WO2005021857A1 - 洗濯機 - Google Patents

洗濯機 Download PDF

Info

Publication number
WO2005021857A1
WO2005021857A1 PCT/JP2004/010044 JP2004010044W WO2005021857A1 WO 2005021857 A1 WO2005021857 A1 WO 2005021857A1 JP 2004010044 W JP2004010044 W JP 2004010044W WO 2005021857 A1 WO2005021857 A1 WO 2005021857A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrodes
voltage
time
washing machine
Prior art date
Application number
PCT/JP2004/010044
Other languages
English (en)
French (fr)
Inventor
Hirokazu Ooe
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2005021857A1 publication Critical patent/WO2005021857A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/003Washing machines, apparatus, or methods not otherwise provided for using electrochemical cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/16Washing liquid temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/20Washing liquid condition, e.g. turbidity

Definitions

  • the present invention relates to a washing machine having a function of adding antibacterial metal ions to water to be used.
  • finishing substance When washing with a washing machine, it is common to add a finishing substance to water, particularly to rinsing water. Common finishing materials are softeners and glues. In addition to this, recently, there is a growing need for finishing treatments that provide laundry with antibacterial properties.
  • Japanese Utility Model Publication No. 5-74487 describes an electric washing machine equipped with an ion generator for generating metal ions having sterilizing power such as silver ions and copper ions.
  • Japanese Patent Publication No. 2000-93691 describes a washing machine in which a cleaning liquid is sterilized by generating an electric field.
  • Japanese Patent Publication No. 2001-276484 describes a washing machine provided with a silver ion addition unit for adding silver ions to washing water.
  • Patent Document 1 Japanese Utility Model Application No. 5-74487
  • Patent Document 2 JP-A-2000-93691
  • Patent Document 3 JP 2001-276484 A
  • an ion elution unit that elutes metal ions from the electrodes by applying a voltage between the electrodes.
  • an ion elution unit that elutes metal ions from the electrodes by applying a voltage between the electrodes.
  • the elution efficiency of metal ions (the ratio of the actual elution amount to the theoretical elution amount obtained from Faraday's law, in other words, the ratio of the actually eluted metal to the applied current: (metal The amount of elution) ⁇ (current) differs depending on the water quality in each region and the water temperature in each season. For this reason, the desired amount of metal ions may not be obtained in some cases, and the target metal ion concentration cannot be supplied stably, making it difficult to perform the desired antibacterial treatment on the laundry.
  • the present invention has been made to solve the above problems, and an object of the present invention is to add metal ions having an antibacterial effect to water at a target concentration irrespective of water quality and water temperature. It aims to provide a washing machine that can be obtained.
  • a pair of electrodes made of metal are provided, and a current is applied between the electrodes by applying a voltage between the electrodes while the electrodes are immersed in water to be used.
  • the current flowing between the electrodes is changed according to at least one of water quality and water temperature.
  • the elution efficiency of metal ions changes depending on water quality and water temperature
  • the current flowing between the electrodes is changed according to one or both of the water quality and the water temperature, so that the unit time Adjust the amount of metal ion eluted per hour.
  • the amount of water used at a time is known, so that the target concentration of metal ions can be added to the water by adjusting the amount of elution per unit time.
  • the elution time of metal ions can be constant. Note that it is also possible to provide a configuration in which at least two electrodes are provided so as to form a pair and three or more electrodes are provided and the paired electrodes are switched.
  • the present invention also includes a pair of metal electrodes, in which a voltage is applied between the electrodes in a state where the electrodes are immersed in water to be used, a current flows between the electrodes, and metal ions eluted from the electrodes are removed.
  • the elution time of metal ions to be added to the water used at a time shall be changed according to at least one of water quality and water temperature.
  • This washing machine adjusts the total amount of metal ions eluted by changing the elution time.
  • the target concentration of metal ions can be added to the water used at one time, regardless of the elution efficiency.
  • the amount of metal ion eluted per unit time can be a value determined by the elution efficiency that changes depending on water quality and water temperature.
  • the present invention further includes a pair of metal electrodes, in a state where the electrodes are immersed in water to be used, a voltage is applied between the electrodes, a current flows between the electrodes, and metal ions eluted from the electrodes are removed.
  • a washing machine that is added to the water used, the current flowing between the electrodes is kept constant, and the voltage applied between the electrodes is changed according to at least one of the water quality and the water temperature.
  • the amount of metal ions eluted per unit time is adjusted by changing the applied voltage while keeping the current flowing between the electrodes constant.
  • the applied voltage By changing the applied voltage according to the water quality and temperature, it is possible to add the target concentration of metal ions to the water used at one time, regardless of the elution efficiency. Since the reaction of metal ion elution is constant, for example, Ag ⁇ Ag ++ e-, the elution amount can be easily calculated from the applied voltage by keeping the current constant.
  • the present invention further includes a pair of metal electrodes, wherein a voltage is applied between the electrodes in a state where the electrodes are immersed in water to be used, a current flows between the electrodes, and the metal elutes from the electrodes.
  • the voltage is intermittently applied between the electrodes, and an application time for applying the voltage and a pause time for not applying the voltage are provided, so that the voltage applied between the electrodes is reduced.
  • the polarity is periodically inverted, and at least one of the application time and the pause time is changed according to at least one of the water quality and the water temperature.
  • the elution amount is adjusted.
  • the target concentration of metal ion can be added to the water used at one time regardless of the elution efficiency.
  • the sum of the application time and the pause time can be constant. Also, by inverting the polarity of the applied voltage every application time, it is possible to prevent one electrode from wearing down and shortening its life, and prevent the function from being impaired due to impurities adhering to the electrode surface. be able to.
  • the length of both the application time and the pause time may be changed so that the sum of the application time and the pause time is constant.
  • the polarity inversion cycle of the applied voltage becomes constant, and metal ions can be eluted from both electrodes evenly. It is also easy to add a target concentration of metal ions to water used at a time by keeping the sum of the application time and the rest time constant. In addition, by the time the water supply to the washing machine is completed, the elution of metal ions can be surely completed.
  • At least one of the application time and the pause time may be determined according to the current flowing between the electrodes. Since the elution amount of metal ions depends on both the current flowing between the electrodes and the time for which the current flows, the elution amount can be accurately set by doing so.
  • Each of the above washing machines can detect at least one of the water quality and the water temperature by measuring a voltage necessary for causing a predetermined current to flow between the electrodes.
  • the voltage required to pass a constant current between the electrodes depends on the conductivity of water, which varies with water quality and temperature. By measuring the voltage required to apply a constant current, it is possible to obtain information necessary for adjusting the elution amount of metal ions.
  • a change according to at least one of the water quality and the water temperature can be performed in accordance with an instruction from a user.
  • the water used for washing is clean water, but even in clean water, the water quality varies from region to region, and the elution efficiency of metal ions also differs.
  • the dissolution efficiency is low, it is preferable to change the current, dissolution time, application time, or rest time according to water quality and water temperature.
  • the remaining water in the bath may be used to conserve water, in which case the water quality and temperature will change and the elution efficiency will change, so the change should be made.
  • the changed value may be stored. Each time the washing machine is used, there is no need to perform operations for setting the current, elution time, application time, or pause time, thereby reducing the burden on the user. For example, if a change is made based on the quality of clean water at the installation site at the beginning of installation of the washing machine, and the value at that time is stored, it will not be necessary to reset it for normal use thereafter. Also, if the change is made when the remaining water in the bath is used, and the value at that time is stored, it is not necessary to reset when the remaining water in the bath is used.
  • a change may be made by detecting at least one of the water quality and the water temperature of the water in the washing tub in which the laundry is placed.
  • the effect of the antibacterial treatment with metal ions varies. Finish, especially when a finish is added
  • the effect of the antibacterial treatment may be reduced.
  • the current, elution time, application time, or rest time based on the water quality and temperature of the water in the washing tub, it is possible to add an appropriate concentration of metal ions to obtain a desired antibacterial effect. .
  • a pair of metal electrodes is provided, and a voltage is applied between the electrodes in a state where the electrodes are immersed in water to be used, a current flows between the electrodes, and metal ions eluted from the electrodes are used in the water to be used.
  • the washing machine to be added as in the present invention, when the current flowing between the electrodes is changed according to at least one of the water quality and the water temperature, the amount of metal ions eluted per unit time can be adjusted.
  • the desired concentration of metal ions can be added to the water used, regardless of the elution efficiency. Therefore, the user can surely obtain the desired antibacterial effect.
  • a pair of metal electrodes is provided.
  • a voltage is applied between the electrodes in a state where the electrodes are immersed in the water to be used, a current flows between the electrodes, and metal ions eluted from the electrodes are used in the water to be used.
  • the elution time of metal ions to be added to water used at one time is changed according to at least one of water quality and water temperature. The total amount can be adjusted and the target concentration of metal ions can be added to the water used regardless of the elution efficiency.
  • a pair of metal electrodes is provided, and a voltage is applied between the electrodes in a state where the electrodes are immersed in the water to be used, a current flows between the electrodes, and metal ions eluted from the electrodes are used in the water to be used.
  • the current flowing between the electrodes is kept constant, and the voltage applied between the electrodes is changed according to at least one of the water quality and the water temperature.
  • the elution amount of ions can be adjusted, and the target concentration of metal ions can be added to the water used regardless of the elution efficiency. Also, it is easy to calculate the elution time necessary to achieve the target concentration.
  • a pair of metal electrodes is provided, and a voltage is applied between the electrodes in a state where the electrodes are immersed in water to be used, a current flows between the electrodes, and metal ions eluted from the electrodes are used in the water to be used.
  • a voltage is intermittently applied between the electrodes, and an application time for applying the voltage and a pause time for not applying the voltage are provided, and the polarity of the voltage applied between the electrodes is periodically set. If the application time and the rest time are changed according to at least one of the water quality and the water temperature, the elution amount can be adjusted, and the elution amount can be adjusted regardless of the elution efficiency.
  • the target concentration of metal ions to the water S power Further, it is possible to prevent the life of the electrode from being shortened due to the depletion of only one of the electrodes, and the function from being impaired due to impurities fixed on the surface of the electrode.
  • the elution amount can be accurately set.
  • each washing machine at least one of the water quality and the water temperature is detected by measuring a voltage required to flow a predetermined current between the electrodes, so that the elution amount of metal ions can be accurately measured.
  • the target concentration of the metal ion can be obtained regardless of the area or the water used by the user. Can be realized with the same type of washing machine.
  • the metal ion having a concentration suitable for exerting the desired antibacterial effect is added. The ability to do S.
  • the configuration is such that the light transmittance is detected as the water quality of the water in the washing tub, it is possible to know the water quality in a short time with simple control.
  • FIG. 1 is a vertical sectional view showing a schematic configuration of a washing machine according to an embodiment of the present invention.
  • FIG. 2 is a vertical sectional view schematically showing a water supply port of the washing machine.
  • FIG. 3 is a top view showing the vicinity of an ion elution unit of the washing machine.
  • FIG. 4 is a top view of the ion elution unit.
  • FIG. 5 is a vertical sectional view of the ion elution unit taken along line AA in FIG. 4.
  • FIG. 6 is a vertical sectional view of the ion elution unit taken along line BB in FIG. 4.
  • FIG. 1 is a vertical cross-sectional view showing the entire configuration of a washing machine 1 of the present embodiment.
  • the washing machine 1 is of a fully automatic type, and has a generally rectangular parallelepiped outer box 10 that is long in the vertical direction.
  • the outer box 10 is formed of metal or synthetic resin, and the upper and lower surfaces thereof have openings.
  • An upper surface plate 11 made of a synthetic resin is stacked on the upper surface opening of the outer case 10, and the upper surface plate 11 is fixed to the outer case 10 with screws.
  • FIG. 1 the left side is the front (front) of the washing machine 1 and the right side is the back.
  • a back panel 12 also made of synthetic resin is superimposed on the upper surface of the upper plate 11 located on the back side of the washing machine 1, and the back panel 12 is fixed to the outer box 10 or the upper plate 11 with screws.
  • a base 13 made of synthetic resin is stacked on the bottom opening of the outer case 10, and the base is fixed to the outer case 10 with screws. In FIG. 1, illustration of any of the screws described above is omitted.
  • legs 14a 'and 14b for supporting the outer box 10 on the floor are provided.
  • the front leg portion 14a is a variable height screw leg, which is turned to level the washing machine 1.
  • the rear leg 14 b is a fixed leg integrally formed with the base 13.
  • the upper surface plate 11 is provided with a laundry inlet 15 for charging laundry into a washing tub 30, which will be described later.
  • the lid 16 is connected to the upper surface plate 11 by a hinge 17, rotates in a vertical plane, and covers the laundry inlet 15 from above.
  • a water tub 20 and a washing tub 30 also serving as a dehydration tub are arranged inside the outer case 10.
  • Both the water tub 20 and the washing tub 30 have the shape of a cylindrical cup with an open upper surface, each axis is vertical, and the water tub 20 is on the outside and the washing tub 30 is on the inside. Are arranged concentrically.
  • the water tank 20 is suspended by a suspension member 21.
  • the suspension members 21 are provided at a total of four locations so as to connect the lower portion of the outer surface of the water tank 20 and the inner surface corner of the outer box 10, and support the water tank 20 so that it can swing in a horizontal plane.
  • the washing tub 30 has a tapered peripheral wall that gently expands upwardly and gradually. Except for a plurality of dehydration holes 31 arranged annularly at the top of this peripheral wall, there is no opening through which liquid passes. That is, the washing tub 30 is of a so-called “holeless” type.
  • An annular balancer 32 is attached to the edge of the upper opening of the washing tub 30. The balancer 32 has a function of suppressing vibration when the washing tub 30 is rotated at a high speed for dehydrating the laundry.
  • a pulsator 33 for causing a flow of washing water or rinsing water in the tub is arranged.
  • a drive unit 40 is mounted on the lower surface of the water tank 20.
  • the drive unit 40 includes a motor 41, a clutch mechanism 42, and a brake mechanism 43, and a dehydrating shaft 44 and a pulsator shaft 45 project upward from the center thereof.
  • the dewatering shaft 44 and the pulsator shaft 45 have a double shaft structure with the dewatering shaft 44 outside and the pulsator shaft 45 inside.
  • the dewatering shaft 44 enters the water tub 20 from below upward, and is connected to and supports the washing tub 30.
  • the pulsator shaft 45 penetrates through the water tub 20 from below and further into the washing tub 30, and is connected to and supports the pulsator 33. Seal members for preventing water leakage are arranged between the dewatering shaft 44 and the water tank 20 and between the dewatering shaft 44 and the pulsator shaft 45, respectively.
  • a water supply valve 50 that opens and closes electromagnetically is arranged.
  • the water supply valve 50 has a connection pipe 51 that penetrates through the back panel 12 and protrudes upward.
  • the connection pipe 51 is connected to a water supply hose (not shown) for supplying tap water such as tap water.
  • the water supply valve 50 supplies water to a container-like water inlet 53 provided at a position facing the inside of the washing tub 30.
  • the water supply port 53 has a structure shown in FIG.
  • FIG. 2 is a schematic vertical sectional view of the water supply port 53.
  • the water supply port 53 has an open front side, and a drawer 53a (a charging case) is inserted through the opening.
  • the inside of the drawer 53a is divided into a plurality of sections (two in this embodiment, left and right).
  • the left side compartment has detergent Detergent room 54, which is a preparation space for storing.
  • the compartment on the right side is a finishing agent room 55 that is a preparation space for storing the finishing agent.
  • a water inlet 54a is provided at the bottom of the detergent chamber 54 and opens toward the inside of the water inlet 53.
  • the finishing agent room 55 is provided with a siphon section 57.
  • the water supply port 53 is a water supply port 56 for pouring water into the washing tub 30 at a location below the drawer 53a.
  • the siphon section 57 includes an inner tube 57a that rises vertically from the bottom surface of the finishing agent chamber 55, and a cap-shaped outer tube 57b that covers the inner tube 57a.
  • a gap through which water passes is formed between the inner pipe 57a and the outer pipe 57b.
  • the bottom of the inner pipe 57a opens toward the bottom of the water supply port 53.
  • the lower end of the outer tube 57b keeps a predetermined gap with the bottom of the finishing agent chamber 55, and this serves as an inlet for water.
  • the water supply valve 50 includes a main water supply valve 50a and a sub water supply valve 50b.
  • the main water supply valve 5 Oa is set to have a relatively large flow rate.
  • the sub water supply valve 50b is set to have a relatively small flow rate.
  • the flow rate can be set large or small by making the internal structure of the main water supply valve 50a and the sub water supply valve 50b different from each other. It may be realized.
  • the connection pipe 51 is common to both the main water supply valve 50a and the sub water supply valve 50b.
  • the main water supply valve 50a is connected to the opening of the ceiling of the water supply port 53 through the main water supply path 52a. This opening opens toward the detergent compartment 54. Therefore, the large water flow that has flowed out of the main water supply valve 50a is poured into the detergent chamber 54 from the main water supply passage 52a.
  • the sub water supply valve 50b is connected to the opening of the ceiling of the water supply port 53 through the sub water supply path 52b. This opening opens toward the finishing agent chamber 55. Accordingly, the small flow of water that has flowed out of the sub water supply valve 50b is poured into the finishing agent chamber 55 from the sub water supply path 52b. In other words, the path from the main water supply valve 50a to the washing tub 30 through the detergent room 54 is different from the path from the sub water supply valve 50b to the washing tub 30 through the finishing agent room 55.
  • drain hose 60 for draining the outside of the outer box 10 is attached. Water flows into drain hose 60 from drain pipe 61 and drain pipe 62.
  • the drain pipe 61 is connected to a location near the outer periphery of the bottom surface of the water tank 20.
  • the drain pipe 62 is connected to a location near the center of the bottom of the water tank 20.
  • An annular partition wall 63 is fixed to the inner bottom surface of the water tank 20 so as to surround the connection point of the drain pipe 62 inside.
  • An annular seal member 64 is attached to the upper part of the partition 63.
  • an independent drainage space 66 is formed between the water tub 20 and the washing tub 30.
  • the drainage space 66 communicates with the inside of the washing tub 30 through a drainage hole 67 formed at the bottom of the washing tub 30.
  • the drain pipe 62 is provided with a drain valve 68 that opens and closes electromagnetically.
  • An air trap 69 is provided at a position on the upstream side of the drain valve 68 of the drain pipe 62, and a pressure guiding pipe 70 extends the force of the air trap 69.
  • a water level switch 71 for detecting the amount of water in the washing tub 30 or the water tub 20 is connected to an upper end of the pressure guiding tube 70.
  • a control unit 80 is arranged on the front side of the outer case 10.
  • the control unit 80 is placed below the top plate 11 and receives an operation command from a user through an operation / display unit 81 provided on the top surface of the top plate 11, and receives a drive unit 40, a water supply valve 50, And an operation command to the drain valve 68. Further, the control unit 80 issues a display command to the operation / display unit 81.
  • the control unit 80 includes a drive circuit 120 (see FIG. 9) of the ion elution unit 100 described later.
  • a flow detector 185 is arranged in a water supply path from the main water supply valve 50a to the main water supply path 52a.
  • the flow detector 185 can be configured by a known flow meter.
  • the flow rate detector 185 is not limited to the force disposition location illustrated as being attached to the water supply valve 50, and may be provided at the ion elution unit 100 described below, It may be provided at the water inlet 53. Further, the flow rate detection can also be performed by a method of calculating from a change in water amount per unit time detected by the water level switch 71 or a time required for a predetermined change in water amount.
  • the ion elution unit 100 of the washing machine 1 is connected to the downstream side of the main water supply pipe 52a. It is.
  • the structure and function of the ion elution unit 100 and the role that the ion elution unit 100 plays in the washing machine 1 will be described with reference to FIGS.
  • FIG. 3 is a partial top view showing the arrangement of the water supply valve 50, the ion elution unit 100, and the water supply port 53. Both ends of the ion elution unit 100 are directly connected to the main water supply valve 50a and the water supply port 53. That is, the ion elution unit 100 independently constitutes the entire main water supply path 52a.
  • the sub water supply path 52b is configured by connecting a pipe projecting from the water supply port 53 and the sub water supply valve 50b with a hose.
  • the water supply valve 50, the ion elution unit 100, and the water supply port 53 are arranged side by side in the front-rear direction of the washing machine 1 for easy understanding. In Machine 1, these are arranged not in the front-back direction but in the left-right direction.
  • FIGS. 4 to 8 show the structure of the ion elution unit 100.
  • FIG. FIG. 4 is a top view of the ion elution unit 100.
  • FIG. 5 is a vertical cross-sectional view of the ion elution unit 100, taken along the line AA in FIG.
  • FIG. 6 is also a vertical sectional view of the ion elution unit 100, which is cut along the line B-B in FIG.
  • FIG. 7 is a horizontal sectional view of the ion elution unit 100.
  • FIG. 8 is a perspective view of the electrodes of the ion elution unit 100.
  • the ion elution unit 100 has a case 110 made of a transparent or translucent synthetic resin (colorless or colored) or an opaque synthetic resin. Case 110 has an open top
  • the case body 110a has an elongated shape, and has a water inlet 111 at one end in the longitudinal direction and a water outlet 112 at the other end.
  • Each of the inflow port 111 and the outflow port 112 has a pipe shape.
  • the cross-sectional area of the outlet 112 is smaller than the cross-sectional area of the inlet 111.
  • the case 110 is arranged such that the longitudinal direction is the horizontal direction.
  • the bottom surface of the case body 110a arranged horizontally in this manner is an inclined surface that gradually decreases toward the outlet 112 (see FIG. 5). That is, the outlet 112 is provided at the lowest position in the internal space of the case 110.
  • the lid 110b is fixed to the case main body 110a with four screws 170 (see FIG. 4). Ke A seal ring 171 is sandwiched between the base body 110a and the lid 110b (see FIG. 5).
  • two plate-shaped electrodes 113 and 114 are arranged to face each other along a water flow that is directed from the inlet 111 to the outlet 112 (see Figs. 6 and 6). 7).
  • a predetermined voltage is applied to the electrodes 113 and 114 in a state where water is present in the case 110
  • metal ions of the metal constituting the electrodes are eluted from the anodes of the electrodes 113 and 114.
  • the electrodes 113 and 114 may be configured such that a silver plate having a size of about 2 cm ⁇ 5 cm and a thickness of about lmm is arranged at a distance of about 5 mm.
  • the material of the electrodes 113 and 114 is not limited to silver, and may be any metal as long as it is a source of antibacterial metal ions.
  • silver in addition to silver, copper, an alloy of silver and copper, zinc, and the like can be selected.
  • Silver ions eluted from the silver electrode, copper ions eluted from the copper electrode, and zinc ions eluted from the zinc electrode exert an excellent bactericidal and antifungal effect.
  • silver ions and copper ions can be simultaneously eluted from the alloy electrode of silver and copper, and a bactericidal effect and a fungicidal effect can be similarly obtained.
  • salt chloride and zinc chloride which are hardly soluble, have a high metal ionization tendency and are easily dissolved.
  • the electrode is made of an alloy of silver and copper or an alloy of silver and zinc, it is difficult to form a uniform chloride film, and it is possible to prevent the elution from being hindered.
  • the elution / non-elution of metal ions can be selected depending on whether or not a voltage is applied. Further, by controlling the current or voltage application time, the amount of metal ions eluted can be controlled or adjusted.
  • the ability to carry metal ions, such as zeolite can be electrically selected and adjusted, and the concentration of metal ions can be adjusted electrically, compared to the method of eluting metal ions. So it is convenient.
  • the electrodes 113 and 114 are not arranged completely in parallel. When viewed from above, the electrodes 113 and 114 are arranged such that the distance between the electrodes in the flow of water flowing in the case 110 increases from the upstream side to the downstream side, in other words, from the inlet 111 to the outlet 112. They are arranged in a tapered shape so that they become narrower (see Fig. 7). [0068] The planar shape of the case body 110a is also narrowed down from the end where the inflow port 111 exists to the end where the outflow port 112 exists. That is, the cross-sectional area of the internal space of case 110 gradually decreases from the upstream side to the downstream side.
  • the electrodes 113 and 114 are rectangular in a front view, and are provided with terminals 115 and 116, respectively.
  • the terminals 115 and 116 are formed so as to hang down from the lower edges of the electrodes 113 and 114, respectively, and to enter inside the electrode ends on the upstream side.
  • the electrode 113 and the terminal 115 and the electrode 114 and the terminal 116 are integrally formed of the same metal material.
  • the electrodes 115 and 116 are led out to the lower surface of the case main body 110a through through holes provided in the bottom wall of the case main body 110a.
  • a process of a watertight seal 172 is applied to a portion where the terminals 115 and 116 pass through the case main body 11 Oa.
  • the watertight seal 172 forms a double seal structure together with a second sleeve 175 to be described later, and prevents water leakage therefrom.
  • An insulating wall 173 separating the terminals 115 and 116 is formed on the lower surface of the case body 110a (see FIG. 6).
  • the terminals 115 and 116 are connected to a drive circuit 120 attached to the control unit 80 via a cable (not shown).
  • the portion remaining in the case 110 is protected by a sleeve made of an insulating material.
  • a sleeve made of an insulating material.
  • two types of sleeves a first sleeve 174 and a second sleeve 175, are used.
  • the first sleeve 174 is made of a synthetic resin, and is fitted to the base of the terminals 115 and 116.
  • the first sleeve 174 has a part formed to protrude on one side of the electrodes 113 and 114, and a protrusion is formed on the side of this part, and the protrusion is provided on the electrodes 113 and 114. It is engaged with the through hole (see Figs. 6 and 7).
  • the second sleeve 175 is made of soft rubber, and fills a gap between the first sleeve 174 and the bottom wall of the case body 110a, and a gap between itself and the case body 110a, and between itself and the electrodes 113 and 114. To prevent water from leaking from the gap.
  • the terminals 115 and 116 are located on the upstream side of the electrodes 113 and 114, and the first sleeve 174 fitted to the terminals 115 and 116 is used for the upstream part of the electrodes 113 and 114.
  • Support is configured.
  • a cover is formed on the inner surface of the lid 110b in accordance with the position of the first sleeve 174.
  • a support 176 in the shape of a circle is formed (see FIG. 6).
  • This support portion 176 sandwiches the upper edge of the first sleeve 174, and the second sleeve 175 fills the gap between the first sleeve 174 and the case body 110a.
  • the fork-shaped support portion 176 sandwiches the electrodes 113 and 114 between the long and short protrusions, so that the gap between the electrodes 113 and 114 can be appropriately maintained even on the side of the lid 110b.
  • the downstream part of the electrodes 113 114 is also supported by the support provided on the inner surface of the case 110.
  • a fork-shaped support portion 177 rises from the bottom wall of the case body 110a, and a fork-shaped support portion 178 hangs from the ceiling surface of the lid 110b so as to face the support portion 177 (FIG. 5). See Figure 8).
  • the electrodes 113 and 114 are sandwiched between the lower edge and the upper edge of the downstream portion by the support portions 177 and 178, respectively, and are held so as to move.
  • the electrodes 113 and 114 are arranged in such a manner that a space is created between the surfaces facing each other and the inner surface of the opposite surface force case 110. As shown in FIG. 5, the electrodes 113 and 114 are arranged such that a space is also created between the upper and lower edges thereof and the inner surface of the case 110 (support portions 176, 177, 178). Excluding the contact part). Further, as shown in FIGS. 5 and 7, a space is also provided between the upstream and downstream edges of the electrodes 113 and 114 and the inner surface of the case 110.
  • the width of the case 110 must be further reduced, a configuration may be adopted in which the surfaces of the electrodes 113 and 114 on the side opposite to each other and the opposite side are brought into close contact with the inner wall of the case 110. It is possible.
  • a wire mesh strainer is arranged on the upstream side of the electrodes 113 and 114 to prevent foreign matter from contacting the electrodes 113 and 114.
  • a strainer 180 is provided in the connection pipe 51 as shown in FIG.
  • the strainer 180 also serves as a strainer on the upstream side of the force ion elution unit 100 for preventing foreign matter from entering the water supply valve 50.
  • a wire mesh strainer 181 is also arranged downstream of the electrodes 113 and 114.
  • the strainer 181 prevents the electrodes 113 and 114 from breaking when the electrodes 113 and 114 become thin due to long-term use, thereby preventing the debris from flowing away.
  • the outlet S 112 can be selected.
  • the locations of the strainers 180 and 181 are not limited to the above locations.
  • the strainers 180 and 181 may be arranged anywhere in the water supply path as long as the conditions of “upstream of the electrode” and “downstream of the electrode” are satisfied.
  • the strainers 180 and 181 should be removable so that they can remove trapped foreign matter and clean substances causing clogging.
  • FIG. 9 is a configuration example of the drive circuit 120.
  • a transformer 122 is connected to the commercial power supply 121, and the transformer 122 steps down 100V to a predetermined voltage. After the output voltage of the transformer 122 is rectified by the full-wave rectifier circuit 123, the output voltage is made constant by the constant voltage circuit 124.
  • the constant voltage circuit 124 is connected to a constant current circuit 125.
  • the constant current circuit 125 operates so as to supply a constant current to an electrode driving circuit 150 described later irrespective of a change in the resistance value in the electrode driving circuit 150.
  • a rectifier diode 126 is connected to the commercial power supply 121 in parallel with the transformer 122. After the output voltage of the rectifying diode 126 is smoothed by the capacitor 127, the output voltage is made constant by the constant voltage circuit 128 and supplied to the microcomputer 130.
  • the micro computer 130 controls the activation of a triac 129 connected between one end of the primary coil of the transformer 122 and the commercial power supply 121.
  • the electrode drive circuit 150 is configured by connecting NPN transistors Q1 to Q4, diodes D1′D2, and resistors R1 and R7 as illustrated.
  • the transistor Q1 and the diode D1 form a photo power blur 151
  • the transistor Q2 and the diode D2 form a photo power blur 152. That is, the diodes D1′D2 are light emitting diodes, and the transistors Ql and Q2 are phototransistors.
  • the transistor Q1 is ⁇ FF, and the transistor Q4 is also OFF. It becomes. In this state, current flows from the anode 113 to the cathode 114. As a result, in the ion elution unit 100, positive metal ions and negative ions are generated.
  • the present embodiment is configured so that the electrode drive circuit 150 can be operated by reversing the polarity of the electrode.
  • the microcomputer 130 switches the control so that the voltages of the lines L1 and L2 are reversed so that current flows through the electrodes 113 and 114 in the opposite directions. In this case, transistors Q1 and Q4 turn off, and transistors Q2 and Q3 turn off.
  • the microcomputer 130 has a counter function, and performs the above-described switching every time a predetermined count is reached.
  • the constant current circuit 125 outputs the output. Increase the voltage to prevent the current from decreasing.
  • the ion elution unit 100 reaches the end of its life.
  • the polarity of the electrode is reversed, the time of the specific polarity is set longer than in normal times, the mode is switched to the electrode cleaning mode for forcibly removing impurities attached to the electrode, and the output voltage of the constant current circuit 125 is increased. Even if it is implemented, it will not be possible to prevent the current from decreasing.
  • the current flowing between the electrodes 113 and 114 of the ion elution unit 100 is monitored by the voltage generated at the resistor R7, and when the current reaches a predetermined minimum current value, the current is detected by the current detection circuit. 160 is to detect. Information that the minimum current value has been detected is transmitted from the light emitting diode D3 constituting the photocoupler 163 to the microcomputer 130 via the phototransistor Q5.
  • the microcomputer 130 drives the alarm notifying device 131 via the line L3 to perform a predetermined alarm notification. Warning alarm 131 is operated / displayed It is arranged in the display unit 81 or the control unit 80.
  • a current detection circuit 161 for detecting that the current has exceeded a predetermined maximum current value is provided. Based on the output, the microcomputer 130 drives the warning alarm 131. Further, when the output voltage of the constant current circuit 125 becomes equal to or less than a predetermined minimum value, the voltage detection circuit 162 detects this and the microcomputer 130 drives the warning alarm 131 similarly.
  • the metal ions generated by the ion elution unit 100 are put into the washing tub 30 as follows in order to perform antibacterial treatment on the laundry.
  • the main water supply valve 50a When the main water supply valve 50a is opened, water flows through the main water supply path 52a. If more water is to be supplied, the sub water supply valve 50b may be opened and water may be supplied to the sub water supply path 52b.
  • the metal ion elution step the metal ion elutes from the main water supply valve 50a and fills the internal space of the ion elution unit 100 and flows.
  • the drive circuit 120 applies a voltage between the electrodes 113 and 114 to elute ions of the metal constituting the electrodes into water.
  • the electrode constituent metal is silver
  • Ag ⁇ Ag + + e- reactions occur at the anode side of the electrode, silver ions Ag + are eluted into the water.
  • the current flowing between the electrodes is DC.
  • the water to which the metal ions have been added enters the detergent room 54, and is poured into the washing tub 30 from the water inlet 54a through the water inlet 56.
  • the voltage application to the electrodes 113 and 114 is stopped by the signal from the control unit 80 that has been subjected to the water stop processing.
  • the generation of metal ions is performed first, and even after the ion elution unit 100 stops generating metal ions, the water is supplied from the main water supply valve 50a. Subsequently, even if the water supply is stopped when a predetermined amount of water has been supplied, water to which a desired concentration of metal ions has been added can be obtained.
  • the electrodes 113 and 114 gradually wear out as the metal ions continue to elute, and Elution volume decreases.
  • the elution amount of metal ions becomes unstable or a predetermined elution amount cannot be secured. Therefore, the ion elution unit 100 can be replaced, and when the life of the electrodes 113 and 114 comes, a new unit can be replaced. Further, the user is notified through the operation Z display section 81 that the electrodes 113 and 114 have reached the service limit, and the maintenance is promoted such as replacement of the ion elution unit 100.
  • the constant current circuit 125 of the drive circuit 120 controls the voltage so that the current flowing between the electrodes 113 and 114 is constant. This makes the amount of metal ion eluted per unit time constant. If the amount of metal ions eluted per unit time is constant, it is possible to control the metal ion concentration in the washing tub 30 by controlling the amount of water flowing into the ion elution unit 100 and the ion elution time, which is desirable. It becomes easy to obtain the metal ion concentration of.
  • the current flowing between the electrodes 113 and 114 by the constant current circuit 125 can be changed according to the water quality and the water temperature. This control will be described later in detail.
  • FIG. 10 is a sequence diagram showing the operation of each component in the ion elution step and the operation of inverting the polarity of the electrode in association with each other. For example, if “input of metal ions” is selected in the final rinsing step among the washing step, the rinsing step, and the dehydrating step, the final rinsing step is an ion elution step.
  • the main water supply valve 50a and the sub water supply valve 50b are turned on (open), and the transformer 122 of the drive circuit 120 is also turned on. Voltage is still applied to electrode A (one of electrodes 113 and 114) and electrode B (the other of electrodes 113 and 114).
  • Electrode A remains at ground voltage. This time, electrode B is the anode and electrode A is the cathode. That is, the polarity of the electrode is reversed.
  • the polarity of the electrodes 113 and 114 is periodically inverted while the voltage application time T2 and the voltage application suspension time T3 are alternately repeated. The polarity reversal continues until the desired amount of metal ion is eluted.
  • the sum of the voltage application time T2 and the voltage application pause time T3 is defined here as "ion elution time" T4.
  • the optimal value for realizing the efficiency of ion elution and uniform wear of the electrode is the voltage application time T2 force. S19.9 seconds, voltage application pause time T3 was found to be 0.1 second. It was also found that a voltage of about 10 V and a current of about 29 mA are preferable. Furthermore, it was found that silver ions of about 90 ppb were required to perform an antibacterial treatment satisfying the antibacterial property specified in JIS (Japanese Industrial Standard) L 1902.
  • the current detection circuits 160 and 161 start the detection operation after a lapse of a predetermined time from the start of voltage application to the electrodes 113 and 114. Until the end of the detection operation ion elution time # 4, the monitoring of the current flowing through the electrodes 113 and 114 continues.
  • the drive circuit 120 is controlled based on the detection results of the current detection circuits 160 and 161. As described above, the current detection circuits 160 and 161 do not perform the detection operation when the current is not stable immediately after the voltage application to the electrodes 113 and 114 is started, and perform the detection operation after the current is stabilized. It can be performed.
  • the warning alarm 131 notifies the fact.
  • the user is informed that the ion elution unit 100 cannot secure the expected amount of metal ion elution due to the abnormal current value and cannot perform the desired antibacterial treatment on the laundry. It is possible to know that adjustment or repair of the knit 100 is necessary.
  • the operation of the washing machine 1 may be temporarily stopped. By doing so, it is possible to avoid a situation in which the user continues to use the washing machine 1 without noticing the antibacterial treatment of the laundry, which is expected of the ion elution unit 100, without the function.
  • the following operation can be performed.
  • the current detection circuits 160 and 161 detect an abnormality in the current value
  • the current having the normal value is detected at least once during the ion elution process
  • the warning alarm 131 does not perform the abnormality notification. You do it.
  • the operation of the washing machine 1 can be continued and the washing process can be completed.
  • the driving of the ion elution unit 100 can also be performed as follows. First, the ion elution time ⁇ 4 is adjusted according to the amount of water used by the washing machine 1, in other words, the water level in the washing tub 30. In this way, the ion elution time ⁇ 4 is adjusted according to the amount of water used. Since it is reduced, it is possible to supply water having a stable metal ion concentration to the laundry. For this reason, water having too high a concentration of metal ions can cause the laundry to become dirty, and conversely, if the concentration of the metal ions is too low and the laundry cannot be sufficiently subjected to antibacterial treatment, the situation can be avoided.
  • the voltage application time T2 and the voltage application suspension time T3 to the electrodes 113 and 114 are adjusted according to the amount of water used and the ion elution time T4. In this way, the amount of elution from the electrodes 113 and 114 differs depending on the amount of water used or the ion elution time T4 by adjusting at least one of the voltage application time T2 and the voltage application pause time T3. , The power to compensate. Therefore, while the wear of the electrodes 113 and 114 is made uniform, the electrodes 113 and 114 are biased to one polarity, and a large amount of scale is deposited on the cathode excess side (the side where the time used as a cathode is long). In this way, it is possible to prevent the elution of metal ions from being hindered when the anode is reversed, and the antibacterial treatment of the laundry can be stably continued for a long time.
  • the voltage application time T2 to the electrodes 113 and 114, the voltage application pause time # 3, or the ion elution time # 4 is adjusted.
  • each household has different conditions such as water pressure and shunt resistance, and even if the opening of water supply valve 50 is fixed on washing machine 1 side, The flow rate of water flowing through the ion elution unit 100 is not constant.
  • the amount of metal ion elution can be adjusted according to the flow rate of water, so that water with less variation in metal ion concentration can be supplied, and Antimicrobial treatment of the product can be performed uniformly. For this reason, the stirring step for distributing metal ions to the entire laundry can be minimized.
  • the current detection circuit 160 detects that the current value flowing through the electrodes 113 and 114 is equal to or less than a predetermined value, the flow rate of water supply to the ion elution unit 100 is reduced, and the ion elution time is extended. In this way, even when the current value is not enough to secure the expected amount of metal ions eluted, that is, even when the metal ions are not easily eluted, the water supply time is extended by reducing the water supply flow rate and the ion By extending the elution time, it becomes possible to elute a predetermined amount of metal ions until the completion of water supply. Therefore, a stable antibacterial treatment can always be performed on the laundry. [0116] Next, a description will be given of changing the elution control of metal ions according to water quality and water temperature, which is the most characteristic part of the present invention.
  • the dissolution efficiency was about 80% in Tokyo and 90%, but in some parts of Okiami prefecture, the dissolution efficiency was greatly reduced to about 30%. all right. Also, when the water temperature is different, there is a difference in the elution efficiency, although not as large as the difference due to the difference in water quality. In order to stably perform antibacterial treatment on the laundry, it is necessary to stably supply water containing a predetermined concentration of metal ions to the washing tub 30.
  • the current flowing through the electrodes 113 and 114 is changed by changing the set current value of the constant current circuit 125 according to the water quality and the water temperature, and the elution amount per unit time is changed. Or by changing the time during which a current is passed through the electrodes 113 and 114 (ion elution time T4 in Fig. 10) to compensate for the change in metal ion elution due to the change in elution efficiency, and to include a predetermined concentration of metal ion. Water is supplied to the washing tub 30.
  • the change of the current value and the change of the ion elution time can be performed simultaneously. If both the current value and the ion elution time are changed, the degree of freedom for the change is increased, and even if the elution efficiency changes drastically, the amount of each change can be reduced, so the current value increases. It is even more preferable in terms of safety, for example, by reducing the number of components and securing a margin for the rating of circuit components.
  • the washing machine 1 is provided with the flow rate detector 185, which can detect the amount of flowing water, and how to change the target current value and the ion elution time using the flow rate information. Control to ensure that metal ion elution is completed before water supply is completed. The ability to do S. It should be noted that, even after the completion of the initial water supply, a step of adjusting and eluting the metal ions may be added.
  • the voltage applied to the electrodes 113 and 114 is varied by the constant current circuit 125 so that a constant current flows through the electrodes 113 and 114.
  • the elution efficiency changes depending on the water quality, the water quality changes extremely during the supply of water to the washing tub 30, and the elution efficiency does not change.
  • the reaction of metal ion elution is Ag ⁇ Ag + + e Since the reaction is a constant like-, it is easy to calculate the amount of metal ion eluted by stabilizing the current value, and it is easy to calculate the target current value and voltage application time.
  • Voltage application to the electrodes is performed according to the sequence shown in FIG.
  • the voltage application time T2 and the voltage application pause time T3 in this manner, for example, the time for eluting metal ions can be changed without changing the ion elution time T4, so that water quality changes. It is possible to control the elution of metal ions according to the conditions.
  • the ion elution time T4 is adjusted by adjusting the feedwater flow rate in order to add a predetermined amount of metal ions until the completion of feedwater.
  • the voltage application time T2 and the voltage application suspension of the ion elution time are shorter than in this control method, rather than adjusting the water supply flow rate and supplying water over time.
  • Adjusting the amount of metal ions eluted by changing one or both of the times T3 makes it possible to easily input a predetermined amount of metal ions by the time the water supply is completed, depending on how the time is adjusted. Antibacterial treatment can be reliably performed. In addition, there is no need to provide a flow control device, which reduces costs.
  • the voltage application time T2 and the voltage application suspension time T3 it is preferable to change the voltage application time T2 and the voltage application suspension time T3 so that the time of the polarity inversion cycle (the sum of the voltage application time T2 and the voltage application suspension time T3) does not change. ,.
  • metal ions can be eluted at the same cycle as at the time of design.By changing the voltage application time T2, only one electrode is extremely reduced, resulting in insufficient elution and early life.
  • the voltage application time T2 is set to 10 seconds and the voltage application pause time T3 is set to 10 seconds.
  • the voltage application time T2 is 15 seconds and the voltage application suspension time T3 is 5 seconds. This makes it possible to obtain the target elution amount of metal ions by setting the metal ion elution amount to 3Z2 without changing the voltage application cycle time of 20 seconds, and the antibacterial treatment desired by the user It can be performed.
  • One or both of the voltage application time T2 and the voltage application suspension time T3 may be changed according to the target current value.
  • the elution time of the metal ions can be set according to the target current value. For example, when the target current value is changed to a high value, the metal ions are eluted too much and the electrodes 113 and 114 are depleted. This can prevent the adverse effects that occur when the life of the laundry ends sooner or when the laundry becomes dirty with metal ions.
  • Water quality and temperature can be detected by detecting the voltage applied to the electrodes 113 and 114 with the voltage detection circuit 162. This is because the conductivity of water changes due to changes in water quality, that is, changes in hardness, transparency, and the like, and the conductivity changes somewhat depending on the water temperature. By calculating the conductivity from the target current value and the applied voltage, the water quality and temperature can be detected and detected.
  • the conductivity tends to increase as the water temperature increases, and the elution efficiency decreases as the water temperature increases, and it can be said that the above-described control in consideration of the increase in the water temperature is required.
  • a reference temperature is provided. It is preferable to perform control to increase the elution efficiency.
  • Fig. 11 The relationship between voltage and elution efficiency is shown in Fig. 11, which will be described later. It is preferable to control the voltage applied to the electrode that can maintain the elution efficiency of metal ions within the range of 70% to 100%. ,. More preferably, the bacteriostatic activity value exceeds 2.0 as a result of the antibacterial test according to IS L 1902 described above, and the elution efficiency of metal ions is adjusted to realize both the service life of the silver electrode described above. It is better to control the applied voltage within the range of about 717V so that it is maintained within the range of 70% and 90%.
  • Electrodes 113 and 114 for eluting metal ions since the voltage detection is performed using the electrodes 113 and 114 for eluting metal ions, it is not necessary to add a component.
  • An electrode for water quality detection may be provided separately, and this will increase the number of selectable positions for detection. preferable.
  • electrodes and terminals for detection can be arranged in the drainage space 66 where the water in the washing tub 30 enters, or in the vicinity of the water tub 20 and the washing tub 30.
  • the control of the electrodes 113 and 114 is changed so as to increase the elution of metal ions.
  • the elution of metal ions is increased by increasing the target current value, increasing the voltage application time ⁇ 2-ion elution time # 4 ⁇ , or decreasing the voltage application pause time # 3.
  • the target current value is set to, for example, 29 mA, and the elution amount of metal ions is adjusted by changing the time for applying the voltage.
  • the target current value When the value becomes lower than the predetermined value, the target current value may be changed, for example, to 42 mA, and the elution amount of metal ions may be adjusted. Conversely, as a control method, when the voltage is higher than the predetermined voltage value, elution of metal ions may be reduced.
  • a water temperature detector such as a thermistor may be provided to directly measure the temperature.
  • the location of the water temperature detector may be inside the ion elution unit 100, on the upstream side or downstream side thereof, or in or around the water tub 20 or the washing tub 30.
  • the location of the water temperature detector may be inside the ion elution unit 100, on the upstream side or downstream side thereof, or in or around the water tub 20 or the washing tub 30.
  • the user can select whether to change the target current value, the ion elution time T4, the voltage application time # 2, and in some cases, the voltage application pause time # 3 according to the water quality and the water temperature. preferable. In areas where the efficiency of tap water elution is low, such as in parts of Okibashi prefecture, it is desirable to always change the target current value, ion elution time, voltage application time, or voltage application pause time from the standard values. In areas where the elution efficiency is standard, it is not always necessary to change.
  • the operation / display unit 81 only needs to be provided with a change switch for instructing a change.
  • the washing machine 1 itself may detect the water quality or the water temperature and set the target current value or the like according to the detection result. This is because, in response to the operation of the change switch, the control unit 80 operates the above-described voltage detection circuit 162 and the water temperature detector to detect water quality and water temperature, the target current value, the ion elution time T4, and the voltage application time. This is achieved by calculating appropriate values of ⁇ 2 and the voltage application pause time ⁇ 3.
  • the user may set at least one of the target current value, the ion elution time ⁇ 4, the voltage application time ⁇ 2, and the voltage application pause time ⁇ 3.
  • a selection switch for selecting a value such as a target current value is provided on the operation / display section 81, and the user operates the selection switch at the start of washing.
  • the setting may be changed by providing a selection switch, a selection connector, and a selection jumper line in the operation / display unit 81, the control unit 80, and the drive circuit 120.
  • control unit 80 may be provided with a ROM, for example, to store the changed control sequence including the changed value of the target current value and the like. It is good to This eliminates the need to perform the setting operation each time the washing machine is used.
  • control sequence can be changed and stored. The settings can be changed.
  • washing machine 1 may change the control sequence. Furthermore, the washing machine 1 itself may acquire environmental conditions by utilizing GPS (Global Positioning System) information or network information, and may change the control pattern. In addition, the user is instructed whether to use the clean water or the remaining water in the bath, and remember when using the remaining water in the bath. The control may be performed according to the changed value or sequence.
  • GPS Global Positioning System
  • the washing machine 1 of the present embodiment has a configuration in which the voltage between the electrodes 113 and 114 is detected by the voltage detection circuit 162 to detect water quality. It's water, not the water in the washing tub 30. In the process of performing antibacterial treatment, a finishing agent is added, and depending on the amount of the finishing agent, the water quality may greatly change. Therefore, when the finishing agent is added, a difference may occur between the water quality detected based on the voltage and the water quality of the washing tub 30, and a sufficient antibacterial effect may not be obtained. There is a lifetime.
  • a water quality detector 187 separate from the electrodes 113 and 114 and the voltage detection circuit 162 in the washing tub 30 or in the drainage space 66 communicating with the washing tub 30. That can be S. Since the main purpose of the water quality detector 187 is to determine the presence or absence of the finishing agent, it may be simple enough to achieve the purpose. For example, a sensor that measures the transmittance can be used by utilizing the fact that the transmittance of water to light changes when a finish is added. When it is confirmed that the finishing agent has been added, adjust the amount of metal ions eluted, or add water with an appropriate amount of metal ions eluted after the initial water supply to which the metal ions have been added. Thus, a desired antibacterial effect can be reliably obtained.
  • the water quality detector may be arranged in the finishing agent chamber 55.
  • the water quality detector 187 that detects the water quality of the water in the washing tub 30 is provided with the water supplied to the washing tub 30 without passing through the ion elution unit 100 (for example, the remaining water of the bath injected by a pump). It is essential to change the target current value etc. according to the water quality of ()). Also in this case, as the water quality detector 187, a simple one for measuring the transmittance can be used.
  • the power exemplifying a fully-automatic washing machine as an example.
  • the present invention also includes a horizontal drum type (tumbler type), an oblique drum type, a combined use of a dryer, and a two-layer type. It can be applied to all types of washing machines.
  • the idea of the present invention of adjusting the elution amount of metal ions in accordance with water quality and water temperature is that not only the structure of eluting metal ions from the metal electrode but also the elution of metal ions from a member containing metal. Even if the configuration is different, it is useful.
  • the washing machine of the present invention can be used not only for washing at home but also for washing in business, and can stably exert an antibacterial action regardless of water quality and temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Description

明 細 書
洗濯機
技術分野
[0001] 本発明は、使用する水に抗菌性のある金属イオンを添加する機能を有する洗濯機 に関する。
背景技術
[0002] 洗濯機で洗濯を行う際、水、特にすすぎ水に、仕上物質をカ卩えることがよく行われ る。仕上物質として一般的なのは柔軟剤やのり剤である。これに加え、最近では洗濯 物に抗菌性を持たせる仕上処理のニーズが高まつている。
[0003] 洗濯物は、衛生上の観点からは天日干しをすることが望ましレ、。し力 ながら近年 では、女性就労率の向上や核家族化の進行により、 日中は家に誰もいないという家 庭が増えており、このような家庭では室内干しにたよらざるを得なレ、。また、 日中誰か が在宅している家庭であっても、雨天の折りは室内干しをすることになる。
[0004] 室内干しの場合、天日干しに比べて洗濯物に細菌やカビが繁殖しやすくなる。梅 雨時のような高湿時や低温時など、洗濯物の乾燥に時間力かかる場合には、この傾 向は顕著である。また、繁殖状況によっては、洗濯物が異臭を放っときもある。このた め、 日常的に室内干しを余儀なくされる家庭では、細菌やカビの繁殖を抑制するた め、布類に抗菌処理を施したいという要請が強い。
[0005] 最近では、繊維に抗菌防臭加工ゃ制菌加工を施した衣類も多くなつている。しかし ながら、家庭内の繊維製品をすベて抗菌防臭加工済みのもので揃えるのは困難で ある。また、抗菌防臭加工の効果は、洗濯を重ねるにつれ落ちて行く。
[0006] そこで、洗濯の都度、洗濯物を抗菌処理しょうという考えが生まれた。例えば、 日本 実用新案公開公報 ·平 5— 74487号には、銀イオン、銅イオンなど殺菌力を有する金 属イオンを発生するイオン発生機器を装備した電気洗濯機が記載されてレ、る。 日本 特許公開公報 2000-93691号には、電界の発生によって洗浄液を殺菌するように した洗濯機が記載されている。 日本特許公開公報 2001-276484号には、洗浄水 に銀イオンを添加する銀イオン添加ユニットを具備した洗濯機が記載されている。 特許文献 1 :実開平 5-74487号公報
特許文献 2 :特開 2000— 93691号公報
特許文献 3:特開 2001 - 276484号公報
発明の開示
発明が解決しょうとする課題
[0007] 抗菌性のある金属イオンを利用する洗濯機にあっては、電極間に電圧を印加する ことにより電極から金属イオンを溶出させるイオン溶出ユニットを用いるのが通常の構 成である。例えば銀イオンを添加する場合、陽極側の電極を銀製とし、これを水中に 入れて電圧を印加すると、陽極において Ag→Ag+ + e—の反応が起こり、理論的には ファラデーの法則に従い、流した電流量に比例して、水中に銀イオン Ag +が溶出し 陽極は減耗する。
[0008] し力 ながら、金属イオンの溶出効率 (ファラデーの法則から求まる理論的な溶出 量に対する実際の溶出量の割合、換言すれば、流した電流に対する実際に溶出し た金属の割合:(金属溶出量) ÷ (電流量) )は、地域による水質の違いや季節による 水温の違いにより異なる。このため、所望の金属イオン量を得ることができない場合 があり、 目標とする金属イオン濃度を安定して供給できず、被洗濯物に所望する抗菌 処理を行うことが困難と
なることがある。
[0009] 本発明は、上記の問題を解決するためになされたものであり、その目的は、抗菌作 用のある金属イオンを、水質や水温によらず、 目標とする濃度で水に添加し得る洗濯 機を提供することを目的とする。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明では、金属製の 1対の電極を備え、使用する 水に電極を浸した状態で電極間に電圧を印加して電極間に電流を流し、電極より溶 出する金属イオンを使用する水に添加する洗濯機において、電極間に流す電流を 水質および水温の少なくとも一方に応じて変更するものとする。
[0011] 水質や水温によって金属イオンの溶出効率は変化するが、この洗濯機では、電極 間に流す電流を水質および水温の一方または双方に応じて変更することで、単位時 間当たりに溶出する金属イオンの量を調整する。通常、一度に使用する水の量はわ かっているため、単位時間当たりの溶出量の調節により、その水に目標とする濃度の 金属イオンを添加することができる。金属イオンの溶出時間は一定とすることが可能 である。なお、電極は少なくとも 2枚あって対を成していればよぐ電極を 3枚以上備 えて、対を成す電極を切り換える構成とすることも可能である。
[0012] 本発明ではまた、金属製の 1対の電極を備え、使用する水に電極を浸した状態で 電極間に電圧を印加して電極間に電流を流し、電極より溶出する金属イオンを使用 する水に添加する洗濯機において、一度に使用する水に添加するための金属イオン の溶出時間を、水質および水温の少なくとも一方に応じて変更するものとする。
[0013] この洗濯機は、溶出時間を変更することで溶出する金属イオンの総量を調節する。
溶出時間を水質や水温に応じて変更することで、溶出効率にかかわらず、一度に使 用する水に目標とする濃度の金属イオンを添加することができる。単位時間当たりの 金属イオンの溶出量は、水質や水温によって変化した溶出効率で定まる値とすること が可能である。
[0014] 本発明ではさらに、金属製の 1対の電極を備え、使用する水に電極を浸した状態で 電極間に電圧を印加して電極間に電流を流し、電極より溶出する金属イオンを使用 する水に添加する洗濯機において、電極間に流す電流を一定とし、電極間に印加す る電圧を水質および水温の少なくとも一方に応じて変更するものとする。
[0015] この洗濯機では、電極間に流す電流を一定としながら、印加する電圧を変更するこ とで、単位時間当たりの金属イオンの溶出量を調節する。印加電圧を水質や水温に 応じて変更することで、溶出効率にかかわらず、一度に使用する水に目標とする濃度 の金属イオンを添加することができる。金属イオン溶出の反応は、例えば Ag→Ag+ + e—のように、一定であるため、電流を一定にすることで、溶出量は印加電圧から容 易に算出することができる。
[0016] 本発明ではさらにまた、金属製の 1対の電極を備え、使用する水に電極を浸した状 態で電極間に電圧を印加して電極間に電流を流し、電極より溶出する金属イオンを 使用する水に添加する洗濯機において、電極間に電圧を断続的に印加して、電圧を 印加する印加時間と電圧を印加しない休止時間を設け、電極間に印加する電圧の 極性を周期的に反転させるとともに、印加時間および休止時間の少なくとも一方を、 水質および水温の少なくとも一方に応じて変更するものとする。
[0017] この洗濯機では、電極に電圧を印加する時間と電圧印加を休止する時間との比を 変える
ことによって、溶出量を調整する。印加時間や休止時間を水質や水温に応じて変更 することで、溶出効率にかかわらず、一度に使用する水に目標とする濃度の金属ィォ ンを添加することができる。印加時間と休止時間の総和は一定とすることが可能であ る。また、印加電圧の極性を印加時間ごとに反転させることで、一方の電極のみが減 耗して寿命が短くなつたり、電極の表面に不純物が固着して機能が損なわれたりする のを防止することができる。
[0018] ここで、印加時間と休止時間の双方の長さを変更して、印加時間と休止時間の和を 一定とするようにするとよい。印加電圧の極性反転周期が一定になり、両方の電極か ら金属イオンを均等に溶出させることができる。また、印加時間と休止時間の総和を 一定にして、一度に使用する水に目標とする濃度の金属イオンを添加することも容易 になる。さらに、洗濯機の給水が完了するまでに、確実に金属イオンの溶出を完了す ること力 Sできる。
[0019] 印加時間および休止時間の少なくとも一方を電極間に流す電流に応じて定めるよ うにしてもよい。金属イオンの溶出量は、電極間に流す電流と電流を流す時間の双 方に依存するから、このようにすることで、溶出量を的確に設定することができる。
[0020] 上記の各洗濯機は、電極間に所定の電流を流すために必要な電圧を測定すること により、水質および水温の少なくとも一方を検知するものとすることができる。電極間 に一定の電流を流すために必要な電圧は、水の導電率によって異なり、導電率は水 質や水温によって変わる。一定の電流を流すために必要な電圧を測定することで、 金属イオンの溶出量を調節するために必要な情報を得ることができる。
[0021] 実験により、金属イオンの溶出効率は、印加する電圧が低いと低下する傾向にある ことが判明した。したがって、電圧値を測定することは、溶出量を精度よく調節するた めにきわめて有用である。例えば溶出量を多くするために、電極間に流す電流を増 す、溶出時間を長くする、印加時間を長くする、あるいは、休止時間を短くする等の 処理を行うときに、増大させたり減少させたりする率を測定した電圧に応じて細力べ設 定すること力 Sできる。
[0022] 上記の各洗濯機は、また、水質および水温の少なくとも一方に応じた変更を、使用 者からの指示に応じて行うようにすることができる。通常、洗濯に利用される水は上水 であるが、上水でも水質は地域によって相違し、金属イオンの溶出効率も異なる。溶 出効率が低い地域では、電流、溶出時間、印加時間、あるいは休止時間を、水質や 水温に応じて変更することが好ましい。一方、標準的な溶出効率の地域では、変更 を常に行う必要はない。しかし、節水のために、風呂の残り水を利用することもあり、 その場合は、水質や水温が変化して溶出効率も変化するから、変更を行うべきである 。使用者からの指示に応じて変更を行うようにすることで、同一機種の洗濯機で、地 域や利用する水にかかわらず、 目標とする濃度の金属イオンを水に添加することが できるようになる。
[0023] 変更後の値を記憶しておくようにしてもよい。洗濯機を使用するたびに電流、溶出 時間、印加時間、あるいは休止時間を設定するための操作を行う必要がなくなって、 使用者の負担を軽減することができる。例えば、洗濯機の設置初期に、設置場所の 上水の水質に基づいた変更を行い、そのときの値を記憶させておけば、以後の通常 の使用では、再設定の必要がなくなる。また、風呂の残り水を使用するときに変更を 行レ、、そのときの値を記憶させておけば、その後、風呂の残り水を使用するときに、再 設定をする必要がなくなる。
[0024] 被洗濯物を入れる洗濯槽の水の水質および水温の少なくとも一方を検知して、変 更を行うようにしてもよレ、。洗濯槽内の水の水質、つまりは被洗濯物が含んでいる水 質により、金属イオンによる抗菌処理の効果に差が生じる。特に仕上剤が投入された 場合など、仕上
剤の成分により、抗菌処理の効果が低減することがある。洗濯槽内の水自体の水質 や水温に基づいて電流、溶出時間、印加時間、あるいは休止時間を変更することで 、所望の抗菌効果を得るために適切な濃度の金属イオンを添加することができる。
[0025] ここで、洗濯槽内の水の水質として、光の透過率を検知する構成とすることができる 。簡単な制御でかつ短時間で水質を知ることが可能になる。 発明の効果
[0026] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機において、本発明のように、電極間に流す電流を水質および水温の少なくと も一方に応じて変更するようにすると、単位時間当たりに溶出する金属イオンの量を 調整することができて、溶出効率かかわらず、使用する水に目標とする濃度の金属ィ オンを添加することができる。したがって、使用者は確実に所望の抗菌効果を得るこ とができる。
[0027] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機において、本発明のように、一度に使用する水に添加するための金属イオン の溶出時間を、水質および水温の少なくとも一方に応じて変更するようにすると、溶 出する金属イオンの総量を調節することができて、溶出効率かかわらず、使用する水 に目標とする濃度の金属イオンを添加することができる。
[0028] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機において、本発明のように、電極間に流す電流を一定とし、電極間に印加す る電圧を水質および水温の少なくとも一方に応じて変更するようにしても、単位時間 当たりの金属イオンの溶出量を調節することができて、溶出効率かかわらず、使用す る水に目標とする濃度の金属イオンを添加することができる。また、 目標濃度を実現 するために必要な溶出時間の算出も容易である。
[0029] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機において、本発明のように、電極間に電圧を断続的に印加して、電圧を印加 する印加時間と電圧を印加しない休止時間を設け、電極間に印加する電圧の極性を 周期的に反転させるとともに、印加時間および休止時間の少なくとも一方を、水質お よび水温の少なくとも一方に応じて変更するようにすると、溶出量を調整することがで きて、溶出効率にかかわらず、使用する水に目標とする濃度の金属イオンを添加す ること力 Sできる。また、一方の電極のみが減耗して寿命が短くなつたり、電極の表面に 不純物が固着して機能が損なわれたりするのを防止することができる。
[0030] ここで、印加時間と休止時間の双方の長さを変更して、印加時間と休止時間の和を 一定とするようにすると、極性反転の周期が一定になり、両方の電極から金属イオン を均等に溶出させることができる。また、印加時間と休止時間の総和を一定にしなが ら、使用する水に目標とする濃度の金属イオンを添加することも容易になる。
[0031] 印加時間および休止時間の少なくとも一方を電極間に流す電流に応じて定めるよ うにすると、溶出量を的確に設定することができる。
[0032] 各洗濯機において、電極間に所定の電流を流すために必要な電圧を測定すること により、水質および水温の少なくとも一方を検知するようにすると、金属イオンの溶出 量を精度
よく調節することが可能になる。
[0033] また、水質および水温の少なくとも一方に応じた変更を、使用者からの指示に応じ て行うようにすると、地域や使用者が利用する水にかかわらず、 目標とする濃度の金 属イオンを水に添加することを、同一機種の洗濯機で実現することができる。
[0034] 変更後の値を記憶しておくようにすると、洗濯機を使用するたびに操作を行う必要 力 くなつて、使用者の負担を軽減することができる。
[0035] 被洗濯物を入れる洗濯槽の水の水質および水温の少なくとも一方を検知して、変 更を行うようにすると、所望の抗菌効果を発揮するのに適切な濃度の金属イオンを添 カロすること力 Sできる。
[0036] 洗濯槽内の水の水質として、光の透過率を検知する構成とすると、簡単な制御でか つ短時間で水質を知ることが可能になる。
図面の簡単な説明
[0037] [図 1]本発明の一実施形態の洗濯機の概略の構成を示す垂直断面図。
[図 2]上記洗濯機の給水口を模式的に示す垂直断面図。
[図 3]上記洗濯機のイオン溶出ユニット周辺を示す上面図。
[図 4]上記イオン溶出ユニットの上面図。
[図 5]上記イオン溶出ユニットの図 4の線 A— Aでの垂直断面図。 [図 6]上記イオン溶出ユニットの図 4の線 B— Bでの垂直断面図。
園 7]上記イオン溶出ユニットの水平断面図。
園 8]上記イオン溶出ユニットが有する電極の斜視図。
園 9]上記イオン溶出ユニットの駆動回路を示すブロック図。
園 10]上記イオン溶出ユニットの制御シーケンスを模式的に示す図。
園 11]上記イオン溶出ユニットに 29mAの電流を流したときの電圧と銀イオン溶出効 率の関係を示す図。
符号の説明
1 洗濯機
10 外箱
20 水槽
30 洗濯槽
33 パルセータ
40 駆動ユニット
50 給水弁
50a メイン給水弁
50b サブ給水弁
53 給水口
54 洗剤室
55 仕上剤室
68 排水弁
80 制御部
81 操作/表示部
100 イオン溶出ュニ
113、 114 電極
120 駆動回路
125 定電流回路
131 警告報知器 150 電極駆動回路
160、 161 電流検知回路
162 電圧検知回路
180、 181 ス卜レーナ一
185 流量検知器
187 水質検知器
発明を実施するための最良の形態
[0039] 本発明の一実施形態について、図面を参照しながら説明する。図 1は、本実施形 態の洗濯機 1の全体構成を示す垂直断面図である。洗濯機 1は、全自動型であり、 上下方向に長い概ね直方体状の外箱 10を備えている。外箱 10は、金属又は合成 樹脂により成形され、その上面および底面は開口部となっている。外箱 10の上面開 口部には、合成樹脂製の上面板 11が重ねられ、この上面板 11が外箱 10にネジで 固定されている。
[0040] 図 1におレ、て、左側が洗濯機 1の正面(前面)、右側が背面である。洗濯機 1の背面 側に位置する上面板 11の上面には、同じく合成樹脂製のバックパネル 12が重ねら れ、このバックパネル 12が外箱 10又は上面板 11にネジで固定されている。外箱 10 の底面開口部には、合成樹脂製のベース 13が重ねられ、このベースが外箱 10にネ ジで固定されている。なお、図 1では、これまでに述べたいずれのネジも図示を省略 している。
[0041] ベース 13の四隅には、外箱 10を床の上に支えるための脚部 14a ' 14bが設けられ ている。正面側の脚部 14aは、高さ可変のネジ脚であり、これを回して洗濯機 1のレ ベル出しを行う。背面側の脚部 14bは、ベース 13に一体成型した固定脚である。
[0042] 上面板 11には、後述する洗濯槽 30に洗濯物を投入するための洗濯物投入口 15 が形設されている。蓋 16は、上面板 11にヒンジ部 17で結合され、垂直面内で回動 するとともに、洗濯物投入口 15を上から覆う。
[0043] 外箱 10の内部には、水槽 20と、脱水槽を兼ねる洗濯槽 30とが配置されている。水 槽 20および洗濯槽 30は、両者ともに、上面が開口した円筒形のカップの形状を呈し ており、各々の軸線が鉛直方向となり、かつ、水槽 20が外側、洗濯槽 30が内側とな るように同心状に配置されている。
[0044] 水槽 20は、サスペンション部材 21によって吊り下げられている。サスペンション部材 21は、水槽 20の外面下部と外箱 10の内面コーナー部とを連結する形で計 4箇所に 配備され、水槽 20を水平面内で揺動できるように支持している。
[0045] 洗濯槽 30は、上方に向力、うにつれて緩やかに広がるテーパー形状の周壁を有して いる。この周壁には、その最上部に環状に配置した複数個の脱水孔 31を除き、液体 を通すための開口部はない。すなわち、洗濯槽 30は、いわゆる「穴なし」タイプである 。洗濯槽 30の上部開口部の縁には、環状のバランサ 32が装着されている。バランサ 32は、洗濯物の脱水のため、洗濯槽 30を高速回転させたときに、その振動を抑制す る働きを有している。洗濯槽 30の内部底面には、槽内で洗濯水あるいはすすぎ水の 流動を生じさせるためのパルセータ 33が配置されている。
[0046] 水槽 20の下面には、駆動ユニット 40が装着されている。駆動ユニット 40は、モータ 41、クラッチ機構 42、及びブレーキ機構 43を含んでおり、その中心部から、脱水軸 4 4とパルセータ軸 45とが上向きに突出している。脱水軸 44とパルセータ軸 45は、脱 水軸 44を外側、パルセータ軸 45を内側とする二重軸構造となっている。脱水軸 4 4は、下方から上方に向かって水槽 20の中に入り込んだ後、洗濯槽 30に連結し、こ れを支えている。パルセータ軸 45は、下方から上方に向かって水槽 20を貫いてさら に洗濯槽 30の中に入り込み、パルセータ 33に連結し、これを支えている。脱水軸 44 と水槽 20との間、及び脱水軸 44とパルセータ軸 45の間には、各々、水もれを防ぐた めのシール部材が配置されている。
[0047] バックパネル 12の下の空間には、電磁的に開閉する給水弁 50が配置されている。
給水弁 50は、バックパネル 12を貫通して上方に突きだす接続管 51を有している。接 続管 51には、水道水などの上水を供給する給水ホース(図示せず)が接続されてい る。給水弁 50は、洗濯槽 30の内部に臨む位置に設けた容器状の吸水口 53に対し て給水を行う。給水口 53は、図 2に示す構造を有している。
[0048] 図 2は、給水口 53の模式的な垂直断面図である。給水口 53は、正面側が開口して おり、その開口部から引き出し 53a (投入ケース)が揷入される。引き出し 53aの内部 は、複数区画 (本実施形態では左右 2個)に仕切られている。左側の区画は、洗剤を 入れておく準備空間となる洗剤室 54である。右側の区画は、仕上剤を入れておく準 備空間となる仕上剤室 55である。洗剤室 54の底部には、給水口 53の内部に向かつ て開口する注水口 54aが設けられている。仕上剤室 55には、サイホン部 57が設けら れている。給水口 53は、引き出し 53aの下の箇所が洗濯槽 30に注水する注水口 56 となっている。
[0049] サイホン部 57は、仕上剤室 55の底面から垂直に立ち上がる内管 57aと、内管 57a にかぶせられるキャップ状の外管 57bとからなっている。内管 57aと外管 57bとの間に は、水の通る隙間が形成されている。内管 57aの底部は、給水口 53の底部に向かつ て開口している。外管 57bの下端は、仕上剤室 55の底面と所定の隙間を保ち、ここ が水の入口になる。内管 57aの上端を超えるレベルまで仕上剤室 55に水が注ぎ込ま れると、サイホンの作用が起こり、水はサイホン部 57を通って仕上剤室 55から吸い出 され、給水口 53の底部に向カ 、、そこから注水口 56を通じて洗濯槽 30へと落下す る。
[0050] 給水弁 50は、メイン給水弁 50aとサブ給水弁 50bとからなっている。メイン給水弁 5 Oaは、相対的に流量大に設定されている。一方、サブ給水弁 50bは、相対的に流量 小に設定されている。流量の大小設定は、メイン給水弁 50a及びサブ給水弁 50bの 内部構造を互いに異ならせることにより実現可能である力 弁の構造そのものは同じ とし、これに絞り率の異なる流量制限部材を組み合わせることにより実現してもよい。 接続管 51は、メイン給水弁 50a及びサブ給水弁 50bの両方に共通である。
[0051] メイン給水弁 50aは、メイン給水経路 52aを通じて給水口 53の天井部の開口に接 続される。この開口は、洗剤室 54に向かって開いている。従って、メイン給水弁 50a 力 流れ出した流量大の水流は、メイン給水経路 52aから洗剤室 54に注ぎ込まれる 。一方、サブ給水弁 50bは、サブ給水経路 52bを通じて給水口 53の天井部の開口 に接続される。この開口は、仕上剤室 55に向かって開いている。従って、サブ給水弁 50bから流れ出した流量小の水流は、サブ給水経路 52bから仕上剤室 55に注ぎ込 まれる。すなわち、メイン給水弁 50aから洗剤室 54を通って洗濯槽 30に注ぐ経路と、 サブ給水弁 50bから仕上剤室 55を通って洗濯槽 30に注ぐ経路とは別系統である。
[0052] 図 1に戻って説明を続ける。水槽 20の底部には、水槽 20及び洗濯槽 30の中の水 を外箱 10の外に排水する排水ホース 60が取り付けられている。排水ホース 60には、 排水管 61及び排水管 62から水が流れ込む。排水管 61は、水槽 20の底面の外周寄 りの箇所に接続されている。一方、排水管 62は、水槽 20の底面の中心寄りの箇所に 接続さ
れている。
[0053] 水槽 20の内部底面には、排水管 62の接続箇所を内側に囲い込むように環状の隔 壁 63が固定されている。隔壁 63の上部には、環状のシール部材 64が取り付けられ ている。このシール部材 64が洗濯槽 30の底部外面に固定したディスク 65の外周面 に接触することにより、水槽 20と洗濯槽 30との間に独立した排水空間 66が形成され ている。排水空間 66は、洗濯槽 30の底部に形設した排水口 67を介して洗濯槽 30 の内部に連通している。
[0054] 排水管 62には、電磁的に開閉する排水弁 68が設けられている。排水管 62の排水 弁 68の上流側にあたる箇所には、エアトラップ 69が設けられており、エアトラップ 69 力 は導圧管 70が延び出している。導圧管 70の上端には、洗濯槽 30又は水槽 20 の水量を検知する水位スィッチ 71が接続されている。
[0055] 外箱 10の正面側には、制御部 80が配置されている。制御部 80は、上面板 1 1の下 に置かれており、上面板 11の上面に設けられた操作/表示部 81を通じて使用者か らの操作指令を受け、駆動ユニット 40、給水弁 50、及び排水弁 68に動作指令を発 する。また、制御部 80は、操作/表示部 81に表示指令を発する。制御部 80は、後 述するイオン溶出ユニット 100の駆動回路 120 (図 9参照)を含んでいる。
[0056] メイン給水弁 50aからメイン給水経路 52aに至る給水経路には、流量検知器 185が 配置されている。流量検知器 185は、周知の流量計により構成することができる。流 量検知器 185は、図 1では、給水弁 50に付属しているように描いている力 配置場所 はここに限定されず、後述するイオン溶出ユニット 100のところに設けられてもよいし、 給水口 53のところに設けられてもよレ、。また、流量検知は、水位スィッチ 71の検知し た単位時間当たりの水量変化や、所定の水量変化に要する時間などから演算して求 めるという手法で行うこともできる。
[0057] 洗濯機 1が有するイオン溶出ユニット 100は、メイン給水管 52aの下流側に接続さ れている。以下、図 3ないし図 10に基づき、イオン溶出ユニット 100の構造と機能、及 び洗濯機 1に搭載されて果たす役割につき説明する。
[0058] 図 3は、給水弁 50、イオン溶出ユニット 100、及び給水口 53の配置関係を示す部 分上面図である。イオン溶出ユニット 100の両端は、メイン給水弁 50aと給水口 53と に直接接続されている。すなわち、イオン溶出ユニット 100は、単独でメイン給水経路 52aの全体を構成している。サブ給水経路 52bは、給水口 53から突出したパイプと サブ給水弁 50bとをホースで連結して構成されている。
[0059] なお、図 1の模式図では、判りやすいように、給水弁 50、イオン溶出ユニット 100、 及び給水口 53を洗濯機 1の前後方向に並べて描レ、てレ、る力 実際の洗濯機 1では、 これらは前後方向にではなく左右方向に沿って並ぶ形で配置されている。
[0060] 図 4ないし図 8は、イオン溶出ユニット 100の構造を示している。図 4は、イオン溶出 ユニット 100の上面図である。図 5は、イオン溶出ユニット 100の垂直断面図で、図 4 の線 A-Aに沿って切断したものである。図 6も、イオン溶出ユニット 100の垂直断面 図で、図 4の線 B-Bに沿って切断したものである。図 7は、イオン溶出ユニット 100の 水平断面図である。図 8は、イオン溶出ユニット 100の電極の斜視図である。
[0061] イオン溶出ユニット 100は、透明又は半透明の合成樹脂(無色又は着色)、あるい は不透明の合成樹脂からなるケース 110を有している。ケース 110は、上面の開口し た
ケース本体 110aと、その上面開口を閉ざす蓋 110bとで構成されている(図 5参照)。 ケース本体 110aは、細長い形状を有しており、長手方向の一方の端に水の流入口 1 11を、他方の端に水の流出口 112を備えている。流入口 111及び流出口 112は、い ずれもパイプ形状をなしている。流出口 112の断面積は、流入口 1 11の断面積より 小さくなつている。
[0062] ケース 110は、長手方向を水平方向として配置されるものである力 このように水平 に配置されたケース本体 110aの底面は、流出口 112に向かい次第に下がる傾斜面 となっている(図 5参照)。すなわち、流出口 112は、ケース 110の内部空間において 最も低位に設けられている。
[0063] 蓋 110bは、 4本のネジ 170によりケース本体 110aに固定されている(図 4参照)。ケ ース本体 110aと蓋 110bとの間には、シールリング 171が挟み込まれている(図 5参 照)。
[0064] ケース 110の内部には、流入口 111から流出口 112へと向力う水流に沿う形で、 2 枚の板状電極 113 · 114が向かい合わせに配置されている(図 6、図 7参照)。ケース 110の中に水が存在する状態で、電極 113 · 114に所定の電圧を印加すると、電極 1 13 · 114の陽極側から電極構成金属の金属イオンが溶出する。電極 113 · 114は、 一例として、 2cm X 5cm,厚さ lmm程度の銀プレートを約 5mmの距離を隔てて配 置する構成とすることができる。
[0065] 電極 113 · 1 14の材料は、上記の銀に限られず、抗菌性を有する金属イオンのもと になる金属であればよい。例えば、銀の他、銅、銀と銅との合金、亜鉛などが選択可 能である。銀電極から溶出する銀イオン、銅電極から溶出する銅イオン、及び亜鉛電 極力、ら溶出する亜鉛イオンは、優れた殺菌効果や防カビ効果を発揮する。また、銀と 銅との合金電極からは、銀イオンと銅イオンとを同時に溶出させることができ、同様に 殺菌効果や防カビ効果を得ることができる。さらに、金属イオンの溶出を阻害するス ケールとして電極表面に生成する金属塩化物のうち、塩ィ匕銀は難溶性である力 塩 化銅や塩化亜鉛は金属のイオン化傾向が高く溶解し易いため、電極を銀と銅の合金 あるいは銀と亜鉛の合金とすると、均一な塩化物被膜を形成し難くなり、溶出が阻害 されるのを防ぐことができる。
[0066] イオン溶出ユニット 100では、電圧の印加の有無で金属イオンの溶出/非溶出を 選択すること力できる。また、電流や電圧印加時間を制御することにより、金属イオン の溶出量を制御または調整することができる。イオン溶出ユニット 100では、ゼォライ トなどの金属イオン担持体力 金属イオンを溶出させる方式と比較した場合、金属ィ オンを投入するかどうかの選択や金属イオンの濃度の調節をすベて電気的に行える ので、使い勝手がよい。
[0067] 電極 113 · 1 14は、完全に平行に配置されている訳ではなレ、。上方から見ると、電 極 113 · 114は、ケース 110内を流れる水流に関し、上流側から下流側に向かって、 言い換えれば、流入口 111から流出口 112の方向に向かって、電極間の間隔が狭く なるように、テーパー状に配置されてレ、る(図 7参照)。 [0068] ケース本体 110aの平面形状も、流入口 111の存在する端から流出口 112の存在 する端に向けて絞り込まれている。すなわち、ケース 110の内部空間の断面積は、上 流側から下流側に向かって漸減する。
[0069] 電極 113· 114は、正面形状で長方形であり、各々に端子 115· 116が設けられて いる。端子 115· 116は、それぞれ電極 113· 114の下縁から垂下する形で 、上流側となる電極端より内側に入り込んだ箇所に形設されている。
[0070] 電極 113と端子 115、及び電極 114と端子 116とは、それぞれ同一の金属素材に より一体成形されている。電極 115· 116は、ケース本体 110aの底壁に設けた貫通 孔を通じて、ケース本体 110aの下面に導出される。端子 115· 116がケース本体 11 Oaを突き抜ける箇所には、図 6の図中拡大図に見られるように、水密シール 172の処 理が施されている。水密シール 172は、後述する第 2のスリーブ 175とともに二重のシ ール構造を形成し、ここからの水もれを防レ、でレ、る。
[0071] ケース本体 110aの下面には、端子 115· 116を隔てる絶縁壁 173がー体成形され ている(図 6参照)。端子 115·116は、図示しないケーブルを介して制御部 80に付属 する駆動回路 120に接続されている。
[0072] 端子 115.116のうち、ケース 110の中に残っている部分は、絶縁物質製のスリーブ で保護されている。このとき、第 1のスリーブ 174と第 2のスリーブ 175との 2種類のスリ ーブが使用されている。第 1のスリーブ 174は、合成樹脂製であって、端子 115· 116 の付け根部分に嵌合されている。第 1のスリーブ 174は、その一部が電極 113· 114 の一方の側面に張り出す形になっており、この部分の側面に突起を形設し、この突 起を電極 113· 114に設けた透孔に係合させている(図 6·図 7参照)。これにより、第 1のスリーブ 174からの電極 113· 114の脱落が防がれている。第 2のスリーブ 175は 、軟質ゴム製で、第 1のスリーブ 174とケース本体 110aの底壁との隙間を埋めるとと もに、 自身とケース本体 110aとの隙間、及び自身と電極 113· 114との隙間からの水 もれを防いでいる。
[0073] 前述のように端子 115·116は、電極 113· 114において上流側の箇所にあり、端子 115· 116に嵌合される第 1のスリーブ 174により電極 113· 114の上流側の部分の支 えが構成される。蓋 110bの内面には、第 1のスリーブ 174の位置に合わせてフォー ク形状の支持部 176が形設されている(図 6参照)。この支持部 176が第 1のスリーブ 174の上縁を挟み、第 2のスリーブ 175が第 1のスリーブ 174とケース本体 110aとの 隙間を埋めていることと相まって、しつ力りとした支えを構成する。なお、フォーク形状 の支持部 176は、長短の突出部で電極 113 · 114を挟み、これにより蓋 110bの側で も電極 113 · 114の間隔が適切に保たれるようになってレ、る。
[0074] 電極 113 · 1 14の下流側の部分も、ケース 110の内面に設けた支持部により支えら れる。ケース本体 110aの底壁からは、フォーク形状の支持部 177が立ち上がり、蓋 1 10bの天井面からは同じくフォーク形状の支持部 178が、支持部 177と向かい合う形 で垂下している(図 5 ·図 8参照)。電極 113 · 114は、それぞれ下流側部分の下縁と 上縁とを支持部 177 · 178で挟まれ、動かなレ、ように保持されてレ、る。
[0075] 図 7に見られるように、電極 113 · 114は、互いに対向する面と反対側の面力 ケー ス 110の内面との間に空間を生じる形で配置されている。また、図 5に見られるように 、電極 113 · 1 14は、その上縁及び下縁とケース 110の内面との間にも空間が生じる ように配置されている(支持部 176 · 177 · 178との接触部分を除く)。さらに、図 5、図 7に見られるように、電極 113 · 114の上流側及び下流側の縁とケース 110の内面と の間にも空間が設けられている。
[0076] なお、ケース 110の幅をもっと狭くせざるを得ない場合は、電極 113 · 114の、互い に対向する側の面と反対側の面をケース 110の内壁に密着させるような構成も可能 である。
[0077] 電極 113 · 1 14に異物が接触しなレ、ようにするため、電極 113 · 114の上流側には、 金網製のストレーナ一が配置される。本実施形態の場合、図 2に示すように、接続管 51の中にストレーナ一 180が設けられている。ストレーナ一 180は、給水弁 50の中 に異物が入り込まないようにするためのものである力 イオン溶出ユニット 100の上流 側ストレーナ一も兼ねてレ、る。
[0078] 電極 113 · 1 14の下流側にも、金網製のストレーナ一 181が配置されている。ストレ ーナー 181は、長期間の使用により電極 113 · 114がやせ細ったとき、それが折れて 破片が流失するのを防ぐ。ストレーナ一 181の配置場所としては、例えば流出口 112 を選択すること力 Sできる。 [0079] ストレーナ一 180 · 181の配置場所は、上記の場所に限定されなレ、。「電極の上流 側」、「電極の下流側」という条件を満たしさえすれば、ストレーナ一 180 · 181は、給 水経路中のどこに配置されてもよい。なお、ストレーナ一 180 · 181は取り外し可能と し、捕捉した異物を除去したり、 目詰まりの原因物質を清掃したりすることができるよう にする。
[0080] 次に、イオン溶出ユニット 100の駆動回路 120について説明する。図 9は、駆動回 路 120の構成例である。商用電源 121にトランス 122が接続されており、このトランス 122が 100Vを所定の電圧に降圧する。トランス 122の出力電圧は、全波整流回路 1 23によって整流された後、定電圧回路 124で定電圧とされる。定電圧回路 124には 、定電流回路 125が接続されている。定電流回路 125は、後述する電極駆動回路 1 50に対し、電極駆動回路 150内の抵抗値の変化にかかわらず一定の電流を供給す るように動作する。
[0081] 商用電源 121には、トランス 122と並列に整流ダイオード 126が接続されている。整 流ダイオード 126の出力電圧は、コンデンサ 127によって平滑化された後、定電圧回 路 128によって定電圧とされ、マイクロコンピュータ 130に供給される。マイクロコンビ ユータ 130は、トランス 122の一次側コイルの一端と商用電源 121との間に接続され たトライアツク 129を起動制御する。
[0082] 電極駆動回路 150は、 NPN型トランジスタ Q1— Q4と、ダイオード D1 'D2、抵抗 R 1一 R7を図のように接続して構成されている。トランジスタ Q1とダイオード D1とは、フ オト力ブラ 151を構成し、トランジスタ Q2とダイオード D2とは、フォト力ブラ 152を構成 している。すなわち、ダイオード D1 'D2は、発光ダイオードであり、トランジスタ Ql、 Q2は、フォトトランジスタである。
[0083] マイクロコンピュータ 130からライン L1にハイレベルの電圧、ライン L2にローレベル の電圧又は OFF (ゼロ電圧)が与えられると、ダイオード D2が〇Nになり、それに付 随してトランジスタ Q2も〇Nになる。トランジスタ Q2が〇Nになると、抵抗 R3 'R4'R7 に電流が流れ、トランジスタ Q3のベースにバイアスが力かり、トランジスタ Q3は〇Nに なる。
[0084] 一方、ダイオード D1は OFFなので、トランジスタ Q1は〇FF、トランジスタ Q4も OFF となる。この状態では、陽極側の電極 113から陰極側の電極 114に向かって電流が 流れる。これによつて、イオン溶出ユニット 100では、陽イオンの金属イオンと陰イオン とが発生する。
[0085] イオン溶出ユニット 100に長時間一方向に電流を流すと、図 9で陽極側となってい る
電極 113力 S減耗するとともに、陰極側となっている電極 114には、水中のカルシウム などの不純物がスケールとして固着する。また、電極の成分金属の塩化物及び硫化 物が電極表面に発生する。このことはイオン溶出ユニット 100の性能低下をもたらす ので、本実施形態では、電極の極性を反転して電極駆動回路 150を運転できるよう に構成されている。
[0086] 電極の極性を反転するにあたっては、ライン L1 'L2の電圧を逆にして、電極 113 · 114を逆方向に電流が流れるようにマイクロコンピュータ 130が制御を切り替える。こ の場合、トランジスタ Q1 . Q4が〇N、トランジスタ Q2. Q3が OFFとなる。マイクロコン ピュータ 130は、カウンタ機能を有していて、所定カウント数に達する度に上述の切り 替えを行う。
[0087] 電極駆動回路 150内の抵抗の変化、特に電極 113 · 114の抵抗変化によって、電 極間を流れる電流値が減少するなどの事態が生じた場合は、定電流回路 125がそ の出力電圧を上げ、電流の減少を防止する。し力 ながら、累積使用時間が長くなる と、イオン溶出ユニット 100が寿命を迎える。この場合、電極の極性反転や、特定極 性である時間を平時よりも長くして電極に付着した不純物を強制的に取り除く電極洗 浄モードへの切り替えや、定電流回路 125の出力電圧上昇を実施しても、電流減少 を防げなくなる。
[0088] そこで、本回路では、イオン溶出ユニット 100の電極 113 · 114間を流れる電流を抵 抗 R7に生じる電圧によって監視し、その電流が所定の最小電流値に至ると、それを 電流検知回路 160が検知するようにしている。最小電流値を検知したという情報は、 フォトカプラ 163を構成する発光ダイオード D3からフォトトランジスタ Q5を介してマイ クロコンピュータ 130に伝達される。マイクロコンピュータ 130は、ライン L3を介して警 告報知器 131を駆動し、所定の警告報知を行わせる。警告報知器 131は、操作/表 示部 81又は制御部 80に配置されている。
[0089] また、電極駆動回路 150内でのショートなどの事故については、電流が所定の最大 電流値以上になったことを検出する電流検知回路 161が用意されており、この電流 検知回路 161の出力に基づレ、て、マイクロコンピュータ 130は警告報知器 131を駆 動する。さらに、定電流回路 125の出力電圧が予め定めた最小値以下になると、電 圧検知回路 162がこれを検知し、同様にマイクロコンピュータ 130が警告報知器 131 を駆動する。
[0090] イオン溶出ユニット 100の生成した金属イオンは、被洗濯物に抗菌処理を行うため に、次のようにして洗濯槽 30に投入される。
[0091] メイン給水弁 50aが開くと、メイン給水経路 52aに水が流れる。より多くの水を給水し たい場合は、サブ給水弁 50bも開き、サブ給水経路 52bにも水を流してもよい。
[0092] 金属イオン溶出工程では、メイン給水弁 50aからの水力 イオン溶出ユニット 100の 内部空間を満たしつつ流れる。それと同時に、駆動回路 120が電極 113 · 114の間 に電圧を印加し、電極構成金属のイオンを水中に溶出させる。電極構成金属が銀の 場合、陽極側の電極において Ag→Ag+ + e—の反応が生じ、水中に銀イオン Ag+が 溶出する。電極間を流れる電流は、直流である。金属イオンを添加された水は、洗剤 室 54に入り、注水口 54aから注水口 56を経て洗濯槽 30に注ぎ込まれる。
[0093] 例えば、洗濯槽 30に所定量の金属イオン添加水を給水する場合、洗濯槽 30に所 定量の金属イオン添加水が投入され、以後金属イオン非添加水を設定水位まで注 げば、洗濯槽 30内の水の金属イオン濃度が所定値に達すると判断されたところで、 所定動作により給
水停止の処理を受けた制御部 80からの信号により、電極 113 · 114への電圧印加を 停止する。
[0094] なお、流す水の量が検知できる場合は、金属イオンの生成を先に行ってしまレ、、ィ オン溶出ユニット 100が金属イオンを生成しなくなった後もメイン給水弁 50aから給水 を続け、所定量給水できたところで給水を止めるようにしても、所望濃度の金属イオン を添加した水を得ることができる。
[0095] 電極 113 · 1 14は、金属イオンの溶出を続けるうちに次第に減耗し、金属イオンの 溶出量が減少する。使用が長期にわたれば、金属イオンの溶出量が不安定になった り、所定の溶出量を確保できなくなったりする。そのため、イオン溶出ユニット 100は 交換可能とされ、電極 113 · 114の寿命が来れば新しレ、ユニットに交換できるようにな つている。さらに、電極 113 · 114が耐用限界に達したことを操作 Z表示部 81を通じ て使用者に報知し、イオン溶出ユニット 100の交換などのメンテナンスを促す。
[0096] イオン溶出ユニット 100を駆動するにあたり、駆動回路 120の定電流回路 125は、 電極 113 · 114間を流れる電流値が一定となるよう電圧を制御する。これにより、単位 時間あたりの金属イオン溶出量が一定になる。単位時間あたりの金属イオン溶出量 が一定であれば、イオン溶出ユニット 100に流す水量とイオン溶出時間とを制御する ことにより、洗濯槽 30内の金属イオン濃度を制御することができることになり、所望の 金属イオン濃度を得るのが容易になる。なお、定電流回路 125が電極 113 · 114間 に流す電流は、水質や水温に応じて変更することができる。この制御については、後 に詳述する。
[0097] 電極 113 * 114のうち、陰極として使用される側にはスケールが析出する。極性を反 転しないまま直流を流し続け、スケールの堆積量が多くなると、電流が流れに《なり 、金属イオンを所定レートで溶出することが難しくなる。また、陽極として使用される電 極だけ減耗が早まる「片減り」の問題も発生する。そこで、電極 113 · 114の極性を周 期的に反転する。
[0098] 電極 113 · 114への電圧印加の制御方法について、図 10に基づき説明する。図 10 は、イオン溶出工程時における各構成要素の動作と電極の極性反転動作とを関連 づけて示すシーケンス図である。例えば、洗い工程、すすぎ工程、脱水工程のうち、 最終すすぎ工程で「金属イオンの投入」が選択されていれば、最終すすぎ工程がィ オン溶出工程ということになる。
[0099] 図 10においては、最初、メイン給水弁 50aとサブ給水弁 50bとが ONになる(開く)と ともに、駆動回路 120のトランス 122も ONになる。電極 A (電極 113 · 114の一方)と 電極 B (電極 113 · 114の他方)には、まだ電圧が印加されてレ、なレ、。
[0100] ここで、まず、電流検知回路 160 · 161の動作確認が行われる。これにより、電流検 知回路 160 · 161が誤検知を行う可能性を排除し、正しくなレ、濃度で金属イオンが溶 出されるのを未然に防ぐことができる。
[0101] 電流検知回路動作確認時間 T1の間に電流検知回路 160 · 161の動作を確認した 後、電極 Α·Βへの通電を開始する。最初は、電極 Αに電圧を印加し、電極 Bは接地 電圧のままとする。この時点では、電極 Aが陽極、電極 Bが陰極ということになる。
[0102] 電圧印加時間 T2が経過した後、電極 Aへの電圧印加が中止される。電圧印加休 止時間
T3を挟んで電極 Bへの電圧印加が開始される。電極 Aは接地電圧のままである。今 度は、電極 Bが陽極、電極 Aが陰極となる。すなわち、電極の極性が反転される。
[0103] 再び電圧印加時間 T2が経過した後、電極 Bへの電圧印加が中止される。電圧印 加休止時間 T3を挟んで、再び電極の極性が反転される。
[0104] このようにして、電圧印加時間 T2と電圧印加休止時間 T3とを交互に繰り返しつつ 、電極 113 · 114の極性を周期的に反転する。所期の量の金属イオンが溶出されるま で、極性の反転は続く。電圧印加時間 T2と電圧印加休止時間 T3との総和を、ここで は「イオン溶出時間」 T4と定義する。
[0105] 効果的なイオン溶出の制御を得るために、発明者が検討を重ねた結果、イオン溶 出の効率及び電極の均一な減耗を実現するのに最適な数値は、電圧印加時間 T2 力 S19. 9秒、電圧印加休止時間 T3が 0. 1秒であることが判明した。また、電圧が 10 V程度、電流が 29mA程度であるのが好ましいことも明らかになった。さらに、 JIS (日 本工業規格) L 1902に定められる抗菌性を満足する抗菌処理を行うには、 90pp b程度の銀イオンが必要であることも判った。
[0106] JIS C 9606 (電気洗濯機)に定める模擬洗濯物 8kgを定格洗濯容量 8kgの洗濯 機に入れ、上記最適数値で制御したイオン溶出ユニットを洗濯機に搭載し、 JIS
L 1902 (繊維製品の抗菌性試験方法 ·抗菌効果)に定める菌液吸収法 (抗菌防 臭加工にあっては、静菌活性値が 2. 0以上であること)により抗菌性の試験を行った 結果、静菌活性値として 2. 4の値を得た。また、 1日 1回 8kgの洗濯物を洗濯し抗菌 処理を施した(1回の抗菌処理時使用水量は 40L)場合、一対の銀電極 15gで銀電 極の寿命は 10年間使用可能であることを、連続して銀イオンを溶出させ続ける、カロ 速溶出試験の結果力 確認できた。これらのことから、必要最低量の銀電極で洗濯 機の耐用年数に十二分に使用できるとともに、十分な抗菌効果を洗濯物に与えられ ること力 Sできる。
[0107] 電極 113 · 114への電圧印加は、イオン溶出ユニット 100への給水開始後に開始さ れる。このため、電極への電圧印加開始時から確実に金属イオンを溶出でき、所期 の総量の金属イオンを確実に洗濯物に供給することができる。
[0108] 電流検知回路 160 · 161は、電極 113 · 114への電圧印加が開始されてから所定 時間経過後に検知動作を開始する。検知動作イオン溶出時間 Τ4の終了まで、電極 113 · 114に流れる電流の監視が続く。電流検知回路 160 · 161の検知結果に基づ き駆動回路 120の制御が行われる。このように電流検知回路 160 · 161は、電極 113 • 114への電圧印加開始直後の電流が安定していない時には検知動作を行わず、 電流が安定してから検知動作を行うので、より正しい検知を行うことができる。
[0109] 電極に流れる電流が所定値の範囲を超え、異常値となったことを電流検知回路 16 0 · 161が検知したときは、警告報知器 131がその旨を報知する。これにより、使用者 は、電流値が異常であるためイオン溶出ユニット 100が所期の金属イオン溶出量を 確保できず、洗濯物に所望の抗菌処理を行うことができないこと、また、イオン溶出ュ ニット 100の調整又は修理が必要であることを知ることができる。
[0110] 電流検知回路 160 · 161が電流値の異常を検知したときは、洗濯機 1の運転を一時 停止することとしてもよい。このようにすれば、イオン溶出ユニット 100に期待されてい る洗濯物の抗菌処理という機能を欠きながら、それに気付かずに使用者が洗濯機 1 の使用を続けるという事態を回避することができる。
[0111] また、次のような動作を行わせることも可能である。すなわち、電流検知回路 160 · 1 61が電流値の異常を検知しても、イオン溶出工程中に少なくとも一度正常値の電流 が検知されていれば、警告報知器 131は異常報知を行わないようにするのである。こ のようにすれば、ノイズなどによる誤検知で一時的に異常が検知された場合でも、洗 濯機 1の運転を続行し、洗濯工程を完了することができる。
[0112] また、イオン溶出ユニット 100の駆動を次のように行うことも可能である。まず、洗濯 機 1の使用する水量、言い換えれば、洗濯槽 30の中の水位に応じて、イオン溶出時 間 Τ4を調節する。このようにすれば、使用する水量に応じてイオン溶出時間 Τ4が調 節されるので、金属イオン濃度の安定した水を洗濯物に供給することができる。この ため、金属イオン濃度の高すぎる水が却って洗濯物に汚れをもたらしたり、逆に金属 イオン濃度が低すぎるため洗濯物を十分に抗菌処理できないとレ、つた事態を回避で きる。
[0113] さらに、使用する水量やイオン溶出時間 T4に応じて電極 113 · 114への電圧印加 時間 T2や電圧印加休止時間 T3を調節する。このようにすれば、使用する水量、又 はイオン溶出時間 T4によって電極 113 · 114からの溶出量が異なってくるのを、電圧 印加時間 T2と電圧印加休止時間 T3の少なくとも一方を調節することにより、補償す ること力 Sできる。従って、電極 113 · 114の減耗を均一にするとともに、電極 113 · 114 が片方の極性に偏り、陰極過多側(陰極として用いられる時間が長かった側)にスケ ールが大量に堆積し、次に陽極に反転したときに金属イオンの溶出が阻害されること を防ぐことができ、洗濯物の抗菌処理を長期にわたり安定して続けることができる。
[0114] また、流量検知器 185の流量検知結果に基づき、電極 113 · 114への電圧印加時 間 T2、電圧印加休止時間 Τ3、又はイオン溶出時間 Τ4を調節する。洗濯機 1を水道 などの蛇口に接続して水を使用する場合、各家庭において水圧ゃ菅路抵抗などの 条件が異なり、洗濯機 1側で給水弁 50の開度を一定にしたとしても、イオン溶出ュニ ット 100を流れる水の流量は一定にならない。流量検知器 185の流量検知結果に基 づいて上記調節を行うこととすれば、水の流量に応じて金属イオン溶出量を調節でき るから、金属イオン濃度のばらつきの少ない水を供給でき、洗濯物を均一に抗菌処 理できる。このため、金属イオンを洗濯物全体に行き渡らせるための攪拌工程を最小 限にすることができる。
[0115] 電極 113 · 114を流れる電流値が所定値以下であることを電流検知回路 160が検 知したときは、イオン溶出ユニット 100への給水流量を減少させ、イオン溶出時間を 延長する。このようにすれば、電流値が所期の金属イオン溶出量を確保するに満た ない場合、すなわち、金属イオンが溶出しにくくなつた場合においても、給水流量の 減少による給水時間の延長と、イオン溶出時間の延長により、給水完了までに所定 量の金属イオンを溶出させることが可能となる。従って、洗濯物に対し、常に安定した 抗菌処理を行うことができる。 [0116] 次に、本発明の最も特徴的な部分である水質や水温に応じて金属イオンの溶出制 御を変更することについて説明する。
[0117] 一般に、洗濯機に使用する水は上水道のものであり、飲用に供給される水と同じで ある。そのため、水質は地域によって極端に違う。金属イオンの溶出効率は、ファラデ 一の法則によると、例えば銀は一価のイオンになるので、例えば、 2分間 29mAの電 流を流し、 40Lの水を洗濯槽 30に供給したとすると、(濃度) = (銀の原子量: 107. 8 68) X (電極に流れる電流値: 29mA) X (溶出時間: 120秒) ÷ (ファラデー定数: 96 485C/mol) ÷ (水量: 40L) = 97. 3ppbとなる。
[0118] しかし、 日本全国にわたる溶出効率の調查測定を行った結果、例えば大阪府や京 都府ゃ
東京都では 80% 90%程度あつたが、沖網県の一部には 30%程度と大きく溶出効 率が低下する地域もあることがわかり、水質の違いにより大きく溶出効率が変化する ことがわかった。また、水温が違うと、水質の違いによるときほどの大きな差ではないも のの、溶出効率に差が生じる。安定して被洗濯物に抗菌処理を行うためには、所定 の濃度の金属イオンを含んだ水を安定して洗濯槽 30に供給する必要がある。
[0119] 本実施形態の洗濯機 1では、水質や水温に応じて、定電流回路 125の設定電流値 を変更して電極 113 · 114流れる電流を変え、単位時間当たりの溶出量を変更するこ とにより、または、電極 113 · 114に電流を流す時間(図 10のイオン溶出時間 T4)を 変更することにより、溶出効率の変化による金属イオンの溶出変化を補い、所定濃度 の金属イオンを含んだ水が洗濯槽 30に供給されるようにする。
[0120] 電流値の変更とイオン溶出時間の変更は同時に行うこともできる。電流値変更とィ オン溶出時間変更の両方を行うようにすると、変更自由度が大きくなるとともに、溶出 効率が極端に変化した場合などでも、おのおのの変更量が少なくすむので、電流値 の増加量を少なくし回路部品の定格に対する余裕が確保できるなど、安全面でも一 層好ましい。
[0121] また、洗濯機 1は流量検知器 185を備えており、流す水の量が検知できるので、そ の流量情報を活用して、 目標電流値やイオン溶出時間をどのように変更するかを決 定することで、給水が完了するまでに確実に金属イオンの溶出を完了するように制御 すること力 Sできる。なお、初期の給水完了後にも金属イオンを調整して溶出させるェ 程を追加するようにしてもょレ、。
[0122] 前述のように、洗濯機 1では、定電流回路 125により、一定値の電流が電極 113 · 1 14に流れるように印加する電圧を変動させる。確かに水質により溶出効率は変化す るが、洗濯槽 30への水の供給中に極端に水質が変化し、溶出効率が変化するわけ ではないし、金属イオン溶出の反応は、 Ag→Ag+ + e—のように一定の反応であるの で、電流値の一定化により、金属イオンの溶出量を算出することが容易となり、 目標 電流値や電圧印加時間を算出しやすい。
[0123] 電極への電圧印加は、図 10に示したシーケンスに従って行う。このように電圧印加 時間 T2と電圧印加休止時間 T3を設けることにより、例えば、イオン溶出時間 T4を変 えることをしなくとも、金属イオンを溶出させる時間を変更することができるので、水質 の変化に応じて金属イオンの溶出制御を行うことが可能である。
[0124] 洗い時などは洗剤や洗濯物についていた汚れなどを多量に含むことになる洗濯槽 30内の水に電極 113 · 114を直接浸すの避けるために、イオン溶出ユニット 100を給 水経路に設けた構成なので、所定量の金属イオンを給水完了までに添加するために 、給水流量を調整することによりイオン溶出時間 T4を調整する前述の方法もある。し かし、使用性の面から考えると、給水流量を調整して時間をかけてでも給水するよりも 、本制御方法のように、イオン溶出時間のうちの電圧印加時間 T2および電圧印加休 止時間 T3の一方または双方を変更して金属イオンの溶出量を調整する方が、時間 の調整の仕方により簡単に給水完了までに所定量の金属イオンを投入することがで き、使用者の所望する抗菌処理を確実に行うことができる。また、流量調整装置を備 える必要もなぐそのためコストも抑えられる。
[0125] ここで、極性の反転周期の時間(電圧印加時間 T2と電圧印加休止時間 T3の和)が 変わらないように、電圧印加時間 T2と電圧印加休止時間 T3を変更するのが好まし レ、。このようにすると、設計時と同じ周期で金属イオンの溶出を行えるので、電圧印加 時間 T2を変更したことにより、一方の電極だけが極端に減少して、溶出不足が発生 し早期に寿命
が終了してしまったり、溶出が不安定になったりすることがない。 [0126] 例えば、所定量の金属イオンの溶出を 2分で完了したい場合、電圧印加時間 T2を 10秒、電圧印加休止時間 T3を 10秒の初期設定とすると、水質により溶出量が目標 の 2/3になったときは、電圧印加時間 T2を 15秒、電圧印加休止時間 T3を 5秒とす る。これにより、電圧印加の周期時間である 20秒を変更することなぐ金属イオンの溶 出量を 3Z2として、 目標とする溶出量の金属イオンを得ることができて、使用者が所 望する抗菌処理を行うことができる。
[0127] 目標電流値に応じて電圧印加時間 T2および電圧印加休止時間 T3の一方または 双方を変更するようにしてもよい。このようにすると、 目標電流値に応じた金属イオン の溶出時間を設定できるので、例えば目標電流値を高く変更した場合などに、金属 イオンが溶出し過ぎたりして、電極 113 · 114の減耗が早くなり、早期に寿命が終了し たり、被洗濯物が金属イオンで汚れたりするといつた弊害の発生を防ぐことが出来る。
[0128] 水質や水温は、電極 113 · 114に印加する電圧を電圧検知回路 162で検出するこ とにより、検知すること力できる。というのも、水質の変化、つまりは硬度、透明度など の変化により、水の導電率は変化し、水温によっても導電率は多少変化するのからで ある。 目標電流値と印加している電圧より導電率を計算することにより、水質や水温を 検失口すること力できる。
[0129] ちなみに、水質の違いを導電率で定義した場合、導電率が高くなるほど溶出効率 が低くなることが確認できた。言レ、換えると導電率が高くなるほど電圧は低下する傾 向にあり、導電率は通常 100— 300 μ S/cmであるので、基準伝導率を例えば 300 β S/cmに設けて、この基準伝導率を超える場合には、後述する金属イオンの溶出 効率を上げるための制御を行うのが好ましい。
[0130] カロえて、水温が高くなると導電率が高くなる傾向にあり、水温が高くなるほど溶出効 率が低下し、水温の温度上昇を考慮した上記制御が必要となるといえる。言い換える と水温が高いほど電極間の電圧は低下し、水温が低いほど電極間の電圧は上昇傾 向にあるので基準温度を設けて、この基準温度を超える場合には、後述する金属ィ オンの溶出効率を上げるための制御を行うのが好ましい。
[0131] また、伝導率や温度に代えて所定の電流値の電流を電極に流し、電圧が基準電圧 より低い場合には、後述する金属イオンの溶出効率を上げるための制御を行うのが 好ましレ、。なお、上述した基準導電率や基準温度を極端に下回ったり、基準電圧を 極端に上回る場合には、金属イオンの溶出効率が上がりすぎるため、溶出効率を下 げる制御を行うのが好ましレ、。
[0132] 電圧と溶出効率の関係は後述する図 11に示す通りで、金属イオンの溶出効率を 7 0 %— 100 %の範囲内で維持できる電極への印加電圧を制御するのが好ましレ、。よ り好ましくは、上述し IS L 1902による抗菌性の試験結果として静菌活性値が 2 . 0を超え、かつ上述した銀電極の耐用年数の両方を実現するために、金属イオンの 溶出効率を 70% 90%の範囲内で維持するように、印加電圧を 7 17V程度の範 囲内で制御するのがよい。
[0133] 前述のように、全国の水についての調査結果では、沖縛県の一部地域での金属ィ オンの溶出効率が特に低いことが判った力 さらに検討したところ、電極 113 · 114に 印加している電圧が極端に低いことが判明した。例えば、電極 113 · 114に電流 29m A流すのに、大阪府では約 10V程度であるのに対して、その地域では約 4V程度で あり、
ファラデーの法則からの理論溶出量に対し、大阪府では約 80%程度であるのに対し 、その地域では約 30%程度であった。
[0134] そこで、大阪府の水を使ってさらに検討を重ねた結果、印加する電圧と溶出効率と の間に、例えば 29mAの電流を銀製の電極 113 · 114に流す場合、図 11に示す関 係が得られた。図 11から明らかなように、電圧と溶出効率の関係は一様ではなぐ電 圧が低くなるほど溶出効率が低下し、特に 7Vより低くなると極端に溶出効率が低下 する。また、溶出効率がほぼゼロとなる電圧も 0Vより少し高い電圧となっており、ある 程度以上の電圧を印加しないと金属イオンを溶出できないことがわかる。また、この 関係は、溶出効率の特に低かった沖網県の一部の水において、電流 29mAのときに 電圧約 4Vにて溶出効率約 30%溶出であった結果とよく相関しており、水質の変化 を電圧により検知できることがわかる。
[0135] なお、本実施形態では、金属イオン溶出用の電極 113 · 114を用いて電圧の検出 を実施しているため、構成部品を追加する必要がない。水質検知のための電極を別 途備えるようにしても構わず、そのようにすると、検知できる位置の選択位置が増えて 好ましい。例えば、洗濯槽 30の水が入る排水空間 66や、水槽 20や洗濯槽 30の近 傍に、検知のための電極や端子を配置することができる。
[0136] 検知された電圧により、 目標電流値や電圧印加時間 T2、電圧印加休止時間 T3、 イオン溶出時間 Τ4などを変更することで、水質により変化した溶出効率を補うように 金属イオンを溶出するように制御することができる。
[0137] 検知電圧が所定の電圧値より低い場合、金属イオンの溶出を増加するように電極 1 13 · 114の制御を変更する。つまり、 目標電流値を増加したり、電圧印加時間 Τ2ゃィ オン溶出時間 Τ4を増加したり、電圧印加休止時間 Τ3を減少させることにより、金属 イオンの溶出を増加させる。また、例えば、電圧が所定値、例えば 7V、より大きい場 合は、 目標電流値を、例えば 29mAとし、電圧を印加する時間を変更することによつ て、金属イオンの溶出量を調整し、所定値より低くなつた場合は、 目標電流値を変更 すること、例えば 42mAとすることも併せて行って、金属イオンの溶出量を調整しても よい。なお、制御方法としては、逆に、所定の電圧値より高い場合に、金属イオンの 溶出を減少させるようにしてもよい。
[0138] サーミスタ等の水温検知器を設けて、温度を直接測定するようにしてもよい。水温検 知器を設ける位置は、イオン溶出ユニット 100の内部であってもよいし、その上流側 や下流側であってもよいし、さらには、水槽 20や洗濯槽 30の中や周辺であってもよ レ、。また、基本的に気温と水温は密接な関係があり、水温検知器で検出した水温より 、その時の環境状況も推測できるので、水温つまりは気温が低く洗濯物が乾きにくい 時期などは、金属イオンの濃度を増加するようにしてもょレ、。
[0139] 水質や水温に応じて目標電流値、イオン溶出時間 T4、電圧印加時間 Τ2、あるレヽ は電圧印加休止時間 Τ3を変更するか否かを、使用者が選択できるようにしておくの が好ましい。沖縛県の一部のように上水の溶出効率が低い地域では、 目標電流値、 イオン溶出時間、電圧印加時間、または電圧印加休止時間を常に標準値から変更 することが望ましいが、上水の溶出効率が標準的な地域では変更を常に行う必要は なレ、。しかし、標準的な溶出効率の地域であっても、節水のために、使用者が風呂の 残り水を利用することもあり、その場合は、水質や水温が変化して溶出効率も変化す るから、所望の抗菌効果を得るためには変更を行う必要がある。また、季節によって 水温は大きく異なるから、例えば、春や秋の水温に基づいて目標電流値等の標準値 を設定する場合は、夏と冬では変更すべきである。
[0140] 変更を行うか否力を使用者が指示するようにすれば、地域によらず、また、使用す る水や季節によらず、所望の抗菌効果を得ることができる。これを実現するためには 、操作/表示部 81に、変更を指示する変更スィッチを備えるだけでよい。
[0141] 目標電流値等の変更を指示されたときに、洗濯機 1自体が、水質や水温を検知し て、検知結果に応じて目標電流値等を設定するようにすることもできる。これは、変更 スィッチの操作に応じて、制御部 80が前述の電圧検知回路 162や水温検知器を動 作させて、水質や水温を検知し、 目標電流値、イオン溶出時間 T4、電圧印加時間 Τ 2、および電圧印加休止時間 Τ3の適切な値を算出するようにすることで実現される。
[0142] 使用者が、 目標電流値、イオン溶出時間 Τ4、電圧印加時間 Τ2、および電圧印加 休止時間 Τ3の少なくとも一つを、設定するようにしてもよい。例えば、操作 Ζ表示部 81に目標電流値等の値を選択するための選択スィッチを設けておき、使用者が洗 濯開始時に選択スィッチを操作するようにする。また、操作/表示部 81や制御部 80 や駆動回路 120に選択スィッチ、選択コネクタ、選択ジヤンパ線を設けることにより、 設定変更できるようにしてもよい。
[0143] また、使用者が目標電流値等を設定する場合、例えば ΕΕΡ— ROMを制御部 80に 備えて、 目標電流値等の変更後の値をはじめ、変更後の制御シーケンスを記憶する ようにするとよい。このようにすると、洗濯機を使用するたびに設定のための操作を行 う必要がなくなる。また、操作/表示部 81の所定のスィッチを操作して設定変更モー ドにし、選択スィッチを操作することにより、制御シーケンスを変更して記憶させるとい つた、電子的な簡単な操作により、容易に設定を変更することが可能になる。
[0144] なお、 目標電流値等を直接設定することに代えて、洗濯機の設置位置情報や、設 置水域情報などの環境条件を、製造者、設置者、あるいは使用者が入力して、洗濯 機 1が制御シーケンスを変更するようにしてもよい。さらには、洗濯機 1自体が、 GPS ( 地球位置計測システム)情報やネットワーク情報の活用により環境条件を取得して、 制御パターンを変更するようにしてもよい。また、上水を使用するか風呂の残り水を使 用するかを使用者が指示するようにして、風呂の残り水を使用するときには、記憶し ている変更後の値やシーケンスによって、制御を行うようにしてもよい。
[0145] 本実施形態の洗濯機 1では、電極 113 · 114間の電圧を電圧検知回路 162で検出 することにより水質を検知する構成であり、検知される水質は、イオン溶出ユニット 10 0内の水のものであって、洗濯槽 30の水のものではなレ、。抗菌処理を行う工程では 仕上剤が加えられることも多ぐ仕上剤によっては大きく水質が変化することもある。し たがって、仕上剤が加えられたときには、電圧に基づいて検知された水質と洗濯槽 3 0の水の水質とに差異が生じて、十分な抗菌効果が得られないという事態が生じる可 能十生がある。
[0146] この不都合は、電極 113 · 114および電圧検知回路 162とは別の水質検知器 187 を、洗濯槽 30内または洗濯槽 30と連通している排水空間 66に備えることにより、防 止すること力 Sできる。この水質検知器 187は、仕上剤の有無を判別するのが主たる目 的であるから、その目的を達成し得るだけの簡素なものでよい。例えば、仕上剤が加 えられると光に対する水の透過率が変化することを利用して、透過率を測定するセン サとすることができる。仕上剤が加えられたことが認められたときには、金属イオンの 溶出量を調節したり、金属イオンを添加した初期の給水完了後に、適当量の金属ィ オンを溶出した水を追加したりすることで、所望の抗菌効果を確実に得ることができる 。なお、水質検知器を仕上剤室 55に配置するようにしてもよい。
[0147] 洗濯槽 30内の水の水質を検出する水質検知器 187は、イオン溶出ユニット 100を 経由せずに洗濯槽 30に給水された水(例えば、ポンプによって注入された風呂の残 り水)の水質に応じて、 目標電流値等を変更する場合には、必須である。この場合も 、水質検知器 187としては、透過率を測定する簡素なものを用いることができる。
[0148] 上記の実施形態では、全自動式の洗濯機を例として掲げた力 本発明はこのほか 、横型ドラム式 (タンブラ一方式)、斜めドラム式、乾燥機兼用、あるいは二層式など、 あらゆる形式の洗濯機に適用することができる。また、水質や水温に応じて金属ィォ ンの溶出量を調節するという本発明の思想は、金属電極から金属イオンを溶出させ る構成のみならず、金属を含有した部材から金属イオンを溶出させる構成にぉレ、ても 、有用である。
[0149] 上記の説明より、本発明について様々な修飾や変形をすることが可能であることは 明らかである。よって、本発明は、具体的な記述に捕らわれることなぐ付記したタレ ームの範囲内で実施されるものと解されたい。
産業上の利用可能性
本発明の洗濯機は、家庭での洗濯はもとより業務での洗濯にも利用することが可能 であり、水質や水温に関わらず安定して抗菌作用を奏することができる。

Claims

請求の範囲
[1] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機であって、
電極間に流す電流を水質および水温の少なくとも一方に応じて変更することを特徴 とする洗濯機。
[2] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機であって、
一度に使用する水に添加するための金属イオンの溶出時間を、水質および水温の 少なくとも一方に応じて変更することを特徴とする洗濯機。
[3] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機であって、
電極間に流す電流を一定とし、電極間に印加する電圧を水質および水温の少なく とも一方に応じて変更することを特徴とする洗濯機。
[4] 金属製の 1対の電極を備え、使用する水に電極を浸した状態で電極間に電圧を印 カロして電極間に電流を流し、電極より溶出する金属イオンを使用する水に添加する 洗濯機であって、
電極間に電圧を断続的に印加して、電圧を印加する印加時間と電圧を印加しない 休止時間を設け、電極間に印加する電圧の極性を周期的に反転させるとともに、印 加時間および休止時間の少なくとも一方を水質および水温の少なくとも一方に応じ て変更することを特徴とする洗濯機。
[5] 印加時間と休止時間の双方の長さを変更して、印加時間と休止時間の和を一定と することを特徴とする請求項 4に記載の洗濯機。
[6] 印加時間および休止時間の少なくとも一方を電極間に流す電流に応じて定めるこ とを特徴とする請求項 4に記載の洗濯機。
[7] 電極間に所定の電流を流すために必要な電圧を測定することにより、水質および 水温の少なくとも一方を検知することを特徴とする請求項 1から請求項 4までのいず れか 1項に記載の洗濯機。
[8] 水質および水温の少なくとも一方に応じた変更を、使用者からの指示に応じて行う ことを特徴とする請求項 1から請求項 4までのいずれ力 4項に記載の洗濯機。
[9] 変更後の値を記憶しておくことを特徴とする請求項 1から請求項 4までのいずれ力、 1 項に記載の洗濯機。
[10] 被洗濯物を入れる洗濯槽の水の水質および水温の少なくとも一方を検知して、変 更を行うことを特徴とする請求項 1から請求項 4までのいずれ力、 1項に記載の洗濯機
[11] 洗濯槽内の水の水質として、光の透過率を検知することを特徴とする請求項 10に 記載の洗濯機。
PCT/JP2004/010044 2003-08-27 2004-07-14 洗濯機 WO2005021857A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003209044A JP2005065746A (ja) 2003-08-27 2003-08-27 洗濯機
JP2003-209044 2003-08-27

Publications (1)

Publication Number Publication Date
WO2005021857A1 true WO2005021857A1 (ja) 2005-03-10

Family

ID=34263956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010044 WO2005021857A1 (ja) 2003-08-27 2004-07-14 洗濯機

Country Status (5)

Country Link
JP (1) JP2005065746A (ja)
KR (2) KR200369287Y1 (ja)
CN (2) CN1590628A (ja)
TW (1) TW200523427A (ja)
WO (1) WO2005021857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209680A1 (en) * 2019-04-12 2020-10-15 Lg Electronics Inc. Washing machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721836B1 (ko) * 2003-12-09 2007-05-28 삼성전자주식회사 은용액공급장치를 구비한 세탁기
KR100715536B1 (ko) 2005-06-30 2007-05-08 삼성전자주식회사 이온 발생기와 그 제어방법 및 이온발생장치를 구비한세탁기
KR101269460B1 (ko) * 2005-07-07 2013-05-30 삼성전자주식회사 세탁기
JP5383435B2 (ja) * 2009-10-29 2014-01-08 シャープ株式会社 洗濯機
JP2013132500A (ja) * 2011-12-27 2013-07-08 Panasonic Corp 洗濯機システム
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US10000881B2 (en) 2013-12-06 2018-06-19 Applied Silver, Inc. Method for antimicrobial fabric application
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
ES2918509T3 (es) 2016-05-12 2022-07-18 Applied Silver Inc Artículos y métodos para dispensar iones metálicos en sistemas de lavandería
CN110113946A (zh) 2016-10-31 2019-08-09 应用银股份有限公司 向分批式洗衣机和烘干机中分配金属离子
CN108107930B (zh) * 2016-11-24 2021-01-26 松下家电研究开发(杭州)有限公司 一种利用金属离子进行除菌的电器的控制方法及电器
CA3092627A1 (en) 2017-03-01 2018-09-07 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328669A (ja) * 1997-02-10 1998-12-15 Austech Ltd 液体浄化装置
JP2001276484A (ja) * 2000-03-30 2001-10-09 Toto Ltd 洗濯機
JP2002263649A (ja) * 2001-03-05 2002-09-17 Toto Ltd 殺菌水生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328669A (ja) * 1997-02-10 1998-12-15 Austech Ltd 液体浄化装置
JP2001276484A (ja) * 2000-03-30 2001-10-09 Toto Ltd 洗濯機
JP2002263649A (ja) * 2001-03-05 2002-09-17 Toto Ltd 殺菌水生成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209680A1 (en) * 2019-04-12 2020-10-15 Lg Electronics Inc. Washing machine
US11408108B2 (en) 2019-04-12 2022-08-09 Lg Electronics Inc. Washing machine

Also Published As

Publication number Publication date
TW200523427A (en) 2005-07-16
JP2005065746A (ja) 2005-03-17
KR200369287Y1 (ko) 2004-12-04
KR20050021289A (ko) 2005-03-07
CN1590628A (zh) 2005-03-09
CN2753774Y (zh) 2006-01-25

Similar Documents

Publication Publication Date Title
KR200342052Y1 (ko) 이온 용출 유닛 및 이온 용출 유닛을 탑재한 기기
KR100873545B1 (ko) 세탁기
WO2005021857A1 (ja) 洗濯機
KR100574710B1 (ko) 항균 처리 장치
KR20050025664A (ko) 세탁기
JP4024257B2 (ja) 洗濯機
US7493784B2 (en) Washing machine with water treatment unit
JP2004057856A (ja) イオン溶出ユニット及びこれを搭載した洗濯機
JP2004248861A (ja) イオン溶出ユニット、イオン溶出ユニットを搭載した機器、及びイオン溶出ユニットを搭載した洗濯機
JP4417404B2 (ja) 洗濯機
KR100556169B1 (ko) 이온 용출 유닛, 이온 용출 유닛을 탑재한 기기 및 이온용출 유닛을 탑재한 세탁기
WO2004081277A1 (ja) 洗濯機
JP3963793B2 (ja) イオン溶出ユニット及びこれを搭載した洗濯機
KR200395275Y1 (ko) 세탁기
KR200407214Y1 (ko) 수처리 유닛 및 이를 탑재한 기기
AU2007231905B2 (en) Ion eluting unit and device provided with same
JP2005065880A (ja) イオン溶出ユニットを搭載した機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase