WO2005027222A2 - Anordnung eines elektrischen bauelements mit einer elektrischen isolationsfolie auf einem substrat und verfahren zum herstellen der anordnung - Google Patents

Anordnung eines elektrischen bauelements mit einer elektrischen isolationsfolie auf einem substrat und verfahren zum herstellen der anordnung Download PDF

Info

Publication number
WO2005027222A2
WO2005027222A2 PCT/EP2004/051979 EP2004051979W WO2005027222A2 WO 2005027222 A2 WO2005027222 A2 WO 2005027222A2 EP 2004051979 W EP2004051979 W EP 2004051979W WO 2005027222 A2 WO2005027222 A2 WO 2005027222A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
insulation film
substrate
arrangement according
surface contour
Prior art date
Application number
PCT/EP2004/051979
Other languages
English (en)
French (fr)
Other versions
WO2005027222A3 (de
Inventor
Franz Auerbach
Reinhold Bayerer
Thomas Licht
Karl Weidner
Original Assignee
Siemens Aktiengesellschaft
Eupec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Eupec Gmbh filed Critical Siemens Aktiengesellschaft
Priority to US10/571,668 priority Critical patent/US20070036944A1/en
Publication of WO2005027222A2 publication Critical patent/WO2005027222A2/de
Publication of WO2005027222A3 publication Critical patent/WO2005027222A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]

Definitions

  • the invention relates to an arrangement of an electrical component on a substrate, at least one electrical insulation olie for electrical insulation cT.es component is present and at least part of
  • Insulation film is rigidly connected to the component and the substrate such that a surface contour given by the component and the substrate is imaged in a surface contour of the part of the insulation film.
  • a method for producing this arrangement is also specified.
  • the substrate is, for example, a DGB (Direct Copper Bonding) substrate, which consists of a carrier layer made of a ceramic, on which electrically conductive layers of copper are applied on both sides.
  • a semiconductor component is soldered onto one of these electrically conductive layers of copper in such a way that an electrical contact surface of the semiconductor component pointing away from the substrate is present.
  • An insulation film based on polyimide or epoxy is laminated onto this arrangement of the semiconductor device and the substrate under vacuum, so that the insulation film is closely connected to the semiconductor device and the substrate.
  • the insulation film is positively and non-positively connected to the semiconductor component and the substrate.
  • the surface contour (To ⁇ ologi_e), which is given by the semiconductor component and the substrate, is in the surface contour of the insulation film displayed.
  • the insulation film follows the surface contour of the semiconductor component and the substrate.
  • the insulating film of the known arrangement consists of an electrically insulating plastic.
  • a window is opened in the insulation film. As a result, the contact area of the semiconductor component is set. Electrically conductive material is then applied to the contact surface.
  • Power semiconductor component or a connecting line of the power semiconductor component can result in a particularly pronounced field increase due to the high voltages required for driving the power semiconductor component.
  • An electrical flashover may occur due to the field elevation. As a result, the electrical component can be destroyed.
  • insulation layers made of an applied, electrically insulating lacquer are used for the electrical insulation of electrical components. Especially on one
  • Metallization edge can be thinned an insulation layer from a varnish.
  • the thinning can take place, for example, by the paint flowing off when it is applied to the metallization edge.
  • the thinning resulted in a reduced dielectric strength, which can only be counteracted by additional measures, for example by applying a particularly thick layer of lacquer.
  • the object of the present invention is to show how an electrical component on a substrate can be efficiently protected against excessive fields.
  • an arrangement of an electrical component on a substrate is specified, at least one electrical insulation film for electrical insulation of the component being present and at least part of the insulation film being connected to the component and the substrate in such a way that one through the component and the Surface contour given substrate is shown in a surface contour of the part of the insulation film.
  • the arrangement is characterized in that at least the part of the insulation film with the surface contour has a dielectric strength against an electrical field strength of at least 10 kV / mm.
  • a method for producing the arrangement is also specified with the following method steps: a) providing an arrangement of at least one electrical component on a substrate and b) laminating the insulating film onto the component and the substrate, so that the component and the Given substrate
  • the invention is based on the finding that with the aid of an insulation film, it is possible to ensure the dielectric strength necessary for the operation of the component, particularly at exposed points on the component, ie at a corner, edge or tip of the component.
  • the high dielectric strength is due to the film material, the film thickness and, above all, the connection of the
  • Insulation film reached on the component A high-voltage insulation film is preferably used.
  • high voltage means a voltage of several hundred volts.
  • laminating the insulation film a firm, intimate contact with the electrical component is achieved. This also applies to the exposed areas of the component. The result is a for the high dielectric strength necessary intimate and firm connection between the insulation film and the component.
  • the electrical insulation of the component is maintained even with a control voltage of several hundred volts. There is no electrical flashover.
  • the electric field strength is selected from the range from 10 kV / mm up to and including 200 kV / mm.
  • the field strength is preferably at least 50 kV / mm - the insulation film is voltage-resistant with respect to such field strengths.
  • the high dielectric strength can run along the entire
  • Insulation film should be available. However, the high dielectric strength is particularly present in exposed areas of the insulation film. Therefore, the surface contour given by the component and the substrate preferably has at least one geometric shape selected from the group corner and / or edge. It is precisely at such points on the component that there may be field increases. At these points, it is therefore important to provide the necessary dielectric strength with an appropriately adapted insulation film and its connection to the component and the substrate.
  • At least the part of the insulation film with the surface contour has one in a special embodiment
  • Multi-layer construction on The dielectric strength is increased by several insulation foils arranged one above the other.
  • the multilayer structure can also extend over the entire insulation film.
  • the multilayer structure is produced in particular by repeated lamination of individual insulation films. Overall, an insulation film consisting of several individual layers is created.
  • the individual layers of the multilayer insulation film can consist of the same film material. However, it is also conceivable that the individual layers of the insulation film have different film materials.
  • At least the part of the insulation film with the surface contour has an essentially constant film thickness. There is no thinning out of the insulation layer, as can be the case in the case of lacquer coating at exposed points. Efficient electrical insulation of the component is guaranteed.
  • At least the part of the insulation film with the surface contour has a different film thickness compared to a further part of the insulation film.
  • the insulation film is reinforced in a targeted manner at the points where field elevations can occur during operation of the building element. Reinforcement can be achieved by introducing a multilayer structure described above. The reinforcement can also be achieved by using a preformed insulation film. In a special embodiment, therefore, at least the part of the insulation film with the surface contour is preformed.
  • the preformed insulation film is thermally preformed, for example. Preforming includes pre-stamping and / or pre-structuring.
  • thermosetting (thermosetting) and / or thermoplastic plastic is conceivable as the plastic of the insulation film.
  • the insulation film has at least one plastic selected from the group consisting of polyacrylate, polyimide, polyethylene, polyphenol, polyether ether ketone, polytetrafluoroethylene and / or epoxy. Mixtures of plastics and / or copolymers of monomers of the plastics are also conceivable.
  • the insulation film has a composite material with the plastic and at least one filler different from the plastic.
  • the composite material alone or with other materials, forms the film material from which the insulation film is made.
  • the plastic forms a matrix in which the filler is embedded. The plastic is that
  • the filler can serve as an extender.
  • the filler is used to influence an electrical and / or mechanical property of the insulation film.
  • the use of an electrically insulating and thermally conductive filler is particularly conceivable.
  • the result is an electrically insulating but thermally conductive insulation film.
  • the thermal conductivity (thermal conductivity) ⁇ of the filler at room temperature is at least 1 -m-l-K "" ⁇ .
  • a fill level (content) of the filler in the plastic is selected so that a coagulation limit of the filler in the base material is exceeded. Below the coagulation limit, there is a very low probability that the individual filler particles will touch. If the coagulation limit is exceeded, the filler particles touch each other with a relatively high probability. This results in a relatively high specific thermal conductivity coefficient of the composite material.
  • a relatively high thermal conductivity combined with a low electrical conductivity can be achieved, in particular, with a filler made of a ceramic
  • the insulating film is advantageously connected to a heat sink in a thermally conductive manner.
  • any organic or inorganic filler is conceivable as a filler.
  • the filler any organic or inorganic filler.
  • the inorganic filler can be any inorganic compound, for example a carbonate, oxide, sulfide and the like. As described above, inorganic fillers in the form of ceramic materials are particularly suitable. Organometallic compounds, for example organosilicon compounds, are also possible as fillers. In particular, the use of different fillers or the use of filler chemical mixtures is also conceivable. The different fillers can differ from one another by their respective filler material and / or by their respective shape.
  • the filler can be pul-shaped or fibrous.
  • the diameter of the filler particles is a few nm up to a few ⁇ m.
  • the diameter of the filler articles like the filler material of the filler and a content of the filler in the base material, is dimensioned in such a way that the insulating film shows the high dielectric strength and can be laminated on at the same time. This means that even in the presence of the filler, an elasticity of the insulation film is retained, so that the insulation film can follow the surface contour of the component and substrate.
  • the insulation film is preferably designed by selecting its film thickness and film material in such a way that a height difference of up to 1000 ⁇ m can be overcome.
  • the height difference is given, among other things, by the topology of the substrate and the components applied to the substrate.
  • the height difference can be caused by one or more steps.
  • the surface contour given by the component and the substrate preferably has a height difference which is selected from the range from 200 ⁇ m to 1000 ⁇ m inclusive.
  • the filler is in the form of a mesh.
  • individual fibers of the filler are interwoven and / or intertwined.
  • the fabric With the help of the fabric it is ensured that there is no thinning out of the insulation foil when the insulation foil is laminated onto exposed parts of the component. This maintains the high dielectric strength of the insulation film.
  • heat generated during the operation of the component can be efficiently dissipated by conduction via the fibers of the fabric.
  • a passive and / or active electrical component is conceivable as a component.
  • a semiconductor component is preferably used as the component.
  • the semiconductor component is preferably a power semiconductor component selected from the group consisting of MOSFET, IGBT and / or bipolar transistor.
  • the arrangement described above is particularly suitable for such components on a substrate. With the help of the insulation foils an efficient electrical insulation of the
  • Insulation film for example a thermal dissipation of heat necessary for the operation of the power semiconductor component, can be integrated.
  • the lamination of the insulation film leads to an intimate and firm contact between the insulation film and the component and between the insulation film and the substrate. If the insulation film is completely covered by the lamination of the component, the component can be hermetically shielded from external influences in this way. For example, it is possible to penetrate water, for example from a humid atmosphere, to
  • Prevent component This contributes to an improved dielectric strength of the insulation film or the connection of insulation film and component.
  • an adhesive can be applied to the insulation film and / or the component or the substrate before lamination.
  • an insulation film with an adhesive coating is used.
  • the lamination is carried out under vacuum in a special embodiment of the manufacturing process. This creates a particularly intimate and firm contact between the insulation film and the substrate and the component. Laminating under vacuum can ensure that the surface contour, which is given by the substrate and the component, is traced by the insulation film. The surface contour of the insulation film follows the surface contour of the component and the substrate.
  • the lamination is advantageously carried out in a vacuum press. Vacuum drawing, hydraulic vacuum pressing, vacuum gas pressure pressing or similar laminating processes are conceivable for this.
  • the pressure is advantageously applied isostatically.
  • the lamination is carried out, for example, at temperatures from 100 ° C to 250 ° C and a pressure of 1 bar to 10 bar.
  • The: exact process parameters of the lamination i.e. pressure, temperature, time, etc. depend among other things on the surface contour of the substrate, the film material of the insulation film and the film thickness of the insulation film.
  • a film thickness of the insulation film which is selected from the range from 25 ⁇ m to 150 ⁇ m, has proven to be particularly advantageous. Larger film thicknesses of up to 500 ⁇ m are also conceivable. In order to obtain a certain total thickness, thin insulation foils can be laminated on several times.
  • a tempering step is carried out during and / or after the insulation film has been laminated on. It is conceivable, for example, that a
  • Insulation film with a plastic that is not or only partially cross-linked is used.
  • the crosslinking of the plastic is promoted by increasing the temperature.
  • the further networking of the plastic creates the intimate contact between the insulation film and the substrate and the component.
  • An adhesive layer can be applied to the component and on the substrate prior to the lamination on the insulation film and / or on the component or on the substrate. Any one or more component adhesive is conceivable. One proves to be particularly advantageous
  • the adhesion-promoting layer not only creates a positive and non-positive contact, but also a material contact. An improved dielectric strength also results.
  • the dielectric strength of the insulation film can be increased in a targeted manner by simple measures, for example by using suitable fillers, the use of a preformed insulation film and / or the use of a multi-layer insulation film.
  • Figures 1 to 3 each show a section of a
  • the arrangement 1 has an electrical component 3 on a substrate 2.
  • the substrate 2 is a DCB substrate with a carrier layer 21 made of a ceramic and an electrically conductive layer made of copper applied on the carrier layer 21.
  • the electrical component 3 is a
  • Power semiconductor device 32 in the form of a MOSFET.
  • the power semiconductor component 32 is soldered onto the electrically conductive layer 22 made of copper such that a contact surface 31 of the power semiconductor component 32 faces away from the substrate 2.
  • One of the contacts of the power semiconductor component 32 (source, gate, drain) is electrically contacted via the contact area 31.
  • a connecting line 4 is provided on the substrate 2 for the electrical contacting of the contact surface 31 of the power semiconductor component 32.
  • An approximately 50 ⁇ m thick insulating film 5 made of a composite material is laminated onto the substrate 2 and the power semiconductor component 32 such that the surface contour 11, which results from the power semiconductor component 32, is the electrically conductive
  • the surface contour 11 has a height difference 12 of approximately 500 ⁇ m.
  • the power semiconductor component 32 is soldered onto the electrically conductive layer 22 of the DCB substrate 2 such that the contact area 31 of the power semiconductor component 32 faces away from the substrate 2.
  • the insulation film 5 is laminated on the contact surface 31 of the semiconductor component 32 and the substrate 2 under vacuum. This creates an intimate connection between the insulation film 5 and the
  • the insulation film 5 connects to the power semiconductor component 32 and the substrate 2 in such a way that the surface contour 11, which is essentially given by the shape of the power semiconductor component 3 and by the surface contour 51 of the insulation film 5.
  • the Isolati ons Folie 5 is a high voltage insulation olie.
  • the insulation film 5 has one Dielectric strength against a field strength of up to 50 kV / mm. By laminating the insulation film 5, this high dielectric strength is also ensured in the partial area in which a corner 33 or edge 34 of the component 3 is located. At these points, extreme field increases occur when the power semiconductor component 32 is activated.
  • the insulation film 5 is single-layer ( Figure 1).
  • the insulation film 5 consists of a composite material.
  • the base material of the composite material is a plastic made of polyimide.
  • In the plastic powdered aluminum oxide is included as a filler. Particle size and
  • the degree of filling of the aluminum oxide is selected so that the coagulation limit is exceeded. Due to the thermal conductivity of the aluminum oxide, there is an insulation film 5 which serves not only for electrical insulation. Heat, which arises during operation of the power semiconductor component 32, can be efficiently dissipated to an unillustrated heat sink via the insulation film 5.
  • the insulation film 5 also has a composite material.
  • the base material of the composite material is also a polyimide.
  • the filler of the composite material is a braid
  • Polytetra luorethylene fibers The braid reduces the likelihood of the insulation film thinning out when laminated on. This results in efficient electrical insulation of the component 32.
  • Example 3 In contrast to the previous examples, part 52 of insulation film 5 is reinforced with surface contour 51. This part 52 is located in the area of the electrical component 3, in which, due to the geometric shape of the component 3, an increase in the field can occur due to electrical control with high voltages. This leads to an improved dielectric strength in the area of the part 52 of the insulation film 5.
  • the preformed insulation film 5 has a part 52 with a film thickness that differs from a further part 53 of the insulation film 5.
  • the film thicknesses of the part 52 and the further part 53 of the insulation 5 are different.
  • the part 52 of the insulation film 5, by means of which the corners 33 and edges 34 of the component 3 are electrically insulated, has a higher film thickness than the further part 53 of the insulation film 5, through which insulation of the electrical connecting line 4 is achieved, in which the
  • Probability of occurrence of a field elevation is low.
  • an insulation film 5 with a multilayer part 52 is used (FIG. 3).
  • the part 52 of the insulation film 5 has a multilayer structure 54.
  • the individual layers 55 and 56 of part 52 of the insulation film 5 consist of the same film material.
  • a total film thickness of the insulating film is approximately 100 ⁇ m.
  • two insulation foils of approximately 50 ⁇ m each are laminated on one after the other, a structured insulation foil being used as the second insulation foil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Abstract

Die Erfindung betrifft eine Anordnung eines elektrischen Bauelements (3) auf einem Substrat (2), wobei mindestens eine elektrische Isolationsfolie (5) zur elektrischen Isolierung des Bauelements vorhanden ist und zumindest ein Teil (52) der Isolationsfolie mit dem Bauelement und dem Substrat derart verbunden ist, dass eine durch das Bauelement und das Substrat gegebene Oberflächenkontur (11) in einer Oberflächenkontur (51) des Teils der Isolationsfolie abgebildet ist. Die Anordnung ist dadurch gekennzeichnet, dass die Isolationsfolie (5) eine Spannungsfestigkeit gegenüber einer elektrischen Feldstärke von mehr als 10 kV/mm und vorzugsweise von mehr als 50 kV/mm aufweist. Zum Herstellen der Anordnung wird die Isolationsfolie auflaminiert. Dies geschieht vorzugsweise unter Vakuum. Dadurch wird ein besonders inniger Kontakt zwischen der Isolationsfolie und dem Bauelement erzielt. Das Bauelement ist insbesondere ein Leistungshalbleiterbauelement. Durch die Isolationsfolie ist gewährleistet, dass es trotz der im Betrieb derartiger Bauelemente verwendeten hohen elektrischen Spannungen auch an exponierten Stellen des Bauelements, also an Ecken oder Kanten, an denen es zu Feldüberhöhungen kommen kann, zu keinen elektrischen Überschlägen kommt.

Description

Beschreibung
Anordnung eines elektrischen Bauelements mit einer elektrischen Isolationsfolie auf einem Substrat und Verfahren zum Herstellen der Anordnung
Die Erfindung betrifft eine Anordnung eines elektrischen Bauelements auf einem Substrat, wobei mindestens eine elektrische Isolations olie zur elektrischen Isolierung cT.es Bauelements vorhanden ist und zumindest ein Teil der
Isolationsfolie mit dem Bauelement und dem Substrat derarrt verbunden ist, dass eine durch das Bauelement und das Substrat gegebene Oberflächenkontur in einer Oberflächenkontur des Teils der Isolationsfolie abgebildet ist. Daneben wird ein Verfahren zum Herstellen dieser Anordnung angegeben.
Eine derartige Anordnung und ein Verfahren zum Herstellen dieser Anordnung sind beispielsweise aus der WO 03/030247 A2 bekannt. Das Substrat ist beispielsweise ein DGB (Direct Copper Bonding) -Substrat, das aus einer Trägerschicht aus einer Keramik besteht, an der beidseitig elektrisch leitende Schichten aus Kupfer aufgebracht sind. Auf eine dieser elektrisch leitenden Schichten aus Kupfer wird beispielsweise ein Halbleiterbauelement derart aufgelötet, dass eine vorn Substrat wegweisende elektrische Kontaktfläche des Halbleiterbauelements vorhanden ist.
Auf diese Anordnung aus dem Halbleiterbauelement und dem Substrat wird eine Isolationsfolie auf Polyimid oder Epoxidbasis unter Vakuum auflaminiert, so dass die Isolationsfolie mit dem Halbleiterbauelement und dem Substrat eng anliegend verbunden ist. Die Isolationsfolie ist mit dem Halbleiterbauelement und dem Substrat form- und kraftschlüssig verbunden. Die Oberflächenkontur (Toρologi_e) , die durch das Halbleiterbauelement und das Substrat gegeben ist, wird in der Oberflächenkontur der Isolationsfolie abgebildet. Die Isolationsfolie folgt der Oberflächenkontur des Halbleiterbauelements und des Substrats.
Die Isolationsfolie der bekannten Anordnung besteht aus einem elektrisch isolierenden Kunststoff. Zur elektrischen
Kontaktierung der Kontaktfläche des Halbleiterbauelements wird in der Isolationsfolie ein Fenster geöffnet. Dadurch wird die Kontaktfläche des Halbleiterbauelements reigelegt . Nachfolgend wird auf die Kontaktfläche elektrisch leitendes Material aufgebracht.
An einer Metallisierungskante des
Leistungshalbleiterbauelements oder einer Verbindungsleitung des Leistungshalbleiterbauelements kann es aufgrund der für die Ansteuerung des Leistungshalbleiterbauelements notwendigen hohen Spannungen zu einer besonders stark ausgeprägten Feldüberhöhung kommen. Aufgrund der Feldüberhöhung kann es zu einem elektrischen Überschlag kommen. Als Folge davon kann das elektrische Bauelement zerstört werden.
Zur elektrischen Isolierung von elektrischen Bauelementen werden alternativ zur aufgezeigten Laminierungstechnik auch Isolationsschichten aus einem aufgetragenen, elektrisch isolierenden Lack verwendet. Gerade an einer
Metallisierungskante kann aber eine Isolationsschicht aus einem Lack ausgedünnt sein. Das Ausdünnen kann beispielsweise durch Abfließen des Lacks beim Auftragen auf die Metallisierungskante erfolgen. Durch das Ausdünnen resultierte eine verminderte Spannungsfestigkeit, der nur durch zusätzliche Maßnahmen, beispielweise durch Auftragen einer besonders dicken Lackschicht, entgegengewirkt werden kann .
Aufgabe der vorliegenden Erfindung ist es, aufzuzeigen, wie ein elektrisches Bauelement auf einem Substrat effizient gegen Feldüberhöhungen geschützt werden kann. Zur Lösung der Aufgabe wird eine Anordnung eines elektrischen Bauelements auf einem Substrat angegeben, wobei mindestens eine elektrische Isolationsfolie zur elektrischen Isolierung des Bauelements vorhanden ist und zumindest ein Teil der Isolationsfolie mit dem Bauelement und dem Substrat derart verbunden ist, dass eine durch das Bauelement und das Substrat gegebene Oberflächenkontur in einer Oberflächenkontur des Teils der Isolationsfolie abgebildet ist. Die Anordnung ist dadurch gekennzeichnet, dass zumindest der Teil der Isolationsfolie mit der Ober lächenkontur eine Spannungsfestigkeit gegenüber einer elektrischen Feldstärke von mindestens 10 kV/mm aufweist.
Zur Lösung der Aufgabe wird auch ein Verfahren zum Herstellen der Anordnung mit folgenden Verfahrensschritten angegeben: a) Bereitstellen einer Anordnung mindestens eines elektrischen Bauelements auf einem Substrat und b) Auflaminieren der Isolationsfolie auf das Bauelement und das Substrat, so dass die durch das Bauelement und das Substrat gegebene
Oberflächenkontur in der Oberflächenkontur der Isolationsfolie abgebildet wird.
Der Erfindung liegt die Erkenntnis zugrunde, dass mit Hilfe einer Isolationsfolie gerade an exponierten Stellen des Bauelements, also an einer Ecke, Kante oder Spitze des Bauelements eine für den Betrieb des Bauelements notwendige Spannungsfestigkeit sicher gestellt werden kann. Die hohe Spannungsfestigkeit wird durch das Folienmaterial, die Folienstärke und vor allem durch die Anbindung der
Isolationsfolie an das Bauelement erreicht. Vorzugsweise wird eine hochspannungstaugliche Isolationsfolie verwendet. Unter Hochspannung ist in diesem Zusammenhang eine Spannung von mehreren hundert Volt zu verstehen. Durch das Auflaminieren der Isolationsfolie wird ein fester, inniger Kontakt mit dem elektrischen Bauelement erzielt. Dies gilt auch für die exponierten Stellen des Bauelements. Es resultiert eine für die hohe Spannungsfestigkeit notwendige innige und feste Verbindung zwischen der Isolationsfolie und dem Bauelement. Mit Hilfe der auflaminierten Isolationsfolie wird die elektrische Isolierung des Bauelements auch bei einer Ansteuerspannung von mehreren -hundert Volt aufrecht erhalten. Es kommt zu keinem elektrischen Überschlag.
In einer besonderen Ausgestaltung ist die elektrische Feldstärke aus dem Bereich von einschließlich 10 kV/mm bis einschließlich 200 kV/mm ausgewählt . Vorzugsweise beträgt die Feldstärke mindestens 50 kV/mm - Gegenüber solchen Feldstärken ist die Isolations olie spannungsfest. Es kann aber auch eine Spannungsfestigkeit gegenüber höheren Feldstärken vorliegen.
Die hohe Spannungsfestigkeit kann entlang der gesamten
Isolationsfolie vorhanden sein . Die hohe Spannungsfestigkeit ist aber insbesondere an exponierten Stellen der Isolationsfolie vorhanden. Vorzugsweise weist daher die durch das Bauelement und das Substrat gegebene Oberflächenkontur mindestens eine aus der Gruppe Ecke und/oder Kante ausgewählte geometrische Form -auf. Gerade an solchen Stellen des Bauelements kann es zu Felduberhohungen kommen. An diesen Stellen ist es daher wichtig, mit einer entsprechend angepassten Isolationsfolie und deren Anbindung an das Bauelement und das Substrat fü_r die notwendige Spannungsfes igkeit zu sorgen.
Zur Erhöhung der Spannungsfestigkeit weist in einer besonderen Ausgestaltung zumindest der Teil der Isolationsfolie mit der Oberflächenkontur einen
Mehrschichtaufbau auf. Durch mehrere, übereinander angeordnete Isolationsfolien wird die Spannungsfestigkeit erhöht. Dabei kann der Mehrschichtaufbau sich auch über die gesamte Isolationsfolie erstrecken- Der Mehrschichtaufbau wird insbesondere durch wiederholtes Auflaminieren von einzelnen Isolationsfolien erzeugt. Insgesamt entsteht eine aus mehreren einzelnen Lagen bestehende Isolationsfolie. Die einzelnen Lagen der mehrschichtigen Isolationsfolie können aus dem gleichen Folienmaterial bestehen. Denkbar ist aber auch, dass die einzelnen Lagen der Isolationsfolie unterschiedliche Folienmaterialien aufweisen.
Zumindest der Teil der Isolationsfolie mit der Oberflächenkontur weist in einer besonderen Ausgestaltung eine im Wesentlichen konstante Folienstärke aufweisen. Es tritt kein Ausdünnen der Isolationsschicht auf, wie es im Fall der Lackbeschichtung an exponierten Stellen der Fall sein kann. Eine effiziente elektrische Isolierung des Bauelements ist gewährleistet.
In einer besonderen Ausgestaltung weist zumindest der Teil der Isolationsfolie mit der Oberflächenkontur eine im Vergleich zu einem weiteren Teil der Isolationsfolie unterschiedliche Folienstärke aufweist. An den Stellen, an denen es im Betrieb des Baulements zu Feldüberhöhungen kommen kann, wird die Isolationsfolie gezielt verstärkt. Dabei kann eine Verstärkung durch Einführen eines oben beschriebenen mehrlagigen Aufbaus erreicht werden. Die Verstärkung kann aber auch durch die Verwendung einer vorgeformten Isolationsfolie erzielt werden. In einer besonderen Ausgestaltung ist daher zumindest der Teil der Isolationsfolie mit der Oberflächenkontur vorgeformt. Die vorgeformte Isolationsfolie ist beispielsweise thermisch vorgeformt. Das Vorformen umfasst dabei insbesondere ein Vorprägen und/oder Vorstrukturieren.
Als Kunststoff der Isolationsfolie ist jeder beliebige duroplastische (duromere) und/oder thermoplastische Kunststoff denkbar. In einer besonderen Ausgestaltung weist die Isolationsfolie mindestens einen aus der Gruppe Polyacrylat, Polyimid, Polyethylen, Polyphenol, Polyetheretherketon, Polytetrafluorethylen und/oder Epoxid ausgewählten Kunststoff auf. Mischungen der Kunststoffe und/oder Copolymerisate aus Monomeren der Kunststoffe sind ebenfalls denkbar.
In einer weiteren Ausgestaltung weist die Isolationsfolie einen Verbundwerkstof mit dem Kunststoff und mindestens einen vom Kunststoff verschiedenen Füllstoff auf. Der Verbundwerkstoff bildet alleine oder mit weiteren Werkstoffen das Folienmaterial, aus dem die Isolationsfolie besteht. Bei dem Verbundwerkstoff bildet der Kunststoff eine Matrix, in die der Füllstoff eingebettet ist. Der Kunststoff ist das
Basismaterial des Verbundwerksto fs. Der Füllstoff kann dabei als Streckungsmittel dienen. Insbesondere wird aber der Füllstoff zum Beeinflussen einer elektrischen und/oder mechanischen Eigenschaft der Isolationsfolie verwendet. Denkbar ist dabei insbesondere die Verwendung eines elektrisch isolierenden und thermisch leitfähigen Füllstoffs. Es resultiert eine elektrisch isolierende, aber thermisch leitfähige Isolationsfolie. Durch die Verwendung einer Isolationsfolie mit einem thermisch leitfähigen Füllstoff ist es möglich, eine im Betrieb des Bauelements entstehende Wärme vom Bauelement abzuleiten. Die thermische Leitfähigkeit (Wärmeleitfähigkeit) λ des Füllstoffs bei Raumtemperatur beträgt mindestens 1 -m-l-K""^ . Um die thermische Leitfähigkeit des Füllstoffs auszunutzen, ist ein Füllgrad (Gehalt) des Füllstoffs im Kunststoff so gewählt, dass eine Koagulationsgrenze des Füllstofffs im Basismaterial überschritten ist. Unterhalb der Koagulationsgrenze ist eine Wahrscheinlichkeit dafür sehr gering, dass sich die einzelne Füllstoffpartikel berühren. Wenn, die Koagulationsgrenze überschritten wird, berühren sich die Füllstoffpartikel mit relativ hoher Wahrscheinlichkeit . Daraus ergibt sich ein relativ hoher spezifischer Wärmeleitfähigkeitskoeffizient des Verbundwerkstoffs. Eine relativ hohe thermische Leitfähigkeit bei gleichzeitig niedriger elektrischer Leitfähigkeit kann insbesondere mit einem Füllstoff aus einem keramischen
Werkstoff erreicht werden. Ein derartiger Werkstoff ist beispielsweise pulverförmiges Aluminiumoxid (AI2O3) . Zur effizienten Wärmeableitung ist die Isolationsfolie vorteilhaft mit einer Wärmesenke thermisch leitend verbunden.
Als Füllstoff ist ein beliebiger organischer oder anorganischer Füllstoff denkbar. Beispielsweise ist der
Füllstoff selbst ein Kunststoff. Der anorganische Füllstoff kann eine beliebige anorganische Verbindung sein, beispielsweise ein Carbonat, Oxid, Sulfid uno dergleichen. Wie oben beschreiben, eignen sich anorganisctie Füllstoffe in Form von keramischen Werkstoffen besonders. Metallorganische Verbindungen, beispielsweise siliziumorganische Verbindungen, sind als Füllstoff ebenso möglich. Denkbar ist insbesondere auch die Verwendung von verschiedenen Füllstoffen beziehungsweise die Verwendung von Füllstoffcjemischen . Die verschiedenen Füllstoffe können sich dabei durch ihr jeweiliges Füllstoffmaterial und/oder durch ihre jeweilige Form voneinander unterscheiden.
Der Füllstoff kann pul erförmig oder faserfÖ3rmig sein. Ein Durchmesser der Füllstoffpartikel beträgt einige nm bis hin zu wenigen μm. Der Durchmesser der Füllstoffjoartikel ist, genauso wie das Füllstoffmaterial des Füllstoffs und ein Gehalt des Füllstoffs im Basismaterial so bemessen, dass die Isolationsfolie die hohe Spannungsfestigkeit zeigt und gleichzeitig auflaminiert werden kann. Dies loedeutet, dass auch in Gegenwart des Füllstoffs eine Elastizität der Isolationsfolie erhalten bleibt, so dass die Isolationsfolie der Oberflächenkontur von Bauelement und Substrat folgen kann .
Vorzugsweise ist die Isolationsfolie durch Auswahl ihre Folienstärke und ihres Folienmaterials derart gestaltet, dass ein Höhenunterschied von bis zu 1000 μm überwunden werden kann. Der Höhenunterschied ist unter anderem durch die Topologie des Substrats und der auf dem Substrat aufgebrachten Bauelemente gegeben. Der Höhenunterschied kann dabei durch eine oder mehrere Stufen hervorgerufen werden. Vorzugsweise weist die durch das Bauelement und das Substrat gegebene Oberflächenkontur einen Höhenunterschied auf, der aus dem Bereich von einschließlich 200 μm bis einschließlich 1000 μm ausgewählt ist.
In einer besonderen Ausgestaltung liegt der Füllstoff in Form eines Geflechts vor. Bei einem Geflecht sind einzelne Fasern des Füllstoffs mit einander verwoben und/oder verflochten. Mit Hilfe des Gewebes wird sichergestellt, dass es beim Auflaminieren der Isolationsfolie an exponierten Stellen des Bauelements zu keinem Ausdünnen der Isolationsfolie kommt. Damit bleibt die hohe Spannungsfestigkeit der Isolationsfolie erhalten. Gleichzeitig kann durch Verwendung eines thermisch leitenden Füllstoffs eine im Betrieb des Bauelements entstehende Wärme durch Wärmeleitung über die Fasern des Gewebes effizient abgeleitet werden.
Als Bauelement ist ein beliebiges passives und/oder aktives elektrisches Bauelement denkbar. Bevorzugt wird als Bauelement ein Halbleiterbauelement verwendet. Das
Halbleiterbauelement ist vorzugsweise ein aus der Gruppe MOSFET, IGBT und/oder Bipolartransistor ausgewähltes Leistungshalbleiterbauelement. Für derartige Bauelemente auf einem Substrat eignet sich die oben beschriebene Anordnung besonders. Mit Hilfe der Isolationsfolien kann eine effiziente elektrische Isolierung des
Leistungshalbleiterbauelements und gleichzeitig eine elektrische Kontaktierung verschiedener Kontaktflächen des Leistungshalbleiterbauelements auf einfache Weise realisiert werden. Darüber hinaus können weitere Funktionen in der
Isolationsfolie, beispielsweise eine für den Betrieb des Leistungshalbleiterbauelements notwendige thermische Ableitung von Wärme, integriert werden.
Das Auflaminieren der Isolationsfolie führt zu einem innigen und festen Kontakt zwischen der Isolationsfolie und dem Bauelement und zwischen der Isolationsfolie und dem Substrat. Wenn die Isolationsfolie durch das Auflaminieren das Bauelement vollständig bedeckt ist, kann auf diese Weise das Bauelement hermetisch von äußeren Einflüssen abgeschirmt werden. Beispielsweise ist es so möglich, ein Vordringen von Wasser, beispielsweise von feuchter Atmosphäre, bis zum
Bauelement zu unterbinden. Dies trägt zu einer verbesserten Spannungsfestigkeit der Isolationsfolie beziehungsweise der Verbindung aus Isolationsfolie und Bauelement bei.
Um den innigen Kontakt zwischen, der Isolationsfolie und dem Bauelement beziehungsweise dem Substrat zu verbessern, kann vor dem Auflaminieren ein Klebstoff auf die Isolationsfolie und/oder das Bauelement beziehungsweise das Substrat aufgetragen werden. Beispielswe_ise wird eine Isolations olie mit einer Klebebeschichtung verwendet. Zur Verbesserung des Kontakts erfolgt aber in einer besonderen Ausgestaltung des Herstellverfahrens das Auflaminieren unter Vakuum. Dadurch wird ein besonders inniger und fester Kontakt zwischen der Isolationsfolie und dem Substra-t und dem Bauelement erzeugt. Durch das Auflaminieren unter Vakuum kann sichergestellt werden, dass die Oberflächenkon.tur, die durch das Substrat und das Bauelement gegeben ist, durch die Isolationsfolie nachgezeichnet wird. Die OberfLächenkontur der Isolationsfolie folgt der Oberf/lächenkontur des Bauelements und des Substrats. Das Auflaminieren erfolgt vorteilhaft in einer Vakuumpresse. Dazu sind Vakuumziehen, hydraulisches Vakuumpressen, Vakuumgasdruckpressen oder ähnliche Laminierverfahren denkbar. Der Druck wird vorteilhaft isostatisch aufgebracht. Das Auflaminieren erfolgt beispielsweise bei Temperaturen von 100 °C bis 250 °C und einem Druck von 1 bar bis 10 bar. Die: genauen Prozessparameter des Auflaminierens, also Druck, Temperatur, Zeit, etc. hängen unter anderem von der Oberfläch_enkontur des Substrats, des Folienmaterials der Isolationsfolie und der Folienstärke der Isolationsfolie ab. Als besonders vorteilhaft erweist sich dabei eine Folienstärke der Isolationsfolie, die aus dem Bereich von 25 μm bis 150 μm ausgewählt ist. Größere Folienstärken von bis zu 500 μm sind ebenfalls denkbar. Um eine bestimmte Gesamtstärke zu erhalten, kann das Auflaminieren dünner Isolationsfolien mehrmals durchgeführt werden.
In einer besonderen Ausgestaltung wird während und/oder nach dem Auflaminieren der Isolationsfolie ein Temperschritt durchgeführt. Denkbar ist beispielsweise, dass eine
Isolationsfolie mit einem nicht oder nur teilweise vernetzten Kunststoff verwendet wird. Durch Temperaturerhöhung wird die Vernetzung des Kunststoffs vorangetrieben. Durch die weitere Vernetzung des Kunststoffs wird der innige Kontakt zwischen der Isolationsfolie und dem Substrat und dem Bauelement erzeugt. Denkbar ist neben der fortgesetzten Polymerisierung durch Temperaturerhöhung eine fortgesetzte Polymerisierung durch Belichtung.
Zur Verbesserung der Haftung der Isolationsfolie auf dem
Bauelement und auf dem Substrat kann vor dem Au laminieren eine Haftvermittlungsschichit auf der Isolationsfolie und/oder auf dem Bauelement bzw. auf: dem Substrat aufgetragen werden. Denkbar ist dabei ein beliebiger ein- oder mehrkomponentiger Klebstoff. Besonders vorteilhaft erweist sich eine
HaftvermittlungsSchicht mit einem Polysilan. Durch die HaftvermittlungsSchicht wird nicht nur ein form- und kraftschlüssiger, sondern zusätzlich ein stoffschlüssiger Kontakt hergestellt. Es resultiert ebenfalls eine verbesserte Spannungsfestigkeit.
Zusammenfassend ergeben sich mit der Erfindung folgende besonderen Vorteile:
- Durch die elektrische Isolierung des Bauelements der Anordnung mit Hilfe einer auflaminierten elektrischen Isolationsfolie mit hoher Spannungsfestigkeit resultiert ein Aufbau, der für Hochspannungsanwendungen geeignet ist .
- Insbesondere ist dabei eine effiziente elektrische Isolierung im Bereich von exponierten Stellen des Bauelements möglich, so dass es trotz Feldüberhöhung zu keinem elektrischen Überschlag kommt.
- Durch einfache Maßnahmen, beispielsweise durch die Verwendung geeigneter Füllstoffe, die Verwendung einer vorgeformten Isolationsfolie und/oder die Verwendung einer mehrlagigen Isolationsfolie kann die Spannungsfestigkeit der Isolationsfolie gezielt erhöht werden.
Anhand mehrerer Ausführungsbeispiele und der dazugehörigen Figuren wird die Erfindung im Folgenden näher beschrieben. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.
Figuren 1 bis 3 zeigen jeweils einen Ausschnitt einer
Anordnung eines elektrischen Bauelements auf einem Substrat in einem seitlichen Querschnitt.
Die Anordnung 1 weist ein elektrisches Bauelement 3 auf einem Substrat 2 auf. Das Substrat 2 ist ein DCB-Substrat mit einer Trägerschicht 21 aus einer Keramik und einer auf der Trägerschicht 21 aufgebrachten elektrisch leitenden Schicht aus Kup er .
Das elektrische Bauelement 3 ist ein
Leistungshalbleiterbauelement 32 in Form eines MOSFETs . Das Leistungshalbleiterbauelement 32 ist auf der elektrisch leitenden Schicht 22 aus Kupfer derart aufgelötet, dass eine Kontaktfläche 31 des Leistungshalbleiterbauelements 32 vom Substrat 2 abgewandt ist. Über die Kontaktfläche 31 ist einer der Kontakte des Leistungshalbeiterbauelements 32 (Source, Gate, Drain) elektrisch kontaktiert. Zur elektrischen Kontaktierung der Kontaktfläche 31 des leistungshalbleiterbauelements 32 ist eine Verbindungsleitung 4 auf dem Substrat 2 vorhanden.
Auf dem Substrat 2 und dem Leistungshalbleiterbauelement 32 ist eine etwa 50 μm dicke Isolationsfolie 5 aus einem Verbundwerkstoff derart auflaminiert, dass die Oberflächenkontur 11, die sich aus dem Leistungshalbleiterbauelement 32, der elektrisch leitenden
Schicht 22 und der Trägerschicht 21 des DCB-Substrats ergibt, in der Oberflächenkontur 51 eines Teils 52 der Isolationsfolie 5 abgebildet wird. Die Oberflächenkontur 11 weist einen Höhenunterschied 12 von etwa 500 μm auf.
Zum Herstellen der Schaltungsanordnung 1 wird das Leistungshalbleiterbauelement 32 derart auf der elektrisch leitenden Schicht 22 des DCB-Substrats 2 aufgelötet, dass die Kontaktfläche 31 des Leistungshalbleiterbauelements 32 dem Substrat 2 abgewandt ist.
Im Weiteren wird die Isolationsfolie 5 auf der Kontaktflä.che 31 des Halbleiterbauelements 32 und dem Substrat 2 unter Vakuum auflaminiert . Dabei entsteht eine innige Verbindung zwischen der Isolationsfolie 5 und dem
Leistungshalbleiterbauelement 32 bzw. dem Substrat 2. Es entsteht ein form— und kraftschlüssiger Kontakt zwischen der Isolationsfolie 5 und dem Bauelement 32 bzw. dem Substrat 2. Die Isolationsfolie 5 verbindet sich mit dem Leistungshalbleiterbauelement 32 und dem Substrat 2 derart, dass die Oberflächenkontur 11, die im Wesentlichen durch die Form des Leistungshalbleiterbauelements 3 gegeben ist, durch die Oberflächenkontur 51 der Isolationsfolie 5 nachgezeichnet wird.
Die Isolati onsfolie 5 ist eine hochspannungstaugliche Isolations olie . Die I solationsfolie 5 weist eine Spannungsfestigkeit gegenüber einer Feldstärke von bis zu 50 kV/mm auf. Durch das Auflaminieren der Isolationsfolie 5 ist diese hohe Spannungsfestigkeit auch in dem Teilbereich gewährleistet, in dem sich eine Ecke 33 oder Kante 34 des Bauelements 3 befindet. An diesen Stellen kommt es bei der Ansteuerung des Leistungshalbleiterbauelements 32 zu extremen Feldüberhöhungen .
Beispiel 1 :
Die Isolationsfolie 5 ist einlagig (Figur 1) . Die Isolationsfolie 5 besteht dabei aus einem Verbundwerkstoff. Das Basismaterial des Verbundwerkstof s ist ein Kunststoff aus Polyimid. In dem Kunststoff ist pulverförmiges Aluminiu oxid als Füllstoff enthalten. Partikelgröße und
Füllgrad des Aluminiumoxids sind dabei so gewählt, dass die Koagulationsgrenze überschritten ist. Aufgrund der Wärmeleitfähigkeit des Aluminiumoxids liegt eine Isolationsfolie 5 vor, die nicht nur der elektrischen Isolierung dient. Über die Isolationsfolie 5 kann Wärme, die im Betrieb des Leistungshalbleiterbauelements 32 entsteht, an eine nicht dargestellte Wärmesenke effizient abgeleitet werden.
Beispiel 2:
Die Isolationsfolie 5 weist ebenfalls einen Verbundwerkstof auf. Das Basismaterial des Verbundwerkstoffs ist ebenfalls ein Polyimid. Im Unterschied zum vorangegangenen Beispiel ist der Füllstoff des Verbundwerkstoffs ein Geflecht aus
Polytetra luorethylen-Fasern. Durch das Geflecht wird die Wahrscheinlichkeit für das Ausdünnen der Isolationsfolie beim Auflaminieren erniedrigt. Es resultiert eine effiziente elektrische Isolierung des Bauelements 32.
Beispiel 3: Im Unterschied zu den vorangegangenen Beispielen ist der Teil 52 der Isolationsfolie 5 mit der Oberfl-ächenkontur 51 verstärkt. Dieser Teil 52 befindet sich in dem Bereich des elektrischen Bauelements 3, in dem es aufgrund der geometrischen Form des Bauelements 3 zu einer Feldüberhöhung durch elektrische Ansteuerung mit hohen Spannungen kommen kann. Dies führt zu einer verbesserten Durchschlagfestigkeit im Bereich des Teils 52 der Isolationsfolie 5.
Um die Verstärkung zu erzielen, wird eine vorgeformte
Isolationsfolie 5 auflaminiert (Figur 2) . Die vorgeformte Isolationsfolie 5 weist einen Teil 52 mit einer von einem weiteren Teil 53 der Isolationsfolie 5 abweichenden Folienstärke auf. Die Folienstärken des Teils 52 und des weiteren Teils 53 der Isolations olie 5 sind unterschiedlich. Der Teil 52 der Isolationsfolie 5, durcrα den die Ecken 33 und Kanten 34 des Bauelements 3 elektrisch isoliert werden, weist eine höhere Folienstärke auf als der weitere Teil 53 der Isolationsfolie 5, durch den eine Isolierung der elektrischen Verbindungsleitung 4 erreicht wird, bei der die
Wahrscheinlichkeit des Auftretens einer Feldüberhöhung niedrig ist.
Beispiel 4:
Um eine Verstärkung des Teils 51 der Isolationsfolie 5 zu erzielen, wird im Gegensatz zum vorangegangenen Beispiel eine Isolationsfolie 5 mit einem mehrlagigen Teil 52 verwendet (Figur 3) . Der Teil 52 der Isolationsfolie 5 weist einen Mehrschichtaufbau 54 auf. Die einzelnen Schichten 55 und 56 des Teils 52 der Isolationsfolie 5 bestehen aus dem gleichen Folienmaterial. Eine Gesamtfolienstärke der Isolierfolie beträgt etwa 100 μm. Zum Herstellen dieser Anordnung 1 werden zwei Isolationsfolien von jeweils etwa 50 μm nacheinander auflaminiert, wobei als zweite Isolationsfolie eine strukturierte Isolationsfolie verwendet -wird.

Claims

Patentansprüche
1. Anordnung (1) eines elektrischen Bauelements (3) auf einem Substrat (2) , wobei mindestens eine elektrische Isolationsfolie (5) zur elektrischen Isolierung des Bauelements vorhanden ist und zumindest ein Teil (52) der Isolationsfolie (5) mit dem Bauelement (3) und dem Substrat (2) derart verbunden ist, dass eine durch das Bauelement (3) und das Substrat (2) gegebene Oberflächenkontur (11) in einer Ober lächenkontur (51) des Teils (52) der Isolationsfolie (5) abgebildet ist, dadurch gekennzeichnet, dass zumindest der Teil der Isolationsfolie (5) mit der Oberflächenkontur eine Spannungsfestigkeit gegenüber einer elektrischen Feldstärke von mindestens 10 kV/mm aufweist .
2. Anordnung nach Anspruch 1, wobei die Feldstärke aus dem Bereich von einschließlich 10 kV/mm bis einschließlich 200 kV/mm ausgewählt ist.
3. Anordnung nach Anspruch 1 oder 2, wobei die durch das Bauelement (3) und das Substrat (2) gegebene Oberflächenkontur (11) mindestens eine aus der Gruppe Ecke (33) und/oder Kante (34) ausgewählte geometrische Form aufweist.
4. Anordnung nach einem der- Ansprüche 1 bis 3, wobei zumindest der Teil (52) der Isolationsfolie (5) mit der Oberflächenkontur (51) zur Erhöhung der Spannungsfestigkeit einen Mehrschichtaufbau (54) aufweist .
5. Anordnung nach einem der Ansprüche 1 bis 4, wobei zumindest der Teil (52) der Isolationsfolie (5) mit der Oberflächenkontur (51) eine im Wesentlichen konstante Folienstärke aufweist.
6. Anordnung nach einem der Ansprüche 1 bis 5, wobei zumindest der Teil (52) der Isolationsfolie (5) mit der Oberflächenkontur (51) eine im Vergleich zu einem weiteren Teil (53) der Isolationsfolie (5) unterschiedliche Folienstärke aufweist.
7. Anordnung nach einem der Ansprüche 1 bis 6, wobei zumindest der Teil (52) der Isolationsfolie (5) mit der Oberflächenkontur (51) vorgeformt ist.
8. Anordnung nach einem der Ansprüche 1 bis 7, wobei die Isolationsfolie (5) mindestens einen aus der Gruppe Polyacrylat, Polyimid, Polyethylen, Polyphenol, Polyetheretherketon, Polytetrafluorethylen und/oder Epoxid ausgewählten Kunststoff auf eist.
9. Anordnung nach einem der Ansprüche 1 bis 8, wobei die Isolationsfolie (5) einen Verbundwerkstoff mit dem Kunststoff und mindestens einen vom Kunststoff verschiedenen Füllstoff aufweist.
10. Anordnung nach Anspruch 9, wobei der Füllstoff in Form eines Geflechts vorliegt.
11. Anordnung nach Anspruch 9 oder 10, wobei der Füllstoff thermisch leitfähig ist.
12. Anordnung nach einem der Ansprüche 1 bis 11, wobei durch die durch das Bauelement (3) und das Substrat (2) gegebene Oberflächenkontur (11) einen Höhenunterschied (12) aufweist, der aus dem Bereich von einschließlich 200 μm bis einschließlich 1000 μm ausgewählt ist.
13. Anordnung nach einem der Ansprüche 1 bis 12, wobei das Bauelement ein Halbleiterbauelement (32) ist.
14. Anordnung nach Anspruch 13, wobei das Halbleiterbauelement ein aus der Gruppe MOSFET, IGBT und/oder Bipolar-Transistor ausgewähltes Leistungshalbleiterbauelement ist .
15. Verfahren zum Herstellen einer Anordnung nach einem der Ansprüche 1 bis 14 mit den Verfahrensschritten: a) Bereitstellen einer Anordnung mindestens eines elektrischen Bauelements auf einem Substrat und b) Auflaminieren der Isolations olie (5) auf das Bauelement (3) und das Substrat (2) , so dass die durch das Bauelement (3) und das Substrat (2) gegebene Oberflächenkontur (11) in der Oberflächenkontur (51) der Isolationsfolie (5) abgebildet wird.
16. Verfahren nach Anspruch 15, wobei das Auflaminieren der Isolationsfolie (5) unter Vakuum erfolgt.
17. Verfahren nach Anspruch 15 oder 16, wobei während und/oder nach, dem Au laminieren der Isolationsfolie (5) ein Temperschritt durchgeführt wird.
PCT/EP2004/051979 2003-09-12 2004-09-01 Anordnung eines elektrischen bauelements mit einer elektrischen isolationsfolie auf einem substrat und verfahren zum herstellen der anordnung WO2005027222A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/571,668 US20070036944A1 (en) 2003-09-12 2004-09-01 Assembly of an electrical component comprising an electrical insulation film on a substrate and method for producing said assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003142295 DE10342295B4 (de) 2003-09-12 2003-09-12 Anordnung eines elektrischen Bauelements mit einer elektrischen Isolationsfolie auf einem Substrat und Verfahren zum Herstellen der Anordnung
DE10342295.1 2003-09-12

Publications (2)

Publication Number Publication Date
WO2005027222A2 true WO2005027222A2 (de) 2005-03-24
WO2005027222A3 WO2005027222A3 (de) 2005-12-15

Family

ID=34305713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051979 WO2005027222A2 (de) 2003-09-12 2004-09-01 Anordnung eines elektrischen bauelements mit einer elektrischen isolationsfolie auf einem substrat und verfahren zum herstellen der anordnung

Country Status (3)

Country Link
US (1) US20070036944A1 (de)
DE (1) DE10342295B4 (de)
WO (1) WO2005027222A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012558A1 (de) * 2005-07-26 2007-02-01 Siemens Aktiengesellschaft Anordnung eines elektrischen bauelements und eines auf dem bauelement auflaminierten folienverbunds und verfahren zur herstellung der anordnung
WO2007025859A2 (de) * 2005-08-30 2007-03-08 Siemens Aktiengesellschaft Halbleiterstruktur mit einem lateral funktionalen aufbau
EP1772902A1 (de) * 2005-10-05 2007-04-11 Semikron Elektronik GmbH & Co. KG Patentabteilung Leistungshalbleitermodul mit Isolationszwischenlage und Verfahren zu seiner Herstellung
WO2015018721A1 (de) * 2013-08-07 2015-02-12 Siemens Aktiengesellschaft Leistungselektronische schaltung mit planarer elektrischer kontaktierung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044216A1 (de) * 2005-09-15 2007-03-29 Smartrac Technology Ltd. Chipmodul sowie Verfahren zur Herstellung eines Chipmoduls
US8841782B2 (en) * 2008-08-14 2014-09-23 Stats Chippac Ltd. Integrated circuit package system with mold gate
DE102015120154B4 (de) * 2015-11-20 2023-02-09 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung mit einem Substrat und einem Leistungshalbleiterbauelement
KR102497205B1 (ko) * 2016-03-03 2023-02-09 삼성전자주식회사 관통전극을 갖는 반도체 소자 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846825A (en) * 1971-02-05 1974-11-05 Philips Corp Semiconductor device having conducting pins and cooling member
GB1403786A (en) * 1971-10-14 1975-08-28 Philips Electronic Associated Semiconductor devices
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412247A (en) * 1989-07-28 1995-05-02 The Charles Stark Draper Laboratory, Inc. Protection and packaging system for semiconductor devices
US5510174A (en) * 1993-07-14 1996-04-23 Chomerics, Inc. Thermally conductive materials containing titanium diboride filler
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
JP2001057426A (ja) * 1999-06-10 2001-02-27 Fuji Electric Co Ltd 高耐圧半導体装置およびその製造方法
US6686106B2 (en) * 2000-06-26 2004-02-03 Ube Industries, Ltd. Photosensitive resin compositions, insulating films, and processes for formation of the films
JP3559971B2 (ja) * 2001-12-11 2004-09-02 日産自動車株式会社 炭化珪素半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846825A (en) * 1971-02-05 1974-11-05 Philips Corp Semiconductor device having conducting pins and cooling member
GB1403786A (en) * 1971-10-14 1975-08-28 Philips Electronic Associated Semiconductor devices
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012558A1 (de) * 2005-07-26 2007-02-01 Siemens Aktiengesellschaft Anordnung eines elektrischen bauelements und eines auf dem bauelement auflaminierten folienverbunds und verfahren zur herstellung der anordnung
US7932585B2 (en) 2005-07-26 2011-04-26 Siemens Aktiengesellschaft Electrical component and film composite laminated on the component and method for production
WO2007025859A2 (de) * 2005-08-30 2007-03-08 Siemens Aktiengesellschaft Halbleiterstruktur mit einem lateral funktionalen aufbau
WO2007025859A3 (de) * 2005-08-30 2007-04-26 Siemens Ag Halbleiterstruktur mit einem lateral funktionalen aufbau
EP1772902A1 (de) * 2005-10-05 2007-04-11 Semikron Elektronik GmbH & Co. KG Patentabteilung Leistungshalbleitermodul mit Isolationszwischenlage und Verfahren zu seiner Herstellung
WO2015018721A1 (de) * 2013-08-07 2015-02-12 Siemens Aktiengesellschaft Leistungselektronische schaltung mit planarer elektrischer kontaktierung

Also Published As

Publication number Publication date
DE10342295A1 (de) 2005-04-14
DE10342295B4 (de) 2012-02-02
US20070036944A1 (en) 2007-02-15
WO2005027222A3 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
DE102016106137B4 (de) Elektronikvorrichtungsgehäuse umfassend eine dielektrische Schicht und ein Kapselungsmaterial
DE10335153B4 (de) Schaltungsanordnung auf einem Substrat, die einen Bestandteil eines Sensors aufweist, und Verfahren zum Herstellen der Schaltungsanordnung auf dem Substrat
DE102015118633B4 (de) Ein Leistungshalbleitermodul mit einem Direct Copper Bonded Substrat und einem integrierten passiven Bauelement und ein integriertes Leistungsmodul sowie ein Verfahren zur Herstellung des Leistungshalbleitermoduls
DE102010036915B4 (de) Elektronikbauelement mit eingebetteter Halbleiterkomponente und Verfahren zur Herstellung desselben
DE102011088218A1 (de) Elektronisches Leistungsmodul mit thermischen Kopplungsschichten zu einem Entwärmungselement
DE102013103920B4 (de) Herstellungsverfahren für eine Halbleitervorrichtung und Halbleitervorrichtung und Verfahren zum Verwenden eines B-Zustand härtbaren Polymers
DE10342295B4 (de) Anordnung eines elektrischen Bauelements mit einer elektrischen Isolationsfolie auf einem Substrat und Verfahren zum Herstellen der Anordnung
DE10335155B4 (de) Verfahren zum Herstellen einer Anordnung eines elektrischen Bauelements auf einem Substrat
DE102005034873B4 (de) Anordnung eines elektrischen Bauelements und eines auf dem Bauelement auflaminierten Folienverbunds und Verfahren zur Herstellung der Anordnung
EP2168159A1 (de) Elektronisches bauelement und vorrichtung mit hoher isolationsfestigkeit sowie verfahren zu deren herstellung
WO2004077547A2 (de) Verbindungstechnik für leistungshalbleiter mit grossflächigen anschlüssen
DE102013102637A1 (de) Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
WO2006058860A2 (de) Wärmeaustauschvorrichtung für ein halbleiterbauelement und verfahren zu ihrer herstellung
EP1987536B1 (de) Verfahren zur selektiven herstellung von folienlaminaten zum packaging und zur isolation von ungehäusten elektronischen bauelementen und funktionsstrukturen
WO2005096374A1 (de) Elektrotechnisches erzeugnis mit einem elektrischen bauelement und einer vergussmasse zur elektrischen isolierung des bauelements sowie verfahren zum herstellen des erzeugnisses
WO2005078793A1 (de) Verfahren zur herstellung eines leistungsmoduls und leistungsmodul
DE102008026347A1 (de) Leistungselektronische Anordnung mit einem Substrat und einem Grundkörper
DE102019126623B4 (de) Leistungselektronische Schalteinrichtung mit einer Vergussmasse
DE102019115573A1 (de) Leistungselektronische Schalteinrichtung und Verfahren zur Herstellung
DE102019113762B4 (de) Verfahren zur Herstellung eines Leistungshalbleitermoduls
WO2007025859A2 (de) Halbleiterstruktur mit einem lateral funktionalen aufbau
DE102022111579A1 (de) Verfahren zur Herstellung einer leistungselektronischen Schalteinrichtung und leistungselektronische Schalteinrichtung
DE102016200062A1 (de) Verfahren zur Ausbildung elektrisch leitender Durchkontaktierungen in keramischen Schaltungsträgern
DE102019129675A1 (de) Leistungshalbleitermodul und Verfahren zum Herstellen eines Leistungshalbleitermoduls
WO2021250063A2 (de) Leiterplatte mit einem eingebetteten halbleiterbauelement, verfahren zum herstellen einer leiterplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007036944

Country of ref document: US

Ref document number: 10571668

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10571668

Country of ref document: US