WO2005026512A1 - Vorrichtung zur verdichtung von verbrennungsluft - Google Patents

Vorrichtung zur verdichtung von verbrennungsluft Download PDF

Info

Publication number
WO2005026512A1
WO2005026512A1 PCT/DE2004/001370 DE2004001370W WO2005026512A1 WO 2005026512 A1 WO2005026512 A1 WO 2005026512A1 DE 2004001370 W DE2004001370 W DE 2004001370W WO 2005026512 A1 WO2005026512 A1 WO 2005026512A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
charge air
connecting means
compressing
air compressor
Prior art date
Application number
PCT/DE2004/001370
Other languages
English (en)
French (fr)
Inventor
Michael Baeuerle
Carsten Reisinger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/568,857 priority Critical patent/US20070000481A1/en
Priority to JP2006500498A priority patent/JP2006524765A/ja
Priority to EP04738816A priority patent/EP1664502A1/de
Publication of WO2005026512A1 publication Critical patent/WO2005026512A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for compressing combustion air, in particular a device for compressing charge air for a motor vehicle internal combustion engine according to the preamble of claim 1.
  • the exhaust gas turbocharger has a turbine which is arranged in the exhaust gas flow of the internal combustion engine and operates a compressor which is arranged in the charge air supply of the internal combustion engine.
  • Electric motor as well as the possibility of generating a high electrical power requirement, which is necessary due to the large moment of inertia of the turbine of an exhaust gas turbocharger.
  • a bypass solution is used, for example, to feed the charge air directly to the exhaust gas turbocharger, bypassing the additional electrical compressor that is then not required.
  • the drive power is limited to a few kW due to the additional electrical system load. This is important in particular when the compressor wheel of an additional electrical compressor starts up, since the start-up time depends mainly on the available drive power and the mass moment of inertia of the rotor to be accelerated
  • the device according to the invention for compressing combustion air in particular for compressing charge air for a motor vehicle internal combustion engine with the features of claim 1, enables reduced electrical energy consumption when accelerating the additional electrical compressor.
  • the configuration of the device according to the invention, in particular the connecting means according to the invention, which make it possible to guide compressed charge air into the compression space of the electric charge air compressor, makes it possible to accelerate the start-up of the additional electrical compressor by means of pre-acceleration to allow the introduced, compressed air. This reduces both the required acceleration energy of the additional electric compressor and its response time until it reaches its maximum speed.
  • the upshifting process during an acceleration phase of the vehicle is generally preceded by a reduction in the boost pressure.
  • a so-called diverter valve has been opened to avoid the so-called “compressor pumping" when gas is removed from the boost pressure area.
  • the charge pressure carrying volume is evacuated to approximately ambient pressure. The pneumatic energy released by this measure was not used.
  • the device according to the invention it is possible to use the pneumatic energy of the charge air system to assist in accelerating the additional electric compressor. Since the upshifting process is usually preceded by a boost pressure reduction via the air recirculation valve during an acceleration phase of the vehicle, the air to be discharged can be used to accelerate the electric charge air compressor for the upcoming acceleration process of the motor vehicle. It is thus possible to realize the rebuilding of the boost pressure, which is important for the acceleration phase of the motor vehicle, with the support of the additional electric compressor much faster.
  • the pneumatic energy contained in the compressed charge air can be used effectively to pre-accelerate the electric auxiliary compressor.
  • the connecting means open into an annular channel of the housing of the electric charge air compressor.
  • the connecting means advantageously open on the low-pressure side of the compression space of the electric charge air compressor. Appropriate openings in the wall of the compressor chamber can achieve that a directed air flow strikes, for example, the compressor blades of the compressor wheel of the electric charge air compressor and thus supports the run-up of the compressor wheel.
  • the annular duct of the compressor, into which the connecting means open, advantageously has a plurality of inlet points for the compressed charge air distributed over its circumference.
  • the inlet points are to be designed in such a way that a jet-like air flow is formed to accelerate the compressor wheel.
  • the connecting means which make it possible to conduct compressed charge air into the compression space of the electric charge air compressor, has a valve which prevents the air from the electric charge air compressor from flowing back towards the second charge air compressor via these connecting means.
  • This valve or the valves can advantageously be designed as an electronically controllable diaphragm valve (s).
  • valve or the valves for preventing backflow can advantageously be integrated directly into the housing of the electric charge air compressor.
  • Figure 1 is a schematic representation of an embodiment of the device according to the invention in a detailed representation.
  • FIG. 1 shows an exemplary embodiment of a device according to the invention for compressing combustion air, in particular for compressing charge air for an automotive internal combustion engine, in a simplified, schematic detailed illustration.
  • the charge air to be compressed is fed to a first compressor 12 via an intake opening 10.
  • This first compressor 12 is an electrically operated, so-called additional compressor 14.
  • the additional electrical compressor 14 essentially consists of a compressor unit 16 and an electrical drive unit 18.
  • the charge air to be compressed is fed to the compressor chamber 22 of the additional electrical compressor 14 via an inlet opening 20.
  • a compressor wheel 24 is arranged in the compressor chamber 22 and is driven by the electric drive unit 18 via a shaft.
  • the charge air to be compressed is in the
  • the additional electrical compressor 14 of the device according to the invention is connected via connecting means 30 to a second charge air compressor 32, which in the exemplary embodiment according to FIG. 1 is designed as an exhaust gas turbocharger 34.
  • the exhaust gas turbocharger 34 has a compressor wheel 38 which is arranged in a compressor space 36 and is driven via a shaft 40 by a turbine 42 which in the exhaust gas stream of an internal combustion engine (not shown) Motor vehicle is arranged. In a known manner, the kinetic energy of the hot exhaust gas stream 44 serves to drive the turbine 42, which in turn can thus accelerate the compressor wheel 38 of the exhaust gas turbocharger 34.
  • the air pre-compressed by the electrical additional compressor 14 is in the
  • Compressor chamber 36 of exhaust-gas turbocharger 34 is further compressed and fed via connecting means 46 to the internal combustion engine (not shown in FIG. 1).
  • These connecting means 46 can also have, for example, a charge air cooler (not shown) or a throttle valve for the charge air flow.
  • a valve 48 which the volume flow of the exhaust gas through a
  • Bypass channel 50 regulates around the drive turbine of the exhaust gas turbocharger 34, the compressor output of the exhaust gas turbocharger can be controlled.
  • This two-stage device for compressing charge air makes it possible to largely avoid the so-called turbocharger hole, which occurs at low engine speeds and thus with a low exhaust gas flow 44.
  • turbocharger hole which occurs at low engine speeds and thus with a low exhaust gas flow 44.
  • the additional electric compressor 14 is turned on to achieve a desired pre-compression of the charge air.
  • This additional electrical compressor makes it possible to compensate for the disadvantage of a delayed and inadequate response behavior of an exhaust gas turbocharger.
  • the electrical auxiliary compressor is therefore only switched on for a short time due to its task and requires the fastest possible response characteristics. This process is typical of acceleration situations and occurs particularly practically with all gear changes (upshifting) of the vehicle. If you look at the switch-on behavior of the additional electric compressor, you can see that especially in the
  • the electric auxiliary compressor must be accelerated to approx. 60,000 rpm with every full load acceleration.
  • a mechanical rotational energy in the range of 400 to 500 watt seconds is absorbed, which must be made available by the electrical on-board system of the motor vehicle.
  • the upshift during one The acceleration phase is usually preceded by a boost pressure reduction via a so-called air recirculation valve. So far, to avoid compressor pumping, for example, when “taking gas off”, the boost pressure in the system has been reduced by opening the so-called diverter valve (dump valve). As a result, the boost pressure-carrying volume is evacuated to approximately ambient pressure used.
  • connecting means 52 are provided, which make it possible to direct already compressed charge air directly into the compression space of the electric charge air compressor, in order to enable the additional electric compressor to start up more quickly by pre-acceleration.
  • the connecting means 52 branch off from the connecting means 46, which connect the exhaust gas turbocharger to the internal combustion engine.
  • the connecting means 52 lead via a valve 54 directly into the compressor chamber 22 of the additional electrical compressor 14.
  • openings 56 can be provided, which target the compressed and branched off via the connecting means 52 charge air lead into the ring channel 26 and then onto the compressor blades of the compressor wheel 24.
  • This nozzle-shaped introduction of the compressed charge air onto the compressor blades of the compressor wheel of the electrical auxiliary compressor enables the auxiliary compressor to be pre-accelerated, which leads to faster startup, that is to say to a shorter response characteristic of the auxiliary compressor.
  • valve 14 integrated and can for example also include one or more valves, which avoids a backflow of the charge air to be compressed via the connecting means 52.
  • care must be taken to ensure that the charge air to be accelerated by the additional electrical compressor is discharged through the outlet opening 28 of the additional compressor and can thus be supplied to the downstream exhaust gas turbocharger 34. On Flow of the charge air compressed by the additional electrical compressor via the connecting means 52 must be prevented.
  • the connecting means 52 comprise a storage volume 58, into which compressed charge air is directed and then can be stored at high pressure.
  • the compressed charge air can then be emitted directly into the compressor chamber of the additional electrical compressor at a desired point in time.
  • the upshifting process during an acceleration phase is usually immediately preceded by a boost pressure reduction via a recirculation valve and then the boost pressure is rebuilt with the support of the additional electrical compressor.
  • the charge pressure reduction can be advantageous by the device according to the invention
  • the pneumatic energy of the charge air system includes even when considering a moderate efficiency to transfer its energy to the electrical
  • the device according to the invention is not limited to the exemplary embodiment shown in FIG. 1.
  • the device according to the invention is not limited to the use of an additional electrical compressor and an exhaust gas turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Verdichtung von Verbrennungsluft, insbesondere eine Vorrichtung zur Verdichtung von Ladeluft für eine kraftfahrzeugtechnische Verbrennungsmaschine, mit mindestens einem elektrisch betriebenen Ladeluftverdichter (12, 14), der mindestens ein, in einem Verdichterraum (22) angeordnetes, von einem Elektromotor (18) angetriebenes Verdichterrad (24) aufweist, sowie mit einem zweiten, seriell zum elektrischen Ladeluftverdichter (14) geschaltetem weiteren Ladeluftverdichter (32, 34), insbesondere einem Abgasturbolader (34), die über Verbindungsmittel (30) strömungstechnisch miteinander verbunden sind. Erfindungsgemäß wird vorgeschlagen, dass Verbindungsmittel (52) vorhanden sind, die es ermöglichen, bereits verdichtete Ladeluft in den Verdichterraum (22) des elektrischen Ladeluftverdichters (14) zu leiten.

Description

Vorrichtung zur Verdichtung von Verbrennungsluft
Stand der Technik
Die Erfindung betrifft eine Vorrichtung zur Verdichtung von Verbrennungsluft, insbesondere eine Vorrichtung zur Verdichtung von Ladeluft für eine kraftfahrzeugtechnische Verbrennungsmaschine nach der Gattung des Anspruchs 1.
Es ist bekannt, die Leistungsdichten einer kraftfahrzeugtechnischen Verbrennungsmaschine durch Verdichtung der zur Verbrennung des Kraftstoffes benötigten Ladeluft zu erhöhen. Dazu werden in der Regel Abgasturbolader benutzt. Der Abgasturbolader weist dabei eine Turbine auf, die im Abgasstrom des Verbrennungsmotors angeordnet ist und einen, in der Ladeluftzuführung der Brennkraftmaschine angeordneten Verdichter betreibt.
Abgasturbolader weisen, insbesondere bei Kraftfahrzeugantrieben, den Nachteil eines verzögerten und unzureichenden Ansprechverhaltens bei niedrigen Drehzahlen der Brennkraftmaschine auf ("Turboladerloch").
Zur Verbesserung der Ladeluftzuftihrung speziell im Bereich niedriger Drehzahlen der
Brennkraftmaschine ist es bekannt, den Abgasturbolader mittels eines elektrischen Hilfsantriebes zu unterstützen. Dies kann beispielsweise durch einen in den Abgasturbolader integrierten Elektromotor erreicht werden. Bei niedrigen Drehzahlen der Brennkraftmaschine treibt der Elektromotor die Welle des Abgasturboladers unterstützend an. Dies erfordert jedoch sowohl eine hohe Drehzahlbelastbarkeit des
Elektromotors, als auch die Möglichkeit der Generierung eines hohen elektrischen Leistungsbedarfs, der auf Grund des großen Massenträgheitsmomentes der Turbine eines Abgasturboladers notwendig ist.
Zur Vermeidung dieser Nachteile ist beispielsweise aus der US 6,029,452 bekannt, einen separaten, rein elektrisch betriebenen Hilfslader (elektrischer Zusatzverdichter, EZV) in die Ladeluftzuftihrung einer Brennkraftmaschine zu integrieren. Der elektrische Zusatzverdichter wird dabei in Reihe zu einem konventionellen Abgasturbolader betrieben und dient zumeist zur Vorverdichtung der dem Abgasturbolader zugeführten Ladeluft. Dies hat den Vorteil, dass der separat in der Ladeluftzuführung eingesetzte elektrische Zusatzverdichter auf einen Einsatz im untersten Drehzahlbereich der Brennkraftmaschine optimiert werden kann. Im hohen Drehzahlbereich der Brennkraftmaschine, der seinerseits zu einer hohen Drehzahl des Abgasturboladers führt, wird beispielsweise eine Bypass-Lösung verwandt, um die Ladeluft unter Umgehung des dann nicht benötigten elektrischen Zusatzverdichters direkt dem Abgasturbolader zuzuführen.
Einer der Hauptunterschiede zwischen einem elektrischen Zusatzverdichter und einem klassischen Abgasturbolader ist die sehr unterschiedliche, zur Verfügung stehende Antriebsleistung für diese Systeme. Diese kann bei einem Abgasturbolader mehrere
10 kW betragen, bei einem elektrischen Zusatzverdichter ist die Antriebsleistung jedoch wegen der zusätzlichen Bordnetzbelastung maximal auf einige wenige kW begrenzt. Insbesondere beim Hochlaufen des Verdichterrades eines elektrischen Zusatzverdichters ist dies von Bedeutung, da die Anlaufzeit hauptsächlich von der verfügbaren Antriebsleistung und dem Massenträgheitsmoment des zu beschleunigenden Rotors des
Zusatzverdichters bestimmt ist.
Betrachtet man das Einschaltverhalten eines elektrischen Zusatzverdichters, so erkennt man, dass gerade im Stadtverkehr eine deutliche Anzahl von Einschaltzuständen des Verdichters erforderlich ist. Bei jeder Volllastbeschleunigung ist der elektrische
Zusatzverdichter dabei auf Umdrehungen bis zu ca. 60.000 pro Minute zu beschleunigen. Dabei wird eine mechanische Rotationsenergie von typischerweise 450 Wattsekunden aufgenommen, die vom Bordnetz des Fahrzeuges zur Verfügung gestellt werden müssen.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung zur Verdichtung von Verbrennungsluft, insbesondere zur Verdichtung von Ladeluft für eine kraftfahrzeugtechnische Verbrennungsmaschine mit den Merkmalen des Anspruchs 1 ermöglicht eine reduzierte elektrische Energieaufnahme beim Beschleunigen des elektrischen Zusatzverdichters.
Durch die erfindungsgemäße Ausgestaltung der Vorrichtung, insbesondere durch die erfindungsgemäßen Verbindungsmittel, die es ermöglichen, verdichtete Ladeluft in den Verdichterraum des elektrischen Ladeluftverdichters zu leiten, ist es möglich, das Hochlaufen des elektrischen Zusatzverdichters durch eine Vorbeschleunigung auf Grund der eingeleiteten, verdichteten Luft zu ermöglichen. Damit wird sowohl die notwendige Beschleunigungsenergie des elektrischen Zusatzverdichters, als auch seine Ansprechzeit bis zum Erreichen seiner Maximaldrehzahl, reduziert.
Dem Hochschaltvorgang während einer Beschleunigungsphase des Fahrzeuges geht in der Regel ein Ladedruckabbau unmittelbar voraus. Bisher wurde zur Vermeidung des sogenannten "Verdichterpumpens" bei Gaswegnahme aus dem Ladedruckbereich ein sogenanntes Schubumluftventil geöffnet. Durch Öffnung dieses Schubumluftventils wird das Ladedruck führende Volumen auf näherungsweise Umgebungsdruck evakuiert. Die durch diese Maßnahme frei werdende pneumatische Energie wurde dabei nicht genutzt.
Mit der erfindungsge äßen Vorrichtung ist es möglich, die pneumatische Energie des Ladeluftsystems zur unterstützenden Beschleunigung des elektrischen Zusatzverdichters zu nutzen. Da dem Hochschaltvorgang während einer Beschleunigungsphase des Fahrzeuges in der Regel ein Ladedruckabbau über das Umluftventil vorausgeht, kann die abzuführende Luft genutzt werden, um den elektrischen Ladeluftverdichter für den anstehenden Beschleunigungsvorgang des Kraftfahrzeuges bereits zu beschleunigen. So ist es möglich, den für die Beschleunigungsphase des Kraftfahrzeuges wichtigen Wiederaufbau des Ladedruckes mit Unterstützung des elektrischen Zusatzverdichters deutlich schneller zu realisieren.
Vorteilhafte Weiterbildungen und Ausführungsbeispiele der Erfindung werden durch die in den Unteransprüchen enthaltenen Merkmale ermöglicht.
In vorteilhafter Weise sind die Verbindungsmittel, die es ermöglichen, verdichtete
Ladeluft in den Verdichterraum des elektrischen Ladeluftverdichters zu leiten, abstromseitig des zweiten Ladeluftverdichters angeordnet, zweigen von dort ab und münden direkt in den Verdichterraum des elektrischen Ladeluftverdichters. Somit kann die in der verdichteten Ladeluft enthaltene pneumatische Energie in effektiver Weise zur Vorbeschleunigung des elektrischen Zusatzverdichters genutzt werden.
Die Verbindungsmittel münden dabei in einen Ringkanal des Gehäuses des elektrischen Ladeluftverdichters. In vorteilhafter Weise münden die Verbindungsmittel auf der Niederdruckseite des Verdichtungsraumes des elektrischen Ladeluftverdichters. Durch entsprechende Öffnungen in der Wandung des Verdichterraumes kann erreicht werden, dass ein gerichteter Luftstrom beispielsweise auf die Verdichterschaufeln des Verdichterrades des elektrischen Ladeluftverdichters auftrifft und somit das Hochlaufen des Verdichterrades unterstützt.
In vorteilhafter Weise weist der Ringkanal des Verdichters, in den die Verbindungsmittel münden, eine Mehrzahl von über seinem Umfang verteilten Einleitstellen für die verdichtete Ladeluft auf. Dabei sind die Einleitstellen so auszubilden, dass sich ein möglichst jetartiger Luftstrom zur Beschleunigung des Verdichterrades ausbildet.
In einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung zur
Verdichtung von Verbrennungsluft weisen die Verbindungsmittel, die es ermöglichen, verdichtete Ladeluft in den Verdichterraum des elektrischen Ladeluftverdichters zu leiten, ein Ventil auf, das es verhindert, dass die Luft vom elektrischen Ladeluftverdichter über diese Verbindungsmittel zurück in Richtung des zweiten Ladeluftverdichters strömen kann. Dieses Ventil kann bzw. die Ventile können in vorteilhafter Weise als elektronisch ansteuerbare(s) Membranventil(e) ausgebildet sein.
Das Ventil bzw. die Ventile zur Verhinderung der Rückströmung lassen sich in vorteilhafter Weise direkt in das Gehäuse des elektrischen Ladeluftverdichters integrieren.
Mit der erfindungsgemäßen Vorrichtung zur Verdichtung von Verbrennungsluft ist es somit in vorteilhafter Weise möglich, die notwendige Beschleunigungsenergie des elektrischen Zusatzverdichters sowie dessen Ansprechzeit deutlich zu reduzieren. Dies wiederum führt zu einer Entlastung des elektrischen Bordnetzes des Kraftfahrzeuges.
Weitere Vorteile der erfindungsgemäßen Vorrichtung sind der nachfolgenden Zeichnung sowie der zugehörigen Beschreibung eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung zu entnehmen.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zur Verdichtung von Verbrennungsluft dargestellt, das in der nachfolgenden Beschreibung näher erläutert wird. Die Figur der Zeichnung, deren Beschreibung sowie die Ansprüche enthalten zahlreiche Merkmale in Kombination. Ein Fachmann wird diese Merkmale auch einzeln betrachten und zu sinnvollen, weiteren Kombinationen zusammenfassen, die somit ebenfalls als in der Beschreibung offenbart anzusehen sind.
Es zeigt:
Figur 1 eine schematische Darstellung eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung in einer Detaildarstellung.
Beschreibung des Ausführungsbeispiels
Figur 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Verdichtung von Verbrennungsluft, insbesondere zur Verdichtung von Ladeluft für eine kraftfahrzeugtechnische Verbrennungsmaschine in einer vereinfachten, schematischen Detaildarstellung.
Die zu verdichtende Ladeluft wird über eine Ansaugöffnung 10 einem ersten Verdichter 12 zugeführt. Dieser erste Verdichter 12 ist ein elektrisch betriebener, sogenannter Zusatzverdichter 14. Der elektrische Zusatzverdichter 14 besteht im Wesentlichen aus einer Verdichtereinheit 16 und einer elektrischen Antriebseinheit 18.
Über eine Eintrittsöffnung 20 wird die zu verdichtende Ladeluft dem Verdichterraum 22 des elektrischen Zusatzverdichters 14 zugeführt. Im Verdichterraum 22 ist ein Verdichterrad 24 angeordnet, welches über eine Welle von der elektrischen Antriebseinheit 18 angetrieben wird. Die zu verdichtende Ladeluft wird im
Verdichterraum beschleunigt und typischerweise über einen Ringkanal 26 und eine Austrittsöffnung 28 aus dem elektrischen Zusatzverdichter 14 herausgeleitet.
Über Verbindungsmittel 30 ist der elektrische Zusatzverdichter 14 der erfindungsgemäßen Vorrichtung verbunden mit einem zweiten Ladeluftverdichter 32, der im Ausführungsbeispiel gemäß Figur 1 als Abgasturbolader 34 ausgebildet ist.
Der Abgasturbolader 34 besitzt ein in einem Verdichterraum 36 angeordnetes Verdichterrad 38, welches über eine Welle 40 von einer Turbine 42 angetrieben wird, welche im Abgasstrom eines nicht weiter dargestellten Verbrennungsmotors eines Kraftfahrzeuges angeordnet ist. In bekannter Weise dient die kinetische Energie des heißen Abgasstromes 44 zum Antrieb der Turbine 42, die somit wiederum das Verdichterrad 38 des Abgasturboladers 34 beschleunigen kann.
Die durch den elektrischen Zusatzverdichter 14 vorverdichtete Luft wird im
Verdichterraum 36 des Abgasturboladers 34 weiter verdichtet und über Verbindungsmittel 46 dem in Figur 1 nicht weiter dargestellten Verbrennungsmotor zugeführt. Diese Verbindungsmittel 46 können beispielsweise auch noch einen nicht weiter dargestellten Ladeluftkühler oder ein Drosselventil für den Ladeluftstrom aufweisen. Über ein Ventil 48, welches den Volumenstrom des Abgases durch einen
Bypasskanal 50 um die Antriebsturbine des Abgasturboladers 34 herum regelt, lässt sich die Verdichterleistung des Abgasturboladers steuern.
Prinzipiell ist auch eine andere Reihenfolge der Verdichterstufen möglich.
Diese zweistufige Vorrichtung zur Verdichtung von Ladeluft ermöglicht es, das sogenannte Turboladerloch, welches bei geringen Motordrehzahlen und somit bei einem geringen Abgasstrom 44 auftritt, weitgehend zu vermeiden. Im Bereich geringer Motordrehzahlen, bei denen der klassische Abgasturbolader 34 auf Grund seiner Antriebsturbine 42 keine hohen Drehzahlen und somit das gewünschte hohe
Verdichtungsverhältnis erzeugen kann, wird der elektrische Zusatzverdichter 14 eingeschaltet, um eine gewünschte Vorverdichtung der Ladeluft zu erreichen. Durch diesen elektrischen Zusatzverdichter ist es möglich, den Nachteil eines verzögerten und unzureichenden Ansprechverhaltens eines Abgasturboladers zu kompensieren.
Der elektrische Zusatzverdichter wird auf Grund seiner Aufgabe daher nur jeweils kurzfristig eingeschaltet und erfordert eine möglichst schnelle Ansprechcharakteristik. Dieser Vorgang ist typisch für Beschleunigungssituationen und tritt insbesondere praktisch bei allen Gangwechseln (Hochschalten) des Fahrzeuges auf. Betrachtet man das Einschaltverhalten des elektrischen Zusatzverdichters, so erkennt man, dass gerade im
Stadtverkehr eine deutliche Anzahl von Einschaltzuständen erforderlich ist. Bei jeder Volllastbeschleunigung ist der elektrische Zusatzverdichter auf ca. 60.000 U/min zu beschleunigen. Dabei wird eine mechanische Rotationsenergie im Bereich von 400 bis 500 Wattsekunden aufgenommen, die vom elektrischen Bordsystem des Kraftfahrzeuges zur Verfügung gestellt werden muss. Dem Hochschaltvorgang während einer Beschleunigungsphase geht in der Regel ein Ladedruckabbau über ein sogenanntes Umluftventil unmittelbar voraus. Bisher wird zur Vermeidung beispielsweise des Verdichterpumpens beim „Gas wegnehmen" der Ladedruck im System durch das Öffnen des sogenannten Schubumluftventils (Dump Valve) reduziert. Dadurch wird das Ladedruck führende Volumen auf näherungsweise Umgebungsdruck evakuiert. Die durch diese Maßnahme frei werdende pneumatische Energie wurde bisher nicht genutzt.
In der erfindungsgemäßen Vorrichtung zur Verdichtung von Ladeluft sind Verbindungsmittel 52 vorhanden, die es ermöglichen, bereits verdichtete Ladeluft direkt in den Verdichterraum des elektrischen Ladeluftverdichters zu leiten, um damit ein schnelleres Hochlaufen des elektrischen Zusatzverdichters durch eine Vorbeschleunigung zu ermöglichen.
Im Ausführungsbeispiel der erfindungsgemäßen Vorrichtung nach Figur 1 zweigen die Verbindungsmittel 52 von den Verbindungsmitteln 46, welche den Abgasturbolader mit dem Verbrennungsmotor verbinden, ab. Die Verbindungsmittel 52 führen über ein Ventil 54 direkt in den Verdichterraum 22 des elektrischen Zusatzverdichters 14. Dazu können beispielsweise, verteilt über den Umfang des Ringkanals 26 des elektrischen Zusatzverdichters 14, Öffnungen 56 vorgesehen sein, die die verdichtete und über die Verbindungsmittel 52 abgezweigte Ladeluft zielgerichtet in den Ringkanal 26 und anschließend auf die Verdichterschaufeln des Verdichterrades 24 leiten. Durch diese düsenförmige Einleitung der verdichteten Ladeluft auf die Verdichterschaufeln des Verdichterrades des elektrischen Zusatzverdichters ist eine Vorbeschleunigung des Zusatzverdichters möglich, die zu einem schnelleren Hochlaufen, das heißt zu einer kürzen Ansprechcharakteristik des Zusatzverdichters führt. Darüber hinaus bedeutet die
Nutzung der pneumatischen Energie des Ladeluftsystemes, dass eine reduzierte Energieaufnahme aus dem Bordnetz des Fahrzeuges beim Beschleunigen des elektrischen Zusatzverdichters möglich ist.
Die Umlufteinleitstelle ist in vorteilhafter Weise direkt im elektrischen Zusatzverdichter
14 integriert und kann beispielsweise auch ein oder mehrere Ventile beinhalten, die ein Rückströmen der zu verdichtenden Ladeluft über die Verbindungsmittel 52 vermeidet. Darüber hinaus ist darauf zu achten, dass die durch den elektrischen Zusatzverdichter zu beschleunigende Ladeluft durch die Austrittsöffnung 28 des Zusatzverdichters abgeführt wird und somit dem nachgeschalteten Abgasturbolader 34 zugeführt werden kann. Ein Abströmen der durch den elektrischen Zusatzverdichter verdichteten Ladeluft über die Verbindungsmittel 52 gilt es zu unterbinden.
In anderen Ausführungsformen kann vorgesehen sein, dass die Verbindungsmittel 52 ein Speichervolumen 58 umfassen, in das verdichtete Ladeluft geleitet und anschließend bei hohem Druck gespeichert werden kann. Beispielsweise durch eine Ventilanordnung kann dann zu einem gewünschten Zeitpunkt die verdichtete Ladeluft direkt in den Verdichterraum des elektrischen Zusatzverdichters abgegeben werden.
Mit der erfindungsgemäßen Vorrichtung ist eine sinnvolle Nutzung der pneumatischen
Ladeluftenergie bei negativen Lastwechseln des Verbrennungssystems möglich. Dem Hochschaltvorgang während einer Beschleunigungsphase geht in der Regel ein Ladedruckabbau über ein Umluftventil unmittelbar voraus und es erfolgt dann ein Wiederaufbau des Ladedruckes mit Unterstützung des elektrischen Zusatzverdichters. Der Ladedruckabbau kann durch die erfindungsgemäße Vorrichtung in vorteilhafter
Weise zur Vorbeschleunigung des elektrischen Zusatzverdichters genutzt werden. Damit wird sowohl die notwendige Beschleunigungsenergie des elektrischen Zusatzverdichters, als auch dessen Ansprechzeit bis zum Erreichen seiner Maximaldrehzahl reduziert. Die pneumatische Energie des Ladeluftsystemes beinhaltet selbst bei Berücksichtigung eines moderaten Wirkungsgrades zur Übertragung seiner Energie auf den elektrischen
Zusatzverdichter einen nicht unwesentlichen Anteil der erforderlichen Rotationsenergie für einen elektrischen Zusatzverdichter.
Die erfindungsgemäße Vorrichtung ist nicht auf das in Figur 1 dargestellte Ausführungsbeispiel beschränkt.
Insbesondere ist die erfindungsgemäße Vorrichtung nicht beschränkt auf die Verwendung eines elektrischen Zusatzverdichters und eines Abgasturboladers.

Claims

Ansprüche
1. Vorrichtung zur Verdichtung von Verbrennungsluft, insbesondere eine Vorrichtung zur Verdichtung von Ladeluft für eine kraftfahrzeugtechnische Verbrennungsmaschine, mit mindestens einem elektrisch betriebenen Ladeluftverdichter (14), der mindestens ein, in einem Verdichterraum (22) angeordnetes, von einem Elektromotor ( 18) angetriebenes Verdichterrad (24) aufweist, sowie mit einem zweiten, seriell zum elektrischen Ladeluftverdichter (14) geschalteten, weiteren Ladeluftverdichter (32), insbesondere einem Abgasturbolader (34), die über Verbindungsmittel (30) strömungstechnisch miteinander verbunden sind, dadurch gekennzeichnet, dass Verbindungsmittel (52) vorhanden sind, die es ermöglichen, verdichtete Ladeluft in den Verdichterraum (22) des elektrischen Ladeluftverdichters (14) einzuleiten.
2. Vorrichtung zur Verdichtung von Verbrennungsluft nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungsmittel (52) abstromseitig des zweiten Ladeluftverdichters (32, 34) abzweigen und in den Verdichterraum (22) des elektrischen Ladeluftverdichters (14) münden.
3. Vorrichtung zur Verdichtung von Verbrennungsluft nach Anspruch 2, dadurch gekennzeichnet, dass die Verbindungsmittel (52) direkt in einen Ringkanal (26) des Gehäuses des elektrischen Ladeluftverdichters (14) münden.
4. Vorrichtung zur Verdichtung von Verbrennungsluft nach Anspruch 3, dadurch gekennzeichnet, dass der Ringkanal (26) auf der Niederdruckseite des elektrischen Ladeluftverdichters (14) ausgebildet ist.
5. Vorrichtung zur Verdichtung von Verbrennungsluft nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindungsmittel (52) ein Ventil (54), insbesondere ein elektronisch ansteuerbares Membranventil, aufweisen.
6. Vorrichtung zur Verdichtung von Verbrennungsluft nach Anspruch 5, dadurch gekennzeichnet, dass das Ventil in ein Gehäuse des elektrischen Ladeluftverdichters (14) integriert ist.
7. Vorrichtung zur Verdichtung von Verbrennungsluft nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindungsmittel (52) ein Speichervolumen (58) aufweisen.
PCT/DE2004/001370 2003-09-01 2004-06-30 Vorrichtung zur verdichtung von verbrennungsluft WO2005026512A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/568,857 US20070000481A1 (en) 2003-09-01 2004-06-30 Device for compressing combustion air
JP2006500498A JP2006524765A (ja) 2003-09-01 2004-06-30 燃焼空気を圧縮するための装置
EP04738816A EP1664502A1 (de) 2003-09-01 2004-06-30 Vorrichtung zur verdichtung von verbrennungsluft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340142A DE10340142A1 (de) 2003-09-01 2003-09-01 Vorrichtung zur Verdichtung von Verbrennungsluft
DE10340142.3 2003-09-01

Publications (1)

Publication Number Publication Date
WO2005026512A1 true WO2005026512A1 (de) 2005-03-24

Family

ID=34223247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001370 WO2005026512A1 (de) 2003-09-01 2004-06-30 Vorrichtung zur verdichtung von verbrennungsluft

Country Status (5)

Country Link
US (1) US20070000481A1 (de)
EP (1) EP1664502A1 (de)
JP (1) JP2006524765A (de)
DE (1) DE10340142A1 (de)
WO (1) WO2005026512A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224192A1 (de) 2016-12-06 2018-06-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Luftsystems mit elektrischem Verdichter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012667A1 (de) * 2007-03-16 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Aufladevorrichtung für eine Brennkraftmaschine
DE102009033871A1 (de) 2009-07-17 2010-02-04 Daimler Ag Ansaugtrakt einer Verbrennungskraftmaschine
DE102011018570A1 (de) * 2011-04-26 2012-10-31 Audi Ag Anordnung mit Brennkraftmaschine und Turbolader sowie Verfahren zum Betreiben eines Turboladers
JP6128081B2 (ja) * 2014-09-02 2017-05-17 トヨタ自動車株式会社 内燃機関システム
DE102015216307A1 (de) * 2015-08-26 2017-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Antriebssystems mit einem Verbrennungsmotor
DE102017207878A1 (de) * 2017-05-10 2018-11-15 Bayerische Motoren Werke Aktiengesellschaft Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, sowie Verfahren zum Betreiben einer solchen Aufladeeinrichtung
DE102019205044A1 (de) 2019-04-09 2020-11-05 Volkswagen Aktiengesellschaft Verfahren und Vorrichtungen zum Betreiben einer Verbrennungskraftmaschine mit einem Aufladungssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077354A (en) * 1980-05-28 1981-12-16 Nissan Motor Exhaust turbine driven supercharger with compressor bypass arrangement
US5577385A (en) * 1995-09-11 1996-11-26 Kapich; Davorin D. Electropneumatic engine supercharger system
US6029452A (en) * 1995-11-15 2000-02-29 Turbodyne Systems, Inc. Charge air systems for four-cycle internal combustion engines
DE10156839A1 (de) * 2001-11-20 2003-06-12 Schatz Thermo Engineering Verfahren zum Ladungswechsel bei einem Verbrennungsmotor der Kolbenbauart und zur Durchführung des Verfahrens geeignetes Ladungswechselsystem

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258550A (en) * 1979-06-11 1981-03-31 General Motors Corporation Engine charging system with dual function charge supplying and charge cooling blower
JPS60178931A (ja) * 1984-02-24 1985-09-12 Nissan Motor Co Ltd 排気タ−ボチヤ−ジヤの過給圧制御装置
SE502158C2 (sv) * 1993-12-08 1995-09-04 Saab Scania Ab Anordning vid - och förfarande vid start av förbränningsmotor
US5808460A (en) * 1997-09-29 1998-09-15 Texas Instruments Incorporated Rapid power enabling circuit
US6279550B1 (en) * 1996-07-17 2001-08-28 Clyde C. Bryant Internal combustion engine
US6079211A (en) * 1997-08-14 2000-06-27 Turbodyne Systems, Inc. Two-stage supercharging systems for internal combustion engines
DE10023022A1 (de) * 2000-05-11 2001-11-22 Borgwarner Inc Aufgeladene Brennkraftmaschine
DE10113308A1 (de) * 2001-03-20 2002-09-26 Bosch Gmbh Robert Elektrisch betriebener Ladeluft-Verdichter
US6755022B2 (en) * 2002-02-28 2004-06-29 Mack Trucks, Inc. Turbo-charged internal combustion engine with in-cylinder EGR and injection rate shaping
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077354A (en) * 1980-05-28 1981-12-16 Nissan Motor Exhaust turbine driven supercharger with compressor bypass arrangement
US5577385A (en) * 1995-09-11 1996-11-26 Kapich; Davorin D. Electropneumatic engine supercharger system
US6029452A (en) * 1995-11-15 2000-02-29 Turbodyne Systems, Inc. Charge air systems for four-cycle internal combustion engines
DE10156839A1 (de) * 2001-11-20 2003-06-12 Schatz Thermo Engineering Verfahren zum Ladungswechsel bei einem Verbrennungsmotor der Kolbenbauart und zur Durchführung des Verfahrens geeignetes Ladungswechselsystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224192A1 (de) 2016-12-06 2018-06-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Luftsystems mit elektrischem Verdichter

Also Published As

Publication number Publication date
EP1664502A1 (de) 2006-06-07
JP2006524765A (ja) 2006-11-02
DE10340142A1 (de) 2005-03-31
US20070000481A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
EP3224467B1 (de) Aufladeeinrichtung für einen verbrennungsmotor und betriebsverfahren für die aufladeeinrichtung
DE102007017777B4 (de) Turboladeranordnung und turboaufladbare Brennkraftmaschine
EP3207231B1 (de) Aufladeeinrichtung für einen verbrennungsmotor und betriebsverfahren für die aufladeeinrichtung
DE102014224474B4 (de) Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung
EP2580444B1 (de) Lader für verbrennungsmotoren
EP2469054B1 (de) Antrieb mit einer Brennkraftmaschine und einer Expansionsmaschine mit Gasrückführung
DE102009026469A1 (de) Verfahren zur Ladedruckregelung einer Aufladeeinrichtung und Aufladeeinrichtung
EP0754843A2 (de) Brennkraftmaschine mit Abgasturbolader und Verfahren zur Beschleunigung des Abgasturboladers einer Brennkraftmaschine
EP2545265A1 (de) Brennkraftmaschine mit zweistufiger aufladung
EP1664502A1 (de) Vorrichtung zur verdichtung von verbrennungsluft
DE102014221333A1 (de) Zwillingsturbo-System mit elektrisch antreibbaren Verdichtern
DE102009060357A1 (de) Verfahren zum Betrieb einer einen Abgasturbolader aufweisenden Brennkraftmaschine und eine Brennkraftmaschine zur Durchführung des Verfahrens
DE102011018570A1 (de) Anordnung mit Brennkraftmaschine und Turbolader sowie Verfahren zum Betreiben eines Turboladers
DE102007060218A1 (de) Verfahren zum Betreiben eines Verdichters
DE102015203621A1 (de) Zweistufige Abgasturbo-Aufladevorrichtung für eine Brennkraftmaschine
DE102015208990A1 (de) Fremdgezündete Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2018206355A1 (de) Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung
DE202015103035U1 (de) Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader
DE102015116162B4 (de) Drucklufterzeugungseinrichtung
DE102016224192A1 (de) Verfahren zum Betreiben eines Luftsystems mit elektrischem Verdichter
DE202015101927U1 (de) Aufgeladene Brennkraftmaschine mit Kompressor und Elektromaschine
DE102019003576A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine für einen Kraftwagen und Verbrennungskraftmaschine für einen Kraftwagen
DE102020113203B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung
DE102015208991A1 (de) Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102014221334A1 (de) Zwillingsturbo-System mit elektrisch antreibbaren Verdichtern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DM DZ EC EE EG ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NA NI NO NZ OM PG PH PT RO RU SC SD SE SG SK SL SY TJ TN TR TT TZ UA UG US UZ VC VN ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004738816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006500498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007000481

Country of ref document: US

Ref document number: 10568857

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004738816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10568857

Country of ref document: US