WO2005034545A1 - 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末 - Google Patents

通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末 Download PDF

Info

Publication number
WO2005034545A1
WO2005034545A1 PCT/JP2003/012552 JP0312552W WO2005034545A1 WO 2005034545 A1 WO2005034545 A1 WO 2005034545A1 JP 0312552 W JP0312552 W JP 0312552W WO 2005034545 A1 WO2005034545 A1 WO 2005034545A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
base station
mode
terminal
data
Prior art date
Application number
PCT/JP2003/012552
Other languages
English (en)
French (fr)
Inventor
Hideji Wakabayashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNB038270846A priority Critical patent/CN100477829C/zh
Priority to DE60328234T priority patent/DE60328234D1/de
Priority to US12/839,030 priority patent/USRE43385E1/en
Priority to CN2006100755524A priority patent/CN101060706B/zh
Priority to EP20030818820 priority patent/EP1670266B1/en
Priority to EP10182078.5A priority patent/EP2271152B1/en
Priority to US10/572,599 priority patent/US7684408B2/en
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/012552 priority patent/WO2005034545A1/ja
Priority to JP2005509303A priority patent/JP3895361B2/ja
Priority to CN200610075551XA priority patent/CN101060705B/zh
Priority to DE60328235T priority patent/DE60328235D1/de
Publication of WO2005034545A1 publication Critical patent/WO2005034545A1/ja
Priority to US11/408,189 priority patent/US20060217074A1/en
Priority to US11/408,173 priority patent/US8072986B2/en
Priority to HK07100403A priority patent/HK1095466A1/xx
Priority to HK08102118A priority patent/HK1111553A1/xx
Priority to US13/287,870 priority patent/US8311572B2/en
Priority to US13/302,525 priority patent/US8289932B2/en
Priority to US13/618,649 priority patent/US8588843B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • H04W8/245Transfer of terminal data from a network towards a terminal

Definitions

  • the present invention relates to a mobile communication system based on CDMA (Code Division Multiple Access), and in particular, performs communication according to a communication situation between a base station and a mobile communication terminal.
  • the present invention relates to a communication mode control method for controlling mode switching, a mobile communication system, a base station control device, a base station, and a mobile communication terminal.
  • Conventional wireless multiplex mode data communication methods include an autonomous mode in which data is transmitted and received autonomously and a data transmission and reception request (scheduling) such as communication timing permitted by the base station.
  • a so-called scheduling mode for transmitting and receiving evenings is switched in accordance with the data rate and the like (see, for example, JP-A-2002-3696961).
  • control is performed in an autonomous mode.
  • the mode is controlled to the scheduling mode.
  • the scheduling mode signaling for notifying the scheduling from the base station to the wireless device is frequently transmitted. For this reason, if there is not a certain amount of data in a single transmission, the number of signaling In comparison, the efficiency of the overnight transmission is reduced.
  • the above-mentioned problem is solved by controlling to the scheduling mode when the data rate per unit time is large and the data rate is high.
  • the above-mentioned prior art document discloses that the conventional data communication method is switched to the autonomous mode or the scheduling mode mainly based on the amount of data transmission, but the communication method under other communication conditions is disclosed. Insufficient disclosure has been made regarding the switching process.
  • the communication conditions that should be the basis for switching the communication mode such as the demodulation of coded signals and the handling of data that requires real-time performance, for example, the amount of interference at the base station (hereinafter referred to as noise rise and noise ) And delays.
  • communication is performed such that a wireless device that performs data communication that does not allow delay is operated in an autonomous mode as much as possible, and a device that performs communication that allows delay is operated in a schedule mode.
  • a wireless device that performs data communication that does not allow delay is operated in an autonomous mode as much as possible, and a device that performs communication that allows delay is operated in a schedule mode.
  • This noise rise also fluctuates due to interference from other cells, transmission from another wireless device in the same cell, and the like. For this reason, it is necessary to pay close attention to noise rise control in bucket communication in the CDMA method.
  • the noise rise management is maintained at 10fen as the noise rise management, the autonomous mode will be used even if the amount of data to be transmitted is large. It is possible to do. In this case, the number of signalings can be reduced as compared to the schedule mode, and the delay is also reduced. Thus, the communication traffic situation with respect to the noise rise margin at the base station is reduced. By appropriately distributing the magazine on noise rise due to various factors that fluctuate, efficient communication can be performed according to the fluctuation of noise rise.
  • the present invention has been made to solve the above-described problem, and a communication mode between a base station and a mobile communication terminal is switched by appropriately considering a factor other than the data amount. It is an object of the present invention to provide a communication mode control method that enables efficient data communication according to a change in noise rise due to a change in load.
  • the present invention provides a transmission mode switching threshold for each terminal individually in consideration of a quality of service (QoS) parameter such as a delay.
  • QoS quality of service
  • the purpose of the present invention is to obtain a communication mode control method capable of distributing the autonomous mode and the schedule mode.
  • the present invention provides a mobile communication system, a base station control device, a base station, and a mobile communication terminal that perform efficient data communication according to a change in noise rise due to a change in communication load using the above method. With the goal. Disclosure of the invention
  • the mobile communication terminal performs an autonomous mode for autonomous communication with the base station overnight, and a schedule for data communication with the communication timing permitted by the base station.
  • a signal indicating the amount of interference and / or its communication characteristics in each communication mode in the cell of the base station and the communication data amount notified from the mobile communication terminal is used.
  • the communication mode to be set in the mobile communication terminal is determined based on the communication mode, and the communication mode is notified from the base station to the mobile communication terminal.
  • FIG. 1 is a diagram schematically showing a configuration of a mobile communication system according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a channel configuration in the mobile communication system according to Embodiment 1.
  • FIG. 3A and FIG. 3B are diagrams illustrating communication modes in wireless multiplexed overnight mode communication between a terminal and a base station in the mobile communication system according to the first embodiment.
  • FIG. 4 is a diagram for explaining a threshold of a transmission data buffer serving as a reference for switching a communication mode of a mobile communication terminal according to the first embodiment
  • FIG. 5 is a diagram illustrating each of uplink signals to a base station according to the first embodiment
  • FIG. 9 is a diagram illustrating an allowable margin for an interference amount caused by a factor.
  • FIG. 6 is a diagram showing an example of the distribution of the noise rise margin between the autonomous mode and the scheduling mode when a plurality of terminals use uplink packet communication in a cell.
  • FIG. 5 is a diagram illustrating a case where a threshold for communication mode switching determination of a transmission buffer is set low in the case illustrated in FIG.
  • FIG. 8 is a diagram showing an example of noise rise margin distribution for the autonomous mode and the scheduling mode when there are few terminals using uplink packet communication in the cell.
  • FIG. 10 is a diagram showing a case where the threshold for communication mode switching determination of the transmission buffer in the case is set to be high.
  • FIG. 10 is a block diagram showing the internal configuration of the base station in FIG. 1
  • FIG. 11 is a block diagram showing the internal configuration of the mobile communication terminal in FIG.
  • the figure is a block diagram showing the internal configuration of the base station controller in FIG.
  • FIG. 13 is a diagram showing an example of the distribution of the noise rise margin of the base station when the base station control apparatus according to the first embodiment determines the transmission mode switching threshold of the terminal according to the first method.
  • FIG. 4 is a diagram for explaining the change of the transmission mode switching threshold according to the distribution of the noise rise magazine shown in FIG.
  • FIG. 15 is a diagram showing a change sequence when the threshold of the transmission data buffer is changed by the first method in the mobile communication system according to Embodiment 1, and FIG. 16 is a diagram showing the change sequence. 15 is a flowchart describing in detail the operation in step ST9 in FIG.
  • FIG. 17 is a diagram showing an example of distributing a noise rise margin of the base station when the base station control apparatus according to the first embodiment determines the transmission mode switching threshold of the terminal according to the second method.
  • FIG. 8 is a diagram for explaining the change of the transmission mode switching threshold according to the distribution of the noise rise magazine shown in FIG.
  • FIG. 19 is a diagram showing a change sequence when the threshold of the transmission data buffer is changed by the second method in the mobile communication system according to the first embodiment.
  • FIG. 20 is a diagram showing the change sequence. 19 is a flowchart for explaining in detail the operation in step ST 9 b in the figure.
  • FIG. 21 is a diagram showing an example of distributing the noise margin of the base station when the base station according to the first embodiment determines the transmission mode switching threshold of the terminal according to the third method.
  • FIG. 13 is a diagram showing a change sequence when a threshold of a transmission data buffer is changed by the third method in the mobile communication system according to mode 1;
  • FIG. 3 is a flowchart for explaining in detail the operation in step ST3d in FIG.
  • FIG. 24 is a flowchart showing the operation when the first method is applied to a configuration in which the mobile communication terminal switches the transmission mode in accordance with an instruction from the base station.
  • FIG. 25 is a flowchart showing the operation when the mobile communication terminal is connected to the base station.
  • Fig. 26 is a flowchart showing an operation when the second method is applied to a configuration in which the transmission mode is switched according to an instruction from the mobile station.
  • 9 is a flowchart showing an operation when the third method is applied to a configuration for switching modes.
  • FIG. 1 is a diagram schematically showing a configuration of a mobile object communication system according to Embodiment 1 of the present invention.
  • the mobile communication system 1 includes a mobile communication terminal 2, a base station controller 3, and base stations 4a and 4b used by a user.
  • the base station controller 3 intervenes between a network-side configuration such as a public line network and the base stations 4a and 4b to relay these packet communications.
  • the system 1 has a configuration in which the base station controller 3 bundles a plurality of base stations 4a and 4b on the network side. As a result, in the system 1, it is possible to establish a radio link between a plurality of base stations 4a and 4b to one terminal 2 called soft handover.
  • the mobile communication terminal 2 is a UE (User Equipment)
  • the base station controller 3 is an RNC (Radio Radio). Network Controller)
  • the base stations 4a and 4b may be called Node-B.
  • a specific base station may be responsible for scheduling data communication for a certain terminal.
  • the base station in this case may be called a serving cell for distinction.
  • a base station is also called a cell as a whole, including a specific area in which it performs communication processing. In the following description, these terms will be used as appropriate.
  • FIG. 2 is a diagram showing a configuration of a channel in the mobile communication system according to the first embodiment.
  • a channel in a radio section between base stations 4 a and 4 b of the W—CDMA system and terminal 2 is shown. 1 shows the configuration.
  • the channels in this figure are merely examples, and the present invention is not limited to these.
  • a plurality of control channels are synergized with one channel. First, the downlink channel from the base stations 4a and 4b to the terminal 2 will be described.
  • CPICH Common Pilot Channel
  • BCH Broadcast channel
  • P- CCPCH Primary- Common Control physical Channe ⁇ force s.
  • SACCH Downlink Scheduling Assignment Control Channel
  • Z failure DL- ACK / NA CK- CCH Downlink Ack / Nack Control Channel
  • FACH Forward Access Channel
  • UL Uplink Scheduling Information Control Channel
  • SR CH Random Access Channel
  • DPCH Dedicated Physical channel
  • the DPCH may be divided into a DPCH (Dedicated Physical Data channel) for transferring data and a DPCH (Dedicated Physical Control channel) for transferring bits related to control.
  • FIG. 3A and FIG. 3B are diagrams for explaining a communication mode in wireless multiplex data mode communication between a terminal and a base station in the mobile communication system according to the first embodiment.
  • the base station (Node-B) 4a, 4b transmits an allowable rate to the terminal (UE) 2 in advance.
  • the specification is made.
  • the UE transmits the data to No'de-B at an arbitrary time within the range of the permissible rate.
  • Node-B Upon receiving the data from U E, Node-B sends a response signal (ACK / NACK) to UE.
  • ACK / NACK response signal
  • the autonomous mode it is not always necessary to specify the permissible rate in advance for each packet transmission, and basically, only one round trip communication process consisting of a data transmission and a response is required. For this reason, the autonomous mode has the advantage that signaling waste is small and the UE can freely transmit data overnight when it wants to transmit, thereby reducing delay.
  • the overnight transmission process in the scheduling mode first, as shown in FIG. 3B, information such as the UE buffer status is transmitted from UE to Node-B.
  • Node-B Upon receiving the information, Node-B performs scheduling of uplink packets with a plurality of UEs, and determines a time (subframe) and a transmission rate at which transmission is permitted to a UE to be allowed to transmit data.
  • Assign. U E transmits the packet to Node-B according to the assignment and receives a response signal from Node-B.
  • the advantage of the scheduling mode is that there is no need to set an extra noise rise margin because there is no overnight transmission from the UE that the scheduler does not assign.
  • the disadvantage is that at least two round-trip communication processes, ie, the communication process required for scheduling and the transmission process of the data itself, are required, which inevitably causes a delay.
  • signaling must be performed to notify Node-B of the presence or absence of UE transmission data in advance, so the efficiency becomes poor when the transmission data capacity is small relative to the number of signalings. ing.
  • the base station In the autonomous mode, there is no specification of the transmission timing from the base station, and the terminal autonomously determines the transmission timing.
  • the base station specifies the transmission timing for the terminal, and the terminal transmits data according to the transmission timing.
  • the data rate may be specified by the base station. For example, in the autonomous mode, the base station specifies the transmission data rate in the overnight transmission to the terminal, but in the scheduling mode, the base station specifies the transmission timing and the transmission data rate to the terminal. In some cases, data transmission from the terminal is controlled.
  • FIG. 4 is a diagram explaining a threshold (threshold) of a transmission data buffer as a reference for switching the communication mode of the mobile communication terminal according to the first embodiment.
  • the mobile communication terminal 2 operates in the autonomous mode in a state where the transmission data is accumulated by the capacity equal to or less than the threshold of the transmission data buffer, and the transmission data having the capacity exceeding the threshold is accumulated. Then, it shifts to the scheduling mode and operates.
  • terminal 2 switches between the autonomous mode and the scheduling mode based on the threshold for the amount of transmission data stored in the transmission data buffer.
  • the determination of the threshold will be described later.
  • FIG. 5 is a diagram showing an allowable margin for an amount of interference (hereinafter, referred to as noise rise) caused by each factor in an uplink signal to a base station according to the first embodiment.
  • noise rise an amount of interference
  • the received coded signal is allowed to interfere to some extent, but if the noise rise exceeds the permissible limit, the amount of interference will be larger than the signal even if despreading, and the signal Demodulation cannot be performed correctly.
  • one of the noise rises at the base station end Noise rise due to transmission in ringing mode and autonomous mode can be controlled within the margin for scheduling mode and autonomous mode magazine by appropriately switching these transmission modes in uplink packet communication. .
  • noise rise caused by other than scheduling mode and autonomous mode cannot be controlled within the allowable margin in uplink packet communication.
  • Causes of such interference include, for example, own cell interference approximated by the sum of desired signal powers from terminals in the own cell, and interference from extra signals from terminals in covereries of other base stations. Other cell interference, and thermal noise generated by the receiver in the base station.
  • Fig. 6 shows an example of the distribution of the base station's noise margin (allowable interference amount) between the autonomous mode and the scheduling mode when multiple terminals use uplink packet communication in a cell. It is.
  • the illustrated example shows a case where the number of terminals accommodated in a cell is larger than that in the case of FIG. 8 described later.
  • the base station according to Embodiment 1 has a certain range of margin determined by base station controller 3 in consideration of the QoS parameters such as delay, as shown in FIG. It is set as a controllable noise margin.
  • a controllable noise margin When an allowable margin for noise rise due to the autonomous mode is set in the noise rise magazine, a large noise margin may be set for each terminal in the cell.
  • the base station schedules as shown in Fig. 6 (To). It is possible to secure a large allowable margin '(hatched portion) for noise rise caused by the mode. In other words, if the number of terminals that communicate in the cell in the scheduling mode is large, the permissible margin per terminal for noise rise due to the autonomous mode must be reduced as much as possible.
  • Fig. 6 (b) in order to minimize the allowable margin per terminal for noise rise caused by autonomous mode, the noise itself caused by autonomous mode must be reduced. In other words, control may be performed so that communication in the autonomous mode is executed as a low data rate.
  • the threshold for communication mode switching determination of the transmission data buffer in each terminal is set low, and the transmission data It is desirable to switch from the autonomous mode to the scheduling mode when the amount exceeds the range at low data rate.
  • Fig. 8 consider the case where the number of terminals using uplink packet communication in a cell is small (7 in Fig. 6 but 2 in Fig. 8). . In this case, even if the noise margin per terminal is set large in the base station, as shown in Fig. 8 (a), the allowable margin for noise rise due to the scheduling mode (inclined) (The part with a line) can be sufficiently secured.
  • the threshold for the communication mode switching judgment of the transmission data buffer in each terminal is set high.
  • a high data rate may be allowed in the autonomous mode so that a large amount of data can be handled.
  • the traffic situation in the communication between the terminal and the base station such as the number of terminals operating in the scheduling mode in the cell and its operating state, the schedule and operating state in the autonomous mode, etc. It can be seen that it is desirable to appropriately change the above-mentioned threshold of the transmission buffer in order to realize high-quality communication with little interference.
  • FIG. 10 is a block diagram showing the internal configuration of the base station in FIG. 1. The basic operation of the base station will be described with reference to FIG. In Fig. 10
  • the modulation section 5 in the base stations 4a and 4b transmits each channel (P—C CP CH, downlink DPD CH, FA CH, CPI CH, DL-SAC CH, DL—A CK (NA CK—C CH, downlink DPC CH, etc.) are multiplied by the channelization code generated by the downlink channelization code generator 6 and then multiplexed.
  • the modulator 5 performs a spread spectrum process by multiplying the multiplexed signal of each channel by the scrambling code generated by the downstream scrambling code generator 7.
  • the baseband signal which is a signal of each channel multiplexed by the modulator 5, is output to the frequency converter 8.
  • the frequency converter 8 raises the paceband signal to a carrier frequency and outputs it to the power amplifier 9.
  • the power amplifier 9 amplifies the signal input from the frequency converter 8 to a desired power using an internal power amplifier.
  • the signal amplified by the power amplifier 9 is transmitted to the terminal 2 via the antenna 10.
  • the pilot signal generation unit 27 obtains a reference clock signal from the evening management unit 26, the pilot signal is set to CPICH for the terminal 2 to use as a reference for demodulation processing. To the entire cell. Next, a receiving operation will be described. A weak signal received from the antenna 10 is input to the low noise amplifier 11. The low-noise amplifier 11 amplifies the signal and outputs the amplified signal to the frequency converter 12. In the frequency converter 1 2 Lowers the signal input from the low noise amplifier 11 to the frequency of the baseband signal.
  • the despreader 15 performs despreading processing by multiplying the baseband signal frequency-converted by the frequency conversion unit 12 by the scrambling code generated by the upstream scrambling code generator 13, Extract the signal components for each terminal.
  • the demodulation unit 30 separates the despread signal input from the despreader 15 into a signal of each channel by a channelization code generated by the up-channelization code generator 14.
  • the desired wave power measuring unit 16 obtains the power of the desired wave from the uplink DPCCH pilot signal from the despreader 15.
  • the low-noise amplifier 11 obtains, via the antenna 10, the total received power in which the desired wave and noise are mixed.
  • the desired wave obtained by the desired wave power measurement unit 16 from the total received power input through the low noise amplification unit 11, the frequency conversion unit 12, and the despreader 15 is By subtracting this power, the power of the interference wave, which is a noise component, is obtained.
  • the powers of the desired wave and the interference wave are sent from the measurement units 16 and 17 to the upstream packet transmission management unit 24, respectively.
  • the upstream packet transmission manager 24 obtains the power of the desired signal from each terminal in its own cell.
  • the uplink packet transmission management unit (communication management unit) 24 obtains the interference (noise) due to the own cell interference, other cell interference, and thermal noise in the uplink packet communication from the base station control device 3. are doing.
  • the packet transmission management unit 24 obtains an interference component other than the own cell interference component from the base station controller 3 as the power of the interference component in which noise due to other cell interference and thermal noise is mixed.
  • the above-mentioned interference component is a mixture of other-cell interference and thermal noise, and cannot be distinguished. However, there is no particular need to distinguish in the interference amount control processing.
  • the uplink packet transmission management unit 24 subtracts an allowable margin for the own cell interference component and an interference component in which noise due to other cell interference and thermal noise are mixed from an allowable margin in a certain range based on the jamming margin. To obtain a noise rise magazine that can be controlled by upstream packet communication.
  • the jamming margin is an index that indicates the maximum allowable capacity (number of terminals), and is defined by the ratio J / S of the signal power S to the interference component power J.
  • the capacity (the number of terminals) in the cell can be obtained from the jamming magazine.
  • the above-mentioned capacity indicates how many terminals can be accommodated in a cell of the base station except for a terminal that is currently in communication with a certain base station.
  • the jamming margin is calculated by a radio resource management unit in the base station control device 3 described later, for example, according to the following relational expression.
  • the power Eb per signal bit is expressed by the following equation (1).
  • S is the power of the signal from the mobile communication terminal 2 received by the base station, and is received at an even level at the base station end by the high-speed power control function (inner loop) based on the CDMA TPC command. It is assumed that In W_CDMA, S is the pilot signal strength. Can be obtained by R, and R can be obtained according to an instruction such as the one shown in FIG.
  • the power I 0 (W) of the interference from another terminal in the own cell can be represented by the following equation (2), for example.
  • N number
  • S i is the power of the signal from the first to the (N ⁇ 1) th terminal 2 received by the base station, and the subscript i is a positive integer from 1 to (N ⁇ 1). is there.
  • R i is the transmission speed (bit / sec) of communication data by the terminal 2 from the first to (N ⁇ 1) th.
  • I o is represented by the sum of the signal powers of the number of terminals obtained by subtracting 1 from the maximum number of terminals N.
  • the signal power and the transmission rate of each terminal 2 are S and R, which are equal to each other. Since it is inconvenient to distinguish noise for each band width, interference components due to other cell interference and thermal noise were converted to noise energy per 1 Hz without discrimination as described above. Treated as the average noise power spectral density N o (W).
  • SIR Signal-to-Interference Ratio
  • SIR ⁇ can be expressed as the following equation (4) using the above equations (1) and (3).
  • the base station controller 3 is in operation of other cells other than the target base station managed by itself.
  • the jamming magazine further has a margin for interference in consideration of QoS parameters such as traffic conditions and delay of the target base station cell, and a certain range of allowable margin (from the jamming margin to other cells).
  • the mobile station obtains a margin obtained by subtracting a margin for interference taking into account QoS parameters such as the operating state of the base station, the traffic condition of the cell of the target base station, and delay, and notifies the target base station.
  • the target base station performs noise rise control by switching the communication mode within the allowable margin notified from the base station controller 3.
  • the base station is affected by the operating state of other cells other than the own station, and its own communication is affected. It is possible to prevent exceeding a certain jamming margin. Details of this processing will be described later.
  • the uplink packet transmission manager 24 in the target base station subtracts the allowable margin for thermal noise and noise rise due to other cell interference and own cell interference (the uncontrolled margin shown in FIG. 5) from the allowable margin in the above-mentioned fixed range.
  • the remaining margin is used as the controllable noise rise margin shown in Fig. 5.
  • the interference power J is assumed to be caused by the interference power J (w) caused by interference from other terminals other than the target terminal. Then, it can be expressed as the following equation (6).
  • (N-1) (W / R) / ⁇ Eb / (N0 + Io) ⁇ (7)
  • (N-1) is in the own cell other than the target terminal. This is equivalent to the maximum number of terminals that can be accommodated in a.
  • the transmission rate R of the communication data is increased, the jamming magazine is reduced from the above equation (5), and from the above equation (7) it can be seen that the terminal capacity in the own cell is reduced.
  • the channel quality measurement unit 18 is configured to control the power of the desired wave and the interference wave input from the desired wave power measurement unit 16 and the interference wave power measurement unit 17 and the base station control, respectively.
  • the power ratio of the signal-to-interference (SIR) is calculated using the power of the own cell interference, other cell interference, and the interference of the thermal noise acquired from the device 3 and output to the quality target comparison unit 19.
  • transmission power control of a terminal is performed based on a target SIR value called an outer loop.
  • This target SIR value is set in the quality target comparison unit 19 in advance.
  • the decoding unit 22 in the base station counts the block error rate (BL ER) due to CRC (Cyclic Redundancy Check) error in communication with the target terminal, and when the required BLER is no longer satisfied, the quality target comparison unit 1
  • BL ER block error rate
  • CRC Cyclic Redundancy Check
  • the quality target comparison unit 19 compares the signal-to-interference power ratio (SIR) calculated by the channel quality measurement unit 18 with the target signal-to-interference ratio (target SIR value), and generates a TPC. Notify Part 20.
  • SIR signal-to-interference power ratio
  • the TPC generation unit 20 determines from the comparison result that the power of the desired signal in the received signal is weaker than the target signal, the TPC generation unit 20 issues an instruction to increase the transmission power as a TPC (Transmission Power Command) called an inner loop. Is set to the downlink DPC CH and output to the modulation unit 5.
  • TPC Transmission Power Command
  • the downlink DPCCH signal from TPC generation section 20 is transmitted to terminal 2 via modulation section 5, frequency conversion section 8, power amplification section 9 and antenna 10 as described above.
  • the TPC generation unit 20 sets the DPC CH as an instruction to lower the transmission power as TPC. And outputs the result to the modulation unit 5.
  • the subsequent processing is the same.
  • Such power control is called inner loop power control.
  • the base stations 4a and 4b transmit a transmission allowance margin to the terminal 2 in advance using a DL-SACCH or a similar downlink signaling channel.
  • the transmission allowable margin is the communication condition required for the base station to demodulate the signal transmitted by the terminal 2 in bucket mode in autonomous mode. This is information that defines the matter. For example, the maximum data rate allowed.
  • demodulation section 30 separates the received signal into signals of each channel according to the above-described operation on the receiving side.
  • the TFRI receiving section 21 outputs a TFRI (Transport From at Resource Indicator) signal including the modulation parameters and the transport format selected by the terminal 2 among the signals of each channel separated by the demodulating section 30. s Receive the set UL—TFR I—CCH signal.
  • TFRI Transport From at Resource Indicator
  • the TFRI receiving section 21 extracts the demodulation parameters of the EUD TCH from the UL-TFRI-CCH signal, and sets them in the demodulation section 30 and the decoding section 22.
  • Demodulation section 30 demodulates the data body from terminal 2 in EUDTC using demodulation parameters of EUDTCH and outputs the result to decoding section 22.
  • the decoding unit 22 decodes the data body from the terminal 2 in the EUDTC using the EUDTCCH demodulation parameter.
  • the response signal generator 23 determines whether or not the bucket data transmitted by the terminal 2 has been correctly received by the base stations 4a and 4b using the decoding result of the decoder 22.
  • the response signal generation unit 23 if the reception was successful, the response signal generation unit 23 generates an ACK indicating the success of the reception, sets it to DL-ACK / NACK-CCH, and sets the terminal 2 according to the above-described transmission operation. To be notified. Conversely, if there is an error in the data from terminal 2, response signal generating section 23 generates a NACK for notifying the reception failure and notifies terminal 2 in the same manner.
  • the transmission buffer amount reception unit 31 receives the UL-SICH signal from the demodulation unit 30 and obtains information on transmission data in the terminal 2 in the scheduling mode, and transmits the uplink packet. Notify the packet transmission management unit 24.
  • the uplink packet transmission management unit 24 obtains the subframe timing from the timing management unit 26, and the amount of data stored in the transmission buffer of each terminal in the own cell and the transmission of the terminal. Bucket transmission timing is determined by comprehensively judging the power margin and the like.
  • the packet transmission timing determined by the upstream packet transmission management unit 24 is notified to the transmission rate / imaging designation information transmission unit 25.
  • the transmission rate Z evening imaging specification information transmission section 25 sets the subframes and transmission rates for which transmission is permitted to DL-SACCH, and transmits to the terminal 2 according to the above-described transmission operation.
  • the demodulation unit 30 separates the received signal into signals of each channel according to the above-described operation on the receiving side.
  • the TFRI receiving section 21 receives, from the signals of the respective channels separated by the demodulation section 30, the UL-TFRI-CCH signal in which the TFRI is set in the subframe for which transmission permission is specified from the terminal 2.
  • the TFRI receiving section 21 extracts the demodulation parameters of the EUDTCH from the UL-TFRI-CCH signal, and sets them in the demodulation section 30 and the decoding section 22.
  • the demodulation unit 30 demodulates the data body from the terminal 2 in the EUDTC using the demodulation parameters of the EUDTCH and outputs the demodulated data to the decoding unit 22.
  • the decoding unit 22 decodes the data body from the terminal 2 in the EUDTC using the demodulation parameters of the EUDTC.
  • the response signal generator 23 generates an ACK as described above when the packet transmitted by the terminal 2 has been correctly received by the base station, and generates an NACK if an error occurs, — ACK / NA CK— Set to CCH and notify terminal 2.
  • the threshold change is simultaneously notified (signaled) to the terminal 2 in the own cell
  • the change is performed by the uplink bucket transmission manager 24 in the base station in the traffic condition in the own cell. Judgment is made in consideration of such factors, and the fact is notified to the base station controller 3.
  • the base station controller 3 generates information on the above threshold (information on how to change the threshold, etc.) in consideration of the operation status of other base stations other than the base station that has issued the notification. , Inserted into the broadcast information and transmitted to the base station.
  • the broadcast information transmitting unit 28 in the base station receives a set of broadcast information in which the information related to the threshold is inserted from the base station control device 3 side, and sets the broadcast information to P-CCPCH (BCH). Then, it transmits to terminal 2 according to the above-described transmission operation. Note that the broadcast information may be rarely set on another channel.
  • the change is performed by the upstream bucket transmission management unit 24 in the base station that accommodates the granule 2 in the cell, such as the traffic situation in the communication with the terminal 2. And the base station controller 3 is notified of this.
  • the base station controller 3 generates information on the above threshold (information on how to change the threshold, etc.) in consideration of the operation status of other base stations other than the base station that has issued the notification. , Is set as an individual message in the channel and transmitted to the base station.
  • the downlink dedicated channel transmitting section 29 in the base station when a message related to the threshold is obtained from the dedicated channel, the message is set to downlink D ⁇ DCH (DPC ⁇ ), and the threshold is set according to the transmission operation described above. Sent to terminal 2 whose shoulder should be changed. Response message for this If there is, the uplink dedicated channel receiving section 32 receives it.
  • DPC ⁇ downlink D ⁇ DCH
  • the information on the threshold may be set to the common channel.
  • the base station controller 3 determines that the dedicated channel is released from the management information of the radio resources, the base station controller 3 sets the information on the threshold as a message in a common channel and transmits the message to the base station.
  • the downlink common channel transmitting unit 34 in the base station obtains the message related to the threshold from the common channel
  • the downlink common channel transmitting unit 34 sets the message to FACH and sends the message to the terminal 2 to change the threshold according to the transmission operation described above. Send. If there is a response message to this, the uplink common channel receiving section 33 receives it.
  • the configuration in which the base station determines the change of the threshold has been described.
  • the configuration may be such that the base station determines the transmission mode itself to be set in terminal 2.
  • FIG. 11 is a block diagram showing the internal configuration of the mobile communication terminal in FIG. 1.
  • the basic operation of the mobile communication terminal will be described with reference to FIG. In FIG. 11, in order to prevent the notation from being redundant, the names of the components described below are simplified, but the same reference numerals denote the same components. It is assumed that
  • the modulator 35 applies the signals of each channel (UL—SICCH, UL—TFRI—CCH, FACH, uplink DPCH, etc.) Then, after multiplying by the channelization code generated by the upstream channelization code generator 36, these signals are multiplexed. Next, the modulation unit 35 performs a spectrum spreading process by multiplying the multiplexed signal of each channel by the scrambling code generated by the uplink scrambling code generator 37.
  • the first band signal which is a signal of each channel multiplexed by the modulator 5, is output to the frequency converter 38.
  • the frequency converter 38 raises the baseband signal to a carrier frequency and outputs the signal to the power amplifier 39.
  • the power amplifier 39 amplifies the signal input from the frequency converter 38 to a desired power using an internal power amplifier.
  • the signal amplified by the power amplifying unit 39 is transmitted to the base stations 4a and 4b via the antenna 40.
  • a weak signal received from the antenna 40 is input to the low noise amplifier 41.
  • the low noise amplifier 41 amplifies the signal and outputs the amplified signal to the frequency converter 42.
  • the frequency converter 42 lowers the signal input from the low noise amplifier 41 to the frequency of the baseband signal.
  • the despreading demodulation unit 46 performs despreading processing by multiplying the baseband signal frequency-converted by the frequency conversion unit 42 by the scrambling code generated by the downlink scrambling code generator 45 and performing downlink spreading.
  • Channelization signal generator 44 Separates the signals of each channel according to the channelization code generated by 4.
  • despreading demodulation section 46 outputs the TPC command in the signal received from the base station to power control section 43.
  • the power control unit 43 instructs the power amplification unit 39 to increase or decrease the transmission power according to the TPC command, and the transmission power according to the instruction is set by the power amplification unit 39.
  • the common pilot signal receiving section 47 matches the demodulation timing in demodulation with the base station, and supplies the demodulated evening signal to the evening imaging management section 48.
  • the evening timing management unit 48 distributes the timing signal supplied from the common pilot signal reception unit 47 to each processing unit in the mobile communication terminal 2 and executes processing synchronized with the base station. Is done.
  • the transmission permission information receiving unit in the mobile communication terminal 2 In the operation in the autonomous mode, the transmission permission information receiving unit in the mobile communication terminal 2
  • the transmission allowance margin receives the transmission allowance margin from the base station in advance using a DL-SACCH or similar downlink signaling channel.
  • the transmission permission margin is notified from the transmission permission information receiving section 49 to the upstream packet transmission management section 51.
  • the transmission timing is arbitrary.
  • the transmission data is transmitted in a transmission buffer for uplink packet communication.
  • the transmission starts immediately, so the upstream bucket transmission management unit (communication management unit) 51 specifies the TFRI corresponding to the transmission data amount in consideration of the above-mentioned transmission allowance margin and performs TFRI transmission processing. Notify Part 53.
  • the TFRI transmission processing unit 53 sets the TFRI in UL-TFRI-CCH and transmits it to the base station in accordance with the above-described transmission operation. Thereby, the transmission operation is controlled so that noise rise is suppressed within the range of the transmission allowable margin specified by the base station.
  • the EUDTCH transmission processing unit 52 converts the data stored in the upstream packet communication transmission data buffer 58 into the transmission format specified by the above TFRI, and then sets the data itself in EUDTCH. Above Transmit to the base station according to the transmission operation performed.
  • the base station Upon receiving the packet data from the mobile communication terminal 2, the base station sets a response signal corresponding to the packet data in the DL-ACK / NACK-CCH and transmits the response signal.
  • the response signal receiving unit 57 in the mobile communication terminal 2 determines ACK / NACK from the DL-ACK / NACK-CCH received according to the above-described receiving operation.
  • response signal receiving section 57 determines that the packet is ACK
  • the result of the determination is notified to uplink transmission packet managing section 51.
  • the uplink transmission packet management unit 51 shifts to processing for transmitting the next packet of data to the base station.
  • the uplink transmission packet management unit 51 shifts to a process of retransmitting the data of the bucket determined to be NACK.
  • the EUDTCH transmission processing unit 52 retransmits data having redundancy such as incremental redundancy if necessary at the time of the retransmission.
  • the transmission data is stored in the transmission packet buffer 58 for uplink packet communication.
  • the buffer status transmitting unit 55 which has been instructed by the uplink packet transmission managing unit 51, transmits the data amount of data to be transmitted to the base station and the transmission power margin of the terminal 2 to the UL—SICCH. Set and transmit to the base station according to the transmission operation described above.
  • the base station Upon receiving the UL-SICCH signal, the base station considers the state of the transmission data buffer 58 of each terminal 2 accommodated in its own cell, and considers the appropriate Determine the transmission timing. By this means, the base station sets a transmission permission instruction to each terminal 2 in the DL-SACCH at the relevant timing, and transmits according to the above-described transmission operation.
  • the transmission permission information receiving section 49 in the mobile communication terminal 2 receives information such as the transmission rate and subframe timing permitted by the base station set in the DL-S ACCH. This information is passed from the transmission permission information receiving unit 49 to the timing management unit 48 and the upstream packet transmission management unit 51.
  • the upstream packet transmission management section 51 designates a TFRI corresponding to the amount of transmission data and notifies the TFRI transmission processing section 53 of the designation.
  • the TFR I transmission processing section 53 sets TFR I in UL-TFR I-C CH and transmits to the base station according to the above-described transmission operation.
  • the EUDTCH transmission processing unit 52 reads the data stored in the upstream packet communication transmission data buffer 58 and converts it into the transmission format specified by the TFRI transmitted by the TFR I transmission processing unit 53. After that, the data itself is set in the EUDT CH and transmitted to the base station according to the above-described transmission operation.
  • the base station When the base station receives the packet data from the mobile communication terminal 2, it sets a response signal corresponding to the packet data to DL-ACK / NACK-CCH and transmits it.
  • the response signal receiving unit 57 in the mobile communication terminal 2 determines ACK ZNA CK from the DL-ACKZNACK-CCH received according to the above-described receiving operation.
  • answer signal receiving section 57 determines that the packet is ACK
  • the result of the determination is notified to uplink transmission packet managing section 51.
  • the uplink transmission packet management unit 51 shifts to processing for transmitting the next packet of data to the base station.
  • the upstream transmission packet management unit 51 shifts to a process of retransmitting the data of the packet determined to be NACK.
  • the EUDTCH transmission processing unit 52 retransmits data having redundancy such as incremental redundancy as needed at the time of the retransmission.
  • the configuration necessary to change the transmission mode will be described.
  • the upstream packet transmission management unit 51 transmits the threshold given by the threshold changing unit 50 and the transmission data buffer for upstream packet communication.
  • the upstream packet transmission management unit 51 notifies the transmission mode switching unit 54 that the switching of the transmission mode has been completed.
  • the buffer status transmission unit 55 sets the information indicating that the transmission mode switching is completed in the UL—SIC CH, and transmits the base station according to the above-described transmission operation. Send to station.
  • the TFRI transmission processing unit 53 may set information indicating that the switching of the transmission mode is completed in the UL-TFRU-CCH and transmit the information to the base station. Further, the protocol processing unit 56, which has received the information indicating that the transmission mode has been switched from the transmission mode switching unit 54, transmits the information to the uplink dedicated channel transmission unit.
  • uplink dedicated channel transmitting section 60 may set the information indicating that the transmission mode has been switched to the uplink DPCH as a message and transmit it to the base station. As described above, the mobile communication terminal 2 notifies the base station of the switching of the transmission mode using some channel.
  • the broadcast information receiving unit 61 in the mobile communication terminal 2 receives a set of broadcast information from the base station side according to the above-described receiving operation and notifies the protocol processing unit 56. To do.
  • the protocol processing unit 56 interprets the contents of the broadcast information.
  • the protocol processing unit 56 interprets that the broadcast information is an instruction to change the threshold of the upstream packet communication transmission data buffer 58, the protocol processing unit 56 determines a threshold to be changed by the instruction. Threshold change section Set to 50.
  • threshold changing section 50 notifies uplink packet transmission managing section 51 of the changed threshold.
  • the transmission mode is switched based on the changed threshold.
  • the dedicated channel is used when specifying the threshold for each terminal.
  • the dedicated channel (downlink DPCH) to which the message related to the threshold is transmitted from the downlink dedicated channel transmitting section 29 in the base station is received by the downlink dedicated channel receiving section 63 in the terminal 2, and the The notification is sent to the protocol processing unit 56.
  • the protocol processing unit 56 interprets the content of the individual channel.
  • the protocol processing unit 56 sets the threshold to be changed by the message to the threshold changing unit 50. Set to. Thereafter, threshold changing section 50 notifies uplink packet transmission managing section 51 of the changed threshold. Further, uplink dedicated channel transmitting section 60 sets information on the transmission mode switching as an uplink DPCH as a message and transmits the message to the base station. A case in which the above threshold is switched using a common channel will be described.
  • the common channel is used when, for example, the above-mentioned threshold is specified for each terminal 2 since the dedicated channel is released.
  • individual channels may be temporarily released due to low power consumption, etc. In such a case, a common channel is used.
  • the message set to the common channel (FACH) from the base station is received by the downlink common channel receiving unit 62 in accordance with the above-described receiving operation. Thereafter, the message is sent from downlink common channel receiving section 62 to protocol processing section 56.
  • the protocol processing unit 56 interprets the contents of the above message.
  • the threshold changing unit 50 determines the threshold to be changed by the message. Set to. Thereafter, threshold changing section 50 notifies uplink packet transmission managing section 51 of the changed threshold.
  • uplink common channel transmitting section 59 sets R ACH as a message indicating that the transmission mode has been switched, and transmits the message to the base station.
  • the physical layer signaling assigns the information about the threshold to a certain bit in the information of the physical layer for setting the communication condition of the physical layer between the transfer communication terminal 2 and the base station.
  • the information of the physical layer is set to, for example, DL-SACCH.
  • Physical layer signaling is used, for example, when the above threshold is specified for each terminal 2 and can be specified faster than in the case described above.
  • the transmission permission information receiving section 49 receives an instruction on the physical layer embedded in the DL-SACCH from the base station, and notifies the protocol processing section 56 of the information.
  • the protocol processing unit 56 interprets the content of the information received by the transmission permission information receiving unit 49.
  • the protocol processing unit 56 interprets that the information is an instruction to change the threshold, the protocol processing unit 56 sets a threshold to be changed based on the information in the threshold changing unit 50. Thereafter, threshold changing section 50 notifies uplink packet transmission managing section 51 of the threshold changed by the above information.
  • FIG. 12 is a block diagram showing the internal configuration of the base station controller in FIG. 1.
  • the basic operation of the base station controller 3 will be described with reference to FIG. In FIG. 12, in order to prevent the notation from being redundant, the names of the respective components described later are simplified, but the same reference numerals denote the same components. It is assumed that
  • the QoS parameter overnight mapping unit 64 is configured to transmit a QOS (Quality of Service) designated for communication between the mobile communication terminal 2 and the base stations 4 a and 4 b (for example, a delay tolerance).
  • QOS Quality of Service
  • the parameters related to this communication include, for example, the mode in the Radio Link Control (RLC) layer, the number of transport block sizes in the physical layer, and the number of bits in the Cyclic Redundancy Check (CRC).
  • RLC Radio Link Control
  • CRC Cyclic Redundancy Check
  • the congestion control unit 65 prevents the occurrence of congestion in communication between the mobile communication terminal 2 and the base station, and restricts calls.
  • Radio Resource Management Department 6 It manages information related to resources (for example, channels, power, codes, etc.) and measurement data, and notifies each base station of management information as needed during communication between the mobile communication terminal 2 and the base station.
  • the above-mentioned jamming magazine is calculated by the radio resource management unit 66.
  • the radio resource management unit (communication resource management unit) 66 provides the base station with a permissible margin for the above-mentioned jamming margin, which has a margin in consideration of QoS parameters such as delay. Set.
  • the communication mode switching instruction of the terminal 2 in the own cell is executed so that the noise rise falls within the permissible margin.
  • a communication condition between a base station and a terminal such that a noise falls within a jamming margin is determined by a base station control device, and the communication condition notified from the base station control device is determined.
  • the communication between the base station and the terminal was controlled according to.
  • the base station control device sets a margin for interference to be considered from a request by the QoS parameters such as an operation state and a delay other than the target cell with respect to the jamming margin.
  • the base station sets a permissible margin that additionally has
  • the allowable margin is narrower than the jamming magazine in the amount of interference that can be tolerated by the amount of interference that must be considered from the requirements of the QoS parameters such as operating conditions and delays other than the target cell.
  • the base station executes a part of the process of determining the communication condition such that the noise rise falls within the allowable margin. For example, the base station determines the noise of each mode within the above-mentioned permissible margin according to the communication conditions at the current time. The distribution of the margin to the slize is executed as appropriate.
  • the base station can quickly determine the communication condition according to the QOS of communication with the terminal without completely depending on the communication condition notified from the base station controller. This enables efficient data communication in response to fluctuations in noise rise due to fluctuations in communication load.
  • the core network protocol processing unit 67 processes a protocol in communication with the network side.
  • the wireless network protocol processing unit 68 processes a protocol in communication with the base station.
  • the scheduling mode is set, and when the transmission data falls below the threshold, the mode is switched to the autonomous mode.
  • the following sections describe three methods of performing signaling to change this threshold. .
  • the threshold change information is set in the broadcast information, and the change is notified to the terminals 2 in the cell all at once.
  • the threshold change information is set in an individual channel or a common channel, and is notified to each terminal 2 to change the information.
  • the third method is to notify each terminal 2 of the threshold change information by physical layer signaling and change the information.
  • This method changes the threshold in accordance with the current number of terminals in the own cell that handle the scheduling mode, the number of terminals that handle the autonomous mode, and the operating conditions of these and individual channels.
  • the distribution of the noise rise within can be adjusted to an appropriate amount.
  • FIG. 13 shows a base station controller according to Embodiment 1 in accordance with the first method.
  • FIG. 9 is a diagram illustrating an example of distribution of a noise rise margin of a base station when the transmission mode switching threshold of the terminal is determined.
  • FIG. 14 is a diagram for explaining the change of the transmission mode switching threshold according to the distribution of the noise rise margin shown in FIG. The basic concept of the first method will be explained using these figures.
  • the noise rise margins at the base station include an allowance for noise rise due to the autonomous mode and the scheduling mode, and an allowance for noise rise due to transmission on individual channels (see the figure). Individual channels and other areas) are distributed as shown in Fig. 13 (a).
  • the above-mentioned noise rise margin at the base station is a permissible margin which further has a margin for interference to be considered based on the operating state of other cells and QoS based on the above-mentioned jamming margin. It is.
  • the above-described threshold of the transmission buffer of the mobile communication terminal 2 has a relationship shown in FIG. 14 (a) with respect to the transmission buffer in the buffer. .
  • the base station control device 3 manages to ensure an allowable margin necessary for noise rise caused by transmission on the dedicated channel.
  • the base station controller 3 instructs the base station to increase the allowable margin required for data transmission via the dedicated channel. I do.
  • the tolerance margins assigned to the noise rise caused by the autonomous mode become the tolerance margins of the individual channels. It will decrease by the amount of increase in the magazine. At this time, if the number of terminals is the same, the noise rise margin per terminal will be reduced.
  • the broadcast information in the first method is used in the cell.
  • the terminal 2 attempting to transmit a large amount of data is changed from the autonomous mode to the scheduling mode. .
  • the terminal 2 that executes data transmission with a small data amount maintains the autonomous mode as long as the transmission data amount does not exceed the changed threshold value.
  • FIG. 15 is a diagram showing a change sequence when the threshold of the transmission buffer is changed by the first method in the mobile communication system according to the first embodiment.
  • the base station measures the noise at the current base station end (step ST 1). More specifically, as shown in FIG. 10, the noise rise (interference amount) at the base station end at the present time is determined by the desired wave power measuring unit 16 and the interference wave power measuring unit 17 in the base station. Is measured.
  • the base station notifies the base station controller 3 of the noise rise measured in step ST1 (step ST2). Further, the base station notifies the base station controller 3 of the number of terminals operating in the autonomous mode and the scheduling mode in its own cell (step ST 3).
  • the radio resource manager 66 in the base station controller 3 operates the base station (hereinafter, referred to as a peripheral base station) existing around the target base station (for example, the cell of the peripheral base station). (Including the number of terminals accommodated in the network) (step ST 4).
  • a peripheral base station existing around the target base station (for example, the cell of the peripheral base station).
  • the radio resource management unit 66 in the base station control device 3 further sets the jamming margin as a permissible margin to be notified to the base station in consideration of noise rise due to handover.
  • the radio resource management unit 66 acquires the operation status of the dedicated channel in the base station (step ST5). Normally, the dedicated channel is used for data transmission from a peripheral base station to the terminal 2 in a soft handover, so that the base station control device 3 grasps the operation status.
  • the radio resource management unit 66 determines whether the noise rise margin at the base station is sufficient for the current noise rise obtained in steps ST1 to ST5, or conversely, the margin is It is determined whether there is a shortage (step ST6). In accordance with this determination result, the wireless resource management unit 66 shifts to a process of changing the noise rise frame between the autonomous mode and the scheduling mode.
  • the noise rise frame refers to the amount of noise rise margin allocated to each mode, distributed as the above-mentioned allowable margin designated by the base station controller 3 to the base station. .
  • a hatched portion as a margin for the scheduling mode indicates a noise rise frame in the scheduling mode.
  • the radio resource manager 66 determines that the noise rise margin at the base station is too small or too large for the current noise rise, and that the noise rise frame assigned at the base station needs to be changed. Then, the base station is instructed to change the noise rise frame in the autonomous mode and the Z or scheduling mode (step ST7).
  • the radio resource management unit 66 determines that there is no excess or deficiency in the noise rise margin at the base station with respect to the current noise rise and it is not necessary to change the noise rise frame, the radio resource management unit 66 issues the above-mentioned noise frame change instruction. Not performed.
  • the base station When receiving the instruction to change the noise rise frame from the base station controller 3, the base station changes the noise rise frame according to the instruction (step ST8). For example, as described with reference to FIG. 13, when the frequency of the overnight transmission by the dedicated channel increases, the base station controller 3 sets the noise rise margin of the dedicated channel in the noise rise margin of the base station. Is instructed to reduce the noise rise frame for autonomous mode by this increase.
  • the radio resource management unit 66 determines the current traffic situation, noise rise in the base station, In consideration of the allowable margin, it is determined whether or not the threshold should be changed to an appropriate amount of interference in the communication between the base station and the terminal 2 (step ST9).
  • the radio resource management unit 66 notifies the base station of information on the change of the threshold including the threshold value as a result of the determination (step ST10).
  • the base station that has received the information on the threshold change from the base station controller 3 sets information including the threshold value as broadcast information (BCH), and performs broadcast to each terminal 2 (step ST 1 1).
  • the terminal 2 that has received the broadcast information reads the transmission mode switching threshold value from the broadcast information and changes the threshold in the same manner as the operation described with reference to FIG. 11 (step ST12). .
  • step ST9 in FIG. 15 of the mobile communication system will be described in detail with reference to the flowchart shown in FIG.
  • the uplink packet transmission management unit 24 in the base station compares the amount of data in the transmission data buffer reported from the terminal 2 in the own cell with the threshold value set in the terminal 2. By comparing, it is determined whether or not the threshold value needs to be changed. Accordingly, if it is determined that the threshold value should be changed, the base station notifies base station controller 3 of that fact in accordance with the above-described transmission operation.
  • step ST1a the radio resource manager 66 in the base station controller 3 that has received the notification from the base station that the threshold should be changed, determines the individual channel based on the operation status of the individual channel in the base station. De in Approximate noise rise due to overnight transmission.
  • the radio resource management unit 66 roughly estimates an allowable margin for noise rise according to the current operation state of the base station other than the base station (step ST2a). For example, when the number of terminals in the peripheral base station is large, there is a possibility that the terminal 2 moves in the area where the handover is performed. In this case, the radio resource management unit 66 estimates a margin in consideration of noise rise due to handover.
  • the radio resource management unit 66 When a magazine considering the operating state of the peripheral base station (for example, a margin considering the case where the number of terminals in the peripheral base station is large) is obtained, the radio resource management unit 66 The margin is further provided for the allowable margin for the set noise rise.
  • a margin obtained by subtracting a margin in consideration of the operating state of the peripheral base station from the above-mentioned allowable margin is set as a new allowable margin to be set in the base station.
  • the radio resource management unit 66 obtains the noise rise of the scheduling and judging mode in the cell of the base station and the number of terminals (step ST3a). Thereafter, the radio resource management unit 66 determines the noise rise due to the data transmission on the individual channel determined in step ST1a, and the scheduling mode in the cell of the base station determined in step ST3a. Approximate the allowable margin for each noise rise.
  • step ST4a the radio resource management unit 66 obtains a margin for the individual channel from the entire permissible magazine of the base station in step ST2a, taking into account a margin corresponding to the operating state of the peripheral base station.
  • the margin for noise rise in the autonomous mode in the base station is obtained by subtracting the margins for the gin and scheduling modes (noise rise frame).
  • the radio resource management unit 66 determines that the number of terminals operating in the autonomous mode in the cell of the base station is appropriate for the noise rise frame of the autonomous mode at the base station determined in step ST4a. Is determined (step ST5a).
  • the base station reports the amount of transmission data in the transmission data buffer from each terminal 2 in its own cell. Further, the base station control device 3 receives a notification of the transmission data amount from the base station. The radio resource management unit 66 in the base station control device 3 previously calculates an average value of the transmission data amount of the terminal 2 notified from the base station during a predetermined period.
  • the radio resource management unit 66 determines the amount of noise rise in the autonomous mode in the base station with respect to the above average value of the transmission data amount of the terminal 2, and The percentage of the total number of terminals that transmit data that cannot be demodulated beyond the noise frame is calculated in advance.
  • the number of terminals transmitting data that cannot be demodulated beyond the noise rise frame of the autonomous mode exceeds a predetermined ratio to the total number of terminals, the number of terminals in the autonomous mode is considered to be too large.
  • the number of terminals in the autonomous mode is equal to or less than the predetermined ratio, the number of terminals in the autonomous mode is too small.
  • step ST5a the radio resource management unit 66 checks how much the noise rise frame of the current autonomous mode in the base station is based on the average value, and based on the result, the autonomous mode Determine whether the number of terminals is appropriate.
  • step ST5a If it is determined in step ST5a that the number of terminals in the autonomous mode is too large, the radio resource management unit 66 lowers the switching threshold value currently set for the terminal 2 (step ST6a).
  • Terminal in autonomous mode The noise rise margin allocated to 2 is distributed according to the number of terminals within the noise rise frame of the autonomous mode in the base station.
  • the noise rise margin assigned to each terminal 2 in the autonomous mode decreases because the noise rise frame of the autonomous mode in the base station itself is constant.
  • the state in which the number of terminals in which the allowable margin of the demodulatable range is exceeded is defined as the state in which the number of terminals in the autonomous mode in the cell is large.
  • the radio resource management unit 66 shifts to the process of step ST10 in FIG. 15 and changes the changed threshold value to the threshold value.
  • a notification instruction is sent to the base station as information.
  • step ST7a the radio resource management unit 66 maintains the current switching threshold value (step ST7a). This threshold value is reported to the base station at step ST10 in FIG. 15 as information relating to the threshold change.
  • step ST5a If it is determined in step ST5a that the number of terminals in the autonomous mode is too small, the radio resource management unit 66 raises the value of the switching ⁇ threshold that is currently set for terminal 2 (step ST8a).
  • the state in which the number of terminals in the autonomous mode is too small means that even if the transmission is executed at a data rate corresponding to the transmission data amount, the noise rise margin assigned to each terminal 2 is reduced. In this state, there is more room than necessary.
  • the radio resource management unit 66 shifts to the process of step ST10 in FIG. 15 and sets the threshold value after the change to the threshold value. And instructs the above base station to broadcast as information on the change of the base station.
  • step ST6a and step ST8a if the width of the threshold value increase / decrease performed at one time is too large, terminal 2 may switch the transmission mode more than necessary.
  • the threshold value be raised or lowered at a time to a fixed value in consideration of the number of terminals in the autonomous mode in the cell, and the threshold value be changed gradually.
  • the change of the transmission mode switching threshold can be notified all at once in the cell. For this reason, the number of occurrences of signaling for notifying the threshold change can be reduced.
  • the terminal 2 in the cell may be configured to perform grouping based on, for example, a QoS class and to set the threshold for each group.
  • QoS classes conversational class, streaming class, interactive class, and nook class
  • the terminals 2 in the cell are divided into the following three groups based on the tolerance of the communication delay for the Q0S class.
  • the first group consists of conversational classes and streaming classes. This group uses communication services that handle data such as voice and moving images with the least tolerance for delay.
  • the second group uses communication services to which the interactive class belongs, which allows some delay. For example, still images and text files provided by WWW (World Wide Web) are handled. When transmitting such data, communication delays are tolerated to some extent, but are not completely tolerated, and if they are too slow, users will be uncomfortable.
  • WWW World Wide Web
  • the third group is a group that uses a communication service to which delay is allowed and to which the background class belongs. For example, data transfer using FTP (File Transfer Protocol), which requires scheduling for communication and allows delay, is applicable.
  • FTP File Transfer Protocol
  • the grouping of each terminal 2 in the cell is performed by the QoS parameter overnight mapping unit 64 in the base station controller 3 that knows the QoS class in communication with the base station.
  • the grouping result is also stored in the QoS parameter overnight mapping unit 64.
  • the radio resource management unit 66 in the base station control device 3 that has received the notification that the threshold should be changed from the base station is based on the grouping result held in the QoS parameter overnight mapping unit 64. Then, it is determined to which group the terminal 2 whose threshold should be changed belongs.
  • the radio resource management unit 66 determines the range of the increase or decrease of the threshold value set for each group based on the grouping determination result. For example, control is performed such that the largest threshold value is set for the terminal 2 in the first group that allows the least delay. Also, delay is acceptable Control is performed so that the smallest threshold value is set for terminal 2 in the third group.
  • mode switching is performed so as to be in the autonomous mode that causes the least delay.
  • the threshold value is gradually reduced and terminals with a large amount of transmission data are reduced. Control may be performed so that 2 is switched to the scheduling mode.
  • a lower threshold is set for the second group and the third group where the delay is allowed, so that switching to the scheduling mode is performed, as compared with the first group.
  • Control may be performed so as to increase the threshold value set in group 3.
  • the grouping is further subdivided based on the delay amount indicating how much the data handled by the terminal 2 allows the delay. Is also good.
  • FIG. 17 is a diagram showing an example of distribution of a noise rise margin of a base station when the base station control apparatus according to the first embodiment determines a terminal transmission mode switching threshold and threshold according to the second method.
  • FIG. 18 FIG. 7 is a diagram illustrating a change in a transmission mode switching threshold according to a distribution of a noise rise margin shown in FIG. 7; The basic concept of the second method will be explained using these figures.
  • the noise rise margin at the base station includes the allowance for noise rise due to the autonomous mode and the scheduling mode, and the allowance for noise rise due to transmission on individual channels (individual channel in the figure). Other areas) are distributed as shown in Fig. 17 (a).
  • the above-mentioned noise rise margin in the base station is an allowable margin in which the above-mentioned jamming margin is further provided with a margin for interference to be considered by the operating state of other cells and QoS. .
  • the threshold of the transmission data buffer of the mobile communication terminal 2 has a relationship shown in FIG. 18 (a) with respect to the transmission data in the buffer.
  • Data transmission over individual channels is assumed to have a certain amount of data transmission.
  • the base station control device 3 manages to ensure a necessary allowable margin for noise rise due to transmission on the dedicated channel.
  • the base station controller 3 instructs the base station to increase the allowable margin required for data transmission over the dedicated channel. I do.
  • the allowable margin for noise rise due to autonomous mode increases the allowable margin for individual channels. Will be reduced by the amount
  • the delay is insignificant to the user in the conversational class that handles data such as voice and the streaming class that handles data such as video. Real-time performance is required to prevent giving a natural perception. Therefore, these QoS classes need to reduce the delay as much as possible.
  • the threshold value of the transmission buffer is reduced so that the threshold value does not drop much.
  • the threshold value of the transmission data buffer is reduced by a large amount, and The threshold is lower than in the case of Fig. (B).
  • terminal 2 that handles data that does not allow delay maintains autonomous mode that has communication characteristics in which delay is unlikely to occur, and only terminal 2 that handles data that can tolerate delay changes from autonomous mode to scheduling. It is guided to the switching mode.
  • the permissible margin of autonomous mode in the base station is based on the permissible margin of terminal 2 that handles data that does not permit delay (the noise of one terminal that does not permit delay). Margin), and reduce the margin of the allowable margin of terminal 2 that handles data that can tolerate delay (noise margin for one terminal that can tolerate delay).
  • the threshold is lowered too much at once, the balance between the number of terminals in the autonomous mode and the scheduling mode will be lost, so it is desirable to gradually lower the threshold.
  • FIG. 19 is a diagram showing a change sequence when the threshold of the transmission data buffer is changed by the second method in the mobile communication system according to the first embodiment.
  • the base station uses the current noise at the base station edge.
  • the rise is measured (step ST 1 b). More specifically, as shown in FIG. 10, the desired noise (interference amount) at the base station end at the present time is determined by the desired wave power measuring unit 16 and the interference wave power measuring unit 17 in the base station. Measured.
  • the base station notifies the base station controller 3 of the noise rise measured in step ST1b (step ST2b). Further, the base station notifies the base station controller 3 of the number of terminals operating in the autonomous mode and the scheduling mode in its own cell (step ST3b).
  • the radio resource management unit 66 in the base station control device 3 obtains the operation status of the peripheral base station (including, for example, the number of terminals accommodated in the cell of the peripheral base station) (step ST 4 b ).
  • the radio resource management unit 66 in the base station controller 3 gives the jamming margin an additional margin in consideration of noise rise due to handover as an allowable margin to be notified to the base station. .
  • the radio resource management unit 66 acquires the operation status of the dedicated channel in the base station (step ST5b). Normally, the dedicated channel is used for overnight transmission from the peripheral base station to the terminal 2 in the soft handover, so the base station controller 3 grasps the operation status.
  • the radio resource management unit 66 determines whether or not the noise margin at the base station has a margin with respect to the current noise rise obtained in steps ST1b to ST5b, or conversely, It is determined whether or not there is a shortage (step ST6b). In accordance with this determination result, the radio resource management unit 66 shifts to processing for changing the noise frame between the autonomous mode and the scheduling mode.
  • the radio resource manager 66 determines that the noise rise margin at the base station is too large or too small for the current noise rise, and that the noise rise frame allocated at the base station needs to be changed. And instruct the base station to change the noise rise frame in the autonomous mode and / or the scheduling mode (step ST7b).
  • the radio resource management unit 66 determines that there is no excess or deficiency in the noise rise margin at the base station with respect to the current noise rise and it is not necessary to change the noise rise frame, the radio resource management unit 66 issues the above-mentioned noise frame change instruction. Not performed.
  • the base station When receiving the instruction to change the noise rise frame from the base station controller 3, the base station changes the noise rise frame according to the instruction (step ST8b). For example, as described with reference to FIG. 17, when the frequency of data transmission over an individual channel increases, the base station controller 3 sets the noise rise frame of the individual channel out of the noise margin at the base station. Increase, and instruct to reduce the noise rise frame for autonomous mode by this increase.
  • the radio resource manager 66 determines the current traffic situation and noise rise in the base station. In consideration of the permissible margin and the allowable margin, it is determined which value should be used to change the switching threshold for each terminal 2 (step ST9b).
  • the radio resource management unit 66 transmits information on the threshold change including the threshold value as a result of the determination as a Layer 3 message to the base station (step ST10b).
  • the base station that has received the information on the above threshold change from the base station controller 3 uses the dedicated channel (DPCH) if communication with the terminal 2 for which the threshold is to be set is established on the dedicated channel (DPCH). If the communication on the individual channel is not established, the above information is transmitted to the target terminal 2 using the common channel (FACH) (step ST11b).
  • DPCH dedicated channel
  • FACH common channel
  • the terminal 2 that has received the information reads the value of the transmission mode switching threshold from the information set for the dedicated channel or the common channel and changes the threshold in the same manner as the operation described with reference to FIG. (Step ST 1 2b).
  • the uplink dedicated channel transmitting section 60 in the terminal 2 sets the information indicating that the value of the switching threshold has been changed in the uplink DPCH or RACH as a message and transmits it to the base station (step ST13). b).
  • the base station having received the message notifies the base station controller 3 that the change has been completed (step ST14b).
  • step ST9b in FIG. 19 of the mobile communication system according to the first embodiment will be described in detail with reference to the flowchart shown in FIG.
  • the uplink packet transmission management unit 24 in the base station compares the data amount of the transmission data buffer reported from the terminal 2 in the own cell with the threshold value set in the terminal 2, Judge whether the threshold value should be changed or not. Thus, if it is determined that the threshold value should be changed, the base station notifies base station control device 3 of that in accordance with the above-described transmission operation.
  • step ST1c the radio resource management unit 66 in the base station control device 3 that has received the notification from the base station that the threshold should be changed, determines the individual channel based on the operation status of the individual channel in the base station. Approximate the noise rise caused by overnight transmission.
  • the radio resource management unit 66 determines the current Approximate the allowable margin for noise according to the operating condition in (ST2c). For example, when the number of terminals in the peripheral base station is large, there is a possibility that the terminal 2 moves in the area where the handover is performed. In this case, the radio resource management unit 66 roughly estimates a margin taking into account noise rise due to handover.
  • the radio resource management unit 66 When a margin considering the operating state of the peripheral base station (for example, a magazine considering the case where the number of terminals in the peripheral base station is large) is obtained, the radio resource management unit 66 The margin is further provided for the allowable margin for the set noise rise.
  • a margin obtained by subtracting a margin considering the operating state of the peripheral base station from the above-mentioned allowable margin is set as a new allowable margin to be set in the base station.
  • the radio resource management unit 66 obtains the noise rise of the scheduling and judging mode in the cell of the base station and the number of terminals (step ST3c). Thereafter, the radio resource management unit 66 determines the noise rise due to the overnight transmission on the individual channel determined in step ST1c, and the schedule in the cell of the base station determined in step ST3c. Estimate the allowable margin for each ring mode noise rise.
  • step ST4c the radio resource management unit 66 determines the magazine corresponding to the operating state of the peripheral base station in step ST2c, and individually determines the permissible magazine of the base station. By subtracting the margin for the channel and the margin for the scheduling mode, the allowable margin (noise rise frame) for noise rise in the autonomous mode in the base station is obtained.
  • the radio resource management unit 66 considers these transmission data rates and considers Adjust the acceptable margin for the keying mode
  • the terminal 2 When transmitting data to / from the base station in the scheduling mode, the terminal 2 notifies the base station of the transmission data rate desired by itself.
  • the uplink packet transmission manager 24 in the base station manages the data transmission schedule together with the transmission data desired by the terminal 2.
  • the uplink bucket transmission management unit 24 notifies the transmission data rate desired by the terminal 2 to the radio resource management unit 66 in the base station control device 3. '
  • the radio resource management unit 66 estimates the noise rise according to the transmission data rate of the terminal 2 operating in the scheduling mode in its own cell, calculates the allowable margin according to the noise rise, and performs scheduling. Adjust the permissible margin for the mode.
  • the radio resource management unit 66 adjusts the allowable margin of the autonomous mode obtained in step ST4c using the allowable margin of the scheduling mode adjusted as described above. I do.
  • the radio resource management unit 66 determines that the number of terminals operating in the autonomous mode in the cell of the base station corresponds to the noise rise frame of the autonomous mode in the base station obtained as described above. Determine whether it is appropriate (step ST6c).
  • the base station reports the amount of transmission data in the transmission data buffer from each terminal 2 in its own cell. Further, the base station control device 3 receives a notification of the transmission data amount from the base station. The radio resource management unit 66 in the base station control device 3 previously calculates the average value of the transmission data amount of the terminal 2 notified from the base station during a predetermined period.
  • the radio resource management unit 66 If there is a noise rise frame of the autonomous mode in the base station with respect to the average value, the number of terminals transmitting data that cannot be demodulated beyond the noise rise frame to the base station becomes the total number of terminals. In advance, what percentage of the occurrence will be statistically determined in advance.
  • the number of terminals in the autonomous mode is considered to be too large.
  • the number of terminals in the autonomous mode is less than the predetermined ratio, the number of terminals in the autonomous mode is too small, and in other cases, the number of terminals in the autonomous mode is defined as appropriate.
  • step ST6c the radio resource management unit 66 examines the amount of the noise rise frame of the current base station in the autonomous mode with respect to the average value, and based on the result, the autonomous mode It is determined whether the number of terminals is appropriate.
  • the radio resource management unit 66 determines that the number of terminals in the autonomous mode is too large, the Q0S parameter overnight mapping unit 64 in the base station controller 3 sets the terminal 2 in the autonomous mode. Search for ones that allow delays in (step ST7c).
  • a state in which the number of terminals in the autonomous mode in the cell is large means that, as described above, a state in which the allowable number of terminals capable of demodulating noise rise in the autonomous mode is exceeded is exceeded. It specifies that the number of terminals in autonomous mode is large.
  • the QoS parameter overnight mapping unit 64 determines whether or not the terminal 2 handles delay-allowed data based on the QoS class of the terminal 2 operating in the autonomous mode. to decide. For example, it is determined whether delay is allowed or not in the four classes of QOS described above. In the conversational class and streaming class in the W-CDMA system, the amount of delay ( Transfer delay) is specified in units of ms, so that an acceptable delay may be determined based on this.
  • the radio resource management unit 66 assigns the current switching threshold value to the terminal 2 determined to be non-delayable by the QoS parameter overnight matching unit 64 in step ST7c. Or set a threshold with a smaller decrease compared to the case where delay is allowed (step STIO c).
  • the radio resource management unit 66 switches the terminal 2 as the delay amount in the QoS parameter is larger (the delay tolerance is looser). Increase the threshold drop. For example, a coefficient k corresponding to the degree of congestion in the cell of the terminal 2 in the autonomous mode is provided for the reduction amount of the switching threshold.
  • the change in the switching threshold is as follows.
  • the radio resource management unit 66 sets the coefficient k to 0 and maintains the current threshold value.
  • the radio resource management unit 66 assigns to the terminal 2 determined to be allowable delay by the QoS parameter overnight mapping unit 64 in step ST7c.
  • a setting is made to lower the value of the switching threshold by a larger reduction width than in step ST10c (step ST11c). In this way, the radio resource management unit 66 sets the switching threshold to shift from the excessive autonomous mode to the scheduling mode.
  • step ST6c If it is determined in step ST6c that the number of terminals in the autonomous mode is appropriate, the radio resource management unit 66 maintains the current switching threshold value (step ST8c).
  • step ST6c determines whether the number of terminals in the autonomous mode is too small. If it is determined in step ST6c that the number of terminals in the autonomous mode is too small, the radio resource manager 66 raises the value of the switching threshold currently set to the terminal 2 (step ST9c).
  • the state in which the number of terminals in the autonomous mode is too small means that even if data transmission is performed at a data rate commensurate with the transmission data amount, the noise margin allocated to each terminal 2 is not satisfied. This is a situation where more room is needed than necessary.
  • the noise rise margin allocated to each terminal 2 can be used effectively.
  • the radio resource management unit 66 determines the change width of the switching threshold based on the transmission data rate, the number of terminals in the autonomous mode, the noise rise frame in the scheduling mode, and the allowable delay amount. decide.
  • the radio resource management unit 66 shifts to the processing of step ST1Ob in FIG. A layer 3 message including the changed threshold value is generated and transmitted to the base station.
  • the base station Upon receiving the threshold change message from the base station controller 3, the base station sets the threshold in step ST11b in FIG. If communication with the target terminal 2 is established on the dedicated channel (DPCH), use the dedicated channel (DPCH). If communication on the individual channel is not established, use the common channel (FACH). The above information is sent to target terminal 2.
  • DPCH dedicated channel
  • DPCH dedicated channel
  • FACH common channel
  • the mobile communication terminal 2 changes the value of the switching threshold in its own transmission data buffer.
  • the QoS parameter overnight mapping section 64 determines whether or not to allow delay based on the QoS parameter overnight, and based on this determination result, the radio resource management section 6 may be configured so that the increase of the switching threshold for the terminal 2 which does not allow the delay is set to be larger than that of the terminal which allows the delay. In this way, it is possible to switch to the transmission mode most suitable for each terminal.
  • step ST 9 c, step ST 10 c and step ST 11 c if the width of the threshold value increase / decrease performed at one time is too large, there is a possibility that terminal 2 more than necessary switches the transmission mode. There is. Thus, it is desirable that the threshold value be raised or lowered at a time to a fixed value that takes into account the number of terminals in the autonomous mode in the cell and the threshold value be changed gradually.
  • the switching threshold is individually set for the terminal 2 in the cell, so that the communication mode can be set according to the communication conditions required for each terminal 2. Become. In particular, by switching between autonomous mode and scheduling mode depending on whether the data handled by each terminal 2 is tolerant of delay, it is possible to set up data communication with each terminal 2 The guaranteed QoS can be guaranteed.
  • the present invention is not limited to this.
  • a configuration may be adopted in which the base station obtains QOS information and the like from the base station control device 3, and the uplink bucket communication management unit 24 in the base station determines a communication mode switching threshold.
  • the threshold value determined by the base station control device 3 may be changed and notified to the terminal 2 on the base station side according to the current traffic situation. That is, a configuration in which the base station and the base station control device 3 jointly determine the threshold value is also included in the present invention.
  • the uplink packet communication management unit 24 can be considered.
  • the transmission mode switching threshold change information is transmitted to individual terminals using physical layer signaling (L1 signaling), so that the transmission mode that is most suitable for each terminal can be switched. Wear. Further, in the third method, since the physical layer signaling is used at a higher speed than in the second method, the switching and the threshold can be changed according to the traffic fluctuation of the bucket.
  • L1 signaling physical layer signaling
  • L1 signaling Physical layer signaling (hereinafter referred to as L1 signaling) means that information about the threshold is included in bit information of the physical layer for setting communication conditions of the physical layer between the mobile communication terminal 2 and the base station. Assigned.
  • the slot format defines the method of allocating bits per slot of transmission packet data. Is what you do.
  • the setting bit of the change information of the switching threshold during the transmission packet data is defined in the slot format.
  • UL-SICCH is defined as a new channel for physical layer signaling, and a bit is set that sets a binary command that specifies switching to the slot format and raising or lowering the threshold value.
  • Another method is puncturing. This is to delete a part of the data set for the currently used individual channel (DPCH) and insert the information that specifies the threshold value for switching to that part. This can be realized when the original data has a strong error correction function and it is possible to correct some errors from the original data.
  • DPCH currently used individual channel
  • the bit error rate for the original data is increased, so that the number of bits for setting the switching threshold value cannot be made too large.
  • FIG. 21 is a diagram showing an example of distribution of a noise margin of the base station when the base station according to the first embodiment determines the transmission mode switching threshold of the terminal according to the third method. The basic concept of the third method will be described using this figure.
  • the noise rise margin at the base station includes an allowable margin for noise rise due to autonomous mode and scheduling mode, and noise rise margin due to transmission on individual channels. Noise lie It is assumed that a margin magazine (individual channels and other areas in the figure) is distributed.
  • the above-mentioned noise rise margin in the base station is an allowable margin in which the above-mentioned jamming margin is further provided with a margin for interference to be considered from the operating states of other cells and QoS. .
  • intermittent transmission tends to occur in packet communication.
  • the communication load increases, but when the transmission stops, the above load often decreases.
  • the temporal fluctuation of traffic is absorbed to some extent statistically. However, when many terminals 2 in a cell handle the same communication service, the temporal fluctuation of traffic may be overloaded or quiet.
  • FIG. 22 is a diagram showing a change sequence when the threshold of the transmission data buffer is changed by the third method in the mobile communication system according to the first embodiment.
  • the uplink packet transmission management section 24 in the base station is specified in advance by the base station control device 3 with a noise rise frame for uplink enhancement (step ST1d).
  • the radio resource management unit 66 in the base station control device 3 is configured to control the Q0S parameter overnight managed by the QoS parameter overnight matching unit 64 and other cells other than the target base station. In consideration of the operating status of the target base station and the traffic condition of the cell of the target base station, an allowable margin for the target base station in a certain range is obtained and reported to the target base station.
  • the allowable margin notified to the base station includes the margin for the scheduling mode and the margin for the autonomous mode, which are the controllable margins in Fig. 5, and the margin consisting of the own cell interference and other cell interference.
  • the uncontrolled margins in Fig. 5 are distributed.
  • the base station controller 3 determines the entire permissible margin in a certain range and sets it in the base station.
  • the distribution ratio of the permissible magazine for each transmission mode in the permissible magazine is determined by the uplink packet transmission management unit 24 in the base station.
  • the uplink packet transmission manager 24 in the base station receives a request for a transmission data rate in the data transmission in the scheduling mode from the terminal 2 in the own cell (step ST2d).
  • the upstream bucket transmission manager 24 determines the allowable data rate in the autonomous mode. In addition to deciding, it also functions as a scheduling ruler that manages the overnight transmission in the scheduling mode.
  • the above-mentioned transmission data rate from terminal 2 is registered in uplink packet transmission management section 24 as the contents of the data transmission schedule in the scheduling mode.
  • the upstream packet transmission management unit 24 determines whether or not the load status in the traffic in the scheduling mode is appropriate for the allowable margin assigned by the base station control device 3.
  • the switching threshold is determined so that each transmission mode can be switched according to the result of this determination (step ST3d). This process will be described later in detail with reference to FIG.
  • the upstream packet transmission management section 24 sends L1 to the terminal 2 whose threshold is to be changed according to the transmission operation described above with reference to FIG.
  • the changed threshold value is indicated by signaling (step ST 4 d).
  • the switching threshold change instruction in L1 signaling is a binary command designating only to increase or decrease the threshold value
  • the change instruction may be transmitted to the terminal 2 due to a transmission error or the like. May not be sent correctly.
  • the base station sends an L1 layer command a plurality of times in succession so that terminal 2 can reliably receive the switching threshold change instruction (step ST5d).
  • step ST3d in FIG. 2 of the mobile communication system according to the first embodiment will be described in detail with reference to the flowchart shown in FIG.
  • the uplink packet transmission management section 24 in the base station checks a situation in which the overnight transmission in the scheduling cell in the own cell is scheduled (step ST1e).
  • the uplink packet transmission management section 24 performs traffic in the scheduling mode with respect to the allowable margin assigned by the base station controller 3. It is determined whether or not the load is appropriate (step ST 2 e).
  • the uplink packet transmission manager 24 determines the scheduling mode based on the number of terminals that have been notified of data transmission in the scheduling mode and the amount of data to be transmitted in the overnight communication. To determine if the traffic load on the network is appropriate.
  • the upstream packet transmission management unit 24 has a large number of terminals in the scheduling mode in its own cell and a large amount of data to be transmitted in its data communication.
  • the communication conditions (delay request, etc.) specified by the QoS are not satisfied, it is determined that the traffic load in the scheduling mode is too large.
  • the number of terminals in the scheduling mode in the own cell and the amount of data to be transmitted in the data communication are small, and the communication conditions specified by Q 0 S for data transmission in the scheduling mode (Such as delay requirements), but most of the allowable margin for the scheduling mode is not used, it is determined that the traffic load of the scheduling mode is too light.
  • the scheduling mode it is assigned to the upstream packet transmission Only the allocated radio resources are used, and terminal 2 in the scheduling mode can be set without limitation by repeating the allocation.
  • the above-described determination method determines whether or not the traffic load of the scheduling mode is appropriate depending on how much delay is allowed for the data handled by the terminal 2 in the scheduling mode. is there.
  • the upstream packet transmission management unit 24 considers a case where the terminal 2 in the autonomous mode in its own cell transmits data overnight with the maximum value of the allowable data rate range notified in advance. Assuming that noise rise is estimated.
  • the state in which the allowable margin for the scheduling mode must be reduced at present is determined by the traffic load of the scheduling mode. Judge as too much.
  • the allowable margin for the autonomous mode may be set according to the above noise rise, but the allowable margin for the scheduling mode may be increased at this time, but the traffic load in the scheduling mode is reduced. It is determined that it is in a broken state.
  • a state other than a case where the traffic load of the scheduling mode is large or small is determined to be a state where the traffic load is appropriate.
  • step ST2e If it is determined in step ST2e that the traffic load is in an appropriate state, the upstream packet transmission manager 24 terminates the processing shown in FIG. And the terminal 2 is not notified.
  • the uplink packet transmission management unit 24 searches for a terminal 2 having a high transmission frequency in the autonomous mode in its own cell (step ST 3 e). For example, it is determined that the frequency of transmission in the autonomous mode is high for the terminal 2 in which the number of times of the prior notification of the allowable data rate in the autonomous mode exceeds a predetermined value.
  • the upstream packet transmission management section 24 determines whether or not the terminal 2 that has determined in step ST3e that the frequency of transmission in the autonomous mode is high allows a delay (step ST4). e). This determination is performed by the terminal 2 based on the delay amount specified by the QOS of the day and night. At this time, if it is determined that the terminal 2 does not allow the delay, the upstream packet transmission management unit 24 ends the processing shown in FIG. 23 and does not notify the terminal 2.
  • the upstream packet transmission management unit 24 lowers the switching threshold value for the terminal 2 and sets the switching threshold value in step 3 in FIG. Transition to processing (Step ST 5 e
  • terminal 2 switches the transmission mode according to the threshold value, and notifies the base station accordingly. respond.
  • the uplink packet transmission manager 24 in the base station determines whether or not the terminal 2 has switched to the scheduling mode based on the transmission mode switching response from the terminal 2 (step ST6e).
  • the upward packet transmission management unit 24 estimates the noise rise for the new scheduling mode, and sets the allowable margin set by the base station control device 3. Within the range, the noise rise margin of the scheduling mode (noise (Step ST 7 e).
  • step ST 6 e if it is determined in step ST 6 e that there is no response from the terminal 2 to the effect that the transmission mode has been switched and that the terminal 2 has not shifted to the scheduling mode, the uplink packet transmission management unit 24 proceeds to FIG.
  • the processing shifts to the processing of step ST5d, and the L1 signaling command in which the changed switching threshold value is set is continuously transmitted to the target terminal 2 (step ST8e). Thereafter, if there is a response from terminal 2 indicating that the transmission mode has been switched, the process returns to step ST6e.
  • the uplink packet transmission management section 24 determines, among the terminals 2 accommodated in the own cell, the scheduling mode. Search for terminal 2 that transmits data infrequently or that handles data that cannot tolerate delay (step ST9e).
  • step ST9e if a terminal 2 with a low transmission frequency in the scheduling mode or a terminal 2 that handles data that cannot tolerate a delay is extracted, the uplink packet transmission management unit 24 The switching threshold value is raised, and the process shifts to the processing of step ST4d in FIG. 22 (step STIOe).
  • the terminal 2 when the terminal 2 is notified of the changed switching threshold value by the L1 signaling, the terminal 2 switches the transmission mode according to the threshold value, and notifies the base station accordingly. respond.
  • the upstream bucket transmission management unit 24 determines whether or not the terminal 2 has switched to the autonomous mode based on the transmission mode switching response from the terminal 2 (Step STLle).
  • the upstream packet transmission management unit 24 estimates the noise rise for the new autonomous mode, and The noise margin in the autonomous mode (noise rise frame) is increased within the allowable margin set by the base station controller 3 (step ST12e).
  • step ST1e determines whether there is no response from the terminal 2 to the effect that the transmission mode has been switched and that the terminal 2 has not shifted to the autonomous mode.
  • the upstream packet transmission management unit 24 proceeds to FIG.
  • the processing shifts to the processing of step ST5d, and the L1 signaling command in which the changed switching threshold value is set is continuously transmitted to the target terminal 2 (step ST13e). Thereafter, if there is a response from terminal 2 indicating that the transmission mode has been switched, the process returns to step ST11e.
  • the change information of the switching threshold is notified to the terminal 2 by the physical layer signaling faster than the case of the layer 3 message, so that the packet between the base station and the terminal 2 is transmitted.
  • the switching threshold can be changed according to the traffic fluctuation in the communication.
  • an allowable margin for noise rise in each transmission mode can be appropriately distributed according to traffic fluctuation.
  • the configuration is described in which the uplink packet transmission management section 24 in the base station determines the communication mode switching threshold, but the present invention is not limited to this.
  • the radio resource manager 66 in the base station controller 3 determines the communication mode switching threshold based on the Q0S information grasped by itself and the current traffic situation obtained from the base station. Such a configuration may be adopted.
  • information specifying the communication mode switching threshold value is notified from the base station control device 3 to the base station, and is notified from the base station to the terminal 2 by the third method.
  • the configuration of the base station including the base station controller 3 determines the switching threshold value of the terminal 2, and the terminal 2 responds to the threshold value specified by the base station.
  • the process for switching the transmission mode has been described above. However, the present invention is not limited to the above configuration.
  • the configuration of the base station including the base station controller 3 determines the transmission mode to be switched based on the switching threshold value of the terminal 2, and the terminal 2 determines the transmission mode according to the instruction from the base station. May be switched.
  • the base station determines the transmission mode to be switched, and the first method is applied to a configuration in which terminal 2 switches the transmission mode in accordance with an instruction from the base station.
  • the operation when applying is described in detail.
  • step ST1a to step ST8a The processing from step ST1a to step ST8a is the same as in FIG. 16, and a description thereof will be omitted.
  • the radio resource manager 66 in the base station controller 3 determines the switching threshold value, it notifies the base station of this threshold value. I do.
  • the uplink packet transmission management unit 24 in the base station compares the threshold value notified from the base station control device 3 with the amount of transmission data previously notified from each terminal 2 in the own cell. Then, the transmission mode to be set for the terminal 2 is determined (step ST9a).
  • the scheduling mode For example, if the amount of transmission data notified in advance exceeds the above threshold value, it is determined that the scheduling mode should be set, and vice versa. Selects autonomous mode.
  • step ST9a the uplink packet transmission management unit 24 instructs the broadcast information transmission unit 28 to use the broadcast information to set each terminal 2 to the transmission mode.
  • Signal switching is executed (step ST10a).
  • step ST11 in FIG. 15 information specifying the transmission mode determined by the base station is transmitted instead of the information including the changed switching threshold value. become.
  • the base station determines not only the switching threshold value but also the transmission mode to be switched, so that it is possible to know which transmission mode the terminal 2 has switched to.
  • response signaling for notifying the base station of the transmission mode switched by terminal 2, which is necessary when terminal 2 switches the transmission mode according to the threshold value specified by the base station side Can be omitted.
  • the base station determines the transmission mode to be switched, and the second method is applied to a configuration in which terminal 2 switches the transmission mode in accordance with an instruction from the base station. The operation when applied is described in detail.
  • step ST1c The processing from step ST1c to step ST11c is the same as in FIG.
  • the radio resource manager 66 in the base station controller 3 performs the switching threshold in any one of the steps ST8c, ST9c, STIOc and ST11c. When the value is determined, this threshold value is reported to the base station.
  • the uplink packet transmission manager 24 in the base station compares the threshold value notified from the base station controller 3 with the amount of transmission data notified in advance from the terminal 2 whose transmission mode is to be switched. To the terminal 2 The transmission mode to be set is determined (step ST12c).
  • the uplink packet transmission management unit 24 instructs the downlink dedicated channel transmission unit 29 or the downlink common channel transmission unit 34 to use the dedicated channel or the common channel. Then, a signal is sent to the target terminal 2 to switch to the transmission mode (step ST13a).
  • step ST11b in FIG. 19 not the information including the changed switching threshold value but the information specifying the transmission mode determined on the base station side is transmitted. become. In this case, the processing of step ST13b and step ST14b in FIG. 19 is omitted.
  • the base station determines not only the switching threshold value but also the transmission mode to be switched, so that it is possible to know which transmission mode the terminal 2 has switched to.
  • the response signaling for notifying the base station of the transmission mode switched by terminal 2, which is necessary when terminal 2 switches the transmission mode according to the threshold value specified by the base station side, is omitted. can do.
  • the configuration in which the radio resource management unit 66 in the base station control device 3 determines the communication mode switching threshold has been described, but the present invention is not limited to this.
  • a configuration may be adopted in which the base station obtains QOS information and the like from the base station control device 3, and the uplink bucket communication management unit 24 in the base station determines a communication mode switching threshold.
  • the processing interposed by the base station controller 3 can be reduced, and the number of times of signaling between the base station and the base station controller 3 can be reduced. Control the increase You can.
  • the base station changes the above threshold value determined by the base station control device 3 according to the current traffic situation, etc., and the changed threshold value and the terminal notified in advance.
  • a configuration may be adopted in which the transmission mode is determined by comparing the transmission data amount of the second transmission data.
  • the present invention includes a configuration in which the base station and the base station control device 3 jointly determine the threshold value.
  • the upstream packet communication management unit 24 can be considered.
  • the base station side determines the transmission mode to be switched, and terminal 2 switches the transmission mode according to the instruction from the base station side.
  • the operation when method 3 is applied will be described in detail.
  • Step ST1e the processes from Step ST1e to Step ST4e are the same as those in FIG. If it is determined in step ST4e that the terminal 2 allows the delay, the upstream bucket transmission management unit 24 lowers the switching threshold value for the terminal 2 (step ST5e-1).
  • the uplink packet transmission management section 24 calculates the threshold value determined in step ST5e-1 and the transmission data amount previously notified from the terminal 2 searched in step ST4e-1. Are compared to determine the transmission mode to be set for the terminal 2 (step ST5e-2).
  • the upstream packet transmission manager 24 transfers the information designating the transmission mode to be set to the terminal 2 to the process of step ST 4 d in FIG. 22 as the above-described L1 signaling. (Step ST5e-3).
  • step ST 6 e Subsequent processing from step ST 6 e to step ST 8 e The description is omitted because it is similar to the figure.
  • step ST9e if a terminal 2 that transmits less frequently in the scheduling mode or a terminal 2 that handles data that cannot tolerate delay is extracted, the uplink packet transmission management unit 24 Raise the switching threshold value (step ST10e-1). Next, the uplink packet transmission management unit 24 calculates the threshold value determined in step ST10e_1 and the transmission data amount notified in advance from the terminal 2 searched in step ST9e. Then, the transmission mode to be set for the terminal 2 concerned is determined (step STIO e-2).
  • the upstream bucket transmission management unit 24 transfers the information designating the transmission mode to be set to the terminal 2 to the process of step ST 4 d in FIG. 22 as L1 signaling described above. (Step STIO e-3).
  • the subsequent processes from step ST11e to step ST13e are the same as those in FIG.
  • the configuration is described in which the uplink packet transmission management unit 24 in the base station determines the communication mode switching threshold, but the present invention is not limited to this. .
  • the radio resource manager 66 in the base station controller 3 determines the communication mode switching threshold based on the Q0S information grasped by itself and the current traffic situation obtained from the base station. You may comprise.
  • information specifying the communication mode switching threshold value is notified from the base station control device 3 to the base station, and is notified from the base station to the terminal 2 by the third method.
  • the radio resource management unit 66 in the base station control device 3 acquires the QoS information grasped by itself and the amount of data transmitted by the terminal 2 via the base station for data communication.
  • the transmission mode to be set in the terminal 2 may be determined.
  • the information is not the information including the changed switching threshold value, but the base. Information specifying the transmission mode determined by the local station will be transmitted.
  • the base station controller 3 After the base station controller 3 notifies the base station of the transmission mode determined by the radio resource management unit 66, the base station notifies the terminal 2 by each of the above methods.
  • the first embodiment it is possible to set an appropriate transmission mode for terminal 2 according to the operating status of the base station, and to set an allowable margin for noise rise set for the base station.
  • the allowable margin for each transmission mode can be appropriately distributed.
  • signaling from the terminal 2 to the base station indicates that the configuration on the base station side acquires transmission buffer information for determining whether to switch the transmission mode of the terminal 2. explained.
  • the signaling of the transmission buffer information from the terminal 2 to the base station does not change the frequency according to the delay tolerance of the data handled by the terminal 2 and satisfies the delay requirement even if the transmission mode is switched. It may disappear. For example, if the signaling frequency of the transmission buffer information from the terminal 2 arriving at the base station is low, it is difficult for the configuration of the base station side to grasp the state of the transmission data buffer of the terminal 2 at the present time.
  • the process of switching the terminal 2 to the scheduling mode or the autonomous mode is delayed, and eventually the terminal 2 may not be able to satisfy the delay request in data communication.
  • mobile communication terminal 2 may change the signaling frequency of transmission buffer information to the base station according to a delay request set for data communication handled by mobile communication terminal 2.
  • the above-described signaling is performed at a short cycle for the terminal 2 performing data communication with a severe delay request, and the delay request is transmitted.
  • Terminal 2 which handles loose data communication, signals in a long cycle.
  • the setting of the signaling period is performed for each terminal according to the allowable delay amount of data communication to be performed.
  • the count information called SFN System Frame Number
  • P—CPCCH P—CPCCH
  • the use of the broadcast information in the first method (batch designation of the terminal 2 to a group) and the second method Use of an individual or common channel in the second method (individual designation to terminal 2) and physical layer signaling in the third method are conceivable.
  • the mobile communication terminal 2 receives the information on the signaling cycle from the base station, as described with reference to FIG. 11, the mobile station 2 transmits the signal set for each data channel from the despread demodulation unit 46. Demodulate.
  • the protocol processing unit 56 acquires information on the above-mentioned signaling cycle from the signal demodulated by the despread demodulation unit 46.
  • the protocol processing unit 56 transmits a buffer state as a transmission cycle on the UL-SICCH for notifying the base station of the state of the transmission data buffer 58 with the cycle obtained from the information on the signaling cycle.
  • the mobile communication terminal 2 synchronizes the timing to transmit the data with the base station based on the SFN value set in PCCPCH (BCH).
  • Grouping may be used as a method for efficiently specifying the above-mentioned signaling cycle. More specifically, for example, the terminals 2 belonging to the conversational class and the streaming class using the Q0S class are grouped according to the maximum amount of delay allowable in the QoS class. Determine the signaling cycle.
  • the above-mentioned predetermined condition is that, when a certain amount of transmission data is stored in the transmission data buffer 58 for uplink packet communication of the terminal 2, the terminal 2 transmits the transmission buffer to the base station. Consider performing signaling of information. available.
  • the signaling of the transmission buffer information is not executed until a fixed amount of transmission data is accumulated in the transmission buffer 58.
  • the above-mentioned signaling should be executed without waiting for a certain amount of transmission data to be accumulated in the transmission buffer 58.
  • a response signal from an application executed by the terminal 2 via the Internet or the like has a small data amount, but its existence should be notified to the base station as soon as possible.
  • a setting is made for terminal 2 to specify the above-mentioned signaling period, and when handling data with strict delay requirements, a certain amount of transmission data is stored in the transmission data buffer.
  • the above-mentioned signaling may be executed when the evening time passes for a certain time without waiting.
  • the specification of the timer can be considered in the case of explicit signaling from the configuration of the base station or in the case of the terminal 2 itself setting.
  • the base station controller 3 uses the QoS parameters related to data communication by the terminal 2 that is the target of the sunset setting to generate sunset information that specifies a cycle corresponding to the QoS parameters. I do.
  • the base station obtains the above-mentioned image information from the base station control device 3 and transmits it to the above-mentioned terminal 2 as individual channel information via the individual channel transmitting unit 29.
  • the downlink dedicated channel receiving unit 63 The information is received and transmitted to the protocol processing unit 56.
  • the protocol processing unit 56 reads the timer information from the information of the individual channel, and sends the timer information to the upstream packet transmission management unit 51.
  • the upstream bucket transmission management unit 51 sets an evening according to the evening information, and instructs the buffer status sending unit 55 to execute the signaling of the above-mentioned transmission buffer information when a timeout occurs. .
  • the upstream packet transmission manager 51 determines the timer value based on the QOS information that it grasps and whether or not there has been transmission in the past.
  • the upstream packet / software transmission manager 51 instructs the buffer status transmitter 55 to execute the signaling of the transmission buffer information.
  • the base station controller 3 and the upstream packet transmission manager 51 may specify an allowable delay amount in a conversational class or a streaming class in order to efficiently execute the above signaling. It is conceivable to set the evening time in proportion to.
  • the base station controller 3 and the upstream packet transmission management unit 51 send to the terminal 2 having a history of communication in the past from the terminal 2 that has performed the communication for the first time.
  • the evening time is specified to be shorter, and as the communication interval increases, the specified time is gradually increased.
  • the number of times of transmission data buffer information signaling to the base station can be flexibly set according to the needs of data communication. For example, for the terminal 2 that is performing overnight communication with little traffic, the number of signalings can be efficiently controlled by increasing the signaling interval.
  • the terminal 2 that performs data communication in which the delay amount is set strictly performs the signaling of the transmission data buffer information to the base station periodically, and performs data communication in which the delay amount is set gently.
  • Terminal 2 executes the above-mentioned signaling at intervals specified by the timer. More specifically, in the terminal 2 that handles data communication belonging to the conversational class II streaming class, the signaling period is set in accordance with the maximum amount of delay allowable in the QoS class. .
  • the terminal 2 that handles data communication belonging to the ingress class and the background class performs signaling according to the QoS information that it grasps and the time that is set based on the presence or absence of past transmissions. I do.
  • the communication mode control method according to the present invention can be used for a mobile communication terminal such as a mobile phone that supports uplink packet communication, a base station, and a base station control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 自律モード又はスケジューリングモードのいずれかの通信モードに切り替える機能を有する移動通信端末に対して、基地局のセル内における各通信モードでの干渉量及び/又はその通信特性と、移動通信端末から通知された通信データ量を示す信号とに基づいて、移動通信端末に設定すべき通信モードを決定し、基地局から移動通信端末に通知するものである。

Description

明 細 書 通信モー ド制御方法、 移動体通信システム、 基地局制御装置、
基地局及び移動通信端末 技術分野
こ の発明は、 C D M A ( Code D ivi s i on Mult ipl e Ac cess : 符号分割 多重通信) による移動体通信システムに係り、 特に基地局と移動通信端 末と の間での通信状況に応じて通信モー ドの切り替えを制御する通信モ ード制御方法、 移動体通信システム、 基地局制御装置、 基地局及び移動 通信端末に関するものである。 背景技術
従来のワイヤレス多重モ一 ドデータ通信方法には、 自律的にデ一夕を 送受信する自律モー ドと、 基地局側から許可された通信タイ ミ ングなど のデータ送受信に対する要求 (スケジューリ ング) に従ってデ一夕を送 受信する、 いわゆるスケジューリ ングモー ドとを、 そのデ一夕レートな どに応じて切り替えるものがある (例えば、 特開 2 0 0 2— 3 6 9 2 6 1号参照) 。
こ の通信方法では、 例えば基地局とワイヤレス装置との間で 9 . 6 k b p s程度の低データレー トでパケッ トデータを送信する場合、 自律モ ード に制御される。 また、 反対に高データレー トでデ一夕送信する場合 は、 スケジューリ ングモー ドに制御される。
こ こで、 スケジューリ ングモードは、 基地局からワイヤレス装置にス ケジュ一リ ングを通知するシグナリ ングが頻繁に送信される。 このため 、 1 回の送信である程度以上のデータ量がないと、 シグナリ ング回数に 比べてデ一夕送信の効率が悪くなつてしまう。
上述した従来のデータ通信方法では、 単位時間あた りのデ一夕量が多 い高データレートの場合にスケジユーリ ングモ一ドに制御することで、 上記不具合を解消している。
しかしながら、 上記先行技術文献は、 上記従来のデータ通信方法につ いて、 主にデ一夕量を基準として自律モード又はスケジユーリ ングモー ドに切り替える旨を開示しているが、 それ以外の通信条件での切り替え 処理について十分な開示がなされていない。
通信モードの切り替えにおいて基準とすべき通信条件としては、 符号 化信号の復調処理やリアルタイム性を要求されるデ一夕を取り扱う こ と を考慮すると、 例えば基地局における干渉量 (以下、 ノイズライズと称 する) や遅延などが挙げられる。
上記先行技術文献に開示される発明では、 遅延が許容できないデータ 通信を行うワイヤレス装置についてはなるべく 自律モー ドで動作させ、 遅延が許容できる通信を行う装置にはスケジュールモー ドで動作させる ような通信条件に応じた柔軟な通信モー ド切り替えが十分に検討されて いない。
また、 C D M A方式での上りパケッ ト通信では、 ワイヤレス装置から の送信信号の干渉が基地局におけるノィズライズの限界を超えてしまう と当該送信信号を復調することができなく なる。
このノイズライズは、 他セルからの干渉や同一セルにおける他のワイ ャレス装置からの送信などによっても変動する。 このため、 C D M A方 式でのバケツ ト通信では、 ノイズライズの管理に十分に注意を払う必要 がある。
ここで、 ノイズライズ管理としてノイズライズのマ一ジンを十芬に確 保すれば、 送信すべきデータ量が多い場合であっても 自律モー ドを利用 することが可能である。 この場合、 スケジュールモー ドと比較してシグ ナリ ングの回数を減らすことができる上、 遅延も少ないという利点があ このように、 基地局におけるノイズライズマ一ジン に対して、 通信 ト ラフィ ックの状況によ り変動する各種要因に起因する ノイズライズにつ いてのマ一ジンを適切に分配することで、 ノイズライ ズの変動に応じた 効率的な通信が可能である。
この発明は上記のような課題を解決するためになさ れたもので、 デー 夕量以外の要素を適切に考慮して通信モー ドを切り替えることで、 基地 局と移動通信端末との間の通信負荷の変動に伴ぅノィ ズライズの変動に 応じた効率的なデ一夕通信を可能とする通信モ一ド制御方法を得ること を目的とする。
また、 この発明は、 遅延などの Q o S ( Qual ity of Servi ce ) パラメ 一夕を考慮して各端末に個別に送信モー ド切替スレツ ショル ドを指定す ることで、 Q o Sに応じた自律モー ドとスケジュールモ一 ドの配分が可 能な通信モード制御方法を得ることを目的とする。
さらに、 この発明は、 上記方法を用いて通信負荷の変動に伴う ノイズ ライズの変動に応じた効率的なデータ通信を行う移動体通信システム、 基地局制御装置、 基地局及び移動通信端末を得ること を目的とする。 発明の開示
この発明に係る通信モード制御方法によれば、 移動通信端末が、 基地 局に対して自律的にデ一夕通信する自律モー ドと、 基地局に許可された 通信タイ ミ ングでデータ通信するスケジューリ ングモー ドとを切り替え るにあたり、 基地局のセル内における各通信モードでの干渉量及び/又 はその通信特性と、 移動通信端末から通知された通信データ量を示す信 号とに基づいて、 移動通信端末に設定すべき通信モードを決定し、 この 通信モードを基地局から移動通信端末に通知するものである。
これにより、 基地局と移動通信端末との間の通信負荷の変動に伴うノ ィズライズの変動に応じた効率的なデータ通信を実現することができる という効果が得られる。 図面の簡単な説明
第 1図はこの発明の実施の形態 1による移動体通信システムの構成を 概略的に示す図、 第 2図は実施の形態 1による移動体通信システムにお けるチャネルの構成を示す図であり、 第 3図 A及び第 3図 Bは実施の形 態 1による移動体通信システムにおける端末と基地局との間のワイヤレ ス多重デ一夕モード通信における通信モードを説明する図である。
第 4図は実施の形態 1 による移動通信端末の通信モードを切り替える 基準となる送信データバッファのスレツショソレ ドを説明する図であり、 第 5図は実施の形態 1 による基地局への上り信号における各要因に起因 した干渉量に対する許容マージンを示す図である。
第 6図はセル内で上りバケツ ト通信を複数の端末が利用している場合 の自律モ一ドとスケジユ ーリングモードとに対するノイズライズマ一ジ ンの分配例を示す図であり、 第 7図は第 6図に示す場合において送信デ —夕バッファの通信モード切替判定のスレツ ショルドを低く設定した場 合を示す図である。
第 8図はセル内で上りパケッ ト通信を利用している端末が少ない場合 の自律モードとスケジューリングモードとに対するノイズライズマージ ンの分配例を示す図であり、 第 9図は第 8図に示す場合において送信デ —夕バッファの通信モ一ド切替判定のスレツ ショルドを高く設定した場 合を示す図である。 第 1 0図は第 1図中の基地局の内部構成を示すプロ ック図、 第 1 1 図 は第 1図中の移動通信端末の内部構成を示すプロ ック図であり、 第 1 2 図は第 1図中の基地局制御装置の内部構成を示すプロ ック図である。 第 1 3図は第 1の方法に従って実施の形態 1 による基地局制御装置が 端末の送信モード切り替えスレツショル ドを決定する際における基地局 のノイズライズマージンの分配例を示す図であ り、 第 1 4図は第 1 3図 に示すノイズライズマ一ジンの分配に応じた送信モー ド切り替えスレ ツ ショルドの変更を説明する図である。
第 1 5図は実施の形態 1 による移動体通信システムにおいて第 1の方 法による送信デ一夕バッファのスレツショル ド変更を施す場合の変更シ —ケンスを示す図であり、 第 1 6図は第 1 5図中のステップ S T 9 にお ける動作を詳細に説明するフローチャー トである。
第 1 7図は第 2の方法に従って実施の形態 1 による基地局制御装置が 端末の送信モード切り替えスレツショル ドを決定する際における基地局 のノイズライズマ一ジンの分配例を示す図であ り、 第 1 8図は第 1 7図 に示すノイズライズマ一ジンの分配に応じた送信モ一 ド切り替えスレ ヅ ショルドの変更を説明する図である。
第 1 9図は実施の形態 1 による移動体通信システムにおいて第 2の方 法による送信デ一夕バッファのスレツショル ド変更を施す場合の変更シ —ケンスを示す図であり、 第 2 0図は第 1 9 図中のステップ S T 9 bに おける動作を詳細に説明するフローチャー トである。
第 2 1図は第 3の方法に従って実施の形態 1 による基地局が端末の送 信モード切り替えスレツショル ドを決定する際における基地局のノィズ ラィズマージンの分配例を示す図、 第 2 2図ば実施の形態 1 による移動 体通信システムにおいて第 3の方法による送信データバッファのスレヅ ショル ド変更を施す場合の変更シーケンスを示す図であ り、 第 2 3図は 第 2 2図中のステヅプ S T 3 dにおける動作を詳細に説明するフローチ ヤー 卜である。
第 2 4図は移動通信端末が基地局側からの指示に従って送信モードを 切り替える構成に対して第 1の方法を適用した場合における動作を示す フローチャート、 第 2 5図は移動通信端末が基地局側からの指示に従つ て送信モードを切り替える構成に対して第 2の方法を適用した場合にお ける動作を示すフローチャートであり、 第 2 6図は移動通信端末が基地 局側からの指示に従って送信モードを切り替える構成に対して第 3の方 法を適用した場合における動作を示すフローチヤ一トである。 発明を実施するための最良の形態
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従ってこれを説明する。
実施の形態 1 .
第 1図はこの発明の実施の形態 1による移動体適信システムの構成を 概略的に示す図である。 移動体通信システム 1は、 ユーザが利用する移 動通信端末 2、 基地局制御装置 3及び基地局 4 a , 4 bから構成される 。 基地局制御装置 3は、 公衆回線網などのネッ ト ワーク側の構成と基地 局 4 a, 4 bとの間に介在してこれらのパケヅ ト通信を中継する。
このように、 システム 1は、 ネッ トワーク側に対して基地局制御装置 3が複数の基地局 4 a , 4 bを束ねる構成となっている。 これにより、 システム 1では、 ソフ トハン ドオーバとよばれる 1つの端末 2に対して 複数の基地局 4 a , 4 bの間で無線リンクを張る ことが可能である。
なお、 移動体通信システム 1 を W— C D M A ( Wideband-Code D ivi s ion Multipl e Ac cess ) 方式で実現する場合、 移動通信端末 2を U E (User Equipment)、 基地局制御装置 3 を R N C ( Radio Network Controller) 、 基地局 4 a , 4 bを N o d e— Bと呼ぶことがある。 また、 特に高速な上りパケッ ト通信においては、 ある端末に対して特 定の基地局がデータ通信に関するスケジューリ ングを担当する場合があ る。 この場合における基地局を区別のためにサービングセルと呼ぶこと もある。 さらに、 基地局は、 自身が通信処理を行う特定の領域を含めて 全体としてセルとも呼ばれる。 後述する説明では、 これらの用語を適宜 使用する。
第 2図は、 実施の形態 1による移動体通信システムにおけるチャネル の構成を示す図であり、 例として W— C D MAシステムの基地局 4 a, 4 bと端末 2 との間の無線区間におけるチャネル構成を示している。 なお、 本図のチャネルはあく まで一例を示したものであり、 これに限 定されるものではない。 また、 実際のチャネルの使われ方としては、 複 数の制御チャネルを 1本のチャネルに相乗 りさせることも行われる。 先ず、 基地局 4 a, 4 bから端末 2に対する下り方向のチャネルにつ いて説明すると、 セル内の構成部に全てのタイ ミ ングの基準を報知する C P I C H (Common Pilot Channel) 、 これ以外の報知情報を端末 2 に 報知する、 B C H (Broadcast channel) 用の物理チャネルである P— C C P C H (Primary— Common Control Physical Channe丄 力 sある。 また、 下り方向のチャネルには、 上り方向のパケッ ト通信のために利 用されるものとして、 制御情報の送信用にスケジューラによる割り当て 位置を通知する ための D L — S A C C H ( Downlink Scheduling Assignment Control Channel) 、 基地局 4 a , 4 bの受信の成功 Z失敗 を通知するための D L— A C K/NA C K— C C H (Downlink Ack/ Nack Control Channel) が存在する。 さらに、 下り方向の共通チャネル として F A C H (Forward Access Channel) がある。
次に、 端末 2から基地局 4 a , 4 bに対する上り方向のチャネルにつ いて説明すると、 上り方向のパケッ ト通信に利用されるものとして、 端 末 2 の送信デ一夕 の有無を通知す る U L — S I C C H ( Uplink Scheduling Information Control Channel) 、 端末 2が選択した変調方 式や符号化レー トなどを基地局 4 a, 4 bに通知するための U L - T F R I - C C H (Uplink TFRI Control Channel) 、 上りパケッ ト通信で ユーザデ一夕 を転送する た めの E U D T C H ( Enhanced Uplink Dedicated Transport Channel) が存在する。 また、 上り方向の共通チ ャネノレとして RA C H (Random Access Channel) 力 sある。
さらに、 上り下りの両方の通信に設定されるチャネルとして、 特定端 末との通信のために個々に設定される: D P C H (Dedicated Physical channel) があ り、 音声やデータなどの通信や上位レイヤのシグナリ ン グのために利用される。 D P C Hは、 デ一夕を転送するための D P D C H (Dedicated Physical Data channel) と制御に関する ビッ トを転送 するための D P C C H (Dedicated Physical Control channel) とに分 けて呼ばれることもある。
第 3図 A及び第 3図 Bは、 実施の形態 1 による移動体通信システムに おける端末と基地局との間のワイヤレス多重デ一夕モード通信における 通信モー ドを説明する図である。 第 3図 Aに示すように、 自律モー ドで のデ一夕送信処理では、 先ず基地局 (N o d e— B ) 4 a , 4 bから端 末 (U E ) 2に対して事前に許容レート の指定が行われる。 このとき、 UEは、 当該許容レートの範囲内で任意の時間にデ一夕を N o' d e— B に送信する。 U Eからデ一夕を受信する と、 N o d e— Bは、 その応答 信号 (A C K/NA C K) を U Eに送信する。
自律モ一 ドでは、 事前の許容レー ト指定を必ずしもパケッ ト送信ごと に行う必要はなく、 基本的にデ一夕送信 とその応答からなる一往復の通 信処理で済む。 このため、 自律モードは、 シグナリ ングの無駄が少なく且つ送信した いときに U Eが自由にデ一夕送信でき るため遅延が少ないというメ リ ヅ トがある。
反対に、 自律モ一ドのデメ リ ッ トと しては、 任意の時間に送信できる ようにデータ送信に際し生じるであろ う干渉量に対して必要なノィズラ ィズマ一ジンを常に確保しておかなければならない点である。
一方、 スケジューリ ングモードでのデ一夕送信処理では、 第 3図 Bに 示すように、 先ず U Eバッファ状態等の情報を U Eから N o d e— Bに 送信する。 当該情報を受信すると、 N o d e— Bは、 複数の U E と間で の上りパケヅ トのスケジユーリ ングを行い、 データ送信を認めるべき U Eに対して送信許可する時間 (サブフ レーム) や送信レー トを割り当て る。 U Eでは、 その割り当てに従ってパケッ トを N o d e— Bに送信し 、 N o d e — Bから応答信号を受け取る。
スケジューリ ングモードのメ リ ヅ ト は、 スケジューラが割り当てない U Eからのデ一夕送信がないため余計なノイズライズマ一ジンを設定す る必要がないという点である。
一方、 デメ リ ッ トとしては、 少なく ともスケジューリ ングに要する通 信処理とデータ本体の送信処理とから なる二往復の通信処理が必要であ り、 不可避的に遅延が生じるという点が挙げられる。
また、 事前に U Eの送信データの有無を N o d e—Bに通知するシグ ナリ ングを必ず行わなければならないので、 シグナリ ング回数に対して 送信データの容量が少ないときは効率が悪く なる仕組みになっている。
自律モー ドでは、 基地局からの送信タイ ミ ングの指定がなく、 端末が 自律的に送信タイ ミ ングを決定する。 これに対して、 スケジューリ ング モー ドでは、 基地局が端末に送信タイ ミ ングを指定し、 当該送信夕イ ミ ングに従って、 端末がデータを送信する。 また、 スケジューリ ングモードでも、 基地局からデータレー トが指定 される場合がある。 例えば、 自律モードでは、 基地局が端末に対してデ 一夕送信における送信データレー トを指定するが、 スケジューリ ングモ —ドでも、 基地局が送信タイ ミ ング及び送信データレー トを端末に指定 し、 端末からのデータ送信を制御する場合がある。
第 4図は、 実施の形態 1 による移動通信端末の通信モードを切り替え る基準となる送信データバッファのスレツショル ド (閾値) を説明する 図である。 ここで、 移動通信端末 2は、 送信データバッファのスレヅシ ョルド以下の容量分だけ送信デ一夕が溜まっている状態では自律モー ド で動作し、 上記スレツショル ドを越える容量の送信デ一夕が溜まるとス ケジユ ーリ ングモー ドに移行して動作する。
このように、 端末 2では、 送信デ一夕バッファ内の送信デ一夕の蓄積 量に関するスレヅショル ドを基準にして自律モー ドとスケジューリ ング モードとが切り替えられる。 このスレヅショル ドの決定については後述 する。
第 5図は、 実施の形態 1 による基地局への上り信号における各要因に 起因した干渉量 (以下、 ノイズライズと呼ぶ) に対する許容マ一ジンを 示す図である。 一般的に、 C D M Aシステムでは、 受信した符号化信号 についてある程度までの干渉は許されるがノイズライズの許容限界を超 えると逆拡散しても信号より干渉量の方が大きい値になり上記信号を正 しく復調できなくなる。
このため、 理想的な干渉量が 0の状態 (ノイズライズの底) から受信 信号の復調が可能な千渉の許容限界量までの範囲内に如何にノイズライ ズを制御するかが、 容量 (基地局による端末の収容数) を確保する上で 重要な点となる。
図に示すように、 基地局端におけるノイズライズのうち、 スケジュ一 リ ングモード及び自律モードでの送信に起因するノイズライズは、 上り パケッ ト通信でこれら送信モードを適宜切り替えることで、 スケジユー リ ングモード用マージン及び自律モード用マ一ジン内に制御することが できる。
一方、 スケジュ一リ ングモード及び自律モー ド以外に起因するノイズ ライズについては、 上りパケッ ト通信でその許容マージン内に制御する ことができない。
このような干渉の要因としては、 例えば自セル内の端末からの希望信 号電力の総和で近似される自セル干渉、 他の基地局のカバーェリァにい る端末からの信号が余分に届いて干渉する他セル干渉、 基地局内の受信 機から発生する熱雑音などがある。
従って、 上りパケッ ト通信のための無線資源を効率よ く利用するには 、 スケジューリ ングモード用マージン及び自律モー ド用マージンを制御 してノイズライズの範囲を如何に調整す るかにかかっている。
第 6図は、 セル内で上りバケツ ト通信を複数の端末が利用している場 合の自律モードとスケジユーリ ングモ一 ドとに対する基地局のノィズラ ィズマージン (干渉の許容量) の分配例 を示す図である。 図示の例では 、 後述する第 8図の場合と比較してセル内に収容される端末数が多い場 合を示している。
詳細は後述するが、 実施の形態 1 によ る基地局には、 基地局制御装置 3が遅延などの Q o Sパラメ一夕を考慮 して求めた一定範囲のマージン が、 第 5図で示した制御可能なノィズラ イズマージンとして設定されて いる。 このノイズライズマ一ジンのうち、 自律モー ドに起因するノイズ ライズに対する許容マージンをとる場合、 セル内の端末 1台あた りのノ ィズライズマージンを多く設定すればよい。
このとき、 ノイズライズマージン全体 としては一定範囲が定められて いるので、 第 6図 ( a ) に示すように、 端末 1台あたりのノイズライズ マージンを多く設定した分だけ、 スケジューリ ングモードに起因したノ ィズライズに対する許容マージン (斜線を付した部分) を削減しなけれ ばならない。
従って、 第 6図 ( a ) に示す場合では、 セル内にスケジューリ ングモ ―ドで通信する端末数が多く なると、 これに起因したノイズライズを許 容マ一ジン内に制御するこ とができなくなる可能性がある。
反対に、 セル内の端末 1台あた りの上りパケッ ト通信に対してのノィ ズライズマージンを少なく設定すると、 第 6図 ( To ) に示すように、 基 地局において、 スケジュ一リ ングモードに起因したノイズライズに対す る許容マ一ジン '(斜線を付した部分) を多く確保することができる。 つま り、 セル内でスケジューリ ングモー ドで通信す.る端末数が多い場 合では、 自律モードに起因したノイズライズに対する端末 1台あた りの 許容マージンをなるベく減らす必要がある。
上りバケツ ト通信において、 1度に送信するデータ量が減れば送信レ —トも下がる。 このとき、 端末側はデータ送信に要する送信電力を下げ るため、 基地局の受信信号におけるノイズライズも減少する。
従って、 第 6図 ( b ) に示すように、 自律モー ドに起因したノイズラ ィズに対する端末 1台あた りの許容マージンをなるベく減らすためには 、 自律モー ドに起因したノイ ズライズ自体を減らす、 即ち低デ一タレ一 ト として自律モードによる通信を実行するように制御すればよい。
具体的には、 セル内に収容される端末の数が多い場合、 第 7図に示す ように、 各端末における送信データバッファの通信モー ド切替判定のス レツショル ドを低く設定して、 送信データ量が少ない低デ一夕レー トで の範囲を越えると自律モー ドからスケジュ一リ ングモードに切り替わる ことが望ましい。 続いて、 第 8図に示すように、 セル内で上りパケッ ト通信を利用して いる端末が少ない場合を考える (第 6図では 7台であったところ、 第 8 図では 2台である) 。 この場合、 基地局において端末 1台あたりのノィ ズライズマージンを多 く設定しても、 第 8図 ( a ) に示すように、 スケ ジユーリ ングモードに起因したノイズライズに対する許容マ一ジン (斜 線を付した部分) を十分に確保することができる。
また、 第 8図 ( b ) のように、 基地局において端末 1台あたりのノィ ズライズマージンを少なく設定しても、 スケジューリ ングモードに起因 したノイズライズに対する許容マージンは、 第 8図 ( a ) の場合とそれ ほど差はない。
つま り、 セル内に収容される端末数が少ない場合には、 自律モー ドで も第 6図の場合と比較して高データ レー トでの通信を実行することが可 能である。
具体的には、 セル内に収容される端末の数が少ない場合、 第 9図に示 すように、 各端末における送信デ一夕バッファの通信モ一 ド切替判定の スレツショル ドを高く設定して、 自律モー ドでも高デ一夕レートを許容 し、 多くのデータ量を取り扱う ことができるようにしてもよい。
以上よ り、 端末と基地局間の通信における トラフイ ツク状況、 例えば セル内でスケジユーリ ングモー ドで動作する端末数やその稼動状態、 自 律モー ドで動作するスケジュールや稼動状態に応じて、 端末内の送信デ —夕バッファの上記ス レツショル ドを適宜変更することが、 干渉の少な い高品質な通信を実現するために望ましいこ とが分かる。
また、 自律モードでは伝送遅延が少ないという通信特性を有すること を考慮して、 ノイズライズを割りあてる許容マ一ジンに余裕がある場合 、 遅延の要求が厳しい端末にはなるべく 自律モー ドで通信させることが 望ましい。 第 1 0図は、 第 1図中の基地局の内部構成を示すプロック図であり、 この図を用いて基地局の基本的な動作を説明する。 なお、 第 1 0図では
、 表記の冗長化を防ぐため、 後述する各構成部の名称について簡略化し た名称を記載しているが、 同一符号を付したものは同一構成部を指して いるものとする。
先ず、 一般的な C DM A変復調に共通する処理について説明する。 送信動作を説明すると、 基地局 4 a, 4 b内の変調部 5は、 各チヤネ ル (P— C CP CH、 下り D P D CH、 FA CH、 CP I CH、 D L - SA C CH、 DL— A CKノ NA CK— C CH、 下り D P C CHなど) の信号に対して下りチヤネライゼーシヨンコード発生器 6で発生させた チヤネライゼーショ ンコードを掛けた後、 これら信号を多重化する。 次に、 変調部 5は、 各チャネルの信号を多重化したものに下りスクラ ンブリングコ一ド発'生器 7で発生させたスクランプリングコードを掛け てスぺク トラム拡散処理を行う。
変調部 5にて多重化された各チャネルの信号であるベースバン ド信号 は、 周波数変換部 8に出力される。 周波数変換部 8は、 上記ペースバン ド信号を搬送波周波数まで上げて電力増幅部 9に出力する。 電力増幅部 9では、 周波数変換部 8から入力した信号を内部のパワーアンプで所望 の電力まで増幅する。 電力増幅部 9で増幅された信号は、 アンテナ 1 0 を介して端末 2側に送信される。
なお、 パイ口ッ ト信号発生部 2 7は、 夕イ ミング管理部 2 6より基準 となるクロック信号を得ると、 端末 2が復調処理の基準として使用する ためのパイロッ ト信号を C P I C Hに設定してセル全体に送出する。 次に、 受信動作を説明すると、 アンテナ 1 0より受信された微弱な信 号は、 低雑音増幅部 1 1に入力される。 この低雑音増幅部 1 1は、 当該 信号を増幅した上で周波数変換部 1 2に出力する。 周波数変換部 1 2で は、 低雑音増幅部 1 1から入力した信号を上記ベースバン ド信号の周波 数まで下げる。
逆拡散器 1 5は、 周波数変換部 1 2で周波数変換されたベースバン ド 信号に対して上りスクランプリ ングコード発生器 1 3により発生させた スクランプリ ングコ一ドを掛けて逆拡散処理を行い、 各端末ごとの信号 成分を取り出す。 復調部 3 0は、 逆拡散器 1 5から入力した逆拡散後の 信号を上りチヤネライゼーシヨンコード発生器 1 4で発生させたチヤネ ライゼーシヨンコー ドにより各チャネルの信号に分離する。
続いて、 信号と千渉の電力を得る動作を説明する。
先ず、 希望波電力測定部 1 6は、 逆拡散器 1 5からの上り D P C C H のパイ口ッ ト信号により希望波の電力を得る。 一方、 低雑音増幅部 1 1 は、 アンテナ 1 0を介して希望波とノイズが混在している全受信電力を 得ている。
干渉波電力測定部 1 7では、 低雑音増幅部 1 1、 周波数変換部 1 2及 び逆拡散器 1 5を介して入力した上記全受信電力から希望波電力測定部 1 6で得た希望波の電力を差し引く ことでノィズ成分である干渉波の電 力を得る。
次に、 希望波及び干渉波の電力は、 測定部 1 6 , 1 7から上りパケッ ト送信管理部 2 4にそれぞれ送られる。 このようにして、 上りパケッ ト 送信管理部 2 4は、 自セル内の各端末からの希望信号の電力をそれそれ 取得する。
また、 上りパケッ ト送信管理部 (通信管理部) 2 4は、 当該上りパケ ヅ ト通信における自セル干渉、 他セル干渉及び熱雑音による干渉分 (ノ ィズライズ) を、 基地局制御装置 3から取得している。
ここで、 自セル千渉分以外 (他セル干渉及び熱雑音) の干渉は、 コー ドが不明なためノイ ズと信号を分離することができない。 このため、 上 りパケッ ト送信管理部 24は、 基地局制御装置 3から他セル干渉と熱雑 音とによるノィズが混在した干渉成分の電力として自セル干渉分以外の 干渉分を得る。 上記干渉分は、 他セル干渉と熱雑音が混在したものであ り区別することはできないが、 干渉量の制御処理において特に区別する 必要はない。
続いて、 上りパケヅ ト送信管理部 24は、 ジャミングマージンに基づ く一定範囲の許容マージンから自セル干渉分と、 他セル干渉及び熱雑音 によるノィズが混在した干渉成分とについての許容マージンを差し引い て上りパケッ ト通信で制御可能なノイズライズマ一ジンを得る。
ジャミ ングマージンは、 許容できる最大の収容能力 (端末数) を示す 指標であり、 妨害成分電力 Jに対する信号電力 Sの比 J/Sで定義され る。 セル内の収容能力 (端末数) は、 上記ジャミングマ一ジンから求め ることができる。
なお、 上記収容能力は、 ある基地局と現時点で通信対象となっている 端末を除いて当該基地局のセル内にどれだけの端末数を収容することが できるかを示すものである。
上記ジャミングマージンは、 後述する基地局制御装置 3内の無線資源 管理部によって、 例えば以下の関係式に沿って算出される。
先ず、 基地局における受信信号電力を S (W) 、 通信データの伝送速 度を R (b i t /秒) とすると、 信号 1ビッ トあたりの電力 E bは、 下 記式 ( 1 ) で表される。
E b = S/ · · · ( 1 )
ここで、 Sは基地局が受信した移動通信端末 2からの信号の電力であ り、 CDMAの T P Cコマン ドに基づく高速パワー制御機能 (インナー ループ) によって基地局端において均等なレベルで受信されているもの と仮定する。 また、 W_ CDMAにおいて、 Sはパイロッ ト信号の強度 により得ることができ、 Rは丁 〇 1などの指示にょり得ることができ る。
次に、 自セル内の他端末からの干渉分の電力 I 0 (W) は、 例えば下 記式 ( 2 ) で表すことができる。
τ Si (N - 1)S
( 2 )
r=iR R
但し、 N (個) は自セル内の最大端末数であり、 自端末以外の端末を 想定している。 S iは基地局が受信した、 第 1番目から第 (N— 1 ) 番 目までの端末 2からの信号の電力であり、 添え字 iは 1から (N— 1 ) までの正の整数である。 また、 R iは第 1番目から第 (N— 1 ) 番目ま での端末 2による通信データの伝送速度 (b i t /秒) である。
これにより、 I oは最大端末数 Nから 1を引いた端末数のそれそれ信 号電力の和で表される。 なお、 上記式 ( 2 ) では、 各端末 2の信号電力 及び伝送速度がそれそれ等しい S及び Rであるものと仮定している。 帯域の広さごとに雑音を区別して扱うのは不便であるため、 他セル干 渉及び熱雑音による干渉成分は、 上述したように区別せずに 1 H zあた りの雑音エネルギーに換算した平均雑音電カスペク トル密度 N o (W) として扱う。
スぺク トル拡散信号のスぺク トル帯域を W (H z ) とし、 狭帯域妨害 雑音の電力を J (W) とすると、 自セル干渉、 他セル干渉及び熱雑音に よるノイズライズ (干渉量) である (N o + I o) は、 下記式で表すこ とができる。
N 0 + I 0 = J /W · . · ( 3 )
ここで、 S I R (Signal-to- Interference Ratio) は、 信号 1ビヅ ト あたりのエネルギー E bと、 熱雑音及び他セル干渉並びに自セル干渉に よるノイズライズの和との比である E b/ (N o + I o ) から求めるこ とができる。
S I Rぽ、 上記式 ( 1 ) 及び上記式 ( 3 ) を用いて下記式 (4) のよ うに表すこ とができる。
E b/ (N o + I o ) = S · W/ ( J · R) .· · · ( 4 ) 上記式 ( 4 ) を変形して、 CDMAにて復調可能な限界のジャミ ング マージン (ジャミングマージン) J/Sを求めると、 下記式 ( 5 ) のよ うになる。
J/S = (W/R) / {E b/ (Ν ο + Ι ο) } · · · ( 5 ) 基地局制御装置 3では、 自己が管理する対象基地局以外の他セルの稼 働状態や対象基地局のセルの トラフイ ツク状況、 遅延などの Q o Sパラ メ一夕を考慮した干渉に対するマージンを上記ジャミングマ一ジンにさ らに持たせた一定範囲の許容マージン (ジャミングマージンから他セル の稼働状態や対象基地局のセルのトラフィ ック状況、 遅延などの Q o S パラメ一タを考慮した干渉に対するマージンを差し引いたマージン) を 求め、 対象基地局に通知する。
対象基地局では、 基地局制御装置 3から通知された上記許容マージン の範囲内で通信モード切り替えによるノイズライズ制御を実行する。
このよう にすることで、 基地局が、 自局以外の他セルの稼働状態によ つて自局の通信が影響を受け、 上記制御を行っても受信信号における干 渉量が復調可能な限界であるジャミングマージンを越えてしまうことを 防く、ことができる。 この処理の詳細は後述する。
対象基地局内の上りパケッ ト送信管理部 24は、 上記一定範囲の許容 マージンから熱雑音及び他セル干渉並びに自セル干渉によるノイズライ ズに対する許容マージン (第 5図で示した非制御のマージン) を差し引 いた残りのマージンを、 第 5図で示した制御可能なノイズライズマージ ンとして和用する。 また、 妨害電力 Jは、 自セル内の全ての端末からの信号電力が Sで一 定とし、 妨害電力 J (w) が、 対象の端末以外の他端末からの干渉に起 因するものと仮定すると、 下記式 ( 6 ) のように表すことができる。
J = ( N - 1 ) S ■ · · ( 6 )
上記式 ( 5 ) 及び式 ( 6 ) から下記式 ( 7 ) を導く ことができる。 (N - 1 ) = (W/R) / {E b/ (N o + I o ) } · · · ( 7 ) 上記式 ( 7 ) において、 (N— 1 ) は対象端末以外の自セル内に収容 可能な最大端末数に相当する。 ここで、 通信データの伝送速度 Rを増加 させる と、 上記式 ( 5 ) からジャミングマ一ジンは減ってしまい、 上記 式 ( 7 ) から自セル内での端末の収容容量が少なくなることがわかる。
また、 対象端末と基地局間における S I Rが増加する場合、 例えば所 要 B E R (bit error rate) を確保するために、 基地局がより強い送信 電力を対象端末に要求した場合などでも、 上記式 ( 5 ) からジャミ ング マ一ジンが減少してしまうことがわかる。
基地局の動作説明に戻ると、 チャネル品質測定部 1 8は、 希望波電力 測定部 1 6及び干渉波電力測定部 1 7からそれそれ入力した希望波及び 干渉波の電力、 及び、 基地局制御装置 3から取得した自セル干渉、 他セ ル干渉及び熱雑音による干渉分の電力を用いて、 信号対干渉の電力比 ( S I R) を算出し、 品質目標比較部 1 9に出力する。
W— CDMA方式では、 アウターループと呼ばれる目標 S I R値を基 に端末の送信電力制御が実行される。 この目標 S I R値は、 品質目標比 較部 1 9に予め設定されている。
基地局内の復号化部 2 2は、 対象端末との通信で C R C ( Cyclic Redundancy Check) エラ一によりブロック誤り率 (B L ER) をカウン トし、 所要の B L E Rが満たされなくなると品質目標比較部 1 9の目標 S I R値を上げるなどの変更設定が行われる。 これをアウターループ電 力制御と呼ぶ。
一方、 品質目標比較部 1 9は、 チャネル品質測定部 1 8が算出した信 号対干渉の電力比 ( S I R) と目標信号対干渉比 (目標 S I R値) とを 比較し、 その結果を T P C生成部 2 0に通知する。
T P C生成部 2 0では、 上記比較結果から受信信号における希望信号 の電力が目標信号よ り弱いと判断された場合、 インナーループと呼ばれ る T P C (Transmission Power Command) として送信電力を上げる旨の 指示を下り D P C CHに設定して変調部 5に出力する。
T P C生成部 2 0からの下り D P C CHの信号は、 上述のようにして 、 変調部 5、 周波数変換部 8、 電力増幅部 9及びアンテナ 1 0を介して 端末 2へ送信されることとなる。
反対に、 品質目標比較部 1 9の比較結果により希望信号の電力が目標 信号より強いと判断されると、 T P C生成部 2 0は、 T P Cとして送信 電力を下げる旨の指示を下り D P C CHに設定して変調部 5に出力する 。 以降の処理は、 同様である。 このような電力制御をイ ンナ一ループ電 力制御と呼ぶ。
C D M Aシステムにおいて、 ある信号の強度を強くすることは他の信 号に対して干渉を与えることにほかならない。 このため、 送受信する信 号は、 上述したような処理を実行して必要かつ十分な信号電力に収まる ように制御されている。
次に、 上りパケッ ト通信に必要な構成を説明する。
先ず、 自律モー ドの動作について説明する。
自律モー ドの動作において、 基地局 4 a, 4 bは、 事前に D L— S A C C H又は同様の下りシグナリングのチャネルを使って端末 2に送信許 容マージンを送信する。 送信許容マージンは、 端末 2が自律モー ドで上 りバケツ ト通信してきた信号を基地局にて復調するために必要な通信条 件を規定する情報である。 例えば、 許容される最大のデータレートなど がある。
このあと、 端末 2からの信号を受信すると、 上述した受信側の動作に 従って、 復調部 3 0が、 当該受信信号を各チャネルの信号に分離する。
T F R I受信部 2 1は、 復調部 3 0が分離した各チャネルの信号のう ち、 端末 2で選択した変調パラメ一夕やトランスポートフォーマヅ トが 含まれている T F R I ( Transport Fromat Resource Indicator) 力 s設 定された UL— T FR I— C C Hの信号を受信する。
T F R I受信部 2 1は、 UL— T FR I— C C Hの信号から E UD T CHの復調パラメ一夕を取り出し、 復調部 3 0及び復号化部 2 2に設定 する。 復調部 3 0は、 E UD T C Hの復調パラメ一夕を用いて E U D T C Hにおける端末 2からのデ一夕本体を復調して復号化部 2 2に出力す る。 復号化部 2 2では、 E U D T C Hの復調パラメ一夕を用いて E U D T C Hにおける端末 2からのデ一夕本体を復号化する。
応答信号発生部 2 3は、 復号化部 2 2による復号結果を用いて端末 2 が送信したバケツ トデ一夕を基地局 4 a, 4 b側で正しく受信できたか 否かを判定する。
ここで、 正しく受信できていた場合、 応答信号発生部 2 3は、 受信成 功を通矢口する A CKを発生して D L— ACK/NACK— C CHに設定 し、 上述の送信動作に従って端末 2へ通知される。 反対に、 端末 2から のデ一夕に誤りがある場合、 応答信号発生部 2 3は、 受信失敗を通知す る NAC Kを発生して、 同様に端末 2へ通知する。
次に、 スケジューリ ングモードの動作について説明する。
スケジューリングモードの動作において、 送信バッファ量受信部 3 1 は、 復調部 3 0から UL— S I C Hの信号を受信して、 スケジユーリ ン グモー ドの端末 2における送信デ一夕に関する情報を取得し、 上りパケ ッ ト送信管理部 2 4に通知する。
上りパケッ ト送信管理部 2 4では、 タイ ミ ング管理部 2 6よりサブフ レームのタイ ミ ングを得て、 自セル内の各端末の送信デ一夕バヅファに 溜まっているデータ量及び端末の送信電力マージン等を総合的に判断し てバケツ トの送信タイ ミ ングを決定する。
上りパケッ ト送信管理部 2 4が決定したバケツ トの送信タイ ミ ングは 、 送信レー ト 夕イ ミ ング指定情報送信部 2 5に通知される。 送信レー ト Z夕イ ミ ング指定情報送信部 2 5では、 送信を許可するサブフレーム や送信レートを D L— S A C C Hに設定し、 上述した送信動作に従って 上記端末 2へ送信する。
このあと、 上記端末 2からの信号を受信すると、 上述した受信側の動 作に従って、 復調部 3 0が受信信号を各チャネルの信号に分離する。
T F R I受信部 2 1は、 復調部 3 0が分離した各チャネルの信号のう ち、 上記端末 2から送信許可を指定したサブフレームにおける T F R I が設定された U L— T F R I— C C Hの信号を受信する。
次に、 T F R I受信部 2 1は、 U L— T F R I— C C Hの信号から E UD T C Hの復調パラメ一夕を取り出し、 復調部 3 0及び復号化部 2 2 に設定する。 復調部 3 0は、 E UD T C Hの復調パラメ一夕を用いて E U D T C Hにおける端末 2からのデ一夕本体を復調して復号化部 2 2 に 出力する。 復号化部 2 2では、 E UD T C Hの復調パラメ一夕を用いて E U D T C Hにおける端末 2からのデ一夕本体を復号化する。
応答信号発生部 2 3は、 上記端末 2が送信したパケッ トを基地局側で 正しく受信できた場合、 上述のようにして A C Kを発生し、 誤りの場合 は N A C Kを発生して、 これを D L— A C K/NA C K— C C Hに設定 して端末 2に通知する。
次に、 送信データバッファの通信モー ド切り替えに関するスレツショ レ ドを変更するためのシグナリングを行う構成について説明する。
先ず、 自セル内の端末 2に対して上記スレッショルドの変更を一斉に 通知 (シグナリ ング) する場合、 その変更は基地局内の上りバケツ ト送 信管理部 2 4が自セル内のトラフィ ック状況などを考慮して判断し、 そ の旨を基地局制御装置 3に通知する。
基地局制御装置 3では、 当該通知を発した基地局以外の他の基地局の 稼働状況なども考慮して上記スレツショルドに関する情報 (スレツショ ル ドをどの値に変更するかなどの情報) を生成し、 報知情報に挿入して 当該基地局に送信する。
基地局内の報知情報送信部 2 8では、 基地局制御装置 3側から上記ス レ ッショルドに関する情報を挿入した報知情報の一式を受信し、 当該報 矢口情報を P— C C P C H ( B C H ) に設定して、 上述した送信動作に従 つて端末 2に送信する。 なお、 上記報知情報は、 希に他のチャネルに設 定されることもある。
個々の端末 2に上記スレッショルドを指定する場合、 その変更は当該 崗末 2をセル内に収容する基地局内の上りバケツ ト送信管理部 2 4が、 当該端末 2 との通信における トラフィ ック状況などを考慮して判断し、 その旨を基地局制御装置 3に通知する。
基地局制御装置 3では、 当該通知を発した基地局以外の他の基地局の 稼働状況なども考慮して上記スレツショルドに関する情報 (スレツショ ル ドをどの値に変更するかなどの情報) を生成し、 メ ッセ一ジとして個 ^チヤネルに設定して当該基地局に送信する。
基地局内の下り個別チャネル送信部 2 9では、 個別チャネルから上記 ス レツショルドに関するメ ッセ一ジを得ると当該メヅセージを下り D Ρ D C H ( D P C Η ) に設定して、 上述した送信動作に従って上記スレヅ ショルドを変更すべき端末 2に送信する。 これに対する応答メ ッセージ がある場合は、 上り個別チャネル受信部 3 2 にて受信する。
また、 端末 2 との通信において個別チャネルが解放されている場合、 上記スレッショル ドに関する情報を共通チャネルに設定してもよい。 基地局制御装置 3では、 無線資源の管理情報から個別チャネルが解放 されていると判断すると、 上記スレツショル ドに関する情報をメ ッセ一 ジとして共通チャネルに設定して基地局に送信する。
基地局内の下り共通チャネル送信部 3 4は、 共通チャネルから上記ス レツショル ドに関するメ ッセージを得ると当該メ ッセージを F A C Hに 設定して、 上述した送信動作に従って上記スレツショル ドを変更すべき 端末 2 に送信する。 これに対する応答メ ッセージがある場合は、 上り共 通チャネル受信部 3 3にて受信する。
なお、 上記説明では、 基地局側で上記スレツショル ドの変更を判断す る構成を説明したが、 基地局側で端末 2 に設定する送信モード自体を決 定するように構成しても良い。
この場合、 上述したスレツショルド変更のためのシグナリ ング動作に おいて、 スレツショル ドに関する情報ではなく、 端末 2 に設定すべき送 信モー ドを特定する情報が端末 2 に送信されることとなる。 この処理の 詳細については後述する。
第 1 1 図は、 第 1図中の移動通信端末の内部構成を示すブロック図で あ り、 この図を用いて移動通信端末の基本的な動作を説明する。 なお、 第 1 1 図では、 表記の冗長化を防ぐため、 後述する各構成部の名称につ いて簡略化した名称を記載しているが、 同一符号を付したものは同一構 成部を指しているものとする。
先ず、 一般的な C D M A変復調に共通する処理について説明する。 送信動作を説明すると、 変調部 3 5は、 各チャネル (U L— S I C C H、 U L— T F R I— C C H、 F A C H、 上り D P C Hなど) の信号に 对して上りチヤネライゼ一シヨンコード発生器 3 6で発生させたチヤネ ライゼーシヨンコードを掛けた後、 これら信号を多重化する。 次に、 変 調部 3 5は、 各チャネルの信号を多重化した信号に対して上りスクラン プリ ングコード発生器 3 7で発生させたスクランプリングコードを掛け てスぺク トラム拡散処理を行う。
変調部 5にて多重化された各チャネルの信号であるべ一スバン ド信号 は、 周波数変換部 3 8に出力される。 周波数変換部 3 8は、 上記ベース バン ド信号を搬送波周波数まで上げて電力増幅部 3 9に出力する。
電力増幅部 3 9では、 周波数変換部 3 8から入力した信号を内部のパ ヮーアンプで所望の電力まで増幅する。 電力増幅部 3 9で増幅された信 号は、 アンテナ 4 0を介して基地局 4 a, 4 b側に送信される。
次に、 受信動作を説明すると、 アンテナ 4 0より受信された微弱な信 号は、 低雑音増幅器 4 1 に入力される。 この低雑音増幅器 4 1は、 当該 信号を増幅した上で周波数変換部 4 2に出力する。 周波数変換部 4 2で は、 低雑音増幅器 4 1から入力した信号を上記ベースバン ド信号の周波 数まで下げる。
逆拡散復調部 4 6は、 周波数変換部 4 2で周波数変換されたベースバ ン ド信号に下りスクランプリ ングコード発生器 4 5により発生させたス クランプリ ングコードを掛けて逆拡散処理を行い、 下りチヤネライゼ一 シヨンコード発生器 4 4で発生させたチヤネライゼーシヨンコードによ り各チャネルの信号に分離する。
このあと、 逆拡散復調部 4 6は、 基地局から受信した信号中の T P C コマン ドを電力制御部 4 3に出力する。 電力制御部 4 3は、 上記 T P C コマン ドに従った送信電力の上げ下げを電力増幅部 3 9に指示し、 当該 指示に従った送信電力が電力増幅部 3 9により設定される。
また、 逆拡散復調部 4 6が分離した各チャネルの信号のうち C P I C Hの信号は、 共通パイ 口 ッ ト信号受信部 4 7に受信される。
共通パイ 口 ッ ト信号受信部 4 7では、 基地局との間で復調における夕 ィ ミ ングを一致させて、 夕イ ミ ング信号として夕イ ミ ング管理部 4 8 に 供給する。 夕イ ミ ング管理部 4 8では、 共通パイ 口 ッ ト信号受信部 4 7 から供給されるタイ ミ ング信号を移動通信端末 2内の各処理部に分配し 、 基地局と同期した処理が実行される。
次に、 上りパケッ ト通信に必要な構成について説明する。
先ず、 自律モー ドの動作を説明する。
自律モードの動作において、 移動通信端末 2内の送信許可情報受信部
4 9は、 事前に D L - S A C C H又は同様の下りシグナリ ングのチヤネ ルを使って基地局から送信許容マージンを受信する。 この送信許容マー ジンは、 送信許可情報受信部 4 9から上りパケッ ト送信管理部 5 1 に通 知される。 なお、 自律モードにおいて送信タイ ミ ングは任意である。
このあと、 ユーザが移動通信端末 2から基地局に送信するデータを設 定すると、 当該送信データは、 上りパケッ ト通信用送信デ一夕バッフ ァ
5 8 に蓄積される。
自律モー ドでは送信を直ぐに開始するため、 上りバケツ ト送信管理部 (通信管理部) 5 1は、 上記送信許容マージンを考慮して送信デ一夕量 に見合った T F R I を指定して T F R I送信処理部 5 3 に通知する。
T F R I送信処理部 5 3は、 U L— T F R I — C C Hに当該 T F R I を設定して前述した送信動作に従って基地局に送信する。 これによ り、 当該送信動作は、 基地局から指定された上記送信許容マージンの範囲内 にノイズライズが抑えられるよう制御される。
また、 E U D T C H送信処理部 5 2は、 上りパケツ ト通信用送信デー 夕バッファ 5 8 に蓄積したデータを上記 T F R Iで特定される送信フォ —マッ トに変換した後、 E U D T C Hに当該データ本体を設定して前述 した送信動作に従って基地局に送信する。
基地局では、 移動通信端末 2からの上記パケッ トデータを受信する と 、 これに対応する応答信号を D L - A C K / N A C K - C C Hに設定し て送信する。 移動通信端末 2内の応答信号受信部 5 7は、 前述した受信 動作に従って受信した上記 D L— A C K / N A C K— C C Hから A C K / N A C Kの判断をする。
応答信号受信部 5 7が A C Kと判断すると、 当該判断結果は、 上り送 信パケッ ト管理部 5 1 に通知される。 このあと、 上り送信パケッ ト管理 部 5 1は、 次のパケッ トのデ一夕を基地局に送信する処理に移行する。 一方、 N A C Kと判断された場合、 上り送信パケッ ト管理部 5 1は、 N A C Kと判断されたバケツ トのデ一夕を再送する処理に移行する。 こ こで、 E U D T C H送信処理部 5 2が、 上記再送時に必要によってイ ン ク リメンタルリダンダンシ一等の冗長性を持つデータを再送する。
次にスケジューリ ングモードの動作を説明する。
スケジユーリ ングモードの動作において、 ユーザが移動通信端末 2 か ら基地局に送信するデータを設定すると、 当該送信データは、 上りパケ ヅ ト通信用送信デ一夕バッ ファ 5 8 に蓄積される。
このあと、 上りパケッ ト送信管理部 5 1からの指示を受けたバッ フ ァ 状態送信部 5 5は、 基地局に送信するデータのデータ量や端末 2の送信 電力のマージン等を U L— S I C C Hに設定して、 前述した送信動作に 従って基地局に送信する。
基地局は、 U L— S I C C Hの信号を受信すると、 自セル内に収容さ れる各端末 2の送信データバッ フ ァ 5 8の状態を考慮して、 各端末 2 か らの信号が最も干渉しない適切な送信タイ ミ ングを決定する。 これによ り、 基地局は、 当該タイ ミ ングで各端末 2 に送信許可の指示を D L— S A C C Hに設定し、 前述した送信動作に従って送信することとなる。 移動通信端末 2内の送信許可情報受信部 49は、 D L— S AC CHに 設定された基地局が許可した送信レ一トゃサブフレームタイ ミ ングなど の情報を受信する。 この情報は、 送信許可情報受信部 4 9からタイ ミ ン グ管理部 4 8及び上りパケッ ト送信管理部 5 1に渡される。
上りパケッ ト送信管理部 5 1では、 送信データ量に見合った T F R I を指定して T F R I送信処理部 5 3に通知する。 T F R I送信処理部 5 3 は、 UL— T FR I— C CHに T FR Iを設定して、 前述した送信動 作に従って基地局に送信する。
E U D T C H送信処理部 5 2は、 上りパケッ ト通信用送信データバッ フ ァ 5 8に蓄積したデータを読み出して、 T FR I送信処理部 5 3が送 信 した上記 T F R Iで特定される送信フォーマッ トに変換した後、 E U D T CHに当該データ本体を設定して前述した送信動作に従って基地局 に送信する。
基地局では、 移動通信端末 2からの上記パケッ トデ一夕を受信すると 、 これに対応する応答信号を D L-ACK/NACK- C C Hに設定し て送信する。 移動通信端末 2内の応答信号受信部 5 7は、 前述した受信 動作に従って受信した上記 D L— ACKZNACK— C CHから AC K ZNA CKの判断をする。
答信号受信部 5 7が A C Kと判断すると、 当該判断結果は、 上り送 信ノ ケッ ト管理部 5 1に通知される。 このあと、 上り送信パケッ ト管理 部 5 1は、 次のパケッ トのデ一夕を基地局に送信する処理に移行する。
一方、 N A C Kと判断された場合、 上り送信パケッ ト管理部 5 1は、 N A C Kと判断されたパケッ トのデ一夕を再送する処理に移行する。
ここで、 E U D T C H送信処理部 5 2が、 上記再送時に必要によって ィ ンク リメン夕ルリダンダンシ一等の冗長性を持つデータを再送する。 薪いて、 送信モードを変更するために必要な構成について説明する。 先ず、 上りパケッ ト送信管理部 5 1は、 スレツショル ド変更部 5 0か ら与えられたスレツショル ドと上りパケッ ト通信用送信データバッファ
5 8に滞留するデータ量とを比較する。
このとき、 スレツショル ドよ り滞留量が多ければ、 上りパケッ ト送信 管理部 5 1は、 送信モー ドの切り替えが完了したことを送信モー ド切替 部 5 4に通知する。
送信モード切替部 5 4による送信モードの切り替えが完了した場合、 バッファ状態送信部 5 5は、 送信モードの切り替えが完了した旨の情報 を UL— S I C CHに設定して、 前述した送信動作に従って基地局に送 信する。
また、 T F R I送信処理部 5 3が、 送信モ一 ドの切り替えが完了した 旨の情報を U L - T FRU- C CHに設定して基地局に送信してもよい 。 さらに、 送信モー ド切替部 54から送信モー ドを切り替えた旨の情報 を受けたプロ トコル処理部 5 6が、 当該情報を上り個別チャネル送信部
6 0に通知する。
これによ り、 上り個別チャネル送信部 6 0が、 送信モードを切り替え た旨の情報をメ ッセージとして上り D P CHに設定して基地局に送信す るようにしてもよい。 このように、 移動通信端末 2は、 何らかのチヤネ ルを用いて基地局に対して送信モードの切り替えを通知する。
次に、 送信モー ドの切り替えに関するスレツショル ドを変更するため に必要な構成について説明する。
先ず、 基地局から端末 2に一斉にスレツショルドの変更を通知する場 合、 基地局から移動通信端末 2への報知情報 (B CH) 中にスレツショ ル ドに関する情報が挿入される。
移動通信端末 2内の報知情報受信部 6 1は、 前述した受信動作に従つ て基地局側から報知情報の一式を受信してプロ トコル処理部 5 6に通知 する。 プロ トコル処理部 5 6では、 報知情報の内容を解釈する。
このとき、 プロ トコル処理部 5 6は、 上記報知情報が上りパケッ ト通 信用送信データバッファ 5 8の上記スレツショル ドを変更する指示であ ると解釈すると、 当該指示により変更されるべきスレツショル ドをスレ ッショル ド変更部 5 0に設定する。
このあと、 スレツショル ド変更部 5 0は、 変更されたスレヅショル ド を上りパケッ ト送信管理部 5 1 に通知する。 これによ り、 この移動通信 端末 2では、 変更後のスレツショル ドを基準として送信モードが切り替 えられることになる。
次に、 レイヤ 3メ ッセージにて上記スレツショル ドを切り替る場合に ついて説明する。
この場合、 利用するチャネルとしては、 個別チャネルと共通チャネル の 2つが考えられる。
先ず、 個別チャネルを利用したスレッショル ド変更を説明する。
個別チャネルは、 個々の端末ごとにスレツショル ドを指定する場合な どに利用される。
基地局内の下り個別チャネル送信部 2 9から送信された上記スレッシ ョル ドに関するメ ッセージが設定された個別チャネル (下り D P C H ) は、 端末 2内の下り個別チャネル受信部 6 3 に受信され、 プロ トコル処 理部 5 6 に通知される。 プロ トコル処理部 5 6は、 当該個別チャネルの 内容を解釈する。
このとき、 プロ トコル処理部 5 6は、 上記個別チャネルに設定された メ ッセージが上記スレッショル ドを変更する指示と解釈すると、 当該メ ッセージによ り変更されるべきスレツショルドをスレヅショル ド変更部 5 0 に設定する。 このあと、 ス レ ヅショル ド変更部 5 0は、 変更された スレ ツショル ドを上りパケッ ト送信管理部 5 1 に通知する。 さらに、 上り個別チャネル送信部 6 0が、 送信モードを切り替えた旨 の情報をメ ッセージとして上り D P C Hに設定して基地局に送信する。 共通チャネルを利用して上記スレツショル ドを切り替える場合につい て説明する。
共通チャネルは、 個別チャネルが解放されており、 個々の端末 2 ごと に上記スレツショル ドを指定する場合などに利用される。 特に、 個別チ ャネルは低消費電力等のために一時的に解放される場合があ り、 このよ うな場合に共通チャネルが利用される。
基地局からの共通チャネル ( F A C H ) に設定されたメ ッセ一ジは、 前述した受信動作に従って下り共通チャネル受信部 6 2 に受信される。 このあと、 当該メ ッセージは、 下り共通チャネル受信部 6 2からプロ ト コル処理部 5 6 に送られる。 プロ トコル処理部 5 6では、 上記メ ッセ一 ジの内容を解釈する。
このとき、 プロ トコル処理部 5 6が、 上記共通チャネルに設定された メ ッセージが上記スレツショルドを変更する指示と解釈すると、 当該メ ヅセージによ り変更されるべきスレヅショル ドをスレヅショル ド変更部 5 0 に設定する。 このあと、 スレツショル ド変更部 5 0は、 変更された スレツショル ドを上りパケッ ト送信管理部 5 1 に通知する。
さ らに、 上り共通チャネル送信部 5 9が、 送信モードを切り替えた旨 の情報をメ ッセージとして R A C Hに設定して基地局に送信する。
続いて、 物理レイヤシグナリ ングを利用して上記スレヅショル ドを切 り替える場合について説明する。 物理レイヤシグナリ ングとは、 移勳通 信端末 2 と基地局との間の物理レイヤの通信条件を設定するための物理 レイヤの情報におけるあるビッ トに上記スレツショル ドに関する情報を 割り当てるものである。 この物理レイヤの情報は、 例えば D L— S A C C Hに設定される。 物理レイヤシグナリ ングは、 個々の端末 2 ごとに上記スレツショル ド を指定する場合などに利用され、 上述した場合よ り高速に指定すること ができる。
送信許可情報受信部 4 9は、 基地局からの D L— S A C C H中に埋め 込まれた物理レイヤに関する情報を指示を受け取り、 プロ トコル処理部 5 6 に通知する。 プロ トコル処理部 5 6は、 送信許可情報受信部 4 9が 受信した情報の内容を解釈する。
プロ トコル処理部 5 6では、 上記情報が上記スレツショル ドを変更す る指示であると解釈した場合、 上記情報によ り変更されるべきスレツシ ョル ドをスレツショル ド変更部 5 0 に設定する。 このあと、 スレツショ ル ド変更部 5 0は、 上記情報によ り変更されたスレツショル ドを上りパ ケッ ト送信管理部 5 1 に通知する。
第 1 2図は、 第 1図中の基地局制御装置の内部構成を示すプロック図 であ り、 この図を用いて基地局制御装置 3の基本的な動作を説明する。 なお、 第 1 2図では、 表記の冗長化を防く、ため、 後述する各構成部の名 称について簡略化した名称を記載しているが、 同一符号を付したものは 同一構成部を指しているものとする。
Q o Sパラメ一夕マッピング部 6 4は、 移動通信端末 2 と基地局 4 a , 4 b との通信に対して指定された Q 0 S ( Qual ity of Servi ce) (例 えば、 遅延の許容など) を満足するための無線資源やこれに関連するパ ラメ一夕を選択する。 この通信に関連するパラメ一夕には、 例えば R L C ( Radio Link Control ) レイヤにおけるモード、 物理レイヤにおける トランスポー トブロ ックサイズ数、 C R C ( Cyc l i c Redundancy Check ) ビッ ト数などがある。
輻輳制御部 6 5は、 移動通信端末 2 と基地局との間の通信での輻輳の 発生を予防したり、 呼の制限などを行う。 無線資源管理部 6 6は、 無線 資源 (例えば、 チャネル、 電力、 コードなど) に関わる情報や測定デー 夕を管理して、 移動通信端末 2 と基地局との通信時に必要に応じて管理 情報を各基地局に通知する。 上述したジャ ミ ングマ一ジンは、 この無線 資源管理部 6 6によって算出される。
また、 無線資源管理部 (通信資源管理部) 6 6は、 上記ジャミ ングマ —ジンに対して遅延などの Q o Sパラメ一夕を考慮してマージンを持た せた許容マ一ジンを基地局に設定する。 基地局では、 当該許容マージン 内にノイズライズが収まるように自セル内の端末 2の通信モー ドの切り 替え指示などを実行することとなる。
従来の移動体通信システムでは、 ジャ ミ ングマージン内にノィズラィ ズが収まるような基地局と端末間の通信条件を基地局制御装置によって 決定されており、 基地局制御装置から通知される当該通信条件に従って 基地局と端末間の通信が制御されていた。
しかしながら、 この構成では、 基地局制御装置と基地局との間での通 信遅延によって、 基地局と端末間での通信品質が制限されてしまう とい う不可避的な問題があつた。
そこで、 本発明の移動体通信システムでは、 基地局制御装置が、 ジャ ミ ングマージンに対して対象セル以外の稼働状態や遅延などの Q o Sパ ラメ一夕による要求から考慮すべき干渉に対するマージンをさらに持た せた許容マージンを基地局に設定する。
つま り、 上記許容マージンは、 対象セル以外の稼働状態や遅延などの Q o Sパラメ一夕による要求から考慮すべき干渉分だけ、 ジャミ ングマ 一ジンよ り許容できる干渉量範囲が狭い。
そして、 基地局は、 上記許容マージン内にノイズライズが収まるよう な通信条件を決定する処理の一部を実行する。 例えば、 基地局は、 現時 点での通信状況などに応じて上記許容マージンにおける各モードのノィ ズライズに対するマージンの分配を適宜実行する。
これによつて、 基地局は、 基地局制御装置から通知される通信条件に 完全に依存することなく、 端末との間における通信の Q 0 Sに応じた通 信条件を迅速に決定することができ、 通信負荷の変動に伴うノイズライ ズの変動に応じた効率的なデータ通信が可能となる。
コアネヅ トワークプロ トコル処理部 6 7は、 ネッ トワーク側との通信 におけるプロ トコルを処理する。 無線ネッ トワークプロ トコル処理部 6 8は、 基地局側との通信におけるプロ トコルを処理する。
次に実施の形態 1の移動体通信システムの動作について説明する。 上述したように、 移動通信端末 2内の送信データバッファにおける通 信モー ド切り替えのスレツショル ドを上回る送信データが溜まるとスケ ジュ一リ ングモー ドにし、 下回る場合は自律モードに切り替わる。 以降 では、 このスレツショル ドを変更するためのシグナリ ングを実行する 3 つの方法を説明する。 .
第 1の方法は、 上記スレツショル ドの変更情報を報知情報に設定して セル内の端末 2 に対して一斉に通知し変更するものである。 また、 第 2 の方法は、 上記スレツショル ドの変更情報を個別チャネル若しくは共通 チャネルに設定して個々の端末 2 に通知し変更するものである。 さらに 、 第 3の方法は、 上記スレツショル ドの変更情報を物理レイヤシグナ リ ングによって各端末 2 に通知し変更するものである。
先ず、 第 1の方法について説明する。
この方法は、 現在の自セル内におけるスケジューリ ングモードの取り 扱い端末数、 自律モードの取り扱い端末数、 これらの稼動状況や個別チ ャネルの稼動状況に応じてスレツショル ドを変更することで、 自セル内 のノイズライズの分配を適切な量に調節することができる。
第 1 3図は、 第 1の方法に従って実施の形態 1 による基地局制御装置 が端末の送信モード切り替えスレツショル ドを決定する際における基地 局のノイズライズマージンの分配例を示す図である。 第 1 4図は、 第 1 3図に示すノイズライズマージンの分配に応じた送信モー ド切り替えス レツショル ドの変更を説明する図である。 これらの図を用いて第 1の方 法における基本的な考え方を説明する。
先ず、 送信モード切り替えスレツショル ドを変更する前の状態として 、 セル内に複数の移動通信端末 2が収容されているものとする。 また、 基地局におけるノイズライズマ一ジンには、 自律モー ドとスケジュ一リ ングモードとに起因したノイズライズに対する許容マージン、 及び、 個 別チャネルなどでの送信に起因するノイズライズに対する許容マージン (図中の個別チャネルその他の領域) が、 第 1 3図 ( a ) に示すよう に 分配されているものとする。
ここで、 基地局における上記ノイズライズマージンは、 上述したジャ ミ ングマ一ジンに対して、 他セルの稼働状態や Q o Sに基づいて考慮す べき干渉に対するマージンをさらに持たせた許容マ一ジンである。
また、 このとき、 移動通信端末 2の送信デ一夕バッファの上記スレ ツ ショル ドが、 Λヅファ内の送信デ一夕に対して第 1 4図 ( a ) に示す関 係にあるものとする。
個別チャネルでのデ一夕送信は、 一定量のデ一夕送信があるものと仮 定する。 このとき、 基地局制御装置 3 によって、 個別チャネルでの送信 に起因するノイズライズに対して必要な許容マ一ジンを確保するよう に 管理される。
このため、 端末 2 と基地局との間で個別チャネルによるデータ送信の 頻度が増加すると、 基地局制御装置 3は、 個別チャネルによるデータ送 信に要する許容マ一ジンを増加させるよう基地局に指示する。
また、 個別チャネルによるデータ送信は、 個々の端末 2 ごとになされ るものである。 このため、 個別チャネルによるデータ送信の頻度が増加 すると、 基地局におけるノイズライズマ一ジンのうち、 個々の端末 2 に 割り当てた許容マージンから個別チヤネルによる許容マ一ジンが確保さ れる。
これによ り、 第 1 3図 ( b ) に示すように、 基地局におけるノイズラ ィズマ一ジンのうち、 自律モードに起因したノイズライズに対して割り 当てた許容マ一ジンが、 個別チヤネルによる許容マ一ジンを増加させた 分だけ減少することになる。 このとき、 端末数が同一の場合は端末 1台 あたりのノイズライズマ一ジンが減ることになる。
この場合、 送信データバヅ フ ァに対して、 第 1 4図 ( a ) に示すよう な比較的小さな値の送信モード切り替えスレツショル ドが設定されてい ると、 自律モー ドでの許容マージンを越えるデータ送信が実行される可 能性がある。
つま り、 第 1 4図 ( a ) に示すようなスレツショル ドのままでは、 基 地局にデ一夕量の多い送信を実行しょう とする端末 2 については、 当該 デ一夕送信によるノイズライズを許容できなくなる。
そこで、 第 1 3図 ( b ) に示すようなノイズライズマージンの分配構 成となった場合、 第 1 4図 ( b ) に示すように、 第 1の方法における報 知情報にてセル内に収容された端末 2の送信デ一夕バッファのスレツシ ョル ドの値を一斉に下げることで、 データ量の多いデータ送信を実行し よう とする端末 2 を自律モードからスケジューリ ングモー ドに変更させ る。
このとき、 データ量の少ないデータ送信を実行する端末 2では、 変更 後のスレツショル ド値を送信データ量が越えなければ、 そのまま自律モ 一ドを維持することになる。
なお、 あま り一度にスレヅショル ドを下げすぎると自律モードとスケ ジユーリ ングモー ドの端末数のバランスを崩してしまうためスレツショ ル ドは徐々に下げていくのが望ましい。
第 1 5図は、 実施の形態 1 による移動体通信システムにおいて第 1 の 方法による送信デ一夕バッファのスレツショル ド変更を施す場合の変更 シーケンスを示す図である。 基地局は、 現時点の基地局端におけるノィ ズライズの測定を行う (ステップ S T 1 ) 。 具体的に説明すると、 第 1 0図を用いて示したように、 基地局内の希望波電力測定部 1 6及び干渉 波電力測定部 1 7によって現時点の基地局端におけるノイズライズ (干 渉量) が測定される。
このあと、 基地局は、 ステップ S T 1 にて測定したノイズライズを基 地局制御装置 3 に通知する (ステップ S T 2 ) 。 さらに、 基地局は、 自 セル内の自律モード及びスケジューリ ングモー ドで動作している端末数 をそれそれ基地局制御装置 3に通知する (ステップ S T 3 ) 。
次に、 基地局制御装置 3内の無線資源管理部 6 6は、 対象の基地局の 周辺に存在する基地局 (以下、 周辺基地局と称する) の稼動状況 (例え ば、 周辺基地局のセル内における収容端末数なども含む) を取得する ( ステップ S T 4 ) 。
周辺基地局において多数の端末 2が稼動している場合、 ハン ドオーバ が実行される領域を端末 2が移動して く る可能性がある。 この場合、 基 地局制御装置 3内の無線資源管理部 6 6は、 基地局に通知する許容マー ジンとしてジャ ミ ングマージンにハン ドオーバに起因するノイズライズ を考慮したマージンをさらに持たせる。
続いて、 無線資源管理部 6 6は、 当該基地局における個別チャネルの 稼動状況を取得する (ステップ S T 5 ) 。 通常、 個別チャネルは、 ソフ トハン ドオーバにおいて周辺基地局から端末 2にデータ送信するのに利 用されるため、 基地局制御装置 3がその稼動状況を把握している。 無線資源管理部 6 6は、 ステップ S T 1からステップ S T 5 までで取 得した現時点におけるノイズライズに対して、 基地局におけ'るノイズラ ィズマ一ジンに余裕がある場合や、 反対に当該マージンが不足している か否かを判定する (ステップ S T 6 ) 。 この判定結果に応じて、 無線資 源管理部 6 6は、 自律モ一ドとスケジュ一リ ングモ一 ドとのノイズライ ズ枠を変更する処理に移行する。
ここで、 ノイズライズ枠とは、 基地局制御装置 3から基地局に指定さ れた上記許容マージンとして分配された、 個々のモー ドに割り当てられ るノイズライズマージンの割当量のことを指している。 第 1 3図では、 例えばスケジュ一リ ングモード用マージンとして斜線を付した部分がス ケジユーリ ングモー ドについてのノイズライズ枠を表している。
無線資源管理部 6 6は、 現時点におけるノイズライズに対して基地局 におけるノイズライズマージンに過不足が生じており、 基地局にて割り 当てられているノイズライズ枠に変更が必要であると判定すると、 基地 局に対して自律モー ド及び Z又はスケジューリ ングモー ドのノイズライ ズ枠を変更するよう指示する (ステップ S T 7 ) 。
一方、 無線資源管理部 6 6は、 現時点におけるノィズライズに対して 基地局におけるノイズライズマ一ジンに過不足が生じておらず、 ノイズ ラィズ枠の変更が必要でないと判定すると、 上記ノィズライズ枠の変更 指示を行わない。
基地局は、 基地局制御装置 3からノイズライズ枠の変更指示を受ける と、 当該指示に従ってノイズライズ枠を変更する (ステップ S T 8 ) 。 例えば、 第 1 3図を用いて説明したように個別チャネルによるデ一夕送 信の頻度が増加した場合、 基地局制御装置 3は、 基地局におけるノイズ ライズマージンのうち、 個別チャネルのノイズライズ枠を増加させ、 こ の増加分だけ自律モー ド用のノイズライズ枠を削減するよう指示する。 次に、 無線資源管理部 6 6は、 基地局から端末 2の送信モー ド切り替 ぇスレツショル ドを変更するべき旨の通知があると、 現時点でのトラフ ィ ヅク状況、 当該基地局におけるノイズライズ及びその許容マージンを 考慮して、 当該基地局と端末 2 との間の通信において適切な干渉量とな るように上記スレツショルドをどの値に変更するべきか否かを判断する (ステップ S T 9 ) 。
このあと、 無線資源管理部 6 6は、 上記判断結果のスレッショルド値 を含む上記スレッショ'ル ドの変更に関する情報を上記基地局に報知指示 する (ステップ S T 1 0 ) 。
基地局制御装置 3から上記スレツショル ドの変更に関する情報を受け た基地局は、 上記スレツショルド値を含む情報を報知情報 (B C H ) に 設定して、 各端末 2 に対して一斉送信を行う (ステップ S T 1 1 ) 。
当該報知情報を受信した端末 2は、 第 1 1図を用いて説明した動作と 同様にして、 報知情報から送信モード切り替えスレツショルドの値を読 み出し上記スレヅショル ドを変更する (ステヅプ S T 1 2 ) 。
第 1 6図に示すフローチャートを用いて、 実施の形態 1 による移動体 通信システムの第 1 5図中のステップ S T 9の動作を詳細に説明する。 先ず、 基地局内の上りパケッ ト送信管理部 2 4は、 自セル内の端末 2 から報告される送信デ一夕バッファのデ一夕量と、 上記端末 2 に設定し た上記スレツショル ド値とを比較して、 上記スレツショル ド値を変更す ぺきか否かを判断する。 これにより、 上記スレツショル ド値を変更すベ きと判断されると、 基地局は、 前述した送信動作に従って基地局制御装 置 3 にその旨を通知する。
ステップ S T 1 aにおいて、 基地局からスレヅショル ドを変更すべき 旨の通知を受信した基地局制御装置 3内の無線資源管理部 6 6は、 当該 基地局における個別チヤネルの稼働状況に基づいて個別チャネルでのデ 一夕送信に起因するノイズライズを概算する。
次に、 無線資源管理部 6 6は、 上記基地局以外の他の基地局の現時点 における稼動状態に応じたノイズライズに対する許容マ一ジンを概算す る (ステップ S T 2 a ) 。 例えば、 周辺基地局における端末数が多い場 合、 ハン ドオーバが実行される領域を端末 2が移動して く る可能性があ る。 この場合、 無線資源管理部 6 6は、 ハン ドオーバに起因するノイズ ライズを考慮したマージンを概算する。
このようにして周辺基地局の稼働状態を考慮したマ一ジン (例えば、 周辺基地局における端末数が多い場合を考慮したマージンなど) を求め ると、 無線資源管理部 6 6は、 基地局に設定したノイズライズに対する 許容マージンに対して当該マ一ジンをさらに持たせる。
つま り、 上記許容マージンから周辺基地局の稼働状態などを考慮した マージンを差し引いたマージンを、 基地局に設定すべき新たな許容マ一 ジンとする。
続いて、 無線資源管理部 6 6は、 上記基地局のセル内におけるスケジ ユーリ ングモー ドのノイズライズ、 及び端末数を得る (ステップ S T 3 a ) 。 このあと、 無線資源管理部 6 6は、 ステップ S T 1 aで求めた個 別チャネルでのデータ送信に起因するノイズライズ、 及び、 ステップ S T 3 aで求めた上記基地局のセル内におけるスケジューリ ングモードの ノイズライズのそれそれに対する許容マージンを概算する。
ステッ プ S T 4 aにおいて、 無線資源管理部 6 6は、 ステップ S T 2 aにて周辺基地局の稼働状態に応じたマージンを見込んだ上記基地局の 許容マ一ジン全体から、 個別チャネルについてのマ一ジン、 及び、 スケ ジユーリ ングモー ドについてのマージンを差し引いて、 上記基地局にお ける自律モードでのノイズライズに対する許容マージン (ノイズライズ 枠) を求める。 次に、 無線資源管理部 6 6は、 ステップ S T 4 aで求めた上記基地局 における自律モー ドのノイズライズ枠に対して、 上記基地局のセル内に おける自律モードで動作する端末数が適切であるかどうかを判定する ( ステップ S T 5 a ) 。
基地局は、 自セル内の各端末 2から送信データバッファの送信データ 量が報告されている。 さらに、 基地局制御装置 3は、 基地局から上記送 信データ量の通知を受ける。 基地局制御装置 3内の無線資源管理部 6 6 は、 基地局から通知される端末 2の送信データ量について所定の期間に おける平均値を事前に算出しておく。
また、 無線資源管理部 6 6は、 端末 2の送信デ一夕量についての上記 平均値に対して基地局における自律モードのノイズライズ枠がどのく ら いあれば、 当該基地局に対して当該ノィズライズ枠を越えて復調不可能 なデータ送信を行う端末数が全端末数に対して何%発生するかなどを統 計的に予め求めておく。
ここで、 例えば自律モー ドのノイズライズ枠を越えて復調不可能なデ 一夕送信を行う端末数が全端末数に対して所定割合を超える場合を自律 モー ドの端末数が多すぎる状態とし、 反対に所定割合以下となる場合を 自律モー ドの端末数が少なすぎる状態とし、 これら以外の場合を自律モ 一ドの端末数が適切な状態であるものと定義しておく。
ステップ S T 5 aにおいて、 無線資源管理部 6 6は、 上記平均値に対 して現在の基地局における自律モードのノイズライズ枠がどのく らいあ るかを調べ、 この結果に基づいて自律モードの端末数が適切であるか否 かを判定する。
ステップ S T 5 aにおいて自律モードの端末数が多すぎると判定する と、 無線資源管理部 6 6は、 現時点で端末 2 に設定されている切り替え スレヅショルドの値を下げる (ステップ S T 6 a ) 。 自律モー ドの端末 2 に割り当てるノイズライズマージンは、 基地局における自律モードの ノイズライズ枠内に端末数に応じて分配される。
従って、 自律モードの端末数が多くなると、 基地局における自律モー ドのノイズライズ枠自体は一定であるので、 自律モードの各端末 2 に割 り当てるノイズライズマージンが減ってしまう。
このため、 各端末 2に割り当てるノイズライズマ一ジンが減ると、 送 信デ一夕量に見合うデータレー トで送信を実行すると復調可能な範囲の ノイズライズを越えてしまう端末 2が発生することとなる。 このよう に 復調可能な範囲の許容マージンが与えられる端末数を越える状態を、 セ ル内での自律モードの端末数が多い状態と規定している。
ステップ S T 6 aにおいてスレッショル ド値を減少させると、 無線資 源管理部 6 6は、 第 1 5図のステップ S T 1 0の処理に移行して、 当該 変更後のスレツショルド値をスレツショル ドの変更に関する情報として 上記基地局に報知指示する。
また、 ステップ S T 5 aにおいて自律モ一ドの端末数が適切である と 判定すると、 無線資源管理部 6 6は、 現在の切り替えスレツショルド値 を維持する (ステップ S T 7 a ) 。 このスレツショル ド値は、 第 1 5 図 のステップ S T 1 0にてスレツショル ドの変更に関する情報として基地 局に報知指示される。
ステップ S T 5 aにおいて自律モードの端末数が少なすぎると判定す ると、 無線資源管理部 6 6は、 現時点で端末 2 に設定されている切り替 ぇスレツショル ドの値を上げる (ステップ S T 8 a ) 。 ここで、 自律モ ― ドの端末数が少なすぎる状態とは、 送信デ一夕量に見合うデ一夕レー トで送信を実行しても、 各端末 2 に割り当てられたノイズライズマージ ンに対して必要以上の余裕が生じてしまう状態である。
この場合、 スレツショル ド値を上げてセル内での自律モー ドの端末数 を増加させてやれば、 各端末 2 に割り当てたノイズライズマージンを有 効に利用することができる。
このようにして、 ステップ S T 8 aにおいてスレヅショル ド値を増加 させると、 無線資源管理部 6 6は、 第 1 5図のステップ S T 1 0の処理 に移行して、 当該変更後のスレッショルド値をスレッショル ドの変更に 関する情報として上記基地局に報知指示する。
なお、 ステップ S T 6 a及ぴステヅプ S T 8 aにおいて、 一度に行う スレツショル ド値の上げ下げの幅が大きすぎると、 必要以上の端末 2 が 送信モードを切り替えてしまう可能性がある。
そこで、 一度に行うスレヅショル ド値の上げ下げの幅はセル内での自 律モードの端末数などを考慮した一定値に抑えて、 上記スレツショル ド の値は徐々に変えていく ことが望ましい。
以上のように、 第 1の方法では、 送信モードの切り替えス レ ヅショル ドの変更をセル内に一斉に通知できる。 このため、 上記スレヅショル ド 変更を通知するシグナリ ングの発生回数を削減することができる。
上述した報知情報を利用するシグナリ ングでは、 端末 2 ごとに設定が できない点が不利である。 そこで、 セル内の端末 2 について、 例えば Q o Sクラスに基づいたグループ分けを実行して各グル一プごとに上記ス レツショル ドを設定するように構成してもよい。
具体的なグル一プ分け方法について説明する。
W— C D M A方式では、 4つの Q o Sクラス (会話型クラス、 ス ト リ ーミ ングクラス、 イ ンタラクティ ブクラス、 ノ ヅクグラン ドクラス) が 規定されている。 例えば、 これら Q 0 Sクラスについての通信遅延の許 容度を基にしてセル内の端末 2 を以下に示す 3つのグループに分けるこ ととする。
第 1のグループは、 会話型クラスゃス ト リーミ ングクラスが属する、 遅延を最も許容しない音声や動画などのデータを扱う通信サービスを利 用するグループである。
第 2のグループは、 イ ンタラクティ ブクラスが属する、 遅延をある程 度許容する通信サービスを利用するグループである。 例えば、 W W W ( Wor ld Wide Web) などで提供される静止画やテキス トフアイルなどが扱 われる。 これらのデータを送信する場合、 通信遅延はある程度許容され るが、 完全に許容されるわけでなく あま り遅くなるとユーザに不快感を 与える。
第 3のグループは、 バックグラン ドクラスが属する、 遅延が許容され る通信サービスを利用するグループである。 例えば、 通信に関するスケ ジ ュ一 リ ン グが必要で遅延が許容さ れる F T P ( F i l e Transfer Protocol ) を用いたデ一夕転送などが該当する。
セル内の各端末 2のグループ分けは、 基地局との通信における Q o S クラスを把握している基地局制御装置 3内の Q o Sパラメ一夕マツピン グ部 6 4によって実行される。 また、 当該グループ分け結果も Q o Sパ ラメ一夕マッピング部 6 4に保持される。
次に、 上述のようにしてグループ分けされた端末 2 に対するスレ ヅ シ ョル ドの変更処理について説明する。
基地局からスレツショルドを変更すべき旨の通知を受信した基地局制 御装置 3内の無線資源管理部 6 6は、 Q o Sパラメ一夕マッピング部 6 4に保持されているグループ分け結果に基づいて上記スレヅショル ドを 変更すべき端末 2がどのグループに属するかを判定する。
無線資源管理部 6 6は、 グループ分けの判定結果に基づいてグループ ごとに設定するスレッショルド値の上げ下げの幅を決定する。 例えば、 遅延を最も許容しない第 1のグループの端末 2 に対しては、 最も大きい スレツショル ド値が設定されるよう制御する。 また、 遅延が許容される 第 3のグループの端末 2 に対しては最も小さいスレッショル ド値が設定 されるよう制御する。
このようにすることで、 例えば遅延を最も許容しない第 1のグループ においては、 遅延が最も生じない自律モードとなるようにモー ド切り替 えが行われることになる。
なお、 第 1のグループにおいて、 自律モー ドの端末数が増えてスケジ ュ一リ ングモードのノイズライズ枠が不足する場合は、 スレツショル ド の値を徐々に下げて送信デ一夕量が多い端末 2をスケジューリ ングモー ドに切り替えるように制御しても良い。
また、 遅延が許容される第 2のグループ及び第 3のグループについて は、 スケジューリ ングモードに切り替えが行われるように、 第 1のグル ープと比較して低いスレツショルドが設定される。
しかしながら、 セル内で第 1のグループに属する端末数が少なく、 基 地局における許容マ一ジンに余裕がある場合は、 当該許容マージンを有 効に利用するためにも、 第 2のグループ及び第 3のグループに設定する スレツショルドの値を上げるように制御してもよい。
さらに、 セル内の端末 2がほとんど第 1のグループに属する場合は、 端末 2が扱うデータが遅延をどの程度許容するかを示す遅延量に基づい て、 さらに細分化したグループ分けを行う ようにしてもよい。
次に、 第 2の方法について説明する。
この方法では、 送信モー ドの切り替えスレツショル ドの変更情報を個 別チヤネルや共通チヤネルなどのレイヤ 3メ ッセージに設定することで 、 個々の端末に最も適切な送信モードに切り替えることができる。
第 1 7図は、 第 2の方法に従って実施の形態 1 による基地局制御装置 が端末の送信モード切り替えス,レツショル ドを決定する際における基地 局のノイズライズマージンの分配例を示す図である。 第 1 8図は、 第 1 7図に示すノイズライズマージンの分配に応じた送信モード切り替えス レツショル ドの変更を説明する図である。 これらの図を用いて第 2の方 法における基本的な考え方を説明する。
先ず、 送信モー ド切り替えスレツショル ドを変更する前の状態として 、 セル内に複数の移動通信端末 2が収容されているものとする。 また、 基地局におけるノイズライズマージンには、 自律モードとスケジユーリ ングモー ドとに起因したノイズライズに対する許容マージン、 及び、 個 別チャネルなどでの送信に起因するノイズライズに対する許容マージン (図中の個別チャネルその他の領域) が、 第 1 7図 ( a ) に示すよう に 分配されているものとする。
ここで、 基地局における上記ノイズライズマージンは、 上述したジャ ミ ングマージンに他セルの稼働状態や Q o Sによ り考慮すべき干渉に対 するマージンをさらに持たせた許容マ一ジンである。
このとき、 移動通信端末 2の送信データバッファの上記スレツショル ドが、 パヅファ内の送信データに対して第 1 8図 ( a ) に示す関係にあ るものとする。
個別チャネルでのデ一夕送信は、 一定量のデータ送信があるものと仮 定する。 このとき、 基地局制御装置 3によって、 個別チャネルでの送信 に起因するノイズライズに対して必要な許容マージンを確保するよう に 管理される。
このため、 端末 2 と基地局との間で個別チャネルによるデ一夕送信の 頻度が増加すると、 基地局制御装置 3は、 個別チャネルによるデータ送 信に要する許容マージンを増加させるよう基地局に指示する。
また、 個別チャネルによるデータ送信は、 個々の端末 2 ごとになされ るものである。 このため、 個別チャネルによるデ一夕送信の頻度が増加 すると、 基地局におけるノイズライズマ一ジンのうち、 個々の端末 2 に 割り当てた許容マ一ジンから個別チャネルによる許容マ一ジンが確保さ れる。
これによ り、 第 1 7図 (b) に示すように、 基地局におけるノイズラ ィズマージンのうち、 自律モー ドに起因したノイズライズに対する許容 マ一ジンが、 個別チャネルによる許容マ一ジンを増加させた分だけ減少 することになる。
また、 この場合、 送信データバッファに対して、 第 1 8図 (a) に示 す送信モー ド切り替えスレツショルド値が設定されているままでは、 自 律モー ドでの許容マージンを越えるデータ送信が実行される可能性があ る。
つま り、 第 1 8図 (a) に示すようなスレツショル ドのままでは、 基 地局にデ一夕量の多い送信を実行しょう とする端末 2については、 当該 デ一夕送信によるノイズライズを許容できなく なる。 '
このため、 第 1 8図 ( b ) 及び第 1 8図 ( c ) に示すように、 切り替 ぇスレツショル ド値を下げる必要がある。 しかしながら、 切り替えスレ ッショルド値を下げる際、 端末 2ごとの通信品質に対する要求を考慮す べきである。 例えば、 個々の端末 2が扱うデータの性質によ り遅延を許 容するものか否かが異なる。
W— CDMA方式での通信サービスの Q o Sクラス分けにおいて、 音 声などのデ一夕を扱う会話型クラスや、 動画などのデータを扱うス ト リ 一ミ ングクラスでは、 遅延がユーザに不自然な知覚を与えるのを防ぐた めにリアルタイム性が要求される。 従って、 これらの Q o Sクラスでは 遅延をなるベく減らす必要がある。
一方、 We bデ一夕などを扱うイ ンタラクティ ブクラスや、 F T Pな どでのデータ転送を扱うバックグラゥン ドクラスでは、 送信データの正 確性は求められるものの遅延がユーザに知覚されることは少ない。 この ため、 これらのデータ送信はべス トエフオー トで扱われ、 遅延があって も問題は小さい。
そこで、 第 2の方法を用いて個々の端末 2 に対してスレヅショル ド変 更を実行することで、 遅延を許容しないデータを扱う端末 2 に対しては 、 第 1 8図 ( b ) に示すように、 送信デ一夕バッファのスレツショル ド 値の下げ幅を小さ く して上記スレツショル ドがあま り下がらないよう に する。
反対に、 遅延を許容できるデータを扱う端末 2 に対しては、 第 1 8図 ( c ) に示すように、 送信デ一夕バッファのスレヅショル ド値の下げ幅 を大き く して、 第 1 8図 ( b ) の場合よ り もスレツショル ドを低下させ る。
このようにすることで、 遅延を許容しないデータを扱う端末 2は、 遅 延が生じにくい通信特性を有する自律モー ドを維持し、 遅延を許容でき るデータを扱う端末 2のみを自律モードからスケジューリ ングモー ドに 誘導される。
このとき、 第 1 7図 ( b ) に示すように、 基地局における自律モー ド の許容マージンでは、 遅延を許容しないデータを扱う端末 2の許容マー ジン (遅延非許容の端末 1台分のノイズマージン) のマージン低下を小 さ く抑え、 遅延を許容できるデータを扱う端末 2の許容マージン (遅延 許容の端末 1台分のノイズマージン) のマージン低下を大き くする。
なお、 あま り一度にスレツショルドを下げすぎると自律モー ドとスケ ジユーリ ングモ一ドの端末数のバランスを崩してしまうためスレツショ ル ドは徐々に下げていくのが望ましい。
第 1 9図は、 実施の形態 1 による移動体通信システムにおいて第 2の 方法による送信データバッファのスレッショル ド変更を施す場合の変更 シーケンスを示す図である。 基地局は、 現時点の基地局端におけるノィ ズライズの測定を行う (ステップ S T 1 b ) 。 具体的に説明すると、 第 1 0図を用いて示したように、 基地局内の希望波電力測定部 1 6及び干 渉波電力測定部 1 7によって現時点の基地局端におけるノィズライズ ( 干渉量) が測定される。
このあと、 基地局は、 ステップ S T 1 bにて測定したノイズライズを 基地局制御装置 3に通知する (ステップ S T 2 b ) 。 さらに、 基地局は 、 自セル内の自律モード及びスケジューリ ングモー ドで動作している端 末数をそれぞれ基地局制御装置 3に通知する (ステップ S T 3 b ) 。
次に、 基地局制御装置 3内の無線資源管理部 6 6は、 周辺基地局の稼 動状況 (例えば、 周辺基地局のセル内における収容端末数なども含む) を取得する (ステップ S T 4 b ) 。
周辺基地局において多数の端末 2が稼動している場合、 ハン ドオーバ が実行される領域を端末 2が移動して く る可能性がある。 この場合、 基 地局制御装置 3内の無線資源管理部 6 6は、 基地局に通知する許容マー ジンと してジャ ミ ングマージンにハン ドオーバに起因するノイズライズ を考慮したマージンをさらに持たせる。
続いて、 無線資源管理部 6 6は、 当該基地局における個別チャネルの 稼動状況を取得する (ステップ S T 5 b ) 。 通常、 個別チャネルは、 ソ フ トハン ドオーバにおいて周辺基地局から端末 2 にデ一夕送信するのに 利用されるため、 基地局制御装置 3がその稼動状況を把握している。 無線資源管理部 6 6は、 ステップ S T 1 bからステップ S T 5 bまで で取得した現時点におけるノイズライズに対して、 基地局におけるノィ ズライズマージンに余裕がある場合や、 反対に当該マ一ジンが不足して いるか否かを判定する (ステップ S T 6 b ) 。 この判定結果に応じて、 無線資源管理部 6 6は、 自律モードとスケジューリ ングモードとのノィ ズライズ枠を変更する処理に移行する。 無線資源管理部 6 6は、 現時点におけるノイズライズに対して基地局 におけるノイズライズマージンに過不足が生じており、 基地局にて割り 当てられているノイズライズ枠に変更が必要であると判定する と、 基地 局に対して自律モ一ド及び/又はスケジユーリ ングモードのノイズライ ズ枠を変更するよう指示する (ステップ S T 7 b ) 。
一方 無線資源管理部 6 6は、 現時点におけるノイズライズに対して 基地局におけるノイズライズマージンに過不足が生じておらず、 ノイズ ラィズ枠の変更が必要でないと判定すると、 上記ノィズライズ枠の変更 指示を行わない。
基地局は、 基地局制御装置 3からノイズライズ枠の変更指示を受ける と、 当該指示に従ってノイズライズ枠を変更する (ステップ S T 8 b ) 。 例えば、 第 1 7図を用いて説明したように個別チャネルによるデ一夕 送信の頻度が増加した場合、 基地局制御装置 3は、 基地局におけるノィ ズライズマージンのうち個別チャネルのノイズライズ枠を増加させ、 こ の増加分だけ自律モード用のノイズライズ枠を削減するよう指示する。 次に、 無線資源管理部 6 6は、 基地局から端末 2の送信モー ド切り替 ぇスレツショル ドを変更するべき旨の通知があると、 現時点での トラフ ィ ック状況、 当該基地局におけるノイズライズ及びその許容マージンを 考慮して、 個々の端末 2 ごとの切り替えスレッショル ドをどの値に変更 するべきか否かを判断する (ステップ S T 9 b ) 。
このあと、 無線資源管理部 6 6は、 上記判断結果のスレッショル ド値 を含む上記スレヅショル ドの変更に関する情報をレイヤ 3メ ッセージと して上記基地局に送信する (ステップ S T 1 0 b ) 。
基地局制御装置 3から上記スレッショルドの変更に関する情報を受け た基地局は、 スレツショルドの設定対象の端末 2 と個別チャネル (D P C H ) での通信が確立している場合は個別チャネル (D P C H ) を利用 し、 個別チャネルでの通信が確立していなければ共通チャネル (FA C H) を利用して、 上記情報を対象端末 2に送信する (ステップ S T 1 1 b) 。
当該情報を受信した端末 2は、 第 1 1図を用いて説明した動作と同様 にして、 個別チャネル又は共通チャネルに設定された情報から送信モー ド切り替えスレツショルドの値を読み出し上記スレツショルドを変更す る (ステップ S T 1 2 b) 。
このあと、 当該端末 2内の上り個別チャネル送信部 6 0が、 切り替え スレヅショル ドの値を変更した旨の情報をメ ヅセージとして上り D P C H又は RACHに設定して基地局に送信する (ステップ S T 1 3 b) 。 当該メ ッセージを受けた基地局は、 上記変更が完了した旨を基地局制御 装置 3に通知する (ステップ S T 1 4 b) 。
第 2 0図に示すフローチャートを用いて、 実施の形態 1による移動体 通信システムの第 1 9図中のステップ S T 9 bにおける動作を詳細に説 明する。
先ず、 基地局内の上りパケッ ト送信管理部 2 4は、 自セル内の端末 2 から報告される送信データバッファのデータ量と、 上記端末 2に設定し た上記スレツショル ド値とを比較して、 上記スレツショル ド値を変更す べきか否かを判断する。 これによ り、 上記スレツショル ド値を変更すベ きと判断されると、 基地局は、 上述した送信動作に従って基地局制御装 置 3にその旨を通知する。
ステップ S T 1 cにおいて、 基地局からスレツショル ドを変更すべき 旨の通知を受信した基地局制御装置 3内の無線資源管理部 6 6は、 当該 基地局における個別チャネルの稼働状況に基づいて個別チャネルでのデ 一夕送信に起因するノイズライズを概算する。
次に、 無線資源管理部 6 6は、 上記基地局以外の他の基地局の現時点 における稼動状態に応じたノィズライズに対する許容マ一ジンを概算す る (ステップ S T 2 c ) 。 例えば、 周辺基地局における端末数が多い場 合、 ハン ドオーバが実行される領域を端末 2が移動して く る可能性があ る。 この場合、 無線資源管理部 6 6は、 ハン ドオーバに起因するノイズ ライズを考慮したマ一ジンを概算する。
このようにして周辺基地局の稼働状態を考慮したマージン (例えば、 周辺基地局における端末数が多い場合を考慮したマ一ジンなど) を求め ると、 無線資源管理部 6 6は、 基地局に設定したノィズライズに対する 許容マージンに対して当該マ一ジンをさらに持たせる。
つま り、 上記許容マージンから周辺基地局の稼働状態などを考慮した マージンを差し引いたマージンを、 基地局に設定すべき新たな許容マー ジンとする。
続いて、 無線資源管理部 6 6は、 上記基地局のセル内におけるスケジ ユーリ ングモー ドのノイズライズ、 及び端末数を得る (ステップ S T 3 c ) 。 このあと、 無線資源管理部 6 6は、 ステップ S T 1 cで求めた個 別チャネルでのデ一夕送信に起因するノイズライズ、 及び、 ステップ S T 3 cで求めた上記基地局のセル内におけるスケジュ一リ ングモー ドの ノイズライズのそれそれに対する許容マ一ジンを概算する。
ステッ プ S T 4 cにおいて、 無線資源管理部 6 6は、 ステ ッ プ S T 2 cにて周辺基地局の稼働状態に応じたマ一ジンを見込んだ上記基地局の 許容マ一ジン全体から、 個別チャネルについてのマージン、 及び、 スケ ジユーリ ングモ一 ドについてのマージンを差し引いて、 上記基地局にお ける自律モードでのノイズライズに対する許容マージン (ノイズライズ 枠) を求める。
このとき、 各端末 2からの送信データレートの希望を受けている場合 、 無線資源管理部 6 6は、 これら送信データレートの希望を考慮してス ケジユーリ ングモー ドについての許容マージン (許容限界) を調整する
(ステップ S T 5 c ) 。
端末 2は、 基地局との間でスケジユーリ ングモ一 ドでデ一夕送信する 際、 自己が希望する送信デ一夕レートを当該基地局に通知する。 基地局 内の上りパケヅ ト送信管理部 2 4は、 当該端末 2から希望された送信デ —夕レー ト と共に、 そのデータ通信のスケジュールを管理する。
また、 上りバケツ ト送信管理部 2 4は、 当該当該端末 2から希望され た送信データレー トを基地局制御装置 3内の無線資源管理部 6 6 に通知 する。 '
無線資源管理部 6 6では、 自セル内でスケジューリ ングモ一ドで動作 する端末 2の送信データレー トに応じたノイズライズを概算すると共に 、 当該ノイズライズに応じた許容マージンを求めて、 スケジューリ ング モ一 ドについての許容マージンを調整する。
このあと、 無線資源管理部 6 6は、 上述のようにして調整したスケジ ュ一リ ングモードについての許容マ一ジンを用いて、 ステップ S T 4 c で求めた自律モードの許容マ一ジンを調整する。
次に、 無線資源管理部 6 6は、 上述のようにして求めた上記基地局に おける自律モードのノイズライズ枠に対して、 上記基地局のセル内にお ける自律モードで動作する端末数が適切であるかどうかを判定する (ス テツプ S T 6 c ) 。
基地局は、 自セル内の各端末 2から送信デ一夕バッファ内の送信デ一 夕量を報告されている。 さらに、 基地局制御装置 3は、 基地局から上記 送信データ量の通知を受ける。 基地局制御装置 3内の無線資源管理部 6 6は、 基地局から通知される端末 2の送信データ量について所定の期間 における平均値を事前に算出しておく。
また、 無線資源管理部 6 6は、 端末 2の送信データ量についての上記 平均値に対して基地局における自律モードのノイズライズ枠がどのく ら いあれば、 当該基地局に対して当該ノイズライズ枠を越えて復調不可能 なデータ送信を行う端末数が全端末数に対して何%発生するかなどを統 計的に予め求めておく。
ここで、 例えば自律モードのノィズライズ枠を越えて復調不可能なデ 一夕送信を行う端末数が全端末数に対して所定割合を超える場合を自律 モードの端末数が多すぎる状態とし、 反対に所定割合以下となる場合を 自律モードの端末数が少なすぎる状態とし、 これら以外の場合を自律モ 一ドの端末数が適切な状態であるものと定義しておく。
ステップ S T 6 cにおいて、 無線資源管理部 6 6は、 上記平均値に対 して現在の基地局における自律モードのノイズライズ枠がどのく らいあ るかを調べ、 この結果に基づいて自律モー ドの端末数が適切であるか否 かを判定する。
ここで、 無線資源管理部 6 6 によって自律モー ドの端末数が多すぎる と判定されると、 基地局制御装置 3内の Q 0 Sパラメ一夕マッピング部 6 4は、 自律モー ドの端末 2の中で遅延を許容するものを探索する (ス テヅプ S T 7 c ) 。
セル内での自律モードの端末数が多い状態とは、 上述したように自律 モー ドでのノイズライズに対して復調可能な範囲の許容マージンを与え られる端末数を越える状態を、 セル内での自律モー ドの端末数が多い状 態と規定している。
また、 Q o Sパラメ一夕マッピング部 6 4は、 自律モー ドで動作する 端末 2 についての Q o Sクラスに基づいて、 これら端末 2の中で遅延を 許容するデータを扱っているか否かを判断する。 例えば、 上述した Q 0 Sの 4つのクラスで遅延許容か非許容かを判断する。 また、 W— C D M A方式における会話型クラスやス ト リーミ ングクラスでは、 遅延量 ( Transfer delay) を m s単位で規定しているので、 これを元に許容でき る遅延を判定するように構成しても良い。
続いて、 無線資源管理部 6 6は、 ステップ S T 7 cにおいて Q o Sパ ラメ一夕マツビング部 6 4によって遅延非許容であると判定された端末 2に対して、 現在の切り替えスレヅショル ドの値を維持するか、 若し く は、 遅延許容の場合と比較して下げ幅を小さ く したスレツショル ドを設 定する (ステップ S T I O c ) 。
ここで、 無線資源管理部 6 6は、 遅延を許容しない Q 0 Sクラスに属 する端末 2のうち、 Q o Sパラメ一夕での遅延量が大きい (遅延許容が 緩い) ものほど、 その切り替えスレヅショルドの下げ幅を大き く する。 例えば、 切り替えスレッショル ドの下げ幅について自律モードの端末 2 のセル内における混雑の度合に応じた係数 kを設ける。
遅延量が 2 0 m s と 8 0 m sの Q o Sパラメ一夕が設定された端末 2 があった場合、 係数 k = 1 とすれば、 切り替えスレツショル ドの下げ幅 は、 下記のようになる。
遅延量 2 0 m sの端末 2の下げ幅は、 k ' 2 0Z ( 2 0 + 8 0 ) = l / 5二 2 0 %となる。
遅延量 8 0 m sの端末 2の下げ幅は、 k · 8 0 / ( 2 0 + 8 0 ) = 4 / 5 = 8 0 %となる。
なお、 いくつかの自律モードの端末 2の切り替えスレヅショル ドの値 を下げることによって、 基地局のスケジユーリ ングモードの許容マージ ンのうち自律モー ドの許容マージンを確保するために圧迫されていた分 が解消されれば、 無線資源管理部 6 6は、 上記係数 kを 0に設定して現 在のスレツショル ドの値を維持する。
また、 無線資源管理部 6 6は、 ステップ S T 7 cにおいて Q o Sパラ メ一夕マツピング部 6 4によつて遅延許容であると判定された端末 2 に 対して、 ステップ S T 1 0 cの場合よ り大きな下げ幅で切り替えスレッ ショル ドの値を下げる設定をする (ステップ S T 1 1 c ) 。 このように して、 無線資源管理部 6 6は、 過剰の自律モー ドからスケジューリ ング モードに移行するよう切り替えスレツショル ドを設定する。
また、 ステップ S T 6 cにおいて自律モードの端末数が適切である と 判定すると、 無線資源管理部 6 6は、 現在の切り替えスレツショルド値 を維持する (ステヅプ S T 8 c ) 。
さらに、 ステップ S T 6 cにおいて自律モードの端末数が少なすぎる と判定すると、 無線資源管理部 6 6は、 現時点で端末 2 に設定されてい る切り替えスレツショルドの値を上げる (ステップ S T 9 c ) 。
ここで、 自律モー ドの端末数が少なすぎる状態とは、 送信デ一夕量に 見合うデータレートでデ一夕送信を実行しても、 各端末 2 に割り当てら れたノィズライズマージンに対して必要以上の余裕が生じてしまう状態 である。
この場合、 スレツショルド値を上げてセル内での自律モ一 ドの端末数 を増加させてやれば、 各端末 2に割り当てたノイズライズマージンを有 効に利用することができる。
このように、 無線資源管理部 6 6は、 送信データレート、 自律モー ド の端末数、 スケジューリ ングモー ドのノイズライズ枠、 及び、 許容すベ き遅延量に基づいて、 切り替えスレツショル ドの変更幅を決定する。 ステップ S T 8 cからステップ S T 1 1 c までのいずれかで切り替え スレツショル ド値を決定すると、 無線資源管理部 6 6は、 第 1 9図のス テヅプ S T 1 O bの処理に移行して、 当該変更後のスレヅショル ド値を 含むレイヤ 3メ ッセージを生成して上記基地局に送信する。
基地局制御装置 3からスレツショル ドの変更メ ッセ一ジを受けた基地 局は、 第 1 9図のステップ S T 1 1 bにおいて、 スレツショルドの設定 対象の端末 2 と個別チャネル (D P C H) での通信が確立している場合 は個別チャネル (D P C H) を利用し、 個別チャネルでの通信が確立し ていなければ共通チャネル ( F A C H) を利用して、 上記情報を対象端 末 2に送信する。
このあと、 第 1 9図のステップ S T 1 2 bからステップ S T 1 4 bま での処理にて、 移動通信端末 2が、 自己の送信データバッファにおける 切り替えスレツショル ドの値を変更する。
なお、 ステップ S T 9 cにおいて、 Q o Sパラメ一夕マッピング部 6 4が Q o Sパラメ一夕に基づいて遅延を許容するか否かを判定し、 この 判定結果を基に、 無線資源管理部 6 6が、 特に遅延を許容しない端末 2 についての切り替えスレツショル ドの上げ幅を遅延許容のものよ り多め に設定するように構成しても良い。 このようにすることで、 個々の端末 に最も適切な送信モードに切り替えることができる。
また、 ステップ S T 9 c、 ステップ S T 1 0 c及びステップ S T 1 1 cにおいて、 一度に行うスレツショル ド値の上げ下げの幅が大きすぎる と、 必要以上の端末 2が送信モー ドを切り替えてしまう可能性がある。 そこで、 一度に行うスレヅショル ド値の上げ下げの幅はセル内での自律 モードの端末数などを考慮した一定値に抑えて、 上記スレツショルドの 値は徐々に変えていく ことが望ましい。
以上のように、 第 2の方法では、 セル内の端末 2に対して個別に切り 替えスレツショル ドを設定するので、 端末 2ごとに必要としている通信 条件に応じた通信モー ドの設定が可能になる。 特に、 個々の端末 2が扱 うデータが遅延を許容するものであるか否かに応じて自律モードとスケ ジユーリ ングモー ドとの切り替えることによって、 個々の端末 2 との間 でのデータ通信に設定された Q o Sを保証することができる。
なお、 第 1の方法及び第 2の方法において、 基地局制御装置 3内の無 線資源管理部 6 6が、 通信モード切り替えスレツショルドを決定する構 成を説明したが、 本発明は、 これに限定されるものではない。
例えば、 基地局制御装置 3から Q 0 S情報などを基地局が得て、 基地 局内の上りバケツ ト通信管理部 2 4が、 通信モード切り替えスレツショ ル ドを決定するよう構成してもよい。
また、 基地局制御装置 3側で決定した上記スレツショルド値を、 基地 局側で現時点での ト ラフィ ック状況などに応じて変更を加えて端末 2 に 通知しても良い。 つま り、 基地局及び基地局制御装置 3が共同して上記 スレツショル ド値を決定する構成も本発明に含まれる。
この場合、 基地局制御装置 3から通知されたスレツショルド値を変更 する基地局側の構成としては、 上りパケッ ト通信管理部 2 4が考えられ る。
次に、 第 3の方法について説明する。
この方法では、 物理レイヤシグナリ ング ( L 1 シグナリ ング) を用い て送信モードの切り替えスレツショルドの変更情報を個別の端末に送信 することで、 個々の端末に最も適切な送信モ一 ドに切り替えることがで きる。 また、 第 3の方法では、 第 2の方法よ り高速な物理レイヤシグナ リ ングを利用するため、 バケツ 卜の トラフィ ック変動に追従した切り替 ぇスレヅショル ド変更が可能である。
物理レイヤシグナリ ング (以降、 L 1 シグナリ ングと称する) とは、 移動通信端末 2 と基地局との間の物理レイヤの通信条件を設定するため の物理レイヤのビッ ト情報に上記スレツショル ドに関する情報を割り当 てるものである。
例えば、 新しいチャネル及びそのスロ ヅ トフォ一マヅ トを導入して物 理レイヤシグナリ ングを実行する。 ここで、 スロッ トフォ一マッ ト とは 、 伝送パケッ トデータの 1スロッ ト当たりのビッ 卜の割り付け方を規定 するものである。
つま り、 物理レイヤシグナリ ングによる切り替えスレツショル ドの変 更では、 スロッ トフォ一マツ トにて伝送パケッ トデ一夕中における切り 替えスレツショル ドの変更情報の設定ビッ トを定義する。
具体例としては、 U L— S I C C Hなどを物理レイヤシグナリ ングの ための新チャネルとして定義し、 そのスロッ トフォ一マツ 卜に切り替え スレツショルド値の上げ下げを指定する 2値コマン ドを設定するビッ ト を定義する。 '
また、 この他に、 パンクチャ リングによる方法がある。 これは、 現在 使用している個別チャネル (D P C H ) に設定されるデータのある部分 を削ってその部分に切り替えスレツショル ド値を指定する情報を挿入す るものである。 元のデータに強力な誤り訂正機能を持たせておき、 元の データからのある程度の誤差を修正することが可能な場合に実現するこ とができる。
なお、 この方法では、 元のデ一夕についてのビッ ト誤り率が増加して しまうため、 切り替えスレツショル ド値を設定するビッ ト数をあま り多 く とることができない。
第 2 1図は、 第 3の方法に従って実施の形態 1 による基地局が端末の 送信モード切り替えスレツショルドを決定する際における基地局のノィ ズライズマージンの分配例を示す図である。 この図を用いて第 3の方法 における基本的な考え方を説明する。
送信モード切り替えスレツショル ドを変更する前の状態として、 セル 内に複数の移動通信端末 2が収容されているものとする。 また、 第 2 1 図 ( a ) に示すように、 基地局におけるノイズライズマ一ジンには、 自 律モードとスケジューリ ングモードとに起因したノイズライズに対する 許容マージン、 及び、 個別チャネルなどでの送信に起因するノイズライ ズに対する許容マ一ジン (図中の個別チャネルその他の領域) が分配さ れているものとする。
ここで、 基地局における上記ノイズライズマージンは、 上述したジャ ミ ングマージンに対して他セルの稼働状態や Q o Sから考慮すべき干渉 に対するマ一ジンをさらに持たせた許容マ一ジンである。
—般に、 パケッ ト通信においては間欠的な送信となりやすい。 つま り 、 何か大きいデ一夕をアップロードする際、 通信負荷は大きくなるが、 その送信が止むと上記負荷は減ることが多い。
セル内の端末数が多く、 それそれの端末 2が全く異なつた通信サービ スを扱う場合、 トラフィ ックの時間的変動は統計的に見てある程度は吸 収される。 しかしながら、 セル内の多くの端末 2が同じ通信サービスを 扱う場合、 トラフィ ックの時間的変動は、 過負荷になった り、 閑散とし てしまうこともある。
例えば、 スケジューリ ングモードの端末 2のパケヅ ト通槍の頻度が増 える (活発になって く る) と、 第 2 1図 ( b ) に示すように、 基地局の 許容マ一ジンのうち、 スケジューリ ングモード用のマージンをよ り多く 分配しなければならず、 その分自律モード用マ一ジンが削減される。 逆に、 スケジユーリ ングモ一ドの端末のパケッ ト通信の頻度が少なく なって く る (活発でなく なって く る) と、 第 2 1 図 ( c ) に示すように 、 基地局の許容マ一ジンのうちスケジュ一リ ングモード用のマージンを 減ら して、 その分自律モー ド用マージンが増加するように制御されるの が望ましい。 '
上述のように、 自律モ一 ドマージンを減らす場合は、 一部の端末 2 を 自律モードからスケジューリ ングモー ドに切り替えれば良く、 逆に自律 モー ドマ一ジンを増やす場合は、 一部の端末をスケジユーリ ングモー ド から自律モードに切り替えればよい。 ここで、 高速に変動する各送信モ一 ドの トラフィ ックに追従して、 上 記のような送信モ一 ドの切り替えを実行するには、 切り替えスレツショ ル ドをなるベく速く変化させる必要がある。 そこで、 第 3の方法では、 レイヤ 3メ ッセージよ り高速な物理レイヤシグナリ ングを利用する。 第 2 2図は、 実施の形態 1 による移動体通信システムにおいて第 3の 方法による送信デ一夕バッファのスレツショルド変更を施す場合の変更 シーケンスを示す図である。 基地局内の上りパケヅ ト送信管理部 2 4は 、 基地局制御装置 3からアップリ ンクエンハンスメン ト用のノイズライ ズ枠を事前に指定される (ステップ S T 1 d ) 。
具体的に説明すると、 基地局制御装置 3内の無線資源管理部 6 6は、 Q o Sパラメ一夕マツビング部 6 4が管理する Q 0 Sパラメ一夕や、 対 象基地局以外の他セルの稼働状態や対象基地局のセルの トラフィ ック状 況を考慮して、 対象基地局に対する一定範囲の許容マージンを求め、 対 象基地局に通知する。
基地局に通知される許容マージンとは、 第 5図で制御可能なマージン とされたスケジユーリ ングモー ド用のマージンと自律モー ド用のマージ ン、 及び、 自セル干渉や他セル干渉などからなる第 5図で非制御とされ たマージンが分配されたものである。
ここで、 基地局制御装置 3は、 上記許容マージン全体を一定の範囲で 決定して基地局に設定する。 一方、 当該許容マ一ジンにおける各送信モ 一ドについての許容マ一ジンの分配比率は、 基地局内の上りパケッ ト送 信管理部 2 4が決定する。
次に、 基地局内の上りパケッ ト送信管理部 2 4は、 自セル内の端末 2 からスケジューリ ングモー ドでのデータ送信における送信データ レー ト の希望を受け付ける (ステップ S T 2 d ) 。
上りバケツ ト送信管理部 2 4は、 自律モー ドでの許容データレートを 決定する他、 スケジューリ ングモードでのデ一夕送信を管理するスケジ ユーラ としても機能する。 上述した端末 2からの送信デ一夕レー トは、 スケジユーリ ングモー ドでのデータ送信スケジュール内容として上りパ ケッ ト送信管理部 2 4に登録される。
このあと、 上りパケッ ト送信管理部 2 4は、 基地局制御装置 3から割 り当てられた許容マ一ジンに対してスケジユーリ ングモー ドの トラフ ィ ヅクにおける負荷状況が適切が否かを判断し、 この判断結果に応じて各 送信モー ドが切り替えられるように切り替えスレツショル ドを決定する (ステップ S T 3 d ) 。 この処理については第 2 3図を用いて詳細に後 述する。
ステップ S T 3 dにて切り替えスレツショル ド値を決定すると、 上り バケツ ト送信管理部 2 4は、 スレツショル ドの変更対象の端末 2 に対し て、 第 1 0図を用いて前述した送信動作に従って L 1 シグナリ ングにて 変更後のスレツショルド値を指示をする (ステップ S T 4 d ) 。
なお、 上述したように、 L 1 シグナリ ングにおける切り替えスレッシ ョルド変更指示を、 スレツショルド値を上げる又は下げるのみを指定す る 2値コマン ドとする場合、 伝送エラーなどによ り上記変更指示が端末 2 に正確に送信されない可能性がある。
このため、 基地局は、 端末 2 に切り替えスレツショル ドの変更指示が 確実に受信されるように、 複数回連続して L 1 レイヤコマン ドを送る ( ステップ S T 5 d ) 。
以上のように、 第 3の方法では、 切り替えスレツショル ドの変更処理 において基地局制御装置 3が介在する処理を最小限に抑えている。 この ため、 基地局と基地局制御装置 3 との間での通信を省略することができ 、 端末 2の切り替えスレツショルドの変更を迅速に^行することができ る。 第 2 3図に示すフローチャートを用いて、 実施の形態 1 による移動体 通信システムの第 2 2図中のステップ S T 3 dにおける動作を詳細に説 明する。
先ず、 基地局内の上りパケッ ト送信管理部 2 4は、 自セル内でスケジ ユーリ ングモー ドによるデ一夕送信がスケジュールリ ングされている状 況を調べる (ステップ S T 1 e ) 。
次に、 上りパケヅ ト送信管理部 2 4は、 ステップ S T 1 eで調べたス ケジユーリ ング状況に基づいて、 基地局制御装置 3から割り当てられた 許容マージンに対してスケジュ一リ ングモードの トラフィ ヅクの負荷が 適切か否かを判定する (ステップ S T 2 e ) 。
具体的に説明すると、 上りパケッ ト送信管理部 2 4は、 スケジユーリ ングモードでのデータ送信を通知してきた端末数やそのデ一夕通信にお いて送信されるべきデ一夕量から、 スケジューリ ングモー ドの トラフィ ックの負荷が適切か否かを判定する。
上りバケツ ト送信管理部 2 4は、 例えば自セル内でスケジュ一リ ング モードの端末数やそのデータ通信において送信されるべきデータ量が多 く、 当該スケジューリングモー ドでのデ一夕送信についての Q o Sによ り指定された通信条件 (遅延要求など) を満たさなくなる場合を、 スケ ジユーリ ングモー ドの トラフィ ヅクの負荷が多すぎる状態と判断する。 反対に、 自セル内でスケジューリ ングモー ドの端末数やそのデータ通 信において送信されるべきデータ量が少なく、 当該スケジューリ ングモ — ドでのデータ送信についての Q 0 Sによ り指定された通信条件 (遅延 要求など) を十分に満たしているが、 スケジューリ ングモード用の許容 マージンのほとんどが利用されていない場合を、 スケジューリ ングモー ドの トラフィ ックの負荷が少なすぎる状態と判断する。
スケジューリ ングモードでは、 上りパケッ ト送信管理部 2 4に割り当 てられた無線資源しか利用されず、 割り当てを繰り返せば制限無くスケ ジユーリ ングモ一ドでの端末 2を設定してゆく ことができる。
しかしながら、 スケジューリ ングモードでの端末 2が数多く設定され ると、 スケジュールに沿った順番でのみデータ送信が実行されるため、 不可避的に遅延が生じてしまう。
そこで、 上記判定方法は、 スケジューリ ングモードの端末 2が扱うデ 一夕についてどの程度遅延が許容されるかに応じてスケジューリ ングモ —ドの トラフィ ックの負荷が適切か否かを判定するものである。
また、 上記以外の判定方法としては、 自律モー ドに着目する処理が挙 げられる。 具体的に説明すると、 上りパケッ ト送信管理部 2 4は、 自セ ル内における自律モー ドの端末 2が、 事前に通知した許容データレー ト 範囲の最大値でデ一夕送信してきた場合を仮定してそのノィズライズを 概算する。
そして、 このノイズライズに応じた自律モードの許容マージンを設定 した場合に、 現時点でスケジュ一リ ングモ一ド用の許容マージンを削減 しなければならない状態を、 スケジューリ ングモー ドの トラフィ ックの 負荷が多すぎる状態と判断する。
反対に、 上記ノイズライズに応じた自律モー ドの許容マージンを設定 しても、 現時点でスケジユーリ ングモード用の許容マージンを増加して もよい状態を、 スケジューリ ングモードの トラフィ ヅクの負荷が少なす ぎる状態と判断する。
なお、 上記両判定方法において、 上述したスケジューリ ングモードの トラフイ ツクの負荷が多い場合及び少ない場合以外の状態を トラフイ ツ クの負荷が適切な状態と判断することとする。
ステップ S T 2 eにおいて トラフィ ヅクの負荷が適切な状態であると 判定すると、 上りパケッ ト送信管理部 2 4は、 第 2 3図に示す処理を終 了し、 端末 2への通知も行わない。
ステップ S T 2 eにおいて トラフィ ックの負荷が多い状態であると判 定すると、 上りパケッ ト送信管理部 2 4は、 自セル内で自律モー ドでの 送信頻度が多い端末 2を探索する (ステップ S T 3 e ) 。 例えば、 自律 モードでの許容データレートの事前通知を行った回数が所定値を越える 端末 2 を自律モー ドでの送信頻度が多いものと判定する。
次に、 上りパケッ ト送信管理部 2 4は、 ステップ S T 3 eにて自律モ 一ドでの送信頻度が多いと判定した端末 2が遅延を許容するか否かを判 定する (ステップ S T 4 e ) 。 この判定は、 当該端末 2が极ぅデ一夕の Q 0 Sによ り指定された遅延量に基づいて実施する。 このとき、 遅延を 許容しない端末 2であると判断すると、 上りパケッ ト送信管理部 2 4は 、 第 2 3図に示す処理を終了し、 端末 2への通知も行わない。
—方、 遅延を許容する端末 2であると判断すると、 上りバケツ ト送信 管理部 2 4は、 当該端末 2についての切り替えスレツショル ド値を下げ て、 第 2 2図のステヅプ3 丁 4 (1の処理に移行する (ステップ S T 5 e
) o
このようにして、 L 1 シグナリ ングによ り上記変更後の切り替えス レ ッショル ド値が通知されると、 端末 2は、 当該スレツショル ド値に応じ て送信モードを切り替え、 その旨を基地局に応答する。
基地局内の上りパケツ ト送信管理部 2 4は、 上記端末 2からの送信モ — ド切り替え応答によって、 当該端末 2がスケジューリ ングモードに切 り替わった否かを判定する (ステップ S T 6 e ) 。
このとき、 スケジューリ ングモー ドに切り替わつたと判定すると、 上 りパケヅ ト送信管理部 2 4は、 新たなスケジユーリ ングモ一ドに対する ノイズライズを概算し、 基地局制御装置 3から設定された許容マージン の範囲内でスケジユーリ ングモー ドのノイズライズマージン (ノイズラ ィズ枠) を増加させる (ステップ S T 7 e ) 。
一方、 ステップ S T 6 eにて端末 2から送信モードが切り替わった旨 の応答がなく、 スケジュ一リ ングモードに移行していないと判断する と 、 上りパケヅ ト送信管理部 24は、 第 2 2図のステヅプ S T 5 dの処理 に移行して、 上記変更後の切り替えスレツショルド値が設定された L 1 シグナリ ングコマン ドを継続して対象端末 2に送信する (ステップ S T 8 e ) 。 このあと、 端末 2から送信モー ドが切り替わった旨の応答があ れば、 ステップ S T 6 eからの処理に戻る。
また、 上りパケッ ト送信管理部 2 4は、 ステップ S T 2 eにてスケジ ュ一リ ングモードの トラフィ ックの負荷が少ないと判定すると、 自セル 内に収容された端末 2のうち、 スケジユーリ ングモー ドでの送信頻度が 少ない端末 2、 若しくは、 遅延を許容できないデータを扱う端末 2を探 索する (ステップ S T 9 e) 。
ステップ S T 9 eにおいて、 スケジューリ ングモー ドでの送信頻度が 少ない端末 2、 若しくは、 遅延を許容できないデータを扱う端末 2が抽 出された場合、 上りパケッ ト送信管理部 24は、 当該端末 2についての 切り替えスレツショルド値を上げて、 第 2 2図のステップ S T 4 dの処 理に移行する (ステップ S T I O e ) 。
上述したように、 端末 2は、 L 1シグナリ ングによ り上記変更後の切 り替えスレヅショル ド値が通知されると、 当該スレッショル ド値に応じ て送信モードを切り替え、 その旨を基地局に応答する。
上りバケツ ト送信管理部 24は、 上記端末 2からの送信モー ド切り替 え応答によって、 当該端末 2が自律モー ドに切り替わつたか否かを判定 する (ステップ S T l l e ) 。
このとき、 自律モードに切り替わつたと判定すると、 上りパケッ ト送 信管理部 24は、 新たな自律モー ドに対するノイズライズを概算し、 基 地局制御装置 3から設定された許容マ一ジンの範囲内で自律モードのノ ィズライズマージン (ノイズライズ枠) を増加させる (ステップ S T 1 2 e ) 。
一方、 ステップ S T 1 1 eにて端末 2から送信モー ドが切り替わった 旨の応答がなく、 自律モードに移行していないと判断すると、 上りパケ ッ ト送信管理部 2 4は、 第 2 2図のステップ S T 5 dの処理に移行して 、 上記変更後の切り替えスレツショル ド値が設定された L 1 シグナリ ン グコマン ドを継続して対象端末 2に送信する (ステップ S T 1 3 e ) 。 このあと、 端末 2から送信モードが切り替わった旨の応答があれば、 ス テヅプ S T 1 1 eからの処理に戻る。
以上のように、 第 3の方法によれば、 レイヤ 3メ ッセージによる場合 よ り高速な物理レイヤシグナリ ングによって切り替えスレヅショルドの 変更情報を端末 2 に通知するので、 基地局と端末 2 との間のパケッ ト通 信における トラフィ ックの変動に追従した切り替えスレツショルドの変 更を実行することができる。 また、 第 3の方法によれば、 トラフィ ック 変動に応じて各送信モードのノイズライズに対する許容マージンを適切 に分配することもできる。 '
なお、 上述した第 3の方法では、 基地局内の上りパケッ ト送信管理部 2 4が、 通信モー ド切り替えスレツショルドを決定する構成を説明した が、 本発明は、 これに限定されるものではない。
例えば、 基地局制御装置 3内の無線資源管理部 6 6が、 自己が把握す る Q 0 S情報や基地局から得た現時点の トラフィ ック状況に基づいて、 通信モー ド切り替えスレツショルドを決定するよう構成してもよい。
この場合、 通信モー ド切り替えスレツショル ド値を指定する情報が、 基地局制御装置 3から基地局に通知され、 基地局から第 3の方法にて端 末 2に通知されることになる。 また、 上記実施の形態では、 基地局制御装置 3を含めた基地局側の構 成が、 端末 2の切り替えスレツショル ド値を決定し、 端末 2は基地局側 から指定されたスレツショル ド値に応じて送信モ一ドを切り替える処理 を説明した。 しかしながら、 本発明は、 上記構成に限定されるものでは ない。
例えば、 基地局制御装置 3を含めた基地局側の構成が、 端末 2の切り 替えスレツショル ド値に基づいて切り替えるべき送信モー ドを決定し、 端末 2は基地局側からの指示に従って送信モ一ドを切り替えるようにし ても良い。
以下、 この構成に対して上記第 1から第 3の方法のそれそれを適用し た場合についての実施の形態を説明する。
先ず、 第 2 4図に示すフローチャー トを用いて、 基地局側が切り替え るべき送信モー ドを決定し、 端末 2が基地局側からの指示に従って送信 モードを切り替える構成に対して第 1の方法を適用した場合における動 作を詳細に説明する。
ステップ S T 1 aからステップ S T 8 aまでの処理は、 第 1 6図と同 様であるので説明を省略する。 ステップ S T 6 aからステヅプ S T 8 a までのいずれかのステップにて、 基地局制御装置 3内の無線資源管理部 6 6が、 切り替えスレツショル ド値を決定すると、 このスレヅショル ド 値を基地局に通知する。
基地局内の上りパケッ ト送信管理部 2 4では、 基地局制御装置 3から 通知された上記スレッショル ド値と、 自セル内の各端末 2から事前に通 知されている送信データ量とを比較して、 当該端末 2 に設定すべき送信 モードを決定する (ステップ S T 9 a ) 。
例えば、 事前通知されていた送信デ一夕量が上記スレッショル ド値を 越える場合、 スケジューリ ングモードを設定すべきと決定し、 逆の場合 は自律モー ドを選択する。
ステップ S T 9 aにて送信モー ドを決定すると、 上りパケッ ト送信管 理部 2 4は、 報知情報送信部 2 8 に指示して、 報知情報を用いて各端末 2 に対して当該送信モードに切り替える旨のシグナリ ングを実行する ( ステップ S T 1 0 a ) 。
具体的には、 第 1 5図におけるステップ S T 1 1の処理において、 変 更後の切り替えスレツショル ド値を含む情報ではなく、 基地局側で決定 した送信モー ドを指定する情報が送信されることになる。
このように、 基地局側が、 切り替えスレヅショル ド値のみでなく、 切 り替えるべき送信モー ドを決定することで、 端末 2がどの送信モー ドに 切り替わつたかを知ることができる。
このため、 端末 2が基地局側から指定されたスレッショル ド値に応じ て送信モ一ドを切り替えた際に必要であつた、 端末 2が切り替えた送信 モー ドを基地局に通知する応答シグナリ ングを省略することができる。 次に、 第 2 5図に示すフローチャートを用いて、 基地局側が切り替え るべき送信モードを決定し、 端末 2が基地局側からの指示に従って送信 モー ドを切り替える構成に対して第 2の方法を適用した場合における動 作を詳細に説明する。
ステップ S T 1 cからステップ S T 1 1 cまでの処理は、 第 2 0図と 同様であるので説明を省略する。 基地局制御装置 3内の無線資源管理部 6 6が、 ステ ^プ S T 8 c、 ステップ S T 9 c、 ステップ S T I O c及 びステップ S T 1 1 cまでのいずれかのステップで、 切り替えスレツシ ョル ド値を決定すると、 このスレツショル ド値を基地局に通知する。 基地局内の上りパケッ ト送信管理部 2 4は、 基地局制御装置 3から通 知された上記スレツショルド値と、 送信モー ドの切り替え対象の端末 2 から事前に通知されている送信データ量とを比較して、 当該端末 2 に設 定すべき送信モードを決定する (ステップ S T 1 2 c ) 。
ステップ S T 1 2 cにて送信モードを決定すると、 上りパケッ ト送信 管理部 2 4は、 下り個別チャネル送信部 2 9又は下り共通チャネル送信 部 3 4に指示して、 個別チャネル又は共通チャネルを用いて上記対象端 末 2 に対して当該送信モ一 ドに切り替える旨のシグナリ ングを実行する (ステップ S T 1 3 a ) 。
具体的には、 第 1 9図におけるステップ S T 1 1 bの処理において、 変更後の切り替えスレツショル ド値を含む情報ではなく、 基地局側で決 定した送信モードを指定する情報が送信されることになる。 なお、 この 場合、 第 1 9図におけるステップ S T 1 3 b及びステップ S T 1 4 bの 処理は省略される。
このように、 基地局側が、 切り替えスレツショルド値のみでなく、 切 り替えるべき送信モー ドを決定することで、 端末 2がどの送信モードに 切り替わつたかを知ることができる。
このため、 端末 2が基地局側から指定されたスレッショル ド値に応じ て送信モードを切り替えた際に必要であつた、 端末 2が切り替えた送信 モー ドを基地局に通知する応答シグナリ ングを省略することができる。 なお、 上述した説明では、 基地局制御装置 3内の無線資源管理部 6 6 が、 通信モード切り替えスレツショル ドを決定する構成を説明したが、 本発明は、 これに限定されるものではない。
例えば、 基地局制御装置 3から Q 0 S情報などを基地局が得て、 基地 局内の上りバケツ ト通信管理部 2 4が、 通信モード切り替えスレツショ ル ドを決定するよう構成してもよい。
このようにすることで、 通信モード切り替えスレツショル ドの決定処 理において、 基地局制御装置 3が介在する処理を減らすことができ、 基 地局と基地局制御装置 3 との間のシグナリ ング回数の増加を抑制するこ とができる。
また、 基地局が、 基地局制御装置 3側で決定した上記スレツショルド 値を現時点での ト ラフイ ツク状況などに応じて変更を加えて、 変更後の スレツショル ド値と、 事前に通知されている端末 2の送信デ一夕量とを 比較して送信モー ドを決定するよう構成しても良い。
つま り、 基地局及び基地局制御装置 3が共同して上記スレツショル ド 値を決定する構成も本発明に含まれる。 この場合、 基地局制御装置 3か ら通知されたスレツショル ド値を変更する基地局側の構成としては、 上 りパケッ ト通信管理部 2 4が考えられる。
続いて、 第 2 6図に示すフ ローチャー トを用いて、 基地局側が切り替 えるべき送信モー ドを決定し、 端末 2が基地局側からの指示に従って送 信モー ドを切り替える構成に対して第 3の方法を適用した場合における 動作を詳細に説明する。
先ず、 ステップ S T 1 eからステップ S T 4 eまでの処理は、 第 2 3 図と同様であるので説明を省略する。 ステップ S T 4 eにて遅延を許容 する端末 2であると判断すると、 上りバケツ ト送信管理部 2 4は、 当該 端末 2 についての切り替えスレツショル ド値を下げる (ステップ S T 5 e - 1 ) 。
次に、 上りパケッ ト送信管理部 2 4は、 ステップ S T 5 e— 1で決定 したスレヅショル ド値と、. ステップ S T 4 eにて探索された端末 2から 事前に通知されている送信データ量とを比較して、 当該端末 2 に設定す べき送信モー ドを決定する (ステップ S T 5 e— 2 ) 。
続いて、 上りパケッ ト送信管理部 2 4は、 当該端末 2 に設定すべき送 信モードを指定する情報を、 前述した L 1 シグナリ ングとして第 2 2図 のステップ S T 4 dの処理に移行する (ステップ S T 5 e— 3 ) 。
以降のステップ S T 6 eからステップ S T 8 eまでの処理は、 第 2 3 図と同様であるので説明を省略する。
また、 ステップ S T 9 eにおいて、 スケジューリ ングモー ドでの送信 頻度が少ない端末 2若しくは遅延を許容できないデータを扱う端末 2 が 抽出された場合、 上りパケッ ト送信管理部 2 4は、 当該端末 2について の切り替えスレツショル ド値を上げる (ステップ S T 1 0 e— 1 ) 。 次に、 上りパケヅ ト送信管理部 2 4は、 ステップ S T 1 0 e _ 1で決 定したスレツショル ド値とステップ S T 9 eにて探索された端末 2から 事前に通知されている送信データ量とを比較して、 当該端末 2 に設定す べき送信モードを決定する (ステップ S T I O e— 2 ) 。
続いて、 上りバケツ ト送信管理部 2 4は、 当該端末 2 に設定すべき送 信モードを指定する情報を、 前述した L 1 シグナリ ングとして第 2 2 図 のステップ S T 4 dの処理に移行する (ステップ S T I O e— 3 ) 。 以降のステップ S T 1 1 eからステップ S T 1 3 eまでの処理は、 第 2 3図と同様であるので説明を省略する。
なお、 上述した第 3の方法では、 基地局内の上りパケッ ト送信管理部 2 4が、 通信モー ド切り替えスレツショル ドを決定する構成を説明した が、 本発明は、 これに限定されるものではない。
例えば、 基地局制御装置 3内の無線資源管理部 6 6が、 自己が把握す る Q 0 S情報や基地局から得た現時点の トラフイ ツク状況に基づいて、 通信モード切り替えスレツショル ドを決定するよう構成してもよい。
この場合、 通信モード切り替えスレツショルド値を指定する情報が、 基地局制御装置 3から基地局に通知され、 基地局から第 3の方法にて端 末 2 に通知されることになる。
さらに、 上記説明では、 基地局内の上りパケッ ト送信管理部 2 4が、 通信モードを決定する構成を述べたが、 本発明は、 これに限定されるも のではない。 例えば、 基地局制御装置 3内の無線資源管理部 6 6が、 自己が把握す る Q o S情報や、 基地局を介して端末 2が実行しょう とするデータ通信 の送信データ量などを取得して、 当該端末 2 に設定すべき送信モー ドを 決定するよう構成してもよい。
この場合、 第 1 5図におけるステップ S T 1 0及びステップ S T 1 1 、 第 1 9図におけるステップ S T 1 O b及びステップ S T 1 l bの処理 において、 変更後の切り替えスレツショルド値を含む情報ではなく、 基 地局側で決定した送信モー ドを指定する情報が送信されることになる。
また、 無線資源管理部 6 6が決定した送信モー ドは、 基地局制御装置 3から基地局に通知されたあと、 基地局が上記各方法にて端末 2 に通知 することとなる。
以上のように、 この実施の形態 1 によれば、 基地局の稼動状況に応じ て端末 2 に適切な送信モー ドを設定することができる と共に、 基地局に 設定されたノイズライズに対する許容マージンに各送信モー ドについて の許容マージンを適切に分配することができる。
また、 個々の端末 2 に対して切り替えスレツショル ドを設定する場合 、 その端末 2が扱うデータの Q 0 Sを考慮して各送信モードの振り分け を可能にし、 個々の端末のデータ送信のニーズを反映した効率的な無線 資源の利用が可能となる。
なお、 上記実施の形態では、 基地局に対して端末 2からシグナリ ング することで、 基地局側の構成が、 端末 2の送信モー ド切り替えを判断す るための送信バッファ情報を取得する旨を説明した。
ここで、 端末 2から基地局に対する送信バヅ ファ情報のシグナリ ング は、 端末 2が扱うデータの遅延許容度に応じてその頻度を変えないと、 送信モー ドを切り替えたとしても遅延要求を満たさなくなる可能性があ る。 例えば、 基地局に到着する端末 2からの送信バッファ情報のシグナリ ング頻度が少ないと、 基地局側の構成が、 端末 2の現時点での送信デー 夕バッファの状態を把握するのが遅れてしまう。
この場合、 端末 2をスケジューリ ングモー ド又は自律モードに切り替 える処理が遅れ、 ひいては、 当該端末 2のデータ通信における遅延要求 を満たせなくなる可能性がある。
そこで、 移動通信端末 2が、 自己が扱うデータ通信に設定された遅延 要求に応じて、 基地局に対する送信バッファ情報のシグナリ ング頻度を 変更しても良い。
例えば、 端末 2から基地局に対して予め定めた周期で上記シグナリ ン グを実行する場合、 遅延要求が厳しいデータ通信を行う端末 2について は、 短い周期で上記シグナリ ングを実行し、 遅延要求が緩いデ一夕通信 を扱う端末 2では、 長い周期でシグナリ ングする。 このシグナリ ング周 期の設定は、 実行しょう とするデータ通信の許容遅延量に従って端末個 別に実行する。 ·
上記シグナリ ング周期の生成処理を説明すると、 P— C C P C H ( B C H ) には、 送信タ イ ミ ン グの基本にな る S F N ( System Frame Number ) というカウン夕情報が設定されている。 基地局内の上りパケッ ト送信管理部 2 4は、 基地局制御装置 3から得た Q 0 Sパラメ一夕など に基づいて、 端末 2 による送信バッファ情報のシグナリ ング周期を決定 する。
このシグナリ ング周期を端末 2 に設定する方法としては、 前述した切 り替えスレヅショル ドのシグナリ ングと同様に、 第 1の方法における報 知情報の利用 (端末 2のグループへの一括指定) 、 第 2の方法における 個別又は共通チャネルの利用 (端末 2への個別指定) 、 及び、 第 3の方 法における物理レイヤシグナリ ングが考えられる。 移動通信端末 2では、 基地局から上記シグナリ ング周期に関する情報 を受信すると、 第 1 1図を用いて説明したように、 逆拡散復調部 4 6 か ら各デ一夕チャネルに設定された信号を復調する。 プロ トコル処理部 5 6は、 逆拡散復調部 4 6が復調した信号から上記シグナリ ング周期に関 する情報を取得する。
次に、 プロ トコル処理部 5 6は、 上記シグナリ ング周期に関する情報 から得た周期を、 送信データバッファ 5 8の状態を基地局に通知するた めの U L— S I C C Hでの送信周期としてバヅファ状態送信部 5 5 に設 定する。 さらに、 移動通信端末 2では、 P— C C P C H ( B C H ) に設 定される S F N値によって、 デ一夕を送信すべきタイ ミ ングの同期を基 地局との間でとる。
上記シグナリ ングの周期を効率よ く指定する方法として、 グループ分 けを利用してもよい。 具体的に説明すると、 例えば Q 0 Sクラスを用い て会話型クラスゃス ト リ一ミ ングクラスに属する端末 2は、 当該 Q o S クラスで許容できる最大遅延量に合わせてグループ分けし、 上記シグナ リ ング周期を決定する。
一方、 上記以外の Q o Sクラスに属する端末 2 については、 例えば会 話型クラスやス ト リーミ ングクラスに属する端末 2 よ り長い周期を設定 する。 この方法では、 各グループの端末 2について Q 0 Sクラスに応じ た通信モードでの干渉量の管理をすることができるという利点がある。 次に、 上述したように周期的にシグナリ ングを実行せず、 移動通信端 末 2の状態が予め定めた条件に達した時点で上記送信バッファ情報のシ グナリ ングを実行する場合の応用例を説明する。
上記予め定めた条件としては、 端末 2の上りパケッ ト通信用送信デ一 夕バッファ 5 8に一定量の送信デ一夕が蓄積された時点で、 端末 2が基 地局に対して上記送信バッファ情報のシグナリ ングを実行することが考 えられる。
この場合、 送信デ一夕バッファ 5 8 に一定量の送信データが蓄積され るまで、 上記送信バヅファ情報のシグナリ ングが実行されないことにな る。 しかしながら、 端末 2が扱うデータによっては、 送信デ一夕バヅフ ァ 5 8に一定量の送信データが蓄積されるのを待つことなく、 上記シグ ナリ ングを実行すべき場合がある。
例えば、 端末 2がイ ンターネッ トなどを介して実行したアプリケーシ ヨンからの応答信号は、 そのデータ量は少ないが、 その存在自体はなる ベく早く基地局に通知されるべきである。
そこで、 端末 2に対して上記シグナリ ング周期を指定する夕イマを設 定し、 遅延要求が厳しいデータを扱う際には送信デ一夕バッファに一定 量の送信デ一夕が蓄積されるのを待つことなく、 夕イマが一定時間を経 過すると上記シグナリ ングを実行するように構成しても良い。
上記タイマの指定は、 基地局側の構成から明示的にシグナリ ングする 場合と、 端末 2 自身が設定する場合とが考えられる。
先ず、 第 1 0図及び第 1 1図を用いて、 基地局側の構成から明示的に シグナリ ングして上記タイマを指定する場合の動作を説明する。 ここで は、 端末 2内の上りパケッ ト送信管理部 5 1が上記夕イマとして機能す るものとする。
基地局制御装置 3は、 夕イマ設定の対象となる端末 2によるデータ通 信に関する Q o Sパラメ一夕を用いて、 当該 Q o Sパラメ一夕に応じた 周期を指定する夕イマ情報を生成する。
次に、 基地局が、 基地局制御装置 3から上記夕イマ情報を取得し、 下 り個別チャネル送信部 2 9 を介して個別チャネルの情報として上記端末 2 に送信する。 '
上記端末 2では、 下り個別チャネル受信部 6 3が上記個別チャネルの 情報を受信し、 プロ トコル処理部 5 6 に送信する。 プロ トコル処理部 5 6では、 上記個別チャネルの情報からタイマ情報を読み出し、 上り パケ ッ ト送信管理部 5 1 に送る。
上りバケツ ト送信管理部 5 1は、 上記夕イマ情報に従って夕イマを設 定し、 タイムアウ トになるとバヅ ファ状態送信部 5 5 に対して上記送信 バッフ ァ情報のシグナリ ングの実行を指示する。
次に、 端末 2側で自律的に夕イマを管理する処理を説明する。
先ず、 上りパケッ ト送信管理部 5 1は、 自己が把握する Q 0 S情報及 び過去の送信の有無によ りタイマ値を決定する。 この夕イマがタイ ムァ ゥ トになると、 上りパケ、ソ ト送信管理部 5 1が、 パッフ ァ状態送信部 5 5に対して上記送信バッファ情報のシグナリ ングの実行を指示する。 上記シグナリ ングを効率よく実行するための夕イマの指定方法と して は、 例えば基地局制御装置 3や上りバケツ ト送信管理部 5 1が会話型ク ラスやス ト リーミ ングクラスにおける許容遅延量に比例して夕イマを設 定することが考えられる。
また、 イ ンタラクティ ブクラスやバックグラウン ドクラスでは、 基地 局制御装置 3や上りバケツ ト送信管理部 5 1が、 初めて通信を行つ た端 末 2 より過去に通信を行った履歴のある端末 2 に対しては夕イマの時間 を短めに指定し、 さらに通信間隔が空いてゆく につれて徐々にタイ マの 指定時間を長くする。
このようにすることで、 基地局に対する送信データバッファ情報のシ グナリ ング回数をデータ通信のニーズに合わせて柔軟に設定するこ とが できる。 例えば、 トラフィ ックが少ないデ一夕通信を行っている端末 2 に対しては、 上記シグナリ ングの間隔を空けるなどして効率よくシグナ リング回数を制御することができる。
また、 上述した周期的にシグナリ ングする方法と、 夕イマを用いる方 法とを併用しても良い。 例えば、 遅延量が厳しく設定されている データ 通信を行う端末 2は、 送信データバッファ情報のシグナリ ングを 周期的 に基地局に対して実行し、 遅延量が緩く設定されているデータ通信を行 ゔ端末 2は夕イマで指定された間隔で上記シグナリ ングを実行す る。 よ り具体的に説明すると、 会話型クラスゃス ト リーミ ングクラ スに属 するデータ通信を扱う端末 2では、 当該 Q o Sクラスで許容でき る最大 遅延量に合わせて上記シグナリ ング周期を設定する。 また、 イ ン 夕ラク ティ プクラスやバックグラウン ドクラスに属するデータ通信を扱 う端末 2では、 自己が把握する Q o S情報及び過去の送信の有無によ り 設定し た夕イマに従ってシグナリ ングを実行する。
このようにすることで、 基地局側で端末 2 によるデータ通信の千渉量 を管理しながらも、 端末 2からの送信データバッファ情報のシグナリ ン グが必要以上に増加することを抑制することができる。 これによ り、 移 動体通信システム全体として、 効率よ く シグナリ ングを実行する ことが できることとなる。 産業上の利用可能性
以上のように、 この発明に係る通信モー ド制御方法は、 上りパケッ ト '通信をサポー トする携帯電話などの移動通信端末、 基地局、 及び基地局 制御装置に利用することができる。

Claims

請 求 の 範 囲
1 . 基地局に対して自律的にデータ通信する自律モー ドと、 上記基地局 に許可された通信タイ ミ ングでデータ通信するスケジュー リ ングモー ド とを切り替える機能を有する移動通信端末と、 上記基地局と上記移動通 信端末との通信資源を管理する基地局制御装置とを備えた移動体通信シ ステムの通信モー ド制御方法において、
上記基地局及び/又は上記基地局制御装置が、 上記基地局のセル内に おける上記各通信モードでの干渉量及び/又はその通信特性に応じて、 上記移動通信端末が有する通信データバッファの通信デ一夕量に関する 上記通信モ一 ドを切り替えるためのスレツショル ド値を決定するスレ ッ ショル ド決定ステヅプと、
上記ステップで決定された上記通信デ一夕量のスレツショル ド値を上 記基地局から上記移動通信端末に通知する通知ステップと
を備えたことを特徴とする通信モード制御方法。
2 . 基地局に対して自律的にデータ通信する自律モー ドと、 上記基地局 に許可された通信タイ ミ ングでデータ通信するスケジユーリ ングモー ド とを切り替える機能を有する移動通信端末と、 上記基地局と上記移動通 信端末との通信資源を管理する基地局制御装置とを備えた移動体通信シ ステムの通信モード制御方法において、
上記基地局及び/又は上記基地局制御装置が、 上記基地局のセル内に おける上記各通信モードでの干渉量及び/又はその通信特性と、 上記移 動通信端末から通知された通信データ量を示す信号とに基づいて、 上記 移動通信端末に設定すべき通信モー ドを決定する通信モー ド決定ステツ プと、 上記ステツプで決定された通信モー ドを上記基地局から上記移動通信 端末に通知する通知ステップと
を備えたことを特徴とする通信モード制御方法。
3 . 通信モード決定ステップにおいて、
基地局又は基地局制御装置が、 上記基地局のセル内における各通信モ 一ドでの干渉量及び/又はその通信特性に基づいて、 移動通信端末が有 する通信データバッファの通信データ量に関する上記通信モー ドを切り 替えるためのスレツショル ド値を決定し、
上記基地局が、 上記スレ ツショルド値と上記通信データバッフ ァの通 信データ量との比較結果に応じて、 上記移動通信端末に設定すべき通信 モ一ドを決定することを特徴とする請求の範囲第 2項記載の通信モ一 ド 制御方法。
4 . 通信モー ド決定ステップにおいて、 基地局又は基地局制御装置が、 移動通信端末によるデータ通信に設定された遅延許容度に基づレヽて、 遅 延が許容できないデータ通信であると判断すると、 通信データ量がス レ ヅショル ド値に満たない範囲で、 スケジューリ ングモードより達延が生 じにく い通信特性を有する自律モードに切り替わるように上記ス レツシ ョルド値を上げ、 遅延を許容するデ一夕通信であると判断すると、 通信 データ量がスレッショルド値以上の範囲で上記スケジユーリンク、 'モ一 ド に切り替わるように上記スレツショル ド値を下げることを特徴ヒする請 求の範囲第 3項記載の通信モー ド制御方法。
5 . 通信モー ド決定ステップにおいて、 基地局又は基地局制御装置が、 上記基地局のセル内における自律モー ドの移動通信端末数に伴つ た、 移 動通信端末 1台あたりの自律モー ドで許容される干渉量の変動に応じて スレツショル ド値を決定することを特徴とする請求の範囲第 3 項記載の 通信モード制御方法。
6 . 通信モード決定ステップにおいて、 基地局又は基地局制御装置が、 個々の移動通信端末によるデ一夕通信に設定された Q 0 S ( Qual ity of Serv ice ) パラメ一夕で許容される通信特性を有する通信モー ドに切り 替わるように、 上記移動通信端末の通信デ一夕バッファのスレ ッショル ド値を決定することを特徴とする請求の範囲第 3項記載の通信モー ド制 御方法。
7 . 基地局が、 移動通信端末との間でのデータ通信に設定された Q o S パラメ一夕に応じて、 自セル内に収容される上記移動通信端末をグルー プ分けするステツプを備え、
通信モード決定ステップにおいて、
上記基地局又は基地局制御装置が、 上記グループごとの Q o Sパラメ 一夕で許容される通信特性を有する通信モードに切り替わるよ うに、 上 記移動通信端末の通信データバッファのスレツショルド値を決定し、 上記基地局が、 上記スレツショル ド値と上記移動通信端末の通信デー 夕バッファの通信データ量との比較結果に応じて、 上記移動通信端末に 設定すべき通信モードを決定し、
通知ステップにおいて、 上記基地局は、 上記ステップで決定された通 信モ一ドを報知情報として上記各グループごとの移動通信端末に一斉通 知することを特徴とする請求の範囲第 3項記載の通信モー ド制御方法。
8 . 通信モード決定ステップにおいて、 基地局又は基地局制御装置が、 個々の移動通信端末に よるデータ通信 に設定された Q 0 Sパラメ一夕で許容される通信特性を有する通信モー ドに切り替わるように、 上記移動通信端末の通信デ一夕 ノ ^ッ フ ァのス レ ヅショル ド値を決定し、
上記基地局が、 上記スレッショルド値と上記移動通信端末の通信デ一 夕バッファの通信デ一夕量との比較結果に応じて、 上記移動通信端末に 設定すべき通信モードを決定し、
通知ステップにおいて、 上記基地局は、 上記移動通信端末との間にお ける個別なデータチャネルを通じて、 上記ステップで決定された通信モ 一ドを上記移動通信端末に個別に通知することを特徴と する請求の範囲 第 3項記載の通信モー ド制御方法。
9 . 通信モード決定ステップにおいて、 基地局又は基地局制御装置が、 ' 自セル内におけるスケジューリ ングモードでのデータ通信の負荷状況か らスケジューリ ングモードで許容される干渉量のマージ ンが自律モー ド よ り多いと判断すると、 上記セル内での自律モー ドへの移行が抑制され るように、 移動通信端末の通信デ一夕バッファのスレツ ショル ド値を決 定し、 上記セル内におけるスケジューリ ングモードで許容される干渉量 のマージンが自律モー ドより少ないと判断すると、 上記セル内での自律 モードへの移行が促進されるように上記スレッショル ド値を決定するこ とを特徴とする請求の範囲第 3項記載の通信モー ド制御方法。
1 0 . 通信モード決定ステップにおいて、 基地局又は基地局制御装置が 、 Q o Sパラメ一夕として設定されたデータ通信の遅延許容度に応じて 、 スケジューリ ングモードよ り遅延が生じにくい通信特性を有する自律 モ一ドに切り替わるように、 移動通信端末の通信デ一夕ノ ッ フ ァのスレ ッショルド値を決定することを特徴とする請求の範囲第 3項記載の通信 モード制御方法。
1 1 . 通信モー ド決定ステップにおいて、 基地局又は基地局制御装置が 、 Q o Sパラメ一夕として設定されたデータ通信の通信サービス品質に 応じた通信特性を有する通信モードに切り替わるように、 移動通信端末 の通信デ一夕バッファのスレヅショルド値を決定することを特徴とする 請求の範囲第 3項記載の通信モード制御方法。
1 2 . 移動通信端末が、 通信モード決定ステップに先立って、 通信デ一 夕バッファの通信デ一夕量を含む情報を、 自己が扱うデ一夕通信におけ る遅延許容度に応じた周期で基地局に通知するステップを備えたことを 特徴とする請求の範囲第 3項記載の通信モード制御方法。
1 3 . 基地局に対して自律的にデータ通信する自律モードと、 上記基地 局に許可された通信タイ ミングでデータ通信するスケジュ一リ ングモー ドとを切り替える機能を有する移動通信端末と、 上記基地局と上記移動 通信端末との通信資源を管理する基地局制御装置とを備えた移動体通信 システムにおいて、
上記基地局制御装置は、 上記基地局が上記移動通信端末とのデータ通 信で許容できる許容干渉量範囲を設定する通信資源管理部を備え、 上記基地局は、 上記許容干渉量範囲内で上記通養モードによる干渉量 を制御するための上記移動通信端末の通信モードセ刀り替えに関する情報 を上記移動通信端末に通知する通信管理部を備え、
上記移動通信端末は、 上記通信モ一ドの切り替えに関する情報に従つ て、 自己がとるべき通信モードを決定する通信管理部を備えたことを特 徴とする移動体通信システム。
1 4 . 基地局の通信管理部及び/又は通信資源管理部は、 基地局のセル 内における各通信モードでの干渉量及び/又はその通信特性に基づいて 、 移動通信端末が有する通信データバッファの通信データ量に関する上 記通信モードを切り替えるためのスレツショルド値を決定すると共に、 上記スレツショルド値と上記通信デ一夕バッファの通信データ量との比 較結果に応じて上記移動通信端末に設定すべき通信モードを決定し、 上記移動通信端末の通信管理部は、 通信モード切り替えに関する情報 として上記基地局の通信管理部から受信した上記通信モードを指定する 情報に従って、 自己がとるべき通信モードを決定することを特徴とする 請求の範囲第 1 3項記載の移動体通信システム。
1 5 . 基地局の通信管理部及び/又は通信資源管理部は、 基地局のセル 内における各通信モードでの干渉量及び Z又はその通信特性に基づいて 、 移動通信端末が有する通信データバッファの通信データ量に関する上 記通信モードを切り替えるためのスレ ツショルド値を決定し、
上記移動通信端末の通信管理部は、 通信モード切り替えに関する情報 として上記基地局の通信管理部から受信した上記スレッショルド値と自 己の通信データバッファの通信データ量との比較結果に応じて、 自己が とるべき通信モードを決定することを特徴とする請求の範囲第 1 3項記 載の移動体通信システム。
1 6 . 通信資源管理部は、 基地局に対して当該基地局と移動通信端末と の間の通信状況に加え、 自己が管理する他の基地局の通信状況から推測 される干渉量を考慮して許容干渉量範囲を求めることを特徴とする請求 の範囲第 1 3項記載の移動体通信システム。
1 7 . 基地局に対して自律的にデータ通信する自律モードと、 上記基地 局に許可された通信タイ ミ ングでデ一夕通信するスケジユーリ ングモー ドとを切り替える機能を有した移動通信端末を備えた移動体通信システ ムで、 上記基地局と上記移動通信端末との間の通信資源を管理する基地 局制御装置において、
上記基地局のセル内における上記各通信モ一ドでの干渉量及び/又は その通信特性に基づいて、 上記移動通信端末が有する通信デ一夕バッフ ァの通信データ量に関する上記適信モードを切り替えるためのスレツシ ョルド値を決定する通信資源管理部を備えたことを特徴とする基地局制
1 8 . 移動通信端末によって、 自律的にデ一夕通信される自律モードと 、 自己が許可した通信タイ ミングでデ一夕通信されるスケジュ一リング モードとの各通信モードでのデータ通信が可能な基地局において、
自セル内における上記各通信モードでの干渉量及び/又はその通信特 性に基づいて、 上記移動通信端末が有する通信データバッファの通信デ 一夕量に関する上記通信モードを切り替えるためのスレツショルド値を 決定する通信管理部と、
上記スレッショルド値を通信モ一ド切り替えに関する情報として上記 移動通信端末に通知する通信部と
を備えたことを特徴とする基地局。
1 9 . 移動通信端末によって、 自律的にデータ通信される自律モードと 、 自己が許可した通信タイ ミングでデ一夕通信されるスケジュ一リング モードとの各通信モードでのデータ通信が可能な基地局において、 自セル内における上記各通信モードでの干渉量及び/又はその通信特 性に基づいて、 上記移動通信端末が有する通信データバッファの通信デ 一夕量に関する上記通信モードを切り替えるためのスレツショルド値を 決定すると共に、 上言 3スレツショルド値と上記移動通信端末の通信デー 夕バッファの通信データ量との比較結果に応じて、 上記移動通信端末に 設定すべき通信モードを決定する通信管理部と、
上記通信管理部が決定した通信モードを通信モード切り替えに関する 情報として上記移動通信端末に通知する通信部と
を備えたことを特微とする基地局。
2 0 . 基地局に対して自律的にデータ通信する自律モードと、 上記基地' 局に許可された通信タィ ミ ングでデ一夕通信するスケジュ一リングモー ドとを切り替える機能を有する移動通信端末において、
請求の範囲第 1項に記載した通信モード制御方法を用いて上記基地局 から通知された通信デ一夕量のスレツショル ド値と、 自己の送信デ一夕 バッファの通信データ量との比較結果に応じて、 自己がとるべき通信モ ードを決定する通信管理部を備えたことを特徴とする移動通信端末。
2 1 . 基地局に対して 自律的にデータ通信する自律モードと、 上記基地 局に許可された通信タイ ミ ングでデ一夕通信するスケジューリングモー ドとを切り替える機能を有する移動通信端末において、
請求の範囲第 2項に記載した通信モード制御方法を用いて上記基地局 から通知された通信モードを、 自己がとるべき通信モードとして決定す る通信管理部を備え ことを特徴とする移動通信端末。
PCT/JP2003/012552 2003-09-30 2003-09-30 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末 WO2005034545A1 (ja)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE60328234T DE60328234D1 (de) 2003-09-30 2003-09-30 Kommunikationsmodus-steuerverfahren
US12/839,030 USRE43385E1 (en) 2003-09-30 2003-09-30 Communication method
CN2006100755524A CN101060706B (zh) 2003-09-30 2003-09-30 移动通信系统
EP20030818820 EP1670266B1 (en) 2003-09-30 2003-09-30 Communication mode control method
EP10182078.5A EP2271152B1 (en) 2003-09-30 2003-09-30 Mobile communication system for setting a maximum amount of interference
US10/572,599 US7684408B2 (en) 2003-09-30 2003-09-30 Communication mode control method, mobile communication system, base station control apparatus, base station, and mobile communication terminal
JP2005509303A JP3895361B2 (ja) 2003-09-30 2003-09-30 通信方法
PCT/JP2003/012552 WO2005034545A1 (ja) 2003-09-30 2003-09-30 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末
DE60328235T DE60328235D1 (de) 2003-09-30 2003-09-30 System für Mobilkommunikation zur Steuerung des Kommunikationsmodus
CNB038270846A CN100477829C (zh) 2003-09-30 2003-09-30 通信方法
CN200610075551XA CN101060705B (zh) 2003-09-30 2003-09-30 通信模式控制方法,移动通信系统,基站控制装置,基站和移动通信终端
US11/408,173 US8072986B2 (en) 2003-09-30 2006-04-21 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal
US11/408,189 US20060217074A1 (en) 2003-09-30 2006-04-21 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal
HK07100403A HK1095466A1 (en) 2003-09-30 2007-01-11 Communication method
HK08102118A HK1111553A1 (en) 2003-09-30 2008-02-26 Mobile communication system
US13/287,870 US8311572B2 (en) 2003-09-30 2011-11-02 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal
US13/302,525 US8289932B2 (en) 2003-09-30 2011-11-22 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal
US13/618,649 US8588843B2 (en) 2003-09-30 2012-09-14 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012552 WO2005034545A1 (ja) 2003-09-30 2003-09-30 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10572599 A-371-Of-International 2003-09-30
US11/408,173 Division US8072986B2 (en) 2003-09-30 2006-04-21 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal
US11/408,189 Division US20060217074A1 (en) 2003-09-30 2006-04-21 Communication mode controlling method, mobile communication system, radio network controller, base station, and mobile communication terminal

Publications (1)

Publication Number Publication Date
WO2005034545A1 true WO2005034545A1 (ja) 2005-04-14

Family

ID=34401442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012552 WO2005034545A1 (ja) 2003-09-30 2003-09-30 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末

Country Status (7)

Country Link
US (7) US7684408B2 (ja)
EP (1) EP1670266B1 (ja)
JP (1) JP3895361B2 (ja)
CN (3) CN101060706B (ja)
DE (2) DE60328234D1 (ja)
HK (2) HK1095466A1 (ja)
WO (1) WO2005034545A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028630A (ja) * 2005-07-18 2007-02-01 Samsung Electronics Co Ltd 無線チャンネル検索方法、無線送受信システムおよび無線送信装置
JP2007067748A (ja) * 2005-08-30 2007-03-15 Ntt Docomo Inc 伝送制御方法、移動局、無線基地局及び無線回線制御局
WO2007139188A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 移動局と基地局との間の接続処理方法、移動局、基地局、マルチキャリア移動体通信システムおよびランダムアクセスチャネルのマッピング方法
JP2009506623A (ja) * 2005-08-23 2009-02-12 エルジー エレクトロニクス インコーポレイティド 移動通信システムのメッセージ通信
JP2009514402A (ja) * 2005-10-27 2009-04-02 クゥアルコム・インコーポレイテッド 無線通信システムにおける逆方向リンク・ローディングを推定するための方法及び装置
JP2010252048A (ja) * 2009-04-15 2010-11-04 Ntt Docomo Inc 無線基地局
JP2011193508A (ja) * 2005-10-24 2011-09-29 Qualcomm Inc マルチホップ無線ネットワークにおけるフローベースの公平スケジューリング
JP4869357B2 (ja) * 2006-03-07 2012-02-08 パナソニック株式会社 移動通信システムにおけるアップリンク制御シグナリングのオーバヘッド削減
WO2012023498A1 (ja) * 2010-08-16 2012-02-23 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及びリソース割り当て方法
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8488487B2 (en) 2006-09-08 2013-07-16 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8516314B2 (en) 2004-06-18 2013-08-20 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US8849210B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
CN105659541A (zh) * 2013-11-06 2016-06-08 华为技术有限公司 无线接入网络中主动式拥塞检测的系统和方法
WO2017170118A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ装置
WO2022239320A1 (ja) * 2021-05-11 2022-11-17 株式会社Kddi総合研究所 制御装置、リソース割当制御方法及びコンピュータプログラム

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520229B2 (ja) * 2003-07-01 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 通信装置およびプログラム
DE60328234D1 (de) 2003-09-30 2009-08-13 Mitsubishi Electric Corp Kommunikationsmodus-steuerverfahren
GB0326365D0 (en) * 2003-11-12 2003-12-17 Koninkl Philips Electronics Nv A radio communication system,a method of operating a communication system,and a mobile station
JP4623978B2 (ja) * 2004-02-18 2011-02-02 日本電気株式会社 移動通信システム及びその通信制御方法並びにそれに用いる無線回線制御装置及び基地局
KR100651409B1 (ko) * 2004-05-04 2006-11-29 삼성전자주식회사 이동통신시스템에서 상향링크 패킷 데이터 서비스를 위한 스케줄링 신호들의 소프트 결합을 지원하기 위한 장치 및 방법
KR100678184B1 (ko) * 2004-05-19 2007-02-02 삼성전자주식회사 이동통신 시스템에서 향상된 역방향 전용채널의 스케줄링방법 및 장치
US7142107B2 (en) 2004-05-27 2006-11-28 Lawrence Kates Wireless sensor unit
JP4220435B2 (ja) * 2004-05-28 2009-02-04 株式会社東芝 無線通信システムおよび無線端末
JP4437711B2 (ja) * 2004-07-02 2010-03-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 通信システム、通信端末装置及び無線キー装置
EP1617606A1 (en) * 2004-07-16 2006-01-18 Matsushita Electric Industrial Co., Ltd. Scheduling mode switching for uplink transmissions
JP4313266B2 (ja) * 2004-07-29 2009-08-12 株式会社エヌ・ティ・ティ・ドコモ サーバ装置、その制御方法およびコネクション確立方法
WO2006030913A1 (ja) * 2004-09-17 2006-03-23 Ntt Docomo, Inc. 移動局、基地局及び移動通信方法
US7733854B2 (en) * 2004-11-30 2010-06-08 Broadcom Corporation Forced bubble insertion scheme
RU2406271C2 (ru) * 2005-01-21 2010-12-10 Телефонактиеболагет Лм Эрикссон (Пабл) Способ распределения радиоресурсов
JP4653182B2 (ja) * 2005-02-23 2011-03-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムにおける方法および装置
GB2427097B (en) 2005-05-03 2007-03-21 Ipwireless Inc Method and apparatus for transmitting uplink signalling information
GB2425917B (en) * 2005-05-03 2007-06-13 Ipwireless Inc Method of communicating signalling information
WO2007005947A1 (en) 2005-07-01 2007-01-11 Terahop Networks, Inc. Nondeterministic and deterministic network routing
US7394782B2 (en) * 2005-07-14 2008-07-01 Honeywell International Inc. Reduced power time synchronization in wireless communication
AU2005336604B2 (en) 2005-09-22 2010-06-17 Blackberry Limited Mobile station, fixed station, communication system and communication method
US8102878B2 (en) 2005-09-29 2012-01-24 Qualcomm Incorporated Video packet shaping for video telephony
US8842555B2 (en) * 2005-10-21 2014-09-23 Qualcomm Incorporated Methods and systems for adaptive encoding of real-time information in packet-switched wireless communication systems
US8514711B2 (en) * 2005-10-21 2013-08-20 Qualcomm Incorporated Reverse link lower layer assisted video error control
US8406309B2 (en) * 2005-10-21 2013-03-26 Qualcomm Incorporated Video rate adaptation to reverse link conditions
US8548048B2 (en) 2005-10-27 2013-10-01 Qualcomm Incorporated Video source rate control for video telephony
JP5051128B2 (ja) * 2006-05-09 2012-10-17 日本電気株式会社 移動無線通信システム及び同システムにおけるハンドオーバー実行方法
GB2440578B (en) * 2006-07-31 2008-08-13 Motorola Inc Method and system for wireless communication
JP4751791B2 (ja) * 2006-08-22 2011-08-17 株式会社エヌ・ティ・ティ・ドコモ データ流入量制御装置及びデータ流入量制御方法
US8774100B2 (en) * 2006-09-18 2014-07-08 Nokia Corporation Resource management techniques for wireless networks
TWI511593B (zh) 2006-10-03 2015-12-01 Interdigital Tech Corp 具e-utra干擾減輕之結合開路/閉路(cqi爲基礎)上鏈傳輸功率控制
US8503403B2 (en) * 2006-12-21 2013-08-06 Sony Corporation Network control of uplink transmit timing for compressed mode
KR101370478B1 (ko) * 2007-01-10 2014-03-06 퀄컴 인코포레이티드 멀티미디어 전화 통신을 위한 컨텐트- 및 링크-의존 코딩 적응 구조
JP2008182710A (ja) * 2007-01-23 2008-08-07 Asustek Computer Inc 無線通信システムにおいて情報の安全性を強化する方法及び関連装置
US7787899B1 (en) * 2007-03-05 2010-08-31 Sprint Spectrum L.P. Dynamic Adjustment of the pilot-channel, paging-channel, and sync-channel transmission-power levels based on forward-link and reverse-link RF conditions
EP3621364B1 (en) 2007-03-07 2022-10-05 InterDigital Technology Corporation Combined open loop/closed loop for controlling uplink power of a mobile station
US8140101B1 (en) 2007-03-19 2012-03-20 Sprint Spectrum L.P. Dynamic adjustment of forward-link traffic-channel power levels based on forward-link RF conditions
WO2008123140A1 (ja) * 2007-03-22 2008-10-16 Nec Corporation 移動体通信システム及び通信方法
RU2009141914A (ru) * 2007-04-27 2011-06-10 НТТ ДоСоМо, Инк. (JP) Мобильная станция, базовая станция и способ конфигурирования зоны связи, реализуемый заданной базовой станцией
DE602007013734D1 (de) 2007-06-25 2011-05-19 Alcatel Lucent Aufwärtsübertragung in mobilen Netzen
JP5145852B2 (ja) * 2007-10-15 2013-02-20 日本電気株式会社 係数決定装置、無線通信システム、係数決定方法及び係数決定プログラム
US8797850B2 (en) * 2008-01-10 2014-08-05 Qualcomm Incorporated System and method to adapt to network congestion
WO2009151877A2 (en) 2008-05-16 2009-12-17 Terahop Networks, Inc. Systems and apparatus for securing a container
US8489752B2 (en) * 2008-05-29 2013-07-16 Advanced Micro Devices, Inc. Method and system for controlling bus access
JP5217688B2 (ja) * 2008-06-30 2013-06-19 富士通セミコンダクター株式会社 無線端末装置、半導体装置及び通信システム
EP2392184A4 (en) 2009-01-29 2017-05-03 Apple Inc. Scheduling transmission of data at a base station based on an interference indicator message from another base station
US8432824B2 (en) 2009-05-01 2013-04-30 Qualcomm Incorporated Method and apparatus for selecting a receiving apparatus for co-channel operation
KR101632739B1 (ko) * 2009-06-18 2016-06-22 한국전자통신연구원 통신 시스템의 데이터 전송 방법 및 이를 수행하는 릴레이 장치
WO2011021152A1 (en) * 2009-08-17 2011-02-24 Nokia Corporation Discontinuous reception for multi-component carrier system
CN104185219A (zh) * 2009-10-02 2014-12-03 富士通株式会社 无线通信系统、基站装置、终端装置以及无线通信方法
JP5259833B2 (ja) * 2009-11-09 2013-08-07 京セラ株式会社 無線基地局及び通信制御方法
WO2011071430A1 (en) * 2009-12-11 2011-06-16 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for scheduling control in a telecommunication system
JP2011223274A (ja) * 2010-04-08 2011-11-04 Sony Corp 送信装置、および送信方法
EP2578045B1 (en) * 2010-06-02 2018-01-10 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for controlling change of a radio resource control (rrc) state for a user equipment
JP2013535164A (ja) * 2010-06-30 2013-09-09 富士通株式会社 通信システムにおける送信状態間の変化のための方法および装置
CN102036295B (zh) * 2010-12-02 2014-04-16 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
US20120311173A1 (en) * 2011-05-31 2012-12-06 Broadcom Corporation Dynamic Wireless Channel Selection And Protocol Control For Streaming Media
US9115908B2 (en) 2011-07-27 2015-08-25 Honeywell International Inc. Systems and methods for managing a programmable thermostat
US9157764B2 (en) 2011-07-27 2015-10-13 Honeywell International Inc. Devices, methods, and systems for occupancy detection
US8750875B2 (en) * 2011-09-08 2014-06-10 Cellco Partnership Dynamic handoff parameters in a wireless network
US8971245B2 (en) * 2011-09-19 2015-03-03 Verizon Patent And Licensing Inc. Latency-insensitive RAN—high-capacity/latency-tolerant session management
US20130329558A1 (en) * 2012-06-07 2013-12-12 Broadcom Corporation Physical layer burst absorption
CN102711099A (zh) * 2012-06-20 2012-10-03 上海电机学院 可抵抗干扰攻击的安全路由方法及系统
US9621371B2 (en) 2012-07-24 2017-04-11 Honeywell International Inc. Wireless sensor device with wireless remote programming
WO2014021573A1 (ko) * 2012-08-02 2014-02-06 엘지전자 주식회사 기지국 협력 무선 통신 시스템에서 간섭 측정 기반 상향링크 신호 송수신 방법 및 이를 위한 장치
US9319957B1 (en) * 2013-07-31 2016-04-19 Sprint Spectrum L.P. Dynamic swapping of uplink and downlink base stations
EP3026969B1 (en) * 2013-08-27 2017-10-11 Huawei Technologies Co., Ltd. Adaptive duplex mode selection
CN105519176A (zh) * 2013-09-13 2016-04-20 富士通株式会社 改变小区簇的方法、基站和用户设备
MX361124B (es) * 2014-04-14 2018-11-28 Ericsson Telefon Ab L M Transmisión y decodificación mejoradas en una red inalámbrica.
CN105611545A (zh) * 2014-11-19 2016-05-25 中兴通讯股份有限公司 基站干扰协调方法、装置和基站干扰协调系统
JP6415296B2 (ja) * 2014-12-15 2018-10-31 キヤノンファインテックニスカ株式会社 シート処理装置
US20160364562A1 (en) * 2015-06-09 2016-12-15 Pure Storage, Inc. Systems and methods for system self-configuration
EP3462777B1 (en) * 2016-09-07 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining state of terminal device
CN113923789B (zh) * 2020-07-10 2023-08-18 中国移动通信集团浙江有限公司 Lte载波调度装置及方法
KR20220017172A (ko) * 2020-08-04 2022-02-11 삼성전자주식회사 무선 통신시스템에서 네트워크 운영 장치 및 방법
WO2023143837A1 (en) * 2022-01-25 2023-08-03 Sony Group Corporation Methods, communications devices, and infrastructure equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239152A (ja) * 1998-02-20 1999-08-31 Nippon Telegr & Teleph Corp <Ntt> ワイヤレスアクセス方法
JP2001016215A (ja) * 1999-06-29 2001-01-19 Mitsubishi Electric Corp 無線atm通信システムにおける上りユーザ情報用アクセスチャネル切替制御方法、無線atm通信システムおよび端末装置
JP2001323656A (ja) * 2000-05-15 2001-11-22 Kanai:Kk 型枠用スペ−サ−
JP2002118576A (ja) * 2000-08-28 2002-04-19 Avaya Technology Corp 無線非同期伝送モード(atm)システムのための適応セルスケジューリングアルゴリズム
JP2002118585A (ja) * 2000-10-04 2002-04-19 Nippon Telegr & Teleph Corp <Ntt> パケットスケジューリング方法及びパケットスケジューリング装置
US20020172217A1 (en) 2001-05-21 2002-11-21 Kadaba Srinivas R. Multiple mode data communication system and method and forward and/or reverse link control channel structure
JP2003513534A (ja) * 1999-10-29 2003-04-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 共通チャネル負荷に基づく共通チャネルから専用チャネルへのチャネルタイプの切替方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619524A (en) 1994-10-04 1997-04-08 Motorola, Inc. Method and apparatus for coherent communication reception in a spread-spectrum communication system
JPH08167872A (ja) 1994-12-14 1996-06-25 Hitachi Ltd 移動無線通信システムおよび電力制御方法
JP3323424B2 (ja) 1996-07-29 2002-09-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける下り送信電力制御方法および移動通信システム
KR100289568B1 (ko) 1996-07-29 2001-05-02 다치카와 게이지 사이트 다이버시티를 이용한 이동 통신 시스템에 있어서의 다운링크 송신 전력 제어 방법 및 장치
FI110048B (fi) 1998-09-16 2002-11-15 Nokia Corp Menetelmä ja laite radioresurssien dynaamiseksi ohjaamiseksi
TW493355B (en) 1999-08-30 2002-07-01 Ericsson Telefon Ab L M Cell breathing reduction for telecommunications
DE60039456D1 (de) 1999-12-20 2008-08-21 Ericsson Telefon Ab L M Funknetzsteuerung unter verwendung von mobile sendeleistung auf der aufwärtsverbindung
JP2001313656A (ja) * 2000-04-28 2001-11-09 Sony Corp 基地局装置、端末装置、無線通信システム及び無線通信方法
JP3426200B2 (ja) * 2000-08-02 2003-07-14 松下電器産業株式会社 通信端末装置および無線通信方法
US6987738B2 (en) * 2001-01-12 2006-01-17 Motorola, Inc. Method for packet scheduling and radio resource allocation in a wireless communication system
US7283482B2 (en) * 2001-08-14 2007-10-16 Samsung Electronics Co., Ltd. Reverse data transmission apparatus and method in a mobile communication system
US6985735B2 (en) 2001-09-10 2006-01-10 Koninklijke Kpn N.V. Method and system for planning and evaluation of CDMA radio networks
AU2002343053A1 (en) 2001-11-30 2003-06-17 British Telecommunications Public Limited Company Method of resource control in a wireless network
WO2003084099A1 (fr) * 2002-04-03 2003-10-09 Nec Corporation Systeme de communication mobile, station mobile, station de base, procede d'estimation de la qualite de la voie de communication utilise dans ce systeme
KR100713435B1 (ko) * 2002-05-03 2007-05-07 삼성전자주식회사 이동통신시스템에서 다중 데이터 전송률 서비스 제공 장치 및 방법
US20040062206A1 (en) 2002-09-30 2004-04-01 Soong Anthony C.K. System and method for fast reverse link scheduling in a wireless communication network
US20040147276A1 (en) 2002-12-17 2004-07-29 Ralph Gholmieh Reduced signaling power headroom feedback
EP1437912B1 (en) 2003-01-04 2010-09-08 Samsung Electronics Co., Ltd. Method for determining data rate of user equipment supporting EUDCH service
AU2004204850B2 (en) * 2003-01-11 2007-11-22 Samsung Electronics Co., Ltd. System and method for controlling traffic distribution in a mobile communication system
US7142548B2 (en) * 2003-03-06 2006-11-28 Nortel Networks Limited Communicating in a reverse wireless link information relating to buffer status and data rate of a mobile station
US7218891B2 (en) * 2003-03-31 2007-05-15 Nortel Networks Limited Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US6993342B2 (en) * 2003-05-07 2006-01-31 Motorola, Inc. Buffer occupancy used in uplink scheduling for a communication device
KR101049103B1 (ko) * 2003-05-12 2011-07-14 엘지전자 주식회사 이동통신 시스템에서 데이터 레이트를 결정하는 방법
WO2004114716A1 (en) 2003-06-17 2004-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reverse link rate control method and system in a mobile communication network
KR100528336B1 (ko) 2003-07-28 2005-11-15 삼성전자주식회사 Csma/ca 기반의 무선 랜상에서 수신 소비 전력제어 방법 및 장치
DE60328234D1 (de) * 2003-09-30 2009-08-13 Mitsubishi Electric Corp Kommunikationsmodus-steuerverfahren
CN1868233B (zh) 2003-10-16 2010-06-16 日本电气株式会社 容量调度的方法和系统
KR100713442B1 (ko) 2004-02-14 2007-05-02 삼성전자주식회사 이동통신 시스템에서 향상된 역방향 전용채널을 통한 스케쥴링 정보의 전송방법
US20050249148A1 (en) * 2004-05-07 2005-11-10 Nokia Corporation Measurement and reporting for uplink enhanced dedicated channel (E-DCH)
US8280425B2 (en) 2004-09-16 2012-10-02 Motorola Mobility Llc Wireless transmitter configuration
KR100651548B1 (ko) * 2004-11-05 2006-11-29 삼성전자주식회사 상향링크 패킷 데이터 서비스를 지원하는 이동통신시스템에서 단말 식별자를 이용하여 상향링크 데이터전송을 스케쥴링하는 방법 및 장치
US20060280145A1 (en) 2005-06-10 2006-12-14 Revel Agnes M Event trigger for scheduling information in wireless communication networks
AU2005336604B2 (en) 2005-09-22 2010-06-17 Blackberry Limited Mobile station, fixed station, communication system and communication method
US8363605B2 (en) * 2006-08-22 2013-01-29 Qualcomm Incorporated Method and apparatus for monitoring grant channels in wireless communication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239152A (ja) * 1998-02-20 1999-08-31 Nippon Telegr & Teleph Corp <Ntt> ワイヤレスアクセス方法
JP2001016215A (ja) * 1999-06-29 2001-01-19 Mitsubishi Electric Corp 無線atm通信システムにおける上りユーザ情報用アクセスチャネル切替制御方法、無線atm通信システムおよび端末装置
JP2003513534A (ja) * 1999-10-29 2003-04-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 共通チャネル負荷に基づく共通チャネルから専用チャネルへのチャネルタイプの切替方法
JP2001323656A (ja) * 2000-05-15 2001-11-22 Kanai:Kk 型枠用スペ−サ−
JP2002118576A (ja) * 2000-08-28 2002-04-19 Avaya Technology Corp 無線非同期伝送モード(atm)システムのための適応セルスケジューリングアルゴリズム
JP2002118585A (ja) * 2000-10-04 2002-04-19 Nippon Telegr & Teleph Corp <Ntt> パケットスケジューリング方法及びパケットスケジューリング装置
US20020172217A1 (en) 2001-05-21 2002-11-21 Kadaba Srinivas R. Multiple mode data communication system and method and forward and/or reverse link control channel structure
JP2002369261A (ja) 2001-05-21 2002-12-20 Lucent Technol Inc データ通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1670266A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8543152B2 (en) 2004-06-18 2013-09-24 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8516314B2 (en) 2004-06-18 2013-08-20 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US8478202B2 (en) 2004-06-18 2013-07-02 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8879425B2 (en) 2005-03-15 2014-11-04 Qualcomm Incorporated Interference control in a wireless communication system
US8849210B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
JP4616219B2 (ja) * 2005-07-18 2011-01-19 三星電子株式会社 無線チャンネル検索方法、無線送受信システムおよび無線送信装置
JP2007028630A (ja) * 2005-07-18 2007-02-01 Samsung Electronics Co Ltd 無線チャンネル検索方法、無線送受信システムおよび無線送信装置
JP2009506623A (ja) * 2005-08-23 2009-02-12 エルジー エレクトロニクス インコーポレイティド 移動通信システムのメッセージ通信
JP4772123B2 (ja) * 2005-08-23 2011-09-14 エルジー エレクトロニクス インコーポレイティド 移動通信システムのメッセージ通信
JP2007067748A (ja) * 2005-08-30 2007-03-15 Ntt Docomo Inc 伝送制御方法、移動局、無線基地局及び無線回線制御局
JP4684045B2 (ja) * 2005-08-30 2011-05-18 株式会社エヌ・ティ・ティ・ドコモ 伝送制御方法、移動局、無線基地局及び無線回線制御局
US8670307B2 (en) 2005-10-24 2014-03-11 Qualcomm Incorporated Flow based fair scheduling in multi-hop wireless networks
US8982802B2 (en) 2005-10-24 2015-03-17 Qualcomm Incorporated Flow based fair scheduling in multi-hop wireless networks
JP2011193508A (ja) * 2005-10-24 2011-09-29 Qualcomm Inc マルチホップ無線ネットワークにおけるフローベースの公平スケジューリング
JP2009514402A (ja) * 2005-10-27 2009-04-02 クゥアルコム・インコーポレイテッド 無線通信システムにおける逆方向リンク・ローディングを推定するための方法及び装置
US8929908B2 (en) 2005-10-27 2015-01-06 Qualcomm Incorporated Method and apparatus for estimating reverse link loading in a wireless communication system
JP2012054966A (ja) * 2006-03-07 2012-03-15 Panasonic Corp 移動通信システムにおけるアップリンク制御シグナリングのオーバヘッド削減
JP4869357B2 (ja) * 2006-03-07 2012-02-08 パナソニック株式会社 移動通信システムにおけるアップリンク制御シグナリングのオーバヘッド削減
US8000294B2 (en) 2006-06-01 2011-08-16 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
US9125187B2 (en) 2006-06-01 2015-09-01 Huawei Technologies Co., Ltd. Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
US8447312B2 (en) 2006-06-01 2013-05-21 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
WO2007139188A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 移動局と基地局との間の接続処理方法、移動局、基地局、マルチキャリア移動体通信システムおよびランダムアクセスチャネルのマッピング方法
US7978654B2 (en) 2006-06-01 2011-07-12 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
US8488487B2 (en) 2006-09-08 2013-07-16 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
JP2010252048A (ja) * 2009-04-15 2010-11-04 Ntt Docomo Inc 無線基地局
WO2012023498A1 (ja) * 2010-08-16 2012-02-23 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及びリソース割り当て方法
JP2012044333A (ja) * 2010-08-16 2012-03-01 Ntt Docomo Inc 無線基地局装置及びリソース割り当て方法
CN105659541A (zh) * 2013-11-06 2016-06-08 华为技术有限公司 无线接入网络中主动式拥塞检测的系统和方法
WO2017170118A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ装置
US10863535B2 (en) 2016-03-31 2020-12-08 Ntt Docomo, Inc. User equipment and method for scheduling request transmission control
WO2022239320A1 (ja) * 2021-05-11 2022-11-17 株式会社Kddi総合研究所 制御装置、リソース割当制御方法及びコンピュータプログラム

Also Published As

Publication number Publication date
US20060256756A1 (en) 2006-11-16
JPWO2005034545A1 (ja) 2006-12-21
US20120063422A1 (en) 2012-03-15
US8311572B2 (en) 2012-11-13
CN101060706B (zh) 2010-12-08
CN101060706A (zh) 2007-10-24
EP1670266B1 (en) 2009-07-01
CN101060705A (zh) 2007-10-24
HK1095466A1 (en) 2007-05-04
US20060189334A1 (en) 2006-08-24
US20120046061A1 (en) 2012-02-23
EP1670266A1 (en) 2006-06-14
CN100477829C (zh) 2009-04-08
US7684408B2 (en) 2010-03-23
JP3895361B2 (ja) 2007-03-22
US8072986B2 (en) 2011-12-06
HK1111553A1 (en) 2008-08-08
DE60328234D1 (de) 2009-08-13
CN1839641A (zh) 2006-09-27
US8289932B2 (en) 2012-10-16
US20130010765A1 (en) 2013-01-10
EP1670266A4 (en) 2007-02-28
US20060217074A1 (en) 2006-09-28
DE60328235D1 (de) 2009-08-13
US8588843B2 (en) 2013-11-19
CN101060705B (zh) 2012-09-05
USRE43385E1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
WO2005034545A1 (ja) 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末
KR100663278B1 (ko) 상향링크 패킷 데이터 서비스를 지원하는이동통신시스템에서 하향링크 제어정보의 송수신 방법 및장치
JP4510006B2 (ja) 移動局、基地局、通信システム、データ量情報送信方法、送信制御情報通知方法及び無線通信方法
CN100442915C (zh) 移动通信系统中高速数据传输的调度方法
US7385951B2 (en) Methods of transmitting and signaling over a reverse link in wireless systems
WO2005015940A1 (ja) 通信端末及び通信システム
JP2004328498A (ja) 基地局、端末、通信システム、及び通信方法
JP2009261035A (ja) 移動局、基地局、通信システム、データ量情報送信方法、送信制御情報通知方法及び無線通信方法
JP5007329B2 (ja) 通信モード制御方法、移動体通信システム及び移動通信端末
JP3895364B2 (ja) 移動体通信システム
US8958368B2 (en) Method and apparatus for transmitting and receiving downlink control information in a mobile communication system supporting uplink packet data service
EP2271152B1 (en) Mobile communication system for setting a maximum amount of interference
JP4437798B2 (ja) 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末
KR100644996B1 (ko) 이동통신 시스템에서 상향링크 패킷 전송을 위한 스케쥴링 할당 방법 및 장치
KR20050119619A (ko) 이동통신 시스템에서 향상된 상향링크 전용 채널의효율적인 스케쥴링 방법 및 장치
KR20050018540A (ko) 상향링크 패킷 전송을 위한 스케쥴링 할당 방법
KR20060016024A (ko) 상향링크 패킷 데이터 서비스를 지원하는이동통신시스템에서 상향링크 전송율을 제어하는 방법 및장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03827084.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005509303

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003818820

Country of ref document: EP

Ref document number: 2006256756

Country of ref document: US

Ref document number: 12839030

Country of ref document: US

Ref document number: 10572599

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003818820

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10572599

Country of ref document: US