型の決定方法。
[0014] (2) 図 1一 9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群 から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出 用プローブを有するか、または図 38— 43のいずれか一つの図に記載する負(抵抗 性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成す る遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用ァ レイ、または図 56— 58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セ ットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対 する検出用プローブを有する、心筋梗塞危険度判定用アレイ。
[0015] (3) (b)被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性 を有する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、を 有するか、
さらに上記工程に加えて、
更に、
(b')疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝 子多型セットと照合する工程、及び (c) (b')の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連 性とを対比してその偏度を算出する工程
を有する疾患危険度の判定方法。
[0016] (4) 遺伝子型を含む 1以上の遺伝子多型力 構成される第 1の遺伝子多型セット
、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させ た参照テーブルを記録した記録部と、
被験試料の遺伝子型を有する遺伝子多型を取得するインタフェース部と、 取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型力 構成され る第 2の遺伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セッ トとを照合する処理部とを備え、
前記処理部が、照合の結果一致する前記第 1の遺伝子多型セットがある場合に、 該第 1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に 関する偏度を計算することを特徴とする疾患危険度判定装置。
[0017] (5) コンピュータに、
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、
遺伝子型を有する 1以上の遺伝子多型から構成される第 1の遺伝子多型セット、及 び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参 照テーブルを記録部に記録する機能、
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び、
照合の結果一致する前記第 1の遺伝子多型セットがある場合に、該第 1の遺伝子 多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計 算する機能とを実現させるための疾患危険度判定プログラム。
[0018] (6) コンピュータに、
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、
遺伝子型を有する 1以上の遺伝子多型から構成される第 1の遺伝子多型セット、及 び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参 照テーブルを記録部に記録する機能、
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び、
照合の結果一致する前記第 1の遺伝子多型セットがある場合に、該第 1の遺伝子 多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計 算する機能とを実現させるための疾患危険度判定プログラム
を記録したコンピュータ読取可能な記録媒体。
[0019] (7) 図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型、または図 38— 43のいずれか に記載する負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セッ トを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー、または 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少なくと も一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マ 一力一。
[0020] (8) (i)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、または
(ii)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少な くとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あ るいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、
を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。
[0021] (9) 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される 少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー 対あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含む、心筋 梗塞抵抗性遺伝子多型分析用キット。
図面の簡単な説明
[0022] [図 1-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 2以下)。
[図 1-B]上記図の続き。
[図 2-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(
Odds=— 3以下)。
[図 2-B]上記図の続き。
[図 3-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(
Odds=— 4以下)。
[図 3-B]上記図の続き。
[図 4-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(
Odds=— 5以下)。
[図 4-B]上記図の続き。
[図 5-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(
Odds=— 6以下)。
[図 5-B]上記図の続き。
[図 6]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す (Odds= 7以下)。
[図 7]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す (Odds= 8以下)。
[図 8]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す (Odds= 9以下)。
[図 9]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す (Odds= 10以下)。
[図 10]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 2以下)。
[図 11]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 3以下)。
[図 12]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 4以下)。 [図 13]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 5以下)。
[図 14]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 6以下)。
[図 15]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 7以下)。
[図 16]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 8以下)。
[図 17]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 9以下)。
[図 18]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 10以下)。
[図 19-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(
Odds=2以上)。
[図 19- B]上記図の続き。
[図 19- C]上記図の続き。
[図 20-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(
Odds=3以上)。
[図 20- B]上記図の続き。
[図 21]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=4以上)。
[図 22]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=5以上)。
[図 23]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=6以上)。
[図 24]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=7以上)。
[図 25]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=8以上)。
[図 26]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=9以上)。
[図 27]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=10以上)。
[図 28]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=2以上)。
[図 29]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=3以上)。
[図 30]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=4以上)。
[図 31]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=5以上)。
[図 32]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=6以上)。
[図 33]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=7以上)。
[図 34]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=8以上)。
[図 35]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=9以上)。
[図 36]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=10以上)。
[図 37-A]は、動脈硬化性疾患に対して関連性を有する遺伝子多型を列記したもので める。
[図 37- B]上記図の続き。
[図 38]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 2以下)。 [図 39]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 3以下)。
[図 40]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 4以下)。
[図 41]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 5以下)。
[図 42]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 6以下)。
[図 43]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す( Odds=— 7以下)。
[図 44]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 2以下)。
[図 45]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 3以下)。
[図 46]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 4以下)。
[図 47]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=— 5以下)。
[図 48-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(
Odds=2以上)。
[図 48- B]上記図の続き。
[図 49-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(
Odds=3以上)。
[図 49- B]上記図の続き。
[図 50]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=4以上)。
[図 51]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す( Odds=5以上)。 [図 52]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=2以上)。
[図 53]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=3以上)。
[図 54]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=4以上)。
[図 55]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺 伝子多型を列記したものである(Odds=5以上)。
[図 56]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す (Odds= - 2以 下)。
[図 57]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す (Odds=— 3以 下)。
[図 58]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す (Odds=— 4以 下)。
[図 59]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=— 2以下)。
[図 60]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=— 3以下)。
[図 61]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=— 4以下)。
[図 62]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=— 5以下)。
[図 63]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=2以上
) o
[図 64]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=3以上
) o
[図 65]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=4以上
) o [図 66]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=5以上
) o
[図 67]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=6以上
) o
[図 68]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=7以上
) o
[図 69]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す (Odds=8以上
) o
[図 70]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=2以上)。
[図 71]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=3以上)。
[図 72]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=4以上)。
[図 73]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多 型を列記したものである(Odds=5以上)。
[図 74]本発明の実施の形態に係る疾患危険度判定用遺伝子多型の決定方法を示 すフローチャートである。
[図 75]本発明の実施の形態に係る疾患険度判定装置を含むシステム全体を示すブ ロック図である。
[図 76]本発明の実施の形態に係る疾患険度判定装置が行う危険度の判定処理を示 すフローチャートである。
[図 77]実施例 1の結果を示す図面である。本発明の方法により判断された動脈硬化 性疾患高危険度例または動脈硬化性疾患低危険度例が、臨床的見地からの判断と 一致する割合及び一致しな!ヽ割合を、それぞれ Sensitivity率 (正答率)」及び「false positive率 (誤答率)」として求めたものである、口は感受性「説明 SSNP」のみ、△は 抵抗性「説明 SSNP」のみ、參は感受性「説明 SSNP」及び抵抗性「説明 SSNPJの 両者で、推定した Sensitivity率(正答率)、及び false positive率 (誤答率)の計算値を 示す。
発明を実施するための最良の形態
[0023] 以下、本発明をより詳細に説明する。
(用語)
「遺伝子多型」とは、同一集団内において、一つの遺伝子座に 2種類以上の対立遺 伝子 (アレル)が存在する遺伝子の多様性を意味する。具体的には、ある集団におい て一定の頻度以上で存在する遺伝子の変異を示す。ここでいう遺伝子の変異は、 R NAとして転写される領域に限定されるものではなぐプロモーター、ェンハンサ一等 の制御領域などを含むヒトゲノム上で特定しうるすベての DNAにおける変異を含む ものである。ヒトゲノム DNAの 99. 9%は各個人間で共通しており、残る 0. 1%がこの ような多様性の原因となり、特定の疾患に対する感受性、薬物や環境因子に対する 反応性の個人差として関与し得る。遺伝子多型があっても表現型に差が出るとは限 らない。なお、 SNP (—塩基多型)も遺伝子多型の一種である力 本発明が対象とす る遺伝子多型はこれに限られない。
[0024] 本明細書で示す遺伝子型(Genotype)は、「1」は置換塩基のうち塩基のアルファべ ット順 (A、 C、 G、 T)で前にくる塩基を有する多型のホモを、「2」はへテロを、「3」は、 置換塩基のうち塩基のアルファベット順で後にくる塩基を有する多型のホモを表す。 例えば遺伝子多型が、 NCP-1 (Α— 2518G)のように示される場合、 ΑΖΑのホモを 遺伝子型 1、ヘテロ (AZG)を遺伝子型 2、 GZGのホモを遺伝子型 3という。「12」は 前記 1と 2の遺伝子型(Genotype)の両方の遺伝子型、「23」は前記 2と 3の遺伝子型 (Genotype)の両方の遺伝子型を表す。
[0025] 「遺伝子多型セット」とは、複数の遺伝子多型の組合せを 、う。ここで複数の遺伝子 多型とは、異なる遺伝子座を有する 2種以上の遺伝子多型を意味する。また、ここで「 遺伝子多型」は、遺伝子型 (Genotype)を考慮したものであって、それを含むものであ る。すなわち、本発明において「遺伝子多型」とは特定の遺伝子型 (Genotype)を有 する遺伝子多型を意味する。
[0026] 本発明にお 、て「遺伝子多型セット」とは特に、対象とする疾患に対して、組合せ全 体として、負 (抵抗性)または正 (感受性)の関連性を示す「遺伝子多型の組合せ」を いう。こうした遺伝子多型セット (組合せ)の一例を示したもの力 図 1一 9及び図 38— 43〔動脈硬化性疾患のに対して負の関連性を示す遺伝子多型セットの群〕、図 19一 27及び図 48— 51 (動脈硬化性疾患に対して正の関連性を示す遺伝子多型セットの 群)、図 56— 58 (心筋梗塞に対して負の関連性を示す遺伝子多型セットの群)、図 6 3— 69 (心筋梗塞に対して正の関連性を示す遺伝子多型セットの群)である。すなわ ち、これらの各図において、各行 (横一列)には、全体として疾患に対して正または負 の関連性を示す、遺伝子多型 (SNP)の組合せが示されていることになる。なお、図 1 9一 27には、一行に、 2または 3つの遺伝子多型が示されている場合のほ力 単一の 遺伝子多型が示されている場合がある。この場合、当該遺伝子多型は、単独で動脈 硬化性疾患に対して正の関連性を示す遺伝子多型であるといえる。なお、本明細書 では、説明が複雑になるのを避けるために、当該単一の遺伝子多型についても「遺 伝子多型セット」として説明する。
図 1を例にすると、当該図の各行には、動脈硬化性疾患の指標に対して負の関連 性を示す遺伝子多型セットが記載されている。具体的には、一行目には、左欄から「 CF12」(FactorXII遺伝子)(Genotype: 3)、「: BKR1」(bradykinin B2 receptor遺伝子 ) (Genotype : 3)、及び「IL 182」(Interleukin- 18遺伝子)(Genotype : 12)からなる遺 伝子多型セットが記載されている。「CF12」には、 46位力 または Tである対立遺伝 子が存在するので(図 37参照)、上記定義に従うと、左欄には「CF12」の遺伝子多 型の遺伝子型 3 :TZTが記載されていることになる。また「BKR1」には、 -58位が Cま たは Tである対立遺伝子が存在するので(図 37参照)、同様に上記定義に従うと、中 欄には「BKR1」の遺伝子多型の遺伝子型 3 :TZTが記載されていることになる。さら に「IL 182」には、 -137位が Gまたは Cである対立遺伝子が存在する(図 37参照)。 ここで遺伝子多型セットを構成する「IL 182」の遺伝子型が「12」であるから、右欄 には「IL 182」の遺伝子多型の遺伝子型 1: CZCと 2: C/Gの二つが記載されて ヽ ること〖こなる。そこで、これらの 3つの遺伝子多型が有する遺伝子型の組合せを考え
CF12)と TZT(BKRl)と CZG (11-182)との組合せ(セット)の 2通りの遺伝子多型セッ トが記載されていることになる。 [0028] なお、ここでこれら 2通りの遺伝子多型セットを、個々に遺伝子多型セットとして用い ることもできるが、 C/C (11-182)と CZG (n- 182)とを、 /? (11-182)〔?は可能な候 補、ここでは Gと Cを意味する〕として統合して、 TZT(CF12)、 TZT (BKRl)及び C
/ ? (n-182)の一通りの遺伝子多型セットとして、用いることもこともできる。
[0029] 「動脈硬化性疾患」とは、広く虚血性疾患を含むものであり、狭心症、心筋梗塞、脳 梗塞、末梢動脈閉塞症が含まれる。本発明が対象とする動脈硬化性疾患は、特に糖 尿病に起因して発症する動脈硬化性疾患である。「動脈硬化性疾患危険度」とは、 上記動脈硬化性疾患の発症しやすさ、進行しやすさを表す指標である。また、「心筋 梗塞」は動脈硬化性疾患の一種であるが、「心筋梗塞危険度」とは動脈硬化性疾患 の中でも特に心筋梗塞に注目して、その発症しやすさや進行しやすさを表す指標で める。
[0030] (1)疾患危険度判定用遺伝子多型の決定方法
本発明に係る疾患危険度判定用遺伝子多型の決定方法は、被験者がどの程度疾 患にかかり易!、か、若しくはどの程度疾患が進行し易!、カゝ (疾患危険度)の判定に使 用される、疾患危険度判定用遺伝子多型の決定方法を提供する。以下においては、 動脈硬化性疾患を例に説明するが、本発明はこれに限定されず、遺伝子との関連性 を有する疾患に適用することができる。その場合、疾患に応じた判定指標 (例えば、 動脈硬化性疾患であれば頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のァ ルブミン排泄率、心筋梗塞であれば心電図上の陳旧性 (abnormal Q)心筋梗塞波形 の有無又は心筋梗塞の既往の有無)を用いて、後述する相関性を評価すればよい( 例えば、 日本糖尿病学会編 糖尿病治療ガイド 2004 - 2005、文光堂参照)。
[0031] (1-1)動脈硬化性疾患危険度判定用遺伝子多型の場合
本発明に係る動脈硬化性疾患危険度判定用遺伝子多型の決定方法に関して、図 74に示したフローチャートに従って説明する。尚、ここでの処理は、 CPU,メモリ、記 録装置 (例えばハードディスク)、操作装置 (例えば、キーボード、マウス)、表示装置( 例えば、 CRTディスプレイ)などを備えたコンピュータを用いて行うこととして説明する 。即ち、処理対象データは、操作部など力 入力されて記録部に記録されており、 C PUが、メモリをワーク領域として使用して各処理を実行し、処理の途中結果、最終結 果は、必要に応じて記録部の所定領域に記録される。
[0032] まず、事前に目的疾患である動脈硬化性疾患に関係する遺伝子の情報を、文献、 患者カルテなどカゝら収集し、本決定方法で使用する遺伝子多型を選択する。この予 備選択は、当業者の経験に基づき行うこともできるが、疾患名称又はこれに関連する 言葉をキーワードとして、コンピュータを用いて種々の専門機関で構築されたデータ ベースを検索し、ヒット件数などに応じて選択してもよい。予備選択された遺伝子多型 の一例を、図 37に示す。
[0033] 図 37には、種々の文献から取得した約 200の遺伝子多型の中から、経験によって 選択した 99の遺伝子多型がリストされている(図 37の詳細な説明は後述する)。尚、 本明細書において示される各図の番号は、枝番が明示的に示されている場合を除 いて、全ての枝番を含むものとする。従って、図 37と記載した場合は、図 37— A及び 図 37-Bを意味する。
[0034] 図 74に示したフローチャートは、上記の予備選択によって選択された所定数の遺 伝子多型を用 、て行われる。
[0035] また、動脈硬化性疾患の判定指標として頸動脈内膜中膜複合体肥厚度 (IMT) ( 以下、 IMTと記す)を用い、これと遺伝子多型との関連性を統計的に解析する。 IMT の測定に関しては後述する。従って、予め記録部には、母集団の構成要素である各 人の疾患の判定指標である IMTと、各人が持って 、る遺伝子多型 (遺伝子型を有す る。以下同じ)とが対応付けられて、被解析データとして記録されていることとする。被 解析データは、例えば各人に付与した個人 IDを用い、 {個人 ID, IMT,複数の遺伝 子多型 }の形式で記録されている。
[0036] ステップ S1において、ステップ S2以降の処理で使用するしきい値 TH1、 TH2、繰り 返し処理のカウンタの上限値 kmaxを設定し、カウンタ kに初期値として 1を設定する。 TH1及び TH2はそれぞれ、後述する Odds (ォッズ比)及び Kai (カイ二乗値)に対する しきい値である。ここで、 TH1は 2以上の値、 TH2は統計的な有意性を決めるしきい値 であり、 0以上の値である。例えば、 TH2 = 6. 63であり、この場合、対象とする事象が 起こる確率 Pが P< 0. 01である。また、上限値 kmaxは 2— 5が好ましぐより好ましくは 2又は 3である。解析が煩雑にはなる力 上限値 kmaxが 6以上、即ち遺伝子多型 6個 以上から構成される遺伝子多型セットに対して処理を行ってもよい。
[0037] ステップ S2において、予備選択した遺伝子多型 Gi (i= 1— n)の中から、遺伝子型 を有する遺伝子多型を選択し、これを 1つのセットとする。
[0038] ステップ S3において、ステップ S2で選択されたセットが、それより以前の繰り返し処 理にお 、て、後述するステップ S4の処理で有意性ありと判断された遺伝子多型セッ トを含んでいるか否かを判断し、含んでいると判断した場合、ステップ S5に移行し、 含んでいないと判断した場合、ステップ S4に移行する。 k= lの場合にはステップ S4 に移行する。
[0039] ステップ S4にお!/、て、ステップ S2で指定されたセットに対して、 Odds (ォッズ比)及 び Kai (カイ二乗値)を計算し、 Odds≤— TH1且つ Kai≥TH2である場合のみ、セットと 対応させて Odds及び Kaiを記録する。具体的には、そのセットを構成する遺伝子多型 Gjを全て含む個人 IDに対応する IMTを用いて、そのセットの Oddsを計算する。 Odds (ォッズ比)の計算方法は、文献(Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorpnisms in candidate genes. N.Engl.J. Med. 2002; 347(24): 1916-23)などにより公知であり、 Kai (カイ二乗値)の計算方法は統計学上周 知であるので、これらの計算方法の詳細は省略する。但し、 Oddsの値は、通常 0以上 の値であるが、本明細書中では、公知の方法で計算した Oddsが 1以上である場合、 その値をそのまま使用する力 1よりも小さい場合には、公知の方法で計算した Odds から lZOddsを計算し、これを Oddsとする。このとき、遺伝子多型の遺伝子型が 1と 2の場合をまとめて 1つのセットとすることもでき力 遺伝子多型の遺伝子型が 1の場 合と、 12をまとめた場合との両方とも、 Odds≤— TH1且つ Kai≥TH2に該当する場合 には、所定の基準で取捨選択することが好ましい。例えば、 Kaiの大きい方、 Oddsの 絶対値の大きい方、または、後述の第 3寄与率の大きい方を採用するなどによって、 取捨選択する。
[0040] ステップ S5において、 k個の遺伝子多型力もなる全てのセットに関して、ステップ S2 一 S4の処理を終了したか否かを判断し、終了するまでステップ S2— S4の処理を繰 り返す。 [0041] ステップ S6において、 kが上限値 kmaxよりも大きいか否かを判断し、 k>kmaxでな いと判断した場合、ステップ S7に移行してカウンタ kを 1増加させてステップ S2に戻る 。これによつて、 k= l一 kmaxまで、ステップ S2— S7が繰り返される。
[0042] 以上のステップ S2— S7の処理によって、疾患指標(ここでは IMT)と負の関連性( Oddsが負)を有するセットが決定される。例えば、図 37に示した遺伝子多型を用い、 kmax= 3、 TH2 = 6. 63とした場合、 TH1 = 2と設定すれば図 1に示したセットが得ら れ、 TH1 = 3と設定すれば図 2に示したセットが得られる。尚、各図における各項目の 意味は後述する。 kmax= 3、 TH2 = 6. 63の条件で、同様に、図 3は TH1 =4とし、図 4は TH1 = 5とし、図 5は TH1 = 6とし、図 6は TH1 = 7とし、図 7は TH1 = 8とし、図 8は TH1 = 9とし、図 9は TH1 = 10として、得られたセットを表している。
[0043] ステップ S8において、ステップ S2— S7と同様に、正の関連性(Oddsが正)を有する セットを決定する処理を行うために、カウンタ kをリセット、即ち k= lとする。
[0044] ステップ S9— S 14において、ステップ S2— S7と同様の処理を行う。但し、ステップ S10では、それより以前の繰り返し処理において、ステップ S 11の処理で有意性あり と判断されたセットを構成する遺伝子多型を含んでいるか否かを判断する。また、ス テツプ S11においては、 Odds≥THl且つ Kai≥TH2である場合のみ、セットと対応さ せて Odds及び Kaiを記録する。
[0045] 以上のステップ S9— S14の処理によって、疾患指標(ここでは IMT)と正の関連性
(Oddsが正)を有するセットが決定される。例えば、図 37に示した遺伝子多型を用い 、 kmax= 3、 TH2 = 6. 63とした場合、 TH1 = 2と設定すれば図 19に示したセットが得 られ、 TH1 = 3と設定すれば図 20に示したセットが得られる。 kmax= 3、 TH2 = 6. 63 の条件で、同様に、図 21は TH1 =4とし、図 22は TH1 = 5とし、図 23は TH1 = 6とし、 図 24は TH1 = 7とし、図 25は TH1 = 8とし、図 26は TH1 = 9とし、図 27は TH1 = 10と して、得られたセットを表している。
[0046] 以上で、動脈硬化性疾患の危険度を判定する場合に有効である遺伝子多型のセ ットを決定することができた。
[0047] 尚、図 74に示したフローチャートに対して、例えば、以下に示すように種々の修正 を行い、または処理の追カ卩を行うことができる。 [0048] 例えば、上記では、疾患指標(ここでは IMT)と正 Z負の関連性の何れも同等に扱 つたが、何れかを重視した処理としてもよい。即ち、負の関連性を重視し、まず負の 関連性を有するセットを決定し、その結果を考慮して正の関連性を有するセットを決 定してもよぐ逆に正の関連性を重視し、最初に正の関連性を有するセットを決定し、 その結果を考慮して、負の関連性を有するセットを決定してもよい。例えば、負の関 連性を重視する場合、図 74に示したステップ S10において、それより以前の繰り返し 処理にお 、て、ステップ S11の処理で有意性ありと判断されたセットを構成する遺伝 子多型を含んでいる力否かを判断するのに加えて、ステップ S4で有意性ありと判断 されたセットを構成する遺伝子多型を含んで!/ヽるカゝ否かを判断するようにすればよ!ヽ 。また、正の関連性を重視する場合、図 74に示したフローチャートにおいて、ステツ プ S4とステップ S 11における Oddsの判定式(Odds≤— TH1及び Odds≥TH1)を入れ 換えて、ステップ S10において、それより以前の繰り返し処理において、ステップ S11 の処理で有意性ありと判断されたセットを構成する遺伝子多型を含んでいる力否かを 判断するのに加えて、ステップ S4で有意性ありと判断されたセットを構成する遺伝子 多型を含んで ヽるカゝ否かを判断するようにすればよ!ヽ。その結果得られるセットの一 例を、図 38—図 43、及び図 48—図 51に示す。図 38— 43は、それぞれ TH1 = 2— 7 の値に対応する負の関連性を有するセットを表す。また、図 48—図 51は、それぞれ TH1 = 2— 5の値に対応する正の関連性を有するセットを表す。
[0049] また、上記では、疾患危険度の判定に有効である遺伝子多型のセットを決定したが 、さらに、遺伝子多型の数を減らす必要がある場合には、各々の遺伝子多型をランク 付けし、ランクに応じて遺伝子多型を選別してもよ!/、。
[0050] 例えば、 Oddsに応じて遺伝子多型を取捨選択することができる。その結果、例えば 、図 1 (TH1 = 2)に対応して、図 10に示した遺伝子多型が決定される。同様に、図 11 一図 18が、図 2 (TH1 = 3)—図 9 (TH1 = 10)から、図 28—図 36が、図 19 (TH1 = 2) 一図 27 (TH1 = 10)から、それぞれ得られる。
[0051] また、より有効な遺伝子多型セットを選択する手法の一例を示せば、以下の通りで める。
[0052] 先ず、母集団中の被験者に関して、図 74に示した一連の処理によって決定された 遺伝子多型の各々のセットに関して、各 Case (疾患者)ごとに、いくつの遺伝子多型 セットで説明し得るかを決定して第 1寄与率を計算する。たとえば、 5つのセット (その 中の 1つのセットを Set20とする)で Case#210が説明されたとすると、その症例( Case#210)に対する一つのセット(例えば Set20)の第 1寄与率 (Caseに対する寄与率 )を 1Z5 = 0. 2とする。
[0053] 次に、セットが説明した各 Caseごとの第 1寄与率の総和(Set20が 10の Caseを説明し たとすると、 10の Caseについての総和)を求めた値から、各々の遺伝子多型の遺伝 子型ごとの第 2寄与率を求める。例えば、 Set20が、 SNP1-1と SNP13-23との 2つの遺 伝子多型力 なるセットであれば、 Set20の第 1寄与率の総和を等分し、遺伝子多型 の遺伝子型ごとに割り付ける。例えば、 Set20に対する第 1寄与率の総和が 1. 4にな つたとすると、 SNP1-1、 SNP13-23にそれぞれ 1. 4/2 = 0. 7を割り当てる。すべての セットごとに第 1寄与率の総和を各遺伝子多型に割り当て(3つの遺伝子型を有する 遺伝子多型のセットならば 3等分する)、遺伝子多型の遺伝子型ごとの第 2寄与率を 計算する。尚、図 10—図 18、図 28—図 37では、各遺伝子多型が、第 2寄与率(図 示せず)の大き 、順に上から並べられて 、る。
[0054] さらに、各々の遺伝子多型の遺伝子型ごとの第 2寄与率の中の最大値を、その遺 伝子多型の第 3寄与率とし、最大寄与率を示す遺伝子多型の遺伝子型をその遺伝 子多型の有効な遺伝子型とする。例えば、 ACE-DD(l)の第 2寄与率が 5、
ACE-DD+D/K1+2)の第 2寄与率が 2とすると、 ACE-DDを有効な遺伝子多型とし、第 3寄与率を 5とする。
[0055] さらに、図 74に示した一連の処理によって決定された遺伝子多型のセットのうち、 上記の有効な遺伝子多型を含むセットのみを選択する。たとえば、 ACEの有効な遺 伝子型が DDとすると、 DD+D/K1+2)の ACE遺伝子型を含んで 、るセットを破棄する。
[0056] その結果、例えば、図 38 (TH1 = 2)に対応して、図 44に示した遺伝子多型が決定 される。同様に、図 45— 47が、図 39 (TH1 = 3)—図 43 (TH1 = 7)から、図 52—図 5 5が、図 48 (TH1 = 2)—図 51 (TH1 = 5)からそれぞれ得られる。図 44一図 47では、 遺伝子多型が、第 3寄与率の大き 、ものから順に上から並べられて 、る。
[0057] 寄与率は、各々の遺伝子多型と IMTとの関連性、即ち、各々の遺伝子多型と動脈 硬化性疾患との関連性の高さを示す指標になり得る。よって、寄与率が所定以上の 遺伝子多型を選択することで、より少ない遺伝子多型を用いて、後述する危険度判 定を行うことができる。このとき、選択のしきい値を適切に指定すれば、精度をほとん ど低下させることがない。
[0058] また、臨床データが増えた場合、それらを含む新たな被解析データの集合に対して 、上記した疾患危険度判定用遺伝子多型決定方法を適用することによって、より有 効な遺伝子多型セットを決定することができ、疾患危険度の判定精度を向上すること ができる。
[0059] また、個人の遺伝子多型情報自体を IDとして利用することができる。例えば、上記 したように被解析データカ 個人 ID,疾患指標の値,複数の遺伝子多型 }の形式で 記録されており、個人 IDが各病院によって付与され、管理されている場合、対象者が 病院を変わると個人 IDも変わってしまい、個人の履歴を追跡することができず、被解 析データを有効利用することができない。しかし、遺伝子多型情報は不変の個人固 有の情報であるので、遺伝子多型情報自体を IDとして使用することによって、個人 I Dを使用することなぐ過去の被解析データ、特に過去の疾患指標の値 (例えば、動 脈硬化性疾患であれば IMTの測定値)を利用することができる。これによつて、個人 の履歴を考慮した解析を行うことができ、疾患危険度の判定に、より有効な遺伝子多 型を決定することができる。ここで、被解析データは、 {個人 ID,疾患指標の値,複数 の遺伝子多型 }に限定されず、疾患指標の値以外に種々の臨床データなどが付加さ れていてもよい。
[0060] (1-2)心筋梗塞危険度判定用遺伝子多型の場合
心筋梗塞に関しても、疾患の指標として、心電図上の陳旧性 (abnormal Q)心筋梗 塞波形の有無又は心筋梗塞の既往の有無を使用して、上記と同様の処理を行うこと によって、危険度の判定に有効な遺伝子多型、及び遺伝子多型のセットを決定する ことができる。
[0061] 例えば、図 56—図 58は、それぞれ TH 1 = 2— 4として決定した、心筋梗塞と負の関 連性を有する遺伝子多型のセットを表す。また、図 63—図 69は、それぞれ TH1 = 2 一 8として決定した、心筋梗塞と正の関連性を有する遺伝子多型のセットを表す。ま た、図 59—図 62は、それぞれ図 56—図 58 (TH1 = 2— 3)を用いて決定した遺伝子 多型を表す。また、図 70—図 73は、それぞれ図 63—図 69 (TH1 = 2— 8)を用いて 決定した遺伝子多型を表す。
[0062] 尚、図 37に記載の遺伝子多型は、下記の群に分類することができる。
a)脂質関連遺伝子多型群
b)血圧関連遺伝子多型群
c)代謝関連遺伝子多型群
d)インスリン抵抗性関連遺伝子多型群
e)接着因子関連する遺伝子多型群
f)酸化ストレス関連遺伝子多型群
g)炎症反応関連遺伝子多型群
h)凝固線溶系関連遺伝子多型群
i)肥満関連遺伝子多型群
j)細胞増殖又は血管増殖関連遺伝子多型群。
[0063] ここで、ある因子に関連する遺伝子多型群とは、該因子に係る遺伝子のェクソン、ィ ントロンに存在する多型に限られず、プロモーター領域、 3 '非翻訳領域、 5 '非翻訳 領域等に存在する多型も含まれる。一般にコーディング領域中の多型は、アミノ酸配 列を変化させたり、 mRNAの発現量を変化させる場合があるし、調節領域中の多型 であっても、 mRNAの発現量を変化させたり、スプライシングを変化させる場合があり 、いずれも、タンパク質の発現量や、性質を変化させる可能性もある。
[0064] より具体的に、
a)脂質関連遺伝子多型群に属する遺伝子多型としては、 ABCA1、 HUMPONA, PPAR gammaゝ hepatic lipase(C— 480T)ゝ Apo E(Cysl l2Arg)、 PONl(Glyl92Arg)、 microsomal triglyceride transfer protein(G- 493T)、 CETP(Arg451Glu)、 lipoprotein lipase(Ser447STOP)、 PPARgamma(Leul62Val)、 ABCC6(C3421T)、
apolipoproteinE(E3 inexon 4(Arg 158し ys)、 adiponectin(T94G)、 Adiponectin(G276T) 、 Scavenger receptor BI=CLA- l(G4A(Gly2SEr))、 LDL receptor related
protein(C766T)、 adiponectin(Argl l2Cys)、 Scavenger receptor BI=CLA-l(G403A(Val 135Ile》などが挙げられる。
[0065] b)血圧関連遺伝子多型群に属する遺伝子多型としては、
Dopamine— D2receptor(Ser311Cys)ゝ ACE(I/D)、 AT2— receptor(A1166C)、
angiotensinogen(t704c)、 HANP(T2238C)、 HANP(C708T)、 bradykinin B2
receptor(C- 58T)、 endothelin-l(G5665T)などが挙げられる。
[0066] c)代謝関連遺伝子多型群に属する遺伝子多型としては、
Alfa#estrogen#receptor(P vull)、 MTHFR(C677T)、 CYP2J2*2(A14487G),
CYP2J2*3(C14532T), CYP2J2*4(15028T), CYP2J2- 6(A25661T)、
CYP2C9*3(Leu359Ile)、 CYP3A4(A-290G)などが挙げられる。
[0067] d)インスリン抵抗性関連遺伝子多型群に属する遺伝子多型としては、
Enos(T- 786C)、 glycogen#synthase((M416V), IRS- l(G3494A(Gly972Arg))、 Enos
(Glu298Asp(G894T》ゝ TGF beta(T29C(LeulOPro))、 resistin(ATG
repeatXl :6/6,2:6/7,3:7/7,4:7/8,5:8/8)、 RAGE(Gly82Ser)、
PGC- l(G1302A(Thr394Thr))、 PGC- l(G1564A(Gly482Ser》などが挙げられる。
[0068] e)接着因子関連遺伝子多型群に属する遺伝子多型としては、
P— selectin(A76666C(Thr715Pro))、 fractalkine#receptor(G84635A(Val249Ile)), connexin37(C 1019T(Pro319Ser))、 E— selectin(G98T)、 E— selectin(Ser 128Arg)、 ICAM1(E469K)、 GlycoproteinVI(Ser219Pro)、 glycoproteinIa(C807T)などが挙げられ る。
[0069] f)酸化ストレス関連遺伝子多型群に属する遺伝子多型としては、
p22phox(C242T(His72Tyr)), Mitochondria(A5178C), Mitochondria(A12026G), EPHX2(Arg402-403ins.inExon 13)、 Mitochondria(C 131 OT)、 Mitochondria(T 14577C) などが挙げられる。
[0070] g)炎症反応関連遺伝子多型群に属する遺伝子多型としては、 IL-6(G-174C)、 CRP(G1059C)、 TNFalfa(G- 238A)、 interleukin6(C- 634G)、 MPO(G- 463A)、
TNF- alfa(G- 308A)、 CD18(C1323T)、 LTA(A252G)、 LTA(C804A(Thr26Asn))、 C- C chemokine receptor 2(G190A)、 Interleukin 10(G- 1082 A)、 interleukin 1 beta(C3953T) 、 IL- 18(C- 607A)ゝ IL- 10(C- 819T)、 IL- 18(G- 137C)、 interleukin 1 receptor antagonist(tandem repeat (2 repeat) in intron 2)など力 S挙げられる。
[0071] h)凝固線溶系関連遺伝子多型群に属する遺伝子多型としては、
PIIbnia(C1565T(PIA2))、 Thrombomodulin(G- 33A) FactorXII
serotonin#2A#receptor(Tl 02C) , ΡΑΙ- 1(4G- 668/5G)、 GPIa(A1648G)、 beta
Fib(C148T)、 prothrombin(G20210)、 alfa- F¾(Thr312Ala) FactorV(G1691A)、 GP Ia(G873A)、 Thrombospondin4(G1186C(Ala387Pro))、 Thrombospondin- 1(A2210G)、 von Willebrand Factor (G- 1051A)、 Thrombopoietin(A5713G)などが挙げられる。
[0072] i)肥満関連遺伝子多型群に属する遺伝子多型としては、 beta3
adrenoceptor(Trp64Arg)、 beta2 Adrenoreceptor(C 791入 beta-adrenergic receptor(A46G)、 beta2 adrenoceptor(C491T)などが挙げられる。
[0073] j)細胞増殖又は血管増殖関連遺伝子多型群に属する遺伝子多型としては、
VEGF(C-634G)、 Glutamate-cystein ligase(C-588T)などが挙げられる。
[0074] また、本発明で用いる遺伝子多型に含め得る遺伝子多型として、その他に、
neuropepyideY(T1128C(Leu7Pro))、 MMP- 12(A- 82G)、 mmp- 9=Gelatinase
B(C- 1562T)、 MCP- 1(A- 2518G)、 HPA- 2(Thrl45Met)、 MMP7(C- 153T)、 matrilyn promoter(A— 181G) AMPD(C34T)、 Methionine synthase(A2756G(Asp919gly)) matrix Gla protein (G- 7A)なども挙げられる。
[0075] (2)疾患危険度判定用アレイ
本発明は、被験者が保有する遺伝子多型に基づいて、当該被験者について疾患 の力かりやすさや進行しやすさ(疾患危険度)を判定するために使用される、疾患危 険度判定用アレイを提供する。本発明に係るアレイは、カゝかる遺伝子多型を検出す るためのプローブを高密度に整列させて、シリコンウェハーやガラススライド等の支持 体上に固定ィ匕したものである。ここでプローブとしては、特定の遺伝子多型を特異的 に認識して捕捉するものであればよい。具体的には、遺伝子多型に対応する塩基配 列又はその相補配列の全部又は一部からなる塩基配列を有するプローブを挙げるこ とがでさる。
[0076] 本発明は特に、動脈硬化性疾患危険度判定用アレイ、及び心筋梗塞危険度判定 用アレイを提供する。 [0077] (2-1)動脈硬化性疾患危険度判定用アレイ
本発明の動脈硬化性疾患危険度判定用アレイは、動脈硬化性疾患の力かりやす さ (発症しやすさ)や進行しやすさを判定するために使用することができる。好適には 、糖尿病またはその傾向がある被験者に対して、動脈硬化性疾患の危険度を判定す るために使用することができる。本発明の動脈硬化性疾患危険度判定用アレイは、 動脈硬化性疾患の判定指標となる"頸動脈内膜中膜複合体肥厚度 (IMT) "との間 に有意な負 (抵抗性)の関連性を有する「負 (抵抗性)の遺伝子多型セット」を構成す る遺伝子多型に対する検出用プローブを有する、という特徴を有する。遺伝子多型 セットが IMTに対して「負の関連性」がある力否かは、上記(1)の方法で求められた ォッズ比(Odds)力も判断することができる。すなわち、 Oddsの値が負(マイナス)であ る場合を「負の関連性」があるとし、逆に Oddsの値が正 (プラス)である場合は「正の関 連性」があると判定することができる。なお、この正または負の関連性に有意性がある か否かは、 Kai値で評価することができる。
[0078] かかる「負(抵抗性)の遺伝子多型セット」として、具体的には、図 1一 9及び図 38— 43の各図に掲げる「負(抵抗性)の遺伝子多型セット」を例示することができる。より詳 細には、図 1一 9及び図 38— 43の各図において、各行 (横一列)に列記した遺伝子 多型 (SNP)の組合せが、一つの「動脈硬化性疾患に関する負(抵抗性)の遺伝子多 型セット」を意味する。尚、先にも説明したように、例えば図 1は「図 1-A」とそれに続く 「図 1-B」と ヽぅ枝番で示された 2つ図カゝら構成されて ヽるが、単に「図 1」と ヽぅ場合 は「図 9 A」と「図 9 B」の両方を指すものである(以下、枝番で示される図を含むも のについても同様)。なお、ここで「遺伝子多型」とは、前述するように、遺伝子型( Genotype)を包含するもの、すなわち特有の遺伝子型を有する遺伝子多型を意味す る。上記各図において、遺伝子多型を「遺伝子略称」として、また遺伝子型を「 Genotypeとして示す。各遺伝子多型に関する詳細な情報は、図 37に示す通りであ る。
[0079] 本発明の動脈硬化性疾患危険度判定用アレイは、かかる図 1一 9のいずれか一つ の図に記載される負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多 型セットを構成する遺伝子多型に対する検出用プローブを有する。図 1一 9の中でも 好ましくは、図 5— 9のいずれか、より好ましくは図 6— 9のいずれ力、さらに好ましくは 図 7— 9のいずれか、よりさらに好ましくは図 8— 9のいずれかである。また、遺伝子多 型セットの選択は、特に制限されず任意に行うことができるが、その際に各図におい て遺伝子多型セット毎に記載されて 、る Odds値と Kai値を指標とすることができる。本 発明の動脈硬化性疾患危険度判定用アレイは、力かる Odds値と Kai値力も評価して 、 IMTに対して負(抵抗性)の関連性が高 、遺伝子多型セットを構成する遺伝子多 型に対する検出用プローブを備えて 、ることが好ま 、。
[0080] 本発明の動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図 10に 記載する遺伝子多型群、図 11に記載する遺伝子多型群、図 12に記載する遺伝子 多型群、図 13に記載する遺伝子多型群、図 14に記載する遺伝子多型群、図 15に 記載する遺伝子多型群、図 16に記載する遺伝子多型群、図 17に記載する遺伝子 多型群、及び図 18に記載する遺伝子多型群から選択される 1つの遺伝子多型群の 半数以上、好ましくは 6割以上、 7割以上、 8割以上、 9割以上、より好ましくは全ての 遺伝子多型に対する検出用プローブを有することが好ましい。
[0081] ここで、図 10— 18は、上記図 1一 9に基づいて、 Odds毎に、 IMTと負(抵抗性)の 関連性を有する遺伝子多型セットを構成する遺伝子多型に分類した図である。即ち 、図 10は、図 1に基づいて Oddsがー 2以下(すなわち、 Odds比が「1/2」以下)を示す 負の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図 11は 図 2に基づいて Oddsがー 3以下(すなわち、 Oddsが「1/3」以下)、図 12は図 3に基づ いて Oddsがー 4以下(すなわち、 Oddsが「1/4」以下)、図 13は図 4に基づいて Oddsが —5以下(すなわち、 Oddsが「1/5」以下)、図 14は図 5に基づいて Oddsがー 6以下(す なわち、 Oddsが「1/6」以下)、図 15は図 6に基づいて Oddsが- 7以下(すなわち、 Oddsが「1/7」以下)、図 16は図 7に基づいて Oddsがー 8以下(すなわち、 Oddsが「1/8 」以下)、図 17は図 8に基づいて Oddsが- 9以下(すなわち、 Oddsが「1/9」以下)、図 10は図 9に基づ!/、て Oddsが- 10以下(すなわち、 Oddsが「1/10」以下)を示す負の 遺伝子多型セットを構成する遺伝子多型を挙げたものである。
[0082] 各図に示される遺伝子多型群の中から半数以上、 6割以上、 7割以上、 8割以上、 または 9割以上の遺伝子多型を選択する場合は、制限はされないが、カラムの順番 に従って上位力も重点的に選択されることが好ましい。
[0083] また本発明の動脈硬化性疾患危険度判定用アレイは、また図 38— 43のいずれか 一つの図に記載される負の遺伝子多型セットの群力も選択される少なくとも一の遺伝 子多型セットを構成する遺伝子多型に対する検出用プローブを有することもできる。 図 38— 43の中でも好ましく ίま、図 39— 43の!ヽずれ力、より好ましく ίま図 40— 43の いずれか、さらに好ましくは図 41一 43のいずれ力、よりさらに好ましくは図 42— 43の いずれかである。前述するように、判定用アレイは、各図において遺伝子多型セット 毎に記載されている Odds値と Kai値力 評価して、 IMTに対して負(抵抗性)の関連 性が高い遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを備えて 、ることが好まし!/、。
[0084] 力かる動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図 44に記 載する遺伝子多型群、図 45に記載する遺伝子多型群、図 46に記載する遺伝子多 型群、及び図 47に記載する遺伝子多型群から選択される 1つの遺伝子多型群の半 数以上、好ましくは 6割以上、 7割以上、 8割以上、 9割以上、より好ましくは全ての遺 伝子多型に対する検出用プローブを有することが好ましい。ここで、図 44一 47は、上 記図 38— 43に基づいて、 Odds毎に、 IMTと負(抵抗性)の関連性を有する遺伝子 多型セットを構成する遺伝子多型に分類した図である。即ち、図 44は、図 38に基づ V、て Oddsがー 2以下(すなわち、 Oddsが「1/2」以下)を示す負の遺伝子多型セットを 構成する遺伝子多型を挙げたものであり、同様に、図 45は図 39に基づいて Oddsが 3以下(すなわち、 Oddsが「1/3」以下)、図 46は図 40に基づいて Oddsがー 4以下( すなわち、 Oddsが「1/4」以下)、図 47は図 41に基づいて Oddsがー 5以下(すなわち、 Oddsが「1/5」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたも のである。図 10— 18と同様に、各図に示される遺伝子多型群の中から半数以上、 6 割以上、 7割以上、 8割以上、または 9割以上の遺伝子多型を選択する場合は、カラ ムの順番に従って上位力も重点的に選択されることが好ましい。
[0085] 本発明の動脈硬化性疾患危険度判定用アレイは、前述する負(抵抗性)の遺伝子 多型セットを構成する遺伝子多型に対する検出用プローブに加えて、正 (感受性)の 遺伝子多型に対する検出用プローブまたは正 (感受性)の遺伝子多型セットを構成 する遺伝子多型に対する検出用プローブを有するものであることが好ましい。
[0086] 「正 (感受性)の遺伝子多型」とは、動脈硬化性疾患判定の指標となる"頸動脈内膜 中膜複合体肥厚度 (IMT) "との間に有意な正の関連性を有する遺伝子多型を!、う。 また「正 (感受性)の遺伝子多型セット」とは、 IMTとの間に有意な正 (感受性)の関連 性を有する"遺伝子多型の組合せ物"を意味する。なお、遺伝子多型セットが IMTに 対して「正の関連性」があるカゝ否かは、前記(1)に記載する方法で求められた Oddsか ら判断することができる。すなわち、 Oddsの値が正 (プラス)である場合を「正の関連 性」があると判定することができる。なお、この正の関連性に有意性がある力否かは、 Kai値で評価することができる。
[0087] 具体的には図 19一 27及び図 48— 51に、力かる「正 (感受性)の遺伝子多型セット 」を示す。より詳細には、図 19一 27及び図 48— 51の各図において、各行 (横一列) に列記した遺伝子多型(SNP)の組合せが、 IMTとの間で正 (感受性)の関連性を有 する「正 (感受性)の遺伝子多型セット」を意味する。なお、各図において、一行に単 一の遺伝子多型が示されている場合は、当該遺伝子多型は、単独で IMTとの間で 正 (感受性)の関連性を有する「正 (感受性)の遺伝子多型」である(例えば、図 19に おける「GSY」など)。
[0088] 具体的には、本発明の動脈硬化性疾患判定用アレイは、図 1一 9のいずれか一つ の図に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出用プロ ーブにカ卩えて、図 19一 27のいずれか一つの図に記載される正の遺伝子多型セット を構成する遺伝子多型に対する検出用プローブを有する。なお、図 19一 27の中で も好ましくは、図 23— 27のいずれか、より好ましくは図 24— 27のいずれ力、さらに好 ましくは図 25— 27のいずれか、よりさらに好ましくは図 26— 27のいずれかである。
[0089] カゝかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプ ローブとして、検出用プローブとして、図 28に記載する遺伝子多型群、図 29に記載 する遺伝子多型群、図 30に記載する遺伝子多型群、図 31に記載する遺伝子多型 群、図 32に記載する遺伝子多型群、図 33に記載する遺伝子多型群、図 34に記載 する遺伝子多型群、図 35に記載する遺伝子多型群、及び図 36に記載する遺伝子 多型群力 選択される 1つの遺伝子多型群の半数以上、好ましくは 6割以上、 7割以 上、 8割以上、 9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブ を有することが好ましい。
[0090] ここで、図 28— 36は、図 19一 27〖こ基づいて、 Odds毎に、 IMTと正(感受性)の関 連性を有する遺伝子多型を分類した図である。即ち、図 28は、図 19に基づいて Oddsが 2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであ り、同様に、図 29は図 20に基づいて Oddsが 3以上、図 30は図 21に基づいて Odds 力 以上、図 31は図 22に基づいて Oddsが 5以上、図 32は図 23に基づいて Oddsが 6 以上、図 33は図 24に基づいて Oddsが 7以上、図 34は図 25に基づいて Oddsが 8以 上、図 35は図 26に基づいて Oddsが 9以上、図 36は図 27に基づいて Oddsが 10以上 を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものである。これらの図 28— 36の各図に示される遺伝子多型群の中から半数以上、 6割以上、 7割以上、 8 割以上、または 9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上 位力も重点的に選択されることが好ましい。
[0091] また、本発明の動脈硬化性疾患判定用アレイは、図 38— 43のいずれか一つの図 に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブ に加えて、図 48— 51のいずれか一つの図に記載される正の遺伝子多型セットを構 成する遺伝子多型に対する検出用プローブを有するものであってもよい。なお、図 4 8— 51の中でも好ましくは、図 49一 51のいずれ力、より好ましくは図 50— 51のいず れかのいずれかである。
[0092] カゝかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプ ローブとして、検出用プローブとして、図 52に記載する遺伝子多型群、図 53に記載 する遺伝子多型群、図 54に記載する遺伝子多型群、及び図 55に記載する遺伝子 多型群力 選択される 1つの遺伝子多型群の半数以上、好ましくは 6割以上、 7割以 上、 8割以上、 9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブ を有することが好ましい。
[0093] ここで、図 52— 55は、図 48— 51〖こ基づいて、 Odds毎に、 IMTと正(感受性)の関 連性を有する遺伝子多型を分類した図である。即ち、図 52は、図 48に基づいて Oddsが 2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであ り、同様に、図 53は図 49に基づいて Oddsが 3以上、図 54は図 50に基づいて Odds 力 以上、図 55は図 51に基づいて Oddsが 5以上を示す正の遺伝子多型、及び正の 遺伝子多型セットを構成する遺伝子多型を挙げたものである。これらの図 52— 55の 各図に示される遺伝子多型群の中から半数以上、 6割以上、 7割以上、 8割以上、ま たは 9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位力も重点 的に選択されることが好ま 、。
[0094] 本発明者は、上記種々の要件を検討した結果、当初の予測通り、図 37に記載する 遺伝子多型が、動脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危険度 の判定に有用であり、力かる遺伝子多型を単独または組み合わせて用いることによつ て、動脈硬化性疾患の危険度が高い精度で判定できることを確認した。よって、本発 明の動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図 37に記載 する 99個の遺伝子多型に対する検出用プローブを有するものとすることもできる。
[0095] 本発明の動脈硬化性疾患危険度判定用アレイは、被験者につ!ヽて動脈硬化性疾 患に対する抵抗性 (かかりにくさ)を評価するために使用することができる。これは、具 体的には、例えばアレイ上の検出用プローブと被験試料から調製したプローブとをノヽ イブリダィズさせ、被験者について検出された遺伝子多型を、動脈硬化性疾患の判 定指標である頸動脈内膜中膜複合体肥厚度 (IMT)と負の関連性を有する遺伝子 多型セットと照合することにより実施することができる。このとき得られる、被験者が IM Tと負の関連性を有する遺伝子多型セットを有している力否かの情報は、被験者が 動脈硬化性疾患に抵抗性である力否か (かかりにくいか否か)の評価に有効に利用 される。
[0096] また本発明の動脈硬化性疾患危険度判定用アレイは、被験者につ!、て動脈硬化 性疾患に対する抵抗性及び感受性を評価するために使用することができる。これは、 具体的には、例えばアレイ上の検出用プローブと被験試料力 調製したプローブとを ハイブリダィズさせ、被験者について検出された遺伝子多型を、動脈硬化性疾患の 判定指標である IMTと負の関連性を有する遺伝子多型セット、並びに IMTと正の関 連性を有する遺伝子多型または遺伝子多型セットと照合することにより実施すること ができる。このとき得られる情報 (被験者が IMTと負の関連性を有する遺伝子多型セ ットを有して 、るか否か、 IMTと正の関連性を有する遺伝子多型または遺伝子多型 セットを有している力否かの情報)は、被験者の動脈硬化性疾患に対する抵抗性及 び感受性を評価するために使用できる。
[0097] また本発明の動脈硬化性疾患危険度判定用アレイは、被験者につ!、て動脈硬化 性疾患に対する危険度の有無やその高低 (かかりやすさや進行のしゃすさの有無及 びその程度)を評価するために使用することができる。これは、具体的には、例えばァ レイ上の検出用プローブと被験試料力も調製したプローブとをハイブリダィズさせ、検 出された遺伝子多型を、 IMTと負の関連性を有する遺伝子多型セット、及び正の関 連性を有する遺伝子多型または遺伝子多型セットと照合して、検出された遺伝子多 型について得られた負の関連性または正の関連性に対する偏度を求めることによつ て実施することができる。この際得られる情報 (被験者が有する遺伝子多型について 、負の関連性と正の関連性との偏度に関する情報)は、被験者の動脈硬化性疾患に 対する危険度の評価に有効に利用される。
[0098] これらの場合、照合に使用される IMTと負の関連性を有する遺伝子多型セットは、 図 1一 9のいずれか一つの図に記載される負の遺伝子多型セットの群、または図 38 一 43のいずれか一つの図に記載される負の遺伝子多型セットの群力も選択される少 なくとも 1つのセットであることが好ましい。また、照合に使用される IMTと正の関連性 を有する遺伝子多型または遺伝子多型セットは、上記で負の遺伝子多型セットとして 図 1一 9の 、ずれかに記載されて!、るセットを使用した場合は、図 19一 27の 、ずれ か一つの図に記載される正の遺伝子多型または遺伝子多型セットの群力 選択され る少なくとも 1つのセットであることが好ましぐ上記で負の遺伝子多型セットとして図 3 8— 43のいずれかに記載されているセットを使用した場合は、図 48— 51のいずれ力 一つの図に記載される正の遺伝子多型または遺伝子多型セットの群力 選択される 少なくとも 1つのセットであることが好ましい。
[0099] 動脈硬化性疾患危険度の判定は、例えば、以下のように行うことができる。
[0100] [表 1] 正の関連性を有する遣 負の関連性を有する遺
伝子多型セッ卜の数 伝子多型セッ卜の数
Case 1 + + + > 高危険度
Case 2 + + + > 0 高危険度
Case 3 + < 低危険度
Case 4 0 < 低危険度
[0101] 例えば、被験試料から検出される遺伝子多型を IMTと負の関連性を有する遺伝子 多型セット (例えば、図 1一 9、または図 38— 43)、及び正の関連性を有する遺伝子 多型または遺伝子多型セット (例えば、図 19一 27または図 48— 51)と照合した場合 において、正の関連性を有する遺伝子多型セットのトータル数が負の関連性を有す る遺伝子多型セットのトータル数よりも多い被験者 (Casel)は、動脈硬化性疾患高危 険度例と判定される。また、正の関連性を有する遺伝子多型セットは有するものの、 負の関連性を有する遺伝子多型セットを有しな!/ヽ被験者 (CaSe2)も、動脈硬化性疾 患高危険度例と判定される。一方、負の関連性を有する遺伝子多型セットのトータル 数が正の関連性を有する遺伝子多型セットのトータル数より少な!/、被験者 (Case3) は、動脈硬化正疾患低危険度例と判定される。また、負の関連性を有する遺伝子多 型セットは有するものの、正の関連性を有する遺伝子多型セットを有しない被験者( Case4)も、動脈硬化性疾患低危険度例と判定される。
[0102] 即ち、被験者から検出された遺伝子多型の正の関連性 (感受性)と負の関連性 (抵 抗性)の偏度を求め、正の関連性が有意に多い場合には、当該被験者は動脈硬化 性疾患の危険度が高い (或いは発症)と判定、負の関連性が有意に多い場合には、 当該被験者は動脈硬化性疾患の危険度が低 ゝ (或いは非発症)と判定することがで きる。
[0103] 好ましくは、本発明の動脈硬化性疾患危険度判定用アレイは、被験者における臨 床的所見 (例えば、 IMT)と対比した場合に、正答率 (臨床的所見と一致する確率) 力 0%以上、好ましくは 65%以上、より好ましくは 70%以上であり、誤答率(臨床的 所見と一致しない確率)が 45%以下、好ましくは 40%以下、より好ましくは 40%以下 となる結果が得られるようなものであることが好ましい。この場合の臨床的所見として は、例えば被験者の頸動脈内膜中膜複合体肥厚度 (IMT)が 1.1mm未満を非動脈 硬化疾患例、 IMTが 1.1mm以上を動脈硬化疾患例とする方法を例示することができ る。また、他の方法として、重回帰分析における頸動脈内膜中膜複合体の平均肥厚 度の増分(Δ ΙΜΤ)が 0. 2mm以上の場合、または、重回帰分析における頸動脈内 膜中膜複合体の最大肥厚度の増分( Δ PIMT)が 0. 3mm以上の場合を動脈硬化 疾患例とし、それ以外の場合を非動脈硬化疾患例とする方法を挙げることもできる。
[0104] (1-2)心筋梗塞危険度判定用アレイ
本発明の心筋梗塞危険度判定用アレイは、心筋梗塞の力かりやすさ (発症しやす さ)や進行しやすさを判定するために使用することができる。好適には、糖尿病患者 または境界型糖尿病患者に対して、心筋梗塞の危険度を判定するために使用するこ とができる。本発明の心筋梗塞危険度判定用アレイは、心筋梗塞の判定指標との間 に有意な負 (抵抗性)の関連性を有する「負 (抵抗性)の遺伝子多型セット」を構成す る遺伝子多型に対する検出用プローブを有する、という特徴を有する。なお、ここで 心筋梗塞の判定指標としては、当業界で慣用されているものであれば特に制限され ないが、好ましくは心電図上で観察される陳旧性心筋梗塞波長(abnormal Q)の有無 または被験者に関する心筋梗塞の既往歴を利用することができる。
[0105] 力かる「負(抵抗性)の遺伝子多型セット」として、具体的には、図 56— 58の各図に 掲げる「負(抵抗性)の遺伝子多型セット」を例示することができる。より詳細には、図 5 6— 58の各図において、各行 (横一列)に列記した遺伝子多型(SNP)の組合せが、 一つの「心筋梗塞に関する負(抵抗性)の遺伝子多型セット」を意味する。
[0106] 本発明の心筋梗塞危険度判定用アレイは、力かる図 56— 58のいずれか一つの図 に記載される負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セ ットを構成する遺伝子多型に対する検出用プローブを有する。図 56— 58の中でも好 ましくは、図 57— 58のいずれかである。また、遺伝子多型セットの選択には、各図に ぉ 、て遺伝子多型セット毎に記載されて 、る Odds値と Kai値を指標とすることができ る。本発明の心筋梗塞危険度判定用アレイは、力かる Odds値と Ka載力も評価して、 心筋梗塞判定指標に対して負 (抵抗性)の関連性が高い遺伝子多型セットを構成す る遺伝子多型に対する検出用プローブを備えていることが好ましい。
[0107] 本発明の心筋梗塞危険度判定用アレイは、検出用プローブとして、図 59に記載す る遺伝子多型からなる遺伝子多型群、図 60に記載する遺伝子多型からなる遺伝子 多型群、図 61に記載する遺伝子多型群、及び図 62に記載する遺伝子多型群から 選択される 1つの遺伝子多型群の半数以上、好ましくは 6割以上、 7割以上、 8割以 上、 9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有すること が好ましい。
[0108] ここで、図 59— 62は、上記図 56— 68に基づいて、 Odds毎に、 IMTと負(抵抗性) の関連性を有する遺伝子多型セットを構成する遺伝子多型に分類した図である。即 ち、図 59は、図 56に基づいて Oddsがー 2以下(すなわち、 Oddsが「1/2」以下)を示す 負の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図 60は 図 57に基づいて Oddsがー 3以下(すなわち、 Oddsが「1/3」以下)、図 61は図 58に基 づいて Oddsがー 4以下(すなわち、 Oddsが「1/4」以下)、図 64は図 58に基づいて Oddsがー 5以下(すなわち、 Oddsが「1/5」以下)を示す負の遺伝子多型セットを構成 する遺伝子多型を挙げたものである。
[0109] これらの各図に示される遺伝子多型群の中から半数以上、 6割以上、 7割以上、 8 割以上、または 9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上 位力も重点的に選択されることが好ましい。
[0110] 本発明の心筋梗塞危険度判定用アレイは、前述する負(抵抗性)の遺伝子多型セ ットを構成する遺伝子多型に対する検出用プローブに加えて、正 (感受性)の遺伝子 多型に対する検出用プローブまたは正 (感受性)の遺伝子多型セットを構成する遺 伝子多型に対する検出用プローブを有するものであることが好ましい。
[0111] ここで「正 (感受性)の遺伝子多型」とは、心筋梗塞の判定指標との間に有意な正の 関連性を有する遺伝子多型をいう。また「正 (感受性)の遺伝子多型セット」とは、心 筋梗塞の判定指標との間に有意な正 (感受性)の関連性を有する"遺伝子多型の組 合せ物"を意味する。
[0112] 具体的には図 63— 69に、力かる「正 (感受性)の遺伝子多型セット」を示す。より詳 細には、図 63— 69の各図において、各行 (横一列)に列記した遺伝子多型(SNP) の組合せが、心筋梗塞の判定指標との間で正 (感受性)の関連性を有する「正 (感受 性)の遺伝子多型セット」を意味する。
[0113] 具体的には、本発明の心筋梗塞危険度判定用アレイは、図 56— 58のいずれか 一つの図に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出 用プローブに加えて、図 63— 69のいずれか一つの図に記載される正の遺伝子多型 または遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する。 なお、図 63— 69の中でも好ましくは、図 64— 69のいずれか、より好ましくは図 65— 69のいずれかである。
[0114] カゝかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプ ローブとして、検出用プローブとして、図 70に記載する遺伝子多型群、図 71に記載 する遺伝子多型群、図 72に記載する遺伝子多型群、及び図 73に記載する遺伝子 多型群力 選択される 1つの遺伝子多型群の半数以上、好ましくは 6割以上、 7割以 上、 8割以上、 9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブ を有することが好ましい。
[0115] ここで、図 70— 73は、図 63— 69〖こ基づいて、 Odds毎に、 IMTと正(感受性)の関 連性を有する遺伝子多型を分類した図である。即ち、図 70は、図 63に基づいて Oddsが 2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであ り、同様に、図 71は図 64に基づいて Oddsが 3以上、図 72は図 65に基づいて Odds 力 以上、図 73は図 66に基づいて Oddsが 5以上を示す正の遺伝子多型セットを構 成する遺伝子多型を挙げたものである。これらの図 70— 73の各図に示される遺伝子 多型群の中から半数以上、 6割以上、 7割以上、 8割以上、または 9割以上の遺伝子 多型を選択する場合は、カラムの順番に従って上位力 重点的に選択されることが 好ましい。
[0116] 本発明者は、心筋梗塞、特に糖尿病に起因する動脈硬化性疾患の危険度の判定 にも図 37に記載する遺伝子多型が有用であり、力かる遺伝子多型を単独または組 み合わせて用いることによって、心筋梗塞の危険度が高 、精度で判定できることを確 認した。よって、本発明の心筋梗塞危険度判定用アレイは、検出用プローブとして、 図 37に記載する 99個の遺伝子多型に対する検出用プローブを有するものとすること ちでさる。
[0117] 本発明の心筋梗塞危険度判定用アレイは、前述する動脈硬化性疾患危険度判定 用アレイと同様に、被験者について心筋梗塞に対する抵抗性 (かかりにくさ)を評価 するために使用することができるし、また、被験者について心筋梗塞に対する抵抗性 及び感受性を評価するために使用することができる。さらに本発明の心筋梗塞危険 度判定用アレイは、被験者について心筋梗塞に対する危険度の有無やその高低 (か 力りやすさや進行のしゃすさの有無及びその程度)を評価するために使用することが できる。
[0118] これらの場合、照合に使用される心筋梗塞判定指標と負の関連性を有する遺伝子 多型セットは、図 56— 58のいずれか一つの図に記載される負の遺伝子多型セットの 群力も選択される少なくとも 1つのセットであることが好ましい。また、照合に使用され る心筋梗塞判定指標と正の関連性を有する遺伝子多型セットは、図 63— 69のいず れか一つの図に記載される正の遺伝子多型または遺伝子多型セットの群力 選択さ れる少なくとも 1つのセットであることが好まし 、。
[0119] 心筋梗塞危険度の判定は、前述の動脈硬化性疾患の危険度判定方法と同様な方 法で行うことができる。
[0120] 以上説明する本発明の疾患危険度判定用アレイは、各疾患に応じた遺伝子多型 検出用プローブを有するものであれば、本発明の目的を達成する範囲内において、 上記以外のプローブ又は公知のプローブを適宜有していてもよい。また、遺伝子多 型検出用プローブは、適宜標識ィ匕して用いてもよい。
[0121] 本発明の疾患判定用アレイは、あら力じめ準備したプローブを基材に固定する方 法のほか、基材上で合成する Affimetrix社の方法で調製することもでき、その調製 方法に特に制限はされない。また、プローブを固定する基板にも特に制限はなぐ例 えばガラスプレートやフィルタ一等公知のものを用いることができる。また、固定される プローブの長さや用いる核酸の種類も、遺伝子多型を検出できる限りにおいて、特に 制限はない。遺伝子多型を含む領域は、あらかじめ PCRで増幅しておくことが感度 の点力 望ましい。
[0122] 特に、標識したプライマーを用いて遺伝子多型を含む領域を増幅する方法は、感 度、簡便さ等の点力も好適に用いることができる。たとえば、 Hybrigene法において は、ピオチンにて標識したプライマーを用いて遺伝子多型を含む領域を増幅し、これ をアレイに添カ卩してハイブリダィズさせたのちに、ハイブリダィズしなかった核酸を洗 浄して除く。ついで、ハイブリダィズしたプローブを、アビジン標識した蛍光色素にて 検出する。この方法により遺伝子多型が感度よく検出できる。
[0123] 本発明の疾患判定用アレイには、下記の態様が含まれる:
(A) 図 1一 9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群か ら選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有するか、または図 38— 43のいずれか一つの図に記載する負(抵抗性) の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用ァレ ィ。
[0124] (B) 図 10— 18のいずれか一つの図に記載される遺伝子多型群の半数以上の遺 伝子多型に対する検出用プローブを有する力、図 44一 47のいずれか一つの図に記 載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有する ものである、(A)記載の動脈硬化性疾患危険度判定用アレイ。
[0125] (C) さらに、図 19一 27のいずれか一つの図に記載する、正 (感受性)の遺伝子多 型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型 に対する検出用プローブを有するか、図 63— 69のいずれか一つの図に記載する、 正 (感受性)の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セット を構成する遺伝子多型に対する検出用プローブを有するものである、 (A)または(B) に記載する動脈硬化性疾患危険度判定用アレイ。
[0126] (D) 図 28— 37のいずれか一つの図に記載される遺伝子多型群の半数以上の遺 伝子多型に対する検出用プローブを有する力、図 52— 55のいずれか一つの図に記 載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有する ものである、(A)または (B)記載の動脈硬化性疾患危険度判定用アレイ。
[0127] (E) 図 56— 58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セット の群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する 検出用プローブを有する、心筋梗塞危険度判定用アレイ。
[0128] (F) 図 59— 62のいずれか一つの図に記載される遺伝子多型群の半数以上の遺 伝子多型に対する検出用プローブを有するものである、 (E)記載の心筋梗塞危険度 判定用アレイ。
[0129] (G) さらに、図 63— 69のいずれか一つの図に記載する、正 (感受性)の遺伝子多 型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型 に対する検出用プローブを有するものである、(E)または (F)に記載する心筋梗塞危 険度判定用アレイ。
[0130] (H) 図 70— 73のいずれか一つの図に記載される遺伝子多型群の半数以上の遺 伝子多型に対する検出用プローブを有するものである、(E)または (F)に記載の心 筋梗塞危険度判定用アレイ。
[0131] (I)被験試料力も調製したプローブとハイブリダィズさせ、被験者について検出され た遺伝子多型を、疾患と負の関連性を有する遺伝子多型セットと照合して、検出され た遺伝子多型セットについて疾患に対する抵抗性を評価するために使用される、 (A )乃至 (H)の ヽずれかに記載する動脈硬化性疾患危険度判定用アレイ。
[0132] C 動脈硬化性疾患と負の関連性を有する遺伝子多型のセットが、図 1一 9のいず れかに一つの図に記載される負の遺伝子多型セットの群力 選択される少なくとも 1 つのセットであるか、図 38— 43のいずれかに一つの図に記載される負の遺伝子多 型セットの群力も選択される少なくとも 1つのセットである、 (I)に記載する動脈硬化性 疾患危険度判定用アレイ。
[0133] (Κ)被験試料力も調製したプローブとハイブリダィズさせ、被験者につ!、て検出さ れた遺伝子多型を、疾患と負の関連性を有する遺伝子多型のセット及び正の関連性 を有する遺伝子多型セットと照合して、検出された遺伝子多型のセットについて疾患 に対する抵抗性及び感受性を評価するために使用される、 (Α)乃至 (Η)の 、ずれか に記載する動脈硬化性疾患危険度判定用アレイ。
[0134] (L)被験試料力も調製したプローブとハイブリダィズさせ、被験者につ!、て検出さ れた遺伝子多型を、疾患と負の関連性を有する遺伝子多型のセット及び正の関連性 を有する遺伝子多型セットと照合して、検出された遺伝子多型のセットについて得ら れた負の関連性または正の関連性に対する偏度から、被験者について疾患に対す る危険度の高低を評価するために使用される、 (Α)乃至 (Η)の 、ずれかに記載する 動脈硬化性疾患危険度判定用アレイ。 [0135] (M) 動脈硬化性疾患と負の関連性を有する遺伝子多型のセットが、図 1一 9のい ずれか一つの図に記載される負の遺伝子多型セットの群力 選択される少なくとも 1 つのセットであるか、図 38— 43のいずれか一つの図に記載される負の遺伝子多型 セットの群力 選択される少なくとも 1つのセットであり、且つ動脈硬化性疾患と正の 関連性を有する遺伝子多型またはそのセットが、図 19一 27のいずれかに記載される 正の遺伝子多型セットの群力 選択される少なくとも 1つのセットである力、図 48— 51 のいずれかに記載される正の遺伝子多型セットの群力 選択される少なくとも 1つの セットである、 (L)に記載する動脈硬化性疾患危険度判定用アレイ。
[0136] (3)疾患険度の判定装置、判定方法及び判定プログラム
本発明に係る疾患危険度の判定装置、判定方法及び判定プログラムは、被験者が どの程度疾患にかかり易 、か、若しくはどの程度疾患が進行し易 、か (疾患危険度) の判定を行うことができる。以下においては、動脈硬化性疾患を例に説明するが、本 発明はこれに限定されず、遺伝子との関連性を有する疾患に適用することができる。 その場合、疾患に応じて、その疾患の判定指標 (例えば、動脈硬化性疾患であれば 頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のアルブミン排泄率、心筋梗塞 であれば心電図上の陳旧性 (abnormal Q)心筋梗塞波形の有無及び心筋梗塞の既 往の有無)を用いて、後述する関連性を評価すればょ 、。
[0137] (3-1)動脈硬化性疾患危険度の判定装置、判定方法及び判定プログラム
図 75は、本発明に係る動脈硬化性疾患危険度の判定装置 (以下、判定装置と記 す)を含むシステム全体を示すブロック図である。図 75に示したように、病院 1に設置 された採血手段 11及びコンピュータ 12、分析機関 2に設置された遺伝子多型解析 用アレイ 21及びコンピュータ 22、サービス提供機関 3に設置された判定装置 31とを 備えている。ここで、コンピュータ 11、 21、及び判定装置 31は、インターネットなどの 通信回線 4に接続されて ヽる。
[0138] 判定装置 31は、 CPU32と、メモリ 33と、ハードディスクなどの記録部 34と、外部と の通信を行う通信インタフェース(以下、 IZFと記す)部 35と、キーボードなどの操作 部 36と、 CRTディスプレイなどの表示部 37と、入出力 IZF部 38と、各部間でデータ を交換するための内部バス 39とを備えている。記録部 34には、動脈硬化性疾患に 関連する遺伝子多型 (例えば、図 10)又は遺伝子多型のセット(例えば、図 1)の情報 が参照テーブルとして記録されて 、る。
[0139] 判定装置 31による危険度判定処理の詳細は後述することとし、ここでは、システム 全体の動作の概要を説明する。まず、病院 1において、採血手段 11によって被験者 の血液 (以下、被験試料と記す)が採取される。このとき、臨床データ (被験者 ID、検 查値、病歴情報、採血情報など)がコンピュータ 12の記録部に記録される。被験試料 は、分析機関 2に提供され、遺伝子多型解析用アレイ 21を用いて分析され、遺伝子 型を有する遺伝子多型が検出される。ここで、遺伝子多型解析用アレイ 21には、例 えば、上記した動脈硬化性疾患危険度判定アレイを用いることができる。検出された 遺伝子多型情報は、ー且コンピュータ 22の記録手段に記録され、その後通信回線 4 を介してサービス提供機関 3の判定装置 31に送信される。判定装置 31は、通信 IZ F部 35を介して遺伝子多型情報を受信し、一旦記録部 34に記録する。その後、判定 装置 31は、受信した遺伝子多型が、予め記録部 34に記録されている参照テーブル に含まれて 、る力否かを検索し、その結果に応じて動脈硬化性疾患の危険度を判定 する。さらに、判定装置 31は、判定結果を、通信回線 4を介して病院 1のコンピュータ 12に送信する。コンピュータ 12によって受信された判定結果は、臨床データ (少なく とも被験者 ID)と関連させて、コンピュータ 12の記録部に記録され、適宜呼び出され て利用(例えば、被験者に提示)される。判定結果を送信する病院 1のコンピュータ 1 2を特定する情報は、例えば、病院 1のコンピュータ 12から、臨床データに含めて送 信すればよい。
[0140] 図 76は、判定装置 31が行う判定処理を示すフローチャートである。以下、図 76の フローチャートに従って、判定装置 31による危険度判定処理を具体的に示す。尚、 以下においては、特に断らない限り、 CPU32が行う処理として記載する。また、 CPU 32は、メモリ 33を、ワーク領域や、処理途中のデータを一時記憶する領域として使用 し、必要に応じて処理途中及び処理結果のデータを記録部 34に記録する。
[0141] ステップ S21において、分析機関 2から通信回線 4経由で、遺伝子多型情報を取得 し、記録部 34に記録する。ここで、遺伝子多型情報は、遺伝子型を有する遺伝子多 型毎に付与した遺伝子多型コードとして伝送され、データ形式は、例えば、依頼元の 病院毎に付与した病院コード及び被験者毎に付与した被験者 IDの組の各々に、複 数の遺伝子多型コード Gi (i= 1一 n)が対応付けられた形式である。
[0142] ステップ S22において、一つの {病院コード,被験者 ID}に関する複数の遺伝子多 型コード Gi (i= l— n)を記録部 34から読み出し、遺伝子多型コード Giが、予め記録 部 34に記録された参照テーブルに含まれている力否かを判断する。例えば、参照テ 一ブルとして図 1に対応させて遺伝子多型コードのセットが記録されているとすると、 複数の遺伝子多型コード Gi (i= 1— n)の中から 2つ又は 3つの遺伝子多型コード Gi を選択し、それらのセットが、図 1に対応する参照テーブルに含まれている力否かを 判断し、含まれていれば、そのセットに対応する第 1フラグに" 1"をセットする(フラグ は予め 0に設定されている)。また、それらのセットが、図 19に対応する参照テーブル に含まれていれば、そのセットに対応する第 2フラグに" 1"を設定する。
[0143] ステップ S23において、第 1及び第 2フラグが全て 0である力否かを判断し、フラグが 全て 0、即ち、遺伝子多型コードのセットが参照テーブルに無ければ、ステップ S25 に移行し、何れかのフラグに 0以外の値が設定さていれば、ステップ S24に移行する
[0144] ステップ S24において、ステップ S22の処理の結果に応じて危険度を決定する。決 定された危険度は、 {病院コード,被験者 ID}に対応させて記録部 34に記録する。こ の危険度の決定は、例えば、値カ ' 1"である第 1フラグの数 nlと、値力 '1"である第 2 フラグの数 n2を求め、表 1に応じて危険度を決定する。
[0145] 即ち、正の関連性を有する遺伝子多型セットの数 n2が負の関連性を有する遺伝子 多型セットの数 nlよりも多い (n2>nl)被験者 (表 1の Casel)は、動脈硬化性疾患に 関して高危険度と判定される。また、正の関連性を有する遺伝子多型またはそのセッ トを有する (n2>0)力 負の関連性を有する遺伝子多型セットを有しない (nl =0)被 験者 (CaSe2)も、高危険度と判定される。一方、負の関連性を有する遺伝子多型セッ トの数 nlが正の関連性を有する遺伝子多型またはそのセットの数 n2より多い (nl > n2)被験者 (Case3)は、低危険度と判定される。また、負の関連性を有する遺伝子多 型セットは存在する (nl >0)力 正の関連性を有する遺伝子多型またはそのセットは 存在しな!ヽ (n2 = 0)被験者 (Case4)も、低危険度と判定される。 [0146] ステップ S25において、全ての {病院コード,被験者 ID}に関して終了したと判断す るまで、ステップ S22— S24の処理を繰り返す。
[0147] 全ての {病院コード,被験者 ID}に関して処理が終了すれば、ステップ S26におい て、決定された危険度コード (上記の判定例では、高危険度又は低危険度を表すコ ード)と被験者 IDとを対応させて、通信回線 4を介して、病院コードに対応するコンビ ユータ 12に送信する。
[0148] 以上の処理によって、判定装置 31による一連の危険度判定処理が完了する。尚、 以上の危険度判定処理は、汎用コンピュータを使用して、ハードディスク、 CD-RO Mなどのコンピュータ読取可能な記録媒体に記録されたコンピュータプログラムを読 み出し、または、通信回線を介してコンピュータプログラムを取得し、それを CPUが実 行することによって行うことも可能である。
[0149] また、本発明の装置は、上記した判定機能を実現可能なものである限り、必要に応 じて、他の手段を適宜追加した装置とすることができる。
[0150] また、ステップ S 24に示した危険度の判定基準は、表 1に限定されず、被験者から 検出された遺伝子多型の正の関連性と負の関連性の偏度を求め、正の関連性が有 意の場合には、動脈硬化性疾患の危険度が高い (或いは発症)、負の関連性が有意 の場合には、動脈硬化性疾患の危険度が低!ヽ (或 、は非発症)と判定すればょ 、。 尚、偏度は、該当するセットが正 Z負の参照テーブルに含まれている数の差に限定 されず、含まれているセットに応じた重み付け、または含まれている各々の遺伝子多 型に応じた重み付けをして算出した値や、さらに臨床データを考慮して算出した値な ど、種々の値を用いることができる。
[0151] 動脈硬化性疾患危険度の判定に使用する参照テーブルとしては、図 1一図 36、図 38—図 55の何れかに対応するテーブルを使用すればよいが、上記したように、本発 明に係る疾患危険度の判定装置、判定方法及び判定プログラムの適用対象は、動 脈硬化性疾患に限定されな 、。心筋梗塞危険度の判定に使用する参照テーブルと しては、図 56—図 73の何れかに対応するテーブルを使用すればよい。
[0152] また、上記では、サービス提供機関の判定装置が、分析機関から取得した被験者 の遺伝子多型情報を判定の対象とする場合を説明したが、これに限定されない。過 去に解析された個人の遺伝子多型情報を何らかの記録手段 (例えば、個人毎に付 与した ICカード、メモリカードなどの携帯型記録手段)に記録しておき、これから遺伝 子多型情報を読み出して、疾患危険度の判定処理を行ってもよい。生体の遺伝子情 報は変わらないので、一度解析された遺伝子多型情報を記録しておけば、参照テー ブル又は危険度の判定基準が変更されて判定精度が向上した場合にも、再び遺伝 子解析のために採血などを行う必要が無ぐ被験者の負担が軽減される。
[0153] また、分析機関から取得した個人の遺伝子多型情報を、サービス提供機関のデー タベースに個人 IDと対応させて記録しておき、各個人に個人 IDを通知しておけば、 個人 IDのみの連絡を受けるだけで、データベースに記録された対応する遺伝子多 型を用いて、再度の危険度判定が可能となる。
[0154] また、上記した疾患危険度判定用遺伝子多型決定方法の説明において記載した ように、遺伝子多型情報自体を IDとして使用することによって、個人 IDを使用するこ となぐ新たに取得した被解析データ (例えば、動脈硬化性疾患であれば IMTの測 定値)に加えて過去の被解析データを利用することができる。従って、危険度の判定 精度の履歴を追跡することや、履歴を考慮した危険度の判定を行うことが可能となる 。ここで、被解析データには、疾患指標の値以外に種々の臨床データなどが付加さ れていてもよい。
[0155] (3-2)動脈硬化性疾患危険度判定方法
以下、動脈硬化性疾患危険度判定方法についてより詳細に説明する。 本発明の動脈硬化性疾患危険度判定方法は、動脈硬化性疾患のかかりやすさや進 行しやすさを判定するために使用することができる。好適には、糖尿病患者またはそ の傾向のある患者 (糖尿病境界型)に対して動脈硬化性疾患の危険度 (かかりやすさ 、進行のしゃすさなど)を判定するために使用することができる。
[0156] 本発明に係る動脈硬化性疾患危険度判定方法は、 (b)被験試料につ!、て検出さ れた遺伝子多型を、動脈硬化性疾患の判定指標となる"頸動脈内膜中膜複合体肥 厚度 (IMT) "と負の関連性を有する遺伝子多型セットと照合する工程を有することを 特徴とする。なお、 IMTと負の関連性を有する遺伝子多型セットとしては、好ましくは 図 1一 9いずれか一つの図に記載される負の遺伝子多型セットの群力 選択される少 なくとも 1つのセット、または図 38— 43いずれか一つの図に記載される負の遺伝子多 型セットの群力 選択される少なくとも 1つのセットを挙げることができる。
[0157] 本発明の判定方法には、動脈硬化性疾患の判定指標に対して負の関連性を有す る遺伝子多型セットと照合する工程と、動脈硬化性疾患の判定指標に対して正の関 連性を有する遺伝子多型セットと照合する工程とを組み合わせて実施する方法が含 まれる。即ち、上記 (b)の工程に加えて、(b')工程として被験試料について検出され た遺伝子多型を、 IMTと正の関連性を有する遺伝子多型セットと照合する工程、及 び (c)工程として上記 (b)と (b')の結果から、検出された遺伝子多型について、負の 関連性と正の関連性とを対比してその偏度を算出する工程を有する、判定方法であ る。なお、ここで IMTと正の関連性を有する遺伝子多型セットとしては、好ましくは図 1 9一 27のいずれか一つの図に記載される正の遺伝子多型セットの群力も選択される 少なくとも 1つの遺伝子多型または遺伝子多型セット、及び図 48— 51のいずれか一 つの図に記載される正の遺伝子多型セットの群力 選択される少なくとも 1つの遺伝 子多型セットを挙げることができる。
[0158] また、本発明の判定方法は、上記工程 (b)または (b')に先立ち、(a)被験試料にお いて遺伝子多型を検出する工程を有することができる。力かる検出工程 (a)は、図 37 に記載する 99個の遺伝子多型力 選ばれる 2または 3以上の遺伝子多型を対象とし た検出工程とすることができる。
[0159] 検出工程 (a)は、図 10— 18のいずれか一つの図に記載される、負の遺伝子多型 セットを構成する遺伝子多型の存在、及び図 28— 37のいずれか一つの図に記載さ れる、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有する ことができる。具体的には、図 10及び図 19に記載される遺伝子多型、図 11及び図 2 0に記載される遺伝子多型、図 12及び図 21に記載される遺伝子多型、図 13及び図 22に記載される遺伝子多型、図 14及び図 23に記載される遺伝子多型、図 15及び 図 24に記載される遺伝子多型、図 16及び図 25に記載される遺伝子多型、図 17及 び図 26に記載される遺伝子多型、または、図 18及び図 27に記載される遺伝子多型 の存在を検出する工程とすることができる。
[0160] また検出工程 (a)は、図 38— 43のいずれか一つの図に記載される、負の遺伝子多 型セットを構成する遺伝子多型の存在、及び図 48— 51のいずれか一つの図に記載 される、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有す るものであってもよい。具体的には、図 38及び図 48に記載される遺伝子多型、図 39 及び図 49に記載される遺伝子多型、図 40及び図 50に記載される遺伝子多型、図 4 1及び図 51に記載される遺伝子多型、図 42及び図 51に記載される遺伝子多型、ま たは、図 43及び図 51に記載される遺伝子多型の存在を検出する工程とすることがで きる。
[0161] 検出工程 (a)は、上記本発明の動脈硬化性疾患危険度判定用アレイを利用するこ とにより、高い精度で実施することができる。即ち、検出工程 (a)は、本発明の疾患判 定用アレイ上で、被験試料力 調製したプローブとアレイ上の遺伝子多型検出用プ ローブとをノヽイブリダィズさせて遺伝子多型を検出する工程とすることができる。
[0162] 前記検出工程 (a)にお 、ては、被験者の遺伝子型を検出する方法であれば!/、かな る方法も使用することができる。一般的な方法としては、被験者の血液、痰、皮膚、気 管支肺胞洗浄液、その他の体液、あるいは組織等、 DNAを含むものを被験試料とし て用いる。解析方法としては多くの方法が知られており、例えばシークェンス法、 PC R法、 ASP— PCR法、 TaqMan法、インベーダーアツセィ法、 MALDI— TOFZMS 法、分子ビーコン法、ライゲーシヨン法などを例示することができる(Clin. Chem. 43 : 1114-1120, 1997)。なお、シークェンス法とは、遺伝子多型を含む DNA領域 を直接にシークェンスする方法である。 PCR法においては、遺伝子多型に特異的な プライマーをもちいて、ある遺伝子多型のみを特異的に増幅する。 PCR法において は、もっとも 3'側に遺伝子多型の核酸を配置するのが一般的である力 Allele Spe cific Primer (ASP) PCR法のように、 3 '末端側から 2番目に遺伝子多型を有する プライマーを配置する方法などのように、遺伝子多型をプライマーのどの領域に置く 力 また、検出する遺伝子以外にどのような核酸配列を入れるかなどプライマーのデ ザインには、遺伝子多型を識別できる限り、特に制限はない。 TaqMan法において 蛍光色素と消光物質により両端を標識したアレル特異的プローブを標的部位にハイ ブリダィズさせて、この部位を含む領域を増幅するように設計したプライマーで PCR 反応を行う。プライマーからの PCR反応がこのアレル特異的プローブがハイブリダィ ズした領域に達すると、 Taqポリメラーゼの 5プライムヌクレアーゼ活性によりハイブリ ダイズしたプローブの 5'末端に存在する蛍光色素が切断され、消光物質から離れる ことにより蛍光が生ずる。この手法により、アレル特異的プローブがどの程度ハイプリ ダイズしていたかがわかる。インベーダーアツセィ法においては、铸型の遺伝子多型 部位から 5 '側に特異的配列を持ち、 3 '側にフラップ配列を持つアレルプローブと、 铸型の遺伝子多型部位力 の 3 '側の特異的配列を有するインベーダープローブ、 さらに、フラップ配列に相補的な配列を含む FRETプローブとの 3種類のオリゴヌタレ ォチドを使 、、 TaqMan法と同様の原理にてどのアレルプローブがハイブリズダイズ したかを特定できる。 MALDI— TOF/MS法においては、遺伝子多型部位に隣接 するプライマーを作成してこの領域を増幅させた後、遺伝子多型部位の 1塩基のみ を ddNTPを用いて増幅する。ついで、 MALDI— TOF/MSを用いて、付加した dd NTPの種類を識別することにより遺伝子多型を同定する。 Hybrigene法などの DN Aチップ法と総称される方法においては、アレイ上に遺伝子多型を含むオリゴヌタレ ォチドプローブを配置し、 PCR増幅させたサンプル DNAとのハイブリダィゼーシヨン を検出する。
[0163] 本発明の判定方法において、動脈硬化性疾患危険度の判定は、例えば、以下のよ うに行うことができる。
[0164] [表 2]
Figure imgf000048_0001
[0165] 例えば、被験試料につ!、て検出された遺伝子多型を、動脈硬化性疾患の判定指 標である IMTと負の関連性を有する遺伝子多型セット及び正の関連性を有する遺伝 子多型セットと照合した場合において、正の関連性を有する遺伝子多型セットのトー タル数が負の関連性を有する遺伝子多型セットのトータル数よりも多い被験者 (Case 1)は、動脈硬化性疾患高危険度例と判定される。また、正の関連性を有する遺伝子 多型セットは存在するものの、負の関連性を有する遺伝子多型セットは有しない被験 者 (Case2)も、動脈硬化性疾患高危険度例と判定される。一方、負の関連性を有す る遺伝子多型セットのトータル数が正の関連性を有する遺伝子多型セットのトータル 数より少ない被験者 (CaSe3)は、動脈硬化正疾患低危険度例と判定される。また、負 の関連性を有する遺伝子多型セットは存在するものの、正の関連性を有する遺伝子 多型セットは存在しな 、被験者 (CaSe4)も、動脈硬化性疾患低危険度例と判定され る。
[0166] 即ち、被験者力も検出された遺伝子多型について正の関連性 (感受性)と負の関 連性 (抵抗性)の偏度を求め、正の関連性が高い場合には動脈硬化性疾患の危険 度が高い (或いは発症)、負の関連性が高い場合には動脈硬化性疾患の危険度が 低 、(或いは非発症)と判定できる。
[0167] 本発明の判定方法を利用することにより、高い精度で動脈硬化性疾患の危険度に つ 、ての判定結果を得ることができる。
[0168] 例えば、被験者について検出した遺伝子多型をもとに、当該被験者を動脈硬化性 疾患低危険度例または動脈硬化性疾患高危険度例と判断した場合に、当該被験者 が臨床的な所見から、非動脈硬化疾患例または動脈硬化疾患例と判断される (判断 結果が一致する)割合が 60%以上、好ましくは 65%以上、より好ましくは 70%以上と なり、また一致しない割合が 45%以下、好ましくは 40%以下、より好ましくは 45%以 下となるようなものであれば、高精度な判定結果として評価することができる。なお、 臨床的な所見としては、例えば、この場合の臨床的所見としては、例えば被験者の 頸動脈内膜中膜複合体肥厚度 (IMT)が 1.1mm未満を非動脈硬化疾患例、 IMTが 1. 1mm以上を動脈硬化疾患例とする方法を例示することができる。また、他の方法 として、重回帰分析における頸動脈内膜中膜複合体の平均肥厚度の増分( Δ ΙΜΤ) が 0. 2mm以上の場合、または、重回帰分析における頸動脈内膜中膜複合体の最 大肥厚度の増分( Δ PIMT)が 0. 3mm以上の場合を動脈硬化疾患例とし、それ以 外の場合を非動脈硬化疾患例とする方法を用いることもできる。
[0169] なお、動脈硬化疾患例および非動脈硬化疾患例の集団は、 V、ずれも糖尿病であ つて、心筋梗塞病歴がない疾患例の集団と設定することが好ましい。また、被験者か ら検出する遺伝子多型は、効率性等の観点から、 2または 3の遺伝子多型の組み合 せを有するものであることが好まし 、。
[0170] 本発明の動脈硬化性疾患危険度の判定方法は、更に (d)工程として、 (c)工程で 得られた偏度について、さらに重み付けして、偏度の程度 (すなわち、危険度の程度 )を決定する工程を有するものであってもよ 、。
[0171] ここで、重み付けに使用される因子としては、例えば、疾患 (またはその程度)と密 接に関係する臨床的所見 (疾患判定指標として使用されるもの)を挙げることができる 。なお、重み付けに際しては、遺伝子多型と上記因子との関係を予め解析しておき、 関連性やその程度を設定しておくことが好ましい。好ましくは、遺伝子多型または遺 伝子多型セットと疾患 (またはその程度)と密接に関係する臨床的所見との間に有意 な正又は負の関連性を有する頻度をォッズ比で設定する方法、有意な正又は負の 関連性を有する力否かを 1か 0かで設定する方法、等を挙げることができる。
[0172] 例えば、動脈硬化性疾患の場合、密接に関係する臨床的所見としては、頸動脈の 硬化度を挙げることができる。そして頸動脈の硬化度を示す指標としては、例えば、 頸動脈の肥厚度を挙げることができる。力かる頸動脈の肥厚度を計測する方法として は、特に制限はないが、超音波断層装置による頸動脈内膜中膜複合体肥厚度 (IM T)の測定が一般的である。当該方法は、超音波的に到達可能な頸動脈の肥厚度を 計測する無侵襲なかつ定量的計測法である。前記超音波断層装置は、 7. 5MHz以 上の中心周波数のリニア型パルスエコープローブを有するものを使用することが望ま しい。頭蓋外頸動脈は皮下浅層に存在すため、 7. 5MHz以上の周波数のものが使 用可能で、高解像度 (距離分解能 0. 1mm)を得ることができる。但し、これは一例で める。
[0173] 血管壁は、血管内腔側の 1層の低エコー輝度部分と、その外の高エコー輝度層の 2層構造としてエコー像上解析される。本発明者らは 104例の健常例の観察より、総 頸動脈の IMTが 10歳代より 70歳代まで加齢とともにほぼ直線的に増加し、その肥厚 度は 1. Ommを越えないことを確認している。健常人の総頸動脈 IMTは年齢より次 式の如く求められる:
IMT = 0.06 X Age + 0.3 ( 3 < Age < 80 yr )。
[0174] 上記頸動脈内膜中膜複合体肥厚度 (IMT)以外の頸動脈の硬化度を示す指標と しては、 IMTの最大値を表す最大 IMT(Max— IMT)、 IMTの平均値を表す平均 I MT(AvglMT)、プラークスコア(PS)、頸動脈スティッフネス等があり、これらの各指 標についても種々の計測方法が確立されている。前斜位、側面、後斜位の各縦断像 で最大の内膜中膜肥厚度を Max— IMTとし、該 Maxl— MTを示す部位を中心として 中枢側 lcmおよび遠位側 lcmの計 3ポイントの平均を AvglMTとする方法;左右の 総頸動脈(common carotid:CC)力 頸動脈分岐部、内頸動脈(internal carotid:IC) の 3縦断面の皮膚に対する近位壁 (near wall)および遠位壁 (far wall)の合計 12の肥 厚度の中、最大値を AvglMTとする方法;また、左右の肥厚度の平均を AvglMTと する方法などである。さらに、 far wallの一定区画の平均肥厚度を mean IMTとする 方法もある。また、一側の頸動脈の分岐部より中枢側 10mmの far wallの肥厚度を指 標とすることちある。
[0175] プラークスコア(PS)は、分岐部を基準として 15mmずつ頸動脈を 4区画に区分し、 各々の部位での 1.1mm以上のプラーク厚の左右頸動脈両方での総和をいう。また、 上述の 3— 4区画の各部位でのプラーク(IMT1. lcm以上)の数の総和をプラーク ナンバー (PN)と呼んで指標とすることもある。
[0176] 頸動脈スティッフネスは、収縮期および拡張期の頸動脈の径カゝら計測される数値で ある。一側の頸動脈の分岐部より中枢側 10mmの far wallの肥厚度を指標とする方法 は、測定が簡便であり、総頸動脈には病変が少ないことより測定誤差が少ないといわ れる。 IMTは、頸動脈の最大の病変を示す指標である。 PSは、動脈硬化の進展した 頸動脈の全体像を示すことができるが、非進展例 (肥厚度が 1.1mm未満)では、 0と なる点で不利である等、測定する対象、疾患により好適な指標が異なる。糖尿病や高 脂血症を伴う場合には、頸動脈壁は比較的に均一に肥厚することが多ぐ AvglMT や mean IMTが重要な指標になるが、高血圧症を伴う場合は、プラークを認めること が多ぐ PS、 PNおよび MaxIMTが有効な指標となる。
[0177] 動脈硬化性疾患と密接に関係する臨床的所見としては、頸動脈内膜中膜複合体 肥厚度の増加量を挙げることもできる。頸動脈内膜中膜複合体肥厚度の増加量とし て、平均 IMTの増分( Δ IMT)や最大 IMTの増分( Δ PIMT)等を指標として用いる ことができる。中でも Δ ΙΜΤは、総合的に動脈硬化性疾患の危険度を表すものとして 特に好ま 、指標である。頸動脈内膜中膜複合体肥厚度の増加量と動脈硬化性疾 患との関連性については、多くの報告がなされており、特に Δ ΙΜΤについては、 Δ Ι MTが 0. 339mm増加するごとに心筋梗塞のォッズが 4. 9倍になることが知られてい る(Yamasaki. Diabetes Care 2000 (9))。ゆえに、 Δ ΙΜΤは、動脈硬化性疾患と密接 に関係する臨床的所見として位置づけられ、これを用いる方法は、極めて有効に動 脈硬化性疾患の危険度を判定しうるものである。なお、頸動脈内膜中膜複合体肥厚 度の増加量は、そのまま、動脈硬化性疾患の危険度の評価に利用することができる 力 頸動脈内膜中膜複合体肥厚度の増加量から、適宜関数を用いて上記評価に利 用してちょい。
[0178] 頸動脈内膜中膜複合体肥厚度の増加量( Δ ΙΜΤおよび Δ ΡΙΜΤ等)は、集団より 計測された ΙΜΤ値または ΡΙΜΤ値力ゝら重回帰分析の方法により計算される偏回帰係 数により表すことができる。
[0179] また、本発明の動脈硬化性疾患危険度判定方法は、さらに被験者の臨床的所見 や疾患と密接に関係する環境因子力 動脈硬化危険度を決定する危険度決定工程 をさらに含んでいてもよい。
[0180] 被験者の臨床的所見によれば、それだけで、測定時における被験者の動脈硬化 性疾患の状態がわかり、また臨床的所見や環境因子力 も発病の危険性は予測でき る力 前述する本発明の方法と組合せることによって、被験者について現状を確認し ながら、被験者が有する固有の動脈硬化性疾患の危険度に基づいて、将来の発病 の危険性および進行しやすさを予測することができる。特に、まだ測定時点において は肥厚が進んで 、な 、若年齢の被験対象にぉ 、て、将来の危険度を予測できれば 、危険度が高い場合には生活習慣の改善などの予防を行うことができ、動脈硬化性 疾患の発病を防ぐことができる。
[0181] 動脈硬化性疾患と関連する環境因子としては、年齢、性別、高血圧、肥満、喫煙歴 、ヘモグロビン Ale値、糖尿病や高脂血症の罹患歴やその期間等が報告されている
[0182] Vitelliらは、動脈硬化危険度調査 (ARIC Study)にお!/、て、 208例の頸動脈肥厚 を有する(平均 IMT、 1. 21 mm)非糖尿病者と 208例の肥厚を有さない(平均 IMT 、 0. 63 mm)非糖尿病者を比較し、ヘモグロビン Aleの 1%の増加が動脈硬化のリ スクを 1. 77倍高めるとの推計結果を報告している(Vitelli LL. Diabetes Care 1997; 20: 1454-8) o喫煙は動脈硬化の危険因子とされているが、住民を対象とした動脈硬 化危険度調査 (ARIC Study)で喫煙歴と IMTの強い相関性が示され、糖尿病ある いは高血圧患者では喫煙がさらに強い促進因子となることを示されている(Howard G, JAMA 1998; 279: 119-24.)。 Sutton— Tyrrellらは、同年代の閉経前と閉経後女 性の IMTとプラーク病変を検索し、閉経により平均 IMTは 0. 69→0. 77mm,プラ ークを認める女性は 25→54%へと有意に増加することより、閉経が女性の動脈硬化 を促進することを報告している(Sutton- Tyrrell K, Stroke 1998; 29: 1116-21)。
[0183] 動脈硬化の原因として、また種々の感染症の関与が考えられている。 Nietoらは、 動脈硬化危険度調査 (ARIC Study)で IMT進展群と非進展群を抽出し、サイトメガ ロウィルスの抗体価を検索したところ、抗体価が 20以上の症例の抗体価 4未満群に 対するォッズ比は 5. 3と有意に高ぐ動脈硬化の進展因子としてのサイトメガロウィル スの可能性を示唆している(Nieto FJ, Circulation 1996; 94: 922-7)。
[0184] 本発明者は以前に、 1型糖尿病、 2型糖尿病、境界型症例の IMTを従属変数とし て重回帰分析を行い、 1型糖尿病者 (30才未満)では、年齢、糖尿病罹病期間、へ モグロビン Ale値が独立した危険因子であること、 2型糖尿病患者(30才以上)では 、年齢、ヘモグロビン Ale値、 nonHDLコレステロール、収縮期血圧、喫煙歴が独立 した危険因子であること、境界型糖尿病者では、加齢以外に収縮期血圧、喫煙が危 険因子であることを報告している(Yamasaki Y, Diabetes 1994; 43: 634-639)。
[0185] 前記環境因子の中でも特に年齢、性別、糖尿病罹病期間およびヘモグロビン Ale 値が重要である。
[0186] 本発明の動脈硬化性疾患危険度判定方法は、疾患危険度を与える遺伝子多型が 存在していても、疾患に抵抗性を与える遺伝子多型の存在によりその危険度が相殺 されること、並びに単一の遺伝子多型では疾患に抵抗性を与えない場合でも、複数 の遺伝子多型が組み合わさって存在することにより、疾患に抵抗性を与えるという知 見に基づくものである。よって、本発明の方法は、疾患の危険判定に、遺伝子多型を 、組合せ物 (セット)として動脈硬化性疾患危険度に抵抗性を与える因子として捉え、 そして当該抵抗性因子と感受性因子を組み合わせて疾患の発症危険度を判定する ことという特徴を有し、これにより精度の高い判定が可能にしたものである。特に本発 明の動脈硬化性疾患危険度判定方法は、疾患判定指標として、頸動脈内膜中膜複 合体肥厚度と 、う健常者にぉ ヽても疾患を有する者にぉ ヽても同様に定量的に計測 可能な指標を採用し、当該指標と遺伝子多型との関係を精査し、遺伝子多型セットと 肥厚度との正及び負の関係を適切に指標化することにより、より高い精度を実現した 判定方法である。
[0187] (3-3)心筋梗塞危険度判定方法
本発明の心筋梗塞危険度判定方法は、心筋梗塞のかかりやすさや進行しやすさを 判定するために使用することができる。好適には、糖尿病患者またはその傾向のある 患者 (境界型糖尿病)に対して心筋梗塞の危険度 (かかりやすさ、進行のしゃすさな ど)を判定するために使用することができる。
[0188] 本発明に係る心筋梗塞危険度判定方法は、(b)被験試料について検出された遺 伝子多型を、心筋梗塞の判定指標と負の関連性を有する遺伝子多型セットと照合す る工程を有することを特徴とする。心筋梗塞の判定指標としては、例えば前述するよ うに、心電図上での陳旧性心筋梗塞の波形の有無や心筋梗塞の既往歴を挙げるこ とができる。心筋梗塞の判定指標と負の関連性を有する遺伝子多型セットとしては、 好ましくは図 56— 58いずれか一つの図に記載される負の遺伝子多型セットの群から 選択される少なくとも 1つのセットを挙げることができる。
[0189] 本発明の判定方法には、心筋梗塞の判定指標に対して負の関連性を有する遺伝 子多型セットと照合する工程と、心筋梗塞の判定指標に対して正の関連性を有する 遺伝子多型セットと照合する工程とを組み合わせて実施する方法が含まれる。即ち、 上記 (b)の工程にカ卩えて、(b')工程として被験試料について検出された遺伝子多型 を、心筋梗塞の判定指標と正の関連性を有する遺伝子多型セットと照合する工程、 及び (c)工程として上記 (b)と (b')の結果から、検出された遺伝子多型について、負 の関連性と正の関連性とを対比してその偏度を算出する工程を有する、判定方法で ある。なお、ここで心筋梗塞の判定指標と正の関連性を有する遺伝子多型セットとし ては、好ましくは図 63— 69のいずれか一つの図に記載される正の遺伝子多型セット の群力も選択される少なくとも 1つの遺伝子多型セットを挙げることができる。
[0190] また、本発明の判定方法は、動脈硬化性疾患の危険度判定方法と同様に、上記ェ 程 (b)または (b')に先立ち、(a)被験試料において遺伝子多型を検出する工程を有 することができる。力かる検出工程 (a)は、図 37に記載する 99個の遺伝子多型から 選ばれる 2または 3以上の遺伝子多型を対象とした検出工程とすることができる。かか る検出工程 (a)は、図 58— 62のいずれか一つの図に記載される、負の遺伝子多型 セットを構成する遺伝子多型の存在、及び図 70— 73のいずれか一つの図に記載さ れる、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有する ことができる。具体的には、図 59及び図 70に記載される遺伝子多型、図 60及び図 7 1に記載される遺伝子多型、図 61及び図 72に記載される遺伝子多型、または、図 6 2及び図 73に記載される遺伝子多型の存在を検出する工程とすることができる。
[0191] 検出工程 (a)は、上記本発明の心筋梗塞危険度判定用アレイを利用することにより 、高い精度で実施することができる。即ち、検出工程 (a)は、本発明の疾患判定用ァ レイ上で、被験試料力 調製したプローブとアレイ上の遺伝子多型検出用プローブと をノヽイブリダィズさせて遺伝子多型を検出する工程とすることができる。
[0192] なお、本発明の心筋梗塞危険度判定方法は、上記動脈硬化性疾患危険度判定方 法と同様に、更に(d)工程として、(c)工程で得られた偏度について、さらに重み付け して、偏度の程度 (すなわち、危険度の程度)を決定する工程を有するものであって もよいし、さらに被験者の臨床的所見や疾患と密接に関係する環境因子力 心筋梗 塞危険度を決定する危険度決定工程をさらに含んで 、てもよ 、。
[0193] 本発明の心筋梗塞危険度判定方法は、上記動脈硬化性疾患危険度判定方法と同 様の方法で実施できるが、力かる方法を利用することにより、高い精度で心筋梗塞の 危険度についての判定結果を得ることができる。
[0194] 本発明の判定方法には下記の態様が含まれる:
(A) (b)被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を 有する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、 を有する疾患危険度の判定方法。
[0195] (B)更に、 (b')疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝 子多型セットと照合する工程、及び
(c) (b')の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連 性とを対比してその偏度を算出する工程
を有する (A)に記載する疾患危険度の判定方法。
[0196] (C)更に、(d)得られた偏度力も疾患危険度を評価する工程を有する (B)に記載す る疾患危険度の判定方法。
(D)対象の疾患が動脈硬化性疾患であって、疾患判定指標と負の関連性を有する 遺伝子多型セットとして、図 1一 9のいずれかに記載される負の遺伝子多型セットの 群力も選択される少なくとも 1つのセット、または図 38— 43のいずれかに記載される 負の遺伝子多型セットの群力も選択される少なくとも 1つのセットを用いる、(A)乃至( D)の 、ずれかに記載する疾患危険度の判定方法。
(E)対象の疾患が、動脈硬化性疾患であって、
(1)疾患判定指標と負の関連性を有する遺伝子多型セットが、図 1一 9のいずれかに 記載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセットであり、且 つ疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子 多型セットが、図 19一 27のいずれかに記載される正の遺伝子多型セットの群力も選 択される少なくとも 1つの遺伝子多型セットである力 または
(2)疾患判定指標と負の関連性を有する遺伝子多型セットが、図 38— 43のいずれ かに記載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセットであ り、且つ疾患判定指標と正の関連性を有する遺伝子多型または正の関連性を有する 遺伝子多型セットが、図 48— 51のいずれかに記載される正の遺伝子多型セットの群 力も選択される少なくとも 1つの遺伝子多型セットである、(B)乃至 (D)のいずれかに 記載する動脈硬化性疾患危険度の判定方法。
[0197] (F)工程 (b)または (b')に先立ち、 (a)被験試料にお!、て遺伝子多型を検出する 工程を有する (A)乃至 (E)の 、ずれかに記載する疾患危険度の判定方法。
[0198] (G)検出工程 (a)が、図 37に記載する 99個の遺伝子多型力も選ばれる 2または 3 以上の遺伝子多型を対象とした検出工程である (F)に記載する疾患危険度の判定 方法。
[0199] (H)対象の疾患が、動脈硬化性疾患であって、
検出工程 (a)が、本発明の動脈硬化性疾患危険度判定用アレイ上で、被験試料から 調製したプローブと、アレイ上の遺伝子多型検出用プローブとをノ、イブリダィズさせて 遺伝子多型を検出する工程である (F)または (G)に記載する疾患危険度の判定方 法。
[0200] (I)対象の疾患力 心筋梗塞であって、
検出工程 (a)が、本発明の心筋梗塞危険度判定用アレイ上で、被験試料から調製し たプローブと、アレイ上の遺伝子多型検出用プローブとをノヽイブリダィズさせて遺伝 子多型を検出する工程である (F)に記載する疾患危険度の判定方法。
[0201] ω動脈硬化疾患例および非動脈硬化疾患例の集団が、 V、ずれも糖尿病であって 、心筋梗塞病歴がな 、疾患例の集団である (Α)乃至 (I)の 、ずれかに記載する疾患 危険度判定方法。
[0202] (4)疾患有効薬剤選定方法
本発明には、被験対象から検出された遺伝子多型が該当する分類から、各被験者 の特性に応じた有効な薬剤を選定する方法も含まれる。当該方法は被験対象から検 出された遺伝子多型に基づき、該遺伝子多型の分類から適用可能と考えられる薬剤 を選定することによって行われる。遺伝子多型の分類は、上記 a)— j)の分類を用いる ことができる。
[0203] 具体的に、制限されないが、
a)脂質関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、スタチン が挙げられる。
b)血圧関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、 ACE阻 害薬及びアンギオテンシン II受容体阻害薬が挙げられる。
d)インスリン抵抗性関連遺伝子多型群に属する遺伝子多型に対する有効薬剤として は、インスリン感受性改善剤が挙げられる。
f)酸化ストレス関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、 抗酸化剤が挙げられる。 g)炎症反応関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、免 疫抑制剤及びスタチンが挙げられる。
h)凝固線溶系関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、 抗血小板剤が挙げられる。
[0204] その他、 MMP- 12(A- 82G)、 mmp- 9=Gelatinase B(C- 1562T)、 MMP7(C- 153T)など の遺伝子多型が検出された場合には、有効薬剤として抗プロテアーゼを用いてもよ い。被検対象から複数の遺伝子多型が検出された場合には、上記薬剤を 2種以上併 用して用いることもできる。
[0205] このように、被験者の遺伝子多型に応じた適切な薬剤を選定することにより、被験 対象の体質又は特徴に応じた疾患の予防、治療又は予後の対応などを行うことが可 會 になる。
[0206] (5)疾患抵抗性因子顕在化方法または疾患危険度顕在化方法
本発明は、別の角度から、被験者が保有する疾患抵抗性因子を顕在化する方法、 並びに被験者が保有する疾患危険度を顕在化する方法を提供するものでもある。
[0207] 本発明に係る疾患抵抗性因子顕在化方法は、
(0被験試料にぉ 、て検出された遺伝子多型を、疾患判定指標と負の関連性を有 する遺伝子多型または遺伝子多型セットと照合する工程、
GO ( の結果に基づき、被験試料における疾患抵抗性因子を顕在化させる工程 を有するものである。これらの工程を含む限りにおいて、他の付カ卩的ないかなる工程 を有して!/ヽても本発明に含まれる。
[0208] (ii)の顕在化工程は、被験試料にお!、て検出された遺伝子多型が、疾患判定指標 と負の関連性を有する遺伝子多型または遺伝子多型セットのどれかに該当するか否 かを明らかにすることによって行われる。
[0209] 例えば、対象とする疾患が動脈硬化性疾患 (好ましくは、糖尿病に起因する動脈硬 化性疾患)である場合、(0の工程は、被験試料において検出された遺伝子多型を、 頸動脈内膜中膜複合体肥厚度 (IMT)と負の関連性を有する遺伝子多型または遺 伝子多型セットと照合することによって行われる。力かる遺伝子多型セットとしては、 図 1一 9のいずれかに記載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセット、または図 38— 43のいずれかに記載される負の遺伝子多型セットの群 力 選択される少なくとも 1つのセットを挙げることができる。
[0210] また、例えば、対象とする疾患が心筋梗塞 (好ましくは、糖尿病に起因する心筋梗 塞)である場合、(0の工程は、被験試料において検出された遺伝子多型を、心筋梗 塞の判定指標と負の関連性を有する遺伝子多型または遺伝子多型セットと照合する こと〖こよって行われる。力かる遺伝子多型セットとしては、図 56— 58のいずれかに記 載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセットを挙げること ができる。
[0211] また、上記顕在化方法においては、工程 (i)に先立ち、(0)被験試料において遺伝 子多型を検出する工程を有することができる。
[0212] 検出工程 (0)は、図 37に記載する 99個の遺伝子多型力も選ばれる少なくとも 2の 遺伝子多型を対象とした検出工程とすることができる。対象とする疾患が動脈硬化性 疾患 (好ましくは、糖尿病に起因する動脈硬化性疾患)である場合は、検出対象とす る遺伝子多型として、図 10— 18から選択される 、ずれかの図に記載される遺伝子多 型、または図 44一 47から選択されるいずれかの図に記載される遺伝子多型を用い てよい。対象とする疾患が心筋梗塞 (好ましくは、糖尿病に起因する心筋梗塞)であ る場合は、検出対象とする遺伝子多型として、図 59— 62から選択されるいずれかの 図に記載される遺伝子多型を用いてょ 、。
[0213] 検出工程 (0)は、前述する発明の疾患危険度判定用アレイ上で、被験試料から調 製したプローブとアレイ上の遺伝子多型検出用プローブとをノヽイブリダィズさせて遺 伝子多型を検出することによって行うことができる。また、被験試料は特に制限されな いが、糖尿病患者であって、動脈硬化性疾患の病歴または心筋梗塞病歴がない被 験者の生体試料である場合に、より本発明による利益を享受することができる。
[0214] ヒトゲノムには、極めて多くの遺伝子多型があり、そのうちのひとつだけでは、オッス、 比が低ぐまた、頻度も限られているため、疾患危険度を予測することは不可能であ る。したがって、それらの遺伝子多型をばらばらに見ていたのでは、個人が有する遺 伝子多型のなかに糸且合せとして内在している疾患と関連する因子を見つけることは できない。本発明においては、多数の母集団における解析により、疾患判定指標と の間に有意な負の関連性を有する複数の遺伝子多型セットが存在することが明らか になったことに基づき、それらの遺伝子多型セットを疾患抵抗性因子として位置づけ 、被験試料におけるこれらの特定の遺伝子多型セットを構成する遺伝子多型の存在 を選択的に明らかにしたときに、はじめて、疾患抵抗性因子を顕在化させることがで きる。顕在化された疾患抵抗性因子は、疾患危険度判定の情報として、極めて価値 が高いものである。なお、ここで、「選択的に明らかにする」とは、無数ある遺伝子多 型の組合せのうち特定のものを選択して明らかにすることである。
[0215] また、顕在化工程としては、単に、該複数の遺伝子多型の、組合せにカゝかる遺伝子 型セットを一体として明らかにすることのほか、選択的に明らかにされた複数の遺伝 子多型の遺伝子型が、疾患抵抗性因子 (疾患抵抗性遺伝子多型セット)に該当する か否か (例えば 0か 1か)により、また、選択的に明らかにされた複数の遺伝子多型の 遺伝子型が、疾患抵抗性因子 (疾患抵抗性遺伝子多型セット)に該当する場合に、 その遺伝子多型セットと疾患判定指標との間に有意な負の関連性を有する頻度のォ ッズ比により表すことも含まれる。また、選択的に明らかにされた複数の遺伝子多型 の遺伝子型が、疾患抵抗性遺伝子多型セットに該当する場合に、疾患抵抗性遺伝 子多型セットに固有の疾患判定指標の増加抑制により表わすことも含まれる。すなわ ち、該被験対象の遺伝子多型における疾患抵抗性遺伝子多型セットを顕在化できる 方法であれば、特に制限は無い。
[0216] また、本発明に係る疾患危険度顕在化方法は、
0')被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を有 する遺伝子多型または遺伝子多型セット、並びに疾患判定指標と正の関連性を有す る遺伝子多型または遺伝子多型セットと照合する工程、及び
(ϋ' ) (i' )の結果に基づき、被験試料における疾患抵抗性因子または感受性因子を 顕在化させる工程を有するものである。
[0217] 該工程を含む限りにおいて、他の付加的ないかなる工程を有していても本発明に 含まれる。
[0218] 上記危険度顕在化方法は、さらに、(iii' )被験試料について顕在化された疾患抵 抗性因子と感受性因子との偏度を算出する工程も有するものとすることができる。 [0219] 例えば、対象とする疾患が動脈硬化性疾患 (好ましくは、糖尿病に起因する動脈硬 化性疾患)である場合、 G')の工程は、被験試料において検出された遺伝子多型を、 動脈硬化性疾患の判定指標である「頸動脈内膜中膜複合体肥厚度」 (IMT)と負の 関連性を有する遺伝子多型または遺伝子多型セット、並びに IMTと正の関連性を有 する遺伝子多型または遺伝子多型セットと照合することによって行われる。ここで負 の関連性を有する遺伝子多型セットとしては、図 1一 9のいずれかに記載される負の 遺伝子多型セット、または図 38— 43のいずれかに記載される負の遺伝子多型セット を、正の関連性を有する遺伝子多型または遺伝子多型セットとしては、図 19一 27の いずれかに記載される正の遺伝子多型セット、または図 48— 51のいずれかに記載さ れる正の遺伝子多型セットを挙げることができる。
[0220] また、例えば、対象とする疾患が心筋梗塞 (好ましくは、糖尿病に起因する心筋梗 塞)である場合、 G')の工程は、被験試料において検出された遺伝子多型を、心筋梗 塞の判定指標と負の関連性を有する遺伝子多型または遺伝子多型セット、並びに心 筋梗塞の判定指標と正の関連性を有する遺伝子多型または遺伝子多型セットと照合 することによって行われる。ここで負の関連性を有する遺伝子多型セットとしては、図 38— 43のいずれかに記載される負の遺伝子多型セットの群力 選択される少なくと も 1つのセットを、正の関連性を有する遺伝子多型または遺伝子多型セットとしては、 図 50— 53のいずれかに記載される正の遺伝子多型、または遺伝子多型セットの群 力 選択される少なくとも 1つのセットを挙げることができる。
[0221] また、工程(1 ' )に先立ち、(0' )被験試料において遺伝子多型を検出する工程を 有することもできる。検出工程 (0')は、図 38に記載する 99個の遺伝子多型力も選ば れる少なくとも 2の遺伝子多型を対象とした検出工程とすることができる。対象とする 疾患が動脈硬化性疾患 (好ましくは、糖尿病に起因する動脈硬化性疾患)である場 合、検出工程 (0')は、例えば、図 10及び図 28記載の遺伝子多型、図 11及び図 29 記載の遺伝子多型、図 12及び図 30記載の遺伝子多型、図 13及び図 31記載の遺 伝子多型、図 14及び図 32記載の遺伝子多型、図 15及び図 33記載の遺伝子多型、 図 16及び図 34記載の遺伝子多型、図 17及び図 35記載の遺伝子多型、または、図 18及び図 36記載の遺伝子多型の存在を検出する工程、または図 38及び図 48記載 の遺伝子多型、図 39及び図 49記載の遺伝子多型、図 40及び図 50記載の遺伝子 多型、図 41及び図 51記載の遺伝子多型、図 42及び図 51記載の遺伝子多型、また は、図 43及び図 51記載の遺伝子多型の存在を検出する工程とすることができる。
[0222] また対象とする疾患が心筋梗塞 (好ましくは、糖尿病に起因する心筋梗塞)である 場合、検出工程 (0')は、例えば、図 59及び図 70記載の遺伝子多型、図 60及び図 7 1記載の遺伝子多型、図 61及び図 72記載の遺伝子多型、または図 62及び図 73記 載の遺伝子多型の存在を検出する工程とすることができる。
[0223] また、検出工程 (0' )は、上記本発明に係る疾患危険度判定用アレイ上で、検体試 料力 調製したプローブとアレイ上の遺伝子多型検出用プローブとをノヽイブリダィズ させて遺伝子多型を検出する工程とすることができる。
[0224] また、被験試料は、糖尿病であって動脈硬化性疾患または心筋梗塞病歴がな 、被 験者の生体試料と設定すると、本発明の効果をより有効に利用することができる。
[0225] 前述するように、本発明は、多数の母集団における解析により、疾患判定指標との 間に有意な負及び正の関連性を有する複数の遺伝子多型のセットが存在することを 見!、だし、更にそれらをそれぞれ疾患抵抗性因子及び疾患感受性因子として位置 づけ、被験試料に存在する、これらの 2つに分類される遺伝子多型セットを構成する 遺伝子多型の双方を組合わせて評価したときに、はじめて、被験者の疾患危険度が 顕在化できることができることが見出したことに基づく。
[0226] 顕在化された疾患抵抗性因子 (疾患抵抗性遺伝子多型セット)及び疾患感受性因 子 (疾患感受性遺伝子多型セット)の組合せは、疾患危険度判定の情報として、極め て価値が高いものである。
[0227] 顕在化工程としては、単に、該複数の遺伝子多型の、組合せに力かる遺伝子型の セットを一体として明らかにすることのほか、選択的に明らかにされた複数の遺伝子 多型の遺伝子型が、所望の疾患遺伝子多型セットに該当するものである力否かによ り、また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、所望の疾患遺 伝子多型セットに該当する場合に、疾患関連遺伝子多型セットに固有の疾患判定指 標との間に有意な負または正の関連性を有する頻度のォッズ比により表すことも含ま れる。また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、所望の疾患 遺伝子多型セットに該当する場合に、疾患遺伝子多型セットに固有の疾患判定指標 の増加度または増加抑制度により表わすことも含まれる。すなわち、被験対象の遺伝 子多型につ ヽて、疾患遺伝子多型セットの抵抗性及び感受性を判断し顕在化できる 方法であれば、特に制限は無い。
[0228] (6)遺伝子マーカー
(6-1)動脈硬化性疾患抵抗性または動脈硬化性疾患感受性を示す遺伝子マーカー 本発明は、動脈硬化性疾患抵抗性を示す遺伝子マーカーを提供する。当該遺伝 子マーカーは、被験試料について、動脈硬化性疾患抵抗性の遺伝子多型の検出お よび選択に好適に用いることができる。力かる遺伝子マーカーは、負(抵抗性)の遺 伝子多型または遺伝子多型セットの中力 選択される少なくとも一つの遺伝子多型を 含んでなるものである。具体的には、図 1一 9のいずれかに記載の負の遺伝子多型 セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、また は図 38— 43のいずれかに記載の負の遺伝子多型セット群力も選択される少なくとも 一の遺伝子多型セットを構成する遺伝子多型を含む。
[0229] また、本発明は、動脈硬化性疾患感受性を示す遺伝子マーカーをも提供する。当 該遺伝子マーカーは、被験試料にっ ヽて動脈硬化性疾患感受性の遺伝子多型の 検出に好適に用いることができる。かかる遺伝子マーカーは、正 (感受性)の遺伝子 多型または遺伝子多型セットの中力 選択される少なくとも一つの遺伝子多型を含ん でなるものである。具体的には、図 19一 27のいずれかに記載の正の遺伝子多型セ ット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または 図 48— 51のいずれかに記載の正の遺伝子多型セット群力も選択される少なくとも一 の遺伝子多型セットを構成する遺伝子多型を含む。カゝかる動脈硬化性疾患感受性を 示す遺伝子マーカーは、上記動脈硬化性疾患抵抗性を示す遺伝子マーカーと組み 合わせて使用することが好ま ヽ。
[0230] これらの動脈硬化性疾患抵抗性を示す遺伝子マーカー及び動脈硬化性疾患感受 性を示す遺伝子マーカーは、それぞれ動脈硬化性疾患抵抗性の遺伝子多型の検 出や選択及び動脈硬化性疾患感受性の遺伝子多型の検出や選択に用いられるほ 力 動脈硬化性疾患の判定や測定のための遺伝子マーカーなどとしても用いること ができる。
[0231] (5-2)心筋梗塞性疾患抵抗性または心筋梗塞性疾患感受性を示す遺伝子マーカ 本発明は、また心筋梗塞抵抗性を示す遺伝子マーカーを提供する。当該遺伝子マ 一力一は、被験試料について、心筋梗塞抵抗性の遺伝子多型の検出や選択に好適 に用いることができる。力かる遺伝子マーカーは、負(抵抗性)の遺伝子多型または 遺伝子多型セットの中力も選択される少なくとも一つの遺伝子多型を含んでなるもの である。具体的には、図 56— 58のいずれかの図に記載の負の遺伝子多型セット群 から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。
[0232] さらに本発明は、心筋梗塞感受性を示す遺伝子マーカーをも提供する。当該遺伝 子マーカ一は、被験試料につ 1、て心筋梗塞感受性の遺伝子多型の検出に好適に 用いることができる。かかる遺伝子マーカーは、正 (感受性)の遺伝子多型または遺 伝子多型セットの中力も選択される少なくとも一つの遺伝子多型を含んでなるもので ある。具体的には、図 63— 68のいずれかに記載の正の遺伝子多型セット群力も選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。かかる心筋 梗塞感受性を示す遺伝子マーカーは、上記心筋梗塞抵抗性を示す遺伝子マーカー と組み合わせて使用することが好ま U、。
[0233] これらの心筋梗塞抵抗性を示す遺伝子マーカー及び心筋梗塞感受性を示す遺伝 子マーカーは、それぞれ心筋梗塞抵抗性の遺伝子多型の検出や選択及び心筋梗 塞感受性の遺伝子多型の検出や選択に用いられるほか、心筋梗塞の判定や測定の ための遺伝子マーカーなどとしても用いることができる。
[0234] なお、本発明のマーカーには下記の態様が含まれる:
(A)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少なく とも一の遺伝子多型セットを構成する遺伝子多型、または図 38— 43のいずれか〖こ記 載する負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを 構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー。
(B) (1) 図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される 少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗 性の遺伝子マーカー、及び図 19一 27のいずれかに記載する正の遺伝子多型セット の群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含むか 、または
(2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性 の遺伝子マーカー、及び図 48— 55のいずれかに記載する正の遺伝子多型セットの 群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、動 脈硬化性疾患感受性の遺伝子マーカー。
(C)図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝 子マーカー。
(D)図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝 子マーカー、及び図 63— 69の!、ずれかに記載する正の遺伝子多型セットの群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、心筋梗塞 感受性の遺伝子マーカー。
[0235] (7)遺伝子多型分析用キット
本発明の遺伝子多型分析用キットは、負の遺伝子多型又は負の遺伝子多型セット 群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅 し得るプライマー対、あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プロ ーブを含むことを特徴とする。当該分析用キットは、疾患抵抗性遺伝子多型を検出 する分析用キットとして好適に用いることができる。あらに、本発明の遺伝子多型分析 用キットは、正の遺伝子多型、又は正の遺伝子多型セット群力 選択される少なくとも 一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、ある ヽ は当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含むことができる。か カゝる分析用キットは、疾患抵抗性遺伝子多型及び疾患感受性遺伝子多型を検出す る分析用キットとして、好適に用いることができる。
[0236] 負の遺伝子多型セットの一例として、図 1一 9のいずれかに記載する負の遺伝子多 型セットの群力も選択される少なくとも一の遺伝子多型セット、または図 38— 43のい ずれかに記載する負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子 多型セットを挙げることができる。力かる遺伝子多型セットを構成する遺伝子を特異的 に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダィズし得る核酸 プローブを含む分析用キットは、動脈硬化性疾患抵抗性遺伝子多型を検出する分 析用キットとして好適に用いることができる。またこの場合、さらに図 19一 27に記載さ れる正の遺伝子多型セット群から選択される少なくとも 1の遺伝子多型セットを構成す る遺伝子、または図 50— 53に記載される正の遺伝子多型セット群力も選択される少 なくとも 1の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含むことができ る。カゝかる分析用キットは、動脈硬化性疾患抵抗性遺伝子多型及び動脈硬化性疾 患感受性遺伝子多型を検出する分析用キットとして好適に用いることができる。 さらに負の遺伝子多型セットの他の一例として、図 56— 58のいずれかに記載する 、負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを挙げる ことができる。カゝかる遺伝子多型セットを構成する遺伝子を特異的に増幅し得るブラ イマ一対あるいは当該遺伝子に特異的にノ、イブリダィズし得る核酸プローブを含む 分析用キットは、心筋梗塞抵抗性遺伝子多型を検出する分析用キットとして好適に 用いることができる。またこの場合、さらに図 63— 68に記載される正の遺伝子多型セ ット群から選択される少なくとも 1の遺伝子多型セットを構成する遺伝子を特異的に増 幅し得るプライマー対あるいは当該遺伝子に特異的にノ、イブリダィズし得る核酸プロ ーブを含むことができる。カゝかる分析用キットは、心筋梗塞抵抗性遺伝子多型及び心 筋梗塞感受性遺伝子多型を検出する分析用キットとして好適に用いることができる 本発明の遺伝子多型分析用キットは、上記のようなプライマー対あるいは核酸プロ ーブを含んでなるものであれば、本発明の目的を損なわない範囲で、他の核酸又は 試薬等を適宜含んでいてもよい。なお、負の遺伝子多型セットや正の遺伝子多型セ ットを検出するためには、これらのセットを構成する少なくとも 2個の遺伝子多型を検 出するためのプライマーまたはプローブを有することが必要である。一つの遺伝子多 型について遺伝子多型検出用プライマーを含み、他の遺伝子多型について遺伝子 多型検出用プローブを含むようなものであっても、前記遺伝子多型を分析できる限り 、本発明の遺伝子多型分析用キットに含まれる。
[0238] 遺伝子多型の検出は上記遺伝子多型検出工程で記載した!/、ずれの方法をも用い ることができるが、 PCRを用いる hybrigene法、 TaqMan法、インベーダー法や、遺 伝子多型を有する遺伝子に特異的にハイブリダィズする核酸プローブを用いる ASP -PCR法などを好適に用いることができる。
[0239] したがって、遺伝子多型分析用キットには、これらの遺伝子多系を検出する工程に 用いるプライマーおよびプローブの少なくとも 、ずれかが含まれる必要がある。遺伝 子多型を検出するための PCR法においては、もっとも 3'側に遺伝子多型の核酸を 配置するのが一般的である力 Allele Specific Primer (ASP)— PCR法のように 、 3'末端側力 2番目に遺伝子多型を有するプライマーを配置する方法などのように 、遺伝子多型をプライマーのどの領域に置くか、また、検出する遺伝子以外にどのよ うな核酸配列を入れるカゝなどプライマーのデザインには、遺伝子多型を識別できる限 りとくに制限はない。プローブのデザインにおいても同様に、遺伝子多型を識別でき る限りその配列に制限なぐ用いることができる。
[0240] なお、本発明の分析キットには下記の態様が含まれる;
(A) (1)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、または
(2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 ある、は当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、
を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。
[0241] (B) (1)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される 少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー 対ある!/ヽは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 1 9一 27のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一 の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは 当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、または
(2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 48 一 51のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一 の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは 当該遺伝子に特異的にハイブリダィズし得る核酸プローブ
を含む、動脈硬化性疾患抵抗性遺伝子多型または感受性遺伝子多型分析用キット
[0242] (C)図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含む、心筋梗 塞抵抗性遺伝子多型分析用キット。
[0243] (D)図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 ある ヽは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 63 一 69のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一 の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは 当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含む、心筋梗塞抵抗性 遺伝子多型または感受性遺伝子多型分析用キット。
実施例
[0244] 以下、本発明の実施例により本発明をより具体的に説明する力 本発明はこれらの 実施例に何ら限定されるものではな 、。
[0245] 実施例 1 動脈硬化性疾患の危険度の判定
1.動脈硬化性疾患に正または負の関連性のある遺伝子多型の決定
<解析手順 >
糖尿病疾患例において、頸動脈内膜中膜複合体肥厚度 (IMT)の肥厚が同年代の 健常群に比べ、 0.2mm以上肥厚しているものを Case (発症例)、それ以外を Control (未発症例)とした。これらの Case群 (発症例群)及び Control群 (未発症例群)につ 、 て、下記に説明する操作で遺伝子多型を検出した。
[0246] ここでは、説明の都合上、例として ACE遺伝子(略称: ACE ID)の挿入遺伝子多型 の場合を用いて説明するが、他の遺伝子についても同様な操作を行った。
[0247] (l)ACE遺伝子断片増幅用プライマーの合成
パーキンエルマ一社 DNAシンセサイザー 392型を用いて、ホスホアミダイト法にて 、ヒト ACE遺伝子の配列と相同な配列を有するプライマー 1 (CTGGAGACCA CTCCCATCCT TTCT )およびヒト ACE遺伝子の配列と相補的な配列を有する配列 (プライマー 2 : GATGTGGCCATCACATTCGT CAGAT)を合成した。プライマー 2は 5,側にピオチンを連結している。合成はマニュアルに従い、各種オリゴヌクレオチド の脱保護はアンモニア水で 55°C、一夜実施した。オリゴヌクレオチドの精製はパーキ ンエルマ一社 OPCカラムにて実施した。
[0248] (2)リンカ一アームを有するオリゴヌクレオチドの合成
パーキンエルマ一社 DNAシンセサイザー 392型を用いて、ホスホアミダイト法にて 、ヒト ACE遺伝子の配列と相補的な配列を有する、 5'末端にリンカ一アームを有する オリゴヌクレオチド(Iプローブ: TTACAGGCGT GATACAGTCA C)およびヒト ACE遺 伝子の配列と相補的な配列を有する 5'末端にリンカ一アームを有するオリゴヌクレオ チド(Dプローブ: GCCTATACAG TCACTTTTAT GTG)を合成した。
[0249] この際、特表昭 60-500717号公報に開示された合成法により、デォキシゥリジン 力も化学合成により調製した、 5位にリンカ一アームを有するゥリジンを上記オリゴヌク レオチドに導入した。合成されたリンカ一オリゴヌクレオチドはアンモニア水で 50°C、 一夜脱保護処理を施した後、パーキンエルマ一社 OPCカラムにて実施した。
[0250] (3)プローブオリゴヌクレオチドのマイクロタイタープレートへの結合
上記(2)で合成したプローブオリゴヌクレオチドについて、そのリンカ一アームを介 して、マイクロタイタープレート内面へ結合した。オリゴヌクレオチドを 50mM硼酸緩 衝液(pHIO)、 lOOmM MgClの溶液に 0. 05pmol/ μ 1になるように希釈し、マイ
2
クロタイタープレート(MicroFLUOR B ;ダイナテック社)に各 100 μ 1ずつ分注し、 15 時間程度室温に放置することで、リンカ一オリゴヌクレオチドをマイクロタイタープレー ト内面に結合させた。その後、 0. lpmol dNTP、 0. 5%PVP、 5 X SSC〖こ置換して 、非特異反応を抑えるためのブロッキングを室温で 2時間程度行った。最後に 1 X SS Cで洗浄して乾燥させた。
[0251] (4) PCR法によるヒト ACE遺伝子断片の増幅
ヒト白血球より抽出した DNA溶液をサンプルとして使用して、下記試薬を添加して、 下記条件によりヒト ACE遺伝子断片を増幅した。
[0252] く試薬 >以下の試薬を含む 25 IX 1溶液を調製した。
[0253] プライマー 1 lOpmol
プライマー 2 lOpmol
X 10緩衝液 2. 5 ^ 1
2mM dNTP 2. 5 ^ 1
Tth DNAポリメラーゼ 1U
抽出 DNA溶液 100ngo
[0254] <増幅条件 >
94°C ' 2分
94°C ' l分、 65°C ' 2分、 75°C ' l . 5分(35サイクル)。
[0255] (5)マイクロタイタープレート中でのハイブリダィゼーシヨン
(4)の増幅反応液を 10倍に希釈し、 0. 3N NaOH中で増幅反応液中の増幅され た DNAを変性させ、各サンプルごとに増幅反応液 20 μ 1を 200mMクェン酸 リン酸 緩衝液(PH6. 0)、 2%SDS、 750mM NaCl、 0. l%NaNの溶液 100 1にカロえ
3
て、上記(3)の捕捉プローブが結合したマイクロタイタープレートに投入した。蒸発を 防ぐため流動パラフィンを重層し、 55°Cで 30分間振盪させた。これによつて、増幅さ れたヒト ACE遺伝子断片力 固定ィ匕されたプローブによって特異的にマイクロタイタ 一プレートに捕捉される。
[0256] 次に、 2 X SSC (pH7. 0)、 1%SDSに置換し同様に蒸発を防ぐため、流動パラフィ ンを重層し、 55°Cで 20分間振盪させた。その後、アルカリフォスファターゼを標識し たストレプトアビジン(DAKO製 D0396)を 50mMトリスー塩酸緩衝液(pH7. 5)、 1% BS Aの溶液で 2000倍に希釈した溶液 100 1と置換し、 37°Cで 15分間振盪させた 。これによつて、捕捉された DNAのピオチンにアルカリ性ホスファターゼ標識したスト レプトアビジンが特異的に結合した。 250 1の 50mMトリスー塩酸緩衝液 (pH7. 5) 、 0. 025% Tween20溶液で 3回洗浄後、アルカリ性ホスファターゼの発光基質であ るジォキセタン化合物(商品名: Lumiphos480 ;Lumigen社) 50 μ 1を注入し、 37°Cで 1 5分間保温後に暗室中でホトンカウンター (浜松ホトニタス社)で発光量を測定した。
[0257] これらの工程はすべて、 DNAプローブ自動測定システム(日本臨床検査自動化学 会会誌 第 20卷、第 728頁(1995年)を参照)により自動で行われ、所要時間は約 2 .5時間であった。
[0258] (6)ヒト ACE遺伝子挿入多型測定検討結果
上記 (4)にて増幅し、(5)にて検出された結果カゝら ACE遺伝子多型を検討する。 I signalは Iプローブと反応した増幅核酸断片の検出シグナル、 Dsignalは Dプローブと 反応した核酸断片の検出シグナルとし、各プローブで得られたシグナルの比の対数 をとることにより塩基多型が同定できる。すなわち、シグナルの比の対数が 0. 0以上 のものは I型 (挿入)のホモ遺伝子型、—1. 0以下は D型 (欠失)のホモ遺伝子型、ー1 . 0-0. 0の間力 型と D型のへテロ遺伝子型と同定できる。
[0259] 2. SNPの解析
2-1. Odds比 Kai値の測定
各 SNPの genotypeそれぞれにつ!/、て、 Odds比と Kai値を求めた。
「genotype」は、既に説明したルールに従って 1一 3の番号で示す。例えば、 iZDで 表される ACE遺伝子の場合、
1 : DD (Dのホモ接合体)
2 :lZD (ヘテロ)
3 :11 (1のホモ接合体)
とした。なお、 IZD + DD (Dァリールを有するもの)は「12」と、 II + lZD (Iァリールを 有するもの)は「23」と示す。
[0260] 「Odds比」は、 SNPの genotypeが Caseあるいは Controlに偏る比率を意味する。 Od ds比が 2ならば、 Caseでの genotypeの存在頻度力 Controlの 2倍であることを示す。 「Kai値」は、 SNPの genotvpeが Caseあるいは Controlに偏る統計学的な有意性を意 味する。 Kai値が 3. 8以上ならば Pく 0. 05となる。
[0261] Kai 5. 024 → p< 0. 025
Kai 6. 635 → pく 0. 01
Kai 10. 827→ pく 0. 001。
[0262] なお、 Kai値と Odds比の違いは、 Odds比は存在頻度に依存しな!、が、 Kai値は被 験者数が多くなると Odds比が低くなることがある点である。例えば、被験者数が 500例 の場合に Case群の 1%に見られる A多型と、被験者数が 5000例の場合に Case群の 0.5%に見られる B多型では、同じ Odds比でも、 B多型の方が Kai値が高くなる場合が める。
[0263] 2-2 疾患感 件遣伝子多型、 び疾唐、抵抗件遣伝子多型の柚出
上記で求めた各 SNPの genotypeに関する Odds比と Kai値をもとに、 Odds比 > 2. 0、 Kai値〉 3. 8以上を選択条件にして、疾患感受性 SNP (Case群のうち Odds比〉 2. 0のもの)、疾患抵抗性 SNP (Control群の Odds比 > 2. 0のもの)を抽出した。
[0264] 2-3 SNPの多重解析
まず論文力も動脈硬化性疾患に関するキーワード検索等によって 200個の SNPを 選択し、さらに 99個まで絞り込んだ。次いで、この 99個の中力も任意に 2— 3つの SN Pを選択し、この 2つの SNPの各遺伝子型(1、 2、 3)毎のすべての組み合わせにつ いて、 Case群及び Control群の各々について Odds比及び Kai値を求めた(2つの SN Pで 4x4= 16通り、 99x98x16,2通り)。この特定の SNPの組合せを SSNP ( Synergetic SNP)と称することにする。
[0265] 2-4 有意な SSNPの柚出
(1)上記で得られた SSNPを、 Kai値の高い順にならベる(たとえば 10個の SSNPを ソートした場合、上から 1番目、 2番目、 3番目…とする)。
(2) Case群,及び Control群の各群について、説明可能な SSNP (説明 SSNP)を求 める。
[0266] 具体的には、下記の場合を例にして説明する:
1番目の SSNPで、症例番号 5、 10、 15、 20及び 28の 5名が説明可能とする、 2番目の SSNPで、症例番号 5、 6及び 30の 3名が説明可能とする、 5番目の SSNPで、症例番号 5、 10、及び 15の 3名が説明可能とする。
[0267] 上記の場合、まず 1番目の SSNPは「説明 SSNP」として採用される。 2番目の SNP は、 1番目の SSNPでは説明できない症例番号 6と 30が説明できるので、「説明 SSN P」となる。一方、 5番目の SSNPは、それで説明できるものは、すべての 1番目の「説 明 SSNP」で説明可能となるため、採用しない。このようにして、 Case群,及び Control 群の各群について、 2—3で求めた SSNPから「説明 SSNP」を抽出した。
[0268] 2-5 無効な SNP多型の棄却
2— 4で求めた「説明 SSNP」の群に含まれる SNPの多型の頻度(%)を計算し、頻 度が少な!/、ものを棄却した。
[0269] 例えば、 1番目 SSNP〔ACE— II と MTHFRの TT〕
2番目 SSNP〔ACE— II と eNOS (略称: N1)の Cァリール〕 3番目 SSNP〔ACE— Iァリール と eNOS (略称: N1)の Cァリール〕 とすると、 ACE— IIが 3. 5%、 ACE— Iァリールが 0. 5%となる。そこで ACE— IIのみ採用し、 A CE— Iァリールは棄却する(Π多型か、 Iァリールどちら力、頻度の高い方がより重要と 考える)。
[0270] 2-6 SSNPの再評価
2— 3で求めた SSNP群から、 2— 5で棄却された SNPの多型を含む SSNPを抽出し 、これらの SSNPを棄却した。残りの SSNP群で再度 2— 4と 2—5の操作を行い、説明 SSNPを抽出した。
[0271] 斯くして得られた Case群 (疾患発症群)に関する説明 SSNP (動脈硬化性疾患に正 の関連性を有する遺伝子多型)をリストにしたのが図 19であり、 Control群 (疾患未発 症群)に関する説明 SSNP (動脈硬化性疾患に負の関連性を有する遺伝子多型)を リストにしたのが図 1である。
[0272] 3.説明 SNPを用いた動脈硬化件疾唐、の判定
心筋梗塞の病歴のない糖尿病患者 (被験者)を対象として、上述の如ぐ動脈硬化 性疾患の感受性遺伝子多型(「説明 SSNP」 )、動脈硬化性疾患の抵抗性遺伝子多 型(「説明 SSNP」 )を抽出した。そして各被験者が有する感受性遺伝子多型(「説明 SSNP」)、及び動脈硬化性疾患の抵抗性遺伝子多型(「説明 SSNP」)の個数を、各 々図 19及び図 1を参照してもとめ、感受性遺伝子多型の数が抵抗性遺伝子多型の 数より多い場合を「動脈硬化性疾患高危険度例」、抵抗性遺伝子多型の数が感受性 遺伝子多型の数が多!、場合を「動脈硬化性疾患低危険度例」とする。
[0273] 一方で、これらの各被験者につ!、て、頸動脈内膜中膜複合体肥厚度を測定し、健 常人の頸動脈内膜中膜複合体肥厚度平均よりも 0. 2mm以上厚い場合を「動脈硬 化疾患例」、それ以外を「非動脈硬化疾患例」に分類した。
[0274] 各被験者につ 、て、動脈硬化疾患例及び非動脈硬化疾患例のそれぞれが、動脈 硬化性疾患高危険度例及び動脈硬化性疾患低危険度例と一致する割合を、「 Sensitivity率 (正答率)」として求めた。また、動脈硬化疾患例及び非動脈硬化疾患 例のそれぞれが、動脈硬化性疾患高危険度例及び動脈硬化性疾患低危険度例と 一致しな 、割合を、「false positive率(誤答率)」として求めた。
[0275] <解析結果 >
解析結果を図 77及び表 3に示す。
[0276] [表 3]
Figure imgf000074_0001
[0277] 図 77において、口は感受性「説明 SSNP」のみ、△は抵抗性「説明 SSNP」のみ、 參は感受性「説明 SSNP」及び抵抗性「説明 SSNP」の両者で、推定した Sensitivity 率 (正答率)、及び false positive率 (誤答率)の計算値を示す。各プロットは、それぞ れ Odds比 2— 10で抽出した遺伝子多型のセットに基づく計算値を示す。
[0278] 図 77及び表 3に示されるように、感受性遺伝子多型 (説明 SSNP)及び抵抗性遺伝 子多型 (説明 SSNP)を共に用いて得られた値は、誤答率が著しく低下した。このこと から感受性「説明 SSNP」と抵抗性「説明 SSNP」とを組み合わせて用いて動脈硬化 性疾患の評価を行うことにより、精度の高い判定が行えることが明らかになった。 産業上の利用可能性
[0279] 本発明によると、疾患の発症しやすさや、進行しやすさ等を疾患危険度として高精 度に判定でき、疾患発症の予防および治療に利用できる疾患危険度判定方法、疾 患危険度判定装置および疾患危険度判定プログラムを提供することができる。当該 方法は、糖尿病患者またはその境界型糖尿病の患者について、動脈硬化性疾患や 心筋梗塞性疾患の発症しやすさや進行しやすさ等を精度高く判定でき、当該疾患の 発症の予防や治療に有効に利用することができる。
[0280] 従来の疾患危険度の判定方法は、疾患の感受性 (正の関連性)のみを指標として 疾患と危険度を判定するものであつたのに対し、本発明においては、疾患に対する 抵抗性 (負の関連性)も指標に含めたものである。これにより、本発明においては、疾 患危険度を感受性だけでなく抵抗性からも判定して総合的に判断することが可能に なり、疾患の危険度についてより的確でかつ精度の高い結果を得ることが可能になる
[0281] また、本発明は、動脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危 険度判定に有用な疾患抵抗性因子及び感受性因子、並びに心筋梗塞性疾患、特 に糖尿病に起因する心筋梗塞性疾患の危険度判定に有用な疾患抵抗性因子及び 感受性因子を、遺伝子多型の点力 明らかにし、動脈硬化性疾患抵抗性遺伝子多 型セット及び動脈硬化性疾患感受性遺伝子多型または遺伝子多型セット、並びに心 筋梗塞性疾患抵抗性遺伝子多型セット及び心筋梗塞性疾患感受性遺伝子多型ま たは遺伝子多型セットとして、これを提供するものである。これにより、被験者、特に糖 尿病患者またはその傾向のある患者 (糖尿病境界型)について、動脈硬化性疾患ま たは心筋梗塞性疾患の危険度の判定、予防及び治療などを、被験者の特質に応じ て、より適切な態様で行うことが可能となる。本発明が提供する疾患危険度判定方法 、疾患危険度判定用アレイ、疾患抵抗性遺伝子マーカー及び疾患感受性遺伝子マ 一力一、疾患抵抗性遺伝子多型または疾患感受性遺伝子多型分析用キットは、動 脈硬化性疾患または心筋梗塞性疾患の危険度の判定の実施に有用なものである。
[0282] なお、力かる本発明の技術は、本明細書に一例として掲げる動脈硬化性疾患や心 筋梗塞性疾患だけでなぐ他の疾患においても同様に適用できる。特に、糖尿病に 起因して発症する、脳梗塞、糖尿病性腎症、糖尿病性網膜症、糖尿病性神経症など においても同様に適用することができる。

Claims

請求の範囲
[1] 予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の遺伝 子多型を抜き出し、遺伝子多型セットとする第 1ステップと、
疾患の指標、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を用 いて、前記遺伝子多型セットに関して、前記疾患の指標との関連性、及び該関連性 の統計的有意性を計算する第 2ステップと、
計算された前記関連性が、負の関連性であり且つ有意である場合に、前記遺伝子 多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第 3ステップとを含む疾患危険度判定用遺伝子多型の決定方法。
[2] 計算された前記関連性が、正の関連性であり且つ有意である場合に、前記遺伝子 多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第 4ステップをさらに含む請求項 1に記載の疾患危険度判定用遺伝子多型の決定方法
[3] 前記関連性がォッズ比であり、
前記有意性力 Sカイ二乗値であり、
前記疾患が動脈硬化性疾患であり、且つ
前記疾患の指標が頸動脈内膜中膜複合体肥厚度である請求項 2に記載の疾患危 険度判定用遺伝子多型の決定方法。
[4] 前記関連性がォッズ比であり、
前記有意性力 Sカイ二乗値であり、
前記疾患が心筋梗塞であり、且つ
前記疾患の指標が、心電図上の陳旧性 (abnormal Q)心筋梗塞波形の有無若しく は心筋梗塞の既往の有無である請求項 2に記載の疾患危険度判定用遺伝子多型の 決定方法。
[5] 前記第 1ステップにおいて重複せずに前記遺伝子多型セットを決定する毎に、前記 第 1一第 3ステップを繰り返し、
前記第 1ステップが、前記遺伝子多型セットよりも少な 、数の遺伝子多型から構成 される遺伝子多型セットが既に、前記第 3ステップにおいて、疾患危険度判定用遺伝 子多型として採用されているカゝ否かを判断する第 5ステップを含み、 前記判断の結果、採用されていると判断した場合、前記第 3ステップを実行しない 請求項 3に記載の疾患危険度判定用遺伝子多型の決定方法。
[6] 前記第 1ステップにおいて重複せずに前記遺伝子多型セットを決定する毎に、前記 第 1一第 4ステップを繰り返し、
前記第 1ステップが、前記遺伝子多型セットよりも少な 、数の遺伝子多型から構成 される遺伝子多型セットが既に、前記第 3ステップにおいて、疾患危険度判定用遺伝 子多型として採用されているカゝ否かを判断する第 6ステップを含み、
前記判断の結果、採用されていると判断した場合、前記第 4ステップを実行しない 請求項 4に記載の疾患危険度判定用遺伝子多型の決定方法。
[7] 前記第 3ステップで採用された前記遺伝子多型毎の寄与率を計算する第 7ステップ を含み、
前記寄与率に応じて、前記疾患危険度判定用遺伝子多型を取捨選択する請求項 3に記載の疾患危険度判定用遺伝子多型の決定方法。
[8] 前記第 5ステップで採用された前記遺伝子多型毎の寄与率を計算する第 8ステップ を含み、
前記寄与率に応じて、前記疾患危険度判定用遺伝子多型を取捨選択する請求項
4に記載の疾患危険度判定用遺伝子多型の決定方法。
[9] 前記遺伝子多型の前記遺伝子型毎の前記寄与率の中の最大値であるか否かに応 じて、前記疾患危険度判定用遺伝子多型を取捨選択する第 9ステップを含む請求項
7に記載の疾患危険度判定用遺伝子多型の決定方法。
[10] 前記遺伝子多型の前記遺伝子型毎の前記寄与率の中の最大値であるか否かに応 じて、前記疾患危険度判定用遺伝子多型を取捨選択する第 10ステップを含む請求 項 8に記載の疾患危険度判定用遺伝子多型の決定方法。
[11] 新たな疾患の指標及び遺伝子型を有する遺伝子多型を取得した場合、
新たに取得した前記遺伝子型を有する遺伝子多型を用いて、前記集合を検索し、 該当する疾患の指標を取得し、該疾患の指標及び前記新たな疾患の指標を用いて 疾患危険度判定用遺伝子多型を決定する請求項 1に記載の疾患危険度判定用遺 伝子多型の決定方法。
[12] 図 1一 9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有するか、または図 38— 43のいずれか一つの図に記載する負(抵抗性) の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用ァレ ィ。
[13] 図 10— 18の 、ずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子 多型に対する検出用プローブを有するか、図 44一 47のいずれか一つの図に記載さ れる遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するもの である、請求項 12に記載の動脈硬化性疾患危険度判定用アレイ。
[14] さらに、図 19一 27のいずれか一つの図に記載する、正 (感受性)の遺伝子多型セ ットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対 する検出用プローブを有するか、図 63— 69のいずれか一つの図に記載する、正 (感 受性)の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを構成 する遺伝子多型に対する検出用プローブを有するものである、請求項 12に記載する 動脈硬化性疾患危険度判定用アレイ。
[15] 遺伝子図 28— 37のいずれか一つの図に記載される遺伝子多型群の半数以上の 遺伝子多型に対する検出用プローブを有するか、図 52— 55のいずれか一つの図に 記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有す るものである、請求項 12に記載の動脈硬化性疾患危険度判定用アレイ。
[16] 図 56— 58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群か ら選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有する、心筋梗塞危険度判定用アレイ。
[17] 図 59— 62のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子 多型に対する検出用プローブを有するものである、請求項 16に記載の心筋梗塞危 険度判定用アレイ。
[18] さらに、図 63— 69のいずれか一つの図に記載する、正 (感受性)の遺伝子多型セ ットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対 する検出用プローブを有するものである、請求項 16に記載する心筋梗塞危険度判 定用アレイ。
[19] 図 70— 73のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子 多型に対する検出用プローブを有するものである、請求項 16に記載の心筋梗塞危 険度判定用アレイ。
[20] (b)被験試料につ!、て検出された遺伝子多型を、疾患判定指標と負の関連性を有 する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、 を有する疾患危険度の判定方法。
[21] 更に、
(b')疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝 子多型セットと照合する工程、及び
(c) (b')の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連 性とを対比してその偏度を算出する工程
を有する請求項 20に記載する疾患危険度の判定方法。
[22] 更に、(d)得られた偏度力も疾患危険度を評価する工程を有する請求項 21に記載 する疾患危険度の判定方法。
[23] 対象の疾患が動脈硬化性疾患であって、疾患判定指標と負の関連性を有する遺 伝子多型セットとして、図 1一 9のいずれかに記載される負の遺伝子多型セットの群か ら選択される少なくとも 1つのセット、または図 38— 43のいずれかに記載される負の 遺伝子多型セットの群力も選択される少なくとも 1つのセットを用いる、請求項 20に記 載する疾患危険度の判定方法。
[24] 対象の疾患が、動脈硬化性疾患であって、
(1)疾患判定指標と負の関連性を有する遺伝子多型セットが、図 1一 9のいずれかに 記載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセットであり、且 つ疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子 多型セットが、図 19一 27のいずれかに記載される正の遺伝子多型セットの群力も選 択される少なくとも 1つの遺伝子多型セットである力 または (2)疾患判定指標と負の関連性を有する遺伝子多型セットが、図 38— 43のいずれ かに記載される負の遺伝子多型セットの群力 選択される少なくとも 1つのセットであ り、且つ疾患判定指標と正の関連性を有する遺伝子多型または正の関連性を有する 遺伝子多型セットが、図 48— 51のいずれかに記載される正の遺伝子多型セットの群 力も選択される少なくとも 1つの遺伝子多型セットである、請求項 21に記載する動脈 硬化性疾患危険度の判定方法。
[25] 工程 (b)または (b')に先立ち、(a)被験試料において遺伝子多型を検出する工程を 有する請求項 20または 21に記載する疾患危険度の判定方法。
[26] 検出工程 (a)が、図 37に記載する 99個の遺伝子多型力も選ばれる 2または 3以上の 遺伝子多型を対象とした検出工程である請求項 25に記載する疾患危険度の判定方 法。
[27] 対象の疾患が、動脈硬化性疾患であって、
検出工程 (a)が、請求項 12— 15のいずれかに記載する動脈硬化性疾患危険度判 定用アレイ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プ ローブとをハイブリダィズさせて遺伝子多型を検出する工程である請求項 25に記載 する疾患危険度の判定方法。
[28] 対象の疾患が、心筋梗塞であって、
検出工程 (a)が、請求項 16— 19のいずれかに記載する心筋梗塞危険度判定用ァレ ィ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プローブと をハイブリダィズさせて遺伝子多型を検出する工程である請求項 25に記載する疾患 危険度の判定方法。
[29] 遺伝子型を含む 1以上の遺伝子多型から構成される第 1の遺伝子多型セット、及び
、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照 テーブルを記録した記録部と、
被験試料の遺伝子型を有する遺伝子多型を取得するインタフェース部と、 取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型力 構成され る第 2の遺伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セッ トとを照合する処理部とを備え、 前記処理部が、照合の結果一致する前記第 1の遺伝子多型セットがある場合に、 該第 1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に 関する偏度を計算することを特徴とする疾患危険度判定装置。
[30] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有す る遺伝子多型セットに、動脈硬化性疾患感受性として頸動脈内膜中膜複合体肥厚 度が正常範囲をこえる頻度のォッズ比を対応させたものである請求項 29に記載の疾 患危険度判定装置。
[31] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有す る遺伝子多型セットに、動脈硬化性疾患感受性として頸動脈内膜中膜複合体肥厚 度の増加を対応させたものである請求項 29に記載の疾患危険度判定装置。
[32] 判定対象の疾患が動脈硬化性疾患であり、
頸動脈内膜中膜複合体肥厚度との間に正の関連性を有する前記第 1の遺伝子多 セットが、頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のォッズ比が一定 以上である遺伝子多型セット、および、頸動脈内膜中膜複合体肥厚度の平均値に有 意差がある遺伝子多型セット、の少なくともいずれかである、請求項 29に記載の疾患 危険度判定装置。
[33] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有す る遺伝子多型セットに、動脈硬化性疾患抵抗性として頸動脈内膜中膜複合体肥厚 度が正常範囲以下の頻度のォッズ比を対応させたものである請求項 29に記載の疾 患危険度判定装置。
[34] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有す る遺伝子多型又はそのセットに、動脈硬化性疾患抵抗性として頸動脈内膜中膜複合 体肥厚度の増加抑制を対応させたものである請求項 29に記載の疾患危険度判定装
[35] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、環境因子の有無または数値と、動脈硬化性疾患感受性及 び動脈硬化性疾患抵抗性とを対応させたテーブルであり、且つ、
入力された、被験対象の環境因子の有無または数値と、前記参照テーブルにおけ る環境因子の有無または数値とを照合し、該環境因子の有無または数値に対応する 動脈硬化感受性及び動脈硬化抵抗性から、該動脈硬化危険度を検出する検出手 段をさらに備えた請求項 29に記載の疾患危険度判定装置。
[36] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度と、動脈硬化性疾患感受性 及び動脈硬化性疾患抵抗性とを対応させたデータテーブルであり、且つ、
入力された、被験者の頸動脈内膜中膜複合体肥厚度と、前記参照テーブルにお ける頸動脈内膜中膜複合体肥厚度とを照合し、頸動脈内膜中膜複合体肥厚度に対 応する動脈硬化感受性及び動脈硬化抵抗性から、該動脈硬化危険度を検出する検 出手段をさらに備えた請求項 29に記載の疾患危険度判定装置。
[37] 判定対象の疾患が動脈硬化性疾患であり、
被験者の頸動脈内膜中膜複合体肥厚度を測定し、測定結果の前記頸動脈内膜中 膜複合体肥厚度を前記インタフェース部に供給する血管壁膜圧測定手段を備えた 請求項 39に記載の疾患危険度判定装置。
[38] コンピュータに、
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、
遺伝子型を有する 1以上の遺伝子多型から構成される第 1の遺伝子多型セット、及 び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参 照テーブルを記録部に記録する機能、
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び
照合の結果一致する前記第 1の遺伝子多型セットがある場合に、該第 1の遺伝子 多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計 算する機能とを実現させるための疾患危険度判定プログラム。
[39] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有す る遺伝子多型セットに、動脈硬化感受性として頸動脈内膜中膜複合体肥厚度が正 常範囲をこえる頻度のォッズ比を対応させたものである請求項 38に記載の疾患危険 度判定プログラム。
[40] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性 を有する遺伝子多型又はそのセットに、動脈硬化感受性として頸動脈内膜中膜複合 体肥厚度の増加を対応させたものである請求項 38に記載の疾患危険度判定プログ ラム。
[41] 判定対象の疾患が動脈硬化性疾患であり、
頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する遺伝子多型セ ットが、頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のォッズ比が一定以 上である遺伝子多型又はそのセット、および、頸動脈内膜中膜複合体肥厚度の平均 値に有意差がある遺伝子多型又はそのセットの、少なくともいずれかである、請求項 38に記載の疾患危険度判定プログラム。
[42] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有す る遺伝子多型又はそのセットに、動脈硬化抵抗性として頸動脈内膜中膜複合体肥厚 度が正常範囲以下の頻度のォッズ比を対応させたものである請求項 38に記載の疾 患危険度判定プログラム。
[43] 判定対象の疾患が動脈硬化性疾患であり、
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有す る遺伝子多型又はそのセットに、動脈硬化抵抗性として頸動脈内膜中膜複合体肥厚 度の増加抑制を対応させたものである請求項 38に記載の疾患危険度判定プロダラ ム。
[44] 判定対象の疾患が動脈硬化性疾患であり、 頸動脈内膜中膜複合体肥厚度が、健常人の頸動脈内膜中膜複合体肥厚度平均 よりも 0. 2mm以上厚い場合を動脈硬化疾患例と定義し、それ以外を非動脈硬化疾 患例と定義し、かつ、検出した遺伝子多型について、負の遺伝子多型又はそのセット が正の遺伝子多型又はそのセットより多い場合を動脈硬化性疾患低危険度例、正の 遺伝子多型又はそのセットが負の遺伝子多型又はそのセットより多い場合を動脈硬 化性疾患高危険度例と定義した場合に、被験対象における動脈硬化疾患例及び非 動脈硬化疾患例がそれぞれ動脈硬化性疾患高危険度例及び動脈硬化性疾患低危 険度例と一致する割合が 30%以上及び一致しない割合が 30%以下となる請求項 3 8に記載の疾患危険度判定プログラム。
[45] コンピュータに、
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、
遺伝子型を有する 1以上の遺伝子多型から構成される第 1の遺伝子多型セット、及 び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参 照テーブルを記録部に記録する機能、
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び、
照合の結果一致する前記第 1の遺伝子多型セットがある場合に、該第 1の遺伝子 多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計 算する機能とを実現させるための疾患危険度判定プログラム
を記録したコンピュータ読取可能な記録媒体。
[46] 図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少なくとも 一の遺伝子多型セットを構成する遺伝子多型、または図 38— 43のいずれか〖こ記載 する負の遺伝子多型セットの群力 選択される少なくとも一の遺伝子多型セットを構 成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー。
[47] (1) 図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性 の遺伝子マーカー、及び図 19一 27のいずれかに記載する正の遺伝子多型セットの 群カゝら選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含むか、 または
(2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性 の遺伝子マーカー、及び図 48— 55のいずれかに記載する正の遺伝子多型セットの 群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、動 脈硬化性疾患感受性の遺伝子マーカー。
[48] 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少なく とも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子 マ1 ~~力' ~~。
[49] 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少なく とも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子 マーカー、及び図 63— 69の!、ずれかに記載する正の遺伝子多型セットの群から選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、心筋梗塞感 受性の遺伝子マーカー。
[50] (1)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少な くとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あ るいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、または
(2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 ある 、は当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、
を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。
[51] (1)図 1一 9のいずれかに記載する負の遺伝子多型セットの群力 選択される少な くとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あ るいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 19一 2 7のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一の遺 伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該 遺伝子に特異的にハイブリダィズし得る核酸プローブ、または (2)図 38— 43のいずれかに記載する負の遺伝子多型セットの群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対 あるいは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 48 一 51のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一 の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは 当該遺伝子に特異的にハイブリダィズし得る核酸プローブ
を含む、動脈硬化性疾患抵抗性遺伝子多型または感受性遺伝子多型分析用キット
[52] 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少なく とも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対ある いは当該遺伝子に特異的にハイブリダィズし得る核酸プローブを含む、心筋梗塞抵 抗性遺伝子多型分析用キット。
[53] 図 56— 58のいずれかに記載する負の遺伝子多型セットの群力も選択される少なく とも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対ある いは当該遺伝子に特異的にハイブリダィズし得る核酸プローブ、ならびに図 63— 69 のいずれかに記載する正の遺伝子多型セットの群力 選択される少なくとも一の遺伝 子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺 伝子に特異的にハイブリダィズし得る核酸プローブを含む、心筋梗塞抵抗性遺伝子 多型または感受性遺伝子多型分析用キット。
PCT/JP2004/015292 2003-10-15 2004-10-15 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ WO2005036443A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04792509A EP1684202A4 (en) 2003-10-15 2004-10-15 METHOD FOR DETERMINING GENETIC POLYMORPHISM FOR ASSESSING A DEGREE OF DEFICIT RISK, METHOD FOR ASSESSING DEGREE OF DEGREE OF DEFICIENCY AND ASSESSMENT ARRAY
JP2005514661A JP5235274B2 (ja) 2003-10-15 2004-10-15 疾患危険度の判定方法及び判定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-355716 2003-10-15
JP2003355716 2003-10-15

Publications (1)

Publication Number Publication Date
WO2005036443A1 true WO2005036443A1 (ja) 2005-04-21

Family

ID=34431213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015292 WO2005036443A1 (ja) 2003-10-15 2004-10-15 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ

Country Status (5)

Country Link
EP (1) EP1684202A4 (ja)
JP (1) JP5235274B2 (ja)
KR (1) KR20060130039A (ja)
CN (1) CN1867922A (ja)
WO (1) WO2005036443A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126618A1 (ja) * 2005-05-26 2006-11-30 Signpost Corporation 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ
JP2007034700A (ja) * 2005-07-27 2007-02-08 Fujitsu Ltd 予測プログラムおよび予測装置
WO2008018542A1 (fr) * 2006-08-11 2008-02-14 The New Industry Research Organization Polymorphisme génique utile pour l'aide et le traitement visant à l'arrêt du tabac
JP2008191716A (ja) * 2007-01-31 2008-08-21 Signpost Corp 疾患リスクの提示方法およびそのプログラム
WO2020191195A1 (en) * 2019-03-19 2020-09-24 Themba Inc. Using relatives' information to determine genetic risk for non-mendelian phenotypes
JP2020178560A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 動脈硬化のリスクを判定する方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007325021B2 (en) * 2006-11-30 2013-05-09 Navigenics, Inc. Genetic analysis systems and methods
US20080131887A1 (en) 2006-11-30 2008-06-05 Stephan Dietrich A Genetic Analysis Systems and Methods
KR101325736B1 (ko) * 2010-10-27 2013-11-08 삼성에스디에스 주식회사 바이오 마커 추출 장치 및 방법
PT2535424E (pt) * 2011-06-16 2015-10-29 Gendiag Exe Sl Snps associados a doença tromboembólica
US10557170B2 (en) 2011-06-16 2020-02-11 Gendiag.Exe, S.L. Thromboembolic disease markers
KR101295785B1 (ko) * 2011-10-31 2013-08-12 삼성에스디에스 주식회사 유전변이 데이터 베이스 구축 장치 및 방법
KR101855179B1 (ko) * 2011-12-21 2018-05-09 삼성전자 주식회사 질환 진단을 위한 최적의 진단 요소 셋 결정 장치 및 방법
KR101984247B1 (ko) 2012-03-15 2019-05-30 삼성전자 주식회사 관상동맥석회화 수준 변화 예측장치 및 예측방법
EP2923292B1 (en) * 2012-11-26 2022-04-13 Koninklijke Philips N.V. Diagnostic genetic analysis using variant-disease association with patient-specific relevance assessment
CN104928398A (zh) * 2015-07-18 2015-09-23 武汉欧瑞康安生物科技有限公司 阿司匹林抵抗相关的GPⅠa基因多态性位点及应用
CN106202984B (zh) * 2016-08-26 2018-09-04 赵毅 一种基于多层复杂网络对肿瘤miRNA标志物的筛选方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061659A2 (en) * 2001-01-30 2002-08-08 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
JP2003061677A (ja) * 2001-08-28 2003-03-04 Olympus Optical Co Ltd 全身性エリテマトーデスの感受性遺伝子およびその使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1327162C (en) * 1987-04-09 1994-02-22 Board Of Trustees Of The Leland Stanford Junior University (The) Method for prophylactically treating an individual for an autoimmune disease
JP2003288346A (ja) * 2002-03-27 2003-10-10 Fujitsu Ltd ゲノム解析方法、ゲノム解析プログラムおよびゲノム解析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061659A2 (en) * 2001-01-30 2002-08-08 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
JP2003061677A (ja) * 2001-08-28 2003-03-04 Olympus Optical Co Ltd 全身性エリテマトーデスの感受性遺伝子およびその使用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IZAWA H. ET AL.: "Prediction of genetic risk for hypertension", 24 March 2003 (2003-03-24), pages 1035 - 1040, XP002983152, Retrieved from the Internet <URL:http://hyper.ahajournals.org/cgi/content/full/41/5/1035> [retrieved on 20050105] *
See also references of EP1684202A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126618A1 (ja) * 2005-05-26 2006-11-30 Signpost Corporation 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ
JP5121449B2 (ja) * 2005-05-26 2013-01-16 株式会社サインポスト 疾患の発症予測提示方法
JP2007034700A (ja) * 2005-07-27 2007-02-08 Fujitsu Ltd 予測プログラムおよび予測装置
WO2008018542A1 (fr) * 2006-08-11 2008-02-14 The New Industry Research Organization Polymorphisme génique utile pour l'aide et le traitement visant à l'arrêt du tabac
JP5216982B2 (ja) * 2006-08-11 2013-06-19 公益財団法人新産業創造研究機構 禁煙支援治療に有用な遺伝子多型
JP2008191716A (ja) * 2007-01-31 2008-08-21 Signpost Corp 疾患リスクの提示方法およびそのプログラム
WO2020191195A1 (en) * 2019-03-19 2020-09-24 Themba Inc. Using relatives' information to determine genetic risk for non-mendelian phenotypes
JP2020178560A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 動脈硬化のリスクを判定する方法
JP7165098B2 (ja) 2019-04-23 2022-11-02 ジェネシスヘルスケア株式会社 動脈硬化のリスクを判定する方法

Also Published As

Publication number Publication date
JP5235274B2 (ja) 2013-07-10
JPWO2005036443A1 (ja) 2006-12-21
EP1684202A1 (en) 2006-07-26
KR20060130039A (ko) 2006-12-18
CN1867922A (zh) 2006-11-22
EP1684202A4 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
Van Driest et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy
Ingles et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy
Tester et al. Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice
WO2005036443A1 (ja) 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ
Ebbert et al. Population-based analysis of Alzheimer’s disease risk alleles implicates genetic interactions
JP2010526555A (ja) 加齢関連黄斑変性と関係するポリヌクレオチド及び患者のリスクを評価する方法
WO2003016494A2 (en) Diagnosis and treatment of vascular disease
US9580752B2 (en) Methods of predicting medically refractive ulcerative colitis (MR-UC) requiring colectomy
CN108012546A (zh) Snp rs12603226作为nafld的预测性标记物
JP5121449B2 (ja) 疾患の発症予測提示方法
JP4140329B2 (ja) 高血圧のリスク診断方法
AU2011249763B2 (en) A new combination of eight risk alleles associated with autism
JP2016525876A (ja) 関節リウマチを有する患者における抗TNFαを用いた治療に対する応答の予想
US20230220472A1 (en) Deterimining risk of spontaneous coronary artery dissection and myocardial infarction and sysems and methods of use thereof
KR20230092953A (ko) 질병 발병의 위험을 평가하는 방법
KR102158715B1 (ko) Olfml2a 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158721B1 (ko) Rnf144a 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158713B1 (ko) Gba 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
JPWO2003087360A1 (ja) 動脈硬化性疾患危険度判定方法、動脈硬化性疾患危険度測定方法、動脈硬化性疾患危険度判定用マイクロアレイ、動脈硬化性疾患危険度判定装置および動脈硬化性疾患危険度判定プログラム
US20220235418A1 (en) Use of Biomarkers for Degenerative Disc Disease
KR102158719B1 (ko) Loc102724084 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158723B1 (ko) Spcs3 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
JP7097850B2 (ja) 遠視のリスクを判定する方法
JP7165617B2 (ja) 高血圧のリスクを判定する方法
KR102158716B1 (ko) Arhgap32 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030259.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2667/DELNP/2006

Country of ref document: IN

Ref document number: 1020067009365

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004792509

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792509

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009365

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2004792509

Country of ref document: EP