WO2018206355A1 - Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung - Google Patents

Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung Download PDF

Info

Publication number
WO2018206355A1
WO2018206355A1 PCT/EP2018/061130 EP2018061130W WO2018206355A1 WO 2018206355 A1 WO2018206355 A1 WO 2018206355A1 EP 2018061130 W EP2018061130 W EP 2018061130W WO 2018206355 A1 WO2018206355 A1 WO 2018206355A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressor wheel
compressor
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2018/061130
Other languages
English (en)
French (fr)
Inventor
Josef GEROLD
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201880030936.5A priority Critical patent/CN110621861A/zh
Publication of WO2018206355A1 publication Critical patent/WO2018206355A1/de
Priority to US16/671,346 priority patent/US20200063648A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0283Throttle in the form of an expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Charging device for an internal combustion engine of a motor vehicle and method for operating such a charging device
  • the invention relates to a charging device for an internal combustion engine of a motor vehicle according to the preamble of patent claim 1, and to a method for operating such a charging device according to the preamble of patent claim 7.
  • the charging device comprises at least one exhaust gas turbocharger, which one of exhaust gas of the
  • Internal combustion engine drivable turbine wheel and has a drivable by the turbine first compressor wheel.
  • air to be supplied to the internal combustion engine is to be compressed.
  • the compressed air is also referred to as charge air.
  • the charging device comprises at least one electric compressor, which is also referred to as an electrically driven compressor or electrically drivable or operable compressor.
  • the electric compressor comprises an electric machine and a second compressor wheel, which can be driven by the electric machine. By driving the second compressor wheel, air which is to be supplied to the internal combustion engine is compressed by means of the second compressor wheel.
  • the electric machine can thus be operated, for example, as an electric motor by means of which the second compressor wheel can be driven or driven.
  • a first compressor impeller associated thrust-air means is provided by means of which at a load reduction of the internal combustion engine, at least a portion of the compressed by means of the first compressor impeller at a first downstream of the first compressor disposed first position branched off and from the first location is traceable to a second point located upstream of the first compressor wheel.
  • the branched compressed air is decompressed by means of the thrust-recirculation device and can recirculate over the first compressor wheel or is circulated through the first compressor, so that the branched air can be compressed again after their return to the second location by means of the first compressor.
  • Object of the present invention is to provide a charging device and a method of the type mentioned, so that a particularly efficient operation can be realized.
  • Patent claim 7 solved.
  • Advantageous embodiments of the invention are the subject of the dependent claims.
  • a first aspect of the invention relates to a charging device for a
  • the charging device comprises at least one exhaust gas turbocharger, which has a turbine wheel which can be driven by exhaust gas of the internal combustion engine and a first compressor wheel which can be driven by the turbine wheel.
  • the first compressor wheel By means of the first compressor wheel, air which is to be supplied to the internal combustion engine, in particular at least one combustion chamber of the internal combustion engine, can be compressed.
  • the compressed air is also referred to as charge air.
  • the charging device comprises at least one electric compressor, which is also referred to as an electrically driven compressor, electrically operable compressor or electrically operated compressor.
  • the electric compressor has an electric machine and a second compressor impeller, which of the
  • Internal combustion engine in particular at least one combustion chamber of the
  • the charging device comprises a first compressor impeller associated thrust-air means, by means of which at a load reduction of
  • Internal combustion engine at least a part of the means of the first compressor wheel compressed air can be branched off at a first point arranged downstream of the first compressor wheel and can be returned from the first point to a second point arranged upstream of the first compressor wheel.
  • the electric machine is for example in an engine operation and thus as
  • the aforementioned load reduction of the internal combustion engine is for example also referred to as load shedding.
  • load shedding a load provided by the internal combustion engine for driving the motor vehicle, in particular abruptly or abruptly, is reduced.
  • the load provided by the internal combustion engine initially has a first value.
  • the first value is reduced to a second value which is lower than the first value, or the load is reduced from the first value to the second value.
  • a throttle valve is at least partially closed.
  • an amount of air to be supplied to the internal combustion engine can be set.
  • Compressor pumps of the first compressor wheel can be avoided.
  • the charging device is adapted to supply the second compressor wheel with the branched air, so that the second compressor wheel and about this the electric machine can be driven by the branched air.
  • the idea according to the invention is thus not to let the branched-off air go unused but to use it to drive the second compressor wheel and the electric machine.
  • the branched, compressed air is recirculated by means of the thrust-recirculation device and thereby relaxed, so that the first compressed by the first compressor and then relaxed air can circulate over the first compressor wheel or circulated.
  • the diverted air can thus be compressed again after their return to the second location by means of the first compressor wheel.
  • energy contained in the branched air passes through the branched air is contained, that the branched air was compressed by means of the first compressor wheel, lost unused, which can now be avoided according to the invention.
  • Generator is operable, by means of which provided by the second compressor impeller mechanical energy is convertible into electrical energy.
  • the electric machine is operable in said generator mode and thus as a generator. Since the second compressor wheel at least in an operating state of
  • Internal combustion engine is driven by the branched air, provides the second compressor wheel, in particular via a drivable by the second compressor shaft, mechanical energy.
  • the generator or the electric machine is supplied with the mechanical energy provided by the compressor wheel, wherein the generator is driven by the mechanical energy.
  • the generator converts at least a portion of the mechanical energy into electrical energy and provides that electrical energy derived from the mechanical energy.
  • the electric machine in its engine operation can be supplied with stored in the energy storage electrical energy and thereby operable.
  • energy contained in the branched, compressed air can be used to operate the electric machine in the engine operation and thus to compress the air, so that a particularly energy-efficient operation can be realized.
  • the charging device it is thus possible to recover at least some of the energy contained in the air compressed by means of the first compressor wheel and to carry out a charge pressure reduction particularly quickly so that the compressor pumping of the first compressor wheel can be reliably avoided.
  • High pressure side flows through to a low pressure side of the branched air.
  • the compressor wheels are for example in a flow-through by the air
  • the thrust-recirculation device comprises at least one return line, which is fluidically connected to the intake at said points.
  • the thrust-recirculation device comprises at least one return line, which is fluidically connected to the intake at said points.
  • the air flowing through the return line can flow out of the return line and into the intake tract.
  • Compressor arranged in the return line.
  • a further advantageous embodiment of the invention flows in a first operating state, the branched air through the return line in a first direction, whereby the branched air is recycled from the first location to the second location.
  • the first operating state at least part of the air compressed by means of the first compressor wheel is thus branched off from the intake tract.
  • Internal combustion engine to be supplied to the internal combustion engine through the return line in a first direction opposite to the second direction and is by means of the second
  • Compressor wheel compacts.
  • the second compressor wheel and via this the electric machine are driven by means of the branched air, whereby, for example, the second compressor wheel is rotated about an axis of rotation in a first direction of rotation and the electric machine in its
  • Compressor as a turbine or as a second turbine wheel, by means of which the electric machine is driven.
  • Flows of air through the return line are adjustable.
  • a second aspect of the invention relates to a method for operating a
  • the charging device for an internal combustion engine of a motor vehicle, in particular a motor vehicle such as a passenger car.
  • the charging device comprises at least one exhaust gas turbocharger, which has a turbine wheel which can be driven by exhaust gas of the internal combustion engine and a first compressor wheel which can be driven by the turbine wheel.
  • the charging device comprises at least one electric compressor which has an electric machine and a second compressor wheel which can be driven by the electric machine.
  • the second compressor impeller to be supplied to the internal combustion engine to compress air.
  • the second compressor wheel in at least one operating state is supplied with the branched air, so that the second compressor wheel and via this the electric machine are driven by the branched air.
  • Fig. 1 is a schematic representation of an inventive
  • Charging device for an internal combustion engine of a motor vehicle
  • Fig. 2 is a schematic representation of the invention
  • Fig. 1 shows a schematic representation of a first embodiment of a generally designated 1 drive means for a motor vehicle, in particular for a motor vehicle such as a passenger car.
  • the drive device 1 in this case comprises an internal combustion engine 2, which, for example, as
  • the internal combustion engine 2 has a motor housing 3 designed, for example, as a cylinder housing, in particular as a cylinder crankcase, through which a plurality of combustion chambers 4 in the form of cylinders are formed.
  • the drive device 1 comprises a
  • Charging device 5 by means of which the internal combustion engine 2, in particular the combustion chambers 4, is supplied with compressed air or are.
  • the drive device 1, in particular the charging device 5 comprises an air intake through which can flow through the intake tract 6, by means of which the air can be guided to the and in particular into the combustion chambers 4.
  • the internal combustion engine 2 can be supplied by means of the intake manifold 6 with said air.
  • the combustion chambers 4 are supplied with compressed air by means of the charging device 5 and with fuel, in particular liquid fuel, for operating the internal combustion engine 2, so that a fuel-air mixture is produced in the respective combustion chamber 4. This fuel-air mixture is burned, resulting in exhaust gas of the internal combustion engine 2 results.
  • an exhaust gas tract 7 through which the exhaust gas of the internal combustion engine can flow is provided, by means of which the exhaust gas can be removed from the combustion chambers 4.
  • an air filter 8 is arranged, by means of which the first not yet compressed air is filtered.
  • the charging device 5 comprises at least one exhaust-gas turbocharger 9, which has a compressor 10 arranged in the intake tract 6 and one in the exhaust-gas tract 7
  • the turbine 1 1 comprises a turbine wheel 12, which is drivable by the exhaust gas of the internal combustion engine 2.
  • the compressor 10 comprises a arranged in the intake manifold 6 first compressor wheel 13 which is drivable by the turbine wheel 12.
  • the turbine wheel 12 and the compressor 13 are components of a rotor 14 of the exhaust gas turbocharger 9.
  • the rotor 14 also includes a shaft 15, with which both the compressor 13 and the turbine 12 are rotatably connected.
  • the compressor wheel 13 can be driven by the turbine wheel 12 via the shaft 15.
  • an electric compressor 16 is provided, which is a second
  • Compressor 17 and an electric machine 18 has.
  • the electric machine 18 has a stator which can not be seen in FIG. 1 and a rotor which is rotatable about an axis of rotation 19 relative to the stator.
  • the rotor comprises a shaft 20 rotatable about the axis of rotation 19, with which the second compressor wheel 17 is rotatably connected.
  • the second compressor wheel 17 via the shaft 20 of the electric machine 18 is electrically driven.
  • Compressor 17 the compressor 17 is rotated about the axis of rotation 19, and by means of the compressor 17, air which is supplied to the combustion chambers 4, compressed.
  • the compressor wheels 13 and 17 are connected in parallel or arranged so that the compressor wheels 13 and 17 can be operated, for example, parallel to one another.
  • the first compressor wheel 13 or the compressor 10 is assigned a thrust-recirculation device 21, by means of which at least a portion of the air compressed by the compressor wheel 13 is at a load reduction of the internal combustion engine 2 a first point S1 arranged downstream of the first compressor wheel 13 can be branched off from the intake tract 6 and can be returned from the first position S1 to a second point S2 arranged upstream of the first compressor wheel 13.
  • the air compressed by means of the compressor wheel 13 is branched off from the intake manifold 6 at the first location S1 and, for example, into one
  • the return line 22 is fluidically connected at the points S1 and S2 with the intake tract 6, in particular with an air line 23 of the intake tract 6, so that, for example, at the point S1 the air compressed by the compressor wheel 13 from the intake tract 6 or from the air line 23 off and in the return line 22 can flow.
  • the branched and the return line 22 through flowing air is returned by means of the return line 22 from the first point S1 to the second point S2 and can at the second point S2 from the return line 22 off and flow into the intake manifold 6 and in the air line 23.
  • the branched air is circulated or the branched air can recirculate because the branched air flow from the point S2 to the compressor wheel 13 and can be compressed by the compressor wheel 13 again.
  • the air is compressed by means of the compressor wheel 13 to a boost pressure.
  • a reduction of the boost pressure can be realized, so that the compressor pumping of the compressor 10 can be avoided.
  • the reduction of the boost pressure is also referred to as boost pressure reduction.
  • boost pressure reduction As part of the boost pressure reduction, for example, the branched and the return line 22 through flowing air is released.
  • the internal combustion engine 2 is equipped with the supercharger 5, the internal combustion engine 2 is also referred to as a turbo engine. In such a turbo engine, it is desirable to supply air to the combustion chambers 4 at a
  • Intake tract 6 arranged throttle valve 24 is at least partially closed.
  • the throttle valve 24 is arranged downstream of the compressor wheels 13 and 17 and upstream of the combustion chambers 4 and is used to adjust an amount or mass of the combustion chambers 4 to be supplied air.
  • the boost pressure reduction takes place before or upstream of the throttle valve 24 and in particular by
  • the thrust-recirculation device 21 which usually has a diverter valve.
  • the charging device 5 is adapted to supply the second compressor 17 with the branched air, so that the second compressor 17 and the second compressor 17, the electric machine 18 branched off from the return line 22
  • the second compressor wheel 17 in at least one first operating state, the second compressor wheel 17 is supplied with compressed air by means of the compressor wheel 13, so that the second
  • Compressor 17 and the second compressor 17, the electric machine 18 are driven by the branched, compressed by means of the compressor 13 air.
  • the boost pressure reduction takes place by circulating the charge air via the compressor 10.
  • the compressed charge air is guided via the diverter valve back to the point S2 and thereby expanded, wherein the point S2 is arranged in a low-pressure region of the intake manifold 6.
  • the point S1 is in a high pressure region of
  • Intake tract 6 arranged because there is a higher pressure at the point S1 than at the point S2. After returning the compressed air to the point S2, the air is compressed again by means of the compressor 10. In this case, the boost pressure reduction takes place relatively slowly, and the energy contained in the air compressed by means of the compressor wheel 13 is no longer used or primarily converted into heat. In contrast, in the charging device 5, an energy recovery is provided. As part of the energy recovery, the compressor 17 and driven by this, the electric machine 18 by means of the branched, the return line 22 by flowing air.
  • the electric machine 18 is operated for example in a motor operation and thus as an electric motor.
  • the electric machine 18 is operated for example in a motor operation and thus as an electric motor.
  • Compressor 17 is driven by the electric machine 18 and thereby rotated about the rotation axis 19 in a first rotational direction, whereby air passing through the
  • the compressor wheel 17 In the aforementioned first operating state, however, the compressor wheel 17 is driven by air, which is or was compressed by means of the compressor wheel 13 and the return line 22 flows through. As a result, energy contained in the branched air is converted into mechanical energy which is provided by the compressor wheel 17. As a result, the electric machine 18 is driven by the compressor wheel 17 via the shaft 20. In the first operating state, the electric machine 18 is operated in a generator mode and thus as a generator, which converts at least part of the mechanical energy provided by the compressor wheel 17 into electrical energy and provides this electrical energy. In this case, the compressor wheel 17 rotates in the first operating state about the rotation axis 19 in a second direction of rotation opposite to the first direction of rotation.
  • the compressor wheel 17 acts as a turbine or as a turbine wheel, by means of which the electric machine 18, in particular the rotor or electric machine 18, is driven.
  • the branched air is expanded, which then flow into the air line 23 at the second point S2 and can finally flow back to the compressor wheel 13.
  • the accumulated charge air is guided via the compressor wheel 17 and thus via the electric compressor 16 to the low-pressure region during the load shedding and expanded. This is done for example via
  • valve device 25 is preferably provided, by means of which respective flows of air through the return line 22 and through the air line 23 are adjustable. In other words, for example by means of the valve device 25 between the aforementioned operating conditions, which are also referred to as operating modes, are switched.
  • Charging device 5 a particularly advantageous recuperation can be realized by in the compressed by means of the compressor wheel 13 air and a particularly rapid boost pressure reduction in a load shedding.
  • Fig. 2 shows a second embodiment of the charging device 5. In the first
  • At least part of the air flowing through the intake tract 6 is branched off before the first compressor wheel 13 or upstream of the first compressor wheel 13.
  • the branched-off air or the branched-off part is not compressed by means of the compressor wheel 13, but fed to the second compressor wheel 17 and compressed by means of the compressor wheel 17 or by means of the electric compressor 16, so that, for example, the compressors 10 and 16 operate in parallel.
  • a serial operation of the compressors 10 and 16 is provided.
  • a check valve 26 ensures that the means of
  • Compressor 17 compressed air can not flow back to the first compressor 13.
  • the line 30 is fluidly connected to a first air line leading away from the compressor wheel 13 at a point arranged downstream of the compressor wheel 13.
  • the conduit 30 is fluidic with a second air duct leading to the compressor wheel 17 at a location downstream of the compressor wheel 13 connected.
  • a valve 27 arranged in the conduit 30 is opened.
  • arrows 29 illustrate the boost pressure reduction described above.
  • a flow cross section of the intake tract 6 through which air can flow is at least reduced or at least partially blocked by means of the throttle flap 24 in that the throttle flap 24 is at least partially closed.
  • the air supply to the combustion chambers 4, in particular in comparison to the pre-charge boosting the pre-charge mode reduced.
  • the thrust-recirculation device 21 in particular their

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Aufladeeinrichtung (5) für eine Verbrennungskraftmaschine (2) eines Kraftfahrzeugs, mit wenigstens einem Abgasturbolader (9), welcher ein von Abgas der Verbrennungskraftmaschine (2) antreibbares Turbinenrad (12) und ein von dem Turbinenrad (12) antreibbares erstes Verdichterrad (13) aufweist, mittels welchem der Verbrennungskraftmaschine (2) zuzuführende Luft zu verdichten ist, mit wenigstens einem elektrischen Verdichter (16), welcher eine elektrische Maschine (18) und ein von der elektrischen Maschine (18) antreibbares zweites Verdichterrad (17) aufweist, mittels welchem der Verbrennungskraftmaschine (2) zuzuführende Luft zu verdichten ist, und mit einer dem ersten Verdichterrad (13) zugeordneten Schub-Umlufteinrichtung (21), mittels welcher bei einer Lastreduzierung der Verbrennungskraftmaschine (2) zumindest ein Teil der mittels des ersten Verdichterrads (13) verdichteten Luft an einer stromab des ersten Verdichterrads (13) angeordneten ersten Stelle (S1) abzweigbar und von der ersten Stelle (S1) zu einer stromauf des ersten Verdichterrads (13) angeordneten zweiten Stelle (S2) rückführbar ist, wobei die Aufladeeinrichtung (5) dazu ausgebildet ist, das zweite Verdichterrad (17) mit der abgezweigten Luft zu versorgen, sodass das zweite Verdichterrad (17) und über dieses die elektrische Maschine (18) von der abgezweigten Luft antreibbar sind.

Description

Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, sowie Verfahren zum Betreiben einer solchen Aufladeeinrichtung
Die Erfindung betrifft eine Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs gemäß dem Oberbegriff von Patentanspruch 1 , sowie ein Verfahren zum Betreiben einer solchen Aufladeeinrichtung gemäß dem Oberbegriff von Patentanspruch 7.
Eine solche Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs sowie ein solches Verfahren zum Betreiben einer solchen Aufladeeinrichtung sind beispielsweise bereits aus der DE 10 2015 216 685 B3 bekannt. Die Aufladeeinrichtung umfasst wenigstens einen Abgasturbolader, welcher ein von Abgas der
Verbrennungskraftmaschine antreibbares Turbinenrad und ein von dem Turbinenrad antreibbares erstes Verdichterrad aufweist. Mittels des ersten Verdichterrads ist Luft, welche der Verbrennungskraftmaschine zuzuführen ist, zu verdichten. Die verdichtete Luft wird auch als Ladeluft bezeichnet.
Außerdem umfasst die Aufladeeinrichtung wenigstens einen elektrischen Verdichter, welcher auch als elektrisch angetriebener Verdichter oder elektrisch antreibbarer oder betreibbarer Verdichter bezeichnet wird. Der elektrische Verdichter umfasst eine elektrische Maschine und ein zweites Verdichterrad, welches von der elektrischen Maschine antreibbar ist. Durch Antreiben des zweiten Verdichterrads wird mittels des zweiten Verdichterrads Luft, welche der Verbrennungskraftmaschine zuzuführen ist, verdichtet. Die elektrische Maschine ist somit beispielsweise als Elektromotor betreibbar, mittels welchem das zweite Verdichterrad angetrieben werden kann beziehungsweise angetrieben wird.
Außerdem ist eine dem ersten Verdichterrad zugeordnete Schub-Umlufteinrichtung vorgesehen, mittels welcher bei einer Lastreduzierung der Verbrennungskraftmaschine zumindest ein Teil der mittels des ersten Verdichterrads verdichteten Luft an einer stromab des ersten Verdichterrads angeordneten ersten Stelle abzweigbar und von der ersten Stelle zu einer stromauf des ersten Verdichterrads angeordneten zweiten Stelle rückführbar ist. Insbesondere wird die abgezweigte verdichtete Luft mittels der Schub- Umlufteinrichtung entspannt und kann über das erste Verdichterrad rezirkulieren beziehungsweise wird über das erste Verdichterrad umgewälzt, sodass die abgezweigte Luft nach ihrer Rückführung zur zweiten Stelle wieder mittels des ersten Verdichterrads verdichtet werden kann.
Aufgabe der vorliegenden Erfindung ist es, eine Aufladeeinrichtung und ein Verfahren der eingangs genannten Art zu schaffen, sodass ein besonders effizienter Betrieb realisierbar ist.
Diese Aufgabe wird erfindungsgemäß durch eine Aufladeeinrichtung mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren mit den Merkmalen des
Patentanspruchs 7 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Ein erster Aspekt der Erfindung betrifft eine Aufladeeinrichtung für eine
Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens wie beispielsweise eines Personenkraftwagens. Die Aufladeeinrichtung umfasst wenigstens einen Abgasturbolader, welcher ein von Abgas der Verbrennungskraftmaschine antreibbares Turbinenrad und ein von dem Turbinenrad antreibbares erstes Verdichterrad aufweist. Mittels des ersten Verdichterrads kann Luft, die der Verbrennungskraftmaschine, insbesondere wenigstens einem Brennraum der Verbrennungskraftmaschine, zuzuführen ist, verdichtet werden. Die verdichtete Luft wird auch als Ladeluft bezeichnet.
Außerdem umfasst die Aufladeeinrichtung wenigstens einen elektrischen Verdichter, welcher auch als elektrisch angetriebener Verdichter, elektrisch betreibbarer Verdichter oder elektrisch betriebener Verdichter bezeichnet wird. Der elektrische Verdichter weist eine elektrische Maschine und ein zweites Verdichterrad auf, welches von der
elektrischen Maschine antreibbar ist. Durch Antreiben des zweiten Verdichterrads wird beispielsweise mittels des zweiten Verdichterrads Luft, die der
Verbrennungskraftmaschine, insbesondere zumindest einem Brennraum der
Verbrennungskraftmaschine, zuzuführen ist, verdichtet.
Außerdem umfasst die Aufladeeinrichtung eine dem ersten Verdichterrad zugeordnete Schub-Umlufteinrichtung, mittels welcher bei einer Lastreduzierung der
Verbrennungskraftmaschine zumindest ein Teil der mittels des ersten Verdichterrads verdichteten Luft an einer stromab des ersten Verdichterrads angeordneten ersten Stelle abzweigbar und von der ersten Stelle zu einer stromauf des ersten Verdichterrads angeordneten zweiten Stelle rückführbar ist.
Die elektrische Maschine ist beispielsweise in einem Motorbetrieb und somit als
Elektromotor betreibbar, mittels welchem das zweite Verdichterrad angetrieben werden kann. Die zuvor genannte Lastreduzierung der Verbrennungskraftmaschine wird beispielsweise auch als Lastabwurf bezeichnet. Im Rahmen eines solchen Lastabwurfs wird eine von der Verbrennungskraftmaschine bereitgestellte Last zum Antreiben des Kraftfahrzeugs, insbesondere plötzlich beziehungsweise schlagartig, reduziert. Mit anderen Worten weist beispielsweise die von der Verbrennungskraftmaschine bereitgestellte Last zunächst einen ersten Wert auf. Im Rahmen des Lastabwurfes beziehungsweise der Lastreduzierung wird der erste Wert auf einen gegenüber dem ersten Wert geringeren zweiten Wert reduziert beziehungsweise die Last wird von dem ersten Wert auf den zweiten Wert reduziert. Dies erfolgt beispielsweise derart, dass eine Drosselklappe zumindest teilweise geschlossen wird. Mittels der Drosselklappe kann beispielsweise eine Menge an der Verbrennungskraftmaschine zuzuführender Luft eingestellt werden. Durch die Schub-Umlufteinrichtung kann das sogenannte
Verdichterpumpen des ersten Verdichterrads vermieden werden.
Um nun einen besonders effizienten und somit energieverbrauchsarmen, insbesondere kraftstoffverbrauchsarmen, Betrieb der Verbrennungskraftmaschine und somit des Kraftfahrzeugs insgesamt realisieren zu können, ist es erfindungsgemäß vorgesehen, dass die Aufladeeinrichtung dazu ausgebildet ist, das zweite Verdichterrad mit der abgezweigten Luft zu versorgen, sodass das zweite Verdichterrad und über dieses die elektrische Maschine von der abgezweigten Luft antreibbar sind. Die erfindungsgemäße Idee ist es somit, die abgezweigte Luft nicht ungenutzt verlorengehen zu lassen, sondern zum Antreiben des zweiten Verdichterrads und der elektrischen Maschine zu nutzen.
Bei üblichen Verbrennungskraftmaschinen ist es vorgesehen, dass die abgezweigte, verdichtete Luft mittels der Schub-Umlufteinrichtung rückgeführt und dabei entspannt wird, sodass die zunächst mittels des ersten Verdichterrads verdichtete und dann entspannte Luft über das erste Verdichterrad zirkulieren beziehungsweise umgewälzt werden kann. Die abgezweigte Luft kann somit nach ihrer Rückführung zu der zweiten Stelle wieder mittels des ersten Verdichterrads verdichtet werden. Herkömmlicherweise geht in der abgezweigten Luft enthaltene Energie, die dadurch in der abgezweigten Luft enthalten ist, dass die abgezweigte Luft mittels des ersten Verdichterrads verdichtet wurde, ungenutzt verloren, was nun jedoch erfindungsgemäß vermieden werden kann.
Dabei hat es sich als besonders vorteilhaft gezeigt, wenn die elektrische Maschine über das zweite Verdichterrad von der abgezweigten Luft antreibbar und dadurch als
Generator betreibbar ist, mittels welchem von dem zweiten Verdichterrad bereitgestellte mechanische Energie in elektrische Energie umwandelbar ist. Mit anderen Worten ist die elektrische Maschine in dem genannten Generatorbetrieb und somit als Generator betreibbar. Da das zweite Verdichterrad zumindest in einem Betriebszustand der
Verbrennungskraftmaschine von der abgezweigten Luft angetrieben wird, stellt das zweite Verdichterrad, insbesondere über eine von dem zweiten Verdichterrad antreibbare Welle, mechanische Energie bereit. Dabei wird der Generator beziehungsweise die elektrische Maschine mit der von dem Verdichterrad bereitgestellten mechanischen Energie versorgt, wobei der Generator von der mechanischen Energie angetrieben wird. Der Generator wandelt zumindest einen Teil der mechanischen Energie in elektrische Energie um und stellt diese elektrische Energie, die aus der mechanischen Energie gewonnen wurde, bereit. In der Folge ist es beispielsweise möglich, wenigstens einen elektrischen
Verbraucher des Kraftfahrzeugs mit der von dem Generator bereitgestellten elektrischen Energie, insbesondere zumindest im Wesentlichen direkt, zu versorgen. Alternativ oder zusätzlich ist es denkbar, die von dem Generator bereitgestellte elektrische Energie in wenigstens einen Energiespeicher, insbesondere in eine Batterie, einzuspeisen und somit in dem Energiespeicher zu speichern.
Dabei hat es sich als besonders vorteilhaft gezeigt, wenn die elektrische Maschine in ihrem Motorbetrieb mit in dem Energiespeicher gespeicherter elektrischer Energie versorgbar und dadurch betreibbar ist. Somit kann in der abgezweigten, verdichteten Luft enthaltene Energie zum Betreiben der elektrischen Maschine in dem Motorbetrieb und somit zum Verdichten der Luft genutzt werden, sodass ein besonders energiegünstiger Betrieb realisierbar ist.
Bei der erfindungsgemäßen Aufladeeinrichtung ist es somit möglich, zumindest einen Teil der in der mittels des ersten Verdichterrads verdichteten Luft enthaltenen Energie zurückzugewinnen sowie einen Ladedruckabbau besonders schnell durchzuführen, sodass das Verdichterpumpen des ersten Verdichterrads sicher vermieden werden kann. Hierzu wird das zweite Verdichterrad bei dem genannten Lastabwurf von einer
Hochdruckseite zu einer Niederdruckseite von der abgezweigten Luft durchströmt. Die Verdichterräder sind beispielsweise in einem von der Luft durchströmbaren
Ansaugtrakt angeordnet, mittels welchem der Verbrennungskraftmaschine
beziehungsweise dem jeweiligen Brennraum die Luft zugeführt wird. Dabei umfasst beispielsweise die Schub-Umlufteinrichtung wenigstens eine Rückführleitung, welche an den genannten Stellen fluidisch mit dem Ansaugtrakt verbunden ist. Dadurch kann an der ersten Stelle zumindest ein Teil der mittels des ersten Verdichterrads verdichteten Luft aus dem Ansaugtrakt abgezweigt und in die Rückführleitung eingeleitet werden. Die abgezweigte Luft kann die Rückführleitung durchströmen und wird mittels der
Rückführleitung von der stromab des ersten Verdichterrads angeordneten ersten Stelle zu der stromauf des ersten Verdichterrads angeordneten zweiten Stelle geführt. An der zweiten Stelle kann die die Rückführleitung durchströmende Luft aus der Rückführleitung aus- und in den Ansaugtrakt einströmen. Um nun beispielsweise die abgezweigte Luft zum Antreiben der elektrischen Maschine zu nutzen, ist beispielsweise das zweite
Verdichterrad in der Rückführleitung angeordnet.
Bei einer weiteren vorteilhaften Ausführungsform der Erfindung strömt in einem ersten Betriebszustand die abgezweigte Luft durch die Rückführleitung in eine erste Richtung, wodurch die abgezweigte Luft von der ersten Stelle zu der zweiten Stelle rückgeführt wird. In dem ersten Betriebszustand wird somit zumindest ein Teil der mittels des ersten Verdichterrads verdichteten Luft aus dem Ansaugtrakt abgezweigt.
In einem zweiten Betriebszustand, in welchem das zweite Verdichterrad die der
Verbrennungskraftmaschine zuzuführende Luft verdichtet, strömt die der
Verbrennungskraftmaschine zuzuführende Luft durch die Rückführleitung in eine der ersten Richtung entgegengesetzte zweite Richtung und wird mittels des zweiten
Verdichterrads verdichtet. Mit anderen Worten werden in dem ersten Betriebszustand das zweite Verdichterrad und über dieses die elektrische Maschine mittels der abgezweigten Luft angetrieben, wodurch beispielsweise das zweite Verdichterrad um eine Drehachse in eine erste Drehrichtung gedreht wird und die elektrische Maschine in ihrem
Generatorbetrieb betrieben wird. In dem zweiten Betriebszustand jedoch wird das zweite Verdichterrad mittels der elektrischen Maschine, insbesondere in ihrem Motorbetrieb, angetrieben und dadurch um die Drehachse in eine der ersten Drehrichtung
entgegengesetzte zweite Drehrichtung gedreht, wodurch die Luft mittels des zweiten Verdichterrads verdichtet wird. In dem ersten Betriebszustand fungiert das zweite
Verdichterrad als Turbine beziehungsweise als zweites Turbinenrad, mittels welchem die elektrische Maschine angetrieben wird. Um eine besonders bedarfsgerechte Strömung der Luft und insbesondere eine bedarfsgerechte Umschaltung zwischen dem ersten Betriebszustand und dem zweiten Betriebszustand realisieren zu können, ist bei einer besonders vorteilhaften
Ausführungsform eine Ventileinrichtung vorgesehen, mittels welcher jeweilige
Strömungen von Luft durch die Rückführleitung einstellbar sind.
Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zum Betreiben einer
Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens wie beispielsweise eines Personenkraftwagens. Die Aufladeeinrichtung umfasst dabei wenigstens einen Abgasturbolader, welcher ein von Abgas der Verbrennungskraftmaschine antreibbares Turbinenrad und ein von dem Turbinenrad antreibbares erstes Verdichterrad aufweist. Mittels des ersten Verdichterrads ist der Verbrennungskraftmaschine zuzuführende Luft zu verdichten. Außerdem umfasst die Aufladeeinrichtung wenigstens einen elektrischen Verdichter, welcher eine elektrische Maschine und ein von der elektrischen Maschine antreibbares zweites Verdichterrad aufweist. Mittels des zweiten Verdichterrads ist der Verbrennungskraftmaschine zuzuführende Luft zu verdichten. Außerdem ist eine dem ersten Verdichterrad
zugeordnete Schub-Umlufteinrichtung vorgesehen, mittels welcher bei einer
Lastreduzierung der Verbrennungskraftmaschine zumindest ein Teil der mittels des ersten Verdichterrads verdichteten Luft an einer stromab des ersten Verdichterrads
angeordneten ersten Stelle abgezweigt und von der ersten Stelle zu einer stromauf des ersten Verdichterrads angeordneten zweiten Stelle rückgeführt wird.
Um nun einen besonders effizienten und somit energiegünstigen Betrieb realisieren zu können, ist es erfindungsgemäß vorgesehen, dass in wenigstens einem Betriebszustand das zweite Verdichterrad mit der abgezweigten Luft versorgt wird, sodass das zweite Verdichterrad und über dieses die elektrische Maschine von der abgezweigten Luft angetrieben werden. Vorteile und vorteilhafte Ausgestaltungen des ersten Aspekts der Erfindung sind als Vorteile und vorteilhafte Ausgestaltungen des zweiten Aspekts der Erfindung anzusehen und umgekehrt.
Im Rahmen des zweiten Aspekts der Erfindung hat es sich als besonders vorteilhaft gezeigt, wenn die elektrische Maschine über das zweite Verdichterrad von der abgezweigten Luft angetrieben und dadurch als Generator betrieben wird, welcher von dem Verdichterrad bereitgestellte mechanische Energie in elektrische Energie umwandelt und die elektrische Energie bereitstellt. Weitere Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels mit der zugehörigen Zeichnungen. Dabei zeigt:
Fig. 1 eine schematische Darstellung einer erfindungsgemäßen
Aufladeeinrichtung gemäß einer ersten Ausführungsform für eine Verbrennungskraftmaschine eines Kraftfahrzeugs; und
Fig. 2 eine schematische Darstellung der erfindungsgemäßen
Aufladeeinrichtung gemäß einer zweiten Ausführungsform.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Darstellung eine erste Ausführungsform einer im Ganzen mit 1 bezeichneten Antriebseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen wie beispielsweise einen Personenkraftwagen. Die Antriebseinrichtung 1 umfasst dabei eine Verbrennungskraftmaschine 2, welche beispielsweise als
Hubkolbenmaschine ausgebildet ist. Die Verbrennungskraftmaschine 2 weist ein beispielsweise als Zylindergehäuse, insbesondere als Zylinderkurbelgehäuse, ausgebildetes Motorgehäuse 3 auf, durch welches mehrere Brennräume 4 in Form von Zylindern gebildet sind. Außerdem umfasst die Antriebseinrichtung 1 eine
Aufladeeinrichtung 5, mittels welcher die Verbrennungskraftmaschine 2, insbesondere die Brennräume 4, mit verdichteter Luft versorgbar ist beziehungsweise sind. Dabei umfasst die Antriebseinrichtung 1 , insbesondere die Aufladeeinrichtung 5, einen von Luft durchströmbaren Ansaugtrakt 6, mittels welchem die Luft zu den und insbesondere in die Brennräume 4 geführt werden kann. Somit ist die Verbrennungskraftmaschine 2 mittels des Ansaugtrakts 6 mit der genannten Luft versorgbar. Die Brennräume 4 werden mit mittels der Aufladeeinrichtung 5 verdichteter Luft und mit Kraftstoff, insbesondere flüssigem Kraftstoff, zum Betreiben der Verbrennungskraftmaschine 2 versorgt, sodass im jeweiligen Brennraum 4 ein Kraftstoff-Luft-Gemisch entsteht. Dieses Kraftstoff-Luft- Gemisch wird verbrannt, woraus Abgas der Verbrennungskraftmaschine 2 resultiert. Dabei ist ein von dem Abgas der Verbrennungskraftmaschine 2 durchströmbarer Abgastrakt 7 vorgesehen, mittels welchem das Abgas aus den Brennräumen 4 abgeführt werden kann. Im Ansaugtrakt 6 ist ein Luftfilter 8 angeordnet, mittels welchem die zunächst noch nicht verdichtete Luft gefiltert wird. Die Aufladeeinrichtung 5 umfasst wenigstens einen Abgasturbolader 9, welcher einen in dem Ansaugtrakt 6 angeordneten Verdichter 10 und eine in dem Abgastrakt 7
angeordnete Turbine 1 1 aufweist. Die Turbine 1 1 umfasst ein Turbinenrad 12, welches von dem Abgas der Verbrennungskraftmaschine 2 antreibbar ist. Der Verdichter 10 umfasst ein in dem Ansaugtrakt 6 angeordnetes erstes Verdichterrad 13, welches von dem Turbinenrad 12 antreibbar ist. Dabei sind das Turbinenrad 12 und das Verdichterrad 13 Bestandteile eines Rotors 14 des Abgasturboladers 9. Der Rotor 14 umfasst auch eine Welle 15, mit welcher sowohl das Verdichterrad 13 als auch das Turbinenrad 12 drehfest verbunden sind. Dadurch ist das Verdichterrad 13 über die Welle 15 von dem Turbinenrad 12 antreibbar. Durch Antreiben des Verdichterrads 13 wird Luft, welche den Brennräumen 4 zugeführt wird, mittels des Verdichterrads 13 verdichtet, wobei die verdichtete Luft auch als Ladeluft bezeichnet wird.
Außerdem ist ein elektrischer Verdichter 16 vorgesehen, welcher ein zweites
Verdichterrad 17 und eine elektrische Maschine 18 aufweist. Die elektrische Maschine 18 weist einen in Fig. 1 nicht erkennbaren Stator und einen Rotor auf, welcher um eine Drehachse 19 relativ zu dem Stator drehbar ist. Der Rotor umfasst dabei eine um die Drehachse 19 drehbare Welle 20, mit welcher das zweite Verdichterrad 17 drehfest verbunden ist. Dabei ist das zweite Verdichterrad 17 über die Welle 20 von der elektrischen Maschine 18 elektrisch antreibbar. Durch dieses Antreiben des
Verdichterrads 17 wird das Verdichterrad 17 um die Drehachse 19 gedreht, und mittels des Verdichterrads 17 wird Luft, die den Brennräumen 4 zugeführt wird, verdichtet.
Beispielsweise sind die Verdichterräder 13 und 17 parallel zueinander geschaltet beziehungsweise angeordnet, sodass die Verdichterräder 13 und 17 beispielsweise parallel zueinander betrieben werden können. Insbesondere ist es denkbar, wenigstens einen ersten der Brennräume 4 mittels des Verdichterrads 13 und parallel wenigstens einen von dem ersten Brennraum unterschiedlichen, zweiten der Brennräume 4 mittels des Verdichterrads 17 mit verdichteter Luft zu versorgen.
Um das sogenannte Verdichterpumpen des Verdichterrads 13 beziehungsweise des Verdichters 10 vermeiden zu können, ist dem ersten Verdichterrad 13 beziehungsweise dem Verdichter 10 eine Schub-Umlufteinrichtung 21 zugeordnet, mittels welcher bei einer Lastreduzierung der Verbrennungskraftmaschine 2 zumindest ein Teil der mittels des Verdichterrads 13 verdichteten Luft an einer stromab des ersten Verdichterrads 13 angeordneten ersten Stelle S1 aus dem Ansaugtrakt 6 abzweigbar und von der ersten Stelle S1 zu einer stromauf des ersten Verdichterrads 13 angeordneten zweiten Stelle S2 rückführbar ist. Mit anderen Worten, kommt es beispielsweise zu einer Lastreduzierung der Verbrennungskraftmaschine 2, wobei die Lastreduzierung auch als Lastabwurf bezeichnet wird, so wird an der ersten Stelle S1 die mittels des Verdichterrads 13 verdichtete Luft aus dem Ansaugtrakt 6 abgezweigt und beispielsweise in eine
Rückführleitung 22 der Schub-Umlufteinrichtung 21 eingeleitet. Die Rückführleitung 22 ist an den Stellen S1 und S2 fluidisch mit dem Ansaugtrakt 6, insbesondere mit einer Luftleitung 23 des Ansaugtrakts 6, fluidisch verbunden, sodass beispielsweise an der Stelle S1 die mittels des Verdichterrads 13 verdichtete Luft aus dem Ansaugtrakt 6 beziehungsweise aus der Luftleitung 23 aus- und in die Rückführleitung 22 einströmen kann. Die abgezweigte und die Rückführleitung 22 durchströmende Luft wird mittels der Rückführleitung 22 von der ersten Stelle S1 zu der zweiten Stelle S2 rückgeführt und kann an der zweiten Stelle S2 aus der Rückführleitung 22 aus- und in den Ansaugtrakt 6 beziehungsweise in die Luftleitung 23 einströmen. Hierdurch wird beispielsweise die abgezweigte Luft umgewälzt beziehungsweise die abgezweigte Luft kann rezirkulieren, da die abgezweigte Luft von der Stelle S2 zu dem Verdichterrad 13 strömen und mittels des Verdichterrads 13 wieder verdichtet werden kann.
Beispielsweise wird die Luft mittels des Verdichterrads 13 auf einen Ladedruck verdichtet. Durch das Abzweigen und Rückführen der mittels des Verdichterrads 13 verdichteten Luft kann ein Abbau des Ladedrucks realisiert werden, sodass das Verdichterpumpen des Verdichters 10 vermieden werden kann. Der Abbau des Ladedrucks wird auch als Ladedruckabbau bezeichnet. Im Rahmen des Ladedruckabbaus wird beispielsweise die abgezweigte und die Rückführleitung 22 durchströmende Luft entspannt.
Da die Verbrennungskraftmaschine 2 mit der Aufladeeinrichtung 5 ausgestattet ist, wird die Verbrennungskraftmaschine 2 auch als Turbo-Motor bezeichnet. Bei einem solchen Turbo-Motor ist es wünschenswert, eine Luftzufuhr in die Brennräume 4 bei einem
Lastabwurf möglichst schnell zu reduzieren und somit den zuvor genannten
Ladedruckabbau besonders schnell durchzuführen. Der Lastabwurf und somit die
Reduzierung der Luftzufuhr erfolgen beispielsweise dadurch, dass eine in dem
Ansaugtrakt 6 angeordnete Drosselklappe 24 zumindest teilweise geschlossen wird. Die Drosselklappe 24 ist dabei stromab der Verdichterräder 13 und 17 und stromauf der Brennräume 4 angeordnet und wird genutzt, um eine Menge beziehungsweise Masse der den Brennräumen 4 zuzuführenden Luft einzustellen. Der Ladedruckabbau erfolgt dabei vor beziehungsweise stromauf der Drosselklappe 24 und insbesondere durch
Rückströmen der mittels des Verdichterrads 13 verdichteten Luft beispielsweise über das Verdichterrad 13 entgegen einer Ansaugströmungsrichtung. Dies kann herkömmlicherweise zu akustischen Auffälligkeiten führen, wodurch
entsprechende Fahrzeuganforderungen nicht mehr erfüllt werden können. Außerdem geht üblicherweise in der verdichteten und abgezweigten Luft enthaltene Energie ungenutzt verloren. Je höher der Ladedruck beim Lastabwurf ist, desto länger dauert der
Ladedruckabbau und desto wahrscheinlicher kommt es zu akustischen Auffälligkeiten. Aus diesem Grund wird die Schub-Umlufteinrichtung 21 verwendet, welche üblicherweise ein Schubumluftventil aufweist. Durch die Schub-Umlufteinrichtung 21 kann das zum Ladedruckabbau vorgesehene Rückströmen der mittels des Verdichterrads 13
verdichteten Luft über das Verdichterrad 13 entgegen der Ansaugströmungsrichtung vermieden werden, da die verdichtete Luft über die Rückführleitung 22 rückgeführt werden kann. Dabei umgeht die abgezweigte und rückgeführte Luft das Verdichterrad 13, sodass die abgezweigte Luft, welche zur Stelle S2 rückgeführt wird, nicht durch das beziehungsweise über das Verdichterrad 13 strömt. Jedoch geht bei herkömmlichen Aufladeeinrichtungen bei Nutzung einer Schub-Umlufteinrichtung in der abgezweigten, verdichteten Luft enthaltene Energie ungenutzt verloren. Dies kann jedoch bei der Aufladeeinrichtung 5 nun vermieden werden.
Um somit einen besonders effizienten und energiegünstigen Betrieb zu realisieren, ist die Aufladeeinrichtung 5 dazu ausgebildet, das zweite Verdichterrad 17 mit der abgezweigten Luft zu versorgen, sodass das zweite Verdichterrad 17 und über das zweite Verdichterrad 17 die elektrische Maschine 18 von der abgezweigten, die Rückführleitung 22
durchströmenden Luft antreibbar sind beziehungsweise angetrieben werden. Mit anderen Worten, in wenigstens einem ersten Betriebszustand wird das zweite Verdichterrad 17 mit der mittels des Verdichterrads 13 verdichteten Luft versorgt, sodass das zweite
Verdichterrad 17 und über das zweite Verdichterrad 17 die elektrische Maschine 18 von der abgezweigten, mittels des Verdichterrads 13 verdichteten Luft angetrieben werden.
Bei herkömmlicherweise zum Einsatz kommenden Schubumluftventilen findet der Ladedruckabbau durch Umwälzen der Ladeluft über den Verdichter 10 statt. Hierzu wird die verdichtete Ladeluft über das Schubumluftventil zurück zu der Stelle S2 geführt und dabei expandiert, wobei die Stelle S2 in einem Niederdruck-Bereich des Ansaugtrakts 6 angeordnet ist. Demgegenüber ist die Stelle S1 in einem Hochdruck-Bereich des
Ansaugtrakts 6 angeordnet, da an der Stelle S1 ein höherer Druck als an der Stelle S2 herrscht. Nach Rückführen der verdichteten Luft zu der Stelle S2 wird die Luft erneut mittels des Verdichters 10 komprimiert. Dabei erfolgt der Ladedruckabbau relativ langsam, und die Energie, welche in der mittels des Verdichterrads 13 verdichteten Luft enthalten ist, wird nicht weiter genutzt beziehungsweise primär in Wärme umgewandelt. Im Gegensatz dazu ist bei der Aufladeeinrichtung 5 eine Energierückgewinnung vorgesehen. Im Rahmen der Energierückgewinnung werden das Verdichterrad 17 und über dieses die elektrische Maschine 18 mittels der abgezweigten, die Rückführleitung 22 durchströmenden Luft angetrieben.
In wenigstens einem von dem ersten Betriebszustand unterschiedlichen zweiten
Betriebszustand wird die elektrische Maschine 18 beispielsweise in einem Motorbetrieb und somit als Elektromotor betrieben. Hierzu wird die elektrische Maschine 18
beispielsweise mit elektrischer Energie beziehungsweise elektrischem Strom versorgt, die beziehungsweise der in einem in Fig. 1 nicht gezeigten Energiespeicher gespeichert ist. Durch Betreiben der elektrischen Maschine 18 in dem Motorbetrieb wird das
Verdichterrad 17 von der elektrischen Maschine 18 angetrieben und dadurch um die Drehachse 19 in eine erste Drehrichtung gedreht, wodurch Luft, die durch die
Rückführleitung 22 strömt, verdichtet und den Brennräumen 4 zugeführt wird.
In dem zuvor genannten ersten Betriebszustand jedoch wird das Verdichterrad 17 von Luft angetrieben, die mittels des Verdichterrads 13 verdichtet wird beziehungsweise wurde und die Rückführleitung 22 durchströmt. Dadurch wird in der abgezweigten Luft enthaltene Energie in mechanische Energie umgewandelt, welche von dem Verdichterrad 17 bereitgestellt wird. Hierdurch wird die elektrische Maschine 18 über die Welle 20 von dem Verdichterrad 17 angetrieben. In dem ersten Betriebszustand wird die elektrische Maschine 18 in einem Generatorbetrieb und somit als Generator betrieben, welcher zumindest einen Teil der von dem Verdichterrad 17 bereitgestellten mechanischen Energie in elektrische Energie umwandelt und diese elektrische Energie bereitstellt. Dabei dreht sich das Verdichterrad 17 in dem ersten Betriebszustand um die Drehachse 19 in eine der ersten Drehrichtung entgegengesetzte zweite Drehrichtung. In dem ersten Betriebszustand fungiert somit das Verdichterrad 17 als Turbine beziehungsweise als Turbinenrad, mittels welchem die elektrische Maschine 18, insbesondere der Rotor oder elektrischen Maschine 18, angetrieben wird. Mittels des Verdichterrads 17 wird die abgezweigte Luft entspannt, welche dann an der zweiten Stelle S2 in die Luftleitung 23 einströmen und schließlich wieder zu dem Verdichterrad 13 strömen kann.
Zur Realisierung des ersten Betriebszustands wird bei dem Lastabwurf die aufgestaute Ladeluft über das Verdichterrad 17 und somit über den elektrischen Verdichter 16 zu dem Niederdruck-Bereich geführt und expandiert. Dies erfolgt beispielsweise über
entsprechende Ventilschaltungen in dem Ansaugtrakt 6. Mit anderen Worten ist vorzugsweise eine Ventileinrichtung 25 vorgesehen, mittels welcher jeweilige Strömungen von Luft durch die Rückführleitung 22 und durch die Luftleitung 23 einstellbar sind. Mit anderen Worten kann beispielsweise mittels der Ventileinrichtung 25 zwischen den genannten Betriebszuständen, welche auch als Betriebsarten bezeichnet werden, umgeschaltet werden.
Insgesamt ist erkennbar, dass bei einem Lastabwurf Energie in Form von elektrischem Strom aus der mittels des Verdichterrads 13 verdichteten Ladeluft gewonnen werden kann. Im Vergleich zu einem herkömmlichen Schubumluftventil ist es ferner möglich, akustische Störgeräusche zu vermeiden beziehungsweise besonders gering zu halten, da beispielsweise der Ladedruckabbau besonders schnell und vorteilhaft durchgeführt werden kann. Insbesondere kann der Ladedruckabbau im Vergleich zu herkömmlichen Schubumluftventilen besser gesteuert oder geregelt werden, wodurch die Entstehung von unerwünschten Geräuschen vermieden werden kann. Somit können bei der
Aufladeeinrichtung 5 eine besonders vorteilhafte Rekuperation von in der mittels des Verdichterrads 13 verdichteten Luft sowie ein besonders schneller Ladedruckabbau bei einem Lastabwurf realisiert werden.
Fig. 2 zeigt eine zweite Ausführungsform der Aufladeeinrichtung 5. Bei der ersten
Ausführungsform wird vor dem ersten Verdichterrad 13 beziehungsweise stromauf des ersten Verdichterrads 13 zumindest ein Teil der den Ansaugtrakt 6 durchströmenden Luft abgezweigt. Die abgezweigte Luft beziehungsweise der abgezweigten Teil wird nicht mittels des Verdichterrads 13 verdichtet, sondern dem zweiten Verdichterrad 17 zugeführt und mittels des Verdichterrads 17 beziehungsweise mittels des elektrischen Verdichters 16 verdichtet, sodass beispielsweise die Verdichter 10 und 16 parallel arbeiten.
Bei der zweiten Ausführungsform jedoch ist beispielsweise ein serieller Betrieb der Verdichter 10 und 16 vorgesehen. Hierzu wird die den Absaugtrakt 6 durchströmende Luft, insbesondere in einem Aufladebetrieb, welcher in Fig. 2 durch Pfeile 28
veranschaulicht ist, zunächst mittels des Verdichterrads 13 verdichtet. Zumindest ein Teil der mittels des Verdichterrads 13 verdichteten Luft wird dem Verdichterrad 17 über eine Leitung 30 zugeführt und mittels des Verdichterrads 17 nochmalig beziehungsweise weiter verdichtet. Dabei sorgt ein Rückschlagventil 26 dafür, dass die mittels des
Verdichterrads 17 verdichtete Luft nicht zu dem ersten Verdichterrad 13 zurückströmen kann. Die Leitung 30 ist dabei mit einer von dem Verdichterrad 13 wegführenden ersten Luftleitung an einer stromab des Verdichterrads 13 angeordneten Stelle fluidisch verbunden. Außerdem ist die Leitung 30 mit einer zu dem Verdichterrad 17 hinführenden zweiten Luftleitung an einer stromab des Verdichterrads 13 angeordneten Stelle fluidisch verbunden. Dadurch kann mittels der Leitung 30 zumindest der genannte Teil der mittels des Verdichterrads 13 verdichteten Luft aus der ersten Luftleitung abgezweigt und zu der beziehungsweise in die zweite Luftleitung eingeleitet werden. Der abgezweigte Teil wird dann mittels der zweiten Luftleitung zu dem Verdichterrad 17 geführt. Dabei,
insbesondere während des Aufladebetriebs, ist ein in der Leitung 30 angeordnetes Ventil 27 geöffnet.
In Fig. 2 veranschaulichen Pfeile 29 den oben beschriebenen Ladedruckabbau. Bei dem Ladedruckabbau wird mittels der Drosselklappe 24 ein von der Luft durchströmbarer Strömungsquerschnitt des Ansaugtrakts 6 zumindest reduziert beziehungsweise zumindest teilweise versperrt, indem die Drosselklappe 24 zumindest teilweise geschlossen wird. Hierdurch wird die Luftzufuhr zu den Brennräumen 4, insbesondere im Vergleich zu dem dem Ladedruckabbau vorweggehenden Aufladebetrieb, reduziert. Zusätzlich wird dann die Schub-Umlufteinrichtung 21 , insbesondere deren
Schubumluftventil, geöffnet, und das in der Leitung 30 angeordnetes Ventil 27 wird geschlossen, damit die Luft über das Verdichterrad 17 und somit über den elektrischen Verdichter 16 strömt, sodass die elektrische Maschine 18 des elektrischen Verdichters 16 auf die beschriebene Weise in dem Generatorbetrieb betrieben werden kann.
Bezugszeichenliste
Antriebseinrichtung
Verbrennungskraftmaschine
Motorgehäuse
Brennraum
Aufladeeinrichtung
Ansaugtrakt
Abgastrakt
Luftfilter
Abgasturbolader
10 Verdichter
1 1 Turbine
12 Turbinenrad
13 erstes Verdichterrad
14 Rotor
15 Welle
16 elektrischer Verdichter
17 zweites Verdichterrad
18 elektrische Maschine
19 Drehachse
20 Welle
21 Schub-Umlufteinrichtung
22 Rückführleitung
23 Luftleitung
24 Drosselklappe
25 Ventileinrichtung
26 Rückschlagventil
27 Ventil
28 Pfeil
29 Pfeil
30 Leitung
S1 erste Stelle
S2 zweite Stelle

Claims

Patentansprüche
1 . Aufladeeinrichtung (5) für eine Verbrennungskraftmaschine (2) eines
Kraftfahrzeugs, mit wenigstens einem Abgasturbolader (9), welcher ein von Abgas der Verbrennungskraftmaschine (2) antreibbares Turbinenrad (12) und ein von dem Turbinenrad (12) antreibbares erstes Verdichterrad (13) aufweist, mittels welchem der Verbrennungskraftmaschine (2) zuzuführende Luft zu verdichten ist, mit wenigstens einem elektrischen Verdichter (16), welcher eine elektrische Maschine (18) und ein von der elektrischen Maschine (18) antreibbares zweites Verdichterrad (17) aufweist, mittels welchem der Verbrennungskraftmaschine (2) zuzuführende Luft zu verdichten ist, und mit einer dem ersten Verdichterrad (13) zugeordneten Schub-Umlufteinrichtung (21 ), mittels welcher bei einer Lastreduzierung der Verbrennungskraftmaschine (2) zumindest ein Teil der mittels des ersten
Verdichterrads (13) verdichteten Luft an einer stromab des ersten Verdichterrads (13) angeordneten ersten Stelle (S1 ) abzweigbar und von der ersten Stelle (S1 ) zu einer stromauf des ersten Verdichterrads (13) angeordneten zweiten Stelle (S2) rückführbar ist,
dadurch gekennzeichnet, dass
die Aufladeeinrichtung (5) dazu ausgebildet ist, das zweite Verdichterrad (17) mit der abgezweigten Luft zu versorgen, sodass das zweite Verdichterrad (17) und über dieses die elektrische Maschine (18) von der abgezweigten Luft antreibbar sind.
2. Aufladeeinrichtung (5) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die elektrische Maschine (18) über das zweite Verdichterrad (17) von der abgezweigten Luft antreibbar und dadurch als Generator betreibbar ist, mittels welchem von dem zweiten Verdichterrad (17) bereitgestellte mechanische Energie in elektrische Energie umwandelbar ist.
3. Aufladeeinrichtung (5) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Schub-Umlufteinrichtung (21 ) wenigstens eine von der abgezweigten Luft durchströmbare Rückführleitung (22) aufweist, in welcher das zweite Verdichterrad (17) angeordnet ist. Aufladeeinrichtung (5) nach Anspruch 3,
dadurch gekennzeichnet, dass
in einem ersten Betriebszustand die abgezweigte Luft die Rückführleitung (22) in eine erste Richtung durchströmt.
Aufladeeinrichtung (5) nach Anspruch 4,
dadurch gekennzeichnet, dass
in einem zweiten Betriebszustand, in welchem das zweite Verdichterrad (17) die der Verbrennungskraftmaschine (2) zuzuführende Luft verdichtet, die der
Verbrennungskraftmaschine (2) zuzuführende Luft die Rückführleitung (22) in eine der ersten Richtung entgegengesetzte zweite Richtung durchströmt.
Aufladeeinrichtung (5) nach einem der Ansprüche 2 bis 5,
dadurch gekennzeichnet, dass
eine Ventileinrichtung (25) vorgesehen ist, mittels welcher jeweilige Strömungen von Luft durch die Rückführleitung (22) einstellbar sind.
Verfahren zum Betreiben einer Aufladeeinrichtung (5) für eine
Verbrennungskraftmaschine (2) eines Kraftfahrzeugs, mit wenigstens einem
Abgasturbolader (9), welcher ein von Abgas der Verbrennungskraftmaschine (2) antreibbares Turbinenrad (12) und ein von dem Turbinenrad (12) antreibbares erstes Verdichterrad (13) aufweist, mittels welchem der Verbrennungskraftmaschine (2) zuzuführende Luft zu verdichten ist, mit wenigstens einem elektrischen
Verdichter (16), welcher eine elektrische Maschine (18) und ein von der elektrischen Maschine (18) antreibbares zweites Verdichterrad (17) aufweist, mittels welchem der Verbrennungskraftmaschine (22) zuzuführende Luft zu verdichten ist, und mit einer dem ersten Verdichterrad (13) zugeordneten Schub-Umlufteinrichtung (21 ), mittels welcher bei einer Lastreduzierung der Verbrennungskraftmaschine (2) zumindest ein Teil der mittels des ersten Verdichterrads (13) verdichteten Luft an einer stromab des ersten Verdichterrads (13) angeordneten ersten Stelle (S1 ) abgezweigt und von der ersten Stelle (S1 ) zu einer stromauf des ersten
Verdichterrads (13) angeordneten zweiten Stelle (S2) rückgeführt wird,
dadurch gekennzeichnet, dass
in wenigstens einem Betriebszustand das zweite Verdichterrad (17) mit der abgezweigten Luft versorgt wird, sodass das zweite Verdichterrad (17) und über dieses die elektrische Maschine (18) von der abgezweigten Luft angetrieben werden.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dass
die elektrische Maschine (18) über das zweite Verdichterrad (17) von der abgezweigten Luft angetrieben und dadurch als Generator betrieben wird, welcher von dem zweiten Verdichterrad (17) bereitgestellte mechanische Energie in elektrische Energie umwandelt und die elektrische Energie bereitstellt.
PCT/EP2018/061130 2017-05-10 2018-05-02 Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung WO2018206355A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880030936.5A CN110621861A (zh) 2017-05-10 2018-05-02 用于机动车辆的内燃机的增压装置以及用于运行这种增压装置的方法
US16/671,346 US20200063648A1 (en) 2017-05-10 2019-11-01 Supercharging Device for an Internal Combustion Engine of a Motor Vehicle, and Method for Operating a Supercharging Device of This Kind

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017207878.2 2017-05-10
DE102017207878.2A DE102017207878A1 (de) 2017-05-10 2017-05-10 Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, sowie Verfahren zum Betreiben einer solchen Aufladeeinrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/671,346 Continuation US20200063648A1 (en) 2017-05-10 2019-11-01 Supercharging Device for an Internal Combustion Engine of a Motor Vehicle, and Method for Operating a Supercharging Device of This Kind

Publications (1)

Publication Number Publication Date
WO2018206355A1 true WO2018206355A1 (de) 2018-11-15

Family

ID=62116411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/061130 WO2018206355A1 (de) 2017-05-10 2018-05-02 Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung

Country Status (4)

Country Link
US (1) US20200063648A1 (de)
CN (1) CN110621861A (de)
DE (1) DE102017207878A1 (de)
WO (1) WO2018206355A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719118B2 (en) 2021-04-14 2023-08-08 Honeywell International Inc. Air supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340142A1 (de) * 2003-09-01 2005-03-31 Robert Bosch Gmbh Vorrichtung zur Verdichtung von Verbrennungsluft
DE102015006572A1 (de) * 2015-05-21 2015-12-17 Daimler Ag Verbrennungskraftmaschine für einen Kraftwagen
DE102015008291A1 (de) * 2015-06-26 2016-01-21 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftwagens
DE102015216685B3 (de) 2015-09-01 2017-02-16 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einer Aufladeeinrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640757B2 (ja) * 1988-07-18 1997-08-13 株式会社いすゞセラミックス研究所 過給機の制御装置
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine
DE102012009318B4 (de) * 2012-05-10 2021-05-06 MAN Energy Solutions, branch of MAN Energy Solutions SE, Germany Dieselmotor und Verfahren zur Leistungssteigerung eines bestehenden Dieselmotors
CN104968925B (zh) * 2013-02-13 2017-11-10 大众汽车有限公司 具有升压器的内燃机
DE102013225242B4 (de) * 2013-12-09 2019-05-16 Continental Automotive Gmbh Aufladevorrichtung für einen Verbrennungsmotor eines Kraftfahrzeugs und Verfahren zur Herstellung der Aufladevorrichtung
DE102014220931A1 (de) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung
DE102014223891A1 (de) * 2014-11-24 2016-05-25 Continental Automotive Gmbh Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung
DE102014224474B4 (de) * 2014-12-01 2019-06-06 Continental Automotive Gmbh Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340142A1 (de) * 2003-09-01 2005-03-31 Robert Bosch Gmbh Vorrichtung zur Verdichtung von Verbrennungsluft
DE102015006572A1 (de) * 2015-05-21 2015-12-17 Daimler Ag Verbrennungskraftmaschine für einen Kraftwagen
DE102015008291A1 (de) * 2015-06-26 2016-01-21 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftwagens
DE102015216685B3 (de) 2015-09-01 2017-02-16 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einer Aufladeeinrichtung

Also Published As

Publication number Publication date
CN110621861A (zh) 2019-12-27
DE102017207878A1 (de) 2018-11-15
US20200063648A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
DE102007017777B4 (de) Turboladeranordnung und turboaufladbare Brennkraftmaschine
EP2220353B1 (de) Anordnungen zur rückgewinnung ungenutzter energie von abgas einer verbrennungskraftmaschine und entsprechende verfahren
DE102014224474B4 (de) Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung
EP3224467B1 (de) Aufladeeinrichtung für einen verbrennungsmotor und betriebsverfahren für die aufladeeinrichtung
EP3207231B1 (de) Aufladeeinrichtung für einen verbrennungsmotor und betriebsverfahren für die aufladeeinrichtung
EP3141735B1 (de) Brennkraftmaschine mit booster
DE102016124468A1 (de) Verbrennungsmotorsystem
DE102018003961A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmachine
DE102013001662A1 (de) Verbrennungskraftmaschine für einen Kraftwagen
DE102010034727A1 (de) Verfahren zum Regeln eines stabilen Betriebs eines Abgasturboladers einer Verbrennungskraftmaschine und eine entsprechende Vorrichtung
DE102007060218A1 (de) Verfahren zum Betreiben eines Verdichters
WO2018206355A1 (de) Aufladeeinrichtung für eine verbrennungskraftmaschine eines kraftfahrzeugs, sowie verfahren zum betreiben einer solchen aufladeeinrichtung
DE102018209698A1 (de) Verfahren und Steuergerät zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung
EP1664502A1 (de) Vorrichtung zur verdichtung von verbrennungsluft
DE102019208045B4 (de) Mittels Comprex-Lader aufgeladene Brennkraftmaschine
DE102019208046B4 (de) Brennkraftmaschine mit Comprex-Lader und Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016224192A1 (de) Verfahren zum Betreiben eines Luftsystems mit elektrischem Verdichter
DE102019003576A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine für einen Kraftwagen und Verbrennungskraftmaschine für einen Kraftwagen
DE102010008727A1 (de) Aufladeanordnung für einen Verbrennungsmotor und Verfahren zum Betreiben eines Verbrennungsmotors mit einer derartigen Aufladeanordnung
DE102022000150B4 (de) Turbine für einen Abgasturbolader, insbesondere eines Kraftfahrzeugs, sowie Verbrennungskraftmaschine
DE102017012253A1 (de) Verdichter für einen Turbolader einer Brennkraftmaschine sowie Turbolader für eine Brennkraftmaschine
DE102007062366A1 (de) Brennkraftmaschine mit zweistufiger Aufladung
DE102016012355A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102021001363A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE102017217759B3 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und elektrisch antreibbarem Verdichter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18722456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18722456

Country of ref document: EP

Kind code of ref document: A1