WO2005031251A1 - Procede optique et dispositif pour determiner la structure d'une surface - Google Patents

Procede optique et dispositif pour determiner la structure d'une surface Download PDF

Info

Publication number
WO2005031251A1
WO2005031251A1 PCT/EP2004/052362 EP2004052362W WO2005031251A1 WO 2005031251 A1 WO2005031251 A1 WO 2005031251A1 EP 2004052362 W EP2004052362 W EP 2004052362W WO 2005031251 A1 WO2005031251 A1 WO 2005031251A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
pattern
image generator
patterns
Prior art date
Application number
PCT/EP2004/052362
Other languages
German (de)
English (en)
Inventor
Thorsten Bothe
Original Assignee
Bias Bremer Institut Für Angewandte Strahltechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bias Bremer Institut Für Angewandte Strahltechnik filed Critical Bias Bremer Institut Für Angewandte Strahltechnik
Priority to EP04787251A priority Critical patent/EP1668315A1/fr
Publication of WO2005031251A1 publication Critical patent/WO2005031251A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence

Definitions

  • the invention relates to a method for determining the structure of a surface, in which a plurality of flat stripe patterns with flat structures are generated pixel by pixel by an image generator, in which the structures of two patterns have different widths, in which the stripe pattern on one Surface is mirrored, in which the mirrored pattern is imaged by optics on an image sensor, and in which the image recorded by the image sensor is evaluated by a controller.
  • the invention also relates to a device for determining the structure of a surface, with an image generator for generating a flat striped pattern pixel by pixel, with optics for imaging the pattern reflected on a surface onto an image sensor, and with a controller for evaluating an image recorded by the image sensor ,
  • a device and such a method can be found, for example, in WO 97/40367.
  • the known method and the known device serve to determine surface defects of the reflecting surface by means of a specular observation of a pattern.
  • the disadvantage here is that by evaluating the progress of a change in the recorded image when the object under consideration moves forward, the actual position of a detected defect can be determined. However, it is difficult to make statements about the actual topography of the surface under consideration.
  • the problem underlying the invention is to provide an apparatus and a method for determining the structure of a surface, with which the structure of a surface can be easily and reliably and in particular without great effort for calibration and adjustment in a large area with high resolution lets determine.
  • the problem is solved according to the invention in that in the method of the individual pixels of two stripe patterns each have a defined position, that the image is recorded pixel by pixel, and that the position of the recorded pixels is evaluated.
  • the complete topography of the surface can be determined in a large spatial area with high resolution in a relatively quick and simple manner.
  • the rough position is first determined with a rough structure and then the actual position and the actual height of the elevation or depth of the depression with increasingly fine structures.
  • the successive multiple flat patterns are generated pixel by pixel by the same image generator, the individual pixels each having defined positions, a relatively small amount of calibration and adjustment is required. In this way it is always guaranteed that the position of each pixel remains unchanged even in the case of successive flat patterns.
  • the optimal stripe width is determined by optimizing the positional accuracy on the image generator, in particular a TFT monitor. There is no modulation when using strips that are too narrow.
  • the modulation transfer function is preferably used to determine the optimal stripe width. That is, the change in modulation is determined when using different stripe widths.
  • the plurality of flat patterns are stripe patterns, the stripes of two patterns having different widths.
  • the position can be determined in the manner of a Gray code.
  • the stripe patterns have a sinusoidal gray value distribution, brightness distribution and / or intensity distribution. This sinusoidal distribution provides an increased resolution, since an exact assignment of the position and the height is also possible between the maxima or minima.
  • this sinusoidal distribution when focusing on the surface does not provide any annoying artifacts, but always the same, constant phase.
  • the pixel-by-pixel generation of the patterns takes place digitally using the image generator.
  • a flat screen, a TFT monitor or a plasma screen are suitable as image generators.
  • This digital pixel-by-pixel control of the image generators which have individual image generation cells, ensures that each pixel is always in the same position. This results in good reproducibility, no complex synchronization is required, and the occurrence of pixel jitter is also reliably prevented.
  • the controller controls the image generator to generate the flat pattern.
  • the control is used to correct a gray value, the brightness and / or the intensity of the image generator to generate the sinusoidal stripe pattern. In particular in the case of digital control, the required value for the representation of a sinusoidal structure cannot otherwise be assigned to the respective pixels. This would lead to systematic errors in the evaluation.
  • optical axis of the image sensor and the surface normal of the image generator enclose a small angle. It has proven to be particularly advantageous if the optical axis and the surface normal are parallel to one another. In this way, particularly high accuracy can be achieved.
  • the resolution or the size of the examined image can also be varied by varying the distance from the image generator or image sensor to the surface to be examined.
  • Another embodiment of the invention is characterized in that the mirrored pattern is recorded by the image sensor pixel by pixel with pixel position defined. No additional calibration or adjustment is required for the image sensor itself, since each image sensor is always in the same place.
  • other surface properties can also be determined in this way.
  • the modulation depending on the stripe period, the basic intensity and the reflectivity depending on the frequency can be determined directly, from which in particular the roughness and the degree of gloss of the surface can be determined.
  • This can also be used for diffractive structures.
  • This control can be, for example, a conventional computer. It is possible for the control to carry out a phase shifting process in which several images of a stripe pattern with a phase shifted against one another are compared with one another.
  • the image generator can generate the pattern by means of infrared radiation or heat.
  • infrared radiation in particular in the near infrared, can also be used here.
  • a plasma screen can be used, for example, to generate infrared radiation.
  • Individual microplas- Ma discharge can be controlled at defined locations, which can be used as defined heat sources.
  • the optics are focused on the surface. Often the optics are not focused on the surface but on the image to be mirrored. In this case, the blurred image of the surface acts as a kind of low-pass filter. This leads to a reduced lateral resolution and to systematic errors depending on the object.
  • the position of the image and / or a zero point is defined by means of a laser, the object with the surface to be determined can be set up easily and reliably for the measurement. If only one laser is used, the position can be determined from the position of the laser point in the image. If two or more lasers are used, their intersection defines a zero point of the system.
  • the laser should preferably be arranged in a fixed position with respect to the image generator and / or the image sensor.
  • the method and / or the device with the inventive features can also be used advantageously for controlling a robot.
  • the position definition and / or the zero point definition by means of one or more lasers is particularly suitable for this purpose.
  • This position definition and / or this zero point definition can also be used independently of the invention.
  • FIG. 1 shows a schematic illustration of a first exemplary embodiment with the inventive features
  • FIG. 3 shows a third exemplary embodiment in a schematic illustration similar to FIG. 2,
  • FIG. 5 shows a further exemplary embodiment for determining the structure of a strong curved surface.
  • FIG. 1 shows a schematic illustration of a device for determining the structure of a surface with the inventive features.
  • An object 10 to be examined is shown with a surface 11. Facing the surface 11 is an image generator 12 which has an opening 13 in the center.
  • An image sensor 14 is arranged in the opening 13 and has an optical system and also faces the surface 11.
  • the image generator 12 and the image sensor 14 are connected to a controller 17 by means of control lines 15, 16.
  • optical axis of the image pickup 14 and the surface normal of the side of the image generator 12 facing the surface 11 are aligned parallel to the surface normal of the surface 11. This geometry results in a particularly good resolution and easier calibration.
  • the image generator 12 has a plurality of individually controllable pixels facing the surface 11.
  • the image generator 12 can be self-luminous like a monitor.
  • a TFT monitor 12 is used.
  • a plasma screen can also be used to generate images using infrared radiation or heat radiation.
  • the use of so-called e-papers is also possible, as is recently being tested.
  • the image sensor 14 also has a matrix of pixel sensors. For example, this can be a CCD chip or a CMOS chip or, for thermography, a thermography camera.
  • a CCIR camera 14 is used as the image sensor. Instead of a CCIR camera, other camera formats and any type of sensor can be used. The use of bolometric sensors is also possible.
  • a control signal is transmitted to the TFT monitor 12 via the control line 15 by means of the controller 17, which in the present case is a computer 17.
  • the TFT monitor 12 then generates a sinusoidal stripe pattern.
  • This sinusoidal stripe pattern can be generated, for example, by means of different gray levels. So that the most genuine sine possible can be represented here by means of the available gray levels, the gray values to be displayed by the TFT monitor 12 are corrected in such a way that the sine is as pure as possible.
  • the representable gray value range value for value is generated and recorded in a previous calibration process for a camera / monitor combination.
  • the response function determined from this is inverted and used as a linearization function for the evaluation.
  • the sinusoidal stripe pattern generated by the TFT monitor 12 is reflected on the surface 11 and the mirrored stripe pattern captured by CCIR camera 14.
  • the optics of the CCIR camera 14 are focused on the surface 11. This ensures the unadulterated recording of data of the surface 11 with high resolution. This focusing on the surface ensures that there is no unwanted blurring during digital image recording and that no systematic errors are included in the measurements. Since fine stripes of a stripe pattern can no longer be recorded with the CCIR camera 14 in this method, relatively wide stripes are used for the stripe pattern.
  • this wide sinusoidal stripe pattern may contain only one light and one dark stripe that correspond to one period of the sine.
  • a relatively rough assignment of the absolute phases of the generated sine and thus of the locations on the surface of the TFT monitor 12 associated with the respective pixels is already possible.
  • a sine with a smaller period can be used, for example in which two dark and two light stripes are displayed on the TFT monitor 12.
  • a plurality of ever finer stripe patterns are generated by the TFT monitor 12 and mirrored on the surface 11 in order to then be recorded by the CCIR camera 14.
  • the actual height and depth deviations can in turn be determined from these inclination angles.
  • the actual height values are determined by means of a two-dimensional integration from the local height changes determined from the angle of inclination.
  • the object only has to be positioned relatively roughly. It is essential that the focus of the CCIR camera 14 is arranged on the surface 11. By evaluating the surface structure from several images of sinusoidal stripe patterns with different periods, a large area can be viewed at the same time and nevertheless a high resolution can be achieved over the entire area.
  • the geometry used in the exemplary embodiment shown with the CCIR camera 14 in an opening of the TFT monitor 12 results in a particularly high measurement sensitivity.
  • the associated, reflected position ⁇ is determined in a position matrix for each pixel of the CCIR camera 14.
  • the achievable resolution ⁇ ⁇ defines the smallest distinguishable output locations ⁇ X of the reflected light and thus detectable changes in angle ⁇ ⁇ :
  • two lasers 21, 22 can also be seen, which are attached to the side of the TFT monitor 12.
  • the intersection of the laser beam generated by the lasers 21, 22 defines a zero point of the system.
  • FIG. 2 shows a second exemplary embodiment with the features of the invention in a schematic partial illustration.
  • the same elements have the same reference numbers.
  • the control lines 15, 16 and the controller 17 are not shown in the figure.
  • the CCIR camera 14 is not arranged in an opening but on the edge of a TFT monitor 18. With this geometry, only a slightly poorer resolution can be achieved than with the geometry of FIG. 1.
  • a standard T 1 monitor 18 can be used for this purpose, as it is commercially available at low cost and in high quality.
  • a laser 23 is attached to the side of the TFT monitor 18.
  • the laser 23 is used to determine the position of the object 10, which is positioned so that the laser point lies on the optical axis of the CCIR camera 14.
  • FIG. 3 shows a third exemplary embodiment with the features of the invention in a schematic partial illustration.
  • the same elements have the same zugsziffern.
  • Control lines 15, 16 and a controller 17 are again not shown.
  • two TFT monitors 18 are used.
  • the CCLR camera 14 is arranged between the two TFT monitors 18. In this way, an almost equally good geometry can be achieved as in the first embodiment, although standard 1 hl monitors can still be used.
  • the size of the image generated can be doubled in a simple manner by adding a further TFT monitor 18. In this way, even larger objects can be easily measured.
  • FIG. 4 shows a fourth exemplary embodiment with the features of the invention in a schematic partial illustration, in which the control lines 15, 16 and the controller 17 are again not shown.
  • the same elements have the same reference numbers.
  • An illustration similar to FIG. 2 is shown, two CCTR cameras 14 each being arranged adjacent to the TFT monitor 18. This allows a larger area to be examined.
  • a CCIR camera 14 can also be arranged at every corner of the TFT monitor or at each edge of the TFT monitor, which in turn leads to an enlargement of the area that can be examined.
  • FIG. 5 shows a further exemplary embodiment with the inventive features.
  • the same elements again have the same reference numbers.
  • Control lines 15, 16 and a controller 17 are also not shown here.
  • two TFT monitors 18 are arranged in a corner, a CCIR camera 14 being arranged in the region of the sides of the TFT monitors 18 facing one another.
  • This corner arrangement of the TFT monitors 18 can also be used to examine a relatively strongly curved surface 19 of an object 20.
  • the angle between the two TFT monitors 18 does not have to be 90 °, as in the case shown. Rather, smaller or larger angles are also possible.
  • a type of complete measuring room or a measuring wall can be designed. This means that even very large and irregularly shaped objects, such as complete motor vehicles, can be measured.
  • a so-called pixel clock should be used so that the individual pixels of the image generator and the image sensor can be reliably recorded.
  • a projector that projects a pattern onto a wall. This enables a relatively large image to be generated. It is then important here that the wall is worked as precisely as possible and that the projector is adjusted to the wall in such a way that each pixel has a defined position on the wall.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour déterminer la structure d'une surface. Selon ladite invention, un motif plan est produit par un générateur d'images (12), par exemple un écran LCD à matrice active ; ce motif est réfléchi sur une surface (11) ; le motif réfléchi est représenté par une optique sur un appareil de prise de vues (14), p. ex. une caméra CCD, et l'image prise par l'appareil de prise de vues (14) est évaluée par une commande (17). Cette invention permet d'obtenir une mesure robuste, simple, économique, rapide et plane de la surface d'un objet. A cet effet, plusieurs motifs plans successifs, p. ex. des motifs sinusoïdaux à rayures à structures planes, sont produits pixel par pixel par un générateur d'images ; les structures de deux motifs présentent des dimensions différentes et les pixels de deux motifs présentent une position respective définie.
PCT/EP2004/052362 2003-09-29 2004-09-29 Procede optique et dispositif pour determiner la structure d'une surface WO2005031251A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04787251A EP1668315A1 (fr) 2003-09-29 2004-09-29 Procede optique et dispositif pour determiner la structure d'une surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003145586 DE10345586B4 (de) 2003-09-29 2003-09-29 Verfahren und Vorrichtung zum Bestimmen der Struktur einer Oberfläche
DE10345586.8 2003-09-29

Publications (1)

Publication Number Publication Date
WO2005031251A1 true WO2005031251A1 (fr) 2005-04-07

Family

ID=34384337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052362 WO2005031251A1 (fr) 2003-09-29 2004-09-29 Procede optique et dispositif pour determiner la structure d'une surface

Country Status (3)

Country Link
EP (1) EP1668315A1 (fr)
DE (1) DE10345586B4 (fr)
WO (1) WO2005031251A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040026A2 (fr) 2006-04-05 2009-03-25 Isra Surface Vision GmbH Procédé et système de calibrage d'un appareil de mesure de la forme d'une surface réfléchissante
WO2009083251A1 (fr) * 2007-12-27 2009-07-09 Carl Zeiss Ag Procédé et dispositif pour l'inspection optique d'une surface sur un objet
WO2010017884A1 (fr) * 2008-08-11 2010-02-18 Carl Zeiss Oim Gmbh Dispositif et procédé d'inspection optique de la surface d'un objet
DE102009010988A1 (de) * 2009-02-19 2010-09-02 Carl Zeiss Oim Gmbh Verfahren und Vorrichtung zum optischen Inspizieren einer Oberfläche an einem Gegenstand
DE102010007396A1 (de) 2010-02-03 2011-08-04 Carl Zeiss OIM GmbH, 73117 Verfahren und Vorrichtung zum optischen Inspizieren eines Prüflings mit einer zumindest teilweise reflektierenden Oberfläche
DE102013018569A1 (de) 2013-10-30 2015-04-30 Technische Universität Ilmenau Vorrichtung und Verfahren zur Vermessung zumindest teilweise reflektierender Oberflächen
DE102017001524B4 (de) 2017-02-10 2018-12-20 Technische Universität Ilmenau Anordnung zur Vermessung zumindest teilweise reflektierender Oberflächen
EP2322915B1 (fr) * 2009-11-16 2020-08-05 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Appareil et procédé pour créer un motif de rayonnement thermique variable dans l'espace et/ou dans le temps pour la déflectométrie, et appareil de déflectométrie.

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044912B4 (de) * 2005-09-16 2014-07-24 Friedrich-Schiller-Universität Jena Verfahren und Vorrichtung zur dreidimensionalen optischen Vermessung von spiegelnden Oberflächen
DE102005061931B4 (de) * 2005-12-23 2011-04-14 Bremer Institut für angewandte Strahltechnik GmbH Verfahren und Vorrichtung zur Kalibrierung einer optischen Einrichtung
DE102006030356B4 (de) * 2006-06-30 2012-03-29 Bremer Institut für angewandte Strahltechnik GmbH Verfahren zur optischen Vermessung von Objekten
DE102010015566B4 (de) 2010-04-19 2013-10-02 adomea GmbH Verfahren und System zur Vermessung spiegelnder Oberflächen
DE102010029627B4 (de) * 2010-06-02 2012-02-16 Bremer Institut für angewandte Strahltechnik GmbH Vorrichtung und Verfahren zur Bestimmung der Struktur einer spiegelnden Oberfläche eines Objekts
FR2965045A1 (fr) * 2010-09-17 2012-03-23 Saint Gobain Dispositif de mesure de la forme d'un miroir ou d'une surface speculaire
DE102011051781A1 (de) 2011-07-12 2013-01-17 Göpel electronic GmbH Deflektometrische Anordnung zur Oberflächeninspektion
DE102017203390B4 (de) 2017-03-02 2019-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Deflektometer und Verfahren zur Topografiebestimmung eines Objekts
CN109405735B (zh) * 2017-08-18 2020-11-27 阿里巴巴集团控股有限公司 三维扫描系统和三维扫描方法
CN108627121B (zh) * 2018-05-15 2020-03-31 浙江中控太阳能技术有限公司 一种镜面面形检测装置及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339154A (en) 1991-10-15 1994-08-16 Kaltenbach & Voigt Gmb & Co. Method and apparatus for optical measurement of objects
WO1997040367A1 (fr) 1996-04-22 1997-10-30 Autospect, Inc. Procede et dispositif d'inspection d'une surface a faible brillance d'un objet au niveau d'une station de visualisation
DE19738179C1 (de) * 1997-09-02 1999-05-12 Bernward Maehner Verfahren zur dreidimensionalen optischen Vermessung von Objektpunkten
WO1999028704A1 (fr) 1997-12-02 1999-06-10 Universita' Degli Studi Di Brescia Procede de mesure de profils en trois dimensions (3d) par projection d'une lumiere structuree
DE10155834A1 (de) 2001-11-14 2003-05-28 Bernward Maehner Verfahren zur Vermessung räumlicher Koordinaten von Objektpunkten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643018B4 (de) * 1996-10-18 2010-06-17 Isra Surface Vision Gmbh Verfahren und Vorrichtung zum Messen des Verlaufs reflektierender Oberflächen
DE19944354C5 (de) * 1999-09-16 2011-07-07 Häusler, Gerd, Prof. Dr., 91056 Verfahren und Vorrichtung zur Vermessung von spiegelnden oder transparenten Prüflingen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339154A (en) 1991-10-15 1994-08-16 Kaltenbach & Voigt Gmb & Co. Method and apparatus for optical measurement of objects
WO1997040367A1 (fr) 1996-04-22 1997-10-30 Autospect, Inc. Procede et dispositif d'inspection d'une surface a faible brillance d'un objet au niveau d'une station de visualisation
DE19738179C1 (de) * 1997-09-02 1999-05-12 Bernward Maehner Verfahren zur dreidimensionalen optischen Vermessung von Objektpunkten
WO1999028704A1 (fr) 1997-12-02 1999-06-10 Universita' Degli Studi Di Brescia Procede de mesure de profils en trois dimensions (3d) par projection d'une lumiere structuree
DE10155834A1 (de) 2001-11-14 2003-05-28 Bernward Maehner Verfahren zur Vermessung räumlicher Koordinaten von Objektpunkten

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227093A (ja) * 2006-04-05 2011-11-10 Isra Surface Vision Gmbh 反射面の形状測定方法及びシステム
EP2040026A3 (fr) * 2006-04-05 2009-04-01 Isra Surface Vision GmbH Procédé et système de calibrage d'un appareil de mesure de la forme d'une surface réfléchissante
EP2040026A2 (fr) 2006-04-05 2009-03-25 Isra Surface Vision GmbH Procédé et système de calibrage d'un appareil de mesure de la forme d'une surface réfléchissante
WO2009083251A1 (fr) * 2007-12-27 2009-07-09 Carl Zeiss Ag Procédé et dispositif pour l'inspection optique d'une surface sur un objet
WO2010017884A1 (fr) * 2008-08-11 2010-02-18 Carl Zeiss Oim Gmbh Dispositif et procédé d'inspection optique de la surface d'un objet
DE102009010988A1 (de) * 2009-02-19 2010-09-02 Carl Zeiss Oim Gmbh Verfahren und Vorrichtung zum optischen Inspizieren einer Oberfläche an einem Gegenstand
DE102009010988B4 (de) * 2009-02-19 2010-11-04 Carl Zeiss Oim Gmbh Verfahren und Vorrichtung zum optischen Inspizieren einer Oberfläche an einem Gegenstand
EP2322915B1 (fr) * 2009-11-16 2020-08-05 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Appareil et procédé pour créer un motif de rayonnement thermique variable dans l'espace et/ou dans le temps pour la déflectométrie, et appareil de déflectométrie.
DE102010007396A1 (de) 2010-02-03 2011-08-04 Carl Zeiss OIM GmbH, 73117 Verfahren und Vorrichtung zum optischen Inspizieren eines Prüflings mit einer zumindest teilweise reflektierenden Oberfläche
DE102010007396B4 (de) * 2010-02-03 2013-10-02 Carl Zeiss Oim Gmbh Verfahren und Vorrichtung zum optischen Inspizieren eines Prüflings mit einer zumindest teilweise reflektierenden Oberfläche
US8823869B2 (en) 2010-02-03 2014-09-02 Carl Zeiss Oim Gmbh Method and apparatus for optically inspecting a test specimen having an at least partly reflective surface
WO2011095322A1 (fr) 2010-02-03 2011-08-11 Carl Zeiss Oim Gmbh Procédé et dispositif d'inspection optique d'un spécimen doté d'une surface au moins en partie réfléchissante
DE102013018569A1 (de) 2013-10-30 2015-04-30 Technische Universität Ilmenau Vorrichtung und Verfahren zur Vermessung zumindest teilweise reflektierender Oberflächen
DE102013018569B4 (de) * 2013-10-30 2015-07-16 Technische Universität Ilmenau Vorrichtung und Verfahren zur Vermessung zumindest teilweise reflektierender Oberflächen
DE102017001524B4 (de) 2017-02-10 2018-12-20 Technische Universität Ilmenau Anordnung zur Vermessung zumindest teilweise reflektierender Oberflächen

Also Published As

Publication number Publication date
DE10345586B4 (de) 2007-03-15
DE10345586A1 (de) 2005-05-12
EP1668315A1 (fr) 2006-06-14

Similar Documents

Publication Publication Date Title
EP0168643B1 (fr) Dispositif pour l'inspection de pastilles de semi-conducteurs
WO2005031251A1 (fr) Procede optique et dispositif pour determiner la structure d'une surface
DE3781197T2 (de) Verfahren und vorrichtung mit einem zweistrahleninterferenzmikroskop zur untersuchung von integrierten schaltungen und dergleichen.
DE102010000122B4 (de) Vorrichtung zum dreidimensionalen Messen
EP2040026B1 (fr) Procédé et système de calibrage d'un appareil de mesure de la forme d'une surface réfléchissante
DE69826753T2 (de) Optischer Profilsensor
DE102012217240B4 (de) Vorrichtung zum Messen einer dreidimensionalen Form
EP2095068B1 (fr) Dispositif et procédé d'augmentation de la précision de mesure de systèmes numériques à géométrie en 3d
EP2863167B1 (fr) Procédé et dispositif de mesure de la déviation de rayons lumineux à travers la structure d'un objet ou d'un support
EP3479059B1 (fr) Procédé et dispositif de mesure de surface optique d'un objet à mesurer
WO2008003419A2 (fr) Procédé et dispositif destinés à produire une image d'une couche mince d'un objet
CH692873A5 (de) Vorrichtung und Verfahren zur geometrischen Kalibrierung von CCD-Kameras.
DE19623172C1 (de) Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
EP2172799A1 (fr) Système optique pour un microscope à foyer commun
EP3417237B1 (fr) Plaque de référence et procédé pour calibrer et/ou vérifier un système de détection par déflectométrie
DE112021003255T5 (de) Optisches System mit verbesserter statischer Streifenerfassung
DE102019219506A1 (de) System und verfahren zum eichen eines linsensystems mit variabler brennweite unter verwendung eines eichobjekts mit einer ebenen geneigten musterfläche
DE69626424T2 (de) Triangulationsbasiertes abbildungs- und bearbeitungsverfahren und -system
EP4067809A2 (fr) Procédé mis en oeuvre par ordinateur, procédé, appareil de mesure et produit programme informatique
DE10309544A1 (de) Verfahren und Vorrichtung zur optischen Profilmessung eines Objektes mittels Linientriangulation
DE102017009334B3 (de) Verfahren zum Prüfen eines optischen Systems
EP1273878B1 (fr) Procédé pour détecter un objet en utilisant de résolutions différentes
EP3798570B1 (fr) Procédé d'étalonnage d'un système de mesure optique, système de mesure optique et objet d'étalonnage pour un système de mesure optique
EP4227636B1 (fr) Détermination de valeurs de profondeur d'une zone de surface d'une pièce
DE102010029627A1 (de) Vorrichtung und Verfahren zur Bestimmung der Struktur einer spiegelnden Oberfläche eines Objekts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004787251

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004787251

Country of ref document: EP