WO2005030682A1 - クメンの製造方法 - Google Patents

クメンの製造方法 Download PDF

Info

Publication number
WO2005030682A1
WO2005030682A1 PCT/JP2004/013583 JP2004013583W WO2005030682A1 WO 2005030682 A1 WO2005030682 A1 WO 2005030682A1 JP 2004013583 W JP2004013583 W JP 2004013583W WO 2005030682 A1 WO2005030682 A1 WO 2005030682A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumene
catalyst
cumyl alcohol
hydrogenation
reaction
Prior art date
Application number
PCT/JP2004/013583
Other languages
English (en)
French (fr)
Inventor
Jun Yamamoto
Tetsuo Suzuki
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005030682A1 publication Critical patent/WO2005030682A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • C07C409/10Cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds

Definitions

  • the present invention relates to a method for producing cumene. More specifically, the present invention relates to the use of cumene hydroperoxide obtained from cumene as an oxygen carrier to epoxidize propylene and convert unreacted cumene hydroperoxide remaining when converted to propylene oxide. The present invention relates to a method for producing cumene that can be efficiently converted to cumene. Background art
  • An object of the present invention is to efficiently convert unreacted cumene hydroperoxide remaining when an olefin is converted to an epoxy compound using cumene hydroperoxide obtained from cumene as an oxygen carrier. It is an object of the present invention to provide a method for producing cumene.
  • the present invention relates to a method for producing cumene comprising a step of converting cumenehydride peroxide contained in cumyl alcohol into cumyl alcohol in the presence of a hydrogenation catalyst, and a step of converting cumyl alcohol to cumene. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • cumene hydroperoxide contained in cumyl alcohol reacts with hydrogen in the presence of a hydrogenation catalyst and is converted to cumyl alcohol.
  • the raw material subjected to the hydrogenation reaction is cumyl alcohol containing cumene hydroperoxide.For example, it is obtained as a reaction mixture after epoxidation of olefin with cumene hydroperoxide as an oxidizing agent.
  • the resulting epoxide is preferably separated and removed.
  • Examples of hydrogenation catalysts for cumenehydride peroxide include catalysts containing metals of Groups 8 to 11 of the periodic table.Specific examples include palladium, platinum, nickel, cobalt, rhodium, and ruthenium. However, palladium is preferred from the viewpoints of suppressing the nucleus hydrogenation reaction of the aromatic ring, high yield and catalyst cost. Examples of the palladium catalyst include palladium-alumina, palladium-silica, and palladium-carbon.
  • the hydrogenation catalyst used for hydrogenation of cumene hydroperoxide and the hydrogenation catalyst used for converting cumyl alcohol to cumene described below are catalysts containing the same metal. It is not limited.
  • cumene hydroperoxide If hydrogenation of cumene hydroperoxide is not performed, cumene hydroperoxide has the disadvantage that it is decomposed by heat or acid, and the number of components that cannot be easily converted to cumene increases in the subsequent steps. On the other hand, by converting cumene hydroperoxide to cumyl alcohol with high selectivity, cumene can be easily obtained in the subsequent steps.
  • a preferred embodiment of the cumene hydroperoxide hydrogenation reaction is as follows.
  • the peroxide hydrogenation reaction at the cumene hydride port is usually carried out by bringing cumyl alcohol containing cumene hydroperoxide into contact with hydrogen in the presence of a hydrogenation catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • cumyl alcohol can be used, and when a cumyl alcohol solution is used, the solvent may be composed of a substance present in the solution.
  • cumyl alcohol is a product In the case of a mixture comprising certain cumene, it can be used as a substitute for the solvent without adding a solvent.
  • the hydrogenation reaction temperature of cumene hydroperoxide is generally 0 to 300 ° (preferably 0 to 250 ° C. Generally, the pressure is 10 to 1000 kPa.
  • the hydrogenation reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed.
  • the amount of hydrogen necessary for the hydrogenation reaction may be at least equimolar to cumene hydroperoxide.
  • the hydrogenation of cumene octadropoxide and the conversion of cumyl alcohol to cumene, which will be described later, are preferably carried out continuously in the same reactor.
  • Examples of the method for converting cumyl alcohol to cumene include a method for hydrocracking cumyl alcohol in the presence of a hydrocracking catalyst to obtain cumene, and a method for converting cumyl alcohol to -methylstyrene in the presence of a dehydration catalyst. In the presence of a hydrogenation catalyst,
  • dehydration catalyst examples include acids such as sulfuric acid, phosphoric acid, and P-toluenesulfonic acid, and metal oxides such as activated alumina, titania, zirconia, silica alumina, and zeolite. Activated alumina is preferred from the viewpoints of life, selectivity, and the like.
  • the dehydration reaction is usually carried out by bringing cumyl alcohol into contact with the dehydration catalyst, but it is preferable to feed hydrogen together with cumyl alcohol to the dehydration catalyst in order to carry out the hydrogenation reaction following the dehydration reaction.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the cumyl alcohol solution used.
  • cumyl alcohol consists of the product cumene In the case of a mixture, this can be used as a substitute for the solvent without adding a solvent.
  • the dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa.
  • the dehydration reaction can be advantageously carried out using a catalyst in the form of a slurry or fixed bed.
  • Examples of the hydrogenation catalyst for methyl methylstyrene include a catalyst containing a metal of Group 10 or Group 11 of the periodic table, and specific examples thereof include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoints of suppression of the nuclear hydrogenation reaction and high yield. Copper-based catalysts include copper, Raney copper, copper-chromium, copper-zinc, copper-chromium-zinc, copper-silica, copper-alumina, and the like. Examples of the palladium catalyst include palladium alumina, palladium-silica, palladium, and carbon.
  • the hydrogenation reaction of permethylstyrene is usually carried out by bringing ⁇ -methylstyrene and hydrogen into contact with a hydrogenation catalyst.
  • the hydrogenation reaction of ⁇ -methylstyrene is carried out.
  • the water generated in the dehydration reaction is also fed to the hydrogenation catalyst.
  • the reaction can be carried out in a liquid or gas phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of a substance present in the ⁇ -methylstyrene solution used.
  • -methylstyrene when -methylstyrene is a mixture of cumene as a product, it can be used as a substitute for the solvent without particularly adding a solvent.
  • the ⁇ -methylstyrene hydrogenation reaction temperature is generally from 0 to 500 ° C., but a temperature of from 30 to 400 ° C. is preferred. In general, it is advantageous for the pressure to be from 100 to: L0000kPa.
  • the above-mentioned dehydration reaction of cumyl alcohol and the hydrogenation reaction of ⁇ -methylstyrene obtained by the dehydration reaction are preferably carried out continuously in the same reactor.
  • cumene Hydrate peroxide hydrogenation, cumyl The alcohol dehydration reaction and the -methylstyrene hydrogenation reaction may be performed in separate reactors or in a single reactor, but it is preferable to use a single reactor from the viewpoint of equipment costs.
  • the continuous method reactor includes an adiabatic reactor and an isothermal reactor. However, since an isothermal reactor requires equipment for removing heat, an adiabatic reactor is preferable. From a cost standpoint, cumenehydride peroxide hydrogenation catalyst, dehydration catalyst and Q!
  • -Methylstyrene hydrogenation catalyst are packed in a single fixed-bed reactor instead of a multistage reactor.
  • the catalyst is charged into a reactor in the order of a cumenehydroxide peroxide hydrogenation catalyst, a cumyl alcohol dehydration catalyst, and a -methylstyrene hydrogenation catalyst.
  • the reactor may be separated into several beds or not. If not separated, the respective catalysts may be in direct contact, but may be separated by an inert packing.
  • the reaction temperature and pressure are selected so that the water contained in the reaction solution does not condense.
  • the reaction temperature is preferably from 150 to 300, and the reaction pressure is preferably from 100 to 2000 kPa.
  • the temperature is too low or the pressure is too high, water may condense at the outlet of the dehydration reaction, deteriorating the performance of the methyl styrene hydrogenation catalyst. If the pressure is too high, it is disadvantageous in the reaction equilibrium of the dehydration reaction. If the temperature is too high or the pressure is too low, many gas phase parts are generated, and the life of the catalyst is shortened due to filing and the like, which may be disadvantageous.
  • Hydrogen is fed from the fixed bed reactor inlet.
  • hydrogen since hydrogen is always present in the dehydration reaction zone, vaporization of water generated by dehydration is promoted, and the equilibrium dehydration conversion rate is increased, so that a higher dehydration conversion rate can be obtained more efficiently than in the absence of hydrogen. I can do it.
  • the water generated in the dehydration reaction will pass through the hydrogenation catalyst, but by operating at a level that does not condense as described above, it can be operated at low cost without installing a facility to remove water in particular. be able to.
  • the amount of hydrogen required for the reaction may be equimolar to the amount of ⁇ -methylstyrene produced in the dehydration reaction, but usually the raw material also contains other components that consume hydrogen, so an excess of hydrogen is required. It is said.
  • a hydrogen to ⁇ -methylstyrene molar ratio of 1 to 10 is usually used. More preferably, it is 1 to 5.
  • the excess hydrogen remaining after the reaction can be recycled after separation from the reaction solution.
  • the amount of the cumene hydroperoxide hydrogenation catalyst may be an amount that can sufficiently convert cumene hydroperoxide, and the conversion of cumene hydroperoxide is preferably 90% or more.
  • the amount of the dehydration catalyst may be an amount that can sufficiently convert cumyl alcohol, and the conversion of cumyl alcohol is preferably 90% or more.
  • the amount of the catalyst for hydrogenation of methyl styrene may be an amount capable of sufficiently converting methyl styrene, and the conversion of methyl styrene is preferably 98% or more.
  • the method of the present invention is suitably applied to a part of the following propylene oxide production process.
  • the oxidation of cumene in the above (1) is usually performed by auto-oxidation using oxygen-containing gas such as air or oxygen-enriched air. This oxidation reaction may be performed without using an additive, or an additive such as an alkali may be used. Normal reaction temperatures are 50-200 ° C. and reaction pressures are between atmospheric pressure and 5 MPa.
  • the alkaline reagent may be an alkali metal compound such as Na ⁇ H or K ⁇ H, an alkaline earth metal compound or Na 2 C ⁇ 3 or Na HC a.
  • alkali metal carbonate or ammonia and like 3 (NH 4) 2 C 0 3, an alkali metal carbonate en Moniumu salt or the like is used.
  • propylene oxide and cumyl alcohol are obtained by reacting the cumene hydroperoxide obtained in the oxidation step with propylene in the presence of an epoxidation catalyst.
  • a solid catalyst composed of a titanium-containing silicon oxide is preferable from the viewpoint of obtaining the target product with high yield and high selectivity.
  • These catalysts are preferably so-called titanium-silica catalysts containing titanium chemically bonded to a silicon oxide.
  • a titanium compound supported on a silica carrier, a compound compounded with silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing titanium can be used.
  • the cumene hydroperoxide used in (2) may be a dilute or concentrated purified or unpurified product.
  • the epoxidation reaction is performed in a liquid phase using a solvent.
  • the solvent should be liquid at the temperature and pressure during the reaction and should be substantially inert to the reactants and products.
  • the solvent may consist of a substance present in the hydroperoxide solution used.
  • cumene hydroperoxide is a mixture of its raw material and cumene, it can be used as a substitute for a solvent without adding a solvent.
  • Other useful solvents include aromatic monocyclic compounds (eg, benzene, toluene, chlorobenzene, orthodichlorobenzene) and alkenes (eg, octane, decane, dodecane).
  • the epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • a solid catalyst When a solid catalyst is used, it is used for the reaction in the form of a slurry or a fixed bed. For large-scale industrial operations, it is preferred to use a fixed bed.
  • the reaction can be carried out by a batch method, a semi-continuous method or a continuous method.
  • the molar ratio of propylene Z cumene hydropoxide supplied to the epoxidation step is preferably 21 to 501. If the ratio is less than 21, the reaction rate is reduced and the efficiency is poor.On the other hand, if the ratio exceeds 50 Z1, the amount of propylene to be recycled becomes excessive, and a large amount of energy is required in the recovery process. It may be.
  • the cumyl alcohol obtained in the epoxidation step is converted to cumene, which is recycled as a raw material in the above (1), as described above.
  • cumene hydroperoxide obtained from cumene is used as an oxygen carrier to convert olefin into an epoxy compound, the remaining unreacted cumene hydroperoxide is efficiently converted to cumene.
  • a method for producing cumene can be provided.

Abstract

クミルアルコール中に含まれるクメンハイドロパーオキサイドを水添触媒の存在下クミルアルコールに変換する工程、及びクミルアルコールをクメンに変換する工程を含むクメンの製造方法。

Description

明 細 書 クメンの製造方法 技術分野
本発明はクメンの製造方法に関するものである。 更に詳しくは、 本発明はク メンから得られるクメンハイドロパーォキサイドを酸素キヤリャ一として用い てプロピレンをエポキシ化してプロピレンォキサイドに変換した際に残る未反 応のクメンハイドロパ一ォキサイドを効率的にクメンに変換ができるクメンの 製造方法に関するものである。 背景技術
クメンから得られるクメンハイドロパ一ォキサイドを酸素キヤリヤーとして 用いてプロピレンをプロピレンォキサイドに変換し、 かつ該クメンを繰り返し 使用するプロピレンォキサイド製造方法はチェコスロバキア特許 C S 1 4 0 7 4 3号公報、 特開平 2 0 0 1 - 2 7 0 8 8 0号公報等に開示されているが、 こ れらの方法は効率的にクメンを繰り返し使用するという観点では十分とは言い 難いものである。 発明の開示
本発明の目的は、 クメンから得られるクメンハイドロパーォキサイドを酸素 キヤリャ一として用いてォレフィンをエポキシ化合物に変換した際に残る未反 応クメンハイドロパーォキサイドを効率的にクメンに変換することができるク メンの製造方法を提供することにある。
すなわち、 本発明は、 クミルアルコール中に含まれるクメンハイド口パーォ キサイドを水添触媒の存在下クミルアルコールに変換する工程、 及びクミルァ ルコールをクメンに変換する工程を含むクメンの製造方法に係るものである。 発明を実施するための最良の形態 クメンハイドロパーォキサイドの水添工程において水添触媒の存在下、 クミ ルアルコール中に含まれるクメンハイドロパーォキサイドは水素と反応し、 ク ミルアルコールに変換される。 水添反応にに供される原料はクメンハイドロパ 一オキサイドを含有したクミルアルコールであり、 例えば、 クメンハイドロパ ーォキサイドを酸化剤としたォレフィンのエポキシ化後の反応混合物として得 られるが、 それに含まれる生成したエポキシ化物は分離除去されたものが好ま しい。
クメンハイド口パーオキサイドの水添触媒としては、 周期律表の 8族〜 1 1 族の金属を含む触媒をあげることができ、 具体的にはパラジウム、 白金、 ニッ ケル、 コバルト、 ロジウム、 ルテニウムをあげることができるが、 芳香環の核 水添反応の抑制、 高収率、 触媒コストの観点からパラジウムが好ましい。 パラ ジゥム触媒としては、 パラジウム ·アルミナ、 パラジウム ·シリカ、 パラジゥ ム ·カーボン等があげられる。
クメンハイドロパーォキサイドの水添で用いられる水添触媒と後述するクミ ルアルコールをクメンに変換する際に用いられる水添触媒が同一の金属を含有 する触媒であることが好ましいが、 これに限定されるものではない。
クメンハイドロパ一ォキサイドの水添を行わない場合は、 クメンハイドロパ ーォキサイドは熱や酸により分解し、 以降の工程において容易にクメンに変換 できない成分が増加するという欠点がある。 一方、 クメンハイドロパ一ォキサ イドを高選択的にクミルアルコールに変換することにより、 以降の工程で容易 にクメンを得ることができる。
クメンハイドロパーォキサイド水添反応の好ましい実施態様は次のとおりで ある。
クメンハイド口パーオキサイド水添反応は通常、 水添触媒の存在下、 クメン ハイドロパーォキサイドを含有したクミルアルコールと水素を接触させること で行われる。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応体及び生成 物に対して実質的に不活性なものであるべきである。 溶媒はクミルアルコール も使用でき、 さらにクミルアルコール溶液が使用される場合、 該溶液中に存在 する物質からなるものであってよい。 たとえばクミルアルコールが、 生成物で あるクメンとからなる混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代用とすることも可能である。 クメンハイドロパーォキサイドの 水添反応温度は一般に 0〜3 0 0 ° (:、 好ましくは 0〜2 5 0 Cである。 一般に 圧力は 1 0〜1 0 0 0 0 k P aであることが有利である。 本水添反応はスラリ 一又は固定床の形の触媒を使用して有利に実施できる。
水添反応に必要な水素量はクメンハイドロパーォキサイドの等モル以上であ ればよい。
本発明のクメンの製造方法ではクメン八ィドロパーォキサイド水添と後述す るクミルアルコールのクメンへの変換は同一の反応器で連続的に実施すること が好ましい。
クミルアルコールをクメンに変換する方法としては、 水素化分解触媒の存在 下、 クミルアルコールを水素化分解してクメンを得る方法、 および脱水触媒存 在下、クミルアルコールを ーメチルスチレンに変換した後、水添触媒存在下、
Q!—メチルスチレンを水添してクメンを得る方法 (脱水一水添反応) が好まし いが、触媒性能、触媒寿命、触媒コストの観点から後者の方法がより好ましい。 以下、 脱水一水添反応によるクミルアルコールをクメンに変換する方法詳細 に説明する。
最初に脱水触媒存在下、 クミルアルコールをひーメチルスチレンに変換する 反応を行う。
脱水触媒の例としては、 硫酸、 リン酸、 P—トルエンスルホン酸等の酸や、 活性アルミナ、 チタニア、 ジルコニァ、 シリカアルミナ、 ゼォライト等の金属 酸化物があげられるが、 反応液との分離、 触媒寿命、 選択性等の観点から活性 アルミナが好ましい。
脱水反応は通常、 クミルアルコールを脱水触媒に接触させることで行われる が、 脱水反応に引き続いて水添反応を行うため、 クミルアルコールと共に水素 も脱水触媒へフィードすることが好ましい。 反応は溶媒を用いて液相中で実施 できる。 溶媒は反応体及び生成物に対して実質的に不活性なものであるべきで ある。 溶媒は使用されるクミルアルコール溶液中に存在する物質からなるもの であってよい。 たとえばクミルアルコールが、 生成物であるクメンとからなる 混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代用とす ることも可能である。 脱水反応温度は一般に 5 0〜4 5 0 °Cであるが、 1 5 0 〜3 0 0 °Cの温度が好ましい。 一般に圧力は 1 0〜1 0 0 0 0 k P aであるこ とが有利である。 脱水反応はスラリ一又は固定床の形の触媒を使用して有利に 実施できる。
脱水反応で得られた Q!—メチルスチレンは水添触媒へフィードされ、 《—メ チルスチレンは水添されてクメンに変換される。
ひーメチルスチレンの水添触媒としては、 周期律表 1 0族又は 1 1族の金属 を含む触媒をあげることができ、 具体的にはニッケル、 パラジウム、 白金、 銅 をあげることができるが、 芳香環の核水添反応の抑制、 高収率の観点からパラ ジゥムまたは銅が好ましい。 銅系触媒としては銅、 ラネ一銅、 銅 ·クロム、 銅 ' 亜鉛、 銅 ·クロム -亜鉛、 銅 ·シリカ、 銅 ·アルミナ等があげられる。 パラジ ゥム触媒としては、 パラジウム 'アルミナ、 パラジウム ·シリカ、 パラジウム, カーボン等があげられる。
ひーメチルスチレンの水添反応は、 上記のように、 通常 α—メチルスチレン と水素を水添触媒に接触させることで行われるが、 クミルアルコールの脱水反 応に引き続いて α—メチルスチレンの水添反応を行うため、 脱水反応において 発生した水も水添触媒へフィードされる。 反応は溶媒を用いて液相又は気相中 で実施できる。 溶媒は反応体及び生成物に対して実質的に不活性なものである べきである。 溶媒は使用される α—メチルスチレン溶液中に存在する物質から なるものであってよい。 たとえば ーメチルスチレンが、 生成物であるクメン とからなる混合物である場合には、 特に溶媒を添加することなく、 これを溶媒 の代用とすることも可能である。 α—メチルスチレン水添反応温度は一般に 0 〜5 0 0 °Cであるが、 3 0〜4 0 0 °Cの温度が好ましい。 一般に圧力は 1 0 0 〜: L 0 0 0 0 k P aであることが有利である。
上記のクミルアルコールの脱水反応と該脱水反応によって得られた《—メチ ルスチレン水添反応は同一の反応器で連続的に実施することが好ましい。
さらに、 本発明においてクメンの製造は固定床の形の触媒を使用して連続法 によって有利に実施できる。 クメンハイド口パーオキサイド水添反応、 クミル アルコール脱水反応、 ーメチルスチレン水添反応は別々の反応器を用いても よいし、 単一の反応器を用いてもよいが、 設備コストの観点から単一の反応器 を用いることが好ましい。 連続法の反応器は、 断熱反応器、 等温反応器がある が、 等温反応器は除熱をするための設備が必要となるため、 断熱反応器が好ま しい。 コストの観点から考えると、 クメンハイド口パーオキサイド水添触媒、 脱水触媒と Q!—メチルスチレン水添触媒は多段の反応器とすることなく、 単一 の固定床反応器に充填されていることが好ましい。 触媒は例えば、 反応器にク メンハイド口パーオキサイド水添触媒、 クミルアルコール脱水触媒、 ーメチ ルスチレン水添触媒の順で充填される。 反応器の中は幾つかのべッドに別れて いてもよく、 または別れていなくてもよい。 別れていない場合、 それぞれの触 媒は直接接触させてもよいが、 不活性な充填物で仕切りをつけてもかまわない。 反応温度および圧力は、 反応液に含まれる水が凝縮しないように選択される。 反応温度は 1 5 0〜 3 0 0 が好ましく、 反応圧力は 1 0 0〜2 0 0 0 k P a が好ましい。 温度が低すぎたり、 圧力が高すぎたりすると、 脱水反応出口にお いて水が凝縮し、 ーメチルスチレン水添触媒の性能を低下させてしまう場合 がある。 また圧力が高すぎる場合は脱水反応の反応平衡においても不利である。 温度が高すぎたり、 圧力が低すぎたりすると、 気相部が多く発生し、 ファゥリ ング等による触媒寿命の低下が進み不利となる場合がある。
水素は固定床反応器入口からフィードする。 これにより脱水反応ゾーンでも 常に水素が存在するため、 脱水により発生した水分の気化が促進され、 平衡脱 水転化率が上がり、 水素が存在しない場合よりも効率よく高い脱水転化率を得 ることが出来る。 脱水反応において発生した水は水添触媒を通過することにな るが、 先に述べたように凝縮しないレベルで運転することにより、 特に水を除 去する設備を設けることなく低コストで運転することができる。
反応に必要な水素量は脱水反応で生成する α—メチルスチレンと等モルであ ればよいが、 通常、 原料中には水素を消費する他の成分も含まれており、 過剰 の水素が必要とされる。 また水素の分圧を上げるほど反応は速やかに進むこと から、通常、水素 Ζ α—メチルスチレンモル比として 1から 1 0が使用される。 さらに好ましくは 1から 5である。 反応後に残存した過剰分の水素は反応液と 分離した後にリサイクルして使用することもできる。
クメンハイドロパ ォキサイド水添触媒の量はクメン八ィドロパーォキサイ ドが充分に転化する量であればよく、 クメンハイドロパーォキサイド転化率は 9 0 %以上であることが好ましい。 脱水触媒の量はクミルアルコールが充分に 転化する量であればよく、 クミルアルコール転化率は 9 0 %以上であることが 好ましい。 ひ—メチルスチレン水添触媒の量は ーメチルスチレンが充分に転 化する量であればよく、 ひーメチルスチレン転化率は 9 8 %以上が好ましい。 本発明の方法は、 下記のプロピレンォキサイドの製造工程の一部に好適に適 用される。
(1) クメンを酸化することによりクメンハイドロパーォキサイドを得る酸化 工程
(2) (1) で得たクメンハイド口パーオキサイドとプロピレンとを反応させ ることによりプロピレンォキサイド及びクミルアルコールを得る工程、 および (3) (2) で得たクミルアルコールをクメンに変換し、 (1) 酸化工程へリサ ィクルする工程 上記 (1) におけるクメンの酸化は、 通常、 空気や酸素濃縮空気などの含酸素 ガスによる自動酸化で行われる。 この酸化反応は添加剤を用いずに実施しても よいし、 アルカリのような添加剤を用いてもよい。 通常の反応温度は 5 0〜 2 0 0 °Cであり、 反応圧力は大気圧から 5 M P aの間である。 添加剤を用いた酸 化法の場合、 アルカリ性試薬としては、 N a〇H、 K〇Hのようなアルカリ金 属化合物や、 アルカリ土類金属化合物又は N a 2 C〇3、 N a H C〇3のようなァ ルカリ金属炭酸塩又はアンモニア及び(NH4) 2 C 03、 アルカリ金属炭酸アン モニゥム塩等が用いられる。
上記 (2) において (1) 酸化工程で得たクメンハイドロパ一オキサイドとプ ロピレンとをエポキシ化触媒存在下に反応させることによりプロピレンォキサ ィド及びクミルアルコールを得る。 エポキシ化触媒としては、 目的物を高収率及び高選択率下に得る観点から、 チタン含有珪素酸化物からなる固体触媒が好ましい。 これらの触媒は、 珪素酸 化物と化学的に結合したチタニウムを含有する、 いわゆるチタニウム一シリカ 触媒が好ましい。 たとえば、 チタニウム化合物をシリカ担体に担持したもの、 共沈法やゾルゲル法で珪素酸化物と複合したもの、 あるいはチタニウムを含む ゼォライト化合物などをあげることができる。
(2) において使用されるクメンハイドロパーォキサイドは希薄又は濃厚な精 製物又は非精製物であってよい。
エポキシ化反応は溶媒を用いて液相中で実施される。 溶媒は反応時の温度及 び圧力のもとで液体であり、 かつ反応体及び生成物に対して実質的に不活性な ものであるべきである。 溶媒は使用されるハイドロパーォキサイド溶液中に存 在する物質からなるものであってよい。 たとえばクメンハイドロパーォキサイ ドがその原料であるクメンとからなる混合物である場合には、 特に溶媒を添加 することなく、 これを溶媒の代用とすることも可能である。 その他、 有用な溶 媒としては、 芳香族の単環式化合物 (たとえばベンゼン、 トルエン、 クロ口べ ンゼン、 オルトジクロロベンゼン)及びアル力ン (たとえばオクタン、 デカン、 ドデカン) などがあげられる。
エポキシ化反応温度は一般に 0〜 2 0 0 °Cであるが、 2 5〜 2 0 0 °Cの温度 が好ましい。 圧力は、 反応混合物を液体の状態に保つのに充分な圧力でよい。 —般に圧力は 1 0 0〜1 0 0 0 0 k P aであることが有利である。
固体触媒を用いる場合には、 スラリー又は固定床の形で反応に用いられる。 大規模な工業的操作の場合には、 固定床を用いるのが好ましい。 また、 反応は 回分法、 半連続法または連続法が等によって実施できる。
エポキシ化工程へ供給されるプロピレン Zクメンハイドロパ一ォキサイドの モル比は 2 1〜5 0 1であることが好ましい。 該比が 2 1未満であると 反応速度が低下して効率が悪く、 一方、 該比が 5 0 Z 1を超えるとリサイクル されるプロピレンの量が過大となり、 回収工程において多大なエネルギーを必 要とする場合がある。 上記 (3) においてはエポキシ化工程で得たクミルアルコールをクメンに変 換し、 それを (1) における原料としてリサイクルする工程であり、 前記のとお りである。
実施例
実施例 1
0. 05重量%P d /アルミナ触媒 2 gをステンレス製金網で作製したバスケ ットに入れ 200mlォ一トクレーブ内に装着した。 オートクレーブにクメン 80 gを加え攪拌し、 50 ONc c/分の水素を供給しながら IMP a-Gの圧 力下 200°Cに加熱した。 所定温度に到達後、 20 gの 25%クメンハイドロ パーオキサイド/クメンを加え 1 h反応させた。 反応液の分析の結果、 クメン八 ィドロパーォキサイドの転化率は 100%で、 つづく転換工程でクメンとして 回収できない成分であるァセトフエノン、 メチルベンジルアルコール、 ェチル ベンゼンがそれぞれ 0. 2 g、 1. l g、 0. 3 g生成 (トータルロス 1. 6 g) した。 比較例 1
Pd/アルミナ触媒無しで実施例と同様の操作を行い、 クメンハイドロバーオ キサイドを分解させた。 反応液の分析の結果、 クメンハイドロパ一オキサイド の転化率は 100%で、 つづく水素化工程でクメンとして回収できない成分で あるァセトフエノンが 3. O g生成した。 一方でメチルベンジルアルコール、 ェチルベンゼンは生成しなかった (トータルロス 3. 0 g) 。 産業上の利用可能性
本発明によれば、 クメンから得られるクメンハイドロパーォキサイドを酸素 キヤリャ一として用いてォレフィンをエポキシ化合物に変換した際、 残る未反 応のクメンハイドロパーォキサイドを効率的にクメンに変換クメンの製造方法 を提供することができる。

Claims

請 求 の 範 囲
1 . クミルアルコール中に含まれるクメンハイドロパーォキサイドを水添触媒 の存在下クミルアルコールに変換する工程、 及びクミルアルコールをクメンに 変換する工程を含むクメンの製造方法。
2 . クミルアルコールのクメンへの変換がクミルアルコールを脱水触媒の存在 下に脱水してひーメチルスチレンを得、 得られたひーメチルスチレンを水添触 媒の存在下に水添することにより行われる請求の範囲第 1項記載の方法
3 . クメンハイド口パーオキサイドの水添に用いられる触媒が周期律表の 8族 〜1 1族の金属を含む触媒である請求の範囲第 1項記載の方法。
4. 金属が、 パラジウム、 白金、 ニッケル、 コバルト、 ロジウム、 ルテニウム からなる群から選ばれる少なくとも一種である請求の範囲第 3項記載の方法。
5 . クメンハイド口パーオキサイドの水添と ひーメチルスチレンの水添で用い られる水添触媒が同一の金属を含有する触媒である請求の範囲第 1項記載の方 法。
6 . クメンの製造方法が下記の工程を含むプロピレンォキサイドの製造方法の 一部である請求の範囲第 1項記載の方法。
(1) クメンを酸化することによりクメンハイドロパ一ォキサイドを得る酸化 工程
(2) 酸化工程で得たクメンハイド口パーオキサイドとプロピレンとをェポキ シ化触媒存在下に反応させることによりプロピレンォキサイド及びクミルアル コールを得る工程
(3) (2) で得たクミルアルコールをクメンに変換し、 原料として酸化工程 ヘリサイクルする工程
PCT/JP2004/013583 2003-09-25 2004-09-10 クメンの製造方法 WO2005030682A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333160A JP2005097188A (ja) 2003-09-25 2003-09-25 クメンの製造方法
JP2003-333160 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005030682A1 true WO2005030682A1 (ja) 2005-04-07

Family

ID=34385983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013583 WO2005030682A1 (ja) 2003-09-25 2004-09-10 クメンの製造方法

Country Status (2)

Country Link
JP (1) JP2005097188A (ja)
WO (1) WO2005030682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436756A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种制备异丙苯的方法、系统与应用
RU2809251C2 (ru) * 2019-08-09 2023-12-08 Сумитомо Кемикал Компани, Лимитед Способ получения кумола
US11912638B2 (en) 2019-08-09 2024-02-27 Sumitomo Chemical Company, Limited Method for producing cumene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403517B1 (ko) * 2010-12-01 2014-06-10 주식회사 엘지화학 알파 메틸 스티렌의 제조방법
CN102746100A (zh) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 制备异丙苯的方法
CN103562168B (zh) * 2011-07-15 2016-08-17 Lg化学株式会社 异丙苯醇的制备方法和苯酚、丙酮及α-甲基苯乙烯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491926A (en) * 1947-04-12 1949-12-20 Hercules Powder Co Ltd Catalytic hydrogenation of hydroperoxides
JPS3926961B1 (ja) * 1962-04-03 1964-11-26
JP2003160572A (ja) * 2001-11-28 2003-06-03 Sumitomo Chem Co Ltd 有機ハイドロパーオキサイドの転換方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491926A (en) * 1947-04-12 1949-12-20 Hercules Powder Co Ltd Catalytic hydrogenation of hydroperoxides
JPS3926961B1 (ja) * 1962-04-03 1964-11-26
JP2003160572A (ja) * 2001-11-28 2003-06-03 Sumitomo Chem Co Ltd 有機ハイドロパーオキサイドの転換方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809251C2 (ru) * 2019-08-09 2023-12-08 Сумитомо Кемикал Компани, Лимитед Способ получения кумола
US11912638B2 (en) 2019-08-09 2024-02-27 Sumitomo Chemical Company, Limited Method for producing cumene
CN114436756A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种制备异丙苯的方法、系统与应用

Also Published As

Publication number Publication date
JP2005097188A (ja) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2001070710A1 (fr) Procede de production d'oxyde de propylene
WO2001070711A1 (fr) Procede de production d'oxyde de propylene
WO2001070714A1 (fr) Procede de production d'un oxyde de propylene
JP4400120B2 (ja) クメンの製造方法
WO2005030744A1 (ja) プロピレンオキサイドの製造方法
JP2004292335A (ja) α−メチルスチレンの製造方法
WO2005030682A1 (ja) クメンの製造方法
JP5085003B2 (ja) α−メチルスチレンの製造方法
JP2001270880A (ja) プロピレンオキサイドの製造方法
WO2005030683A1 (ja) クメンの製造方法およびその製造方法を含むプロピレンオキサイドの製造方法
WO2005028405A1 (ja) クメンの製造方法
JP4385700B2 (ja) プロピレンオキサイドの製造方法
WO2005030742A1 (ja) プロピレンオキサイドの製造方法
JP2005097184A (ja) プロピレンオキサイドの製造方法
JP2005097175A (ja) プロピレンオキサイドの製造方法
JP2005097183A (ja) プロピレンオキサイドの製造方法
WO2001070715A1 (fr) Procede de preparation d'oxyde de propylene
JP2005097182A (ja) プロピレンオキサイドの製造方法
WO2003057682A1 (fr) Procede de production d'oxyde de propylene
JP2005097210A (ja) クメンの製造方法
JP2005097178A (ja) プロピレンオキサイドの製造方法
JP2005097212A (ja) プロピレンオキサイドの製造方法
JP2005097186A (ja) プロピレンオキサイドの製造方法
JP2005097174A (ja) プロピレンオキサイドの製造方法
JP2005097187A (ja) プロピレンオキサイドの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase