JP2004328498A - 基地局、端末、通信システム、及び通信方法 - Google Patents

基地局、端末、通信システム、及び通信方法 Download PDF

Info

Publication number
JP2004328498A
JP2004328498A JP2003122359A JP2003122359A JP2004328498A JP 2004328498 A JP2004328498 A JP 2004328498A JP 2003122359 A JP2003122359 A JP 2003122359A JP 2003122359 A JP2003122359 A JP 2003122359A JP 2004328498 A JP2004328498 A JP 2004328498A
Authority
JP
Japan
Prior art keywords
transmission
terminal
base station
packet data
uplink packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122359A
Other languages
English (en)
Other versions
JP2004328498A5 (ja
Inventor
Hideji Wakabayashi
秀治 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003122359A priority Critical patent/JP2004328498A/ja
Publication of JP2004328498A publication Critical patent/JP2004328498A/ja
Publication of JP2004328498A5 publication Critical patent/JP2004328498A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】端末の送信電力の限界を超えない範囲で、できるだけ上下のパケット通信を共存させて送信することを可能にする通信システムを得る。
【解決手段】基地局から端末への下りパケット通信と端末から基地局への上りパケット通信が同時に発生し得る通信システムであって、基地局からの下りパケット通信に応答して端末が基地局へ送信する下りパケット応答信号の送信タイミングと端末が基地局へ送信する上りパケットデータの送信タイミングが重ならないように、基地局が送信タイミングを決定して端末に通知し、端末は、通知された送信タイミングに従って基地局への送信を行う。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
この発明は、無線パケット通信における基地局、端末、通信システム、及び通信方法に関するものである。
【0002】
【従来の技術】
CDMA(Code Division Multiple Access:符号分割多重通信)システムの例であるW−CDMA(Wideband CDMA)方式では、基地局と端末間のパケット通信において共有チャネルが利用される。
共有チャネルには、大きく分けて基地局から端末へパケットデータを送信する際の下りパケット通信に関わるものと、端末から基地局へパケットデータを送信する際の上りパケット通信に関わるものが存在する。前者には、基地局から端末へパケットデータを送信する際に利用されるチャネルや、それに応答して端末から基地局へACK/NACK信号を送信する際に用いられるチャネル等がある。また、後者には、端末から基地局へパケットデータを送信する際に利用されるチャネルや、それに応答して基地局から端末へACK/NACK信号を送信する際に用いられるチャネル等がある。
【0003】
HSDPA(High Speed Downlink Packet Access)方式は、共有チャネルによる下りパケット通信の高速化を実現する方式として知られている。この方式では、現在の伝播状態に応じた最適な変調方式や符号化レートを基地局で選択して通信を行う適応変調方式が採用されており、これによりパケットの効率的な高速伝送を可能にしている。最適な変調方式や符号化レートを選択するために、端末から基地局に対して現在の伝播状態を表す品質情報CQI(Channel Quality Indicator)が定期的に送信され、基地局はそれに基づいて最適な変調方式や符号化レートを判断する。
【0004】
共有チャネルを用いた通信は、複数の端末に時分割でスロットを割り当てることにより実現される。HSDPA方式では、共有チャネルのスロットの各端末への割り当て、すなわち下りパケット通信のスケジューリングを基地局側で行っている。下りパケット通信においては、基地局から各端末への送信データの有無は基地局側で把握されているため基地局側でスケジューリングを行うことができる。
【0005】
共有チャネルによる上りパケット通信の高速化を実現する方式についても実用化が進められている。上りパケット通信の場合には、各端末から基地局への送信データの有無は、端末からの通知を受けなければ基地局は知ることができない。よって、共有チャネルのスロットの各端末への割り当て、すなわち上りパケット通信のスケジューリングは、端末からの通知を受けた基地局が行うことも可能であるが、端末が自立して行う方法も考えられる。
【0006】
ところで、スケジューリングの結果によっては、ある端末から基地局へのデータ送信に関し、下り通信に関わる共有チャネルを利用した応答信号の送信と上り通信に関わる共有チャネルを利用したパケットデータの送信が同時に発生する可能性がある。
このように、ある端末から基地局への異なるチャネルを用いた送信が重複する場合、両者を同時に送信するか、あるいはどちらか一方のみを選択して送信するかどちらかの方法を取ることが考えられる。
【0007】
なお、複数端末へのチャネル割り当てに関連する従来技術として、例えば、特許文献1に開示された無線通信システムがある。これは、TDMA通信方式における上下チャネルの割り当てを、優先順位によって効率的に行う技術を開示している。
【0008】
また、端末からの送信データ量の調節に関連する技術として、例えば、特許文献2に開示された通信装置がある。これは、可変タイムスロットを有するTDMA(Time Division Multiple Access)信号を復調する技術について開示している。
【0009】
【特許文献1】
特開2001−285230号公報
【特許文献2】
特開平10−093518号公報
【0010】
【発明が解決しようとする課題】
上述したように、ある端末から基地局へのデータ送信において、基地局からの下りパケットデータに対するACK/NACK信号の送信と、基地局への上りパケットデータの送信が同時に発生する場合、両者を同時に送信すると一時的に端末の送信電力の限界を超えてしまい、通信誤りが発生する可能性がある。
これを回避するために、上り通信か下り通信のどちらか一方のみを選択することも考えられる。上りパケット通信を選択した場合は下りパケット通信が利用できず、また下りパケット通信を利用した場合は上りパケット通信が利用できなくなる。しかし、例えばテレビ電話等を行う際に送受信されるストリーミングデータ等の場合、どちらか一方が利用できなくなることは望ましくなく、できるだけ同時送信が実現される方がよい。
【0011】
すなわち、スケジューリングの工夫やフレーム構成の工夫によって、同時に送信されると端末の送信電力オーバーを引き起こすようなデータについては、同一のタイムスロットで送信されることを回避する必要がある。
【0012】
なお、上記の特許文献1では、上下それぞれの通信において、優先順位に基づいて複数端末に1つのチャネルのタイムスロットを割り当てる技術について述べられているが、上記の課題を解決する技術ではない。
また、上記の特許文献2では、可変フレームを利用したデータ通信技術が開示されているが、これはデータ量の変動に対応して可変フレームを利用するものであり、上記の課題を解決する技術ではない。
【0013】
この発明は上記のような課題を解決するためになされたもので、端末の送信電力の限界を考慮した通信を可能にする基地局、端末、通信システム、及び通信方法を得ることを目的とする。
【0014】
【課題を解決するための手段】
この発明に係る通信システムは、基地局から端末への下りパケット通信と端末から基地局への上りパケット通信が同時に発生し得る通信システムであって、基地局からの下りパケット通信に応答して端末が基地局へ送信する下りパケット応答信号の送信タイミングと端末が基地局へ送信する上りパケットデータの送信タイミングが重ならないように、基地局が送信タイミングを決定して端末に通知し、端末は、通知された送信タイミングに従って基地局への送信を行うものである。
【0015】
この発明に係る通信システムは、基地局から端末への下りパケット通信と端末から基地局への上りパケット通信が同時に発生し得る通信システムであって、基地局からの下りパケット通信に応答して端末が基地局へ送信する下りパケット応答信号の送信タイミングと端末が基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上りパケットデータと下りパケット応答信号の送信タイミングの重複を回避するように、端末が上りパケットデータの送信フレーム長を調節し、端末は決定した送信フレーム長を基地局に通知し、上りパケットデータの送信を行うものである。
【0016】
【発明の実施の形態】
以下、この発明の実施の様々な形態を説明する。
実施の形態1.
図1は、この発明の実施の形態1によるパケット通信システムの構成とチャネル構成を示す図である。ここでは、W−CDMAシステムの基地局101と端末100との間のチャネル構成を例に取って説明を行う。なお、チャネル名称は仮称であり今後変更されることがありうる。また実際のチャネルの使われ方としては複数の制御チャネルを一本のチャネルに相乗りさせることも行われる可能性がある。なお、W−CDMAシステムでは端末100をUE(User Equipment)、基地局101をNode−Bと呼ぶことがある。
基地局101は、基地局制御装置10(SRNC:Serving Radio Network Controller)によって制御されている。基地局制御装置10には、端末100の情報が登録されている。
【0017】
基地局101から端末100へデータ送信する際に用いられる下り方向のチャネルについて説明する。CPICH102(Common Pilot Channel)は、セル内の全ての端末に共通に送信されるパイロット信号の送信に利用される。このパイロット信号がセル内の通信における全てのタイミングの基準となる。
下りパケット通信時に利用される下り方向チャネルとしては、パケット制御情報の送信に利用されるHS−SCCH105(HiSpeed Shared Control Channel)、下りパケットデータの送信に利用されるHS−DSCH106(HiSpeed Downlink Shared Channel)がある。これらはセル内で各端末に共通で利用される共有チャネルである。
また、上りパケット通信時に利用される下り方向の共有チャネルとしては、制御情報の送信用としてスケジューラによる割り当て位置(送信時刻)の通知に使用されるDL−SACCH108(Downlink Scheduling Assignment Control Channel)、基地局101での上りパケットデータの受信の成功/失敗を端末100に通知するためのDL−ACK/NACK−CCH111(Downlink ACK/NACK Control Channel)が存在する。
【0018】
次に、端末100から基地局101への上り方向のチャネルについて説明する。下りパケット通信時に利用される上り方向の共有チャネルとしては、制御信号伝送用のHS−DPCCH104(HiSpeed Dedicated Physical Control Channel)がある。これは、下り回線の伝播状況に基づいて基地局101へ報告する品質情報CQI(Channel Quality Indicator)および下りパケットが正しく受信できたかどうかに対する応答であるACK/NACKを送信する。
また、上りパケット通信時に利用される上り方向の共有チャネルとしては、端末100の送信データの有無を通知するのに利用されるUL−SICCH107(Uplink Scheduling Information Control Channel)、端末100が選択した変調方式、符号化レート等を基地局101へ通知するのに利用されるUL−TFRI−CCH109(Uplink TFRI Control Channel)や、上りパケットのデータ本体の送信に利用されるEUDTCH110(Enhanced Uplink
Dedicated Transport Channel)がある。
【0019】
ここで、TFRI(Transport Format and Resource Indicator)とは変調方式、符号化率等の組み合わせを通知するための情報のことである。適応変調においては送信時に決定した変調方式、符号化率等の組み合わせを受信時に知る必要があるが、この情報によりそれが可能になる。
【0020】
また、特定端末との通信のために個々に設定されるチャネルであるDPCH103(Dedicated Physical Channel)は、HSDPA通信状態時には上り下りそれぞれに設定され、音声やデータ等の通信や上位レイヤのシグナリングのために利用される。
【0021】
実施の形態1における各チャネルの送信フレームの構成について説明する。1フレームは15スロットで構成され、1回の送信では3スロットが利用され、この3スロットをサブフレームと呼ぶ。すなわち、1フレーム内には5サブフレームが配置される。
【0022】
図2は、実施の形態1による基地局101の構成を示すブロック図である。
図2を用いてCDMA変復調処理について説明する。これは他の実施の形態でも同様の処理を行う部分であり、CDMA方式による通信の一般的な動作である。
端末への下りパケット通信時の処理に関わる部分から説明する。変調部201において、各チャネルの信号に下りチャネライゼーションコード発生器202で発生させたチャネライゼーションコードを掛けた後、各チャネルの信号を多重化する。さらに、多重化した信号に、下りスクランブリングコード発生器203で発生させたスクランブリングコードを掛けてスペクトラム拡散処理を行う。このようにして得られた多重化したベースバンド信号の周波数を周波数変換部204において搬送波周波数まで上げる。その後、電力増幅部205においてパワーアンプによって信号を所望の電力まで増幅し、アンテナ206を介して送信する。端末からの上りデータ受信時には、アンテナ206を介して受信した微弱な信号は、低雑音増幅部207において増幅され、周波数変換部208においてベースバンド信号の周波数に下げられる。ベースバンド信号まで下げられた後、復調部211に入力され、上りスクランブリングコード発生器210で発生させたスクランブリングコードを掛けて逆拡散処理を行い、上りチャネライゼーションコード発生器209で発生させたチャネライゼーションコードを用いて各チャネルに分離する。このようにして、符号分割されたチャネルを分離することができる。
【0023】
次に、下りパケット通信時の処理ついて説明する。
下りパケット通信用送信データバッファ215には網から取得した各端末への送信データが保持される。また、HS−DPCCH104を利用して端末から送信された品質情報(CQI)は復号化部212で復号され、品質情報受信部214はそこから端末の現時点での伝播状態を取得する。これらのデータと品質情報が下りパケット通信用スケジューラ216(スケジューリング部)に供給される。
【0024】
下りパケット通信用スケジューラ216は、タイミング管理部226より下り通信用チャネルのスケジューリング、すなわち各端末へのスロットの割り当て状況を取得し、各端末への送信データの有無、及び品質情報から得られた伝播状態を総合的に判断してパケットの送信タイミング(第2の送信スケジュール)を決定する。パケットの送信タイミングが決定したら、下りパケット通信制御情報送信部217によって、各端末が下りデータを復調する際に必要な情報が変調部201を通してHS−SCCH105を利用して送信される。また、下りパケット通信データ送信部218によって、下りデータ本体が変調部201を通してHS−DSCH106を利用して送信される。
【0025】
送信したパケットが端末100で正しく受信された場合は、端末100からHS−DPCCH104を利用してACK/NACKが送られ、復調部211を通って応答信号判定部213に入力される。応答信号判定部213では信号を判定し、判定結果が下りパケット通信用スケジューラ216に渡される。ACKと判定された場合には、次のパケットの送信がスケジューリングされ、NACKと判定された場合は再送処理が行われる。下りパケット通信においては、以上の一連の流れが繰り返される。
【0026】
次に、上りパケット通信時のデータ処理について説明する。端末100から基地局101にUL−SICCH107を利用して送信された送信データ量が復調部211を通って送信バッファ量受信部219に供給されることにより、端末100において送信したいデータが存在することが上りパケット通信用スケジューラ(スケジューリング部)223に通知される。また、上りチャネルの品質情報受信部(図示せず)から、現在の上りチャネルの伝播状態が上りパケット通信用スケジューラ223に通知される。
【0027】
上りパケット通信用スケジューラ223は、タイミング管理部226より上り通信用チャネルのスケジューリング、すなわち各端末へのスロットの割り当て状況を取得し、各端末への送信データの有無、及び品質情報から得られた伝播状態を総合的に判断してパケットの送信タイミング(第1の送信スケジュール)を決定する。パケットの送信タイミングが決定したら、サブフレーム割付情報作成部224においてサブフレーム割り当て情報をDL−SACCH108に載せ、変調部201を通して端末100に送信する。
【0028】
その後、指定したサブフレーム位置(送信時刻)でUL−TFRI−CCH109を使用して端末100から送信されてくるTFRI情報が復調部211を通してTFRI受信部220に供給される。TFRI受信部220に通知された上りパケットデータの復調に必要なパラメータは、復調部211および復号化部221に供給される。TFRIに続いて、端末100からEUDTCH110を使用して送信されるデータ本体が復調部211を通して復号化部221に供給され、復号化される。端末100からのパケットを正しく受信できた場合は応答信号発生部222でACK/NACK信号を生成し、DL−ACK/NACK−CCH111を使用して端末100に通知する。上りパケット通信においては、以上の一連の流れが繰り返される。
【0029】
図3は、実施の形態1による端末100の構成を示すブロック図である。
まず、CDMA変復調処理について説明する。この部分は、他の実施の形態でも同様の部分であり、CDMA方式による通信を行う端末の一般的な処理である。
基地局への上りパケット通信に関わる処理から説明する。変調部301では各チャネルの信号をチャネライゼーションコード発生器302で発生させたチャネライゼーションコードを掛けて後で多重化する。多重化したものにスクランブリングコード発生器303で発生させたスクランブリングコードを掛けてスペクトラム拡散処理を行う。この多重化したベースバンド信号を周波数変換部304において搬送波周波数まで上げる。その後電力増幅部305においてパワーアンプに信号を入れ所望の電力まで増幅し、アンテナ306を介して送信する。
基地局101からのデータ及び信号の受信時には、アンテナ306を介して受信した微弱な信号は低雑音増幅部307において増幅され、周波数変換部308においてベースバンド信号の周波数に下げられる。そのベースバンド信号は復調部311に入力される。復調部311において、ベースバンド信号にスクランブリングコード発生器310で発生されたスクランブリングコードを掛けて逆拡散処理を行い、さらにチャネライゼーションコード発生器309で発生されたチャネライゼーションコードを用いて信号を各チャネルに分離する。こうして符号分割されたチャネルを分離することができる。
【0030】
次に、下りパケット通信時のデータ処理に関わる構成について説明する。CPICH102を利用して基地局101より通知された基準タイミングは、復調部311を通ってタイミング管理部318へ供給される。タイミング管理部(送信制御部)318は、各処理部へ処理タイミングの基準となるタイミング信号を供給する。特に、基地局から受け取ったスケジュール情報(DL−SACCHのタイミング情報)に基づいてEUDTCH送信処理部322へ上りパケットデータの送信タイミング信号を出力するとともに、HS−SCCHタイミング信号に基づいてHS−DPCCH送信処理部317へ下りパケット応答信号用の送信タイミング信号を出力する。HS−DPCCH送信処理部317の出力する送信タイミング信号は、HS−SCCH又はHS−DSCHの送信タイミングから予め設定された時間経過後という基準に基づき生成される。
さらに、基準タイミングは伝播品質推定部315へも通知され、下りチャネルの伝播状態の推定に利用される。伝播品質推定部315で推定された伝播状態を基に品質情報信号生成部316においてCQI値が生成され、HS−DPCCH送信処理部317に供給され、HS−DPCCH104を利用して基地局101に送信される。
【0031】
基地局101から送信されたパケットデータが端末100で受信されると、HS−SCCH105を利用して送られたパケット制御信号は復調部311を通って復号器312に供給され、復号処理が行われる。復号器312で制御信号を復号することにより、HS−DSCH106を用いて基地局101より送信されるパケットデータの復調パラメータが得られる。復調パラメータは復調部311および復号器313に供給される。HS−SCCH105を使用して基地局101から送信されたパケットデータは、復調部311を通って復号器313に供給される。パケットを正しく受信できた場合は応答信号生成部314においてACK信号が生成され、エラーの場合はNACK信号が生成される。生成されたACK/NACK信号は、HS−DPCCH送信処理部317において所定のスロットに配置され、HS−DPCCH104を用いて基地局101に通知される。下りパケット通信時には、この一連の処理が繰り返される。
【0032】
次に、上りパケット通信時のデータ処理に関わる構成について説明する。ユーザの指示に従って、上位レイヤを介して送信すべきデータが上りパケット通信用送信データバッファ320に格納される。上りパケット通信用バッファ量送信処理部323は上りパケット通信用送信データバッファ320に格納された送信データ量を確認し、送るべきデータが存在する場合はUL−SICCH107を利用して基地局101に送信データバッファのデータ量を通知する。
基地局101は、送信データ量を受信し、端末100に送信許可を通知する場合には、DL−SACCH108を利用して送信フレーム上の割り当て位置を通知する。端末100は送信割り当て位置を受信すると、復調部311を通ってサブフレーム位置/送信マージン受信部324に送信を許可するサブフレーム位置および送信マージンが通知される。TFRI送信処理部321では、送信マージンおよび現時点での上りパケット通信用送信データバッファ320に格納されたデータ量を考慮して送信するTFRIを決定し、EUDTCH送信処理部322へ通知する。EUDTCH送信処理部322では、通知されたTFRIに従って上りパケット通信用送信データバッファ320内のデータを処理し、EUDTCH110を利用して基地局101へ送信する。
【0033】
基地局101は、端末100からのパケットデータを正しく受信できたかどうかを示すACK/NACK信号をDL−ACK/NACK−CCH111を利用して端末100に通知する。端末100でACK/NACKを受信すると、復調部311を通って応答信号受信部319に供給され、上りパケット通信用送信データバッファ320に結果が通知される。応答信号がNACKの場合はデータの再送を行い、ACKの場合は上りパケット通信用送信データバッファ320内の送信済みデータを削除して次のパケットを送信する。上りパケット通信時にはこの一連の流れが繰り返される。
【0034】
次に下りパケット通信の流れについて説明する。基地局101は、セル内に存在する端末100に対してCPICH102を利用してパイロット信号を送信している。また、通信状態時においてはDPCH103が設定される。基地局101がデータ送信を開始する場合には、端末100に対してHS−DSCH106によって伝送されるパケットデータ復調に必要な変調方式、符号化率等を含んだ情報をHS−SCCH105を利用して送信する。端末100はこの情報を受け取り、自分宛てのものであればそれを利用してHS−DSCH106によって送信されたパケットデータの復調を開始する。自分宛てでない場合は無視をする。端末100は復調したデータの照合を行い、誤りがないようであればHS−DPCCH104を利用してACKを基地局101に送信し、誤りがあるようであればNACKを送信する。
【0035】
ここで、HS−DPCCH104を用いてデータ送信する場合のフレーム構成を図4に示す。1フレームは15スロットで構成され、1回の送信で利用される3スロットをサブフレームと呼ぶ。すなわち、1フレーム内には5サブフレームが配置される。1サブフレームを構成する3スロットのうち1スロットはACK/NACK送信用であり、2スロットは上述した品質情報CQI送信用に利用される。この2つは独立して利用され、必ずしも同時に送信するとは限らない。
【0036】
次に上りパケット通信の流れについて説明する。下りパケット通信の場合には、原則として基地局101側でスケジューリングを行い、端末100は基地局101に指定されたパケット送信周期およびタイミングに従って、基地局101宛てにパケットを送信する。一方、上りパケット通信の場合には、複数のスケジューリング方法が考えられるが、ここでは基地局101が全てのスケジューリングを行う一般的な方法を例とする。なお、上りパケット通信状態時においても基地局101と端末100間にはDPCH103が設定される。
【0037】
端末100は、送信すべきデータが存在する時は、UL−SICCH107を利用して、送信データの有無を基地局101に通知する。基地局101は各端末からの送信要求をもとにスケジューリングを行い、DL−SACCH108を利用して各端末に対して送信許可の情報を通知する。この情報には送信許可するサブフレーム位置および送信許可する電力マージン等が含まれている。端末100はDL−SACCH108によって通知された送信許可情報および自端末が送信しようとするデータ量を元に変調方式、符号化レート等を選択し、UL−TFRI−CCH109を利用して基地局101に送信する。さらに、その直後に上りパケットデータ本体をEUDTCH110を利用して基地局101に送信する。基地局101は、UL−TFRI−CCH109によって通知された制御情報に従って、EUDTCH110を利用して送信されたパケットデータを受信する。基地局101は、EUDTCH110によって送信されたデータを正常に受信できた場合は、DL−ACK/NACK−CCH111を利用して端末100にACKを通知し、誤りがあるようであればNACKを通知する。
【0038】
上記のように、基地局101と端末100の間では、下りパケット通信と上りパケット通信が独立して動作している。そのため、端末100から基地局101へ連続送信を行った場合には、上りパケット通信に関わる各制御信号と下りパケット通信に関わるパケットデータや各制御信号が重なって送信されることが起こり得る。
【0039】
ここで、端末100の送信電力について図5を用いて説明する。図において、横軸は時間、縦軸は送信電力を示している。一般に、携帯端末では電池容量や発熱量の限界などの制約によって、パワーアンプの出力に上限がある。上述のように、端末から同時に複数のデータや信号を送出しようとした場合、パワーアンプの出力の上限値を越えてしまうと所望の電力を満たせなくなり通信誤りが発生する。図に示すように、一般に基地局101からの下りパケット通信応答してHS−DPCCH104によってACK/NACK信号を送信する際に使用される送信電力と、基地局101へEUDTCH110によってパケットデータを送信する際に使用される送信電力は大きい。一方、基地局101への品質情報CQIの送信や個別チャネルであるDPCH103によってデータ送信する際にかかる送信電力はそれほど大きくない。
【0040】
よって、EUDTCH110によるデータ送信とHS−DPCCH104によるACK/NACK信号の送信が同時に発生した場合には、端末100の送信電力の限界値を超えてしまう。その結果、限界値を超える分の電力が不足し、通信誤りが発生する。
【0041】
上記の端末100の送信電力限界値の超過が発生する場合について、図6のタイムチャートを用いて説明する。図中、横軸は時間の経過を表しており、各々の帯で各チャネルのフレーム構成を表している。また、各帯の太さは、それぞれのチャネルを用いて送信するデータ信号の送信電力の大きさを表している。前述したように、上りパケット通信と下りパケット通信は、それぞれのデータ本体を送信するチャネルと制御チャネルを利用して独立に行われる。下りパケット通信または上りパケット通信における各チャネル間でのデータ送信のタイミングは決まっているが、実際には多少の時間ずれが存在する。ただし、ここでは大きな影響を与えない程度のずれなので、タイムチャート上では考慮していない。
【0042】
図に示すように、下りパケット通信について見ると、基地局101から端末100にHS−SCCH105を利用して制御情報が送信されると、その2スロット後にHS−DSCH106を利用してパケットデータが送信される。端末100側では、HS−DSCH106によって送信されたパケットデータに誤りがない場合には、HS−DSCH106の終わりから7.5スロット程度遅れてHS−DPCCH104を利用してACK信号を送信する。誤りがある場合は同様にNACK信号を送信する。
一方、上りパケット通信について見てみると、基地局101は、端末100からUL−SICCH107を利用して送信された端末100が送信バッファに有する送信データ量に基づいてスケジューリングを行い、DL−SACCH108を利用して端末100に送信可能な割り当て位置を通知する。端末100は、通知された割り当て位置に従って決定した変調方式等をUL−TFRI−CCH109を利用して基地局101に通知し、その直後にEUDTCH110を利用して上りパケット通信のデータ本体を送信する。この時、基地局101のスケジューラが決定した割付位置によっては、HS−DPCCH104で送信されるACK/NACK信号とEUDTCH110で送信される上りパケットデータの送信タイミングが図6(A)の時点のように重なる可能性がある。両者のタイミングが重なった場合、図5に示したように端末100の送信電力の限界オーバーが発生する。
【0043】
図6に示したような上りパケットデータと下りパケットデータに対する応答信号の衝突を回避する方法として、基地局101のスケジューラによる両者の送信タイミングの相互調整について図7のタイムチャートを用いて説明する。図6と同様に、下りパケット通信については、基地局101からHS−SCCH105を利用して制御情報が送信され、その2スロット後にHS−DSCH106で下りパケットデータが送信され、HS−DSCH106の終わりから7.5スロット程度遅れて端末100から基地局101に、HS−DPCCH104を利用してACKまたはNACKが送信される。
上りパケット通信については、端末100からのUL−SICCH107を利用した送信データ有無の通知に基づいて基地局101が送信サブフレーム位置を決定する。この時、基地局101の上りパケット通信用スケジューラ223は、後述するスケジューリング処理によって、HS−DPCCH104で送信されるACK/NACK信号とEUDTCH110で送信される上りパケットデータの送信タイミングが重ならないように端末100に割り当てる送信タイミングを決定し、DL−SACCH108を利用して端末100に通知する。
端末100は通知された送信タイミングに従って、選択したTFRIをUL−TFRI−CCH109を利用して基地局101に通知し、その直後にEUDTCH110を利用してデータ本体を送信する。
これにより、図7(B)に示すように、HS−DPCCH104で送信される信号とEUDTCH110で送信されるパケットデータの送信タイミングの衝突が避けられる。
【0044】
次に、基地局101におけるスケジューリング処理について説明する。図2に示すように、基地局101は、上りパケット通信用スケジューラ223と下りパケット通信用スケジューラ216間のデータ受け渡しを行うスケジューラ間連絡回路225を有している。スケジューラ間連絡回路225を介して下りパケット通信時のACK/NACK信号の送信と上りパケット通信時のデータ本体の送信タイミングの情報を交換することにより、衝突が発生しないようなスケジューリングを実現する。
【0045】
図8は、実施の形態1による基地局101のスケジューラによるスケジューリング処理のフローチャートである。
まず、下りパケット通信用スケジューラ216の動作について説明する。下りパケット通信用スケジューラ216は、HS−DPCCH104を利用したACK/NACK信号の送信位置情報を上りパケット通信用スケジューラへ通知する。
まず、下りパケット通信用スケジューラ216は、品質情報受信部214から端末100の現時点での品質情報を取得する(ステップST100)。
次に、上りパケット通信用スケジューラ223において決定されたEUDTCH110による上りデータの受信サブフレーム位置をスケジューラ間連絡回路225を介して取得する(ステップST101)。
次に、下りパケット通信用スケジューラ216は、端末100宛てのHS−SCCH105による制御情報、及びHS−DSCH106によるパケットデータの送信サブフレーム位置を決定する(ステップST102)。
次に、ステップST102で決定した下り方向のスケジューリングを基に、それらの下り通信に対して端末100からHS−DPCCH104を利用して送信されるACK/NACK応答信号の受信サブフレーム位置を算出する(ステップST103)。
次に、ステップST103で算出したHS−DPCCH104による信号の受信予定位置(時刻)、及び端末100を特定する番号をスケジューラ間連絡回路225を経由して上りパケット通信用スケジューラ223に通知する(ステップST104)。
次に、タイミング管理部226へステップST103で算出したHS−DPCCH104による信号の受信予定位置を通知する(ステップST105)。タイミング管理部226へ通知されたスケジューリング結果に従って、各処理部での送受信動作のタイミングが制御される。
これを実現するためには基地局に存在する上下それぞれのスケジューラにおいて端末の送信タイミングを予測する必要がある。予測する例を示す。
【0046】
図6に示すように、下りパケット通信のACK/NACK位置の予測は、
(1)基地局101から端末100にHS−SCCH105を利用して制御情報が送信される。
(2)HS−SCCH105とHS−DSCH106の各先頭における時間差(τHS−PDSCH)は3GPP仕様書TS25.211(Ver5.3.0)のFigure35に開示されるようにHS−SCCH105に対して2スロット分(5120チップ)遅れた位置にHS−DSCH106を利用してパケットデータが送信される。
(3)さらに端末100が必要とする処理時間としてHS−DSCH106の最後部とHS−DPCCH104の先頭の時間差(τUEP)は3GPP仕様書TS25.211(Ver5.3.0)のFigure34に開示されるように19200チップ分用意される。この演算を基地局内スケジューラで行うことで下りパケットのHS−SCCH105を送出した時点で端末100がACK/NACKを送信する位置を予測できる。
【0047】
また、図9を用いて上りパケット通信における端末100のパケット送信タイミングの予測について説明する。
(1)基地局101から端末100にDL−SACCH108を利用して端末に許可する割り当て位置情報(MAP)を通知する。
DL−SACCH108の中には送出サブフレーム位置(変数k)および連続するサブフレーム数(変数n)の情報が含まれている(以下、k=1、n=3の場合を例に説明する。)。
(2)DL−SACCH108とUL−TFRI−CCH109の時間差(仮称τSACCH−TFRIとする。)、およびサブフレーム位置(k)からτk×Tsubframe+τSACCH−TFRIの演算により端末がTFRIを送出する位置が予測できる。
(3)その後、UL−TFRI−CCH109とEUDTCH110の時間差(仮称τTFRI−EUDTCHとする)から、端末100からEUDTCH110が送信される位置が予測できる。
実際の計算としては
EUDTCH送信開始点 = k×Tsubframe+τSACCH−TFRI+τTFRI−EUDTCH
EUDTCH送信終了点 = k×Tsubframe+τSACCH−TFRI+τTFRI−EUDTCH+n×Tsubframe
となる。
ここで、Tsubframeは1サブフレームの時間長を示す。
【0048】
これらの予測に基づいたスケジューリングによる重なりの回避について説明する。上りパケット通信が下りパケット通信より事前に利用されている場合を例として考えると、ある端末に対する上りパケット送信をスケジューラが決定するタイミングにおいてEUDTCHの送出のタイミングは上記方法により予測できる。上りパケット送信をスケジューラが決定するタイミングにおいてEUDTCH送出予定箇所のサブフレームに対して事前に利用サブフレームの予約をかけておく。下りパケットスケジューラはその予約が行われているサブフレームにおいてはACK/NACKが送出されないようなタイミングを上記方法により予測して空いているサブフレームを利用する。
また、下りパケット通信が上りパケット通信より事前に利用されている場合を例として考えると、下りパケット通信において連続したパケット送信を行う場合、事前に将来利用したいサブフレームの予約をしてしまう。上りパケット通信スケジューラはその将来予約を避ける形でスケジューリングを行う。このようにして下りパケット通信の送信が保証されるスケジューリングが行われる。
【0049】
これを実現するためには、上りパケットスケジューラと下りパケットスケジューラの間においてお互いの送出タイミングについての連絡が必要となる。
連絡の実現方法としては、スケジューラの実装のハードウェアが上りパケットスケジューラと下りパケットスケジューラで異なる場合は、共有メモリ等を設けて基板間のデータバス、制御バスなどで連絡を取るなどの方法が考えられる。
また同一CPU内で両者のスケジューラを動作させている場合においては、ソフトウェアにおいて両スケジューラのタスク(リアルタイムOSにおけるプログラムの処理の単位のこと)間の連絡を取る。リアルタイムOSにおけるタスク間の連絡手段としてはイベントフラグ、セマフォ、メールボックス等の方法が考えられる。これらの実装手段は回路やOSの機能に依存し、各方法については公知のものであるので詳細説明を省略する。
【0050】
次に、上りパケット通信用スケジューラ223の動作について説明する。
まず、現在の上りのチャネルの伝播状態に関する品質状態を取得する(ステップST106)。
次に、端末100の送信可能電力(PowerClass)を取得する(ステップST107)。
端末100の送信可能電力は、図5で示した端末の送信電力の上限値である。端末100の送信可能電力は基地局制御装置10が有しており、基地局101の上位レイヤを介して上りパケット通信用スケジューラ223へ供給される。
次に、上りパケット通信用スケジューラ223は、下りパケット通信用スケジューラ216で算出された、端末100からHS−DPCCH104を利用して送信されるACK/NACK応答信号の受信サブフレーム位置をスケジューラ間連絡回路225を介して取得する(ステップST108)。
次に、上りパケット通信用スケジューラ223は、ステップST108で取得したACK/NACK応答信号を避けるようにEUDTCH110によるパケットデータの送出位置を算出する(ステップST109)。
次に、ステップST109で算出したEUDTCH110によるパケットデータの送出位置を基に、基地局101におけるEUDTCH110によるパケットデータの受信サブフレーム位置を算出する(ステップST110)。
次に、ステップST110で算出したでEUDTCH110によるパケットデータの受信予定位置をスケジューラ間連絡回路225を経由して下りパケット通信用スケジューラ216に連絡する(ステップST111)。
次に、ステップST110で決定したEUDTCH110によるパケットデータの受信サブフレーム位置をタイミング管理部226へ通知する(ステップST112)。
タイミング管理部226へ通知されたスケジューリング結果に従って、各処理部での送受信動作のタイミングが制御される。
【0051】
図10を用いて、上りパケット通信用スケジューラ223のステップST109でのスケジューリング処理について説明する。
上りパケット通信用スケジューラ223では、各端末がUL−SICCH107を利用して送信許可を求めてきた送信パケットデータに対して、伝播状態等を考慮した上で送信サブフレームの割り当て位置を決定する。
図10の例では、端末3台分の送信依頼を1本の送信キューに出力しているが、実際には、多数の端末からの送信依頼をスケジューリングしており、出力も複数用意されている。なお、ここでは上りパケット通信用スケジューラ223の場合を説明しているが、下りパケット通信用スケジューラ216においても、ほぼ同様の処理が行われる。下りの場合は、スケジューリングの際に端末の送信可能電力を考慮しない点が異なっている。
上りパケット通信用スケジューラ223には、各端末から送信されたパケットデータの他に、図8のステップST106、ステップST107に示したように各端末の品質情報および送信可能電力も供給される。さらに、ステップST108に示したように端末からHS−DPCCH104を利用して送信されるACK/NACK信号の受信予定位置も供給される。
【0052】
図10の例では、送信可能電力は、値が小さいほど電力に余裕があることを示しており、送信処理に大きな電力を用いることができる。上りパケット通信用スケジューラ223は、一定のアルゴリズムに従って送信キューを生成し、各パケットを送信バッファに送出する。このアルゴリズムには、例えば、ラウンドロビンのような順番を均等割付するものや、伝播品質のよい端末に優先的に割り付けるものなどが考えられる。アルゴリズムを利用してスケジューリングを行う際、上りパケット通信用スケジューラ223は、端末からHS−DPCCH104を利用して送信されるACK/NACK信号の受信予定位置と、同じ端末からEUDTCH110を利用して送信されるパケットデータの送信位置が重ならないようにサブフレーム位置を割り付ける。この時、図10の端末1のように、送信可能電力に余裕のある端末に関しては、送信電力の限界値を超える問題が発生しないので、重複の回避は行わない(図中(C)参照)。
【0053】
なお、上述の説明では、下りパケットデータに対するACK/NACK信号と上りパケットデータの送信タイミングを予測し、両者が重ならないようにスケジューリングする例を示したが、スケジューリングは以上の例に限定されず、ACK/NACK信号と上りパケットデータの送信が重複しないタイミングであれば、どのようなスケジューリング方法を用いてもかまわない。
【0054】
このように、実施の形態1では、基地局は端末へ送信した下りパケットデータの受信応答信号を制御チャネルを介して受信するとともに、時分割多重チャネルを介して複数のサブフレームによって伝送される上りパケットデータを受信する。基地局のスケジューリング部が端末に対し、複数のサブフレームを少なくとも1つの無伝送期間を挟んだ間欠的な送信タイミングで時分割多重チャネル上に送信させる第1の送信スケジュール、及び、無伝送期間と端末からの受信応答信号の送信期間とが重なる送信タイミングを設定し、この送信タイミングに基づいた下りパケットデータ送信用の第2の送信スケジュールを生成する。そして、送信部が、このスケジューリング部が作成した第2の送信スケジュールに従って下りパケットデータを送信するとともに、第1のスケジュールのスケジュール情報を端末へ送信するため、端末の送信エネルギー限界によって生ずる時分割多重チャネル及び制御チャネルの通信障害を抑制することができる。
また、端末は基地局へ送信される上りパケットデータを他の端末と共有の時分割多重チャネルを用いて送信するものであり、基地局からの下りパケットデータを受信する受信部と、基地局への上りデータを伝送する複数のサブフレームを時分割多重チャネルを用いて送信するとともに、下りパケットデータに対する受信応答信号を制御チャネルを用いて送信する送信部とを備える。そして、送信制御部が、送信部の送信タイミングを制御し、複数のサブフレームの送信を少なくとも1つの無伝送期間を挟んだ間欠的なタイミングで指示するとともに、下りパケット応答信号の送信を下りパケット応答信号の送信が無伝送期間中に発生するタイミングで指示するため、時分割多重チャネルの送信電力及び制御チャネルの送信電力が送信部の送信限界を超えてしまうという問題を解決することができる。なお、ここで無伝送期間は、各サブフレームの間に設けられてもよいし、複数のサブフレームを1つのグループとし、各グループ間に無伝送期間を設けるようにしてもよい。また、送信単位はサブフレーム単位ではなく、フレーム単位とすることもできる。
また、上述の無伝送期間は、1つの端末に割り当てられた時分割多重チャネルの特定サブフレームで、データを伝送しない例であるが、無伝送期間を通常の送信電力に比べて電力を低減した、低電力伝送期間とするようにしてもかまわない。
【0055】
以上のように、この実施の形態1によれば、基地局101の下りパケット通信用スケジューラ216と上りパケット通信用スケジューラ223間でスケジューラ間連絡回路225を介して端末からのHS−DPCCH104を利用したACK/NACK信号の送信タイミングとEUDTCH110を利用した上りパケットデータの送信位置の情報を交換することにより、両者の送信タイミングが重複しないようにスケジューリングを行う。端末側では、基地局が決定した送信タイミングに従って各チャネルを利用した送信を行うようにしたので、基地局101の制御によって、端末の送信可能電力の限界を超えないように、且つ上下どちらのパケット通信も犠牲にせずにスケジューリングを行うことができるという効果がある。
【0056】
さらに、上りパケット通信用スケジューラ223は、各端末の送信可能電力の値に基づいてスケジューリングを行うようにしたので、端末の送信可能電力に余裕がある場合には、無駄に送信タイミングの重複を回避することなく送信割り当て位置を決定することができる。
なお、処理を簡易にする場合には、端末の送信可能電力の値に関係なく、上りパケットデータと下りパケット応答信号の送信タイミングが重複しないようにスケジューリングするようにしてもよい。
【0057】
実施の形態2.
実施の形態1では、基地局内に上下のパケット通信用スケジューラを備え、上り下りどちらの通信についても基地局がスケジューリングを行う構成をとっている。これに対し実施の形態2では、端末からのパケット送信タイミングを基地局側で決定せず、端末が送信タイミングの決定権を持ち、上下通信の相互調整を行う。実施の形態2におけるパケット通信システムの構成とチャネル構成は図1で示した実施の形態1のものと同様である。
【0058】
図11は、実施の形態2による基地局400の構成を示すブロック図である。図中、図2と同一の符号は同一の構成要素を表している。
基地局400において、CDMA変復調に関わる構成、及び下りパケット通信に関わる構成については、実施の形態1と同様なので、説明を省略する。
【0059】
基地局400の上りパケット通信に関わる構成について説明する。上りパケット通信に関わる構成は、実施の形態1と異なる構成になっている。
【0060】
基地局400は、端末からUL−SICCH107を利用して送信された送信許可依頼に対し、端末に対して許容する送信電力のマージンを通知する必要がある。干渉量測定部419において、現時点での干渉量を他セルにおける干渉も含めて測定しておく。その値と他の音声チャネル等に利用する電力等を考慮して、端末からEUDTCH110が送信される時点での総干渉量を基地局総干渉量予測部423で予測し、端末送信電力マージン送信部424においてDL−SACCH108を利用して各端末宛てに送信する。
【0061】
端末からEUDTCH110を利用して送信されるパケットデータの受信においては、まず端末からUL−TFRI−CCH109を利用して送信される端末からのパケットデータの受信に必要な復調パラメータが復調部411を通してTFRI受信部420に供給される。得られた復調パラメータは、復調部411および復号化部421に供給される。
端末からEUDTCH110を利用して送信されるパケットデータは、復調部411を通して復号化部421に供給され、エラー訂正チェックが行われた後、応答信号送信部422に供給され、受信エラーがなければACK,エラーが発生した場合はNACKの応答信号が生成される。ACK/NACK応答信号はDL−ACK/NACK−CCH111を利用して端末に送信される。
【0062】
タイミング管理部425では、原振(図示せず)より供給される基準クロック信号に基づいてサブフレーム等のタイミングを発生させ、各処理部へ供給する。上りパケット通信においてはこの一連の流れが繰り返される。
【0063】
図12は、実施の形態2による端末500の構成を示すブロック図である。図中、図3と同一の符号は同一の構成要素を表している。
端末500において、CDMA変復調に関わる構成、及び下りパケット通信に関わる構成については、実施の形態1と同様なので、説明を省略する。
【0064】
端末500の上りパケット通信に関わる構成について説明する。上りパケット通信に関わる構成は、実施の形態1と異なる構成になっている。
端末500がUL−SICCH107を利用して基地局400に送信した送信許可に対し、基地局400より、DL−SACCH108を利用して送信された許容送信電力マージンは、復調部511を通して送信マージン受信部519に供給される。送信マージン受信部519は、端末に許容される最大電力を送信決定部520に通知する。ユーザの指示に従って、上位レイヤを介して送信すべきデータが上りパケット通信用送信データバッファ522に格納される。上りパケット通信用送信データバッファ522は、バッファ内に送信すべきデータが存在することを送信決定部520へ通知する。送信決定部520は、パケットを送信する際にはTFRIを決定し、TFRI送信処理部523へ通知する。
さらに、送信決定部520は、タイミング管理部518からHS−DPCCH104を利用したACK/NACK信号の送信タイミングを取得し、ACK/NACK信号と重複しないように送信サブフレームを決定する。決定した送信サブフレームは、タイミング管理部518へ実際に通知する。TFRI送信処理部523は、タイミング管理部518が指定するサブフレーム位置に従って、UL−TFRI−CCH109を利用してTFRIの送信を行う。また、上りパケット通信用送信データバッファ522に格納された送信データはEUDTCH送信処理部524に供給され、EUDTCH送信処理部524は、タイミング管理部518が指定するサブフレーム位置に従って、EUDTCH110を利用してデータの送信を行う。
【0065】
基地局400は、DL−ACK/NACK−CCH111を利用して、端末500からEUDTCH110を利用して送信されたにパケットデータに対するACK/NACK応答信号を端末500に送信する。DL−ACK/NACK−CCH111によって送信されたACK/NACK信号は、復調部511を通って応答信号受信部521に供給される。受信結果は上りパケット通信用送信データバッファ522に通知される。上りパケット通信用送信データバッファ522は、受信結果がNACKの場合は再送を行い、ACKの場合は送信済みデータを削除し次のパケットを送信する。上りパケット通信においてはこの一連の流れが繰り返される。
【0066】
図13は、実施の形態2による端末500のスケジューリングによる送信タイミングの衝突の回避を説明するためのタイムチャートである。図に示すように、下りパケット通信では、HS−SCCH105を利用して基地局400から制御情報が送信され、その先頭から2スロットずれた位置でHS−DSCH106を利用してパケットデータが送信される。端末500は、HS−DSCH106によって送信されたパケットデータの受信結果がエラーでない場合はHS−DSCH106によるデータ送信タイミングの終わりから端末の処理時間分7.5スロット程度遅れた位置で、HS−DPCCH104を利用してACKを送信し、エラーがある場合はNACKを送信する。
【0067】
一方、上りパケット通信では、基地局400はDL−SACCH108を利用して端末500に送信電力許容マージンを事前に通知する。端末500は通知された送信電力マージンに基づいて、その範囲内で変調方式、符号化率等のTFRIを選択する。選択したTFRIは、UL−TFRI−CCH109を利用して基地局500に通知され、その直後にEUDTCH110を利用してデータ本体が送信される。
【0068】
端末500は、UL−TFRI−CCH109及びEUDTCH110によるデータ送信のサブフレーム位置を決定する際に、HS−DPCCH104によるACK/NACK信号の送信サブフレーム位置とEUDTCH110によるパケットデータの送信サブフレーム位置が重なることを回避するようにスケジューリングする。基地局400からHS−SCCH105を利用して通知される制御情報は事前に端末500に受信されているため、端末500は、HS−DPCCH104によるACK/NACK信号の送信サブフレーム位置は予想可能である。
【0069】
次に、端末500送信決定部520におけるスケジューリング処理について説明する。送信決定部520は、下りパケット通信におけるACK/NACK信号の送信と上りパケット通信におけるデータ本体の送信が衝突をしないようにサブフレーム割り当てを決定する。
【0070】
図14は、実施の形態2による端末500の送信決定部520のスケジューリング処理のフローチャートである。
まず、送信決定部520は、タイミング管理部518よりHS−SCCH105による基地局400からの制御情報の受信サブフレーム位置を取得する(ステップST200)。
次に、送信マージン受信部519より送信マージンを取得する(ステップST201)。
次に、上りパケット通信用送信データバッファ522よりデータバッファ状態を取得する(ステップST202)。
次に、ステップST200で取得したHS−SCCH105による制御信号の受信タイミングに基づいて、HS−DPCCH104による下りパケットデータに対するACK/NACK送信予定位置を算出する(ステップST203)。
次に、上りパケット通信用送信データバッファ522のデータバッファ状態および基地局400より通知された送信マージンに基づいてTFRIを決定する(ステップST204)。
次に、決定したTFRIをTFRI送信処理部523に通知する(ステップST205)。
次に、HS−SCCH105による制御信号の受信タイミングより一定のオフセットをつけた位置にEUDTCH110送信サブフレームの位置を決定する(ステップST206)。
次に、EUDTCH110によるデータ送信サブフレームの1サブフレーム前にUL−TFRI−CCH109によるTFRI送信サブフレーム位置を決定する(ステップST207)。
次に、EUDTCH110によるデータ送信サブフレームから一定のオフセットをつけた位置に、DL−ACK/NACK−CCH111による上りパケットデータに対する基地局400からのACK/NACK受信予定位置を算出する(ステップST208)。
次に、決定した各サブフレーム位置をタイミング管理部518へ通知する(ステップST209)。
【0071】
以上のように、この実施の形態2によれば、端末500の送信決定部520において、HS−DPCCH104を利用したACK/NACK信号の送信タイミングとEUDTCH110を利用した上りパケットデータの送信位置が重ならないように送信サブフレーム位置を決定し、端末500は決定された送信サブフレーム位置に従って送信処理を行うようにしたので、端末500によって、端末500の送信可能電力の限界を超えないように、且つ上下どちらのパケット通信も犠牲にせずにスケジューリングを行うことができるという効果がある。
なお、送信決定部520においてスケジューリングを行う際に端末500の送信可能電力を考慮し、上りパケットデータと下りパケットデータ応答信号の送信タイミングが重なると送信可能電力を超えてしまうと判断された場合にのみ、送信タイミングが重複するのを回避するようにしてもよい。
【0072】
実施の形態3.
実施の形態1および実施の形態2では、例えば図7や図13で示したように、HS−DPCCH104には、ACK/NACK信号の送信に使われない空きサブフレームが存在することが前提となっている。もしHS−DPCCH104に空きサブフレームが存在しない場合には、ACK/NACK信号の送信位置を回避してEUDTCH110によるパケットデータの送信サブフレームを割り当てることができない。
【0073】
端末の能力によっては連続的にパケットを並行処理できるものが存在する。端末が連続してパケットを処理できる間隔はMinimum Inter−TTIintervalというパラメータで表される。例えば、Minimum Inter−TTI intervalの値が2であれば、1サブフレームおきに送信されることを表している。高性能端末においてはMinimum Inter−TTI intervalが1となる場合があり、この場合は間隔をあけずに連続してパケット送信が行われる。この場合は対応してACK/NACKも連続で送信されることになり、空きサブフレームを見つけるのは困難になる。
【0074】
図17は、HS−DPCCH104上にACK/NACK信号の送信に用いられない空きサブフレームが存在しない場合に、送信タイミングの衝突を回避する方法を説明するためのタイムチャートである。図17の例ではMinimum Inter−TTI intervalの値は2であり、パケットは1サブフレームおきに送信されている。
【0075】
図に示すように、下りパケット通信では、HS−SCCH105を利用して制御情報が送信され、その先頭から2スロットずれた位置にHS−DSCH106を利用して下りパケットデータが送信される。
HS−DSCH106の受信結果でエラーがない場合は、HS−DSCH106の終わりから端末の処理時間分7.5スロット程度遅れた位置にHS−DPCCH104を利用してACKが送信され、エラーがある場合はNACKが送信される。
【0076】
上りパケット通信について説明すると、基地局600はDL−SACCH108により端末にEUDTCH110を利用してデータ送信する際の送信電力許容マージンを事前に通知しておく。端末はその範囲内において選択した変調方式、符号化率等の組み合わせをUL−TFRI−CCH109を利用して基地局600に通知し、その直後にEUDTCH110を利用してデータ部分を送信する。
【0077】
端末700は、HS−SCCH105による制御情報を事前に受信しているため、端末700がEUDTCH110を用いて上りデータ本体の送信を決定する際にはHS−DPCCH104によるACK/NACK信号送信位置は予想可能である。しかしながら、HS−DPCCH104によるACK/NACK送信位置が連続している場合には、空きサブフレームがないため、ACK/NACK送信位置と重ならないサブフレーム位置をEUDTCH110による送信に割り当てることができない。
【0078】
実施の形態3では、HS−DPCCH104上に下りパケット通信時のACK/NACK信号の空きサブフレームが存在しない場合には、EUDTCH110によって送信されるデータ本体のフレーム長を短くすることで衝突を回避する。なお、実施の形態3による可変フレーム長を利用した衝突回避方法は、実施の形態1のように基地局でスケジューリングを行う場合にも、実施の形態2のように端末でスケジューリングを行う場合にも適用可能である。
なお、実施の形態3におけるパケット通信システムの構成とチャネル構成は図1に示したものと同様である。
【0079】
図15は、実施の形態3による、基地局600の構成を示すブロック図である。図中、図2と同一の符号は同一の構成要素を表している。
上述したように、実施の形態3は基地局側でスケジューリングを行う場合にも、端末側でスケジューリングを行う場合にも適用できるが、ここでは、実施の形態1と同様に、基地局側で上りパケット通信のスケジューリングを行う場合を例に説明する。
【0080】
まず、基地局600においてCDMA変復調に関わる構成、及び下りパケット通信に関わる構成については、実施の形態1と同様なので、説明を省略する。
基地局600の上りパケット通信に関わる構成について説明する。上りパケット通信に関わる構成は、実施の形態1と異なる構成になっている。UL−SICCH107を利用して端末より送信された送信許可依頼は、復調部611を通って送信バッファ量受信部619に供給される。送信バッファ量受信部619は、当該端末に送信データが存在することを、上りパケット通信用スケジューラ623に通知する。また品質情報受信部(図示せず)にて現在の上りチャネルの伝播状態を取得し、上りパケット通信用スケジューラ623に通知する。
【0081】
上りパケット通信用スケジューラ623は、タイミング管理部625より送信タイミングを取得し、各端末の送出データの有無および伝播状態を総合的に判断し、上りパケットデータの送信タイミングを決定する。パケットの送信割り当てが決定したら、サブフレーム割付情報作成部624においてDL−SACCH108を利用して端末に対し送信サブフレーム位置を通知する。
【0082】
基地局600は、後述するサブフレーム長決定方法により選択されたEUDTCH110によるパケットデータ受信時のサブフレーム長に基づいて端末からのパケットデータを受信しなければならない。基地局600のサブフレーム長取得方法としては、端末側で決定されたサブフレーム長を端末からの通知によって取得する方法と、基地局600においても端末側と同様の処理によってサブフレーム長を算出する方法が考えられるが、ここでは、前者の場合を例にとり説明する。
【0083】
端末は、基地局600からDL−SACCH108を利用して通知された送信タイミングに従って、変調方式、符号化レートと共に決定したEUDTCH110のサブフレーム長をUL−TFRI−CCH109を利用して基地局600に送信する。UL−TFRI−CCH109で送信される情報をTFRIと呼ぶ。基地局600で受信されたTFRIは、TFRI受信部620に供給される。TFRI受信部620は、取得した復調パラメータを復調部611および復号化部621に供給する。TFRI受信部620で受信した可変フレーム情報は可変フレーム制御部626へ設定される。可変フレーム制御部626は可変フレーム情報を復号化部621へ設定する。復号化部621には、EUDTCH110によって端末より送信されたパケットデータが復調部611を通って供給される。復号化部621は、パケットデータを指定された復調パラメータを用いて、可変フレーム情報を基に復号化処理する。
【0084】
端末から送信されたパケットデータが正しく受信できた場合には、応答信号発生部622でACK信号を生成し、正しく受信出来なかった場合にはNACK信号を生成する。生成されたACK/NACK信号は、DL−ACK/NACK−CCH111を利用して端末に通知される。上りパケット通信においてはこの一連の流れが繰り返される。
【0085】
図16は、実施の形態3による端末700の構成を示すブロック図である。図中、図3と同一の符号は同一の構成要素を表している。
端末700において、CDMA変復調に関わる構成、及び下りパケット通信に関わる構成については、実施の形態1と同様なので、説明を省略する。
【0086】
端末700の上りパケット通信に関わる構成について説明する。上りパケット通信に関わる構成は、実施の形態1と異なる構成になっている。
基地局600よりDL−SACCH108を利用して送信された制御情報は、復調部711を通ってサブフレーム位置/送信マージン受信部719に供給される。制御情報に含まれる端末に許容される最大電力は、送信決定部720に通知される。ユーザの指示に従って、上位レイヤを介して送信すべきデータが上りパケット通信用送信データバッファ722に格納される。上りパケット通信用送信データバッファ722は送信すべきデータが存在することを送信決定部720へ通知する。
【0087】
可変フレーム制御部726は、タイミング管理部718よりHS−DPCCH104で送信するACK/NACK信号の送信タイミングを取得する。可変フレーム制御部726は、EUDTCH110によるパケットデータ送信サブフレーム位置と下りパケット通信のACK/NACK信号が重なる場合には、EUDTCH110のサブフレーム長として短いサブフレーム長を選択し、ACK/NACKが存在しない場合は通常のサブフレーム長を選択する。決定したサブフレーム長は送信決定部720へ通知される。なお、可変サブフレームの構成およびサブフレーム長の決定方法については後述する。
【0088】
送信決定部720は、パケットを送信する際の変調方式、符号化レート等を決定する。決定した変調方式、符号化レート、および可変フレーム制御部726から通知されたサブフレーム長をTFRI送信処理部723へ通知する。またタイミング管理部718に、送信するサブフレーム位置を通知する。タイミング管理部718が指定するサブフレーム位置に従って、TFRI送信処理部723およびEUDTCH送信処理部725は送信を行う。
【0089】
応答信号受信部721は、基地局600から送信される上りパケットデータ受信結果のACK/NACK信号を取得し、送信決定部720に結果を通知する。受信結果は上りパケット通信用送信データバッファ722に通知され、NACKの場合は再送を行い、ACKの場合は送信済みデータを削除し次のパケットを送信する。上りパケット通信においてはこの一連の流れが繰り返される。
【0090】
図18は、実施の形態3によるEUDTCH110で送信されるパケットデータの可変フレームの構造を示したものである。ここではスケジューリングの状況に合わせて3つの状態が選択される。図に示すように、サブフレーム長が3スロットの通常サブフレーム、ACK/NACK信号を避ける場合に用いる先頭の1スロット分が短く、サブフレーム長2スロットの短サブフレーム、送信が認められない場合に用いる3スロットすべてを送信オフとしたDTX状態のサブフレームを用いる。
【0091】
ここで、実施の形態3による、フレーム長の制御方法について説明する。
実施の形態3の端末700および基地局600の構成の特徴として、端末700内で通常フレームおよび短フレームの選択を行う可変フレーム制御部726、基地局600内では端末700の決めたフレーム長に従って受信を行う可変フレーム制御部626が存在する。可変フレームを利用するためには、基地局600は、端末700で選択されたフレーム長と同じフレーム長を選択して、EUDTCH110によって送信されるデータを受信しなければならない。あるいは、基地局600においてもサブフレーム長選択処理を行い、端末700と同一のサブフレーム長を取得してもよい。
【0092】
まず、第1の方法について説明する。第1の方法は、HS−DPCCH104のサブフレームにACK/NACKおよびCQIが設定されているかどうかに基づいて、サブフレーム長を選択するものである。
【0093】
図20は、実施の形態3による、サブフレーム長の選択方法の第1の例のフローチャートである。図に示す処理は、端末700の可変フレーム制御部726において実行される。得られたサブフレーム長は基地局600に通知される。または、基地局600の可変フレーム制御部626においても同様の処理を実行するようにして、端末700から基地局600への通知を行わないようにしてもよい。
【0094】
まず、可変フレーム制御部726は、タイミング管理部718よりHS−DPCCH104によって送信されるACK/NACK信号の送出予定サブフレーム位置およびCQI送出予定サブフレーム位置を取得する(ステップST300)。
【0095】
次に、EUDTCH110によってパケットデータを送出しようとするサブフレーム位置に、HS−DPCCH104によるACK/NACKもしくはCQIのどちらかの送信があるがどうか調べる(ステップST301)。
【0096】
送信がない場合は、ステップST302に進み、3スロットのサブフレーム長、すなわち通常のサブフレームを選択する。
【0097】
ステップST301でHS−DPCCH104によるACK/NACKもしくはCQIの送信があると判断された場合には、ステップST303に進み、CQIの送信があるかどうかを確認する。
CQIを送信する場合は、送信をオフ(DTX状態)とし、サブフレーム長=0を選択する。(ステップST304)。
ステップST303でCQIの送信がなしと判断された場合には、ACK/NACKの送信が存在することになり、2スロットのサブフレーム長、すなわち短サブフレームが選択される。
【0098】
この第1の方法を用いると、簡易な処理でフレーム長を選択できるという利点がある。しかし、HS−DPCCH104によるACK/NACKもしくはCQIの送信の有無によって自動的にフレーム長を決定するため、実際の送信電力にまだ余裕がある場合でも短サブフレームが選択されてしまう可能性があるという短所がある。
【0099】
また、基地局600においても、可変フレーム制御部626で同様のフローに基づいてサブフレーム長を選択することにより、基地局と端末の間に明示的なシグナリングがなくても可変フレームを利用した送信を実現することができる。
また、端末700で選択したフレーム長を基地局600へ通知する場合には、端末700の状況に応じて自由にサブフレーム長を決定することができるという長所がある。
【0100】
また、サブフレーム長を選択する際に、端末700の送信可能電力を考慮し、EUDTCH110で送信される上りパケットデータとHS−DPCCH104で送信される下りパケットデータ応答信号の送信タイミングが重なっても送信可能電力を超えない場合には、通常のフレーム長を選択するようにしてもよい。
【0101】
次に、第2のフレーム長選択方法について説明する。
第2のフレーム長選択方法では、端末700で選択したフレーム長を高速かつ明示的にシグナリングして基地局600へ伝える。基地局600との同期の手段として明示的シグナリングを用いると、端末700の状況に応じて自由にサブフレーム長を決定することができるという長所がある。
【0102】
また、第2の方法では、端末固有のパラメータを用いてサブフレーム長を決定する。
ここで、HS−DPCCH104の利用に関する端末固有のパラメータについて説明する。これらのパラメータは上位レイヤを通じて端末に指定される。
【0103】
端末がセルの端に存在する場合など、端末が複数の基地局と通信を行うソフトハンドオーバー状態においては、ACK/NACKの送信を連続して繰り返すことがある。W−CDMAにおけるHSDPAとよばれる下り高速パケット通信においては、ACK/NACKの繰り返し数をN_acknack_transmitと読んでいる。N_acknack_transmitが1より大きい場合はその回数分だけACK/NACKが繰り返される。例えば図17では、N_acknack_transmitが2となる場合を示している。
同様に、CQIについても繰り返し送信が行われる場合があり、そのパラメータとしてN_CQI_transmitがあり、CQI送信は、その回数だけ繰り返される。
【0104】
HS−DPCCH104を送信する際、信号の種類によって電力のオフセットが用意されている。ACK/NACK信号を送信する際の送信電力のオフセットを示すものとしてΔACKとΔNACKがある。一般にACK信号とNACK信号ではNACKのほうが大きな電力を必要とする可能性が高いためACKとNACKは独立したパラメータとして与えられている。
同様に、CQIの送信電力のオフセットを示すものとしてΔCQIがある。
【0105】
図21は、第2のフレーム長選択方法によるサブフレーム長の選択処理のフローチャートである。図に示す処理は、端末700の可変フレーム制御部726において実行される。
【0106】
まず、可変フレーム制御部726は、上位レイヤよりACK/NACK信号およびCQI信号の送出に関するパラメータおよびEUDTCH110を用いたデータ送信時に送信許可される閾値を取得する(ステップST400)。
【0107】
次に、タイミング管理部718よりHS−DPCCH104によるACK/NACK信号送出予定サブフレーム位置およびCQI送出位置を取得する(ステップST401)。
【0108】
次に、EUDTCH110によってパケットデータを送信しようとしているサブフレームと同じ位置に、HS−DPCCH104によるACK/NACKもしくはCQIのどちらかの送信が存在するかどうかを調べる(ステップST402)。
【0109】
ステップST402でHS−DPCCH104による送信がないと判断された場合はステップST403に進み、3スロットのサブフレーム長、すなわち通常のサブフレーム長を選択する。
【0110】
ステップST402でHS−DPCCH104によるACK/NACKもしくはCQIの送信があると判断された場合には、ステップST404に進み、CQIの送信があるかどうかを確認する。
ステップST404でCQIを送信しないと判断された場合は、ステップST409に進む。一方、CQIを送信すると判断された場合は、ステップ405に進み、N_CQI_transmitパラメータの値を調べ、1の場合はステップST407へ進む。1以外の場合はステップST406へ進み、送信をオフ(DTX状態)とし、サブフレーム長=0を選択する。
【0111】
ステップST407でΔCQIの値をステップST400で取得した閾値と比較し、ΔCQIの方が大きい場合はステップST408へ進み、送信をオフ(DTX状態)とし、サブフレーム長=0を選択する。
一方、ΔCQIの値が閾値より小さい場合はステップST409へ進む。
【0112】
ステップST409では、N_acknack_transmitパラメータの値を調べ、1の場合はステップST411へ進む。1以外の場合はステップST410へ進み、2スロットの送信サブフレーム長、すなわち短サブフレームを選択する。
【0113】
ステップST411では、ΔACKの値を、ステップST400で取得した閾値と比較する。HS−DPCCH104ΔACKの方が大きい場合はステップST412へ進み、2スロットの送信サブフレーム長、すなわち、短サブフレームを選択する。
ΔACKの値が閾値より小さい場合は、ステップST413に進む。
【0114】
ステップST413では、ΔNACKの値を、ステップST400で取得した閾値と比較し、ΔNACKの方が大きい場合はステップST414へ進み、2スロットの送信サブフレーム長、すなわち短サブフレームを選択する。
ΔNACKの値の値が閾値より小さい場合は、ステップST415に進み、3スロットの送信サブフレーム長、すなわち通常のサブフレームを選択する。
【0115】
このサブフレーム長選択方法を用いると、既存のN_CQI_transmit、N_acknack_transmit、またはΔCQI、ΔACK、ΔNACKのような、既存の変数を利用して、方法1よりも実際の送信電力の余裕を考慮したサブフレーム長選択を行うことができる。
【0116】
また、サブフレーム長を選択する際に、端末700の送信可能電力を考慮し、EUDTCH110で送信される上りパケットデータとHS−DPCCH104で送信される下りパケットデータ応答信号の送信タイミングが重なっても送信可能電力を超えない場合には、通常のフレーム長を選択するようにしてもよい。
【0117】
次に、端末700でのサブフレーム選択後、選択したサブフレームを基地局600に通知する処理を図22のフローチャートを用いて説明する。
ステップST500で、送信決定部720は可変フレーム制御部726から決定したサブフレーム長を取得する。
次に、ステップS501では、送信決定部720はパケットを送信する際の変調方式、符号化レート等を決定する。
次に、ステップST502で送信決定部720は、ステップST501で決定した値とステップST500で取得したサブフレーム長に基づいて基地局600に送信するTFRIを選択し、TFRI送信処理部723へ通知する。
【0118】
次に、ステップST503でTFRI送信処理部723は、サブフレーム長の情報を含んだTFRIをUL−TFRI−CCH109を利用して基地局600に送信する。
【0119】
ここで、図23を用いてTFRIのフォーマットの例を説明する。実際にUL−TFRI−CCH109を利用して基地局600にシグナリングとして送信されるのはTFRI番号である。基地局600では、端末700と同一の図23に示すような情報を有しており、TFRI番号の通知を受けると、その番号に対応する変調方式、符号化レート、サブフレーム長を導き出すことができる。図の例では、例えば変調方式の1はBPSKに、2はQPSKに対応する。
【0120】
この方法を用いると、既存のUL−TFRI−CCH109を利用して、基地局と端末間のサブフレーム長の通知を行うことができる。
【0121】
次に、図24のフローチャートを用いて、基地局600における、端末700から通知されたサブフレーム長に基づく受信処理について説明する。
まず、ステップST600で、UL−TFRI−CCH109を利用して端末700より送信されたTFRIは復調部711を通ってTFRI受信部620に供給される。TRFIの中にはサブフレーム長に関する情報および変調方式、符号化レート等が含まれている。
【0122】
次に、ステップST601で可変フレーム制御部626に受信したサブフレーム長が通知される。また、ステップST602で、同じくTFRIに含まれるサブフレーム長、変調方式、符号化レート等の情報が復号化部621へ供給される。
【0123】
次に、ステップST603で、復号化部621は、指定されたサブフレーム長、変調方式等に従って復号処理を行う。
【0124】
この第2のサブフレーム長選択方法は、端末700が高速に自由にサブフレーム長を選択することができるという長所がある。しかし、サブフレーム毎にシグナリングによってサブフレーム長を通知する必要がある。
【0125】
なお、第2の方法においては、_CQI_transmit、N_acknack_transmit、またはΔCQI、ΔACK、ΔNACKの全てのパラメータを使わなくてもよい。
【0126】
例えば、図21において、N_acknack_transmitのみを用いてサブフレーム長の決定を行ってもよい。この場合、例えば、ステップST404でCQIの送信が有りと判断された場合には、全てサブフレーム長として0を選択し、CQIの送信無しと判断された場合にはステップST409に進む。ステップST409でN_acknack_transmitが1以外と判断された場合には、ステップST410へ進み、短サブフレームを選択する。一方、N_acknack_transmitが1と判断された場合には、ステップST415へ進み、通常のサブフレームを選択する。
【0127】
また、図21においてΔACKおよびΔNACKのみを用いてサブフレーム長の決定を行ってもよい。この場合、例えば、ステップST404でCQIの送信が有りと判断された場合には、全てサブフレーム長として0を選択し、CQIの送信無しと判断された場合にはステップST411に進む。ステップST411からステップST415までは、図21と同様の処理を行う。
【0128】
また、N_acknack_transmitと、ΔACKおよびΔNACKを用いてサブフレーム長の決定を行ってもよい。用いるパラメータの種類が少なければ処理を簡易にすることができ、パラメータの種類を増やせば、無駄にサブフレーム長を短縮する確率が低くなる。
【0129】
次に、第3のサブフレーム長選択方法について説明する。
第3の方法では、基地局600と端末700で同一のアルゴリズムを用いて、サブフレーム長を選択する。
【0130】
第3のサブフレーム長選択方法における可変フレーム制御部726の処理は、第2のサブフレーム長選択方法と同一のものである。ただし、第2の方法では端末700で選択したサブフレーム長を基地局600に通知したのに対し、第3の方法では基地局600においても第2のサブフレーム長選択方法と同様の処理により同一時間に同一のサブフレーム長を基地局内で取得する。
【0131】
この第3のサブフレーム長選択方法によれば、端末700が高速に自由にサブフレーム長を選択することができ、かつ、基地局600への通知が不要である。
【0132】
また、サブフレーム長を選択する際に、端末700の送信可能電力を考慮し、EUDTCH110で送信される上りパケットデータとHS−DPCCH104で送信される下りパケットデータ応答信号の送信タイミングが重なっても送信可能電力を超えない場合には、通常のフレーム長を選択するようにしてもよい。
【0133】
以上のように、この実施の形態3によれば、Minimum Inter−TTI intervalの値が1であるような、高性能の端末を用いる場合でも、EUDTCH110による上りパケットデータ送信に可変フレームを用いることにより、HS−DPCCH104によるACK/NACK信号の送信タイミングと重複することを避けるようにしているので、端末の送信電力の限界を超えることを回避できる。
【0134】
また、第1のサブフレーム長選択方法を用いることにより、簡単な処理でサブフレーム長選択を行うことができる。
【0135】
また、第2のサブフレーム長選択方法を用いることにより、実際の送信電力にまだ余裕がある場合でも短サブフレームが選択されてしまう確率を低くすることができる。
【0136】
また、第2のサブフレーム長選択方法では、既存の変数をパラメータとして用いることができるという利点がある。
【0137】
さらに、端末側でサブフレーム長を決定して基地局に通知する場合に、UL−TFRI−CCH109を利用して送信されるTFRIの中にサブフレーム長情報を含ませるようにしたので、既存のチャネルを利用して通知処理を行うことができる。
【0138】
なお、実施の形態3では、実施の形態1のように、基地局側でスケジューリングを行っているが、実施の形態2のように、端末側で送信タイミングを決定する場合でも、同様のサブフレーム長決定方法を用いることができる。
【0139】
なお、実施の形態3ではサブフレーム単位でパケット送信を行っているが、15スロットのフレーム単位で送信を行う場合にも、可変フレームを利用することにより、上下の通信が重複することを回避することができる。図19を用いて、フレーム単位で送信を行う場合の可変フレームの選択方法を説明する。この場合、1フレームの送信中に、5回のHS−DPCCH104によるACK/NACKが送信される。ACK/NACK信号送信位置との重複を避けるため、EUDTCH110によるデータ送信では、図に示すような送信OFF区間(第1の送信区間)を設けた可変フレームを用いる。ここで、送信OFF区間とは、その区間ではEUDTCH110を利用したデータ送信を行わないことを意味する。この区間においても他のチャネルを用いた送信は可能である。
なお、図の例ではフレーム上に5回の送信OFF区間を設けているが、必ずしも5回分設ける必要はない。
【0140】
フレーム単位で送信を行う場合にフレームに送信OFF区間を設ける方法は、サブフレーム長選択方法に準じるが、送信OFF区間を設けるかどうかを判断するタイミングに注意する必要がある。
【0141】
送信OFF区間を設ける1つの方法として、フレーム上で送信OFF区間にする位置にはデータを初めから載せないようにコーディング処理を行う方法が考えられる。この場合、フレームの先頭以前にACK/NACK信号の送信される位置が分かれば該当位置に送信OFF区間を設けたコーディング処理を行うことができる。ところがフレームの後方にACK/NACK信号の送信OFF区間を作成する必要が有る場合は、HS−SCCH105は直前に送信されるためACK/NACKの送信位置が分かった時点ではすでにコーディング処理が完了して送信が行われており間に合わない。そこで、解決方法として例えばN_acknack_transmitの値が1より大きい場合は、常に5回分の送信OFF区間を設けておくこととする。しかし、この場合、ACK/NACK信号の送信がない場合でも送信OFF区間が設定される可能性があり、データ送信の効率が悪い。
【0142】
送信OFF区間を設ける第2の方法としては、第1の方法ではコーディング処理の段階から送信OFF区間の位置を事前に把握して重なりが予想される場所に対して送信OFF区間を準備し、その位置にはデータが来ないような割付をするが、第2の方法ではコーディング処理の段階では連続したものとしてみなしておき、ACK/NACK信号の送信の際にその部分のチャネルの電力を犠牲にする。そのままではエラーとなるため符号化率に小さい値を適用し冗長度の高いフォーマットとする。チャネル間の電力の調整方法について以下に説明する。
【0143】
まず、第1のチャネル間の電力の調整方法について説明する。
各チャネルの電力比は一定を保ち、全体の電力は端末の送信電力に合わせる場合を図25に示す。本来の電力比の関係はA:B:CでありA+B+Cが端末の送信限界Dを超えている。そこでEUDTCHのチャネルは電力をa=D×A/(A+B+C)とし、同様にb=D×B/(A+B+C)、c=D×C/(A+B+C)を求める。これにより各チャネルの電力比は維持したまま送信することができる。しかしこの方法においてはすべてのチャネルの電力が下がってしまうため若干の電力低下のときのみ利用可能である。電力低下が大きい場合はすべてのチャネルにエラーが引き起こされる。
【0144】
具体的な制御方法について説明する。W−CDMAにおいては各チャネルの電力比はゲインファクタと呼ばれる一定の比率で制御される。これは3GPP仕様書TS25.214(Ver5.3.0)の5.1章上り電力制御に開示されるようにゲインファクタβと呼ばれるパラメータにより変調部301(制御部)内部で調整されているものであり、変調部301は送信電力や符号化率を制御する制御部としての機能を有する。
第1のチャネル間の電力の調整方法の場合の実際の変調部の処理方法をフローチャートを利用して図26に示す。
ステップST700において変調部301は端末100の送信可能電力を取得する。
ステップST701において次に送信するサブフレームにおける各チャネルの所望電力の合計を得る。
ステップST702において変調部301は各チャネルの所望電力の合計が端末の送信電力の限界を超えているかを判定する。
送信電力の限界を超えていない場合はそのまま終了する。
一方、送信電力の限界を超えている場合は、図25に示したように各ゲインファクタ間の比は一定を保ち、全体電力を送信限界範囲に縮小設定する。
そして、電力増幅部305は、この変調部301で設定された送信電力に従って送信信号を増幅するため、図25で示したように、全体の送信電力を端末の送信可能電力を超えない範囲に制御することができ、送信信号のエラーを抑制することができる。なお、送信限界範囲は、送信限界範囲以内で実用上送受信に支障のない範囲であればどのような値でも設定可能であり、変調部301は予め定められた値に基づいて送信電力の縮小幅を決定することができる。また、縮小の仕方は、送信限界範囲に基づくものに限らず、例えば、一定の比率(%若しくはdB)で減少させるようにしてもよい。
【0145】
次に、第2のチャネル間の電力の調整方法について説明する。
この方法では、あるチャネルを犠牲にしてその他のチャネルはそのままの電力に保つことで電力を保ったチャネルについてはエラーを回避することを狙う。図27に示すように、端末の送信可能電力から他のチャネルの送信電力分を差し引いた値までEUDTCHの電力Aを低下させる。すなわち、a=D−(B+C)となる。B,Cについては電力はそのまま維持する。この場合はB,Cは本来必要な電力が維持されているためエラーとならずEUDTCHのみが所望の電力不足となりエラーを引き起こす可能性がある。すなわち、無線では必要な電力を送ったとしても伝播路の影響でエラーとなりうるが、ここでは所望の電力がある場合はエラーとならないとみなす。
【0146】
この場合の電力の調整の具体的な制御方法について説明する。
図28に、変調部301の処理のフローチャートを示す。まず、ステップST800において端末の送信可能電力を得る。次に、ステップST801において次に送信するサブフレームにおける各チャネルの所望電力の合計を得る。次に、ステップST802において各チャネルの所望電力の合計が端末の送信電力の限界を超えているかを判定する。送信電力の限界を超えていない場合はそのまま終了する。一方、送信電力の限界を超えている場合は、ステップST803において、図27に示すように、全チャネルの送信電力の合計が端末の送信電力の上限を超えないように、特定のチャネルのゲインファクタβの値を下げる。
なお、一般にゲインファクタは無限に細かい値で設定できる量ではなく、ある程度段階的に設定されるものである。そのため、符号化率等を下げた対策を行っても必ずエラーが発生してしまう程度にわずかしか送信に使える電力が残っていなければ、簡略化のため完全にそのチャネルのゲインファクタを0にすることも可能である。
なお、EUDTCHの電力の低減率を大きく、HS−DPCCH上に乗るACK/NACKの電力の低減率を小さくというように、チャネル毎に電力の低減率を変更することもできる。
【0147】
第2のチャネル間の電力の調整方法においてどのチャネルの電力を下げるかは任意であるが、各チャネルの影響を考慮すると、DPCCHはパイロット信号を含むためこれを下げてしまうと同期が外れてしまう。またDCHは従来のパワー制御の管理下にありに悪影響を及ぼしかねない。HS−DPCCH上に乗るACK/NACKの電力を下げることもできるが、応答信号であるため基地局で受信ができない場合は再送を引き起こす。そのため第2のチャネル間の電力の調整方法ではEUDTCHの電力を低下させるのが望ましい。
【0148】
この第2のチャネル間の電力の調整方法によれば、上りパケット通信データのコーディング処理時にACK/NACKの送出位置が事前にわかっていなくても利用することが可能である。例えば上りパケットデータの1回の送信の長さの単位(TTI:Transmit Time Interval)が10ms、20ms、40ms等長い場合は事前にHS−SCCHを受けてACK/NACKの送出が予測することができない。このような場合においても端末内の変調部の制御でACK/NACKの送出と同時にこの手法を適用することが可能である。これはACK/NACKの送出が予測できる場合にも利用可能ではあるが、特にACK/NACKの送出が予測できないTTIが長い場合において特に有効なものである。
【0149】
しかし、第2のチャネル間の電力の調整方法においては、送信時に電力を下げた箇所に関してはデータのデコード時に基地局側で所望の電力が不足しており一部にエラーが発生する可能性が高い。一部分のエラーであっても復号化はTTI単位で処理を行うためCRCエラーが発生する。
この解決方法として、端末での上りパケット通信のEUDTCHのコーディング処理においては上りパケット通信を行っている場合に符号化率の小さい値を適用し、データの冗長性を十分に持たせることにより、一部のデータに受信エラーが発生していても基地局側で復号化時に誤り訂正可能にする方法が考えられる。具体的には、TRRI送信処理部723は、端末が下りデータパケットを受信していることを検知した場合、又は、ACK/NACK信号を送信する等して、全体送信電力が送信可能電力を超えてしまう可能性がある場合、符号化率の低いTFRIを選択し、EUDTCH送信処理部725へ送信する。EUDTCH送信処理部725は、このTFRIに従って上りパケットを符号化するため、送信電力を下げる処理を行った場合でも、信号の実質的な伝送能力の低下を抑制することができる。すなわち、誤り訂正能力の向上を図ることができる。
なお、電力制御や符号化率の低減は、送信可能電力の低減が行われるサブフレームに対して行うようにしてもよいし、特定のスロット単位若しくはフレーム単位に対して行うようにしてもよい。また、低電力化及び低符号化率の選択は、全体送信電力を基準とする場合に限らず、特定のフレームで特定チャネルの組み合わせ(例えば、EUDTCHとHS−DPCCH)があった場合、又は1つのチャネル又は特定チャネルの組み合わせの電力が予め設定された閾値を超えた場合等の基準で行うこともできる。
また、EUDTCH以外の送信電力を下げる場合でも、同様に各チャネルの符号化率を制御する制御部が送信電力を低下させる信号の符号化率を下げることで、伝送能力の制御を行うことができることはいうまでもない。
また、その際にインタリーブを併用するデータの欠落をフレーム全体に分散させることで誤り訂正の効果をあげることもできる。符号化率以外でも変調多値数を下げたり(例えばQPSKからBPSKへ)、拡散率を上げる(例えばSF=4からSF=16へ)など所望電力を補えるものでもよく、実際にはそれらの組み合わせを示すTFRI等のトランスポートフォーマットの選択により実現することが望ましい。
【0150】
なお、この場合にも、フレームに送信OFF区間を設ける際に、端末700の送信可能電力を考慮し、EUDTCH110で送信される上りパケットデータとHS−DPCCH104で送信される下りパケットデータ応答信号の送信タイミングが重なっても送信可能電力を超えない場合には、送信OFF区間を設けないようにしてもよい。
また、上述の実施の形態に示した動作は専用回路で実現する場合のほか、マイクロプロセッサ等により構成されるコンピュータと、このコンピュータによって実行されるソフトウェアの組み合わせでも実現することができる。例えば、上述のフローチャートに示した処理をコンピュータが実行するようなソフトウェアを用意し、これをコンピュータが読取可能な記録媒体に記録することにより、上述動作を行う端末又は基地局が実現可能である。
【0151】
【発明の効果】
以上のように、この発明によれば、上り通信と下り通信が共存し、端末に送信電力限界がある場合でも、上りパケット通信と下りパケット通信の同時利用を実現することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による、パケット通信システムの構成とチャネル構成を示す図である。
【図2】この発明の実施の形態1による、基地局の構成を示すブロック図である。
【図3】この発明の実施の形態1による、端末の構成を示すブロック図である。
【図4】HS−DPCCHを用いてデータ送信する際のフレーム構成を示す図である。
【図5】端末の送信電力を説明する図である。
【図6】端末の送信電力限界値超過の発生を説明するためのタイムチャートである。
【図7】この発明の実施の形態1による、基地局のスケジューリングによる送信タイミングの衝突の回避を説明するためのタイムチャートである。
【図8】この発明の実施の形態1による、基地局のスケジューラによるスケジューリング処理のフローチャートである。
【図9】この発明の実施の形態1による、上りパケット通信における端末のパケット送信タイミングの予測処理を説明する図である。
【図10】この発明の実施の形態1による、基地局の上りパケット通信用スケジューラの動作の概要を説明するための図である。
【図11】この発明の実施の形態2による、基地局の構成を示すブロック図である。
【図12】この発明の実施の形態2による、端末の構成を示すブロック図である。
【図13】この発明の実施の形態2による、端末のスケジューリングによる送信タイミングの衝突の回避を説明するためのタイムチャートである。
【図14】この発明の実施の形態2による、端末の送信決定部によるスケジューリング処理のフローチャートである。
【図15】この発明の実施の形態3による、基地局の構成を示すブロック図である。
【図16】この発明の実施の形態3による、端末の構成を示すブロック図である。
【図17】この発明の実施の形態3による、HS−DPCCHにACK/NACK信号の送信に用いられないサブフレームが存在しない場合の送信タイミングの衝突の回避を説明するためのタイムチャートである。
【図18】この発明の実施の形態3による、EUDTCHで送信されるパケットデータの可変フレーム構造を示す図である。
【図19】この発明の実施の形態3による、フレーム単位で送信を行った場合の可変フレームの構造を示す図である。
【図20】この発明の実施の形態3による、サブフレーム長の選択方法のフローチャートである。
【図21】この発明の実施の形態3による、サブフレーム長の選択方法の別の例のフローチャートである。
【図22】この発明の実施の形態3による、選択したサブフレーム長を基地局に通知する処理のフローチャートである。
【図23】この発明の実施の形態3による、TFRIのフォーマットの例を示す図である。
【図24】この発明の実施の形態3による、端末から通知されたサブフレーム長に基づく基地局でのデータ受信処理のフローチャートである。
【図25】この発明の実施の形態3による、端末におけるチャネル間の電力調整方法を説明する図である。
【図26】この発明の実施の形態3による、端末におけるチャネル間の電力調整処理のフローチャートである。
【図27】この発明の実施の形態3による、端末におけるチャネル間の電力調整方法の別の例を説明する図である。
【図28】この発明の実施の形態3による、端末におけるチャネル間の電力調整処理の別の例のフローチャートである。
【符号の説明】
10 基地局制御装置、100 端末、101 基地局、102 CPICH、103 DPCH、104 HS−DPCCH、105 HS−SCCH、106 HS−DSCH、107 UL−SICCH、108 DL−SACCH、109 UL−TFRI−CCH、110 EUDTCH、111 DL−ACK/NACK−CCH、201 変調部、202 下りチャネライゼーションコード発生器、203 下りスクランブリングコード発生器、204 周波数変換部、205 電力増幅部、206 アンテナ、207 低雑音増幅部、208周波数変換部、209 上りチャネライゼーションコード発生器、210 上りスクランブリングコード発生器、211 復調部、212 復号化部、213応答信号判定部、214 品質情報受信部、215 下りパケット通信用送信データバッファ、216 下りパケット通信用スケジューラ、217 下りパケット通信制御情報送信部、218 下りパケット通信データ送信部、219 送信バッファ量受信部、220 TFRI受信部、221 復号化部、222 応答信号発生部、223 上りパケット通信用スケジューラ、224 サブフレーム割付情報作成部、225 スケジューラ間連絡回路、226 タイミング管理部、301 変調部、302 チャネライゼーションコード発生器、303 スクランブリングコード発生器、304 周波数変換部、305 電力増幅部、306 アンテナ、307 低雑音増幅部、308 周波数変換部、309 チャネライゼーションコード発生器、310 スクランブリングコード発生器、311 復調部、312 復号器、313 復号器、314 応答信号生成部、315 伝播品質推定部、316 品質情報信号生成部、317 HS−DPCCH送信処理部、318 タイミング管理部、319 応答信号受信部、320 上りパケット通信用送信データバッファ、321 TFRI送信処理部、322 EUDTCH送信処理部、323 上りパケット通信用バッファ量送信処理部、324 サブフレーム位置/送信マージン受信部、400 基地局、411 復調部、419 干渉量測定部、420 TFRI受信部、421 復号化部、422 応答信号送信部、423 基地局総干渉量予測部、424 端末送信電力マージン送信部、425 タイミング管理部、500 端末、511 復調部、518 タイミング管理部、519 送信マージン受信部、520 送信決定部、521 応答信号受信部、522 上りパケット通信用送信データバッファ、523 TFRI送信処理部、524 EUDTCH送信処理部、600 基地局、611 復調部、619 送信バッファ量受信部、620 TFRI受信部、621 復号化部、622 応答信号発生部、623 上りパケット通信用スケジューラ、624 サブフレーム割付情報作成部、625 タイミング管理部、626 可変フレーム制御部、700 端末、711 復調部、718 タイミング管理部、719 サブフレーム位置/送信マージン受信部、720 送信決定部、721 応答信号受信部、722 上りパケット通信用送信データバッファ、723 TFRI送信処理部、724 上りパケット通信用バッファ量送信処理部、725 EUDTCH送信処理部。

Claims (37)

  1. 下りパケットデータに対する下りパケット応答信号を制御チャネルを介して端末から受信するとともに、複数のサブフレームによって伝送される上りパケットデータを時分割多重チャネルを介して受信する基地局であって、
    上記端末に対し、上記複数のサブフレームを少なくとも1つの無伝送期間を挟んだ間欠的な送信タイミングで上記時分割多重チャネル上に送信させる第1の送信スケジュール、及び、上記無伝送期間と上記端末からの下りパケット応答信号の送信期間とが重なる送信タイミングを設定し、この送信タイミングに基づいて上記下りパケットデータ送信用の第2の送信スケジュールを生成するスケジューリング部と、
    このスケジューリング部が作成した上記第2の送信スケジュールに従って上記下りパケットデータを送信するとともに、上記第1の送信スケジュールのスケジュール情報を上記端末へ送信する送信部とを備えた基地局。
  2. スケジューリング部は、下りパケット通信のスケジューリングを行う下りパケット通信スケジューリング部と、
    上りパケット通信のスケジューリングを行う上りパケット通信スケジューリング部と、
    上記下りパケット通信スケジューリング部及び上記上りパケット通信スケジューリング部を接続するスケジュール連絡部を備え、
    上記下りパケット通信スケジューリング部は、上記スケジュール連絡部を介して上記上りパケット通信スケジューリング部から通知された上りパケットデータの送信タイミングと同時にならないように下りパケット応答信号の送信タイミングを決定し、
    上記上りパケット通信スケジューリング部は、上記スケジュール連絡部を介して下りパケット通信スケジューリング部から通知された下りパケット応答信号の送信タイミングと同時にならないように上りパケットデータの送信タイミングを決定することを特徴とする請求項1記載の基地局。
  3. スケジューリング部は、上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信タイミングを決定することを特徴とする請求項1または請求項2記載の基地局。
  4. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムで用いられる基地局であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上記上りパケットデータと上記下りパケット応答信号の送信タイミングの重複を回避するように、上記上りパケットデータの送信フレーム長を決定する可変フレーム制御部を備え、
    決定したフレーム長に基づいて上記端末からの上りパケットデータを受信することを特徴とする基地局。
  5. 可変フレーム制御部は、下りパケット応答信号送信用チャネルの利用に関する端末固有の変数を用いて上りパケットデータの送信フレーム長を決定することを特徴とする請求項4記載の基地局。
  6. 可変フレーム制御部は、端末固有の変数として、上記端末からの下りパケット応答信号送信の繰り返し回数を用いることを特徴とする請求項5記載の基地局。
  7. 可変フレーム制御部は、端末固有の変数として、上記端末の下りパケット応答信号の送信電力のオフセット値を用いることを特徴とする請求項5記載の基地局。
  8. 可変フレーム制御部は、上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信フレーム長を決定することを特徴とする請求項4から請求項7のうちのいずれか1項記載の基地局。
  9. 端末が決定した、端末からの上りパケットデータの送信フレーム長を受信し、上記送信フレーム長に基づいて上記端末からの上りパケットデータを受信することを特徴とする請求項1から請求項3のうちのいずれか1項記載の基地局。
  10. 基地局へ送信される上りパケットデータを他の端末と共有の時分割多重チャネルを用いて送信する端末であって、
    上記基地局からの下りパケットデータを受信する受信部と、
    上記基地局への上りデータを伝送する複数のサブフレームを上記時分割多重チャネルを用いて送信するとともに、上記下りパケットデータに対する下りパケット応答信号を制御チャネルを用いて送信する送信部と、
    上記送信部の送信タイミングを制御し、上記複数のサブフレームの送信を少なくとも1つの無伝送期間を挟んだ間欠的なタイミングで指示するとともに、上記下りパケット応答信号の送信を上記下りパケット応答信号の送信が上記無伝送期間中に発生するタイミングで指示する送信制御部とを備えた端末。
  11. 送信制御部は、基地局から受信した下りパケット制御信号の送信タイミングから、上記基地局へ送信する下りパケット応答信号の送信タイミングを算出し、上記下りパケット応答信号と上りパケットデータの送信タイミングが重ならないように上記上りパケットデータの送信タイミングを決定することを特徴とする請求項10記載の端末。
  12. 送信制御部は、上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信タイミングを決定することを特徴とする請求項10または請求項11記載の端末。
  13. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムで用いられる端末であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上記上りパケットデータと上記下りパケット応答信号の送信タイミングの重複を回避するように、上記上りパケットデータの送信フレーム長を決定する可変フレーム制御部を備え、
    決定したフレーム長を用いて上記上りパケットデータを基地局へ送信することを特徴とする端末。
  14. 可変フレーム制御部で決定した上りパケットデータの送信フレーム長を基地局へ通知し、上記上りパケットデータを送信することを特徴とする請求項13記載の端末。
  15. 可変フレーム制御部は、下りパケット応答信号送信用チャネルの利用に関する端末固有の変数を用いて上りパケットデータの送信フレーム長を決定することを特徴とする請求項13または請求項14記載の端末。
  16. 可変フレーム制御部は、端末固有の変数として、上記端末からの下りパケット応答信号送信の繰り返し回数を用いることを特徴とする請求項15記載の端末。
  17. 可変フレーム制御部は、端末固有の変数として、上記端末の下りパケット応答信号の送信電力のオフセット値を用いることを特徴とする請求項15記載の端末。
  18. 可変フレーム制御部は、上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信フレーム長を決定することを特徴とする請求項13から請求項17のうちのいずれか1項記載の端末。
  19. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムで用いられる端末であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上記上りパケットデータと上記下りパケット応答信号の送信タイミングの重複を回避するように、上記上りパケットデータの送信フレームに送信オフ区間を設ける可変フレーム制御部を備え、
    調節したフレームを用いて上記上りパケットデータを基地局へ送信することを特徴とする端末。
  20. 可変フレーム制御部は、上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信フレームに送信オフ区間を設けることを特徴とする請求項19記載の端末。
  21. 基地局へ送信される上りパケットデータを他の端末と共有の時分割多重チャネルを用いて送信する端末であって、
    上記基地局からの下りパケットデータを受信する受信部と、
    上記基地局への上りパケットデータを伝送する複数のサブフレームを上記時分割多重チャネルを用いて送信するとともに、上記下りパケットデータに対する下りパケット応答信号を制御チャネルを用いて送信する送信部と、
    上記上りパケットデータ及び上記下りパケット応答信号を異なるタイミングで送信する第1の送信区間において上記送信部による上記上りパケットデータの送信電力を制御するとともに、上記上りパケットデータ及び下りパケット応答信号の同時送信が発生する第2の送信区間において、上記上りパケットデータの送信電力を上記第1の送信区間より減少させる制御部とを備えた端末。
  22. 制御部は、同時送信が発生した場合に、上りデータの符号化率を減少させることを特徴とする請求項21記載の端末。
  23. 制御部は、さらに第1の送信区間において下りパケット応答信号の送信電力を制御するとともに、第2の送信区間において下りパケット応答信号の送信電力を上記第1の送信区間より減少させることを特徴とする請求項21記載の端末。
  24. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムであって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重ならないように、上記基地局が送信タイミングを決定して上記端末に通知し、上記端末は、通知された送信タイミングに従って上記基地局への送信を行う通信システム。
  25. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムであって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重ならないように、上記端末が上記上りパケットデータの送信タイミングを決定して上記基地局へ通知し、上記端末は決定した送信タイミングに従って上記基地局への送信を行う通信システム。
  26. 上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように送信タイミングが決定されることを特徴とする請求項24または請求項25記載の通信システム。
  27. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信システムであって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上記上りパケットデータと上記下りパケット応答信号の送信タイミングの重複を回避するように、上記端末が上記上りパケットデータの送信フレーム長を決定し、上記端末は決定した送信フレーム長を上記基地局に通知し、上記上りパケットデータの送信を行うことを特徴とする通信システム。
  28. 基地局は、端末から上りパケットデータの送信フレーム長の通知を受ける代わりに、上記端末と同一の処理を行うことにより上記上りパケットデータの送信フレーム長を取得することを特徴とする請求項27記載の通信システム。
  29. 上りパケットデータの送信フレーム長は、下りパケット応答信号送信用チャネルの利用に関する端末固有の変数を用いて決定することを特徴とする請求項27または請求項28記載の通信システム。
  30. 上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信フレーム長が決定されることを特徴とする請求項27から請求項29のうちのいずれか1項記載の通信システム。
  31. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信方法であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重ならないように、上記基地局が送信タイミングを決定して上記端末に通知し、上記端末は、通知された送信タイミングに従って上記基地局への送信を行う通信方法。
  32. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信方法であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重ならないように、上記端末が上記上りパケットデータの送信タイミングを決定して上記基地局へ通知し、上記端末は決定した送信タイミングに従って上記基地局への送信を行う通信方法。
  33. 上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように送信タイミングが決定されることを特徴とする請求項31または請求項32記載の通信方法。
  34. 基地局から端末への下りパケット通信と上記端末から上記基地局への上りパケット通信が同時に発生し得る通信方法であって、
    上記基地局からの下りパケット通信に応答して上記端末が上記基地局へ送信する下りパケット応答信号の送信タイミングと上記端末が上記基地局へ送信する上りパケットデータの送信タイミングが重なる時は、上記上りパケットデータと上記下りパケット応答信号の送信タイミングの重複を回避するように、上記端末が上記上りパケットデータの送信フレーム長を決定し、上記端末は決定した送信フレーム長を上記基地局に通知し、上記上りパケットデータの送信を行うことを特徴とする通信方法。
  35. 基地局は、端末から上りパケットデータの送信フレーム長の通知を受ける代わりに、上記端末と同一の処理を行うことにより上記上りパケットデータの送信フレーム長を取得することを特徴とする請求項34記載の通信方法。
  36. 上りパケットデータの送信フレーム長は、下りパケット応答信号送信用チャネルの利用に関する端末固有の変数を用いて決定することを特徴とする請求項34または請求項35記載の通信方法。
  37. 上りパケットデータと下りパケット応答信号の送信タイミングが重なることにより端末の送信可能電力を超えてしまうと判断された場合には、両者の送信タイミングが重ならないように上りパケットデータの送信フレーム長が決定されることを特徴とする請求項34から請求項36のうちのいずれか1項記載の通信方法。
JP2003122359A 2003-04-25 2003-04-25 基地局、端末、通信システム、及び通信方法 Pending JP2004328498A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122359A JP2004328498A (ja) 2003-04-25 2003-04-25 基地局、端末、通信システム、及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122359A JP2004328498A (ja) 2003-04-25 2003-04-25 基地局、端末、通信システム、及び通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005330466A Division JP4409503B2 (ja) 2005-11-15 2005-11-15 基地局、端末、通信システム、及び通信方法

Publications (2)

Publication Number Publication Date
JP2004328498A true JP2004328498A (ja) 2004-11-18
JP2004328498A5 JP2004328498A5 (ja) 2006-01-05

Family

ID=33500615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122359A Pending JP2004328498A (ja) 2003-04-25 2003-04-25 基地局、端末、通信システム、及び通信方法

Country Status (1)

Country Link
JP (1) JP2004328498A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014304A (ja) 2004-06-09 2006-01-12 Samsung Electronics Co Ltd 向上した上りリンクサービスを支援する移動通信システムにおけるデータ送信のための方法及び装置
JP2006246089A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 無線基地局、移動局
WO2007145035A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
WO2007145006A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
WO2008050467A1 (en) * 2006-10-27 2008-05-02 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
JP2008270951A (ja) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp データ通信装置
JP2008543167A (ja) 2005-05-23 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数の補完的なフィードバックメカニズムを有する自動再送要求(arq)プロトコル
JP2010220224A (ja) * 2005-08-01 2010-09-30 Interdigital Technol Corp 拡張専用チャネル送信制御のための方法および装置
JP2011166825A (ja) * 2005-08-23 2011-08-25 Ipwireless Inc 干渉低減方法、基地局、移動局及びコンピュータ読取可能な媒体
JP2011217392A (ja) * 2005-03-28 2011-10-27 Pantech Co Ltd 超広帯域無線接続網における多元接続デジタル通信方法
JP2013059032A (ja) * 2007-03-01 2013-03-28 Ntt Docomo Inc 基地局装置及び通信制御方法
US8498216B2 (en) 2007-03-01 2013-07-30 Ntt Docomo, Inc. Base station apparatus and communication control method
JP2014042277A (ja) * 2008-10-15 2014-03-06 Qualcomm Incorporated 送信スケジューリング最適化方法およびワイヤレスユーザ機器デバイス
JP2014521238A (ja) * 2011-06-28 2014-08-25 クゥアルコム・インコーポレイテッド Lte共存のためのブルートゥース・パケット・スケジューリング・ルール
JP2018505613A (ja) * 2015-01-30 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック
US9936201B2 (en) 2015-01-27 2018-04-03 Qualcomm Incorporated Contexts for large coding tree units

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014304A (ja) 2004-06-09 2006-01-12 Samsung Electronics Co Ltd 向上した上りリンクサービスを支援する移動通信システムにおけるデータ送信のための方法及び装置
JP4543968B2 (ja) * 2005-03-04 2010-09-15 富士通株式会社 無線基地局、移動局
JP2006246089A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 無線基地局、移動局
US8588190B2 (en) 2005-03-28 2013-11-19 Pantech Co., Ltd. Multiple access digital communicating method in ultra-wideband radio access networks
JP2011217392A (ja) * 2005-03-28 2011-10-27 Pantech Co Ltd 超広帯域無線接続網における多元接続デジタル通信方法
JP2008543167A (ja) 2005-05-23 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数の補完的なフィードバックメカニズムを有する自動再送要求(arq)プロトコル
JP2010220224A (ja) * 2005-08-01 2010-09-30 Interdigital Technol Corp 拡張専用チャネル送信制御のための方法および装置
US9072084B2 (en) 2005-08-01 2015-06-30 Interdigital Technology Corporation Method and apparatus for control of enhanced dedicated channel transmissions
US8204007B2 (en) 2005-08-01 2012-06-19 Interdigital Technology Corporation Method and apparatus for control of enhanced dedicated channel transmissions
US8774118B2 (en) 2005-08-01 2014-07-08 Interdigital Technology Corporation Method and apparatus for control of enhanced dedicated channel transmissions
JP2011166825A (ja) * 2005-08-23 2011-08-25 Ipwireless Inc 干渉低減方法、基地局、移動局及びコンピュータ読取可能な媒体
WO2007145006A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
US10701639B2 (en) 2006-06-16 2020-06-30 Mitsubishi Electric Corporation Mobile communications system and mobile terminal
US8149749B2 (en) 2006-06-16 2012-04-03 Mitsubishi Electric Corporation Mobile communications system and mobile terminal
KR101213062B1 (ko) * 2006-06-16 2012-12-18 미쓰비시덴키 가부시키가이샤 이동체 통신 시스템 및 이동단말
US10728857B2 (en) 2006-06-16 2020-07-28 Mitsubishi Electric Corporation Mobile communications system and mobile terminal
WO2007145035A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
WO2008050467A1 (en) * 2006-10-27 2008-05-02 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
US9019983B2 (en) 2006-10-27 2015-04-28 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
US9635656B2 (en) 2006-10-27 2017-04-25 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
US10165558B2 (en) 2006-10-27 2018-12-25 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
JP5292276B2 (ja) * 2007-03-01 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
US8498216B2 (en) 2007-03-01 2013-07-30 Ntt Docomo, Inc. Base station apparatus and communication control method
JP2013059032A (ja) * 2007-03-01 2013-03-28 Ntt Docomo Inc 基地局装置及び通信制御方法
JP2008270951A (ja) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp データ通信装置
JP2014042277A (ja) * 2008-10-15 2014-03-06 Qualcomm Incorporated 送信スケジューリング最適化方法およびワイヤレスユーザ機器デバイス
US9510363B2 (en) 2008-10-15 2016-11-29 Qualcomm Incorporated Transmission scheduling optimization method and wireless user equipment device
US9173228B2 (en) 2011-06-28 2015-10-27 Qualcomm Incorporated Bluetooth packet scheduling rules for LTE coexistence
KR101557795B1 (ko) 2011-06-28 2015-10-06 퀄컴 인코포레이티드 Lte 공존성을 위한 블루투스 패킷 스케줄링 규칙들
JP2014521238A (ja) * 2011-06-28 2014-08-25 クゥアルコム・インコーポレイテッド Lte共存のためのブルートゥース・パケット・スケジューリング・ルール
US9936201B2 (en) 2015-01-27 2018-04-03 Qualcomm Incorporated Contexts for large coding tree units
US10298930B2 (en) 2015-01-27 2019-05-21 Qualcomm Incorporated Contexts for large coding tree units
JP2018505613A (ja) * 2015-01-30 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック
JP2021052408A (ja) * 2015-01-30 2021-04-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック
US11025371B2 (en) 2015-01-30 2021-06-01 Qualcomm Incorporated UE feedback for point-to-multipoint transmissions
JP7139403B2 (ja) 2015-01-30 2022-09-20 クゥアルコム・インコーポレイテッド ポイントツーマルチポイント送信に関するueのフィードバック

Similar Documents

Publication Publication Date Title
JP5174865B2 (ja) 逆方向パケットデータサービスを支援する移動通信システムにおける順方向制御情報の送受信方法及び装置
TWI383634B (zh) 無線資料網路內之擁塞控制
JP3895361B2 (ja) 通信方法
JP5530993B2 (ja) 基地局装置及びこれを用いた無線資源管理方法
JP4550836B2 (ja) 通信システムにおいてチャネル感知スケジューリングのための方法および装置
US20060023629A1 (en) Method and apparatus for performing autonomous transmission in a mobile communication system for supporting an enhanced uplink dedicated channel
US7817605B2 (en) Method of transmitting control signals for uplink transmission in communication systems
JP5518851B2 (ja) 不連続伝送を制御するための方法および装置
JP2004328498A (ja) 基地局、端末、通信システム、及び通信方法
JP6110458B2 (ja) 移動通信システムにおけるダウンリンク制御情報の送受信方法及び装置
WO2009132699A1 (en) Distribution of downlink e-dch power usage
JP5007329B2 (ja) 通信モード制御方法、移動体通信システム及び移動通信端末
JP3895364B2 (ja) 移動体通信システム
KR100644996B1 (ko) 이동통신 시스템에서 상향링크 패킷 전송을 위한 스케쥴링 할당 방법 및 장치
JP4409503B2 (ja) 基地局、端末、通信システム、及び通信方法
KR20050119619A (ko) 이동통신 시스템에서 향상된 상향링크 전용 채널의효율적인 스케쥴링 방법 및 장치
JP2010004581A (ja) 電力調整方法
JP4595587B2 (ja) 移動通信システム、無線基地局及びそれらに用いる下り制御チャネル電力制御方法
EP2224764A2 (en) Method for dynamically setting the number of HS-SCCH channels to be used on a cell.
JP2006080915A (ja) 移動局装置、基地局装置、および上り回線伝送レート制御方法
JP2006140650A (ja) 移動通信システム、移動局及び無線基地局
JP4437798B2 (ja) 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末
KR20060103521A (ko) 하이브리드 tdm/ofdm/cdm 역방향 링크 전송

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607