Optischer Drehübertrager mit Koppelschlitten
Technisches Gebiet Die Erfindung betrifft eine Vorrichtung zur Übertragung optischer Signale zwischen gegeneinander drehbaren Einheiten. Derartige Vorrichtungen werden vorzugsweise in Co putertomografen eingesetzt.
Stand der Technik
•Zur Übertragung optischer Signale zwischen gegeneinander drehbaren Einheiten, insbesondere mit einem freiem Innendurchmesser sind verschiedene Vorrichtungen bekannt. Grundsätzlich besteht hierin das Problem, ein Mittel zum Transport von Licht entlang .des Umfangs der Vorrichtung sowie geeignete Mittel zur Ein- und Auskopplung von Licht zu gestalten. Zum Einsatz in Computertomografen müssen derartige Vorrichtungen große freie Innendurchmesser in einer Größenordnung von 1 Me- ter aufweisen. Die Umfangsgeschwindigkeit bei der Rotation kann in einer Größenordnung von 20 m/s liegen. Gleichzeitig sollten Datenraten mit über 1 Gigabit pro Sekunde (GBaud) möglich sein.
So offenbart die US 4,109,997 einen optischen Drehübertrager, bei dem der Transport von Licht entlang des Umfangs durch Reflexion an zwei gegenüberliegenden Flächen (101, 1) erfolgt. Zur Ein- bzw. Auskopplung von Licht sind Lichtleiter bzw. Glasfasern vorgesehen, wo- bei die Bündelung bzw. Fokussierung des Lichtstrahls mittels Linsen erfolgt. Diese Vorrichtung weist allerdings eine ganze Reihe von Nachteilen auf. So ist die
optische Durchgangsdämpfung aufgrund mehrfacher Reflexionen unter relativ steilen Winkeln vergleichsweise hoch. Somit werden hohe Sendeleistungen im optischen Sender benötigt. Weiterhin sind aufgrund der gegenüber- liegenden verspiegelten Flächen die Fertigungskosten relativ hoch. Eine breitbandige Datenübertragung mit Periodendauern des Modulationssignals, welche wesentlich geringer als die Laufzeit des Signals um den Umfang der Vorrichtung sind, ist nicht möglich, da bei Positionen des Empfängers nahe am Sender ein Mehrwegeempfang von Signalen auftritt. So werddn gleichzeitig Signale, die auf kurzem Wege vom Sender empfangen werden sowie gleichzeitig Signale, welche wenigstens einmal um den Umfang der Vorrichtung reflektiert wurden empfangen. Die Laufzeitdifferenz uss klein gegenüber der Periodendauer des Modulationssignals sein. Somit ergibt sich bei einem Innendurchmesser von ca. einem Meter eine Gesamtlaufzeit um den Umfang von ca. 10 Na- nosekunden. Dadurch sind beispielsweise bei der Über- tragung von digitalen Signalen Bitdauern von maximal 50 Nanosekunden, entsprechend einer maximalen Übertragungsrate von 20 MBaud realisierbar.
Eine Verbesserung des optischen Systems ist in der US 4,525,025 offenbart. So ist darin insbesondere in Fig. 10 ein besonders geeigneter Graben zur Übertragung optischer Signale dargestellt. Dieser besteht nur noch aus einem Teil und ist daher kostengünstig herstellbar. Allerdings ist auch in diese Patentschrift keine wirk- same Lösung des Problems der Bandbreitenbegrenzung angegeben. Zudem ist die vorgeschlagene Einkopplung bzw. Auskopplung von Licht durch stumpfe Faserenden nur mit
einem äußerst schlechten Wirkungsgrad realisierbar. Somit ist diese Vorrichtung nur für kleine Durchmesser geeignet .
Eine Verbesserung der optischen Ein- bzw. Auskopplung ist in der US 4,555,631 offenbart. Darin erfolgt die Einkopplung optischer Signale in einen verspiegelten Zylinder mittels zweier Spiegel. Zur Auskopplung ist ein zusätzliches Auskoppelelement, welches an einer festen Position im Graben angeordnet ist, vorgesehen.
Allerdings ergibt sich auch hier eine hohe Dämpfung der optischen Übertragungsstrecke, da die Einkoppelspiegel insbesondere bei hohen Bewegungsgeschwindigkeiten nicht beliebig nahe an den verspiegelten Zylinder herange- führt werden können. Weiterhin ergibt sich durch die nicht vermeidbare Auffächerung des Lichtstrahls auf der planaren Spiegelfläche eine zusätzliche Verschlechterung des Wirkungsgrades. Weiterhin ist die mechanische Ausführung des Auskoppelelements besonders aufwändig, damit störanfällig und teuer. Schließlich ist auch das Problem der Bandbreitenbegrenzung nicht gelöst. So wird das Licht auf zwei Wegen in entgegengesetzten Richtungen von der Einkoppelstelle zur Auskoppelstelle geleitet und schließlich gemeinsam in einem Empfänger ausge- wertet. Auch hierbei gilt die Einschränkung, dass die Periodendauer des Modulationssignals wesentlich geringer als die Laufzeit des Lichts um den Umfang der Vorrichtung sein uss.
Eine Vorrichtung mit besonders hohem optischen Wirkungsgrad ist in der US 4,934,783 beschrieben. Darin erfolgt eine Fokussierung des Strahlbündels durch ein
Linsensystem. Allerdings ist dieses System sehr aufwändig, teuer in der Herstellung und nur für kleine Durchmesser geeignet. Weiterhin ist auch hier das Bandbreitenproblem nicht gelöst.
Um die Dämpfung der Übertragungsstrecke zu verringern und die übertragbare Bandbreite zu vergrößern wird in der US 6,104,849 eine Übertragung in mehreren verkürzten Segmenten vorgeschlagen. Durch die verkürzten Seg- ente ergibt sich eine verringerte Dämpfung. Die maximale Bandbreite ist hier umgekehrt proportional zur Länge der Segmente. Somit lässt sich mit. ürzeren Segmenten eine höhere Bandbreite erzielen. Allerdings ist hierfür auch eine entsprechend höhere Anzahl optischer Sender bzw. Empfänger zur Abdeckung des vollen ■Kreisu - fangs notwendig. Somit steigen die Systemkosten proportional zur Bandbreite.
In der DE 195 43 386 Cl ist eine Vorrichtung zur breit- bandigen Signalübertragung beschrieben, welche zwar eine hohe Bandbreite ermöglicht, aber keinerlei Hinweise auf eine Übertragung mit hoher Übertragungsqualität gibt. Es ist der Inhalt der DE 195 43 386 Cl durch Bezugnahme mit in dieses Dokument aufgenommen.
In der US-Patentschrift 4,962,986 wird eine alternative Vorrichtung zur Lichtkopplung beschrieben. Zur Lichtein- und -auskopplung in lichtleitende Fasern wird ein Koppelmedium mit höherem Brechungsindex als die Umge- bung in direkten Kontakt mit dem Faserkern gebracht.
Damit erfolgt eine Ablenkung des in der Faser transportierten Lichts in das Koppelmedium. Diese Anordnung hat
den entscheidenden Nachteil, dass das Koppelmedium unmittelbar in Verbindung mit den Faserkern stehen muss. Somit ist dieses System nahezu ausschließlich für die Kopplung an vorgegebenen, festen Positionen einsetzbar. Ein solches System ist aber kaum für Anordnungen, bei denen sich Sender und Empfänger gegeneinander bewegen anwendbar, da hier das Koppelmedium mit hoher Geschwindigkeit entlang dem meist sehr dünnen und empfindlichen Faserkern gleiten muss.
In Tamir, „Integrated Optics", Springer Verlag, Berlin, 1979/ Seite 87 ist eine solche Vorrichtung beschrieben. Es wird darin das zur Auskopplung dienende Prisma in einem möglichst geringen Abstand über den Faserkern po- sitioniert. Um hier einen vernünftigen Kopplungswirkungsgrad zu erreichen, muss der Abstand zwischen dem Prisma und dem Faserkern in der Größenordnung der Lichtwellenlänge liegen. Allerdings können mit herkömmlichen hochpräzisen Lagerungen diese Genauigkeiten nur bei kleinen Abmessungen der ganzen Anordnung erreicht werden. So ist dieses System derzeit beispielsweise in Computertomografen mit einem Durchmesser von 1,5 Metern und Umfangsgeschwindigkeiten bis zu 20 m/s nicht einsetzbar.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine relativ kostengünstige Vorrichtung zur Übertragung optischer Signale zwischen zwei gegeneinander drehbaren Einheiten derart zu gestalten, dass eine zuverlässige Übertragung mit niedriger optischer Dämpfung bei großen Durchmessern, hohen mechanischen Bewegungsgeschwindigkeiten und
hohen Datenraten ermöglicht wird. Weiterhin ist die Aufgabe einer besonderen Ausgestaltung der Erfindung, die Vorrichtung derart zu gestalten, dass auch Signale zu übertragen sind, deren Periodendauern klein gegen- über der Ausbreitungsdauer des Lichtes um den Umfang der Vorrichtung sind.
Eine erfindungsgemäße Lösung dieser Aufgabe ist in den unabhängigen Patentansprüchen angegeben. Weiterbildun- gen der Erfindung sind Gegenstand der abhängigen Ansprüche .
Die erfindungsgemäße Vorrichtung umfasst einen Lichtleiter, welcher entlang einer vorgegebenen Bahn, vor- zugsweis.e einer Kreisbahn an einer ersten Einheit angeordnet ist. Der Einfachheit halber wird hier nur ein Lichtleiter beschrieben. Selbstverständlich können auch mehrere erfindungsgemäße Anordnungen mit jeweils einem Lichtleiter parallel geschaltet werden. Mit dem Licht- leiter verbunden ist wenigstens ein erster Lichtkoppler zu Einkopplung bzw. Auskopplung von Licht in den Lichtleiter. Mit wenigstens einem dieser ersten Lichtkoppler verbunden ist wenigstens ein optischer Sender oder Empfänger. Ob ein Sender oder Empfänger mit dem Lichtlei- ter verbunden werden soll wird durch die gewünschte Ü- bertragungεrichtung bestimmt. Soll Licht vom Lichtleiter weg übertragen werden, so ist ein Sender, im anderen Falle ein Empfänger vorzusehen. Zur Informationsübertragung sind die optischen Sender selbstverständ- lieh mit einem Mσdulationssignal modulierbar.
Weiterhin ist eine zweite Einheit vorgesehen, welche gegenüber der ersten Einheit drehbar gelagert ist. Es wird hier von einer relativen Bewegung der beiden Einheiten gegeneinander ausgegangen und nicht auf drehende bzw. feststehende Einheiten Bezug genommen, da dies ausschließlich eine Frage des Ortsbezugs ist. Dieser zweiten Einheit ist wenigstens ein zweiter Lichtkoppler zugeordnet, der sich mit der Drehung der zweiten Einheit gegenüber der ersten in einer vorgegebenen Bahn bezüglich des Lichtleiters bewegt. Wenigstens einer dieser zweiten Lichtkoppler ist komplementär zum ersten Lichtkoppler wahlweise mit einem optischen Sender oder Empfänger ausgerüstet.
Die Erfindung sieht vor, dass wenigstens ein -zweiter
Lichtkoppler auf einem Koppelschlitten zur Führung des Lichtkopplers angeordnet ist. Der Koppelschlitten ist kurz gegenüber der vorgegebenen Bahn, d. h. beispielsweise dem Umfang einer Kreisbahn. Somit umfasst der Koppelschlitten in diesem Fall nur ein kurzes Kreissegment oder ein kurzes gerades Stück. Im Gegensatz hierzu sind entsprechend dem Stand der Technik die Lichtkoppler auf der zweiten Einheit selbst angeordnet. Die erfindungsgemäße Koppelschlitten ist mit der zweiten Ein- heit selbst nur lose mittels einer Mitnehmereinheit verbunden. Um den Koppelschlitten und somit auch den mit diesem verbundenen Lichtkoppler exakt entlang des Lichtleiters zu führen ist eine Führung, welche nahe an dem Lichtleiter, vorzugsweise in unmittelbarer Nähe des Lichtleiters angeordnet ist, vorgesehen. Der Koppelschlitten wird also durch die Führung in einer definierten Position in Bezug auf den Lichtleiter gehalten.
Die Bewegung längs des Lichtleiters erfolgt über die Mitnehmereinheit durch die zweite Einheit. Ein wesentlicher Vorteil dieser Ausgestaltung ist eine starke Verringerung der Kosten, da nun nur noch der Koppel- schütten selbst mit hoher Genauigkeit gefertigt werden muss. Für die Fertigung und mechanische Lagerung der gesamten zweiten Einheit sind wesentlich höhere Toleranzen zulässig. Durch die Mitnehmereinheit erfolgt nur eine lose mechanische Kopplung zwischen dem Koppel- schütten und der zweiten Einheit. Diese lose Kopplung ermöglicht zumindest einen geringfügigen Freiheitsgrad (Spiel) in wenigstens einer Achse. Dadurch wird die Positionsgenauigkeit des Koppelschlittens nicht durch die zweite Einheit beeinträchtigt.
Durch diese besonders kurze bzw. kleine Bauformen des KoppelSchlittens ist die Erfindung auch bei Kreissegmenten sowie bei Bahnen beliebigen Durchmessers und selbstverständlich auch bei geraden Bahnen anwendbar.
Eine andere Art der Erfindung sieht Mittel zur hydrostatischen, hydrodynamischen bzw. aerostatischen, aerodynamischen Lagerung eines Koppelschlittens vor. Nachfolgend wird - obwohl auf unterschiedlichen Medien ba- sierend - nicht mehr zwischen hydrostatisch und aero- statisch sowie hydrodynamisch und aerodynamisch unter- schiden. Hierbei wird wenigstens ein Koppelschlitten mittels eines hydrostatischen oder hydrodynamischen Lagers gegenüber dem Lichtleiter in einer oder zwei Ach- sen positioniert.
Ein solches hydrostatischen oder hydrodynamisches Lager basiert auf einem dünnen Gasfilm oder Flüssigkeitsfilm, bevorzugt einem Luftfilm zwischen zwei planen Flächen. Der Film weist eine hohe Steifigkeit auf, so dass große Kraftänderungen zu nur geringfügigen Abs andsänderungen führen.
Im Falle eines Gasfilmes wird vorzugsweise ein inertes Gas wie beispielsweise Stickstoff oder bevorzugt ein Edelgas eingesetzt. Das filmbildende Material bzw. das Gas ist 'vorzugsweise transparent bzw. nicht absorbierend bei der zur optischen Übertragung verwendeten Wellenlänge. Damit verursacht ein Eindringen des Mediums in den Lichtleiter keine Übertragungsstörung. Ebenso kann das Medium gezielt in den Lichtleiter geleitet werden, beispielsweise um diesen von externen Verschmutzungen freizuhalten oder zu reinigen.
Weitere geeignete Medien sind auch Flüssigkeiten, die bei der Betriebstemperatur der Vorrichtung in einen gasförmigen Zustand übergeben. Hiermit ist gerade unter schwierigen Bedingungen gleichzeitig eine Kühlung des Systems möglich.
Bevorzugt erfolgt im Falle eines hydrostatischen Lagers die Speisung des Lagers mittels einer kleinen Pumpe o- der eines Druckgasbehälters. Das Medium wird hier zwischen die beiden planen Lagerflächen gedrückt. Da bei derartige Lagern auf Grund des geringen Abstands und der hohen Oberflächengüte der Lagerflächen nur geringste Gas- bzw. Luftmengen verbraucht werden, kann eine solche Speisung mit kostengünstigen Mitteln erfolgen.
Alternativ hierzu kann im Falle eines Hydrodynamischen Lagers die Speisung mittels des durch die Bewegung der beiden Einheiten zueinander verursachten Luftstroms er- folgen. In diesem Falle erfolgt die Lagerung durch die Strömung (hydrodynamisches Paradoxon, Bernoulli- Effekt) . Hierzu sind vorzugsweise Mittel zur Leitung des durch die Bewegung entstehenden Luftstroms zwischen die Lagerflächen vorgesehen. Im einfachsten Falle be- stehen die Luftführungselemente aus einem einfachen Luftleitblech, welches einen Teil der Luftströmungen entsprechend umlenkt. Ebenso sind auch komplexere Ausgestaltungen denkbar, welche beispielsweise zusätzliche Filter enthalten, um den Luftstrom von größeren bzw. kleinen, aber störenden Partikeln zu befreien. Wahlweise können auch Anordnungen gewählt werden, welche beispielsweise für eine weitgehend von der Bewegungsge- schwindigkeit unabhängige Luftgeschwindigkeit sorgen. So kann die Unabhängigkeit der Luftströmungsgeschwin- digkeit bei zunehmender Bewegungsgeschwindigkeit durch ein Element, welches für zunehmende Verwirbelung der Luft sorgt, erreicht werden. Ein solches Lager muss selbstverständlich für den Fall niedriger Geschwindigkeiten Notlaufeigenschaften aufweisen. Diese können beispielsweise durch zusätzliche Kombination mit einer hydrostatischen Ausgestaltung erreicht werden.
In einer anderen Ausgestaltung der Erfindung wird das hydrostatische Lager mittels einer oszillierenden Luft- Strömung versorgt. Eine normalerweise für solche Lager verwendete kontinuierliche Luftströmung wird meist durch Kolbenpumpen erzeugt. Um aus der pulsierenden Be-
wegung einen kontinuierliche Luftstrom zu erzeugen, sind in diesen Pumpen Ventile notwendig. Diese Ventile erhöhen die Herstellungskosten und sind wartungsanfällig. Eine einfache Kolbenpumpe ohne Ventile erzeugt ei- nen oszillierenden Luftstrom, wobei jeweils bei einem Teil der Bewegung Luft angesaugt und bei einem anderen Teil der Bewegung Luft ausgeblasen wird, so dass im zeitlichen Mittel die geförderte Luftmenge gleich Null ist. Für die hydrostatische Lagerung spielt die Rich- tung des Luftstroms keine Rolle. So bleibt die Wirkung der Lagerung bei beiden Strömungsrichtungen erhalten. Die kurzen Zeitintervalle, an denen sich der Kolben der Pumpe am oberen bzw. unteren Totpunkt befindet und daher auch kein Luftstrom vorhanden ist, führen auf Grund der Massenträgheit des Koppelschlittens noch zu keinem Zusammenbruch der Lagerung. Durch diese Ausgestaltung ergibt sich eine besonders kostengünstige Lösung.
In einer weiteren vorteilhaften Ausgestaltung der Er- findung ist ein Koppelschlitten wahlweise mittels Kugellagern oder Gleitlagern gelagert. Diese Lager können auch mit hydrostatischen oder hydrodynamischen Lagern kombiniert werden, beispielsweise um bessere Notlaufei- genschaften zu erreichen.
Eine weitere vorteilhafte Ausgestaltung der Erfindung weist eine aktive Lageregelungseinheit auf. Diese Lageregelungseinheit umfasst einen Aktuator zur exakten Positionierung des Lichtkopplers sowie einen Sensor zur Ermittlung der Position des Lichtkopplers in bezug auf den Lichtleiter und eine Steuereinheit zur Auswertung der Sensorsignale und der entsprechenden Ansteuerung
des Aktuators . Die Lageregelung des Lichtkopplers erfolgt in wenigstens einer Achse, bevorzugt aber in zwei Achsen senkrecht zur Tangente der Drehbewegung. Damit wird wahlweise die Höhe des Lichtkopplers über dem Lichtleiter bzw. der seitliche Abstand zwischen Lichtkoppler und Lichtleiter auf einem konstanten Wert gehalten. Durch diese Lageregelung wird es erstmals möglich, Licht unter extrem flachen Winkeln, d. h. nahezu parallel zur Tangente des Lichtleiters einzukop- peln um eine quasi parallele Ausbreitung des Lichts zum Spiegelgraben in dem so genannten „whispering gal'lery mode" zu ermöglichen. Optional kann die Lageregelung auch eine Rotations- bzw. eine Kippachse umfassen. So hat insbesondere eine zur Tangente des Lichtleiters pa- rallele Ausrichtung des eingekoppelten Lichtstrahls einen extrem großen Einfluss auf die Koppeldämpfung. Bereits bei geringsten Abweichungen von der Parallelität der Achsen vom Lichtleiter und Lichtkoppler kann es zu einer Unterbrechung des Signals kommen, wenn der Licht- koppler keine Mittel zur seitlichen Reflexion aufweist. In einem solchen Fall ist eine Regelung der Parallelität besonders vorteilhaft. Eine solche Lageregelung ist gerade bei großen Durchmessern der beiden gegeneinander drehbaren Einheiten, wie sie beispielsweise bei Compu- tertomografen realisiert werden, notwendig, um mechanische Fertigungstoleranzen sowie Toleranzen aufgrund der mechanischen Bewegung auszugleichen. Durch diese Lageregelung kann eine weitgehend konstante Streckendämpfung erreicht werden. Alternativ hierzu bzw. zusätzlich hierzu kann noch eine Regelung auf eine konstante Empfangssignalamplitude vorgesehen werden. So könnte beispielsweise mit einem ersten Regelkreis eine seitliche
Positionierung auf die Mitte des Lichtleiters erfolgen. Ein zweiter Regelkreis würde dann die Höhenpositionierung entsprechend der Empfangssignalamplitude vornehmen, wobei eine zusätzliche Sicherheitsüberwachung eine Kollision zwischen Lichtkoppler und Lichtleiter vermeidet. Zur Positionsermittlung kann auch eine Referenzspur vorgesehen sein, welche von dem Sensor abgetastet wird.
An Stelle eines elektrischen Aktuators , wie beispielsweise eines magnetischen oder piezoelektrischen Aktuators sind auch andere Aktuatoren, beispielsweise pneumatische oder hydraulische Aktuatoren denkbar. Ebenso können Sensoren beziehungsweise Elemente des Regelkrei- ses neben einer elektrischen Ausgestaltung auch pneumatisch oder hydraulisch ausgestaltet sein. Wahlweise kann der Aktuator gleichzeitig als elektromagnetische Aufhängung eines zweiten Lichtkopplers ausgebildet sein.
Besonders günstig ist die Kombination einer hydrodynamischen bzw. hydrostatischen Lagerung in Verbindung mit einer aktiven Lageregelung. Diese können beispielsweise in der gleichen Achse für eine besonders präzise Aus- richtung oder auch in ergänzender Weise in unterschiedlichen Achsen eingesetzt werden. So kann beispielsweise auch die Lageregelung durch Steuerung von Luftstrom bzw. Luftdruck einer hydrodynamischen bzw. hydrostatischen Lagerung erfolgen. Durch diese Kombination erhält man einerseits ein mechanisch robustes System, welches durch eine zusätzliche überlagerte Regelung hochpräzise Eigenschaften erhält. Dadurch können insbesondere auch
Toleranzen in dem Abstand der Luftlagerung aufgrund von Temperatur- und Feuchtigkeitsschwankungen der Luft sowie Schwankungen der Geschwindigkeit ausgeglichen werden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Sensor wahlweise als optischer, kapazitiver oder induktiver Sensor ausgeführt. Hierbei ist der Sensor vorzugsweise als Differentialsensor, welcher die Differenz zweier Signale auswertet, ausgebildet. Im Falle eines optischen Sensors kann dieser beispielsweise zur Messung der Größe eines Abbildes einer Lichtquelle, welches im Fokus, der dem optimalen Abstand entspricht, eine minimale Größe aufweist, ausgelegt sein. Derartige Verfahren werden beispielsweise zur Fokussierung in CD-Spielern eingesetzt.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht einen Lichtleiter vor, welcher in wenigstens zwei Segmente unterteilt ist, wobei Mittel zur optischen I- solation der Segmente untereinander vorgesehen sind. Eine optische Isolation kann beispielsweise durch absorbierende Materialien zwischen den Segmenten, durch Lichtablenkung zwischen den Segmenten, wie beispiels- weise mittels Spiegeln, Gittern oder streuenden Materialien oder aber auch durch eine Richtungstrennung der optischen Signale erfolgen.
Zusätzlich sind die Längen der Segmente sowie die Aus- breitungsrichtungen des Lichts in den Segmenten derart dimensioniert, dass an den Grenzen zwischen zwei beliebigen Segmenten, in denen das gleiche Signal übertragen
wird, das Modulationssignal in Laufzeit beziehungsweise Phase nur geringfügige Unterschiede aufweist. Diese Unterschiede sollen klein gegenüber einer Periodendauer des Modulationssignals sein. Somit weist auch die ge- samte Signallaufzeit des Signals vom optischen Sender zum optischen Empfänger an den Grenzen der Segmente nur geringfügige Unterschiede auf. Dies ist notwendig, um eine breitbandige Signalübertragung zu gewährleisten. Damit eine störungsfreie Übertragung über den gesamten Drehbereich von 360 Grad möglich ist, müssen die oben genannten Voraussetzungen für sämtliche Verbindungsstellen zwischen jeweils zwei benachbarten Segmenten zutreffen.
Selbstverständlich können mit einer erfindungsgemäßen Vorrichtung auch mehrere Signale gleichzeitig übertragen werden. Es muss nur die zuvor genannte Bedingung für jedes dieser Signale selbst erfüllt sein. Die Beziehung zwischen unterschiedlichen Signalen kann belie- big sein.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind Gruppen aus jeweils zwei benachbarten Lichtleitern vorgesehen, welche gleich lang sind und eine entgegengesetzte Ausbreitungsrichtung des Lichts aufweisen. Im einfachsten Falle weist die ganze Anordnung, wie oben beschrieben, nur eine einzige solche Gruppe auf. Ebenso können aber mehrere solcher Gruppen entlang des Bahnverlaufs bzw. des Kreisumfangs angeord- net werden. Diese können auch jeweils unterschiedliche Segmentlängen aufweisen, solange beide Segmente einer Gruppe die gleiche Länge besitzen. So können beispiels-
weise aus konstruktiven Gründen zur Vereinfachung der Befestigung unterschiedliche Segmentlängen vorgesehen sein. Die Unterteilung in mehrere Segmente bietet auch den Vorteil, dass in jedem Segment unabhängig von den benachbarten Segmenten Daten übertragen werden können. Dies bedeutet, dass eine entsprechend höhere gesamte Datenrate realisierbar ist. Wird beispielsweise eine Anordnung von vier Gruppen über die ganze Bahnlänge bzw. den Kreisumfang vorgesehen, so lässt sich durch gleichzeitige Übertragung von vier Signalen die gesamte Datenrate vervielfachen.
Vorteilhafterweise ist hierzu der Lichtleiter in eine gerade Anzahl von Segmenten unterteilt. Durch die gera- de Anzahl von Segmenten lässt sich die Anordnung aufgrund der Symmetrie besonders einfach realisieren. Eine besonders kostengünstige Ausgestaltung ergibt sich mit zwei Segmenten. Um mit zwei Segmenten eine konstante Laufzeit an den Segmentgrenzen zu erreichen, müssen diese eine gleiche Länge sowie entgegengesetzte Ausbreitungsrichtungen des Lichts aufweisen. Im Falle von zwei Segmenten ist ein Mittel zur optischen Isolation an einer Position 180 Grad gegenüber der Einkoppelstelle angeordnet. Dies bedeutet im Falle der Lichteinkopp- lung in die erste Einheit einen um 180 Grad um die
Drehachse der beiden Einheiten versetzt angeordneten Absorber. Bei einer Lichteinkopplung in die zweite Einheit (und Übertragung von dort in die erste Einheit) wird ein mit der Drehbewegung der zweiten Einheit ge- genüber dem Spiegelgraben nachgeführtes Mittel zur optischen Isolation eingesetzt. Auch dieses Mittel zur optischen Isolation kann beispielsweise durch eine La-
geregelung oder hydrostatische bzw. hydrodynamische Lagerung, wie diese für den Koppelschlitten beschrieben ist, in einer Sollposition gehalten werden.
In einer anderen vorteilhaften Ausgestaltung der Erfindung ist höchstens ein Mittel zur optischen Isolation absorbierend oder diffus streuend bzw. zur Ausleitung des Lichtes aus dem Lichtleiter ausgebildet. An einer solchen reflexionsarmen Auskoppelstelle kann beispiels- weise ein Überwachungsempfänger zur Überwachung der
Sendesignalamplitude angebracht werden. Bevorzugt ist diese als dünne. Folie ausgestaltet.
In einer weiteren vorteilhaften Ausgestaltung der Er- findung ist wenigstens ein Mittel zur optischen Isola- • tion wellenlängenselektiv ausgebildet. Dadurch lässt sich eine optische Isolation nur für bestimmte Wellenlängen erreichen. Dies ermöglicht beispielsweise die gleichzeitige Übertragung mehrere Kanäle mit unter- schiedlichen Wellenlängen.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist wenigstens ein zweiter Lichtkoppler vorgesehen, welcher eine lichtleitende Faser umfasst. Das Ende dieser Faser weist eine Fläche auf, welche zur seitlichen Ablenkung des in der lichtleitenden Faser geführten Lichtes dient. Durch Ablenkung an dieser Fläche kann das Licht nun in einen Winkel abgelenkt werden, in dem es weiter in dem Lichtleiter geführt werden kann. Auf Grund der Reziprozität des optischen Systems ist selbstverständlich mit dieser Ausgestaltung auch eine Einkopplung von in dem Lichtleiter geführten Licht
in die optischen Faser möglich. Zur weiteren Optimierung kann die Faser wahlweise an die Kontur des Lichtleiters angepasst werden. Dadurch kann eine Lichteinkopplung auf einer möglichst großen Fläche des Lichtleiters erfolgen. Zur Lichtablenkung kann die Fläche zur Ablenkung durch Totalreflexion auf Grund unterschiedlicher Brechungsindizes ausgestaltet sein, ebenso kann sie aber auch verspiegelt sein oder ein Beugungsgitter enthalten.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass die lichtleitende Faser näherungs- . weise senkrecht zur Tangente des Lichtleiters angeordnet ist. Weiterhin verläuft der Reflexionswinkel des austretenden Lichts .vorteilhafterweise nahezu tangenti- al zum Lichtleiter.
Weiterhin kann die lichtleitende Faser gleichzeitig als optischer Sensor eingesetzt werden. Hierzu sind vor- zugsweise weitere Flächen zur Ablenkung der Sensorsignale in Richtung der Kontur des Lichtleiters vorgesehen. Durch diese Integration kann die Anzahl der benötigten Komponenten reduziert werden. Weiterhin wird die mechanische Justage vereinfacht, da die aufwändige prä- zise Justierung zweier Komponenten zueinander entfällt.
In einer anderen Ausgestaltung ist wenigstens eine weitere Fläche derart ausgestaltet, dass mit dieser Sensorsignale wellenlängenselektiv abgelenkt bzw. gefil- tert werden können. Durch diese Selektivität der Wellenlängen kann auf einfache Weise eine Selektion der verschiedenen Richtungen erreicht werden. Ebenso kann
auch eine Selektion durch Polarisierung erreicht werden. Somit kann auch ein mehrachsiger Sensor realisiert werden. Ein solcher Sensor kann unabhängig von der erfindungsgemäßen Vorrichtung nach Anspruch 1 grundsätz- lieh zur Messung an allen insbesondere absorbierenden bzw. reflektierenden Oberflächen eingesetzt werden.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass wenigstens ein zweiter Lichtkoppler zur Verkopplung evaneszenter Felder vorgesehen ist. Durch die Verkopplung evaneszenter Felder ist eine berührungslose Ein- bzw. Auskopplung in den Lichtleiter auf kurze Distanzen möglich.
Einen zweiter Lichtkoppler zur Verkopplung evaneszenter Felder wird bevorzugt als Prisma ausgebildet. Ein solches Prisma kann dann zur Verkopplung bevorzugt im Abstand der Größenordnung einer halben Wellenlänge, also einigen Mikrometern bzw. Nanometern über dem Lichtlei- ter geführt werden.
In einer anderen Ausgestaltung der Erfindung weist der Lichtleiter wenigstens eine Grenzfläche mit vorzugsweise reflektierenden Eigenschaften auf. Durch Reflexion an wenigstens einer solchen Grenzfläche ist eine gezielte Führung des Lichts entlang der vorzugsweise kreisförmigen Kontur des Lichtleiters möglich.
Einer anderen Ausgestaltung der Erfindung weist der Lichtleiter wenigstens ein Material mit einer spiegelnden Oberfläche auf. So kann er beispielsweise als Graben in einem metallischen Träger mit spiegelnd bearbei-
teter Oberfläche ausgestaltet sein. Eine Bearbeitung, mit der man eine spiegelnde Oberfläche erhält, kann beispielsweise mit Diamantwerkzeugen erfolgen.
In einer weiteren Ausgestaltung der Erfindung umfasst der Lichtleiter wenigstens ein Material mit einer verspiegelten Oberfläche. Somit wird also eine zusätzliche Schicht mit spiegelnden Eigenschaften auf den Lichtleiter aufgebracht. Derartige Schichten können beispiels- weise galvanisch oder durch Bedampfung im Vakuum aufgebracht werden. Besonders gut geeignet als Be- schichtungsmaterial ist Gold, da dies bei einer Wellenlänge von 1,3 Mikrometer, für welche kostengünstige optische Komponenten auf dem Markt sind, einen sehr hohen Reflexionsgrad bietet. Weiterhin kann dadurch ein äußerst korrosionsbeständiger Überzug der Oberfläche erreicht werden.
In einer verbesserten Ausgestaltung der Erfindung ist die verspiegelte Oberfläche wahlweise mittels einer reflektierenden oder reflektierend beschichteten Folie realisiert. Derartige Folien sind kostengünstig herstellbar und auf einfache Art und Weise auf beliebige Träger, beispielsweise aus Kunststoff oder Metall auf- bringbar. Alternativ hierzu kann wahlweise zur Verspie- gelung der Oberfläche eine spiegelnde Schicht galvanisch oder durch Vakuumbeschichtung aufgebracht sein. Mit derartigen Schichten lassen sich besonders hohe Reflexionsgrade erreichen.
Eine weitere vorteilhafte Ausgestaltung der Erfindung zeichnet sich dadurch aus, dass die Oberfläche ein in-
terferenzfähiges Mehrschichtsystem aufweist. Dadurch lässt sich vorteilhaf erweise eine gezielte wellenlängenabhängige Reflexion erreichen. So lässt sich hiermit ein erfindungsgemäßer Lichtleiter derart ausgestalten, dass er bevorzugt die zur Signalübertragung verwendeten Wellenlängen, aber kein Streulicht aus der Umgebung ü~ berträgt . Hier lässt sich insbesondere in offenen Lichtleitern eine besonders hohe Fremdlichtunterdrückung erreichen. Weiterhin kann im Falle der Übertra- gung mehrerer Kanäle mit unterschiedlichen Wellenlängen eine gezielte wellenlängenabhängige Reflexion erreicht werden.
Eine andere Ausgestaltung der Erfindung sieht vor, dass die Oberfläche eine Schutzschicht aufweist. Eine solche Schutzschicht kann beispielsweise eine Verschmutzung oder auch eine chemische Veränderung, wie Oxidation verhindern oder zumindest verlangsamen. Diese Schutzschicht ist vorteilhafterweise derart ausgebildet, dass sie die reflektierenden Eigenschaften der darunter liegenden reflektierenden Schichten möglichst wenig beeinträchtigt, sowie für das zu übertragende Licht eine möglichst geringe Dämpfung darstellt.
Eine weitere Ausgestaltung der Erfindung sieht einen
Lichtleiter vor, der aus einer Faser mit einer verspiegelten Oberflächenbeschichtung besteht. Eine solche Faser, die auf der Außenseite zum Beispiel mit Gold oder einer interferenzfähigen Mehrlagenbeschichtung versehen ist, wird nachträglich in einen vorgefertigten Graben oder einen anderen Träger aufgebracht bzw. aufgeklebt. Damit werden die Reflexionseigenschaften nicht mehr
durch die Grabenoberfläche, sondern durch die extrem glatte Oberfläche der Faser bestimmt. Hierdurch können die Fertigungskosten wesentlich reduziert werden, da Fasern kostengünstig herstellbar sind und gleichzeitig der Aufwand der spanenden Bearbeitung der meist großen ersten Einheit reduziert wird.
In anderen Ausgestaltung der Erfindung umfasst der Lichtleiter eine an der Außenseite oder Innenseite spiegelnd beschichtete Röhre. Eine solche Röhre kann ebenso wie die zuvor beschriebene Faser eingesetzt werden und bietet die selben Vorteile.
Eine weitere vorteilhafte Ausgestaltung der Erfindung weist einen Lichtleiter mit Sammeleigenschaften in mindestens eine Ebene auf. Dadurch kann eine Aufweitung des Lichtstrahls reduziert bzw. der Lichtstrahl weiter gebündelt werden.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Lichtleiter wenigstens einseitig eine Grenzfläche gegen Luft aufweist, in der eine Welle ähnlich einer Filmwelle oder Oberflächenwelle führbar ist. Eine solche Welle breitet sich in der Grenzschicht des Lichtleiters zum umgebenden Medium aus und kann durch einen Koppler von außen ein- bzw. ausgekoppelt werden. Vorteilhafterweise wird zu Kopplung ein Prisma eingesetzt .
In einer anderen Ausgestaltung der Erfindung ist ein optisches Gitter zu Lichtauskopplung am Lichtleiter angebracht. Derartige optische Gitter sind besonders ein-
fach und platzsparend integrierbar. Mit einem solchen Gitter ist auch gleichzeitig eine Isolation zwischen den verschiedenen Segmenten realisierbar, wenn es beispielsweise das Licht an den Grenzen aus dem Lichtlei- ter herausleitet. Weiterhin können diese Gitter wellenlängenselektiv ausgestaltet sein, so dass unterschiedliche Wellenlängen an unterschiedlichen Orten ausgekoppelt werden können. Damit lässt sich auf geringstem Raum eine mehrkanalige Signalübertragung im Wellenlängenmultiplex realisieren.
Eine andere Ausgestaltung der Erfindung sieht eine Fresnelstruktur zur Lichtauskopplung am Lichtleiter vor. Derartige Strukturen sind in modernen Formtechni- ken besonders kostengünstig' realisierbar .
In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind wahlweise optischer Sender bzw. optischer Empfänger gleichzeitig als Lichtkoppler ausgebildet. So kann beispielsweise zum optischen Empfang an Stelle eines Lichtkopplers mit nachgeschaltetem optischen Empfänger direkt eine Fotodiode wahlweise in die erste o- der zweite Einheit integriert werden. Damit kombiniert sie die funktionellen Merkmale von optischem Empfänger und Lichtkoppler. Ebenso kann beispielsweise eine Laserdiode oder LED zur LichtausSendung wahlweise in die erste oder zweite Einheit integriert werden. Damit vereint diese die funktioneilen Merkmale von Lichtkoppler und optischem Sender.
Eine andere vorteilhafte Ausführungsform sieht einen Lichtleiter vor, welcher in Ausbreitungsrichtung des
Lichtes als Freiform gestaltet ist. Damit ist die Form des Lichtleiters derart anzupassen, dass sich eine optimale Übertragung mit minimaler Dämpfung und minimaler Dispersion ergibt. Vorzugsweise mit der Lichtleiter als Polygon oder als Kreis ausgebildet.
Vorzugsweise kann im Falle einer polygonförmigen Ausbildung des Lichtleiters dieser aus mehreren gleichen oder unterschiedlichen Segmenten bestehen, welche wahl- weise fokussierende oder strahlformende Eigenschaften aufweisen. Damit kann die Strahlbündelung entlang des Lichtleiters aufrecht erhalten oder sogar verbessert werden. .
Weiterhin kann die Zuführung beziehungsweise Einkopp- lung optischer Signale der ersten Einheit in den Lichtleiter mittels einer lichtleitenden Faser erfolgen.
In einer weiteren vorteilhaften Ausgestaltung der Er- findung ist zur Einkopplung optischer Signale der ersten Einheit in den Lichtleiter wenigstens eine Freiformlinse zu optimalen Strahlfokussierung vorgesehen. Diese Linse fokussiert das Licht, welches in den Lichtleiter eingekoppelt wird, derart, dass es mit geringer Dämpfung und geringer Dispersion im Lichtleiter übertragen wird. Als besonders einfache Ausführung einer Freiformlinse kann auch eine Kugellinse beziehungsweise Zylinderlinse eingesetzt werden. Eine Linse kann als diskrete Komponente eingesetzt werden oder auch an eine lichtleitende Faser angeformt sein.
Eine weitere vorteilhafte Ausgestaltung der Erfindung weist zur Einkopplung optischer Signale der ersten Einheit in den Lichtleiter wenigstens eine Umlenkeinheit auf. Durch die Strahlungslenkung der Umlenkeinheit muss die Strahlrichtung des einzukoppelnden Lichtes nicht mehr tangential zum Lichtleiter verlaufen. Durch eine Abwinkelung kann die Baugröße erheblich reduziert werden. Die Ablenkung erfolgt vorzugsweise mittels eines Spiegels, eines Prismas oder eines entsprechend ausge- formten Endes einer lichtleitenden Faser.
Eine weitere vorteilhafte Ausgestaltung der Erfindung ist zur gleichzeitigen Übertragung mehrerer Kanäle einsetzbar, indem zur Übertragung unterschiedliche opti- sehe Wellenlängen vorgesehen sind. Durch wellenlängenselektive Aussendung der Signale und wellenlängenselektiven Empfang der Signale können diese eindeutig voneinander getrennt werden.
Eine besonders vorteilhafte Ausgestaltung zur wellenlängenselektiven Übertragung mehrerer 'Kanäle ergibt sich, wenn insbesondere mehrere erste Lichtkoppler an unterschiedlichen Positionen des Lichtleiters angeordnet sind. Vorteilhafterweise sind dann die Mittel zur Isolation an entsprechenden Positionen wellenlängenabhängig vorzusehen. Ebenso sind vorteilhafterweise die zweiten Lichtkoppler entsprechend an unterschiedlichen Positionen der zweiten Einheit angeordnet. Diese Anordnung an unterschiedlichen Positionen vereinfacht die mechanische Anbringung von Lichtkopplern und reduziert den Aufwand an optischen Komponenten.
Weiterhin ist vorteilhafterweise mindestens ein Mittel zur optischen Isolation wellenlängenselektiv ausgebildet. '
Vorzugsweise sind mehrere Mittel zur optischen Isolation wellenlängenselektiv ausgebildet und an beiden Orten entsprechend den Segmentgrenzen für die jeweilige Wellenlänge angeordnet. Diese Ausgestaltung erlaubt beispielsweise wellenlängenabhängig unterschiedliche Seg- mentierungen bzw. unterschiedliche Anordnungen der Segmentgrenzen, wie sie bei Anordnung der Lichtkoppler an unterschiedlichen Positionen notwendig ist.
Eine andere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass polarisiertes Licht im Lichtleiter ü- bertragen wird. Messungen haben gezeigt, dass viele Lichtleiter Licht mit einer bestimmten Polarisation mit besonders niedriger Dämpfung übertragen. Besonders vorteilhaft ist beispielsweise eine Übertragung von Licht mit einer Polarisation senkrecht zur Einfallsebene, beispielsweise zu einer Metalloberfläche, wie diese beispielsweise bei einem verspiegelten Graben als Lichtleiter eingesetzt wird. Bevorzugt wird das polarisierte Licht mittels einer polarisierten Lichtquelle (14) erzeugt. Ebenso können in dem optischen Pfad aber auch Polarisationsfilter vorgesehen werden. Diese können beispielsweise in einen Lichtkoppler integriert sein. Weiterhin kann die Polarisation positionsabhängig angepasst werden um die Abhängigkeit der Dämpfung von der Position zu kompensieren.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist wenigstens ein polarisationsempfindlicher Empfänger vorgesehen. Wahlweise kann einem Empfänger ein Polarisationsfilter vorgeschaltet werden. Wird zur Signalaussendung eine unpolarisierte Lichtquelle verwendet, so breitet sich das Licht abhängig von der Polarisation mit unterschiedlichen Dämpfungen und oftmals auch mit unterschiedlichen Laufzeiten aus. Durch einen Polarisationsselektiven Empfänger kann nun eine be- stimmte Polarisation mit einer definierten Laufzeit bzw. einer definierten Dämpfung ausgewählt werden. Hierdurch ergibt sich eine weitgehend positionsunabhängige Amplitude sowie die geringste Signalverzerrung.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass mehrere optische Sender (14) zur Aus- sendung von polarisiertem' Licht vorgesehen sind und gleichzeitig mehrere Polarisationsselektive optische Empfänger (15) zum Empfang von polarisiertem Licht vor- gesehen sind. Dabei werden mehrere Gruppen aus optischen Sendern und Empfängern gebildet wird, welche jeweils in der Polarisation derart aufeinander abgestimmt sind, dass eine Signalübertragung innerhalb der Gruppe stattfindet, aber keine Signale zu Empfängern von ande- ren Gruppen übertragen werden. Dadurch lässt sich über unterschiedliche Polarisationen eine Vielzahl von Kanälen gleichzeitig übertragen.
In einer anderen Ausgestaltung der Erfindung erfolgt die Signalübertragung mittels einer Modulation der Polarisation. Hierzu ist wenigstens ein optischer Sender (14) vorgesehen, welcher vorzugsweise polarisiertes
Licht aussendet. Weiterhin ist wenigstens ein Mittel zur Modulation der Polarisation des Senders wahlweise im Sender selbst oder im optischen Pfad zwischen Sender und Empfänger vorgesehen. Zur Auswertung der Polarisa- tionsmodulation ist ein optischer Empfänger vorgesehen, welcher Mittel aufweist, um eine Polarisationsänderung in eine Amplitudemodulation umzusetzen. Dies kann beispielsweise ein einfaches Polarisationsfilter sein.
In einer anderen Ausgestaltung ist eine mechanische
Kapselung des Lichtleiters vorgesehen. Diese Kapselung schützt den Lichtleiter vor unerwünschten mechanischen Einflüssen und insbesondere vor Verschmutzung.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht eine Kapselung vor, welche durch ein Labyrinth und/oder eine Spaltdichtung zur Umgebung abgedichtet ist. Der Innenraum weist vorzugsweise gegenüber der Außenseite einen höheren Luftdruck auf. Selbstverständ- lieh kann dieser Innenraum auch mit jedem anderen Gas an Stelle von Luft gefüllt sein. Besonders gut eignet sich hierzu beispielsweise Stickstoff.
In einer anderen Ausgestaltung der Erfindung weist die Kapselung eine Abdichtung zur Umgebung mittels einer anliegende Lippe oder einer Kunststofffolie auf.
Einer anderen Ausgestaltung der Erfindung entsprechend ist ein zusätzlicher elektrostatischer Schirm vorgese- hen. Dieser beeinflusst durch elektrische Felder elektrisch aufladbare beziehungsweise elektrisch geladene Teilchen. Derartige Teilchen können nun vom Lichtleiter
weg abgelenkt werden, so dass sie diesen nicht verschmutzen können. Wird beispielsweise eine erfindungsgemäße Vorrichtung zusammen mit konventionellen Schleifkontakten zur Energieübertragung in ein Gerät integriert, so würde der von den Schleifkohlen stammende Abrieb in kurzer Zeit den Lichtleiter derart verschmutzen, dass dessen Dämpfung unakzeptabel hohe Werte annehmen würde. Durch einen elektrostatischen Schirm kann nun der Kohlestaub von dem Lichtleiter ferngehal- ten werden, so dass sich die Verschmutzung des Lichtleiters wesentlich verringert.
In einer weiteren Ausgestaltung der Erfindung weisen Teile der Kapselung beziehungsweise der Aufnahme des Lichtleiters eine Mikrooberflache auf. Derartige Oberflächen verhindern das Festsetzen von Verunreinigungen, beispielsweise Kohlestaub von benachbarten Schleifbahnen. Durch die Luftströmung, welche wahlweise durch LuftZuführung, wie beispielsweise durch die Versorgung eines hydrostatischen Lagers oder auch durch die Bewegung des Koppelschlittens werden die Verunreinigungen, welche aufgrund der Mikrooberflache nicht fest an dieser haften können, von der Oberfläche weggeblasen.
Beschreibung der Zeichnungen
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungs- beispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben.
Fig. 1 zeigt in allgemeiner Form schematisch eine erfindungsgemäße Vorrichtung.
Fig. 2 zeigt schematisch eine erfindungsgemäße Vorrichtung im Schnitt.
Fig. 3 zeigt eine erfindungsgemäße Vorrichtung mit ei- ne Lichtleiter in Freiform. .
Fig. 4 zeigt schematisch die Übertragung optischer Signale von der ersten Einheit zur zweiten Einheit.
Fig. 5 zeigt schematisch die Übertragung optischer Signale von der zweiten Einheit zur ersten Einheit.
Fig. 6,7 und 8 zeigen einen kapazitiven Positionssensor.
Fig. 9 und 10 zeigen zweite Lichtkoppler, die in einen Aktuator integriert sind.
Fig. 11 zeigt einen optischen Positionssensor.
Fig. 12 zeigt einen zweiten Lichtkoppler mit integriertem optischen Positionssensor.
Fig. 13 zeigt den in Fig. 12 dargestellten zweiten Lichtkoppler zur Veranschaulichung in perspektivischer Ansicht.
Fig. 14 zeigt schematisch die Licht ein- bzw. Auskopplung in den Lichtleiter mittels eines zweiten Lichtkopplers .
Fig. 15 zeigt den schematischen Aufbau der Steuerung und Integration eines zweiten Lichtkopplers mit integriertem optischen Positionssensor.
Fig. 16 zeigt einen Lichtleiter mit reflektierender Be- schic tung .
Fig. 17 zeigt einen Lichtleiter aus einer beschichteten Faser.
Fig. 18 zeigt den prinzipiellen Aufbau eines Gitter- kopplers .
Fig. 19 zeigt eine Signalkopplung mittels einer Fres- nelstruktur .
Fig. 20 zeigt eine Vorrichtung zur Einkopplung einer Oberfläc enwelle .
Fig. 21 zeigt eine Vorrichtung mit integrierter aktiver und passiver Lageregelung.
Fig. 22 zeigt schematisch die Ankopplung an den Lichtleiter mittels eines Prismas.
Fig. 23 zeigt schematisch die Ankopplung an den Licht- leiter mittels lichtleitenden Fasern mit angeschliffenen Enden.
Fig. 24 zeigt die Ankopplung an den Lichtleiter mittels Spiegeln.
Fig. 25 zeigt die Ankopplung an den Lichtleiter mittels lichtleitender Fasern.
Fig. 26 zeigt die Ankopplung an den Lichtleiter mittels Linsen.
Fig. 27 zeigt eine gekapselte Anordnung.
Fig. 28 zeigt eine gekapselte Anordnung mit elektrosta- tischem Schirm.
Fig. 1 zeigt in schematischer Form eine erfindungsgemäße Vorrichtung in der Draufsicht. Eine erste Einheit (1) dient zur Aufnahme eines ringförmigen Lichtleiters (3) . Dieser Lichtleiter ist beispielsweise ein auf der Innenseite verspiegelter Graben. Eine zweite Einheit (2) dreht sich gegenüber der ersten Einheit um die Drehachse (6) . Ein Koppelschlitten (65) ist mit der zweiten Einheit verbunden und trägt einen zweiten Lichtkoppler (5) . Ein Mittel zur optischen Isolation (13) ist symmetrisch in Bezug auf die Einkoppelstelle der ersten Lichtkoppler angeordnet, so dass die Lichtwege (32) auf beiden Seiten gleich lang sind. Es kann sowohl von der ersten Einheit zur zweiten Einheit als auch in umgekehrter Richtung von der zweiten Einheit zur ersten Einheit Licht übertragen werden. Zur Speisung des Lichtleiters sind lichtleitende Fasern (4a, 4b) vorgesehen. Die Führung des Lichts vom Lichtkoppler erfolgt mittels einer lichtleitenden Faser (7).
Fig. 2 zeigt in schematischer Form eine erfindungsgemäße Vorrichtung im Schnitt. Darin sind sowohl die erste Einheit (1) als auch die zweite Einheit (2) als Scheiben mit zentrischer Bohrung, welche um die Drehachse (6) drehbar gelagert sind, dargestellt. Der Koppel- schütten (65) läuft entlang des Lichtleiters (3) und wird durch den Mitnehmer (66) entlang der Bewegung geführt. Der Lichtleiter (3) ist hier beispielhaft als auf der Innenseite verspiegelter Graben dargestellt. Er erstreckt sich um den gesamten Umfang der ersten Ein- heit. Im Eingriff mit diesem Graben ist ein zweiter Lichtkoppler (5), welcher an der zweiten Einheit (2) angeordnet ist. Dieser Lichtkoppler greift das in dem
Lichtleiter geführte Licht ab und leitet es mit einer lichtleitenden Faser (7) weiter. Zur exakten Ausrichtung von Lichtleiter und zweitem Lichtkoppler in einer Achse ist eine Hydrodynamischen Lagerung sowie eine e- lektrodynamische Lageregelung vorgesehen. Die hydrodynamische Lagerung basiert auf einem dünnen Luftfilm, welche sich durch die Bewegung der beiden Einheiten gegeneinander zwischen' der ersten Lagerfläche (21) und der zweiten Lagerfläche (20) ausgebildet wird. Zur Un- terstützung sind beispielsweise zusätzliche Mittel zur Luftführung vorgesehen. Weiterhin hat die Vorrichtung vorteilhafterweise Notlaufeigenschaften, die auch noch eine gewisse Führung .bei niedrigen Geschwindigkeiten ohne ausreichenden Luftfilm gewährleisten, wie sie bei- spielsweise in einer Beschleuniguήgs- oder Bremsphase auftreten. Weiterhin ist zur exakten Positionierung ein Sensor (9) zur Ermittlung des Abstandes zwischen den beiden Einheiten vorgesehen. Dieser Sensor tastet hier den Abstand zu einer Referenzspur (11) ab, welche im vorliegenden Beispiel identisch mit der ersten Lagerfläche (21) ist. Die Ausgangsignale des Sensors werden mittels einer Steuereinheit (10) weiterbearbeitet und dem Aktuator (8) zur exakten Regelung der Lage des zweiten Lichtkopplers zugeführt.
Fig. 3 zeigt in eine erfindungsgemäße Vorrichtung mit einem Lichtleiter in Freiform. Dass von einem ersten Lichtkoppler (4) ausgesendete Licht wird mittels mehrerer Freiformflächen (76) entlang der vorgegebenen Bah- nen bis zum zweiten Lichtkoppler (5) geführt. Die Form' der Flächen kann gleich oder auch unterschiedlich sein. Bevorzugt sind diese Flächen derart ausgebildet, dass
sie den Lichtstrahl (32) derart führen bzw. Formen, so dass dieser mit möglichst geringer Dämpfung geführt werden kann.
In Fig. 4 ist die Übertragung optischer Signale von der ersten Einheit zur zweiten Einheit schematisch dargestellt. Ein optischer Sender (14) erzeugt modulierte optische Signale, welche beispielsweise mittels einer lichtleitenden Faser (7) zur ersten Einheit (1) über- tragen werden. Von dort aus erfolgt die Kopplung zur zweiten Einheit (2), welche die optischen Signale mittels einer weiteren lichtleitenden Faser (7) zum optischen Empfänger (15) zur Auswertung überträgt.
Fig. 5 zeigt analog in umgekehrter Richtung zur vorhergehenden Figur die Übertragung optischer Signale von der zweiten Einheit zur ersten Einheit.
In Fig. 6 ist beispielhaft ein kapazitiver Sensor zur Ermittlung der Position des zweiten Lichtkopplers (5) gegenüber dem Lichtleiter (3) dargestellt. Es sind eine erste kapazitive Sensorfläche (22) sowie eine zweite kapazitive Sensorfläche (23) an dem zweiten Lichtkoppler bzw. an einem mit diesem verbundenen Teil ange- bracht. In dieser Ausgestaltung muss der Lichtleiter bzw. eine unter dem Lichtleiter befindliche Fläche, wie beispielsweise der Träger des Lichtleiters elektrisch leitfähig ausgebildet sein. Zur Ermittlung der Position des zweiten Lichtkopplers in Bezug auf den Lichtleiter werden die Kapazitäten zwischen der ersten kapazitiven Sensorfläche und dem Lichtleiter sowie zwischen der zweiten kapazitiven Sensorfläche und dem Lichtleiter
ermittelt und ausgewertet. Ein derartiger kapazitiver Sensor kann auch unabhängig von Lichtleiter und zweiten Lichtkoppler ausgestaltet sein. Zur Positionsbestimmung in einer Ebene kann er auch nur eine kapazitive Sensor- flache aufweisen. Ebenso kann der bevorzugt in einem U bzw. V-förmig ausgestalteten Graben laufen, der ausschließlich zur Positionsbestimmung dient. Bevorzugt weist dieser Graben zwei senkrecht aufeinander stehende Flächen auf .
Fig. 7 zeigt eine besonders vorteilhafte Ausgestaltung eines kapazitiven Sensors, bei dem eine zusätzliche kapazitive Referenzfläche (24) vorgesehen ist. Da normalerweise der gegenüber dem zweiten Lichtkoppler beweg- liehe Lichtleiter nicht für elektrische Messungen kon- taktierbar ist, kann nun die zusätzliche kapazitive Referenzfläche als Bezug verwendet werden.
Fig. 8 zeigt ein elektrisches Ersatzschaltbild mit den Kapazitäten der ersten kapazitiven Sensorfläche (22), der zweiten kapazitiven Sensorfläche (23) sowie der kapazitiven Referenzfläche (24) zum Lichtleiter (3). Da der Lichtleiter nicht direkt kontaktierbar ist, erfolgt die Messung zur Bestimmung einer ersten Position zwi- sehen erstem Kontaktpunkt (25) und dem Referenzkontaktpunkt (27) . Die Messung zur Bestimmung einer zweiten Position zwischen zweiten Kontaktpunkt (26) und dem Referenzkontaktpunkt (27) . Um einen möglichst großes Messsignal zu erhalten, wird die durch die kapazitive Referenzfläche (24) gebildete Kapazität möglichst groß gewählt. Die Mittelposition in der Führung lässt sich leicht durch Auswertung der Kapazitätsdifferenzen der
Kontaktpunkte (25, 26) zum Referenzkontaktpunkt (27) ermitteln. Der absolute Wert der Kapazitäten ist ein Maß für die absolute Höhe über der Grabenmitte.
Fig. 9 zeigt eine besonders vorteilhafte Ausgestaltung eines in einen Aktuator integrierten zweiten Lichtkopplers. Der Pfad des Lichtes (32) verläuft von dem optischen System zur Strahlführung bzw.- Formung (30), zum Beispiel einem Kollimator, über den Spiegel (31) in Richtung des hier nicht dargestellten Lichtleiters .
Selbstverständlich kann der Lichtpfad auch in entgegengesetzter Richtung verlaufen. Der Spiegel (31) ist an einem Anker (33) befestigt. Die Führung bzw. Lagerung erfolgt durch das Magnetfeld eines Permanentmagneten (34) sowie einer Spule (35) . Die hier dargestellte Ausführung bietet den Vorteil einer mechanischen Entkopplung eines Lichtleiters bzw. einer Lichtquelle oder eines Empfängers auf der dem Lichtleiter abgewandten Seite des Kollimators. Um eine wesentlich niedrigere Kop- peldämpfung zu erreichen kann allerdings auch an Stelle des Kollimators und des Spiegels ein Wellenleiter eingesetzt werden. Diese Ausgestaltung ist auch weniger schmutzempfindlich.
In Fig. 10 ist eine weitere Ausgestaltung eines in einen Aktuator integrierten Lichtkopplers angegeben. Die Ausgestaltung ist zu derjenigen aus Fig. 9 ähnlich. Allerdings ist mindestens ein Joch (36) zur Führung des von wenigstens einer Spule (35a, 35b) erzeugten Magnet- feldes vorgesehen.
In Fig. 11 ist ein optischer Positionssensor dargestellt. Ein solcher Positionssensor läuft vorteilhafterweise ebenso wie ein zweiter Lichtkoppler (5) in engem Kontakt mit dem Lichtleiter (3) . Er umfasst einen optischen Wellenleiter (40) , welcher von einer nicht dargestellten Lichtquelle mit Licht wenigstens einer Wellenlänge gespeist wird. Entsprechend der Annäherung einer ersten Sensorfläche (43) bzw. einer zweiten Sensorfläche (44) zu den jeweiligen Berandungen des Licht- leiters wird das Licht mehr oder weniger stark reflektiert. Die Auswertung der Intensität des reflektierten Lichtes erfolgt in einer nicht dargestellten Sensoreinheit, welche im Falle mehrerer Wellenlängen auch eine wellenlängenselektive Auswertung vornimmt. So kann bei- spielsweise eine erste Sensorfläche (43) mit einer ersten Wellenlänge betrieben werden, während eine zweite Sensorfläche (44) mit einer zweiten Wellenlänge betrieben wird. Hierzu sind vorzugsweise an den Austrittsflächen wellenlängenselektive Filter angebracht. Neben der Auswertung der Intensität kann auch die Anordnung derart ausgelegt werden, dass sich entsprechend dem Abstand die Polarisation des reflektierten Lichtes ändert. Der Sensor ist in Fig. 11 einmal in seitlicher Ansicht und darunter in Draufsicht dargestellt. Dieser Sensor könnte auch um 90 Grad gedreht als Lichtkoppler eingesetzt werden. In diesem Falle würde eine erste Sensorfläche (43) einer ersten Koppelfläche (41) und eine zweite Koppelfläche (44) einer zweiten Sensorfläche (42) entsprechen. Weiterhin könnte ein solcher Sen- sor auch mehrere Koppelflächen aufweisen, um in mehreren Achsen zu messen.
Fig. 12 zeigt einen zweiten Lichtkoppler, welcher mit einem Positionssensor in einer Einheit kombiniert ist. Hier ist zusätzlich zu der zuvor dargestellten Zeichnung eine erste Koppelfläche (41) sowie eine zweite Koppelfläche (42) zur ein- bzw. Auskopplung von Licht zur Informationsübertragung in den Lichtleiter vorgesehen. Vorteilhafterweise sind die erste Koppelfläche und die zweite Koppelfläche diametral gegenüber angeordnet um Licht in beiden Richtungen des Lichtleiters ein- bzw. auszukoppeln.
Fig. 13 zeigt den in Fig. 12 dargestellten zweiten Lichtkoppler zur Veranschaulichung in perspektivischer Ansicht.
In Fig. 14 ist das Prinzip der Lichtkopplung und Licht- u lenkung dargestellt. So wird zur optischen Kopplung wahlweise in verschiedenen Richtungen des Lichtleiters (3) geführtes Licht in einem zweiten Lichtkoppler (5) abgelenkt. Die Ablenkung erfolgt vorzugsweise durch
Brechung. Es kann auf diese Weise sowohl Licht in den Lichtleiter eingekoppelt als auch ausgekoppelt werden. Die gezeichneten Strahlen entsprechen nicht genau dem physikalischen Strahlengang, geben jedoch den Signal- transport schematisch richtig wieder.
In Fig. 15 ist schematisch Aufbau und Integration eines zweiten Lichtkopplers mit integriertem optischen Positionssensor dargestellt. Ein zweiter Lichtkoppler (5) ist beweglich und durch entsprechende Ansteuerung der
Spule (35) in seiner Höhe veränderbar angeordnet. Die Strahlführung (32) des Lichtes vom Lichtleiter (3) er-
folgt mittels eines zweiten Lichtkopplers (5) in ein optisches System (30) zur Strahlführung bzw. -formung. Dieses System kann das Licht beispielsweise in eine lichtleitende Faser (7) weiterleiten. Ebenso kann aber an dieser Stelle bereits eine lichtleitende Faser ohne weiteres strahlformendes System angeordnet sein. Selbstverständlich kann auch Licht in der umgekehrten Richtung übertragen werden. Zur Ermittlung der exakten Position wird von einem Positionssensor- Sender/Empfänger (47) Licht mittels eines im Strahlengang befindlichen wellenlängenselektiven Spiegel (45) in Richtung des zweiten Lichtkopplers (5) abgelenkt und mittels diesem in den Lichtleiter zur Positionsbestimmung, wie bereits zuvor beschrieben, eingekoppelt. Das abhängig von der Position reflektierte Licht (46) wird wieder über den zweiten Lichtkoppler sowie den wellenlängenselektiven Spiegel zurück zum Pσsitionssensor- Sender/Empfänger (47) zur Auswertung übertragen. Dieser kann nun aus der Lichtintensität die Lage des zweiten Lichtkopplers ermitteln und ein entsprechendes Messsignal an die Steuereinheit zur Steuerung der Spule (35) des Aktuators abgeben. An Stelle eines wellenlängenselektiven Spiegels kann auch, mit allerdings höherer Dämpfung, ein handelsüblicher Schliff oppler eingesetzt werden. In diesem Fall kann wahlweise auch ein Wellenleiter zur SignalZuführung und Signalkopplung eingesetzt werden.
In Fig. 16 ist ein Lichtleiter (3) mit einer reflektie- renden Beschichtung dargestellt. Der Lichtleiter besteht in diesem Falle aus einer Nut, welche in die erste Einheit (1) eingebracht ist. Die Oberfläche dieser
Nut ist mit einer reflektierenden Beschichtung (53) versehen.
In Fig. 17 ist ein Lichtleiter dargestellt, welcher aus einer beschichteten Röhre hergestellt wurde. Eine reflektierenden beschichtete Röhre (50) wird in einer entsprechenden Nut in einer ersten Einheit (1) mittels Kleber (52) befestigt. Um nun einen grabenförmigen, geöffneten Lichtleiter zu erhalten, wird diese auf die endgültige Kontur (51) nachbearbeitet. Alternativ hierzu kann die Bearbeitung auch vor dem Einkleben erfolgen. Ebenso wie diese Röhre kann auch eine beschichtete Faser eingesetzt werden.
In- Fig. 18 ist der prinzipiellen Aufbau eines Gitter- kopplers dargestellt. In dieser Ausgestaltung weist der Lichtleiter (3) entlang des Kreisumfanges um die Drehachse (6) eine Aussparung in Form eines Bogensegments auf. In dieser Aussparung befindet sich optisch trans- parentes Material (61), welches ein optisches Gitter
(60) trägt. Lichtstrahlen (32), welche innerhalb dieses Bogensegments auf das Gitter auftreffen werden durch das Gitter nach außen abgelenkt und mittels einer ersten Linse (62) sowie einer zweiten Linse (63) auf die Eintrittsöffnung einer lichtleitenden Faser (7) fokus- siert. Selbstverständlich sind auch andere Linsenanordnungen realisierbar. Da die einzelnen Lichtstrahlen zwar an unterschiedlichen Positionen, aber alle unter demselben Winkel auf das Gitter auftreffen, kann eine gleichbleibende Gitterkonstante über das ganze Bogen- segment verwendet werden. So lässt sich eine Beugungs-
Ordnung erzeugen, die einer divergenten Welle entspricht, welche ihren Ursprung auf der Drehachse (6) hat. Dieser Punkt stellt für alle ausgekoppelten Signale den Brennpunkt dar. Er wird mittels der beiden Linsen auf das Ende der lichtleitenden Faser (7) abgebildet. Die Vorrichtung ist besonders unempfindlich gegen Staub und andere Verschmutzung, da die wesentlichen Komponenten des optischen Systems, die beiden Linsen sowie die lichtleitende Faser in einem geschützten Be- reich angeordnet werden können. Weiterhin hat der
Lichtleiter selbst durch das eingesetzte optische Gitter keinerlei Löcher oder Hinterschneidungen, an denen sich Verschmutzungen ablagern können.
In Fig. 19 ist eine Signalkopplung mittels einer Fres- nelstruktur (64) dargestellt. Der einer ersten Einheit (1) zugeordnete Lichtleiter (3) speist in der Nähe eines ersten Lichtkopplers (4) eine stufenförmige Struktur zur Strahlumlenkung des von einem zweiten Licht- koppler (5) ausgesendeten Strahlbündels in Richtung eines ersten Lichtkopplers.
Fig. 20 zeigt eine Ausgestaltung der Erfindung zur Ein- kopplung einer Filmwelle oder Oberflächenwelle. Der Lichtleiter (3) ist hier beispielhaft als Faser dargestellt, deren Kern angeschliffen ist. Zur Kopplung wird in geringem Abstand über der angeschliffen Fläche des Lichtleiters ein Prisma (5) geführt. In dieses Prisma wird im vorliegenden Beispiel (nicht eingezeichnet) , Licht von oben eingekoppelt. Zur exakten Ausrichtung ist ein hydrodynamisches Lager umfassend eine erste Lagerfläche (21) und eine zweite Lagerfläche (20) vorge-
sehen. Entsprechende Lagerelemente können auch senkrecht hierzu zu einer Stabilisierung in Richtung der einer zweiten Achse vorgesehen werden. Als Lagerfläche kann auch der Lichtleiter selbst eingesetzt werden.
Fig. 21 zeigt eine weitere Ausgestaltung der Erfindung, bei der eine hydrodynamische Lagerung ergänzt durch eine aktive Lageregelung vorgesehen ist. Eine der ersten Lagerflächen (21) dient gleichzeitig als Referenzspur (11) für den Sensor (9).
In Fig. 22 ist schematisch die Ankopplung- an den Lichtleiter (3) mittels eines Prismas dargestellt. Die LichtZuführung erfolgt mittels lichtleitender Fasern (4a,' 4b) . Das Licht aus diesen Fasern wird mittels eines Prismas (70) unter einem Winkel abgelenkt, welcher in dem Lichtleiter geführt werden kann. Die unbezeich- nete, schraffierte Fläche in dieser Figur stellt ausschnittsweise ein Teil der ersten Einheit (1) dar, in welchem der Lichtleiter (3) geführt ist.
Fig. 23 zeigt schematisch die Ankopplung an den Lichtleiter mittels lichtleitenden Fasern (4a, 4b) mit angeschliffenen Enden (71,72). Die Ablenkung des Lichtes erfolgt in diesem Fall an Stelle eines Prismas durch eine geeignete Ausgestaltung der Faserenden selbst.
Fig. 24 zeigt die Ankopplung an den Lichtleiter mittels Spiegeln (68,69) .
Fig. 25 zeigt die unmittelbare Ankopplung an den Lichtleiter mittels lichtleitender Fasern.
Fig. 26 zeigt die Ankopplung an den Lichtleiter mittels Linsen (72) . Durch diese Linsen erfolgt eine zusätzliche Strahlformung bis an den Faserenden (71) austreten- den Lichtes der lichtleitenden Fasern (4a, 4b) .
Fig. 27 zeigt eine gekapselte Anordnung. Der Lichtleiter (3) ist hier beispielhaft in einen Graben aus Lagerflächen (21) integriert. Zur Kapselung ist eine Ab- deckung (77) vorgesehen, welche vorteilhafterweise zusätzliche Stege (79) aufweist, welche zusammen mit den Stegen (78) der ersten Einheit eine Labyrinthdichtung ausbilden. Selbstständig kann eine Abdeckung auch ohne diese Stege realisiert werden. ' '
Fig. 28 zeigt eine gekapselte Anordnung entsprechend der vorhergehenden Fig., jedoch mit einem zusätzlichen elektrostatischen Schirm (73). Dieser elektrostatische Schirm ist beispielhaft auf gemeinsamen Trägerplatte (75) zusammen mit Schleifbahnen (74) angeordnet und fängt die von den Schleifbahnen entstehenden Abrieb - Partikel aus Kohlestaub und anderen Materialien ab, bevor diese die gekapselte optische Übertragungseinheit erreichen. Hierzu ist der elektrostatische Schirm vor- zugsweise aus elektrisch leitfähigem Material ausgebildet beziehungsweise mit wenigstens einem solchen Material beschichtet. Weiterhin kann diese Schirm derart ausgebildet sein, dass er auf Grund der relativen Bewegung zwischen erster und zweiter Einheit eine statische Aufladung erfährt. Alternativ kann dieser auch von einer Hochspannungsquelle gespeist werden.
Bezugszeichenliste
1 Erste Einheit 2 Zweite Einheit 3 Lichtleiter 4 Erster Lichtkoppler 4a lichtleitende Faser 4b lichtleitende Faser 5 Zweiter Lichtkoppler 6 Drehachse der Drehung zwischen erster und zweiter Einheit 7 Lichtleitende Faser 8 Aktuator 9 Sensor 10 Steuereinheit 11 Referenzspur 12 Mittel zur hydrostatischen oder hydrodynamischen Lagerung 13 Mittel zur optischen Isolation 14 Optischer Sender 15 Optischer Empfänger 20 zweite Lagerfläche 21 erste Lagerfläche 22 erste kapazitive Sensorfläche 23 zweite kapazitiver Sensorfläche 24 kapazitive Referenzfläche 25 erster Kontaktpunkt 26 zweiter Kontaktpunkt 27 Referenz-Kontaktpunkt 30 optisches System zur Strahlführung bzw. -Formung 31 Spiegel 32 Lichtstrahl
Anker Permanentmagnet Spule Joch optischer Wellenleiter erste Koppelfläche zweite Koppelfläche erste Sensorfläche zweite Sensorfläche wellenlängenselektiver Spiegel • Lichtstrahl des Positionssensors Positionssensor Sender/Empfänger erster Lichtpfad zweiter Lichtpfad beschichtete Röhre nachbearbeitete Röhre ■ Kleber reflektierende Beschichtung Gitter optischen transparentes Material erste Linse zweite Linse Fresnelstruktur Koppelschlitten Mitnehmereinheit Kapselung erster Spiegel zweiter Spiegel Prisma Faεerende Linse Elektrostatischer Schirm
74 Schleifbahn
75 Träger der Schleifbahnen
76 Freiformflächen
77 Abdeckung
78 Steg
79 Steg an der Abdeckung