WO2005018525A1 - 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム - Google Patents

装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム Download PDF

Info

Publication number
WO2005018525A1
WO2005018525A1 PCT/JP2004/011698 JP2004011698W WO2005018525A1 WO 2005018525 A1 WO2005018525 A1 WO 2005018525A1 JP 2004011698 W JP2004011698 W JP 2004011698W WO 2005018525 A1 WO2005018525 A1 WO 2005018525A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearer
actuator
signal
current
command signal
Prior art date
Application number
PCT/JP2004/011698
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Sankai
Original Assignee
Yoshiyuki Sankai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshiyuki Sankai filed Critical Yoshiyuki Sankai
Priority to US10/568,756 priority Critical patent/US7785279B2/en
Priority to CA2559856A priority patent/CA2559856C/en
Priority to CN2004800239695A priority patent/CN1838933B/zh
Priority to EP04771665.9A priority patent/EP1661543B1/en
Publication of WO2005018525A1 publication Critical patent/WO2005018525A1/ja
Priority to HK07100573.8A priority patent/HK1095509A1/xx
Priority to US12/549,902 priority patent/US8622938B2/en
Priority to US12/836,054 priority patent/US8888722B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/704Operating or control means electrical computer-controlled, e.g. robotic control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/764Measuring means for measuring acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7665Measuring means for measuring temperatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/008Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses

Definitions

  • Wearable motion assist device control method of wearable motion assist device, and control program
  • the present invention relates to a wearable movement assisting device that assists or substitutes for a wearer's movement, a method of controlling the wearable movement assisting device, and a control program, and in particular, can suppress a sense of discomfort given to the wearer.
  • the present invention relates to a wearable motion assist device, a control method of the wearable motion assist device, and a control program.
  • auxiliary devices include a device such as a wheelchair or a nursing care bed where a wearer rides and drives an actuator such as a motor by a switch to assist the insufficient force.
  • an actuator such as a motor by a switch to assist the insufficient force.
  • a so-called wearable motion assist device that is worn on a human being can generate necessary power at any time based on the intention of the wearer and does not require a caregiver. It is very convenient for rehabilitation of sick people and is expected to be put to practical use.
  • Such a wearable motion assisting device controls an actuator arbitrarily according to the wearer's intention by detecting a myoelectric potential signal accompanying the muscle activity of the wearer and driving the actuator based on the detection result.
  • the device has been proposed (SI: Takao Nakai, uwoong Lee, Hiroaki Kawamoto and Yoshiyuki Sankai,
  • Non-Patent Document 1 a process for generating power in the actuator is started after detecting a myoelectric potential signal from the wearer. There is a possibility that the wearer may noticeably feel uncomfortable with the movement of the wearer. Therefore, conventionally, human actions are classified into a plurality of patterns (tasks), each task is divided into a plurality of predetermined minimum operation units (phases), and a current of a magnitude set in advance for each phase is divided.
  • a device that drives and controls an actuator by supplying it has been proposed (Non-Patent Document 2 / 'Predictive Control Estimating Operator's Intention for
  • Non Patent Literature 3 Hideo Lee, Yoshiyuki Sankai, ⁇ Phase
  • the phase of the task of the wearer is estimated based on physical quantities such as joint angles detected from the wearer, and the actuator is controlled according to the estimated phase (autonomous control). By doing so, the discomfort caused by the delay in the timing of power application is reduced.
  • Non-Patent Documents 2 and 3 are based on autonomous control. It was not possible to smoothly switch to the task phase, and there was a possibility that the wearer would feel something strange. [0007] Accordingly, it is an object of the present invention to provide a wearable motion assisting device, a control method of the wearable motion assisting device, and a control program which can minimize a sense of discomfort given to a wearer. .
  • the present invention has the following means.
  • the present invention is a wearable motion assisting device that assists or acts on behalf of a wearer, comprising: a motion assistive wearer having an actuator for applying power to the wearer; A biological signal sensor for detecting, and a biological signal processing means for acquiring a neural transmission signal for operating the musculoskeletal system of the wearer and a myoelectric potential signal accompanying muscle activity from the biological signal detected by the biological signal sensor.
  • the neural transmission signal and the myoelectric potential signal acquired by the biological signal processing means, an optional control means for generating a command signal for generating a power according to the intention of the wearer in the actuator, and an optional control means.
  • Based on the generated command signal a current corresponding to the nerve transmission signal and a drive current corresponding to the myoelectric potential signal are generated, and the drive current is supplied to the actuator. Further comprising a step in which a Japanese ⁇ number.
  • the control method of the wearable motion assisting device is characterized in that, when the motion assistive wearer having the actuator for applying power to the wearer is worn on the wearer, the biological signal of the wearer is From the detected biological signal, acquire a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal associated with muscle activity, and use the acquired neural transmission signal and myoelectric potential signal to mount the device. Generates an optional command signal for generating power according to the intention of the user in the actuator, and based on the generated optional command signal, supplies the actuator with a current corresponding to the nerve transmission signal and a current corresponding to the myoelectric potential signal. It is characterized by supplying each.
  • control program of the wearable motion assisting device of the present invention includes a computer for controlling the actuator, a process for detecting a biological signal of the wearer, and a musculoskeletal structure of the wearer from the biological signal. Generates power to the actuator according to the wearer's intention using the process for acquiring the nerve transmission signal for operating the system and the myoelectric potential signal accompanying the muscle activity, and using the acquired nerve transmission signal and myoelectric potential signal.
  • Command signal for Generating a current corresponding to a nerve transmission signal and a current corresponding to a myoelectric potential signal based on the generated optional command signal, and supplying the generated current to an actuator. Is what you do.
  • the wearable motion assisting device of the present invention has a physical quantity sensor that detects a physical quantity related to the motion of the wearer.
  • the biological signal processing means amplifies a biological signal composed of a nerve transmission signal and a myoelectric potential signal, a first filter that extracts a neural transmission signal from the biological signal, and extracts a myoelectric potential signal from the biological signal. And a second filter.
  • the drive current generating means includes a total current of a pulse current generated in response to the nerve transmission signal and a current generated substantially proportional to the myoelectric potential signal. Is supplied to the actuator, and the operation of the actuator is started by a pulse current.
  • the driving current generating means when the drive current generating means starts supplying current to the actuator, the driving current generating means may increase the pulse so as to be larger than the lower limit value of the current capable of driving the actuator. It is characterized by generating a current or a total current.
  • the reference parameter of each of a series of minimum motion units (phases) constituting the motion pattern of the wearer classified as a task, and the power supply rate by the actuator (Power assist rate) in a required correspondence relationship compares the physical quantity detected by the physical quantity sensor with the reference parameter stored in the database, and installs it. Estimate the phase of the task that the user is going to perform, define the power assist rate according to this phase based on the correspondence, and generate a command signal to generate the power at the power assist rate to the actuator. It is characterized by doing.
  • the drive current generating means when the wearer operates by a reflex nerve, the drive current generating means generates a current for driving the actuator in a direction opposite to the motion for a predetermined time. And supplying a current for driving the actuator in the direction of operation.
  • the generation is performed according to the nerve transmission signal.
  • the total current of the generated pulse current and the current generated so as to be substantially proportional to the myoelectric potential signal is supplied to the actuator, and the operation of the actuator is started by supplying the noise current. is there.
  • the pulse current or the total current is set so as to be larger than the lower limit of the current that can drive the actuator. It is characterized by supplying a current.
  • a physical quantity related to the motion of the wearer is further detected, and the detected physical quantity signal and each motion pattern of the wearer classified as a task are configured.
  • the phase of the task that the wearer is trying to perform is estimated by comparing the reference parameters of each of a series of minimum operation units (phases) to be performed, and a required power supply rate (power assist) corresponding to the phase is estimated.
  • An optional command signal for causing the actuator to generate motive power having a rate of (ratio) is generated, and a drive current corresponding to the optional command signal is generated and supplied to the actuator.
  • the current for driving the actuator in the opposite direction to the motion is changed for a predetermined time. After the supply, a current for driving the actuator in the direction of operation is supplied.
  • the computer In the control program for the wearable motion assisting device of the present invention, the computer generates a noise current and a myoelectric potential signal that are generated in accordance with a neural transmission signal so as to be substantially proportional to the myoelectric potential signal.
  • the present invention is characterized in that a total current with the current is supplied to the actuator, and a process for starting the operation of the actuator is performed by supplying a pulse current.
  • the current when the computer starts to supply the current to the actuator, the current may be larger than the lower limit of the current that can drive the actuator. And a process for setting a pulse current or a total current is performed.
  • the computer stores a series of minimum motion units (phases) constituting the motion pattern of the wearer classified as a task. ) And a process for accessing a database that stores the power application rate (power assist rate) by the actuator in a required correspondence relationship, and a process for detecting a physical quantity related to the movement of the wearer.
  • the phase of the task that the wearer is going to perform is estimated, and the power assist rate according to this phase is determined based on the correspondence. And causing the actuator to generate a power having the power assist rate.
  • the computer when the wearer operates by the reflex nerve, the computer supplies a predetermined drive current for driving the actuator in a direction opposite to the motion. After supplying the drive current for the above time, a process for supplying a drive current for driving the actuator in the direction of operation is performed.
  • the wearable motion assisting device of the present invention includes a motion assisting wearer having an actuator for applying power to the wearer, a biological signal sensor for detecting a biological signal of the wearer, and a wearer.
  • a physical quantity sensor for detecting a physical quantity related to the operation of the body, and an optional control means for generating a command signal for generating power to the actuator according to the intention of the wearer using the biological signal detected by the biological signal sensor; Compare the database that stores the reference parameters of each series of minimum motion units (phases) that compose the wearer's motion patterns classified as tasks, and the physical quantities detected by the physical quantity sensors and the reference parameters stored in the database.
  • An autonomous control means for generating a command signal, a signal synthesizing means for synthesizing a command signal from the optional control means and a command signal from the autonomous control means, and a total signal according to the total command signal synthesized by the signal synthesizing means.
  • a drive current generating means for generating a current and supplying the current to the actuator.
  • the control method of the wearable motion assisting device is characterized in that, when the wearable motion assisting device having an actuator for applying power to the wearer is worn on the wearer, the wearer's biological signal And physical quantities related to the movements of the wearer.
  • the phase of the task that the wearer is trying to perform is estimated, and the autonomous operation for generating the power corresponding to this phase to the actuator is performed. It is characterized by generating a command signal, synthesizing the generated optional command signal and autonomous signal, generating a current corresponding to the synthesized total command signal, and supplying the current to the actuator.
  • control program of the wearable motion assisting device includes a computer for controlling the actuator, which detects a biological signal of the wearer and a physical quantity relating to the motion of the wearer. Processing, a process for generating an optional command signal for generating power according to the wearer's intention using the detected biological signal to the actuator, and a process for converting the detected physical quantity into a task of the wearer by classifying the detected physical quantity as a task.
  • Estimating the phase that the wearer is going to perform by comparing it with each reference parameter of a series of minimum operation units (phases) that compose the motion pattern, and generating power corresponding to this phase to the actuator
  • Current generates in accordance with the No. Mel in which characterized in that to perform the processing to be supplied to Akuchiyueta.
  • the database stores the ratio (hybrid ratio) between the command signal from the optional control means and the command signal from the autonomous control means in accordance with the reference parameter of the phase and the required value.
  • the signal synthesizing means receives signals from the optional control means according to the phase of the task estimated by the autonomous control means so that a hybrid ratio defined based on the correspondence relation is obtained. And a command signal from the autonomous control means.
  • a nerve transmission signal for operating the musculoskeletal system of the wearer and a myoelectric potential signal accompanying muscle activity are obtained from the biological signal detected by the biological signal sensor.
  • the drive current generating means is configured to be larger than the lower limit value of the current that can drive the actuator when starting to supply current to the actuator. , A pulse current or a total current.
  • the database stores the reference parameters of each phase and the required power application rate (power assist rate) by the actuator so as to have a required correspondence.
  • the signal synthesizing means defines a power assist rate according to the task phase estimated by the autonomous control means based on the correspondence, and a command signal from the optional control means to satisfy the power assist rate. And a command signal for autonomous control means.
  • the drive current generating means when the wearer operates by the reflex nerve, the drive current generating means generates a current for driving the actuator in a direction opposite to the motion for a predetermined time. And supplying a current for driving the actuator in the direction of operation.
  • the ratio (hybrid ratio) between the optional command signal and the autonomous command signal is set so as to have a required correspondence relationship with each reference parameter of the phase.
  • the hybrid ratio according to the estimated task phase is defined based on the correspondence, and the total command signal is synthesized so as to achieve the hybrid ratio.
  • the nerve transmission signal is set to be larger than the lower limit of the current that can drive the actuator. And supplying a total current of the corresponding current or the current corresponding to the myoelectric potential signal.
  • the ratio of power to be applied to the wearer is previously associated with each reference parameter of the phase, and the estimated phase of the task is calculated.
  • the special feature is to set the total command signal so that the power assist ratio is adjusted to the power assist ratio.
  • the wearer can use the reflexes.
  • a driving current for driving the actuator in a direction opposite to the operation is generated for a predetermined time, and then the actuator is driven in the direction of the operation.
  • the computer for controlling the actuator is provided with a phase ratio (hybrid ratio) between the optional command signal and the autonomous command signal.
  • the wearer is trying to do this by processing the database to access the database stored so that it has the required correspondence with each of the reference parameters, and comparing the detected physical quantities with the reference parameters stored in the database.
  • the hybrid ratio according to the phase is defined based on the correspondence, and processing for synthesizing the total command signal so as to achieve the hybrid ratio is performed. Things.
  • the control program for the wearable motion assisting device of the present invention when the current supply to the actuator is started, the computer is controlled so that the current becomes larger than the lower limit value of the current that can drive the actuator. And a process for setting a pulse current or a total current is performed.
  • the computer stores, in the computer, each reference parameter of a series of minimum motion units (phases) constituting a wearer's motion pattern classified as a task.
  • a process for setting a value is a process for setting a value.
  • the drive current for driving the actuator in the opposite direction to the motion is determined by the computer. After the time is generated, a process for driving the actuator in the direction of operation is performed.
  • a myoelectric potential signal and a neural transmission signal that precedes it or are located at the head of the myoelectric potential signal are acquired from the biological signal, and the acquired neural transmission signal is acquired as an acknowledgment.
  • the signal as a signal for starting driving of the actuator (trigger signal)
  • the actuator can be operated promptly when the current supply to the actuator is started. For this reason, a smooth operation can be obtained without a sense of incongruity without feeling a delay at the start of the wearable motion assist device.
  • an estimation is made by comparing an optional command signal for causing the actuator to generate power according to the intention of the wearer with a detected physical quantity and reference parameters stored in a database. Since the actuator is synthesized with an autonomous command signal for generating power corresponding to the phase of the task performed on the actuator, the actuator can be started quickly and the voluntary operation can be performed smoothly without a sense of incongruity. it can.
  • the hybrid ratio of the optional command signal and the autonomous command signal by controlling the hybrid ratio of the optional command signal and the autonomous command signal, optimal operation assistance is provided for the wearer's muscular strength and the like without delay in starting the power assistance. It can be performed.
  • the hybrid ratio By extracting the hybrid ratio stored in the database for each phase, the hybrid ratio can be changed automatically. As a result, smoother movement can be achieved with a hybrid ratio suitable for each operation.
  • the total current of the pulse current generated in response to the nerve transmission signal and the current generated so as to be substantially proportional to the myoelectric potential signal is supplied to the actuator, and ⁇
  • the pulse current or total current is less than the actuator startable current
  • the pulse current is amplified so that the pulse current or total current is equal to or greater than the actuator drive startable current. , The actuation of the actuator can be started.
  • the actuator when performing an operation by a reflex nerve, the actuator is driven for a predetermined time in the opposite direction immediately before driving in the operation direction, thereby utilizing the reflex nerve of the wearer.
  • the operation can be made smooth.
  • the actuator generates a power having a power assist rate corresponding to the phase of the task estimated by comparing the physical quantity with the reference parameter, so that the wearer with different physical strength can be provided.
  • Optimal power can be applied to the vehicle for power assist.
  • FIG. 1 is a schematic diagram showing the entire configuration of a wearable motion assist device.
  • FIG. 2 is a perspective view showing a movement assisting attachment.
  • FIG. 3 is a block diagram illustrating a wearable motion assist device according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example of a configuration of a biological signal processing means and a processing of a biological signal (a nerve transmission signal and a myoelectric potential signal are separated) by the configuration.
  • FIG. 5 is a schematic diagram showing another example of the configuration of the biological signal processing means and the processing of the biological signal (the neural transmission signal and the myoelectric potential signal are superimposed) by the configuration.
  • FIG. 6 is a flowchart showing a control method according to the first embodiment.
  • FIG. 7 is a schematic diagram showing an example of a driving current obtained from a biological signal in which a nerve transmission signal and a myoelectric potential signal are separated, and FIG. 7 (a) shows that the pulse current does not overlap with the driving current and the pulse current is
  • FIG. 4B is a diagram illustrating a state where the drive startable current is less than It, and FIG. 4B is a diagram illustrating a state in which the pulse current in the state of FIG.
  • FIG. 8 is a schematic diagram showing another example of a driving current obtained by obtaining a biological signal force on which a nerve transmission signal and a myoelectric potential signal are superimposed.
  • FIG. 4B is a diagram illustrating a state in which the total current (corresponding to the rise) is less than the drive startable current It, and
  • FIG. 4B is a diagram illustrating a state in which the total current in the state of FIG.
  • FIG. 9 is a block diagram showing an example of controlling a power assist ratio in the wearable motion assist device of the first embodiment.
  • FIG. 10 is a schematic diagram showing examples of tasks and phases.
  • FIGS. 3A and 3B are diagrams illustrating a process of estimating a phase therein, wherein FIG. 3A is a diagram schematically illustrating a database of tasks and phases for each motion of a wearer, and FIG. Fig. 3 (c) shows all phases (Al, A2, A3, ⁇ , ⁇ 1). , ⁇ 2, ⁇ 3 ⁇ ⁇ ⁇ , CI, C2, C3 "')) in a matrix form.
  • FIG. 12 is a flowchart illustrating control of a power assist rate in the control method according to the first embodiment.
  • FIG. 13 is a block diagram illustrating a wearable motion assist device according to a second embodiment.
  • FIG. 14 is a flowchart showing a control method according to the second embodiment.
  • FIG. 15 is a block diagram showing an example of controlling a power assist rate in the wearable motion assist device of the second embodiment.
  • FIG. 16 is a flowchart illustrating control of a power assist rate in the control method according to the second embodiment.
  • FIG. 17 is a block diagram illustrating a configuration of a control device according to a second embodiment.
  • FIG. 18 is a schematic diagram showing another improved example of driving current generation.
  • FIG. 19 is a graph showing experimental results when a pulse current according to a nerve transmission signal was added in Example 1, (a) is a graph showing a change in the rotation angle ⁇ of the knee, and (b) is an amplified graph. A graph showing a change in a biological signal, and (c) is a graph showing a torque of a knee factor.
  • FIG. 20 is a graph showing experimental results when a pulse current according to a nerve transmission signal is not added in Example 1, (a) is a graph showing a change in the rotation angle ⁇ of the knee, and (b) is an amplified signal. A graph showing a change in a biological signal, and (c) is a graph showing a torque of a knee factor.
  • FIG. 21 is an experimental result of an example of a torque of a knee actuator obtained by control for combining an optional command signal and an autonomous command signal in Example 2, and (a) is a graph showing a phase number; ) Is a graph showing changes in knee rotation angle ⁇ , (c) is a graph showing changes in knee tonnolek by autonomous control, (d) is a graph showing changes in knee tonnolek by voluntary control, (e) hybrid control It is a graph which shows the change of the knee tonolek by (autonomous control + voluntary control).
  • Example 2 control for combining an optional command signal and an autonomous command signal was performed.
  • the experimental results of another example of the torque of the knee actuator obtained from the experiment (a) is a graph showing the phase number, (b) is a graph showing the change in the rotation angle ⁇ of the knee, and (c) is an autonomous control.
  • the wearable motion assisting device includes a motion assisting device having an actuator, a biological signal sensor for detecting a biological signal of a wearer, and a biological signal for acquiring a nerve transmission signal and a myoelectric signal from the biological signal.
  • a signal processing means an optional control means for using the nerve transmission signal and the myoelectric potential signal, and a command signal for generating a command signal for generating power according to the wearer's intention to the actuator, and an optional control means.
  • Drive current generating means for generating currents according to the neural transmission signal and the myoelectric potential signal based on the instruction signal, and supplying the currents to the actuator. If the actuator generates power with a power assist rate corresponding to the phase of the task that the wearer intends to perform, a physical quantity sensor that detects a physical quantity related to the wearer's movement is provided in the wearable motion assist device. Install.
  • FIG. 1 schematically shows an example of a drive system (hard system).
  • This wearable motion assist device includes a motion assist wearer 2 (one leg is not shown) to be worn on the lower body of a human (hereinafter also referred to as a wearer) and a biological signal a from the lower body (for example, a thigh). 221 that detects the center of gravity of the wearer 1 attached to the sole of the foot, and the biological signal force detected by the biological signal sensor 221 Nerve transmission signal b and myoelectric signal c , A control device 20 for controlling the driving of the actuator 201 of the motion assistive device 2 based on the nerve transmission signal b and the myoelectric potential signal c, and a control device 20 actuator 201, etc. As shown in FIG.
  • the motion assist attachment 2 includes a waist joint 203a that rotatably joins the upper arm 202a and the intermediate arm 202b to each other.
  • Actuator 201b provided on joint 203b.
  • the middle arm 202b and the lower arm 202c are provided with fixing devices 205a and 205b such as Velcro (registered trademark) which are fixed to the thigh and calf of the wearer 1.
  • Each of the motors 201a and 201b includes a motor and a reduction gear.
  • the upper arm 202a is fixed to a waist 204 which is wound around and fixed to the body of the wearer 1.
  • the upper edge of the back side of the waist 204 is provided with a projection 204a which is opened up and down, and the opening of the projection 204a is provided with a lower projection 220a of a bag 220 containing the control device 20 and the power supply 21 and the like.
  • the heel 205 has an integral shape that completely covers the heel of the wearer 1.One side wall extends higher than the other side, and an ankle joint 203c is attached to the upper end thereof. ing. For this reason, all the loads of the motion assistive attachment device 2 and the bag 220 are supported by the heel portion 205, and are not applied to the wearer 1.
  • FIG. 3 shows a control system of the wearable motion assist device of the first embodiment.
  • the wearer 1 and the movement auxiliary wearer 2 constitute a human-machine system 10.
  • the control device 20 has optional control means 4.
  • a biological signal sensor 221 for detecting the biological signal a of the wearer 1 is connected to an input terminal of the optional control means 4, and a drive current generating means 5 is connected to an output terminal of the optional control means 4. I have.
  • the drive current generating means 5 is connected to actuators 201a and 201b (hereinafter, collectively referred to as actuators 201) of the movement assisting attachment 2.
  • the wearing-type motion assisting device of the first embodiment requires a biological signal sensor 221 that detects a biological signal a from the wearing person 1 in a state of being worn by the human 1.
  • the biosignal sensor 221 is usually attached to the skin of the wearer 1, but may be embedded in the body.
  • a plurality of the center-of-gravity sensors 222 are attached to the soles of the feet, and by detecting which center-of-gravity sensor 222 is the heaviest, the motion direction of the human body can be predicted.
  • a sensor for obtaining a signal indicating a state of operation of the wearer 1 a force sensor, a torque sensor, a current sensor, an angle sensor, an angular velocity sensor, an acceleration sensor, Floor reaction force sensor, etc.
  • sensors for obtaining external information for example, presence or absence of obstacles
  • CCD laser sensor, infrared sensor, ultrasonic sensor, etc.
  • nerve transmission signal b and muscle A sensor a body temperature sensor, a pulse sensor, an electroencephalogram sensor, a cardiac potential sensor, a perspiration sensor, etc.
  • the biological signal a detected by the biological signal sensor 221 has a nerve transmission signal b and a myoelectric signal c.
  • the neural transmission signal b can be said to be a communication signal, and (i)
  • the nerve transmission signal b is obtained by amplifying the biological signal
  • Hz several kHz can be extracted by a band-pass filter 32.
  • the filters are connected in parallel, but the present invention is not limited to this. Both filters may be connected in series.
  • the nerve transmission signal b may overlap not only at the head of the myoelectric potential signal c, but also at the head and thereafter. In this case, only the head of the nerve transmission signal b should be used for generating a pulse current described later.
  • Each of the currents is generated by the drive current generating means 5 with the command signal d obtained by smoothing the signal from the biological signal processing means 3 as an input.
  • the neural transmission signal b has a narrow width, so that the pulse is generated only by smoothing, and the current generated by the driving current generating means 5 based on the nerve transmission signal b is also pulsed.
  • the current (pulse current) obtained based on the nerve transmission signal b may be a rectangular wave.
  • the myoelectric potential signal c has a wide width as shown in FIG. 5, the smoothing results in a mountain-like shape that is substantially proportional to the myoelectric potential.
  • the current generated by this also has a mountain shape.
  • the actuator 201 When the total current of the pulse current generated based on the nerve transmission signal b and the current generated proportionally based on the myoelectric potential signal c is supplied to the actuator 201, the current is proportional to the total current.
  • Actuator 201 generates a tonolek of a size that is large.
  • the total current is set to rise with a sufficiently large current. Therefore, the actuator 201 is driven without delay by the wearer 1's intention to move, and the wearer 1 can perform the operation according to his / her own intention without any discomfort.
  • the force that shows the pulse current particularly large in Figs. 4 and 5 is to emphasize its role, and shows the relationship between the actual pulse current and the drive current obtained from the myoelectric potential signal c. is not.
  • the magnitude of each current can be appropriately set according to the feeling of the wearer 1 during operation.
  • the optional control means 4 has a function of using the nerve transmission signal b and the myoelectric potential signal c to generate a command signal d for causing the actuator 201 to generate power according to the intention of the wearer 1.
  • proportional control can be applied.
  • the command signal value and the drive current value have a proportional relationship by the proportional control, and the drive current value and the torque value generated by the actuator 201 have a proportional relationship due to the characteristics of the actuator 201. Therefore, by generating the required command signal d by the optional control means 4, the power assist rate can be controlled to a desired value.
  • a combination of proportional control, differential control and / or integral control may be applied as a control law in the optional control means 4.
  • the power assist ratio is a distribution ratio between the force generated by the wearer 1 and the force generated by the wearing device 2, and is adjusted manually or automatically.
  • This power assist ratio may be a positive value or a negative value.
  • a positive assist rate the force generated by the wearer 2 added to the force generated by the wearer 1
  • a negative assist rate the force generated by the wearer 2 is subtracted from the force generated by the wearer 1 (i.e., The load 1 is applied to the wearer 1), and the wearer 1 must generate a force higher than normal.
  • the drive current generating means 5 When the command signal d from the optional control means 4 is input, the drive current generating means 5 generates a current corresponding to the nerve transmission signal b and a drive current corresponding to the myoelectric potential signal c based on the command signal d.
  • the actuator 201 is driven by generating them and supplying them to the actuator 201.
  • FIG. 6 is a flowchart illustrating a control method according to the first embodiment.
  • the movement assisting wearing tool 2 having the actuator 201 for imparting power to the wearer 1 is attached to the human 1 (ST501).
  • the biological signal a of the wearer 1 is detected (ST502).
  • the biological signal processing means 3 acquires the nerve transmission signal b and the myoelectric potential signal c from the biological signal a (ST503), and uses the acquired neural transmission signal b and myoelectric potential signal c.
  • an optional command signal dl for generating a motion in accordance with the intention of the wearer 1 in the actuator 201 is generated (ST504).
  • the optional command signal dl includes a command signal d for generating a pulse current corresponding to the nerve transmission signal b and a command signal d for generating a drive current proportional to the myoelectric signal c.
  • the drive current generation means 5 By inputting each command signal d to the drive current generation means 5, the drive current generation means 5 generates a current to be supplied to the actuator 201.
  • Other signals for example, signals obtained from sensors other than the biological signal sensor 221 described in the first embodiment
  • the same signals as described above can be used as other signals unless otherwise specified.
  • the pulse current (when the pulse current and the drive current are not superimposed) according to the nerve transmission signal b or the panelless current If the total current with the drive current (when the pulse current and the drive current are superimposed on each other) is less than the lower limit, the pulse current does not help to quickly start the actuator 201 and the drive current Actuator 201 does not start driving until the lower limit is reached. In this case, there is a considerable delay between when the cerebrum of the wearer 1 emits a signal for starting the movement (nerve transmission signal b) and when the movement assist device is started, and the discomfort given to the wearer 1 is large. Becomes. In order to solve this, it is preferable to start driving the actuator 201 immediately according to the pulse current corresponding to the nerve transmission signal b.
  • FIG. 7 is a schematic diagram showing an example of a driving current obtained from a biological signal in which a nerve transmission signal and a myoelectric potential signal are separated.
  • FIG. FIG. 4B is a diagram illustrating a state in which the current is less than the drive startable current It
  • FIG. 4B is a diagram illustrating a state in which the pulse current in the state of FIG.
  • Fig. 8 is a schematic diagram showing another example of a drive current obtained from a biological signal on which a nerve transmission signal and a myoelectric potential signal are superimposed.
  • Total current (rise FIG. 7B is a diagram illustrating a state in which the current S is smaller than the drive startable current It, and FIG. 7B is a diagram illustrating a state in which the total current in the state of FIG.
  • the actuator 201 needs to have a quick start-up torque in order to assist the movement of the wearer 1 without delay. Is preferably generated.
  • the pulse current 82 and the drive current 81 do not overlap as shown in FIG. 7A, and the pulse current 83 does not overlap with the drive current 81 as shown in FIG. 8A.
  • the pulse current 82 (or pulse current 83 + drive current 81) is not equal to or more than the lower limit It of the drive startable current of the actuator 201 (No in ST505) ), And the pulse currents 82 and 83 so that the pulse current 82 (or pulse current 83 + drive current 81) is equal to or greater than the lower limit It (see Figures 7 (b) and 8 (b)).
  • the width of the pulse currents 82 and 83 is increased as needed (to be longer than the time corresponding to the nerve transmission signal b).
  • a process of detecting a biological signal a ST502
  • a process of obtaining a nerve transmission signal b and a myoelectric potential signal c from the biological signal a ST503
  • a process (ST504) for generating an optional command signal dl for causing the actuator 201 to generate power according to the intention of the wearer 1 using b and the myoelectric potential signal c, and based on the generated optional command signal dl.
  • a control program for generating a pulse current corresponding to the nerve transmission signal b and a drive current corresponding to the myoelectric potential signal c and supplying the generated drive current to the actuator 201 ST506, ST507
  • control device 20 for example, a storage device such as a CPU, a hard disk and a RAM, and a computer such as a personal computer having an input / output device
  • the control device 20 can be stored in the bag 220, but if necessary, it can be placed outside the wearable motion assist device. It is also possible to arrange and wirelessly transmit and receive signals to and from the wearable motion assist device.
  • FIG. 9 shows that the task phase is estimated from physical quantities related to the motion of the wearer 1 when the optional control of the actuator 201 is performed in the wearable motion assisting device of the first embodiment, and the estimated phase
  • An example is shown in which the actuator generates a power that has a power assist ratio corresponding to the above.
  • the wearable motion assisting device of FIG. 9 the same parts as those of the wearable motion assisting device of FIG. 3 are given the same reference numerals, and similar parts are given the same reference numerals.
  • a task is a classification of each motion pattern of the wearer, and a phase is a series of minimum motion units that constitute each task.
  • FIG. 10 illustrates forces as examples of basic movements of human 1 such as walking (task A), rising (task B), sitting (task C), and climbing or descending stairs (task D).
  • the tasks are not limited to these.
  • Each task consists of the above phases.
  • walking task A includes phase 1 in which both feet are in front, phase 2 in which the right foot is in front, phase 3 in which the left foot is in front and both feet are in alignment, It consists of phase 4 with the left foot forward.
  • phase 'Phase Sequence' Such a series of phases.
  • the appropriate power to assist the wearer 1 in movement varies from phase to phase. Therefore, by assigning different power assist rates PARI, PAR2, PAR3, and PAR4 to each of the phases 114, optimal motion assistance can be performed for each phase.
  • the rotation angle and angular velocity, walking speed and acceleration, posture, center of gravity movement, and the like of each joint in each phase are determined.
  • a typical walking pattern for each person is fixed, and when walking in that pattern, it feels most natural. Therefore, the rotation angles and angular velocities of each person's joints can be empirically determined for all phases of all tasks, and stored in the database as reference parameters (reference rotation angles and angular velocities). .
  • the wearable motion assist device shown in FIG. 9 is a human-machine system including a wearer 1 and a motion assist wear device 2.
  • the 10 and a living body that acquires a nerve transmission signal b and a myoelectric potential signal c from the biological signal a of the wearer 1. It has signal processing means 3 and a database 6 in which power assist ratios PAR and the like assigned to each phase are stored together with reference parameters for each phase. Further, together with the biological signal a (including the nerve transmission signal b and the myoelectric potential signal c), the physical quantity detected by the physical quantity sensor 13 (the rotation angle and angular velocity of each joint, the walking speed and acceleration, the posture, the movement of the center of gravity, etc. And, if necessary, generate an optional command signal d (including a power assist rate PAR, etc.) obtained by acquiring the physical quantity and comparing the acquired physical quantity with the reference parameter of the database 6. It has an optional control means 14 and a drive current generation means 5 for generating a drive current for the actuator 201 of the movement auxiliary mounting tool 2 according to a command signal d of the optional control means 14.
  • FIG. 11 is a diagram illustrating a task that the wearer 1 is going to perform by comparing the physical quantity with the reference parameter, and a process of estimating a phase in the task.
  • FIG. Fig. 2 (b) shows the rotation angle of the knee ⁇ and angular velocity ⁇ ', the rotation angle of the hip ⁇ and angular velocity ⁇ ', and the center of gravity position COG and the center of gravity position COG '.
  • (C) schematically shows a state in which all phases (Al, A2, A3 ⁇ ⁇ ⁇ , B1, B2, ⁇ 3 ⁇ ⁇ ⁇ , CI, C2, .3 ⁇ ⁇ ⁇ ) are extracted in a matrix.
  • the tasks and phases shown in FIG. 11A are those shown in FIG. Task A (walking), task B (rising), task C (sitting) in the example are a series of phases (phase Al, phase A2, phase A3, phase B1, phase B2, phase ⁇ 3 ⁇ ⁇ Etc.).
  • the measured physical quantity and the reference parameter are compared at fixed short time intervals.
  • the comparison is made for a series of phases in all tasks (A, B, ⁇ ⁇ ⁇ ⁇ ). That is, as shown in FIG. 11 (c), all phases (Al, A2, A3,..., Bl, B2, ⁇ 3,. , C3 ''') are extracted in a matrix and compared with measured physical quantities.
  • FIG. 12 shows a control method for controlling the power assist ratio PAR as another example of the first embodiment.
  • ST601, ST602, and ST604-606 in FIG. 12 are substantially the same as ST501 505a in FIG. 6, and therefore description thereof will be omitted, and the steps of ST607-612 will be mainly described here.
  • the physical quantity sensor 13 detects the physical quantity of the human-machine system 10 (ST603).
  • the physical quantity sensor 13 for the physical quantity such as the rotation angle and angular velocity of each joint, walking speed and acceleration, posture, etc. is attached to the motion assist attachment 2, but the physical quantity sensor 13 for the physical quantity such as the movement of the center of gravity is directly attached to the wearer 1. That's good ,.
  • the physical quantities are sequentially compared with the reference parameters of each phase of each task stored in the database 6 (ST607).
  • all tasks and their phases exist in a matrix, so that the measured values of physical quantities and the reference parameters of each phase are, for example, Al, A2, A3 ⁇ ⁇ ⁇ , B l, B2, ⁇ 3 ⁇ ⁇ ⁇ , CI, C2, C3 Compare in order of '''.
  • the reference parameters are set so that they do not overlap between the phases of all tasks (referred to simply as "tasks / phases"), so when comparing with the reference parameters of all task phases,
  • the phase of the task having the reference parameter that matches the measured value of the physical quantity is known (ST608).
  • the number of matches required for the judgment is set in advance, and when that number is reached (ST609), the phase of the task corresponding to the measured physical quantity is estimated. Yes (ST610).
  • the power assist rate PAR assigned to the phase corresponding to the operation to be assisted is specified, and the power that becomes the power assist rate PAR is generated in the actuator 201.
  • the optional command signal d is adjusted in such a manner (ST611).
  • the drive current generation means 5 generates a current (total current) according to the adjusted optional command signal d, and drives the actuator 201 by supplying this total current (ST612).
  • a process for detecting the biological signal a of the wearer 1 (ST602), a process for detecting the physical quantity of the human mechanical system 10 (ST603), the detected physical quantity and each task
  • the phase that the wearer is going to perform is estimated (ST 610), and the actuator is made to generate the power that provides the power assist ratio PAR according to the estimated phase.
  • a control program for performing a process of generating an optional command signal d (ST611) and a process of generating a current corresponding to the optional command signal d and supplying the current to the actuator (ST612). It is stored in the storage device of the control device 20A of the auxiliary device.
  • the optional command signal d is generated so that the power assist ratio PAR optimized for each phase is obtained, and power is supplied in accordance with the optional command signal d, whereby smoothness is achieved. It is possible to assist the operation of the actuator by using the pulse current according to the nerve transmission signal b to start the actuation of the actuator. Can be.
  • the wearable movement assisting device of the second embodiment includes a movement assisting wearing device 2 having an actuator 201 and a biological signal sensor 221 for detecting a biological signal a of the wearer 1. And a physical quantity sensor 13 for detecting the physical quantity of the human-machine system 10, a biological signal a detected by the physical quantity sensor 13, and a command for generating power to the actuator 201 according to the intention of the wearer 1.
  • Optional control means 14 for generating a signal d (optional command signal dl).
  • a database 6 storing a series of minimum motion units (phases) constituting each motion pattern of the wearer 1 classified as a task, and a physical quantity detected by the physical quantity sensor 13 and stored in the database 6
  • a command signal d autonomous command signal d2
  • Command signal combining means 8 for combining command signal dl from optional control means 4 and command signal d2 from autonomous control means 7, and command signal combining means 8
  • Drive current generating means 5 for generating a current corresponding to the total command signal d3 and supplying the current to the actuator 201.
  • Optional control means 14 itself is the same as optional control means 4 of the first embodiment shown in FIG. Specifically, as shown in FIGS. 4 and 5, an optional command signal dl corresponding to the nerve transmission signal b and the myoelectric potential signal c is generated, and a pulse current corresponding to the nerve transmission signal b is generated by the actuator 201. It is preferable to use it as a trigger signal for starting driving.
  • the autonomous control means 7 compares the physical quantity detected by the physical quantity sensor 13 with the reference parameter of each phase of each task stored in the database 6. It has a function of estimating the phase of the task of the wearer 1 by comparing the parameters with the parameters and generating an autonomous command signal d2 for causing the actuator 201 to generate power corresponding to the phase. Therefore, the description regarding FIGS. 10 and 11 (a)-(c) applies to the autonomous control means 7 as it is.
  • the command signal synthesizing means 8 synthesizes the optional command signal dl from the optional control means 14 and the autonomous command signal d2 from the autonomous control means 7.
  • the synthesized command signal d3 has a waveform that causes the actuator 201 to generate a power obtained by adding the power obtained by the optional control that changes from the start to the end of the operation and the power obtained by the constant autonomous control for each phase. .
  • the effect of this command signal synthesis is apparent from the embodiment described later in detail.
  • FIG. 14 is a flowchart illustrating a control method according to the second embodiment.
  • the movement assisting wearer 2 having the actuator 201 for applying power to the wearer 1 is worn on the human 1 (ST701), and the biological signal of the wearer 1 is obtained.
  • a is detected (ST702), and the physical quantity of the human-machine system 10 composed of the wearer 1 and the movement auxiliary wearing device 2 is detected (ST703).
  • an optional command signal dl for generating power according to the intention of the wearer 1 in the actuator 201 is generated (ST704), and the detected physical quantity and the detected physical quantity are stored in the database 6. Compare with the reference parameter of each phase of each task.
  • the task of wearer 1 and its phase are estimated, and the hybrid ratio ⁇ (optional command signal dl / autonomous command signal d2) corresponding to the phase of this task is specified. (ST708).
  • an autonomous command signal d2 for generating a power corresponding to this phase in the actuator 201 is generated (ST709), and the optional command signal dl and the autonomous command signal d2 are set so that the specified hybrid ratio ⁇ is obtained.
  • ST710 a total command signal d3
  • the actuator 201 is driven by the supply of the current generated according to the total command signal d3 (ST711).
  • ST701 703 is the same as ST601-603 of the example of the first embodiment shown in FIG.
  • ST705 708 is the same as ST607-610 of the example of the first embodiment shown in FIG.
  • the step (ST704) of generating the optional command signal dl according to the living body signal a is preferably, specifically, one comprising ST604-606a shown in FIG.
  • the optional command signal dl is to generate a pulse current corresponding to the nerve transmission signal b and a drive current corresponding to the myoelectric potential signal c, as in the first embodiment. I like it.
  • the ratio of a to bridging ⁇ is set in advance for each phase of each task so that the operation of the wearer 1 can be assisted without feeling uncomfortable, and stored in the database 6.
  • the hybrid ratio ⁇ is automatically defined by the control device 20 as described above when the phase is estimated by comparing the measured physical quantity with the reference parameter.
  • the total command signal d3 is generated so as to have the required hybrid ratio ⁇ , and by applying the power according to the total command signal d3, it is possible to smoothly perform the operation assistance corresponding to various operations.
  • a control program for performing a process of generating the total command signal d3 (ST710) and a process of driving the actuator 201 by supplying a current generated in accordance with the generated total command signal d3 (ST711) is a wearable operation. It is stored in the storage device of the control device 20B of the auxiliary device.
  • FIG. 15 is a block diagram showing another example of the wearable motion assist device of the second embodiment.
  • the wearable movement assisting device includes a movement assisting wearer 2 having an actuator 201 for applying power to a wearer 1, and a living body detecting a biological signal a of the wearer 1.
  • the actuator 201 uses the signal sensor 221, the physical quantity sensor 13 for detecting a physical quantity related to the movement of the wearer 1, and the biological signal a detected by the biological signal sensor 221, the actuator 201 generates power according to the intention of the wearer 1.
  • optional control means 24 for generating a command signal d (optional command signal dl).
  • the database 6 storing the reference parameters of a series of minimum motion units (phases) constituting each motion pattern of the wearer 1 classified as a task is compared with the physical quantity detected by the physical quantity sensor 13 and the reference parameter.
  • the operation pattern of the wearer 1 is estimated by performing the above operation, and an autonomous control means 7 for generating a command signal d (autonomous command signal d2) for generating a power corresponding to the wearer 1 in the actuator 201, and an optional Command signal synthesizing means 8 for synthesizing the command signal dl and the autonomous command signal d2, and a drive current generating means 5 for generating a current corresponding to the total command signal d synthesized by the command signal synthesizing means 8 and supplying the current to the actuator 201
  • an autonomous control means 7 for generating a command signal d (autonomous command signal d2) for generating a power corresponding to the wearer 1 in the actuator 201
  • an optional Command signal synthesizing means 8 for synthesizing the command
  • a nerve transmission signal b for operating the musculoskeletal system of the wearer 1 and a myoelectric potential signal c accompanying muscle activity from the biological signal a, but this is the same as in the first embodiment. Since the same biological signal processing means 3 (two powers shown in FIG. 15 may be used in common) may be used, the description is omitted.
  • the database 6, the autonomous control means 17, the command signal synthesizing means 8 and the drive current generating means 5 can be the same as those in FIG.
  • the optional control means 24 and the autonomous control means 17 compare the physical quantity detected by the physical quantity sensor 13 with the reference parameters stored in the database 6 to determine the task that the wearer 1 is trying to perform. It has a function of estimating a phase and generating an optional command signal dl and an autonomous command signal d2 so as to obtain a hybrid ratio and a power assist rate PAR corresponding to the phase.
  • FIG. 16 is a flowchart showing a preferred example of a control method for the wearable motion assist device. It is.
  • FIG. 17 is a block diagram illustrating a configuration of a control device according to the second embodiment.
  • the motion auxiliary wearing tool 2 having the actuator 201 for applying power to the wearer 1 is attached to the human 1 (ST801). Detects the biological signal a of the wearer 1 (ST802), detects the physical quantity of the human mechanical system 10 composed of the wearer 1 and the motion assistive attachment 2 (ST803), and optionally outputs a command signal corresponding to the detected physical quantity. d1 is generated (ST804). Furthermore, by comparing the detected physical quantity with the reference parameter of each phase stored in the database 6 (ST805-807), the phase of the task that the wearer 1 is going to perform is estimated, and the phase of this task is estimated.
  • the hybrid ratio and the power assist rate PAR corresponding to the phase are defined (ST808), and an autonomous command signal d2 for driving the actuator 201 with the power corresponding to this phase is generated (ST809). Then, the optional command signal dl and the autonomous command signal d2 are combined to generate the total command signal d3 so that the specified hybrid ratio and power assist ratio PAR are obtained (ST810).
  • the actuator 201 is driven by the supply of the current generated in accordance with (ST811).
  • a process of detecting the biological signal a of the wearer 1 (ST802) and a process of detecting the physical quantity of the human-machine system 10 including the wearer 1 and the movement auxiliary wearing device 2 (ST803) ),
  • the phase that the wearer 1 is going to perform is estimated, and the hybrid ratio ⁇ and the power assist rate PAR corresponding to the phase of this task are defined ( ST808), a process of generating an autonomous command signal d2 for generating a power corresponding to the phase of this task in the actuator 201 (ST809), and a specified hybrid ratio and power assist ratio PAR.
  • the control program for performing the process (ST811) for driving the reactor 201 is stored in the storage device of the control device 20C of the wearable motion assist device.
  • a current 92 in the opposite direction is supplied at the time of starting to drive the actuator 201 in the opposite direction, and then a current 91 for driving the actuator 201 in the operation direction is supplied. You can make various movements.
  • FIGS. 19A and 19B are graphs showing experimental results when a pulse current corresponding to a nerve transmission signal was added in Example 1, wherein FIG. 19A is a graph showing a change in the rotation angle ⁇ of the knee, and FIG. 7 is a graph showing a change in body signal, and (c) is a graph showing a torque of a knee actuator.
  • FIGS. 20A and 20B are graphs showing experimental results in Example 1 when a pulse current corresponding to a nerve transmission signal was not added, in which FIG. 20A is a graph showing a change in the rotation angle ⁇ of the knee, and FIG. A graph showing a change in a signal, and (c) is a graph showing a torque of a knee actuator.
  • This example is to show the effect of the first embodiment.
  • the nerve transmission signal b Is used as a trigger signal (see Fig. 19 (a)-(c)), and a condition where the nerve transmission signal b is not used as a trigger signal, that is, only a drive current corresponding to the myoelectric potential signal c is supplied to the actuator 201b.
  • the tonnolek of the actuator 201b of each knee was measured.
  • FIG. 21 (a)-(e) shows the experimental results showing the case where the wearer stands up from a chair and powers up by a combination of autonomous control and voluntary control.
  • FIG. 21 (c) shows the torque of the knee actuator according to the command signal dl by the autonomous control
  • FIG. 21 (d) shows the torque of the knee actuator according to the command signal d2 by the optional control.
  • FIG. 21 (a) shows the phase number
  • FIG. 21 (b) shows the knee rotation angle ⁇ .
  • FIG. 22 (a)-(e) shows that when the wearer sits in a chair, performs a rising motion halfway, and then sits down, powers on by a combination of autonomous control and optional control. It is an experimental result showing the case of giving.
  • FIG. 22 (a) shows the phase numbers
  • FIG. 22 (b) shows the knee rotation angle ⁇ .
  • the torque according to the command signal d by the autonomous control shown in (2) that is, a certain amount of tonnolek is different from the tonnolek that changes in the operation process, so that a smooth series of operations without discomfort cannot be performed. Les ,. That is, it is understood that both the quick start and the torque matched to the wearer's operation can be obtained only by the combination of the above-mentioned optional control and autonomous control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nursing (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Manipulator (AREA)
  • Prostheses (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 装着者の動作を補助あるいは代行する装着式動作補助装置は、装着者1に対して動力を付与するアクチュエータ201を有した動作補助装着具2と、装着者1の生体信号を検出する生体信号センサ221と、装着者1の筋骨格系を動作させるための神経伝達信号bおよび筋活動に伴う筋電位信号cを、生体信号センサにより検出された生体信号aから取得する生体信号処理手段3と、生体信号処理手段3により取得された神経伝達信号bおよび筋電位信号cを用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための指令信号dを生成する随意的制御手段4と、随意的制御手段4により生成された指令信号dに基づいて、神経伝達信号bに応じた電流および筋電位信号cに応じた電流をそれぞれ生成し、アクチュエータ201に供給する駆動電流生成手段5とを備える。

Description

明 細 書
装着式動作補助装置、装着式動作補助装置の制御方法および制御用プ ログラム
技術分野
[0001] 本発明は、装着者の動作を補助あるいは代行する装着式動作補助装置、装着式 動作補助装置の制御方法および制御用プログラムに関し、特に装着者に対して与え る違和感を抑えることのできる装着式動作補助装置、装着式動作補助装置の制御方 法および制御用プログラムに関する。
背景技術
[0002] 身体障害者や高齢者等にとっては、健常者であれば簡単に行える動作でも非常に 困難である場合が多い。このような人達のために今日まで種々の補助装置が開発さ れ、実用化されてきた。このような補助装置には、車椅子や介護ベッドのように装着 者が乗ってスィッチによりモータ等のァクチユエータを駆動させ、不足した力を補助 する装置と、人間に装着され、装着者の意思に基づいて動作に必要な力を補助する 装置とがある。人間に装着されるいわゆる装着式動作補助装置は、装着者の意思に 基づき必要な動力を随時発生でき、かつ介護者を必要としないので、身体的障害者 や高齢者等の介護、あるいはけが人や病人等のリハビリテーションに非常に便利で あり、実用化が期待されている。このような装着式動作補助装置としては、装着者の 筋活動に伴う筋電位信号を検出し、この検出結果に基づいてァクチユエータを駆動 することにより、ァクチユエータを装着者の意思に従って随意的に制御する装置が提 案されてレ、る ( 特午文 S I: Takao Nakai, uwoong Lee, Hiroaki Kawamoto and Yoshiyuki Sankai,
"Development of Power Assistive Leg for Walking Aid using EMG and Linux," Second Asian Symposium on Industrial Automation and Robotics, BITiiLH,
Bangkok,
Thailand, May 17-18, 2001)。
[0003] ところで、装着式動作補助装置では、動作補助のための動力を装着者に付与する タイミングが装着者の動きと調和しなければ、動作がぎこちなくなり、装着者にいわゆ る違和感を与えるという問題がある。ここで、動力付与のタイミングを装着者の動きと 調和させるには、タイミングを装着者の動きよりも所要の微小時間だけ早くする必要 力あることが知られている。
[0004] しかしながら、非特許文献 1の装着式動作補助装置では、装着者からの筋電位信 号を検出した後にァクチユエータに動力を発生させるための処理を開始するので、 動力付与のタイミングが装着者の動きよりも遅れ、装着者に著しレ、違和感を与える虞 があった。そこで、従来においては、人間の動作を複数のパターン (タスク)に分類す るとともに、各タスクを複数の所定の最小動作単位 (フェーズ)に分割し、フェーズ毎 に予め設定した大きさの電流を供給することにより、ァクチユエータを駆動制御する 装置が提案されている(非特許文献 2 /'Predictive Control Estimating Operator's Intention for
Stepping-up Motion by Exo-Skeleton Type Power Assist System HAL,"
Proceedings of the 2001 IEEE/RSJ, International Conference on Intelligent
Robots and Systems, Maui, Hawaii, Oct. 29 - Nov. 03, 2001, pp. 1578-1583) (非特 許文献 3 :李秀雄、山海嘉之、「Phase
Sequenceと EMGを用いた立ち座り、歩行動作のパワーアシスト制御」、第 19回日本口 ボット学会学術講演会予稿集 (2001年) )。
[0005] これらの装着式動作補助装置では、装着者から検出した関節角度等の物理量に 基づいて、装着者のタスクのフェーズを推定するとともに、推定したフェーズに応じて ァクチユエータを制御(自律制御)することにより、動力付与のタイミングの遅れに伴う 違和感を低減するようにしてレ、る。
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、上記非特許文献 2および 3の装着式動作補助装置の制御系では、 自 律的制御によるものであるため、つまずく等の予期せぬ動作変更が生じた場合には 、該当するタスクのフェーズへの切り替えを円滑に行うことができず、装着者に著しい 違和感を与える虞があった。 [0007] 従って、本発明は、装着者に与える違和感を可及的に抑えることができる装着式動 作補助装置、装着式動作補助装置の制御方法および制御用プログラムを提供する ことを課題としている。
課題を解決するための手段
[0008] 上記課題を解決するため、本発明は以下のような手段を有する。
[0009] 本発明は、装着者の動作を補助あるいは代行する装着式動作補助装置であって、 装着者に対して動力を付与するァクチユエータを有した動作補助装着具と、装着者 の生体信号を検出する生体信号センサと、装着者の筋骨格系を動作させるための神 経伝達信号および筋活動に伴う筋電位信号を、生体信号センサにより検出された生 体信号から取得する生体信号処理手段と、生体信号処理手段により取得された神経 伝達信号および筋電位信号を用い、装着者の意思に従った動力をァクチユエータに 発生させるための指令信号を生成する随意的制御手段と、随意的制御手段により生 成された指令信号に基づレ、て、神経伝達信号に応じた電流および筋電位信号に応 じた駆動電流をそれぞれ生成し、ァクチユエータに供給する駆動電流生成手段とを 備えることを特 ί数とするものである。
[0010] また、本発明の装着式動作補助装置の制御方法は、装着者に対して動力を付与 するァクチユエータを有した動作補助装着具が装着者に装着された状態において、 装着者の生体信号を検出し、検出した生体信号から、装着者の筋骨格系を動作させ るための神経伝達信号および筋活動に伴う筋電位信号を取得し、取得した神経伝達 信号および筋電位信号を用い、装着者の意思に従った動力をァクチユエータに発生 させるための随意的指令信号を生成し、生成した随意的指令信号に基づいて、神経 伝達信号に応じた電流および筋電位信号に応じた電流をァクチユエータにそれぞれ 供給することを特徴とするものである。
[0011] また、本発明の装着式動作補助装置の制御用プログラムは、ァクチユエータを制御 するためのコンピュータに、装着者の生体信号を検出するための処理と、生体信号 から、装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電 位信号を取得するための処理と、取得した神経伝達信号および筋電位信号を用い、 装着者の意思に従った動力をァクチユエータに発生させるための随意的指令信号を 生成する処理と、生成した随意的指令信号に基づいて、神経伝達信号に応じた電流 および筋電位信号に応じた電流をそれぞれ生成し、ァクチユエータに供給するため の処理とを行わせることを特徴とするものである。
[0012] また、本発明の装着式動作補助装置では、装着者の動作に関する物理量を検出 する物理量センサを有することが好ましい。また生体信号処理手段は、神経伝達信 号および筋電位信号からなる生体信号を増幅する手段と、生体信号から神経伝達信 号を抽出する第一のフィルタと、生体信号から筋電位信号を抽出する第二のフィルタ とを有するを特徴とするものである。
[0013] また、本発明の装着式動作補助装置では、駆動電流生成手段は、神経伝達信号 に応じて生成したパルス電流と筋電位信号に実質的に比例するように生成した電流 との総電流をァクチユエータに供給するとともに、パルス電流によりァクチユエータの 動作を開始させることを特徴とするものである。
[0014] また、本発明の装着式動作補助装置では、駆動電流生成手段が、ァクチユエータ への電流の供給を開始する際に、ァクチユエータを駆動可能な電流の下限値よりも 大きくなるように、パルス電流あるいは総電流を生成することを特徴とするものである。
[0015] また、本発明の装着式動作補助装置では、タスクとして分類した装着者の動作パタ ーンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータと、ァクチュ エータによる動力付与率 (パワーアシスト率)とを所要の対応関係となるように格納し たデータベースを備え、随意的制御手段は、物理量センサにより検出された物理量 をデータベースに格納された基準パラメータと比較することにより、装着者が行おうと しているタスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を対応関 係に基づいて規定し、このパワーアシスト率となる動力をァクチユエータに発生させる ための指令信号を生成することを特徴とするものである。
[0016] また、本発明の装着式動作補助装置では、駆動電流生成手段が、装着者が反射 神経によって動作する場合に、当該動作の反対方向にァクチユエータを駆動するた めの電流を所定の時間だけ供給した後に、動作の方向にァクチユエータを駆動する ための電流を供給することを特徴とするものである。
[0017] また、本発明の装着式動作補助装置の制御方法では、神経伝達信号に応じて生 成したパルス電流と筋電位信号に実質的に比例するように生成した電流との総電流 をァクチユエータに供給するとともに、 ノ^レス電流の供給によりァクチユエータの動作 を開始させることを特徴とするものである。
[0018] また、本発明の装着式動作補助装置の制御方法では、ァクチユエータへの電流の 供給を開始する際に、ァクチユエータを駆動可能な電流の下限値よりも大きくなるよう に、パルス電流あるいは総電流を供給することを特徴とするものである。
[0019] また、本発明の装着式動作補助装置の制御方法では、さらに装着者の動作に関す る物理量を検出し、検出した物理量信号と、タスクとして分類した装着者の各動作パ ターンを構成する一連の最小動作単位 (フェーズ)の各々の基準パラメータとを比較 することにより、装着者が行おうとしているタスクのフェーズを推定するとともに、このフ エーズに応じた所要の動力付与率 (パワーアシスト率)となる動力をァクチユエータに 発生させるための随意的指令信号を生成し、この随意的指令信号に応じた駆動電 流を生成し、ァクチユエータに供給することを特徴とするものである。
[0020] また、本発明の装着式動作補助装置の制御方法では、装着者が反射神経によつ て動作する場合に、当該動作の反対方向にァクチユエータを駆動させるための電流 を所定の時間だけ供給した後に、動作の方向にァクチユエータを駆動させるための 電流を供給することを特徴とするものである。
[0021] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、神 経伝達信号に応じて生成したノ^レス電流と筋電位信号に実質的に比例するように生 成した電流との総電流をァクチユエータに供給するとともに、パルス電流の供給により ァクチユエータの動作を開始させるための処理を行わせることを特徴とするものであ る。
[0022] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、ァ クチユエータへの電流の供給を開始する際に、ァクチユエータを駆動可能な電流の 下限値よりも大きくなるように、パルス電流あるいは総電流を設定するための処理を 行わせることを特徴とするものである。
[0023] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、タ スクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ )の各々の基準パラメータと、ァクチユエータによる動力付与率 (パワーアシスト率)と を所要の対応関係となるように格納したデータベースにアクセスするための処理と、 装着者の動作に関する物理量を検出するための処理と、検出した物理量を、データ ベースに格納された基準パラメータと比較することにより、装着者が行おうとしている タスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を対応関係に基づ いて規定し、このパワーアシスト率となる動力をァクチユエータに発生するための処理 とを行わせることを特徴とするものである。
[0024] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、装 着者が反射神経によって動作する場合に、当該動作の反対方向にァクチユエータを 駆動するための駆動電流を所定の時間だけ供給した後に、動作の方向にァクチユエ ータを駆動するための駆動電流を供給するための処理を行わせることを特徴とするも のである。
[0025] また、本発明の装着式動作補助装置は、装着者に対して動力を付与するァクチュ エータを有した動作補助装着具と、装着者の生体信号を検出する生体信号センサと 、装着者の動作に関する物理量を検出する物理量センサと、生体信号センサにより 検出された生体信号を用い、装着者の意思に従った動力をァクチユエータに発生さ せるための指令信号を生成する随意的制御手段と、タスクとして分類した装着者の 動作パターンを構成する一連の最小動作単位 (フェーズ)の各々の基準パラメータを 格納したデータベースと、物理量センサにより検出された物理量とデータベースに格 納された基準パラメータとを比較することにより、装着者のタスクのフェーズを推定し、 このフェーズに応じた動力をァクチユエータに発生させるための指令信号を生成する 自律的制御手段と、随意的制御手段からの指令信号および自律的制御手段からの 指令信号を合成する信号合成手段と、信号合成手段により合成された総指令信号 に応じた総電流を生成し、ァクチユエータに供給する駆動電流生成手段とを備えるこ とを特徴とするものである。
[0026] また、本発明の装着式動作補助装置の制御方法は、装着者に対して動力を付与 するァクチユエータを有した動作補助装着具が装着者に装着された状態において、 装着者の生体信号および装着者の動作に関する物理量をそれぞれ検出し、検出し た生体信号を用いて、装着者の意思に従った動力をァクチユエータに発生させるた めの随意的指令信号を生成し、検出した物理量と、タスクとして分類した装着者の動 作パターンを構成する一連の最小動作単位 (フェーズ)の各々の基準パラメータとを 比較することにより、装着者が行おうとしているタスクのフェーズを推定し、このフエ一 ズに応じた動力をァクチユエータに発生させるための自律的指令信号を生成し、これ ら生成した随意的指令信号および自律的信号を合成し、合成した総指令信号に応じ た電流を生成し、ァクチユエータに供給することを特徴とするものである。
[0027] また、本発明の装着式動作補助装置の制御用プログラムでは、ァクチユエ一タを制 御するためのコンピュータに、装着者の生体信号および装着者の動作に関する物理 量をそれぞれ検出するための処理と、検出した生体信号を用いて、装着者の意思に 従った動力をァクチユエータに発生させるための随意的指令信号を生成するための 処理と、検出した物理量を、タスクとして分類した装着者の動作パターンを構成する 一連の最小動作単位 (フェーズ)の各々の基準パラメータと比較することにより、装着 者が行おうとしているフェーズを推定するとともに、このフェーズに応じた動力をァク チユエータに発生させるための随意的指令信号を生成するための処理と、これら生 成した随意的指令信号および自律的指令信号を合成した総指令信号に応じた電流 を生成し、ァクチユエータに供給するための処理とを行わせることを特徴とするもので める。
[0028] また、本発明の装着式動作補助装置では、データベースが、随意的制御手段から の指令信号と自律的制御手段からの指令信号との比 (ハイブリッド比)を、フェーズの 基準パラメータと所要の対応関係となるように格納し、信号合成手段は、 自律的制御 手段により推定されたタスクのフェーズに応じ、対応関係に基づいて規定されるハイ ブリツド比となるように、随意的制御手段からの指令信号および自律的制御手段から の指令信号を合成することを特徴とするものである。
[0029] また、本発明の装着式動作補助装置では、装着者の筋骨格系を動作させるための 神経伝達信号および筋活動に伴う筋電位信号を、生体信号センサにより検出された 生体信号から取得する生体信号処理手段を備え、駆動電流生成手段は、生体信号 処理手段により取得された神経伝達信号に応じて生成したパルス電流の供給により :ータの動作を開始させることを特徴とするものである。
[0030] また、本発明の装着式動作補助装置では、駆動電流生成手段が、了クチユエ→ への電流の供給を開始する際に、ァクチユエータを駆動可能な電流の下限値よりも 大きくなるように、パルス電流あるいは総電流を生成することを特徴とするものである。
[0031] また、本発明の装着式動作補助装置では、データベースが、フェーズの各々の基 準パラメータと、ァクチユエータによる所要の動力付与率 (パワーアシスト率)とを所要 の対応関係となるように格納し、信号合成手段は、 自律的制御手段により推定された タスクのフェーズに応じたパワーアシスト率を対応関係に基づいて規定し、このパヮ 一アシスト率を満たすように随意的制御手段からの指令信号および自律的制御手段 力 の指令信号を合成することを特徴とするものである。
[0032] また、本発明の装着式動作補助装置では、駆動電流生成手段が、装着者が反射 神経によって動作する場合に、当該動作の反対方向にァクチユエータを駆動するた めの電流を所定の時間だけ供給した後に、動作の方向にァクチユエータを駆動する ための電流を供給することを特徴とするものである。
[0033] また、本発明の装着式動作補助装置の制御方法では、随意的指令信号と自律的 指令信号との比 (ハイブリッド比)を、フェーズの各々の基準パラメータと所要の対応 関係となるように予め設定し、推定したタスクのフェーズに応じたハイブリッド比を対応 関係に基づいて規定し、このハイブリッド比となるように総指令信号を合成することを 特徴とするものである。
[0034] また、本発明の装着式動作補助装置の制御方法では、ァクチユエータへの電流の 供給を開始する際に、ァクチユエータを駆動可能な電流の下限値よりも大きくなるよう に、神経伝達信号に応じた電流、あるいは当該電流と筋電位信号に応じた電流との 総電流を供給することを特徴とするものである。
[0035] また、本発明の装着式動作補助装置の制御方法では、装着者に付与する動力の 比率(パワーアシスト率)をフェーズの各々の基準パラメータに予め対応付けておき、 推定したタスクのフェーズに応じたパワーアシスト率となるように、総指令信号を設定 することを特 ί敷とするものである。
[0036] また、本発明の装着式動作補助装置の制御方法では、装着者が反射神経によつ て動作する場合に、当該動作の反対方向にァクチユエータを駆動するための駆動電 流を所定の時間だけ生成した後に、動作の方向にァクチユエータを駆動することを特 徴とするものである。
[0037] また、本発明の装着式動作補助装置の制御用プログラムでは、ァクチユエ一タを制 御するためのコンピュータに、随意的指令信号と自律的指令信号との比 (ハイブリッド 比)を、フェーズの各々の基準パラメータと所要の対応関係となるように格納したデー タベースにアクセスするための処理と、検出した物理量をデータベースに格納された 基準パラメータと比較することにより、装着者が行おうとしているタスクのフェーズを推 定するとともに、このフェーズに応じたハイブリッド比を対応関係に基づいて規定し、 このハイブリッド比となるように総指令信号を合成するための処理とを行わせることを 特徴とするものである。
[0038] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、ァ クチユエータへの電流の供給を開始する際に、ァクチユエータを駆動可能な電流の 下限値よりも大きくなるように、パルス電流あるいは総電流を設定するための処理を 行わせることを特徴とするものである。
[0039] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、タ スクとして分類した装着者の動作パターンを構成する一連の最小動作単位 (フェーズ )の各々の基準パラメータを、装着者に付与する動力の比率 (パワーアシスト率)に対 応付けて格納したデータベースにアクセスするための処理と、推定したタスクのフエ ーズに応じたパワーアシスト率となるように、総指令信号を設定するための処理とを行 わせることを特徴とするものである。
[0040] また、本発明の装着式動作補助装置の制御用プログラムでは、コンピュータに、装 着者が反射神経によって動作する場合に、当該動作の反対方向にァクチユエータを 駆動するための駆動電流を所定の時間だけ生成した後に、動作の方向にァクチユエ ータを駆動するための処理を行わせることを特徴とするものである。
発明の効果
[0041] 本発明によれば、生体信号から筋電位信号と、それに先行するか筋電位信号の先 頭部に位置する神経伝達信号とを取得するとともに、取得した神経伝達信号をァク チユエータの駆動開始用の信号 (トリガー信号)として使用することにより、ァクチユエ ータへの電流供給を開始した際に、速やかにァクチヱエータを動作させることができ る。このため、装着式動作補助装置の始動時の遅れを感じることがなぐ違和感のな レ、スムーズな動作が得られる。
[0042] また、本発明によれば、装着者の意思に従った動力をァクチユエータに発生させる ための随意的指令信号と、検出された物理量とデータベースに格納された基準パラ メータとの比較により推定されたタスクのフェーズに応じた動力をァクチユエ一タに発 生させるための自律的指令信号とを合成するので、ァクチユエータを素早く動作開始 させることができ、随意的動作を違和感なくスムーズに行うことができる。
[0043] また、本発明によれば、随意的指令信号と自律的指令信号とのハイブリッド比を制 御することにより、動力補助の開始の遅れなぐ装着者の筋力等に対して最適な動作 補助を行うことができる。またデータベースに格納されたハイブリッド比をフェーズごと に引き出せば、自動的にハイブリッド比を変更することができる。これにより、各動作 に適したハイブリッド比で、一層スムーズな動きをすることができる。
[0044] また、本発明によれば、神経伝達信号に応じて生成したパルス電流と筋電位信号 に実質的に比例するように生成した電流との総電流をァクチユエータに供給するとと もに、ノ^レス電流の供給によりァクチユエータの動作を開始させると、ァクチユエータ の駆動開始の遅れを防止することができる。またパルス電流あるいは総電流がァクチ ユエータの駆動開始可能電流未満の場合に、パルス電流あるいは総電流がァクチュ エータの駆動開始可能電流以上になるように、パルス電流を増幅することにより、神 経伝達信号に正確に対応させて、ァクチユエータの駆動を開始することができる。
[0045] また、本発明によれば、反射神経による動作を行う場合、動作方向に駆動する直前 に反対方向に所定の時間だけァクチユエータを駆動させることにより、装着者の反射 神経を利用して、かえって動作をスムーズにすることができる。
[0046] また、本発明によれば、物理量と基準パラメータとを比較することにより推定したタス クのフェーズに応じたパワーアシスト率となる動力をァクチユエータに発生させること により、異なる体力の装着者に対して最適な動力を付与して、パワーアシストすること ができる。 [0047] 以上の特徴を有する本発明の装着式動作補助装置を使用すると、身体障害者や 高齢者のように、身体動作を行うのに十分な筋力がない者や身体動作そのものが困 難になった者でも、違和感なくスムーズな動作を行うことができる。また例えば爆発物 の処理のような危険な作業を行うために重装備をしなければならない者でも、本発明 の装着式動作補助装置を装着すれば、あたかも重装備がないかのように軽快に作業 すること力 Sできる。
図面の簡単な説明
[0048] [図 1]装着式動作補助装置の全体構成を示す概略図である。
[図 2]動作補助装着具を示す斜視図である。
[図 3]第一の実施形態の装着式動作補助装置を示すブロック図である。
[図 4]生体信号処理手段の構成およびそれによる生体信号 (神経伝達信号と筋電位 信号が分離してレ、る)の処理の一例を示す概略図である。
[図 5]生体信号処理手段の構成およびそれによる生体信号 (神経伝達信号と筋電位 信号が重畳してレ、る)の処理の他の例を示す概略図である。
[図 6]第一の実施形態の制御方法を示すフローチャートである。
[図 7]神経伝達信号および筋電位信号が分離している生体信号から得られる駆動電 流の一例を示す概略図であり、(a)はパルス電流と駆動電流が重畳せずかつパルス 電流が駆動開始可能電流 It未満である様子を示す図、(b)は(a)の状態のパルス電 流を It以上の大きさとなるように増幅した様子を示す図である。
[図 8]神経伝達信号および筋電位信号が重畳している生体信号力 得られる駆動電 流の他の例を示す概略図であり、 (a)はパルス電流と駆動電流が重畳しかつこれら の総電流(立ち上がり時に相当)が駆動開始可能電流 It未満である様子を示す図、( b)は(a)の状態の総電流を It以上の大きさとなるように増幅した様子を示す図である
[図 9]第一の実施形態の装着式動作補助装置においてパワーアシスト率を制御する 例を示すブロック図である。
[図 10]タスクおよびフェーズの例を示す概略図である。
[図 11]物理量を基準パラメータと比較することにより装着者 1が行おうとしてレ、るタスク 、およびその中のフェーズを推定するプロセスを示す図であり、(a)は装着者の動作 毎の各タスクとフェーズのデータベースを模式的に示す図、(b)は膝の回転角 Θおよ び角速度 Θ '、腰の回転角 Θおよび角速度 Θ '、および重心位置 COGおよび重心位 置の移動速度 COG'を示す図、(c)は全てのフェーズ (Al, A2, A3 · · · , Β1, Β2, Β3 · · · , CI, C2, C3 " ' )をマトリックス状に取り出した状態を模式的に示した図である。
[図 12]第一の実施形態の制御方法においてパワーアシスト率の制御を説明するため のフローチャートである。
[図 13]第二の実施形態の装着式動作補助装置を示すブロック図である。
[図 14]第二の実施形態の制御方法を示すフローチャートである。
[図 15]第二の実施形態の装着式動作補助装置においてパワーアシスト率を制御す る例を示すブロック図である。
[図 16]第二の実施形態の制御方法においてパワーアシスト率の制御を説明するため のフローチャートである。
[図 17]第二の実施形態の制御装置の構成を示すブロック図である。
[図 18]駆動電流生成の別の改良例を示す概略図である。
[図 19]実施例 1で神経伝達信号に応じたパルス電流を付加した場合の実験結果を 示すグラフであり、(a)はひざの回転角 Θの変化を示すグラフ、(b)は増幅した生体 信号の変化を示すグラフ、 (c)は膝ァクチユエータのトルクを示すグラフである。
[図 20]実施例 1で神経伝達信号に応じたパルス電流を付加しない場合の実験結果を 示すグラフであり、(a)はひざの回転角 Θの変化を示すグラフ、(b)は増幅した生体 信号の変化を示すグラフ、 (c)は膝ァクチユエータのトルクを示すグラフである。
[図 21]実施例 2において随意的指令信号および自律的指令信号を合成する制御に より得られた膝ァクチユエータのトルクの一例の実験結果であり、 (a)はフェーズ番号 を示すグラフ、(b)はひざの回転角 Θの変化を示すグラフ、 (c)は自律制御によるひ ざのトノレクの変化を示すグラフ、 (d)随意制御によるひざのトノレクの変化を示すグラフ 、 (e)ハイブリット制御(自律制御 +随意制御)によるひざのトノレクの変化を示すグラフ である。
[図 22]実施例 2において随意的指令信号および自律的指令信号を合成する制御に より得られた膝ァクチユエータのトルクの別の例の実験結果であり、 (a)はフェーズ番 号を示すグラフ、(b)はひざの回転角 Θの変化を示すグラフ、 (c)は自律制御による ひざのトノレクの変化を示すグラフ、 (d)随意制御によるひざのトノレクの変化を示すダラ フ、 (e)ハイブリット制御(自律制御 +随意制御)によるひざのトルクの変化を示すダラ フである。
符号の説明
[0049] 1 人間 (装着者)
2 動作補助装着具
3 生体信号処理手段
4, 14, 24 随意的制御手段
5 駆動電流生成手段
6 データベース
7, 17 自律的制御手段
8 信号合成手段
10 人間機械系
13 物理量センサ
20, 20A, 20B, 20C 制御装置
21 電源
201 ァクチユエータ
202 アーム
203 ジョイント
221 生体信号センサ
222 重心センサ
発明を実施するための最良の形態
[0050] 以下、本発明を実施形態毎に説明するが、各実施形態の特徴は特に断りがなけれ ば他の実施形態にも適用可能である。
[1]第一の実施形態
(A)装着式動作補助装置の構成 第一の実施形態の装着式動作補助装置は、ァクチユエータを有した動作補助装着 具と、装着者の生体信号を検出する生体信号センサと、神経伝達信号および筋電位 信号を生体信号から取得する生体信号処理手段と、神経伝達信号および筋電位信 号を用レ、、装着者の意思に従った動力をァクチユエータに発生させるための指令信 号を生成する随意的制御手段と、随意的制御手段からの指令信号に基づいて、神 経伝達信号および筋電位信号に応じた電流をそれぞれ生成し、ァクチユエ一タに供 給する駆動電流生成手段とを備える。なお装着者が行おうとしているタスクのフエ一 ズに応じたパワーアシスト率となる動力をァクチユエータに発生させる場合には、この 装着式動作補助装置に装着者の動作に関する物理量を検出する物理量センサを設 ける。
(1)駆動系
図 1は、その一例の駆動系(ハード系)を概略的に示す。この装着式動作補助装置 は、人間(以下、装着者ともいう) 1の下半身に装着する動作補助装着具 2 (片方の脚 部は図示を省略)と、下半身 (例えば太腿)から生体信号 aを検出する生体信号セン サ 221と、足の裏に貼付されて装着者 1の重心を検出する重心センサ 222と、生体信 号センサ 221により検出した生体信号力 神経伝達信号 bおよび筋電位信号 cを取得 する生体信号処理手段 3と、神経伝達信号 bおよび筋電位信号 cに基づいて動作補 助装着具 2のァクチユエータ 201の駆動を制御する制御装置 20と、制御装置 20ゃァク チユエータ 201等に電力を供給するための電源 (バッテリー、外部電源) 21とを備える 図 2に示すように、動作補助装着具 2は、上部アーム 202aおよび中間アーム 202bを 回転自在に接合する腰用ジョイント 203aと、中間アーム 202bおよび下部アーム 202cを 回転自在に接合する膝用ジョイント 203bと、下部アーム 202cおよび踵部 205を回転自 在に接合する踝用ジョイント 203cと、腰用ジョイント 203aに設けられたァクチユエータ 201aと、膝用ジョイント 203bに設けられたァクチユエータ 201bとを有する。中間アーム 202bおよび下部アーム 202cには装着者 1の太腿およびふくらはぎに固定されるマジ ックテープ(登録商標)等の固定具 205a, 205bが取り付けられている。
タ 201a, 201bはモータと減速ギアからなる。 上部アーム 202aは、装着者 1の胴体に巻き付けられて固定されるウェスト部 204に 固定されている。ウェスト部 204の背側の上縁部には上下に開口した突起部 204aが 設けられており、突起部 204aの開口部には制御装置 20および電源 21等を収納した バッグ 220の下端突起 220aが係合する。このようにして、バッグ 220の荷重はウェスト部 204で受けられる。また踵部 205は装着者 1の踵を完全に覆う一体的な形状を有し、そ の一方の側壁は他方の側壁より高く延びて、その上端部には踝用ジョイント 203cが取 り付けられている。このため、動作補助装着具 2およびバッグ 220の荷重は全て踵部 205で支えられ、装着者 1にかかることはない。
(2)制御系
図 3は、第一の実施形態の装着式動作補助装置の制御系を示す。装着者 1と動作 補助装着具 2は、人間機械系 10を構成する。また制御装置 20は、随意的制御手段 4 を有する。随意的制御手段 4の入力端子には、装着者 1の生体信号 aを検出する生 体信号センサ 221が接続され、かつ、随意的制御手段 4の出力端子には、駆動電流 生成手段 5が接続してある。駆動電流生成手段 5は、動作補助装着具 2のァクチユエ ータ 201a, 201b (以下、ァクチユエータ 201と総称する)に接続してある。
(a)センサ
第一の実施形態の装着式動作補助装置は、人間 1に装着された状態にぉレ、て装 着者 1からの生体信号 aを検出する生体信号センサ 221を必須とする。生体信号セン サ 221は、通常装着者 1の皮膚に貼付するが、体内に埋め込むものでも良い。その他 に、図 1に示すように、重心センサ 222を有することが好ましい。重心センサ 222は例え ば足の裏に複数貼付されるもので、どの重心センサ 222に最も重量が力かっているか を検出することにより人体の動作方向を予測することができる。さらに、制御精度を向 上させるために、例えば、(1)装着者 1の動作の状態を示す信号を得るためのセンサ( 力センサ、トルクセンサ、電流センサ、角度センサ、角速度センサ、加速度センサ、床 反力センサ等)、(2)外界の情報 (例えば、障害物の有無)を得るためのセンサ(CCD、 レーザセンサ、赤外線センサ、超音波センサ等)、(3)神経伝達信号 bおよび筋電位 信号 c以外の生体信号を得るためのセンサ(体温センサ、脈拍センサ、脳波センサ、 心電位センサ、発汗センサ等)を設けることができる。これらのセンサ自体は公知であ るので、個々の説明は省略する。
(b)生体信号処理手段
生体信号センサ 221により検出された生体信号 aは、神経伝達信号 bおよび筋電位 信号 cを有する。神経伝達信号 bは意思伝達信号とも言えるもので、 (i)
筋電位信号 cに先行している力、 [図 4参照]、 (ii)筋電位信号 cの先頭部と重なってい る [図 5参照]。神経伝達信号 bの周波数は一般に筋電位信号 cの周波数より高いの で、異なるバンドパスフィルタを用いることにより分離することができる。神経伝達信号 bは、生体信号 aを増幅器 31により増幅した後、高帯域 (例えば 33
Hz 数 kHz)のバンドパスフィルタ 32により取り出すことができ、また筋電位信号 cは、 生体信号を増幅器 31により増幅した後、中帯域 (例えば 33 Hz 500
Hz)のバンドパスフィルタ 33により取り出すことができる。なお、図 4および図 5では、 各フィルタは並列に接続されているがこれに限定されず、両フィルタが直列に接続さ れていても良い。また、神経伝達信号 bは筋電位信号 cの先頭部のみならず、先頭部 以降についても重なる場合が有り得る。この場合には、神経伝達信号 bの先頭部の みを後述するパルス電流の生成に利用するようにすれば良レ、。
[0053] 神経伝達信号 bおよび筋電位信号 cには、スムージング処理を行う。図 4および図 5
中の各電流は、生体信号処理手段 3からの信号をスムージングして得た指令信号 d を入力とし、駆動電流生成手段 5によって生成されたものである。図 4に示すように神 経伝達信号 bは幅が狭いので、スムージングだけでもパルス状となり、この神経伝達 信号 bに基づいて駆動電流生成手段 5によって生成される電流もパルス状となる。な お、神経伝達信号 bに基づいて得られる電流 (パルス電流)は、矩形波状としても良 レ、。一方、図 5に示すように筋電位信号 cは幅が広いので、スムージングすることによ り実質的に筋電位に比例する山状となり、この筋電位信号 cに基づいて駆動電流生 成手段 5によって生成される電流も山状となる。
[0054] 神経伝達信号 bに基づいて生成されるパルス電流と、前記筋電位信号 cに基づい て比例的に生成される電流との総電流がァクチユエータ 201に供給されると、この総 電流に比例する大きさのトノレクをァクチユエータ 201が発生する。ここで、図 4および図 5のいずれの場合でも、総電流は十分に大きな電流で立ち上がるように設定してある ので、装着者 1の動作意思に遅れなくァクチユエータ 201が駆動され、装着者 1は自 分の意思に従った動作を違和感なく行うことができる。なお、図 4および図 5中でパル ス電流を特に大きく示している力 これはその役割を強調するためで、実際のパルス 電流と筋電位信号 cから得られた駆動電流との関係を示すものではない。各電流の 大きさは、装着者 1の動作時の感覚により適宜設定することができる。
(c)随意的制御手段
随意的制御手段 4は、神経伝達信号 bおよび筋電位信号 cを用い、装着者 1の意思 に従った動力をァクチユエータ 201に発生させるための指令信号 dを生成する機能を 有する。随意的制御手段 4での制御則としては、比例制御を適用することができる。 比例制御により指令信号値と駆動電流値とが比例関係になり、さらにァクチユエータ 201の特性により駆動電流値とァクチユエータ 201の発生トルク値とが比例関係になる 。従って、随意的制御手段 4によって所要の指令信号 dを生成することにより、パワー アシスト率を所望の値に制御することができる。なお、随意的制御手段 4での制御則 としては、比例制御と微分制御および/または積分制御とを組み合わせたものを適 用しても良い。
ここで、パワーアシスト率とは、装着者 1が発生する力と装着具 2が発生する力との 分配率であり、手動または自動で調整する。このパワーアシスト率は正の値でも負の 値でも良い。正のアシスト率の場合、装着者 1の発生力に装着具 2の発生力が付加さ れる力 負のアシスト率の場合、装着者 1の発生力から装着具 2の発生力が差し引か れ (すなわち、装着者 1に負荷力 Sかかり)、装着者 1は通常以上の力を発生しなけれ ばならない。
(d)駆動電流生成手段
駆動電流生成手段 5は、随意的制御手段 4からの指令信号 dが入力されると、この 指令信号 dに基づいて、神経伝達信号 bに応じた電流および筋電位信号 cに応じた 駆動電流をそれぞれ生成し、ァクチユエータ 201に供給することにより、ァクチユエ一 タ 201を駆動する。
(B)制御方法および制御用プログラム
図 6は第一の実施形態の制御方法を示すフローチャートである。 [0056] 図 6に示す第一の実施形態の制御方法の好ましい一例では、装着者 1に対して動 力を付与するァクチユエータ 201を有した動作補助装着具 2を人間 1に装着し (ST501 )、装着者 1の生体信号 aを検出する(ST502)。図 4および図 5に示すように、生体信 号処理手段 3により生体信号 aから神経伝達信号 bと筋電位信号 cを取得し (ST503) 、取得した神経伝達信号 bおよび筋電位信号 cを用い、装着者 1の意思に従った動 カをァクチユエータ 201に発生させるための随意的指令信号 dlを生成する(ST504)。 この随意的指令信号 dlは、神経伝達信号 bに応じたパルス電流を生成する指令信 号 dと、筋電位信号 cに比例した駆動電流を生成する指令信号 dとからなる。各指令 信号 dを駆動電流生成手段 5に入力することにより、駆動電流生成手段 5によってァ クチユエータ 201に供給する電流が生成される。随意的指令信号 dlの生成に、他の 信号 (例えば、第一の実施形態において記載した生体信号用センサ 221以外のセン サから得られる信号)を利用することもできる。以下実施形態においても、特に断りが なければ他の信号として上記と同じものを使用することができる。
[0057] ァクチユエータ 201を駆動可能な電流には下限値(閾値)があるので、神経伝達信 号 bに応じたパルス電流 (パルス電流と駆動電流が重畳していない場合)、またはパ ノレス電流と駆動電流 (パルス電流と駆動電流が重畳してレ、る場合)との総電流がその 下限値未満の場合には、パルス電流はァクチユエータ 201の迅速な駆動開始に役立 たず、駆動電流が下限値に達するまでァクチユエータ 201は駆動開始しない。これで は、装着者 1の大脳が動作開始の信号 (神経伝達信号 b)を発したときと動作補助装 置の始動までの間に相当の遅れが生じ、装着者 1に与える違和感が大きなものとなる 。これを解消するためには、神経伝達信号 bに応じたパルス電流に応じて直ぐにァク チユエータ 201を駆動開始させることが好ましい。
[0058] 図 7は神経伝達信号および筋電位信号が分離している生体信号から得られる駆動 電流の一例を示す概略図であり、(a)はパルス電流と駆動電流が重畳せずかつパル ス電流が駆動開始可能電流 It未満である様子を示す図、(b)は(a)の状態のパルス 電流を It以上の大きさとなるように増幅した様子を示す図である。図 8は神経伝達信 号および筋電位信号が重畳している生体信号から得られる駆動電流の他の例を示 す概略図であり、 (a)はパルス電流と駆動電流が重畳しかつこれらの総電流(立ち上 力 Sり時に相当)が駆動開始可能電流 It未満である様子を示す図、 (b)は (a)の状態の 総電流を It以上の大きさとなるように増幅した様子を示す図である。
[0059] ァクチユエータ 201および動作補助装着具 2の各アーム 202や各ジョイント 203には 慣性モーメントがあるので、装着者 1の意思に遅れなく動作補助を行うには、ァクチュ エータ 201に素早い立ち上がりのトルクを発生させることが好ましい。これらを実現す るため、本実施の形態では、図 7 (a)に示すようにパルス電流 82と駆動電流 81が重畳 していない場合、および図 8 (a)に示すようにパルス電流 83と駆動電流 81が重畳して レ、る場合のいずれにおいても、パルス電流 82 (またはパルス電流 83 +駆動電流 81) がァクチユエータ 201の駆動開始可能電流の下限値 It以上でない場合 (ST505におけ る No)、パルス電流 82 (またはパルス電流 83 +駆動電流 81)が駆動開始可能電流の 下限値 It以上(図 7 (b)および図 8 (b)を参照)になるように、パルス電流 82, 83を増幅 するようにしている(ST505a)。し力も、ァクチユエータ 201を確実に始動できるように、 必要に応じてパルス電流 82, 83の幅を大きくする(神経伝達信号 bに対応する時間よ り長くする)ようにしている。これらの結果、神経伝達信号 bに応じたパルス電流 82, 83 の供給により、確実にァクチユエータ 201を駆動開始することができる(ST506)。
[0060] こうしてァクチユエータ 201を駆動開始した後、筋電位信号 cに応じた駆動電流 81に 比例するように、ァクチユエータ 201に駆動トルクを発生させると(ST507)、装着者 1の 意思に応じた動作をパワーアシストすることができる。
[0061] 上記制御を実行するには、生体信号 aを検出する処理(ST502)と、生体信号 aから 神経伝達信号 bおよび筋電位信号 cを取得する処理(ST503)と、取得した神経伝達 信号 bおよび筋電位信号 cを用い、装着者 1の意思に従った動力をァクチユエータ 201に発生させるための随意的指令信号 dlを生成する処理 (ST504)と、生成した随 意的指令信号 dlに基づいて、神経伝達信号 bに応じたパルス電流および筋電位信 号 cに応じた駆動電流をそれぞれ生成し、ァクチユエータ 201に供給する処理 (ST506 , ST507)とを行わせるための制御用プログラムを、装着式動作補助装置の制御装置 20 (例えば、 CPU,ハードディスクおよび RAM等の記憶装置、および入出力装置を有 するパソコン等のコンピュータからなる)の記憶装置に格納する。なお制御装置 20は 、バッグ 220に収納することができるが、必要に応じて装着式動作補助装置の外部に 配置し、装着式動作補助装置との間での信号の送受信を無線で行うようにしても良 レ、。
[0062] 図 9は、第一の実施形態の装着式動作補助装置において、ァクチユエータ 201の随 意的制御を行う際に、装着者 1の動作に関する物理量からタスクのフェーズを推定し 、推定したフェーズに対応するパワーアシスト率となる動力をァクチユエータに発生さ せる例を示す。図 9の装着式動作補助装置において、図 3の装着式動作補助装置と 同じ部分には同じ参照番号を付与し、類似の部分には類似の参照番号を付与して める。
[0063] 図 9の装着式動作補助装置の詳細を説明する前に、まずタスク (Task)およびその フェーズ (Phase)について説明する。タスクとは装着者の各動作パターンを分類した もので、フェーズは各タスクを構成する一連の最小動作単位である。
[0064] 図 10は、人間 1の基本動作として、歩行(タスク A)、立ち上がり(タスク B)、座り(タス ク C)、および階段の昇りまたは降り(タスク D)を例示している力 勿論タスクがこれら に限定される訳ではない。各タスクは上記フェーズからなり、例えば歩行タスク Aは、 両足が揃ったフェーズ 1と、右足が前に出たフェーズ 2と、左足が前にでて両足が揃 つた状態になったフェーズ 3と、左足が前に出たフェーズ 4からなる。このような一連の フェーズをフェーズ 'シークェンス(Phase Sequence)という。装着者 1の動作を補助す るのに適切な動力はフェーズ毎に異なる。そのため、各フェーズ 1一 4に異なるパヮ 一アシスト率 PARI, PAR2, PAR3, PAR4を付与することにより、フェーズ毎に最適な 動作補助を行うことができる。
[0065] 各人の動きを分析すると、各フェーズにおける各関節の回転角および角速度、歩 行速度および加速度、姿勢、重心の移動等が決まっていることが分かる。例えば、各 人の典型的な歩行パターンは決まっており、そのパターンで歩行するときに最も自然 に感じる。従って、各人の各関節の回転角および角速度等を、全タスクの全フェーズ について経験的に求め、それらを基準パラメータ(基準の回転角および角速度等)と してデータベースに格納しておけば良い。
[0066] 図 9の装着式動作補助装置は、装着者 1と動作補助装着具 2とからなる人間機械系
10と、装着者 1の生体信号 aから神経伝達信号 bおよび筋電位信号 cを取得する生体 信号処理手段 3と、各フェーズの基準パラメータとともに、各フェーズに割り当てられ たパワーアシスト率 PAR等が格納されたデータベース 6とを有する。さらに、生体信号 a (神経伝達信号 bおよび筋電位信号 cを含む)とともに、物理量センサ 13により検出さ れた物理量 (各関節の回転角および角速度、歩行速度および加速度、姿勢、重心の 移動等、および必要に応じて、他のセンサからの信号)を取得し、取得した物理量を データベース 6の基準パラメータと比較することにより得られる随意的指令信号 d (パ ヮーアシスト率 PAR等を含む)を発生する随意的制御手段 14と、随意的制御手段 14 の指令信号 dに応じて動作補助装着具 2のァクチユエータ 201の駆動電流を生成する 駆動電流生成手段 5とを有する。
[0067] 図 11は、物理量を基準パラメータと比較することにより装着者 1が行おうとしている タスク、およびその中のフェーズを推定するプロセスを示す図であり、(a)は装着者の 動作毎の各タスクとフェーズのデータベースを模式的に示す図、(b)は膝の回転角 Θおよび角速度 Θ '、腰の回転角 Θおよび角速度 Θ '、および重心位置 COGおよび 重心位置の移動速度 COG'を示す図、(c)は全てのフェーズ (Al, A2, A3 · · · , B1, B2, Β3 · · · , CI, C2,。3 · · · )をマトリックス状に取り出した状態を模式的に示した図 である。
[0068] 図 11 (a)に示すタスクおよびフェーズは図 10に示すものである。例示したタスク A ( 歩行)、タスク B (立上り)、タスク C (座り) · · ·はそれぞれ、一連のフェーズ (フェーズ Al、フェーズ A2、フェーズ A3 · · ·、フェーズ Bl、フェーズ B2、フェーズ Β3 · · ·等)により 構成されている。
[0069] 装着者 1が動作を開始すると、物理量センサ 13により得られた各種の物理量の実測 値をデータベース 6に格納された基準パラメータと比較する。この比較は図 11 (b)の グラフで概略的に示す。このグラフでは、膝の回転角 Θおよび角速度 Θ '、腰の回転 角 Θおよび角速度 Θ '、および重心位置 COGおよび重心位置の移動速度 C〇G'を示 してレ、るが、勿論比較する物理量はこれらに限定されなレ、。
[0070] 一定の短い時間間隔で実測の物理量と基準パラメータとを比較する。比較は、全て のタスク(A, B,〇· · ·)における一連のフェーズについて行う。つまり、図 11 (c)に示 すように、図 11 (a)に示す全てのフェーズ (Al , A2, A3 · · · , Bl , B2, Β3 · · ·, Cl, C2 , C3 ' ' ' )をマトリックス状に取り出し、実測の物理量と比較することになる。
[0071] 図 1 1 (b)のグラフに示すように、例えば時間 t , t,い' 'ごとに比較していくと、実測
1 2 3
の物理量が全て一致する基準パラメータを有するフェーズを同定することができる。 一致の誤差を排除するために、複数の時間で一致することを確認した後で、フェーズ の同定を行えば良い。例えば図示の例で、実測値が複数の時間でフェーズ A1の基 準パラメータと一致したとすると、現在の動作はフェーズ A1の動作であることが分かる 。勿論、実測値と一致する基準パラメータを有するフェーズはタスクの最初のフエ一 ズ (Al , Bl , C 1等)とは限らない。
[0072] 図 12は、第一の実施形態の別の例として、パワーアシスト率 PARを制御する場合の 制御方法を示す。図 12の ST601 , ST602,および ST604— 606は、実質的に図 6の ST501 505aと同じであるので、それらの説明は省略し、ここでは ST607— 612の工程 について主に説明する。
[0073] 物理量センサ 13により人間機械系 10の物理量を検出する(ST603)。各関節の回転 角および角速度、歩行速度および加速度、姿勢等の物理量の物理量センサ 13は動 作補助装着具 2に取り付けるが、重心の移動等の物理量の物理量センサ 13は装着 者 1に直接貼付することが好ましレ、。
[0074] 物理量をデータベース 6に格納した各タスクの各フェーズの基準パラメータと順次 比較する(ST607)。図 1 1 (a)—(c)を参照して説明したように、全てのタスクおよびそ られのフェーズはマトリックス状に存在するので、物理量の実測値と各フェーズの基 準パラメータとを、例えば Al , A2, A3 · · · , B l , B2, Β3 · · · , C I , C2, C3 ' ' 'との順番 で順次比較する。基準パラメータは全てのタスクのフェーズ(単に「タスク/フェーズ」 という)の間で重複しなレ、ように設定されてレ、るので、全てのタスクのフェーズの基準 パラメータとの比較を行うと、物理量の実測値と一致する基準パラメータを有するタス クのフェーズが分かる(ST608)。物理量の実測値の測定誤差を考慮に入れて、判定 に必要な一致回数を予め設定しておき、その回数に到達したときに(ST609)、物理 量の実測値に対応するタスクのフェーズを推定する(ST610)。データベース 6を参照 することにより、補助すべき動作に対応するフェーズに割り付けたパワーアシスト率 PARを規定し、このパワーアシスト率 PARとなる動力をァクチユエータ 201に発生させ るように上記随意的指令信号 dを調整する (ST611)。駆動電流生成手段 5は調整後 の随意的指令信号 dに応じた電流(総電流)を生成し、この総電流の供給によりァク チユエータ 201を駆動する(ST612)。
[0075] 上記制御を実行するには、装着者 1の生体信号 aを検出する処理 (ST602)と、人間 機械系 10の物理量を検出する処理(ST603)と、検出した物理量と各タスク各フェーズ 基準パラメータとを比較することにより(ST607 609)、装着者が行おうとしているフエ ーズを推定し(ST610)、推定したフェーズに応じたパワーアシスト率 PARとなる動力を ァクチユエータに発生させるように、随意的指令信号 dを生成する処理 (ST611)と、随 意的指令信号 dに応じた電流を生成し、前記ァクチユエータに供給する処理 (ST612 )とを行わせる制御用プログラムを、装着式動作補助装置の制御装置 20Aの記憶装 置に格納する。
[0076] 以上の通り、フェーズ毎に最適化されたパワーアシスト率 PARとなるように随意的指 令信号 dを生成し、この随意的指令信号 dに応じた動力付与を行うことにより、スムー ズな動作補助を行うことができ、また神経伝達信号 bに応じたパルス電流によりァクチ ユエータの駆動を開始させることにより、駆動開始の遅れがなレ、(違和感のなレ、)動作 補助を行うことができる。
[2]第二の実施形態
(A)装着式動作補助装置の構成
図 13に例示するように、第二の実施形態の装着式動作補助装置は、ァクチユエ一 タ 201を有した動作補助装着具 2と、装着者 1の生体信号 aを検出する生体信号セン サ 221と、人間機械系 10の物理量を検出する物理量センサ 13と、物理量センサ 13に より検出された生体信号 aを用レ、、装着者 1の意思に従った動力をァクチユエータ 201 に発生させるための指令信号 d (随意的指令信号 dl)を生成する随意的制御手段 14 と、を有する。さらに、タスクとして分類した装着者 1の各動作パターンを構成する一 連の最小動作単位 (フェーズ)の各々の基準パラメータを格納したデータベース 6と、 物理量センサ 13により検出された物理量とデータベース 6に格納された基準パラメ一 タとを比較することにより、装着者 1のタスクのフェーズを推定し、推定したフェーズに 応じた動力をァクチユエータ 201に発生させるための指令信号 d (自律的指令信号 d2 )を生成する自律的制御手段 7と、随意的制御手段 4からの指令信号 dlおよび自律 的制御手段 7からの指令信号 d2を合成する指令信号合成手段 8と、指令信号合成 手段 8により合成された総指令信号 d3に応じた電流を生成し、ァクチユエータ 201に 供給する駆動電流生成手段 5とを備える。
[0077] 随意的制御手段 14自体は、図 3に示す第一の実施形態の随意的制御手段 4と同じ でよレ、。具体的には、図 4および図 5に示すように、神経伝達信号 bおよび筋電位信 号 cに応じた随意的指令信号 dlを生成し、神経伝達信号 bに応じたパルス電流をァ クチユエータ 201の駆動開始用のトリガー信号として使用することが好ましい。
[0078] 自律的制御手段 7は、図 10および図 11 (a) (c)に示すように、物理量センサ 13に より検出された物理量とデータベース 6に格納された各タスクの各フェーズの基準パ ラメータとを比較することにより、装着者 1のタスクのフェーズを推定し、このフェーズ に応じた動力をァクチユエータ 201に発生させるための自律的指令信号 d2を生成す る機能を有する。従って、図 10および図 11 (a)—(c)に関する説明はそのまま自律 的制御手段 7に当てはまる。
[0079] 指令信号合成手段 8は随意的制御手段 14からの随意的指令信号 dlと自律的制御 手段 7からの自律的指令信号 d2とを合成する。 自律的制御では、例えばフェーズ毎 に一定の動力を付与する。従って、合成された指令信号 d3は、動作の開始から終了 まで変化する随意的制御による動力と、フェーズ毎に一定の自律的制御による動力 とを加算した動力とをァクチユエータ 201に発生させる波形を有する。この指令信号合 成の効果は後で詳述する実施例から明らかである。
(B)制御方法および制御用プログラム
図 14は第二の実施形態の制御方法を示すフローチャートである。図 14に示される ように、この制御方法は、装着者 1に対して動力を付与するァクチユエータ 201を有し た動作補助装着具 2を人間 1に装着し (ST701)、装着者 1の生体信号 aを検出し( ST702)、装着者 1および動作補助装着具 2からなる人間機械系 10の物理量を検出 する(ST703)。さらに、検出した生体信号 aを用い、装着者 1の意思に従った動力をァ クチユエータ 201に発生させるための随意的指令信号 dlを生成し (ST704)、検出した 物理量とデータベース 6に格納された各タスクの各フェーズの基準パラメータとを比 較することにより(ST705— 707)、装着者 1のタスクおよびそのフェーズを推定するとと もに、このタスクのフェーズに対応するハイブリッド比 α (随意的指令信号 dl/自律 的指令信号 d2)を規定する(ST708)。そして、このフェーズに応じた動力をァクチュ エータ 201に発生させるための自律的指令信号 d2を生成し (ST709)、規定したハイ ブリツド比 αとなるように随意的指令信号 dlおよび自律的指令信号 d2を合成して総 指令信号 d3を生成し (ST710)、この総指令信号 d3に応じて生成した電流の供給に よりァクチユエータ 201を駆動する(ST711)。
[0080] ST701 703は図 12に示す第一の実施形態の例の ST601— 603と同じであり、
ST705 708は図 12に示す第一の実施形態の例の ST607— 610と同じである。また生 体信号 aに応じた随意的指令信号 dlを生成する工程 (ST704)は、具体的には、図 1 2に示す ST604— 606aからなるものが好ましい。
[0081] なお、随意的指令信号 dlは、第一の実施形態と同様に、神経伝達信号 bに応じた パルス電流および筋電位信号 cに応じた駆動電流を生成するためのものとするのが 好ましレ、。また、ノ、イブリツド比 αは各タスクのフェーズ毎に、装着者 1の動作を違和 感なくアシストできるように予め設定され、データベース 6に格納しておく。このハイブ リツド比 αは、実測の物理量と基準パラメータとの比較によりフェーズが推定されると、 上述したように制御装置 20Αによって自動的に規定される。この結果、所要のハイブ リツド比 αとなるように総指令信号 d3が生成され、この総指令信号 d3に応じた動力の 付与により、種々の動作に応じた動作補助をスムーズに行うことができる。
[0082] 上記制御を実行するには、装着者 1の生体信号 aを検出する処理 (ST702)と、装着 者 1および動作補助装着具 2からなる人間機械系 10の物理量を検出する処理( ST703)と、検出した生体信号 aを用いて装着者 1の意思に従った動力をァクチユエ一 タ 201に発生させるための随意的指令信号 dlを生成する処理(ST704)と、検出した 物理量と各タスクの各フェーズの基準パラメータとを比較することにより(ST705 707 )、装着者 1のタスクのフェーズを推測するとともに、このフェーズに対応するハイプリ ッド比ひを規定する処理(ST708)と、このフェーズに応じた動力をァクチユエータ 201 に発生させるための自律的指令信号 d2を生成する処理 (ST709)と、規定したハイブ リツド比 αとなるように随意的指令信号 dlおよび前記自律的指令信号 d2を合成して 総指令信号 d3を生成する処理 (ST710)と、生成した総指令信号 d3に応じて生成し た電流の供給によりァクチユエータ 201を駆動する処理(ST711)とを行わせる制御用 プログラムを、装着式動作補助装置の制御装置 20Bの記憶装置に格納する。
[0083] 図 15は第二の実施形態の装着式動作補助装置の別の例を示すブロック図である 。図 15に示されるように、この装着式動作補助装置は、装着者 1に対して動力を付与 するァクチユエータ 201を有した動作補助装着具 2と、装着者 1の生体信号 aを検出す る生体信号センサ 221と、装着者 1の動作に関する物理量を検出する物理量センサ 13と、生体信号センサ 221により検出された生体信号 aを用い、装着 1の意思に従った 動力をァクチユエータ 201に発生させるための指令信号 d (随意的指令信号 dl)を生 成する随意的制御手段 24とを有する。さらに、タスクとして分類した装着者 1の各動作 パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを格納 したデータベース 6と、物理量センサ 13により検出された物理量と基準パラメータとを 比較することにより装着者 1の動作パターンを推測し、それに応じた動力をァクチユエ ータ 201に発生させるための指令信号 d (自律的指令信号 d2)を生成する自律的制 御手段 7と、随意的指令信号 dlおよび自律的指令信号 d2を合成する指令信号合成 手段 8と、指令信号合成手段 8により合成された総指令信号 dに応じた電流を生成し 、ァクチユエータ 201に供給する駆動電流生成手段 5とを備える。
[0084] 生体信号 aから装着者 1の筋骨格系を動作させるための神経伝達信号 bおよび筋 活動に伴う筋電位信号 cを取得することが好ましいが、これには第一の実施形態と同 じ生体信号処理手段 3 (図 15には 2つ示されている力 1つを兼用するようにしても良 レ、)を用いれば良いので、説明を省略する。またデータベース 6、自律的制御手段 17 、指令信号合成手段 8および駆動電流生成手段 5は図 13と同様のものを適用できる 。また随意的制御手段 24および自律的制御手段 17は、物理量センサ 13により検出さ れた物理量とデータベース 6に格納された基準パラメータとを比較することにより、装 着者 1が行おうとしているタスクのフェーズを推定し、このフェーズに応じたハイブリツ ド比ひおよびパワーアシスト率 PARとなるように、随意的指令信号 dlおよび自律的指 令信号 d2を生成する機能を有する。
[0085] 図 16はこの装着式動作補助装置の制御方法の好ましい一例を示すフローチャート である。図 17は第二の実施形態の制御装置の構成を示すブロック図である。
[0086] 図 16および図 17に示されるように、この制御方法では、装着者 1に対して動力を付 与するァクチユエータ 201を有した動作補助装着具 2を人間 1に装着し (ST801)、装 着者 1の生体信号 aを検出し (ST802)、装着者 1および動作補助装着具 2からなる人 間機械系 10の物理量を検出し (ST803)、検出した物理量に応じた随意的指令信号 d 1を生成する(ST804)。さらに、検出した物理量と、データベース 6に格納された各フ エーズの基準パラメータとを比較することにより(ST805— 807)、装着者 1が行おうとし ているタスクのフェーズを推定するとともに、このフェーズに対応するハイブリッド比ひ およびパワーアシスト率 PARを規定し(ST808)、このフェーズに応じた動力でァクチュ エータ 201を駆動するための自律的指令信号 d2を生成する(ST809)。そして、規定し たハイブリッド比ひおよびパワーアシスト率 PARとなるように随意的指令信号 dlおよ び自律的指令信号 d2を合成して総指令信号 d3を生成し (ST810)、この総指令信号 d3に応じて生成した電流の供給によりァクチユエータ 201を駆動する(ST811)。
[0087] 上記制御を実行するには、装着者 1の生体信号 aを検出する処理 (ST802)と、装着 者 1および動作補助装着具 2からなる人間機械系 10の物理量を検出する処理( ST803)と、検出した生体信号 aを用い、装着者 1の意思に従った動力をァクチユエ一 タ 201に発生させるための随意的指令信号 dlを生成する処理(ST804)と、検出した 物理量と各フェーズの基準パラメータとを比較することにより(ST805— 807)、装着者 1が行おうとしているフェーズを推定するとともに、このタスクのフェーズに対応するハ イブリツド比 αおよびパワーアシスト率 PARを規定する処理(ST808)と、このタスクのフ エーズに応じた動力をァクチユエータ 201に発生させるための自律的指令信号 d2を 生成する処理(ST809)と、規定したハイブリッド比ひおよびパワーアシスト率 PARとな るように、随意的指令信号 dlと前記自律的指令信号 d2を合成して総指令信号 d3を 生成する処理(ST810)と、生成した総指令信号 d3に応じて生成した電流の供給によ りァクチユエータ 201を駆動する処理 (ST811)とを行わせる制御用プログラムを、装着 式動作補助装置の制御装置 20Cの記憶装置に格納する。
[3]その他の機能
始動時の駆動制御 (1)反射動作の場合
例えば背後から急に押された場合、そのままでは倒れてしまうので、反射的に片足 を前に出して体を支えなければならなレ、。し力 単に片足を前に出すという制御を行 うと、片足を急に前に押したことになるので、装着者は本能的に片足を突っ張り、片 足を前に出す動作がぎこちなくなる。このような場合、図 18 (a)に示すように、動作方 向にァクチユエータ 201を駆動させる電流 91を供給する場合には、図 18 (b)に示すよ うに、電流 91を供給する直前に、ごく短時間(0.01秒から 0.3秒程度)反対方向の電流 92を供給してァクチユエータ 201を反対方向に駆動させると、装着者 1は反射的に片 足を前に出そうとし、動作はかえつてスムーズになる。このような反射神経を利用する 制御は通常のロボットではあり得ず、本発明の装着式動作補助装置のように装着者 1 が装着するものの場合に初めて効果を発揮するものである。
(2)通常の動作の場合
歩行のような通常の動作の場合でも、足を上昇させる自律的制御を行うと、突然足 を押されたような感じになることがある。このような違和感を取り除くためには、やはり 始動時に反対方向の電流 92を供給してァクチユエータ 201を反対方向に駆動させる 、その後で動作方向にァクチユエータ 201を駆動させる電流 91を供給すると、違和感 なくスムーズな動きをすることができる。
[0088] 本発明を以下の実施例により更に詳細に説明する力 本発明はこれらの例に限定 されるものではない。
実施例 1
図 19は実施例 1で神経伝達信号に応じたパルス電流を付加した場合の実験結果 を示すグラフであり、(a)はひざの回転角 Θの変化を示すグラフ、 (b)は増幅した生 体信号の変化を示すグラフ、 (c)は膝ァクチユエータのトルクを示すグラフである。図 20は実施例 1で神経伝達信号に応じたパルス電流を付加しない場合の実験結果を 示すグラフであり、(a)はひざの回転角 Θの変化を示すグラフ、(b)は増幅した生体 信号の変化を示すグラフ、 (c)は膝ァクチユエータのトルクを示すグラフである。
[0089] この実施例は第一の実施形態の効果を示すためのものである。装着者力^ラックス して椅子に座っている状態から膝関節の伸展動作を行った場合に、神経伝達信号 b をトリガー信号として用いる条件(図 19 (a)—(c)参照)、および神経伝達信号 bをトリ ガー信号として用いない条件、つまり筋電位信号 cに応じた駆動電流のみをァクチュ エータ 201bに供給する条件で(図 20 (a)—(c)参照)、それぞれ膝のァクチユエータ 201bのトノレクを測定した。
[0090] 前者の条件(図 19 (c)参照)の場合、実測した生体信号 aから得られたトルクの先端 部に、神経伝達信号 bに対応する所定の倍率のパルス電流を重畳したトルクが得ら れた。膝の回転角 Θの変化開始は、生体信号 aの検出から 0.2秒後であった。これに 対して、後者の条件(図 20 (c)参照)の場合、生体信号 aの波形のままのトルクが得ら れた。このトノレクの立ち上がりは緩やかであるので、膝の回転角 Θの変化開始まで生 体信号 aの検出から 0.3秒かかった。これらの結果から、神経伝達信号 bをトリガー信 号として用いて、所定の幅のパルス電流 (矩形波)を生体信号 aの先端部に生成する ことにより、ァクチユエータ 201bの駆動開始を素早くできることが分かる。
実施例 2
この実施例は第二の実施形態の効果を示すためのものである。図 21 (a)一 (e)は、 装着者が椅子に座った状態から立ち上がる動作を、 自律的制御および随意的制御 の組合せにより動力付与する場合を示した実験結果である。図 21(c)は自律的制御 による指令信号 dlに応じた膝ァクチユエータのトルクを示し、図 21(d)は随意的制御 による指令信号 d2に応じた膝ァクチユエータのトルクを示し、図 21(e)は自律的制御 による指令信号 dlと随意的制御による指令信号 d2とを合成した総指令信号 d3に応 じた膝ァクチユエ一タのトノレクを示す。なお、図 21(a)はフェーズ番号を示し、図 21(b) は膝の回転角 Θを示す。
[0091] また図 22 (a)一 (e)は、装着者が椅子に座った状態から立ち上がり動作を途中まで 行った後に、座り込んだ際に、 自律的制御および随意的制御の組合せにより動力付 与する場合を示した実験結果である。なお、図 22(a)はフェーズ番号を示し、図 22(b) は膝の回転角 Θを示す。
[0092] 図 22(e)のグラフから明らかなように、実際の膝ァクチユエ一タのトノレクはフェーズ 2 の立ち上がりで急激に増大し、フェーズ 3の立ち下がりで急激に低下した。椅子から の立ち上がりに対応するフェーズ 2の先端で、トルクが急激に増大したため、膝ァクチ ユエータは装着者の意思に遅れなく回動を開始し、装着者は十分にパワーアシスト 感を持つとともに、違和感なく立ち上がり動作をすることができた。またフェーズ 3の立 ち下がりでは、自律的制御によるトノレクが速やかに 0になることにより、装着者を不用 意に押し出そうとするトルクを装着者に付与する事態を防止し、装着者に与える違和 感を抑えること力できる。その結果、フェーズ 1一 4の全工程において、装着者は十分 なパワーアシスト感を持って、違和感なくスムーズに動作を行うことができた。
[0093] これに対して、図 21(d)に示す随意的制御による指令信号 dに応じたトルクでは、立 ち上がりが不十分であるので、膝ァクチユエータの始動を違和感のない程度に素早く することができなレ、。また図 21(c)
に示す自律的制御による指令信号 dに応じたトルク、つまり一定量のトノレクでは、動 作の過程で変化するトノレクと異なるので、やはり、違和感のないスムーズな一連の動 作を行うことができなレ、。すなわち、上述した随意的制御および自律的制御の組合 せによってのみ、素早い始動と装着者の動作にマッチしたトルクの両方が得られるこ とが分かる。
[0094] 一方、立ち上がりかけた後直ぐに座り込んだ場合には、図 22(e)のグラフから明らか なように、椅子からの立ち上がりに対応するフェーズ 2の先端で、トルクが急激に増大 したため、膝ァクチユエータは装着者の意思に遅れなく回動を開始し、装着者は十 分にパワーアシスト感を持つとともに、違和感なく立ち上がり動作をすることができた。 またフェーズ 3の途中においては、生体信号 aの生成が抑制されるため、随意的制御 によるトルクが減少し、 自律的制御による立ち上がる方向のトルクが付加されても、そ の影響は相殺され、全体のトルクは椅子に座る動作の際に違和感となるほどには大 きくなかった。この結果、動作 (タスク)を急に変更しても、装着者は十分なパワーァシ スト感を持って、違和感なくスムーズに動作を行うことができた。
[0095] これに対して、図 22(d)に示す随意的制御による指令信号 dに応じたトルクでは、立 ち上がりが不十分であるので、膝ァクチユエータの始動を違和感のない程度に素早く することができなレ、。また図 22(c)
に示す自律的制御による指令信号 dに応じたトルクでは、フェーズ 3からフェーズ 1に 急に変化する際に、一定のトルクが動作を妨げる方向に作用し、違和感がある。この ように、急に一連の動作でない動作をする場合でも、上述した随意的制御および自 律的制御の組合せにより、違和感を抑えられることが分かる。
本発明を上記実施形態および実施例により詳細に説明したが、本発明はそれらに 限定されるものではなぐ本発明の技術的思想の範囲内で種々の変更を施すことが できる。

Claims

請求の範囲
[1] 装着者の動作を補助あるいは代行する装着式動作補助装置であって、
前記装着者に対して動力を付与するァクチユエータを有した動作補助装着具と、 前記装着者の生体信号を検出する生体信号センサと、
前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋 電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号 処理手段と、
前記生体信号処理手段により取得された神経伝達信号および筋電位信号を用い、 前記装着者の意思に従った動力を前記ァクチユエータに発生させるための指令信号 を生成する随意的制御手段と、
前記随意的制御手段により生成された指令信号に基づいて、前記神経伝達信号 に応じた電流および前記筋電位信号に応じた電流をそれぞれ生成し、前記ァクチュ エータに供給する駆動電流生成手段とを備えることを特徴とする装着式動作補助装 置。
[2] 請求項 1に記載の装着式動作補助装置にぉレ、て、
前記装着者の動作に関する物理量を検出する物理量センサを備えることを特徴と する装着式動作補助装置。
[3] 請求項 1に記載の装着式動作補助装置において、
前記生体信号処理手段は、前記生体信号を増幅する手段と、前記生体信号から 前記神経伝達信号を抽出する第一のフィルタと、前記生体信号から前記筋電位信号 を抽出する第二のフィルタとを有することを特徴とする装着式動作補助装置。
[4] 請求項 1に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記神経伝達信号に応じて生成したパルス電流と前 記筋電位信号に実質的に比例するように生成した電流との総電流を前記ァクチユエ ータに供給するとともに、前記パルス電流の供給により前記ァクチユエータの動作を 開始させることを特徴とする装着式動作補助装置。
[5] 請求項 4に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記ァクチユエータへの電流の供給を開始する際に、 前記ァクチユエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電 流あるいは前記総電流を生成することを特徴とする装着式動作補助装置。
[6] 請求項 2に記載の装着式動作補助装置において、
タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位 (フエ ーズ)の各々の基準パラメータと、前記ァクチユエータによる動力付与率 (パワーァシ スト率)とを所要の対応関係となるように格納したデータベースを備え、
前記随意的制御手段は、前記物理量センサにより検出された物理量と前記データ ベースに格納された基準パラメータとを比較することにより、前記装着者が行おうとし てレ、るタスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を前記対応 関係に基づいて規定し、このパワーアシスト率となる動力を前記ァクチユエ一タに発 生させるための指令信号を生成することを特徴とする装着式動作補助装置。
[7] 請求項 1に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当 該動作の反対方向に前記ァクチユエータを駆動するための電流を所定の時間だけ 供給した後に、前記動作の方向に前記ァクチユエータを駆動するための電流を供給 することを特徴とする装着式動作補助装置。
[8] 装着者の動作を補助あるいは代行する装着式動作補助装置であって、
前記装着者に対して動力を付与するァクチユエータを有した動作補助装着具と、 前記装着者の生体信号を検出する生体信号センサと、
前記装着者の動作に関する物理量を検出する物理量センサと、
前記生体信号センサにより検出された生体信号を用い、前記装着者の意思に従つ た動力を前記ァクチユエータに発生させるための指令信号を生成する随意的制御手 段と、
タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位 (フエ ーズ)の各々の基準パラメータを格納したデータベースと、
前記物理量センサにより検出された物理量と前記データベースに格納された基準 パラメータとを比較することにより、前記装着者のタスクのフェーズを推定し、このフエ ーズに応じた動力を前記ァクチユエータに発生させるための指令信号を生成する自 律的制御手段と、
前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号 を合成する信号合成手段と、
前記信号合成手段により合成された総指令信号に応じた総電流を生成し、前記ァ クチユエータに供給する駆動電流生成手段とを備えることを特徴とする装着式動作
[9] 請求項 8に記載の装着式動作補助装置において、
前記データベースは、前記随意的制御手段からの指令信号と前記自律的制御手 段からの指令信号との比 (ハイブリッド比)を、前記フェーズの基準パラメータと所要の 対応関係となるように格納し、
前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに 応じ、前記対応関係に基づいて規定されるハイブリッド比となるように、前記随意的制 御手段からの指令信号および前記自律的制御手段からの指令信号を合成すること を特徴とする装着式動作補助装置。
[10] 請求項 8に記載の装着式動作補助装置において、
前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋 電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号 処理手段を備え、
前記駆動電流生成手段は、前記生体信号処理手段により取得された神経伝達信 号に応じて生成したノ^レス電流の供給により、前記ァクチユエータの動作を開始させ ることを特徴とする装着式動作補助装置。
[11] 請求項 10に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記ァクチユエータへの電流の供給を開始する際に、 前記ァクチユエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電 流あるいは前記総電流を生成することを特徴とする装着式動作補助装置。
[12] 請求項 8に記載の装着式動作補助装置において、
前記データベースは、前記フェーズの各々の基準パラメータと前記ァクチユエータ による動力付与率 (パワーアシスト率)とを所要の対応関係となるように格納し、 前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに 応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率と なるように前記随意的制御手段からの指令信号および前記自律的制御手段からの 指令信号を合成することを特徴とする装着式動作補助装置。
[13] 請求項 8に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当 該動作の反対方向に前記ァクチユエータを駆動するための電流を所定の時間だけ 供給した後に、前記動作の方向に前記ァクチユエータを駆動するための電流を供給 することを特徴とする装着式動作補助装置。
[14] 装着者の動作を補助あるいは代行する装着式動作補助装置を制御する方法であ つて、
前記装着者に対して動力を付与するァクチユエータを有した動作補助装着具が前 記装着者に装着された状態において、
前記装着者の生体信号を検出し、
検出した生体信号から、前記装着者の筋骨格系を動作させるための神経伝達信号 および筋活動に伴う筋電位信号を取得し、
取得した神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動 力を前記ァクチユエータに発生させるための随意的指令信号を生成し、
生成した随意的指令信号に基づレ、て、前記神経伝達信号に応じた電流および前 記筋電位信号に応じた電流を前記ァクチユエータにそれぞれ供給することを特徴と する装着式動作補助装置の制御方法。
[15] 請求項 14に記載の装着式動作補助装置の制御方法において、
前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比 例するように生成した電流との総電流を前記ァクチユエータに供給するとともに、前 記パルス電流の供給により前記ァクチユエータの動作を開始させることを特徴とする 装着式動作補助装置の制御方法。
[16] 請求項 15に記載の装着式動作補助装置の制御方法において、
前記ァクチユエータへの電流の供給を開始する際に、前記ァクチユエータを駆動可 能な電流の下限値よりも大きくなるように、前記パルス電流に応じた電流あるいは総 電流を供給することを特徴とする装着式動作補助装置の制御方法。
[17] 請求項 14に記載の装着式動作補助装置の制御方法において、
さらに前記装着者の動作に関する物理量を検出し、検出した物理量とタスクとして 分類した装着者の各動作パターンを構成する一連の最小動作単位 (フェーズ)の各 々の基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフ エーズを推定するとともに、このフェーズに応じた所要の動力付与率 (パワーアシスト 率)となる動力を前記ァクチユエータに発生させるための随意的指令信号を生成し、 この随意的指令信号に応じた電流を生成し、前記ァクチユエータに供給することを特 徴とする装着式動作補助装置の制御方法。
[18] 請求項 14に記載の装着式動作補助装置の制御方法において、
前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記ァ クチユエータを駆動させるための電流を所定の時間だけ供給した後に、前記動作の 方向に前記ァクチユエータを駆動させるための電流を供給することを特徴とする装着 式動作補助装置の制御方法。
[19] 装着者の動作を補助あるいは代行する装着式動作補助装置を制御する方法であ つて、
前記装着者に対して動力を付与するァクチユエータを有した動作補助装着具が前 記装着者に装着された状態において、
前記装着者の生体信号および前記装着者の動作に関する物理量をそれぞれ検出 し、
検出した生体信号を用いて、前記装着者の意思に従った動力を前記ァクチユエ一 タに発生させるための随意的指令信号を生成し、
検出した物理量とタスクとして分類した装着者の動作パターンを構成する一連の最 小動作単位(フェーズ)の各々の基準パラメータとを比較することにより、前記装着者 が行おうとしているタスクのフェーズを推定し、このフェーズに応じた動力を前記ァク チユエータに発生させるための自律的指令信号を生成し、
これら生成した随意的指令信号および自律的指令信号を合成し、 合成した総指令信号に応じた電流を生成し、前記ァクチユエータに供給することを 特徴とする装着式動作補助装置の制御方法。
[20] 請求項 19に記載の装着式動作補助装置の制御方法において、
前記随意的指令信号と前記自律的指令信号との比 (ハイブリッド比)を、前記フエ一 ズの各々の基準パラメータと所要の対応関係となるように予め設定しておき、前記推 定したタスクのフェーズに応じたハイブリッド比を前記対応関係に基づレ、て規定し、こ のハイブリッド比となるように前記総指令信号を合成することを特徴とする装着式動作 補助装置の制御方法。
[21] 請求項 20に記載の装着式動作補助装置の制御方法において、
前記ァクチユエータへの電流の供給を開始する際に、前記ァクチユエータを駆動可 能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を供 給することを特徴とする装着式動作補助装置の制御方法。
[22] 請求項 19に記載の装着式動作補助装置の制御方法において、
前記装着者に付与する動力の比率 (パワーアシスト率)を前記フェーズの各々の基 準パラメータと所要の対応関係となるように予め設定しておき、前記推定したタスクの フェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーァ シスト率となるように前記総指令信号を合成することを特徴とする装着式動作補助装 置の制御方法。
[23] 請求項 19に記載の装着式動作補助装置の制御方法において、
前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記ァ クチユエータを駆動するための駆動電流を所定の時間だけ生成した後に、前記動作 の方向に前記ァクチユエータを駆動することを特徴とする装着式動作補助装置の制 御方法。
[24] 前記請求項 14に記載された制御方法を、装着式動作補助装置を制御するための コンピュータに実行させることを特徴とするプログラム。
[25] 前記請求項 19に記載された制御方法を、装着式動作補助装置を制御するための コンピュータに実行させることを特徴とするプログラム。
PCT/JP2004/011698 2003-08-21 2004-08-13 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム WO2005018525A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/568,756 US7785279B2 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
CA2559856A CA2559856C (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
CN2004800239695A CN1838933B (zh) 2003-08-21 2004-08-13 穿着式动作辅助装置、穿着式动作辅助装置的控制方法和控制用程序
EP04771665.9A EP1661543B1 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
HK07100573.8A HK1095509A1 (en) 2003-08-21 2007-01-17 Wearable action-assist device, and method and program for controlling wearable action-assist device
US12/549,902 US8622938B2 (en) 2003-08-21 2009-08-28 Wearable action-assist device, and method and program for controlling wearable action-assist device
US12/836,054 US8888722B2 (en) 2003-08-21 2010-07-14 Wearable action-assist device, and method and program for controlling wearable action-assist device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003298038 2003-08-21
JP2003-298038 2003-08-21
JP2004-045354 2004-02-20
JP2004045354A JP4178186B2 (ja) 2003-08-21 2004-02-20 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/568,756 A-371-Of-International US8153012B2 (en) 2004-07-28 2005-07-07 Device and method for filtering a fluid, in particular for plastics processing plants
US12/549,902 Division US8622938B2 (en) 2003-08-21 2009-08-28 Wearable action-assist device, and method and program for controlling wearable action-assist device
US12/836,054 Continuation US8888722B2 (en) 2003-08-21 2010-07-14 Wearable action-assist device, and method and program for controlling wearable action-assist device

Publications (1)

Publication Number Publication Date
WO2005018525A1 true WO2005018525A1 (ja) 2005-03-03

Family

ID=34220708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011698 WO2005018525A1 (ja) 2003-08-21 2004-08-13 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム

Country Status (8)

Country Link
US (3) US7785279B2 (ja)
EP (1) EP1661543B1 (ja)
JP (1) JP4178186B2 (ja)
CN (1) CN101926722B (ja)
CA (2) CA2696131C (ja)
HK (1) HK1095509A1 (ja)
PL (1) PL1661543T3 (ja)
WO (1) WO2005018525A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299243A1 (en) * 2005-05-17 2009-12-03 Honda Motor Co., Ltd. Walking assistance device
CN101791255A (zh) * 2010-03-08 2010-08-04 上海交通大学 助行外骨骼机器人系统及控制方法
CN103462781A (zh) * 2013-08-22 2013-12-25 上海交通大学 下肢康复训练机器人
CN103932872A (zh) * 2014-04-09 2014-07-23 罗勇 脑溢血偏瘫康复机
CN105616042A (zh) * 2014-10-30 2016-06-01 中国科学院深圳先进技术研究院 一种智能假手控制系统
CN112004511A (zh) * 2018-02-17 2020-11-27 哈佛学院院长及董事 用于预防肌肉骨骼损伤和增强性能的可穿戴设备

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040064195A1 (en) 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
JP4178186B2 (ja) * 2003-08-21 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム
JP4587738B2 (ja) * 2003-08-25 2010-11-24 ソニー株式会社 ロボット装置及びロボットの姿勢制御方法
US8075633B2 (en) * 2003-09-25 2011-12-13 Massachusetts Institute Of Technology Active ankle foot orthosis
JP4200492B2 (ja) * 2004-03-11 2008-12-24 国立大学法人 筑波大学 装着式動作補助装置
JP4499508B2 (ja) * 2004-08-27 2010-07-07 本田技研工業株式会社 歩行補助装置の制御装置
WO2006037101A2 (en) * 2004-09-27 2006-04-06 Massachusetts Institute Of Technology Ankle interface
JP4541867B2 (ja) 2004-12-16 2010-09-08 本田技研工業株式会社 外力制御方法、外力制御システム及び外力制御プログラム
JP4344314B2 (ja) * 2004-12-28 2009-10-14 本田技研工業株式会社 体重免荷アシスト装置および体重免荷アシストプログラム
WO2006084219A2 (en) 2005-02-02 2006-08-10 össur hf Prosthetic and orthotic systems usable for rehabilitation
US8512415B2 (en) * 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
KR100903809B1 (ko) * 2005-05-31 2009-06-25 혼다 기켄 고교 가부시키가이샤 보행 보조 장치의 제어 장치 및 제어 프로그램
JP4417300B2 (ja) * 2005-07-13 2010-02-17 本田技研工業株式会社 歩行補助装置
JP2007097636A (ja) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd 筋力補助装置
JP2007130234A (ja) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 人体動作補助装置
US7899556B2 (en) 2005-11-16 2011-03-01 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US7632239B2 (en) * 2005-11-16 2009-12-15 Bioness Neuromodulation Ltd. Sensor device for gait enhancement
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
JP5324438B2 (ja) * 2006-05-01 2013-10-23 バイオネス ニューロモジュレイション リミテッド 改良型機能的電気刺激システム
JP5209924B2 (ja) * 2006-10-03 2013-06-12 国立大学法人 筑波大学 動作補助装置及び動作補助装置の保守管理システム
US8353854B2 (en) 2007-02-14 2013-01-15 Tibion Corporation Method and devices for moving a body joint
JP5283401B2 (ja) * 2007-03-22 2013-09-04 国立大学法人 筑波大学 リハビリテーション支援装置
US7998096B1 (en) * 2007-06-25 2011-08-16 Skoog Eric J Paraplegic controlled, concealed mechanized walking device
JP4789117B2 (ja) * 2007-08-03 2011-10-12 本田技研工業株式会社 歩行補助装置
JP5229621B2 (ja) * 2007-08-20 2013-07-03 国立大学法人 筑波大学 装着式動作補助装置の動作補助システム及び装着式動作補助装置及び装着式動作補助装置の動作補助方法
JP5244348B2 (ja) * 2007-09-04 2013-07-24 国立大学法人 筑波大学 装着式動作補助装置及びその制御方法
JP5288367B2 (ja) * 2007-10-12 2013-09-11 国立大学法人 筑波大学 埋込型動作補助装置及びその制御方法及びプログラム
JP4271713B2 (ja) * 2007-10-19 2009-06-03 本田技研工業株式会社 運動補助装置
EP2231096B1 (en) * 2007-12-26 2013-04-03 Rex Bionics Limited Mobility aid
WO2009084387A1 (ja) 2007-12-27 2009-07-09 University Of Tsukuba 重心位置検出装置及び重心位置検出装置を備えた装着式動作補助装置
GB2456558A (en) * 2008-01-21 2009-07-22 Salisbury Nhs Foundation Trust Controlling equipment with electromyogram (EMG) signals
WO2009099671A2 (en) 2008-02-08 2009-08-13 Tibion Corporation Multi-fit orthotic and mobility assistance apparatus
DE102008023573A1 (de) * 2008-05-05 2009-11-12 Medireha GmbH Produkte für die medizinische Rehabilitation Beinbewegungsschiene zur repetitiven Bewegung des Knie- und Hüftgelenks mit Assistenzfunktion bei aktiver Nutzung
EP2326288B1 (en) * 2008-05-20 2016-04-20 Ekso Bionics, Inc. Device and method for decreasing energy consumption of a person by use of a lower extremity exoskeleton
WO2010019300A1 (en) * 2008-05-20 2010-02-18 University Of California At Berkeley Device and method for decreasing oxygen consumption of a person during steady walking by use of a load-carrying exoskeleton
US20090306548A1 (en) 2008-06-05 2009-12-10 Bhugra Kern S Therapeutic method and device for rehabilitation
US9351855B2 (en) 2008-06-16 2016-05-31 Ekso Bionics, Inc. Powered lower extremity orthotic and method of operation
JP5234934B2 (ja) * 2008-07-15 2013-07-10 旭光電機株式会社 人体装着型多関節構造体
CN102098986B (zh) * 2008-07-23 2015-09-09 伯克利仿生技术公司 外骨骼和控制该外骨骼的迈步腿的方法
US8058823B2 (en) 2008-08-14 2011-11-15 Tibion Corporation Actuator system with a multi-motor assembly for extending and flexing a joint
US8274244B2 (en) 2008-08-14 2012-09-25 Tibion Corporation Actuator system and method for extending a joint
JP5041370B2 (ja) * 2008-09-02 2012-10-03 Necシステムテクノロジー株式会社 身体訓練装置およびプログラム
US9345592B2 (en) 2008-09-04 2016-05-24 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US9011354B2 (en) * 2008-09-24 2015-04-21 Ekso Bionics, Inc. Hip and knee actuation systems for lower limb orthotic devices
US20100132464A1 (en) * 2008-12-01 2010-06-03 Honda Motor Co., Ltd. Motion assisting device
JP5146299B2 (ja) * 2008-12-22 2013-02-20 トヨタ自動車株式会社 歩行補助装置
US20100198124A1 (en) * 2009-01-30 2010-08-05 Kern Bhugra System and method for controlling the joint motion of a user based on a measured physiological property
US8639455B2 (en) * 2009-02-09 2014-01-28 Alterg, Inc. Foot pad device and method of obtaining weight data
US20110196509A1 (en) * 2009-02-27 2011-08-11 Ut-Battelle, Llc Hydraulic apparatus with direct torque control
JP5472680B2 (ja) 2009-04-09 2014-04-16 国立大学法人 筑波大学 装着式動作補助装置
JP5251703B2 (ja) * 2009-04-24 2013-07-31 トヨタ自動車株式会社 脚補助装具
US9125788B2 (en) 2009-06-02 2015-09-08 Agency For Science Technology And Research System and method for motor learning
US20100312152A1 (en) * 2009-06-03 2010-12-09 Board Of Regents, The University Of Texas System Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment
US20140100494A1 (en) * 2009-06-03 2014-04-10 Board Of Regents, The University Of Texas System Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment
JP5379304B2 (ja) * 2009-07-01 2013-12-25 レックス バイオニクス リミテッド 移動補助器械用制御システム
CN104523404B (zh) * 2009-07-01 2018-04-13 瑞克仿生学有限公司 助动器的控制系统
US20110112447A1 (en) * 2009-10-05 2011-05-12 The Board Of Trustees Of The University Of Illinois Portable active fluid powered ankle-foot orthosis
JP5504810B2 (ja) * 2009-10-06 2014-05-28 オムロンヘルスケア株式会社 歩行姿勢判定装置、制御プログラム、および制御方法
WO2011055428A1 (ja) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 歩行補助装置
JP5640991B2 (ja) 2009-11-13 2014-12-17 トヨタ自動車株式会社 歩行補助装置
DE102009056466A1 (de) * 2009-12-01 2011-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptives Steuerungs- und Regelungssystem für Prothesen mit willkürlicher Steuerung
JP5479875B2 (ja) * 2009-12-11 2014-04-23 トヨタ自動車株式会社 動作補助装置
JP5467268B2 (ja) * 2010-03-18 2014-04-09 学校法人早稲田大学 不随意運動抑制システム、運動認識装置及び運動認識装置用プログラム
US20110295384A1 (en) 2010-04-05 2011-12-01 Herr Hugh M Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
JP5494218B2 (ja) * 2010-05-17 2014-05-14 トヨタ自動車株式会社 歩行支援装置の遊脚立脚判定アルゴリズムの閾値調整方法
JP5588738B2 (ja) * 2010-05-20 2014-09-10 本田技研工業株式会社 歩行運動補助装置
EP3000391B1 (en) * 2010-07-01 2019-01-30 Vanderbilt University Systems for volitional control of jointed mechanical devices based on surface electromyography
WO2012024562A2 (en) * 2010-08-19 2012-02-23 University Of Delaware Powered orthosis systems and methods
US9480618B2 (en) * 2010-10-05 2016-11-01 Elizabeth T. Hsiao-Wecksler Portable active pneumatically powered ankle-foot orthosis
US9554960B2 (en) 2010-11-24 2017-01-31 Kawasaki Jukogyo Kabushiki Kaisha Wearable motion supporting device
US9095417B2 (en) 2011-02-07 2015-08-04 Bioness Neuromodulation Ltd. Adjustable orthosis for electrical stimulation of a limb
TWI404525B (zh) * 2011-03-14 2013-08-11 Oriental Inst Technology 電動雙足器之行走控制裝置及其方法
JP5854719B2 (ja) * 2011-06-10 2016-02-09 本田技研工業株式会社 バッテリパック収容構造およびバッテリパックおよび歩行補助装置
US8868217B2 (en) 2011-06-27 2014-10-21 Bioness Neuromodulation Ltd. Electrode for muscle stimulation
JP5909063B2 (ja) * 2011-09-06 2016-04-26 国立大学法人 和歌山大学 パワーアシストロボット装置
EP2754538B1 (en) * 2011-09-06 2019-10-23 Wakayama University Power-assisting robotic device and control method thereof
KR101280364B1 (ko) * 2011-09-23 2013-07-01 한국과학기술연구원 상지 근력 보조 장치
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
JP6032644B2 (ja) * 2011-12-05 2016-11-30 国立大学法人 和歌山大学 パワーアシストロボット装置およびその制御方法
US9498401B2 (en) 2011-12-20 2016-11-22 Massachusetts Institute Of Technology Robotic system for simulating a wearable device and method of use
KR101295966B1 (ko) * 2011-12-28 2013-08-13 한국기술교육대학교 산학협력단 파워 수트
JP5979703B2 (ja) * 2012-02-23 2016-08-31 国立大学法人 筑波大学 装着式動作補助装置
US9682005B2 (en) 2012-02-24 2017-06-20 Massachusetts Institute Of Technology Elastic element exoskeleton and method of using same
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
WO2013188510A2 (en) 2012-06-12 2013-12-19 Iwalk, Inc. Prosthetic, orthotic or exoskeleton device
KR20150077413A (ko) 2012-09-17 2015-07-07 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 인간의 움직임에 대한 보조를 위한 소프트 엑소슈트
CN102922508B (zh) * 2012-09-21 2015-01-07 西安交通大学 一种电动汽车电池换装外骨骼机器人系统
US20140100493A1 (en) * 2012-10-04 2014-04-10 Travis Craig Bipedal Exoskeleton and Methods of Use
US9775763B2 (en) * 2012-12-19 2017-10-03 Intel Corporation Adaptive exoskeleton, control system and methods using the same
US20140198034A1 (en) 2013-01-14 2014-07-17 Thalmic Labs Inc. Muscle interface device and method for interacting with content displayed on wearable head mounted displays
JP6055985B2 (ja) * 2013-02-18 2017-01-11 株式会社国際電気通信基礎技術研究所 パワーアシストロボット
WO2014130871A1 (en) * 2013-02-22 2014-08-28 Thalmic Labs Inc. Methods and devices that combine muscle activity sensor signals and inertial sensor signals for gesture-based control
WO2014151584A1 (en) 2013-03-15 2014-09-25 Alterg, Inc. Orthotic device drive system and method
WO2014186370A1 (en) 2013-05-13 2014-11-20 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices that accommodate different user forms
US9158376B2 (en) * 2013-05-30 2015-10-13 The Regents Of The University Of California User coupled human-machine interface
US10843332B2 (en) 2013-05-31 2020-11-24 President And Fellow Of Harvard College Soft exosuit for assistance with human motion
US9649207B2 (en) 2013-07-12 2017-05-16 University Of Oregon Powered prosthetic devices using EMG-based locomotion state classifier
CN103431976B (zh) * 2013-07-19 2016-05-04 燕山大学 基于肌电信号反馈的下肢康复机器人系统及其控制方法
US20150025423A1 (en) * 2013-07-19 2015-01-22 Bionik Laboratories, Inc. Control system for exoskeleton apparatus
US9408316B2 (en) 2013-07-22 2016-08-02 Thalmic Labs Inc. Systems, articles and methods for strain mitigation in wearable electronic devices
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US11426123B2 (en) 2013-08-16 2022-08-30 Meta Platforms Technologies, Llc Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US9788789B2 (en) 2013-08-30 2017-10-17 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
US9372535B2 (en) 2013-09-06 2016-06-21 Thalmic Labs Inc. Systems, articles, and methods for electromyography-based human-electronics interfaces
US9483123B2 (en) 2013-09-23 2016-11-01 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
KR20150039640A (ko) * 2013-10-02 2015-04-13 삼성전자주식회사 아기 캐리어
KR102146363B1 (ko) * 2013-10-31 2020-08-20 삼성전자주식회사 착용형 로봇 및 그 제어 방법
EP3068360B1 (en) 2013-11-12 2020-07-08 Ekso Bionics, Inc. Machine to human interfaces for communication from a lower extremity orthotic
KR20150055958A (ko) * 2013-11-14 2015-05-22 삼성전자주식회사 착용형 로봇 및 그 제어 방법
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
KR102073001B1 (ko) 2013-11-29 2020-02-04 삼성전자주식회사 착용형 로봇 및 그 제어 방법
CN105992554A (zh) 2013-12-09 2016-10-05 哈佛大学校长及研究员协会 帮助人移动的辅助柔性套服、柔性套服系统及它们的制造和控制方法
KR102172975B1 (ko) * 2013-12-10 2020-11-02 삼성전자주식회사 착용형 로봇 및 그 제어 방법
KR102193771B1 (ko) * 2013-12-16 2020-12-22 삼성전자주식회사 착용형 로봇 및 그 제어 방법
EP3083158B1 (en) 2013-12-16 2023-03-15 Massachusetts Institute of Technology Optimal design of a lower limb exoskeleton or orthosis
KR102122856B1 (ko) * 2013-12-17 2020-06-15 삼성전자주식회사 보행 보조 장치 및 그 제어 방법
KR102131277B1 (ko) * 2013-12-30 2020-07-07 삼성전자주식회사 보행 보조 장치 및 보행 보조 장치의 제어 방법
CN103654774B (zh) * 2014-01-02 2016-08-17 北京思睿博创科技有限公司 穿戴式移动手环
JP6357627B2 (ja) 2014-01-30 2018-07-18 国立大学法人 筑波大学 装着式動作補助装置
JP6357628B2 (ja) 2014-01-30 2018-07-18 国立大学法人 筑波大学 装着式動作補助装置、及び装着式動作補助装置の操作ユニット
WO2015120186A1 (en) 2014-02-05 2015-08-13 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US9600030B2 (en) 2014-02-14 2017-03-21 Thalmic Labs Inc. Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10199008B2 (en) 2014-03-27 2019-02-05 North Inc. Systems, devices, and methods for wearable electronic devices as state machines
CN103860298B (zh) * 2014-03-31 2015-08-19 北京大学 一种用于智能假肢的非接触式电容传感系统
EP3128963A4 (en) 2014-04-10 2017-12-06 President and Fellows of Harvard College Orthopedic device including protruding members
WO2015174998A1 (en) 2014-05-16 2015-11-19 Massachusetts Institute Of Technology Apparatus and method for supporting a human body using supernumerary artificial limbs
JP5836429B2 (ja) * 2014-05-23 2015-12-24 日本電信電話株式会社 身体状態提示装置、方法及びプログラム
US10123929B2 (en) 2014-06-17 2018-11-13 Colorado School Of Mines Wrist and forearm exoskeleton
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
US9757254B2 (en) * 2014-08-15 2017-09-12 Honda Motor Co., Ltd. Integral admittance shaping for an exoskeleton control design framework
US10231851B2 (en) * 2014-08-29 2019-03-19 Conor J. MADDRY Pneumatic electromyographic exoskeleton
KR102292683B1 (ko) 2014-09-12 2021-08-23 삼성전자주식회사 보행 환경 인식 방법 및 장치
EP3708079A1 (en) 2014-09-19 2020-09-16 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
KR102342072B1 (ko) * 2014-10-14 2021-12-22 삼성전자주식회사 보행 보조를 제어하기 위한 장치 및 그 방법
US9807221B2 (en) 2014-11-28 2017-10-31 Thalmic Labs Inc. Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link
TWI601526B (zh) * 2015-01-30 2017-10-11 Hiwin Tech Corp Lower limb rehabilitation device control method and the implementation of the method of lower limb rehabilitation device
US10078435B2 (en) 2015-04-24 2018-09-18 Thalmic Labs Inc. Systems, methods, and computer program products for interacting with electronically displayed presentation materials
KR102482436B1 (ko) * 2015-09-02 2022-12-28 삼성전자주식회사 보행 보조 장치 및 그 동작 방법
TWI564129B (zh) * 2015-11-27 2017-01-01 財團法人工業技術研究院 行動輔助機器人之姿態估測方法
US10195099B2 (en) * 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
WO2017123608A1 (en) 2016-01-11 2017-07-20 Bioness Inc. Systems and apparatus for gait modulation and methods of use
CN105560017B (zh) * 2016-01-12 2018-07-06 陈烁 铰轴式助力器
EP3429512A4 (en) 2016-03-13 2019-10-30 President and Fellows of Harvard College FLEXIBLE ELEMENTS FOR ANCHORING THE BODY
ITUA20163488A1 (it) * 2016-05-16 2017-11-16 Univ Degli Studi Di Siena Sistema per guidare il passo di un soggetto
CN109789543B (zh) 2016-07-22 2022-09-27 哈佛大学校长及研究员协会 用于可穿戴系统的控制优化
WO2018022597A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
CN110300542A (zh) * 2016-07-25 2019-10-01 开创拉布斯公司 使用可穿戴的自动传感器预测肌肉骨骼位置信息的方法和装置
CN110312471B (zh) 2016-07-25 2022-04-29 脸谱科技有限责任公司 从神经肌肉活动测量中导出控制信号的自适应系统
CN106156524B (zh) * 2016-07-29 2018-08-28 东北大学 一种智能下肢助力装置的在线步态规划方法
WO2018039355A1 (en) * 2016-08-23 2018-03-01 Superflex, Inc. Systems and methods for portable powered stretching exosuit
US11020261B2 (en) 2016-08-23 2021-06-01 Seismic Holdings, Inc. Patch systems for use with assistive exosuit
JP6742196B2 (ja) * 2016-08-24 2020-08-19 Cyberdyne株式会社 生体活動検出装置および生体活動検出システム
JP6890286B2 (ja) * 2016-09-02 2021-06-18 パナソニックIpマネジメント株式会社 起立動作支援装置、起立動作支援方法およびプログラム
JP6775151B2 (ja) * 2016-09-02 2020-10-28 パナソニックIpマネジメント株式会社 起立動作支援装置、起立動作支援方法およびプログラム
US11052011B2 (en) 2016-09-02 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Standing-up assistance apparatus, standing-up assistance method, and non-transitory computer-readable recording medium
JP6832530B2 (ja) * 2016-09-30 2021-02-24 パナソニックIpマネジメント株式会社 アシストシステム、アシスト方法及びコンピュータプログラム
KR102536856B1 (ko) 2016-10-31 2023-05-25 삼성전자주식회사 보행 보조 장치 및 그 동작 방법
JP6793203B2 (ja) * 2016-11-18 2020-12-02 Cyberdyne株式会社 義足動作補助装置及び義足動作補助方法
ES2969892T3 (es) * 2017-02-03 2024-05-23 Roam Robotics Inc Sistema y método para reconocimiento de intención de usuario
WO2018170170A1 (en) 2017-03-14 2018-09-20 President And Fellows Of Harvard College Systems and methods for fabricating 3d soft microstructures
CN106924015A (zh) * 2017-04-18 2017-07-07 佛山市神风航空科技有限公司 一种助走器
WO2019079757A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
KR102546547B1 (ko) * 2018-01-11 2023-06-22 삼성전자주식회사 보행 보조 방법 및 장치
WO2019148002A1 (en) 2018-01-25 2019-08-01 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
CN111902077B (zh) 2018-01-25 2023-08-04 元平台技术有限公司 利用神经肌肉信号进行手部状态表示建模的校准技术
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US10460455B2 (en) 2018-01-25 2019-10-29 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US10817795B2 (en) 2018-01-25 2020-10-27 Facebook Technologies, Llc Handstate reconstruction based on multiple inputs
WO2019147958A1 (en) 2018-01-25 2019-08-01 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
JP7142338B2 (ja) * 2018-01-26 2022-09-27 学校法人 中央大学 アシスト装置の制御方法及びアシスト装置
JP7167473B2 (ja) * 2018-04-11 2022-11-09 株式会社ジェイテクト 動作支援システム
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
EP3801743B1 (en) 2018-05-25 2024-07-03 Meta Platforms Technologies, LLC Methods and apparatus for providing sub-muscular control
EP3801216A4 (en) 2018-05-29 2021-04-14 Facebook Technologies, LLC. SHIELDING TECHNIQUES FOR NOISE REDUCTION IN SURFACE ELECTROMYOGRAPHY SIGNAL MEASUREMENT AND RELATED SYSTEMS AND METHODS
CN108743260B (zh) * 2018-06-05 2020-08-11 河北雅诗莉医药科技有限公司 一种具有多级摇臂结构的智能移位康复车
CN112585600A (zh) 2018-06-14 2021-03-30 脸谱科技有限责任公司 使用神经肌肉标记进行用户识别和认证
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
EP3836836B1 (en) 2018-08-13 2024-03-20 Meta Platforms Technologies, LLC Real-time spike detection and identification
US10905350B2 (en) 2018-08-31 2021-02-02 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
WO2020061451A1 (en) 2018-09-20 2020-03-26 Ctrl-Labs Corporation Neuromuscular text entry, writing and drawing in augmented reality systems
EP3857342A4 (en) 2018-09-26 2021-12-01 Facebook Technologies, LLC. NEUROMUSCULAR CONTROL OF PHYSICAL OBJECTS IN AN ENVIRONMENT
CN112822992A (zh) 2018-10-05 2021-05-18 脸谱科技有限责任公司 在增强现实环境中使用神经肌肉信号来提供与物理对象的增强交互
CN113423341A (zh) 2018-11-27 2021-09-21 脸谱科技有限责任公司 用于可穿戴电极传感器系统的自动校准的方法和装置
US11772259B1 (en) * 2019-02-06 2023-10-03 Aptima, Inc. Enhanced activated exoskeleton system
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US12076135B2 (en) * 2019-04-25 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Soft hip extension device to aid hemiparetic gait
CN110710984B (zh) * 2019-10-18 2021-11-02 福州大学 基于表面肌电信号的递归小脑模型的足踝力矩预测方法
US12089953B1 (en) 2019-12-04 2024-09-17 Meta Platforms Technologies, Llc Systems and methods for utilizing intrinsic current noise to measure interface impedances
CN111251276A (zh) * 2020-01-20 2020-06-09 南方科技大学 基于姿态的动力辅助方法、装置、服务器及存储介质
CN116457156A (zh) * 2020-11-16 2023-07-18 京瓷Avx元器件公司 使用超级电容器供电的外骨骼
CN112545536B (zh) * 2020-12-02 2023-07-04 复旦大学附属华山医院 基于脑可塑的动作辅助装置及其控制方法、电路
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
USD1005361S1 (en) 2021-08-13 2023-11-21 Festool Gmbh Wearable robotic exoskeleton with belts
EP4387816A1 (en) 2021-08-17 2024-06-26 Roam Robotics Inc. Maritime applications for a mobile robot
JP2023104654A (ja) 2022-01-18 2023-07-28 Cyberdyne株式会社 歩行機能評価装置および歩行機能評価方法
JP2023104655A (ja) 2022-01-18 2023-07-28 Cyberdyne株式会社 機能改善支援装置および機能改善支援方法
CN114797007B (zh) * 2022-04-02 2023-06-06 中国科学技术大学先进技术研究院 用于康复的穿戴式水下外骨骼机器人及其使用方法
DE102023108577A1 (de) 2023-04-04 2024-10-10 Otto Bock Healthcare Products Gmbh Verfahren zur Steuerung einer orthopädietechnischen Gelenkeinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134340B2 (ja) * 1981-01-27 1986-08-07 Sakai Iryo Kk
JPH02298479A (ja) * 1989-05-09 1990-12-10 Nippon Telegr & Teleph Corp <Ntt> 筋電制御学習型ロボットハンド
JPH07163607A (ja) * 1993-12-13 1995-06-27 Tokyo R & D:Kk 階段歩行等の電動補助装置
JP2000166997A (ja) * 1998-12-10 2000-06-20 Nsk Ltd 歩行補助装置
JP2003079684A (ja) * 2001-06-27 2003-03-18 Honda Motor Co Ltd トルク付与システム
JP2003116893A (ja) * 2001-10-18 2003-04-22 Honda Motor Co Ltd 歩行状態判定装置及び方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178161A (en) * 1988-09-02 1993-01-12 The Board Of Trustees Of The Leland Stanford Junior University Microelectronic interface
US5103807A (en) * 1991-04-26 1992-04-14 John Makaran Shape memory alloy orthotic device
US5282460A (en) * 1992-01-06 1994-02-01 Joyce Ann Boldt Three axis mechanical joint for a power assist device
US5432417A (en) * 1992-04-30 1995-07-11 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5413611A (en) * 1992-07-21 1995-05-09 Mcp Services, Inc. Computerized electronic prosthesis apparatus and method
US6695885B2 (en) * 1997-02-26 2004-02-24 Alfred E. Mann Foundation For Scientific Research Method and apparatus for coupling an implantable stimulator/sensor to a prosthetic device
US7824314B2 (en) * 1998-04-23 2010-11-02 Maresh Joseph D Adjustable stride length exercise method and apparatus
US6493608B1 (en) * 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
AU6686400A (en) * 1999-08-20 2001-03-19 Ronald R. Riso Emg control of prosthesis
US6689074B2 (en) * 2000-03-28 2004-02-10 Seiko Epson Corporation Wearable muscular-force supplementing device
CA2419907C (en) * 2000-08-25 2009-09-29 Healthsouth Corporation Powered gait orthosis and method of utilizing same
US7918808B2 (en) * 2000-09-20 2011-04-05 Simmons John C Assistive clothing
US6725101B2 (en) * 2000-12-13 2004-04-20 Xerox Corporation Method and apparatus for using fast fourier transform feedback to compensate for non-linear motion
WO2002054951A2 (en) * 2001-01-12 2002-07-18 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Decoding algorithm for neuronal responses
US7217247B2 (en) * 2002-09-23 2007-05-15 Honda Giken Kogyo Kabushiki Kaisha Gravity compensation method in a human assist system and a human assist system with gravity compensation control
WO2003033070A1 (en) * 2001-10-16 2003-04-24 Case Western Reserve University Neural prosthesis
US7396337B2 (en) * 2002-11-21 2008-07-08 Massachusetts Institute Of Technology Powered orthotic device
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
US7725175B2 (en) * 2002-12-04 2010-05-25 Kinetic Muscles, Inc. System and method for neuromuscular reeducation
WO2004085121A1 (ja) * 2003-03-27 2004-10-07 Sony Corporation ロボット装置及びロボット装置の制御方法
JP4178186B2 (ja) 2003-08-21 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134340B2 (ja) * 1981-01-27 1986-08-07 Sakai Iryo Kk
JPH02298479A (ja) * 1989-05-09 1990-12-10 Nippon Telegr & Teleph Corp <Ntt> 筋電制御学習型ロボットハンド
JPH07163607A (ja) * 1993-12-13 1995-06-27 Tokyo R & D:Kk 階段歩行等の電動補助装置
JP2000166997A (ja) * 1998-12-10 2000-06-20 Nsk Ltd 歩行補助装置
JP2003079684A (ja) * 2001-06-27 2003-03-18 Honda Motor Co Ltd トルク付与システム
JP2003116893A (ja) * 2001-10-18 2003-04-22 Honda Motor Co Ltd 歩行状態判定装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1661543A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299243A1 (en) * 2005-05-17 2009-12-03 Honda Motor Co., Ltd. Walking assistance device
CN101791255A (zh) * 2010-03-08 2010-08-04 上海交通大学 助行外骨骼机器人系统及控制方法
CN103462781A (zh) * 2013-08-22 2013-12-25 上海交通大学 下肢康复训练机器人
CN103932872A (zh) * 2014-04-09 2014-07-23 罗勇 脑溢血偏瘫康复机
CN103932872B (zh) * 2014-04-09 2015-10-07 罗勇 脑溢血偏瘫康复机
CN105616042A (zh) * 2014-10-30 2016-06-01 中国科学院深圳先进技术研究院 一种智能假手控制系统
CN112004511A (zh) * 2018-02-17 2020-11-27 哈佛学院院长及董事 用于预防肌肉骨骼损伤和增强性能的可穿戴设备
CN112004511B (zh) * 2018-02-17 2024-05-28 哈佛学院院长及董事 用于预防肌肉骨骼损伤和增强性能的可穿戴设备

Also Published As

Publication number Publication date
US8888722B2 (en) 2014-11-18
US8622938B2 (en) 2014-01-07
JP4178186B2 (ja) 2008-11-12
JP2005095561A (ja) 2005-04-14
EP1661543B1 (en) 2017-02-01
US20090319054A1 (en) 2009-12-24
CA2696131A1 (en) 2005-03-03
US20100280628A1 (en) 2010-11-04
CA2696131C (en) 2013-03-05
EP1661543A4 (en) 2009-07-15
US7785279B2 (en) 2010-08-31
US20060211956A1 (en) 2006-09-21
CA2559856C (en) 2010-09-21
PL1661543T3 (pl) 2017-07-31
HK1095509A1 (en) 2007-05-11
EP1661543A1 (en) 2006-05-31
CN101926722B (zh) 2012-11-21
CA2559856A1 (en) 2005-03-03
CN101926722A (zh) 2010-12-29

Similar Documents

Publication Publication Date Title
JP4487060B2 (ja) 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム
JP4178186B2 (ja) 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム
JP5642534B2 (ja) 装着式動作補助装置、そのインタフェース装置及びプログラム
Quintero et al. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia
JP4178185B2 (ja) 装着式動作補助装置、及び装着式動作補助装置における駆動源の制御方法、及びプログラム
Suzuki et al. Intention-based walking support for paraplegia patients with Robot Suit HAL
JP5189911B2 (ja) 装着式動作補助装置、基準パラメータデータベース構築装置、装着式動作補助装置における駆動制御方法、基準パラメータデータベース構築方法、及びそのプログラム
CN101677866B (zh) 装戴式动作辅助装置的动作辅助系统、装戴式动作辅助装置以及装戴式动作辅助装置的动作辅助方法
JP5244348B2 (ja) 装着式動作補助装置及びその制御方法
WO2016146960A1 (en) A modular universal joint with harmonised control method for an assistive exoskeleton
WO2006080134A1 (ja) 装着式動作補助装置及び制御用プログラム
JP6340528B2 (ja) Bmi運動補助装置
Lenzi et al. Reducing muscle effort in walking through powered exoskeletons
KR101841011B1 (ko) 하지 보조로봇의 제어방법
JP5288367B2 (ja) 埋込型動作補助装置及びその制御方法及びプログラム
KR20190142709A (ko) 하지 보조로봇의 제어방법
JP6872847B2 (ja) 動作補助装置及び動作補助装置の作動方法並びに動作補助制御用プログラム
Elias et al. Robotic walkers from a clinical point of view: feature-based classification and proposal of the UFES Walker
Kawamoto Wearable robot technology
de Suraÿ et al. Design and experimental performance assessment of a hip flexion assistive device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023969.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004771665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004771665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10568756

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004771665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2559856

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1200601512

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 5386/DELNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 10568756

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2559856

Country of ref document: CA