WO2005011316A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
WO2005011316A1
WO2005011316A1 PCT/JP2004/010779 JP2004010779W WO2005011316A1 WO 2005011316 A1 WO2005011316 A1 WO 2005011316A1 JP 2004010779 W JP2004010779 W JP 2004010779W WO 2005011316 A1 WO2005011316 A1 WO 2005011316A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
line
level
unit
optical
Prior art date
Application number
PCT/JP2004/010779
Other languages
English (en)
French (fr)
Other versions
WO2005011316B1 (ja
Inventor
Kuniaki Utsumi
Hiroaki Yamamoto
Kouichi Masuda
Tsutomu Niiho
Mariko Nakaso
Kazuo Tanaka
Hiroyuki Sasai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/530,976 priority Critical patent/US7460829B2/en
Priority to JP2005512078A priority patent/JP4555226B2/ja
Priority to EP04748043A priority patent/EP1659812A4/en
Publication of WO2005011316A1 publication Critical patent/WO2005011316A1/ja
Publication of WO2005011316B1 publication Critical patent/WO2005011316B1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25754Star network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the station in relation to a system in which the station communicates with the wire communication terminal via the station, it relates to a system in which the control unit and the middle unit are connected via an optical transmission line.
  • Fig. 4 3 is a diagram showing the configuration of a conventional line communication system described in Japanese Patent Application Laid-Open No. 9-2 083.
  • control unit 1 9 converts an external signal into an optical signal and transmits it to the intermediate unit 2 9 through the optical transmission line 5 9.
  • the intermediate unit 2 9 transmits from the control unit 1 9
  • the optical signal is converted into a signal by the optical transmission unit 95, and the line communication terminal in the memory is converted as a ffm *.
  • the relay device 2 9 transmits to 9 o
  • the relay device 2 9 receives the line signal transmitted from the line communication terminal 3 9 by the antenna unit 9 2 and transmits it via the transmission / reception unit 9 3
  • the conventional line communication system as shown in o, which converts an optical signal and sends it to the optical transmission line 5
  • the conventional communication system is a good communication link.
  • the first requirement is that the level of the line signal received by the relay device must be within a predetermined range.
  • the received line signal can be effectively reproduced.
  • the maximum level and the minimum level of the line signal. The difference between the levels is called dyna clen.
  • the level of the line signal received by the relay device is too high: When the line signal is converted to an optical signal, distortion occurs in the optical signal o While the level of the 7111 "line signal received by the device is equal to When too small reception line signal and noise are separated r
  • the level of the littr line signal received by the clothing must be within the range of the dynammy's signal.
  • the out-of-band frequency component of the signal component to be transmitted is output in addition to the signal component to be transmitted by the nonlinearity of amplification.
  • the 'outside band' wave number component has an influence on other communication devices that communicate using the same frequency band as the out-of-band frequency component, the electric equipment EE, etc. existing around the line communication terminal.
  • the level of the out-of-band frequency component to the level of the transmission line signal component of the relay unit must be below the fixed level o
  • the level of the out-of-band frequency component and the level of the middle device Signal transmission at the end Assuming that the ratio to the minute level is called the leakage ratio, the value of 2 means that the leakage ratio in the line signal is within--constant level.
  • the signal-to-interference ratio at the frequency W of the line signal to be transmitted / received (hereinafter referred to as D / U (D ndesired
  • the ratio must be at a fixed level or higher. 0 If the DU ratio decreases, the relay clothing separates the reception signal and the noise if the DU ratio decreases.
  • the third requirement is to keep the DU ratio of the ⁇ * line signal received by the relay device more than a fixed level, because 0 is not generated.
  • FIG. 4 is a diagram showing the configuration of the conventional line communication system described in item 2 8 5 5 1 3 0.
  • the conventional line communication system shown in FIG. 4 has been proposed (see Patent No. 2 8 5 8 5 1 4 3).
  • FIG. 4 is a diagram showing the configuration of the conventional line communication system described in item 2 8 5 5 1 3 0.
  • the conventional line communication system shown in FIG. 4 has been proposed (see Patent No. 2 8 5 8 5 1 4 3).
  • the relay box 2 8 is connected to the control unit 18 via an optical fiber 5 8 through an antenna unit 9 2 and a line communication terminal (not shown). Transmitted from the network • Signal received: Line signal 0 Amplitude 1 is amplified by the amplifier 1 which amplifies the electric signal received by the antenna section 9 1 After the signals are distributed by the divider 2, the frequency converted signals which are frequency converted for the mixers 3a to 3d and synthesizers 4a to 4d have one wave division. After passing through the passbands 5a to 5d, the signal is amplified to a predetermined signal level by the non-linear amplification 6a to 6d.
  • the optical signal is converted to an optical signal by electro-optical conversion 8 after being produced in the configuration 0 0
  • the optical signal is transmitted to the control device 1 8 through the optical fiber 5 8 o
  • the control device 1 In 8 the photoelectric converter 2 1 converts the optical signal sent from the optical fiber n 5 8 into an electric signal 0 0
  • the electric signal is a distributor
  • the signal After being distributed at 1 1, the signal is frequency-converted to return to the original frequency band by the mixer 12 a 2 3 d and the transmitter 1 3 a 1 3 d ⁇ The frequency-converted signal is then converted to one wave
  • a bandpass signal with a passband of 1 1 4 a 1 4 d is a signal separated at 0 4 separated by the demodulator 1 5 a
  • the signal detected and output by 1 6 d is A / D converter 1 7 a
  • the conventional line communication system described in Patent No. 2885143 has the signal level of each signal obtained by separating the received signal into one wave at the relay station 28. Therefore, by providing the non-linear amplification 35 6 a 6 d to the relay apparatus 2 8 by adjusting the non-linear amplification 3 ⁇ 4 5 6 a 6 d to 0, the level of the line signal received by the intermediate device is determined. If it falls within the range of the Dyna V crane 0, it will meet the first requirement.
  • the DU ratio is approximately 3 dB.
  • the leakage ratio to the adjacent channel in the line signal in STD-T71 is-25 d B or less
  • the leakage ratio to the next adjacent channel should be-40 d B or less Communicate using a line signal that meets the requirements of those specified. The device communicates normally.
  • the conventional line communication system described in Japanese Patent No. 288514.3 has a method of providing a line signal within a line, for example, nonlinear amplification 6 a 6 d, etc.
  • AGC AU tomaic G ain to control the gain of
  • the relay device transmits the frequency-converted signal on its own.
  • the relay unit By dividing the signal level by a number of channels and setting the level of the signal to a fixed level, the relay unit can be divided into a number of channels and the number of channels of channel signals. It has to be equipped with many components such as resistors and nonlinear amplifiers.
  • Each channel is assigned a different frequency m 45 is the first and second using two adjacent channels Sent from the end of line communication I EE EE 80 2 •
  • FIG. 1 1 a The figure shows the spectrum of the Hflr line LAN signal in accordance with the standard.
  • the solid line shows the spectrum of the signal a.
  • the space line shows the spectrum of the signal b. Show 1 en ha, the signal a transmitted by the line communication terminal a and 2
  • the signal b transmitted by the line terminal is a signal of a channel adjacent to each other.
  • the signal a is blocked by the component of the signal leaking from the signal b at ⁇ .
  • the signal a has a signal component 1 0 0 1 a and a signal leakage component 1 0 0
  • Signal component 1 having 2 a and signal leakage component 1 0 0 3 a
  • 0 0 1 a is a component of the signal a that should be received by the relay station
  • the signal leak component 1002 a fa which has a width of about 20 z Hz and leaks to a channel (hereinafter referred to as an adjacent channel) which is close to the signal component 1001 a.
  • the signal leakage component 1 0 0 3 a which is a component is a signal component 1 0 0 1 a of -Hi-
  • signal component 1 0 0 2 nearest to the Giant to 1 a 'tea N'ne Le (hereinafter, the second adjacent channels hereinafter) band frequency of the order Ru signal components leaking to If the frequency of the channel adjacent to the signal and the frequency of a are out of band, the out-of-band frequency component leaks to the adjacent channel, but for the sake of simplicity.
  • the line signal variation method is 6 4
  • the equipment is receiving Ha, Dina V Klein of the line signal
  • D / U ratio is calculated to be required more than about 2 2 d B
  • the leakage ratio 1004 is the signal leakage component 1002 a and the signal component
  • the leakage ratio is represented by the difference from the logarithm, and the leakage ratio is expressed as a pair.
  • the difference between the level of the signal leakage component 1003 a and the level of the signal component 10001 a should be ⁇ 40 dB or less
  • Signal b has signal components 1 0 0 1 b and signal leakage components 1 0-0
  • Signal component 1 having 2 b and signal leakage component 1 0 0 3 b and
  • 0 0 1 b is the signal component of the signal b that the center station should receive
  • Signal leakage component 1 0 0 2 b is the component of the signal that leaks to the adjacent channel of signal component 1 0 '1 1 b Signal leakage component
  • 1 0 0 3 b is a component of the signal leaking to the next adjacent channel of the signal component 1 0 0 1 b
  • the DzU ratio 1 0 0 0 is the level difference between the signal component 1 0 0 0 0 0 1 a and the signal leakage component 1 0 0 0 2 b.
  • the signal leakage component 1 0 0 2 b is the signal on the adjacent channel. As the medium leaks to a, the medium does not prevent the leak from the adjacent channel and converts only the signal a to an optical signal.
  • the ratio D 0 1 0 0 must be at least 2 2 d B
  • the level of the line signal received by the relay device depends on the distance between the middle device and the line communication terminal.
  • the distance between the middle device and the wireless communication terminal increases with the distance between the middle device and the wireless communication terminal.
  • the level of the line signal received by the communication unit is smaller, and therefore the line signal received by the center is 32 d B.
  • the difference between the level of the signal component 1 0 0 1 b and the level of the signal component 1 0 0 1 a is at most 3 depending on the positional relationship between the two signals.
  • FIG. 10 is a diagram showing the spectrum parameters of the line LAN signal transmitted from the end
  • the solid line indicates the spectrum of the signal a
  • the dashed line indicates the spectrum of the signal C.
  • the signal a transmitted by the first line communication terminal and the signal transmitted by the third line communication terminal are transmitted by the first line communication terminal.
  • Signal C is the signal of a channel two channels apart from each other. Explain where interference is caused by the component of the signal that leaks from signal c
  • the signal a has a signal component 1 0 0 1 a and a signal leakage component 1 0 0
  • the signal component of the signal a shown in FIG. 4 6 having 2 a and the signal leakage component 100 3 a is the same as the signal component of the signal a shown in FIG. Omit the light
  • Signal c has a signal component 1 0 0 1 C and a signal leakage component 1 0 0
  • a signal component 1 having 2 c and a signal leakage component 1 0 0 3 c
  • 0 0 1 c is the signal component of the base signal C that is received by o C o o Signal leakage component 1 0 0 2 c is the signal of the signal leaking to the adjacent channel of signal component 1 0 0 1 c Component o Signal leakage component
  • 1 0 0 3 c is the component of the signal leaking to the next adjacent channel of the signal component 1 0 0 1 c o
  • the D / U ratio 1 0 1 0 is the difference between the level of the signal component 1 0 0 1 a and the level of the signal leakage component 1 0 0 3 c o
  • the signal line range received by the relay station is 3
  • the difference between the level of the signal component 1 0 0 1 c and the level of the signal component 1 0 0 1 a is up to 3 2 d B according to the positional relationship between the terminal and the third 4 jm line communication terminal. It becomes ⁇ .
  • the D / U ratio can not be increased to 2 d B if the D / U ratio is 10 d B.
  • the product of the line signal received by the device maintains the specified product, or the level of the line signal. If the signal is blocked by another channel's signal and can not be communicated normally even within the dynamic range defined by the standard, the first and second requests will be Disclosure of invention not satisfying but satisfying the third requirement of dripping a predetermined D / U ratio
  • the object of the present invention is to provide a ⁇ * line communication system which can keep the level of the line signal received in the clothing within the range of a predetermined dynamic range.
  • another object of the present invention is to satisfy the requirements of the first to the third ', that is, to keep the level of the line signal received by the relay apparatus within the range of a fixed downlink.
  • a line communication system capable of keeping the leakage ratio of the line signal below a fixed level and keeping the DU ratio of the line signal received by the clothing line above a fixed level.
  • the present invention has the following features in order to achieve the above-mentioned huge effects.
  • the first aspect is a line communication system comprising a controller, a controller, and at least one inner package ⁇ connected via an optical transmission line and a plurality of line communication terminals in line communication with the middle device.
  • the control unit converts the lower electric signal into a lower optical signal and transmits the signal to the middle via the optical transmission line, and the transmission signal is transmitted from the clothing via the optical transmission line.
  • Optical signal And a first light receiving unit for converting into an electric signal.
  • the device is sent from the controller via the optical transmission line.
  • a transmission / reception antenna unit that receives a line signal transmitted from a telephone communication terminal and uses it as an upstream transmission signal and an upstream signal received by the transmission / reception antenna unit are converted to an upstream optical signal.
  • the relay device transmits or receives so that the reception intensity of the line signal received by the device may fall within a predetermined range, including a second optical transmission unit that transmits to the control device via the optical transmission path. It is characterized by having line signal level limiting means for adjusting the level of the line signal.
  • the level of the line signal received by the relay device can be kept within a given range.
  • the line signal received by the relay device can be stored in a predetermined dynamic range. High-quality optical transmission of line signals
  • the predetermined range is the ratio of the level of the line signal using the channel to the level of the frequency component leaked to the channel other than the channel in each channel used by each wire communication terminal.
  • the range is smaller than the difference with the ratio
  • the line signal level limiting means is a level control section which is also in the relay apparatus which adjusts the level of the lower charge signal output from the second light receiving section. Attenuating the level of the low-power signal reduces the communicable capacity of the relay device, and the level of the line signal transmitted by the line communication terminal in the communicable spectrum is predetermined. To be within the range of
  • the level of the line signal transmitted by the line communication terminal within the communicable XU file can be kept within a predetermined range, so multiple relay units are required. Even when communication is performed using the line signal of one channel ⁇ , the required D / U ratio will be met, and if it leaks from other channels and is blocked by the signal. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • control unit includes a plurality of first light transmitting units
  • the line signal level limiting unit is a signal distributing unit provided in the control device that branches the lower air signal.
  • the communicable area of the relay device is narrowed and the line transmitted by the line communication terminal present in the communicator is transmitted. Make sure that the signal level is within the specified range.
  • the optical transmission unit 1 converts the downstream charge signal branched by the signal distribution unit into a downstream light signal.
  • the device Since the level of the lower optical signal transmitted from the control unit is reduced by the control unit, the signal level of the line transmitted by the relay unit is reduced. Because the level of the line signal transmitted by the line communication terminal present in the network can be kept within a predetermined range, the device can communicate with other devices using line signals from multiple channels. As the D / U ratio is satisfied, it can communicate normally without being disturbed by the signal leaked from other channels.
  • the line signal level limiting step is a piggyback signal generation unit provided in a control device that generates an interference signal to be superimposed and transmitted on the lower 3 ⁇ 4 signal.
  • the first light transmitting portion converts One by the second light receiving portion is et in the device • converts the C 0 I P Tsu signal under ⁇ electrostatic superimposed 'No. under Ri optical signal ⁇ Detecting the level of the piled signal that is superimposed on the low-level charge signal Detected on the pile-pin signal detection unit and the pile-up signal detection unit
  • the level of the line is fixed, and the level control section that controls the level of the line signal is included.
  • the loop signal generator section relays by increasing the level of the loop signal to be generated. Make the device's communicable error narrow so that the level of the line signal transmitted by the line communication terminal present in the communicable X window will be within the specified range.
  • Nrttt Since it is possible to reduce the level of the line signal, it is possible to narrow the communicable capacity of the relay device, so there can be a line communication terminal within the communicable area. Transmit); the level of the line signal can be adjusted within a predetermined range.
  • the _i, t. Line signal level limiting means is provided in the control unit, and the quality of the upper electric signal converted by the first light receiver satisfies the predetermined condition. It is determined by the monitoring unit and the monitoring unit that the quality of the upper air signal does not meet the predetermined condition.
  • the 1st light transmission unit The level control unit and the level control unit that reduce the level of the lower electrical signal input to the input and reduce the degree of light modulation reduce the optical conductivity and attenuate the lower optical signal 7 Therefore, the communication equipment of the relay device can be narrowed, and the level of the line signal transmitted by the .fm radio communication terminal in the communicator can be within the specified range.
  • the communication equipment of the relay device can be narrowed to reduce the communication capability of the relay device, and the level of the line signal transmitted by the line communication terminal is within a predetermined range.
  • 2 j ff line signal level limiting means is provided in the control unit, and the quality of the electric signal converted by the first light receiving unit satisfies a predetermined condition. Monitor whether or not If it is determined by the sighting unit and sighting unit that the upper air flow signal TO does not satisfy the predetermined condition, the level of the bias flow determined by the first light transmission unit is reduced. The level control unit and the level control unit, which lowers the light modulation, lowers the light modulation B rate and attenuates the noise of the lower light signal, thereby enabling the relay apparatus to be able to communicate. If the “iTTT * line communication terminal transmits within the narrow communication enabler 1111; the line signal level is within a predetermined range.
  • the level of the bias current is reduced in the control device to lower the modulation of the light signal, thereby transmitting the signal to the relay device. Since it is possible to reduce signal noise and narrow the communicable XU data of the relay device, the line signal transmitted by the line communication terminal existing in the communicable data can be transmitted. In order to keep the level within a predetermined range, in addition, 1111. Line signal level limiting means is converted by the second light transmitting section to a level at which no distortion occurs in the optical signal. Even if a level attenuation unit is provided to attenuate the signal, the level of the line signal is high even if the level of the tlT? Line signal received from the end of the line communication in the relay clothes is large. No distortion occurs in the optical signal because it is possible to reduce High- ⁇ the ⁇ . Wire signal Te Tagatsu
  • the communication rangers of the medium devices adjacent to each other are overlapping parts, and the relay device has a gain by adjusting the level of the line signal transmitted to and received from the line communication terminal.
  • the level means including level B control means for controlling the signal, is required for the signal transmitted from the control device to be transmitted to the line communication terminal existing in the overlapping area of the communicable range via the medium device.
  • the difference between the delay time and the delay time required for the signal transmitted from the control device to be transmitted to the line communication terminal in the area where the communicable range overlaps via the adjacent relay device is a predetermined time. It is recommended to check the level of the line signal as it is inside.
  • the difference in delay time of the signal may be within the range of the delay time difference permitted by the wire communication system.
  • a line signal is transmitted from an area where the reception ranges overlap, and the line signal is transmitted to a plurality of reception antenna sections. The place where it was received
  • the delay time difference of the line signals transmitted from the area where the receiving ranges overlap can be contained within a predetermined time.
  • the next set of relay devices may communicate with another set of adjacent devices using a different frequency.
  • the delay time difference between the signals is adjusted accordingly. Multipath interference does not occur because the frequency used is different when the reception range of the device set overlaps with the reception range of the other medium pairs.
  • the transmit and receive antenna units are next to each other g Of the 7L relays equipped with the transmitting / receiving antenna unit, the directivity for the relay device with a long optical transmission line connecting with the control device o
  • the relay device may be connected to the side of the branched optical fiber by including an optical branching / connecting portion that branches an optical transmission path connecting the control device and each relay housing. Even if another end of the light is connected to the other end of the light source, the light output junction is divided and distributed to a predetermined number or more of one optical fiber connected to the control unit. A separate clothing box may be connected to each of the optical fibers.
  • M signal rangers of relay devices adjacent to each other are in the middle of an overlap and the device is in control of the optical signal control means for controlling the delay time of the optical signal transmitted to and received from the control device.
  • the light signal control means contains the signal transmitted from the control device.
  • the delay time required to be transmitted to the end of the ff line 15 m which exists in the area where the communicable range through the device is equal to that of the device, and the signal transmitted from the control clothing are adjacent to each other. Control the delay time of the optical signal so that the difference between the delay time required to be transmitted to the line communication terminal in the area where the communicable ranges overlap through the device becomes within a predetermined time.
  • the level adjustment unit uses the same ⁇ 'line modulation signal and others.
  • the line signal level may be controlled so that the line signal level falls below a predetermined level with respect to the line coverage that the intermediate device forms.
  • the transmit / receive antenna section has directivity such that the reception sensitivity in the direct direction is within a predetermined range, and the predetermined range is within the range permitted by the second optical transmission section.
  • the medium device receives the line signal transmitted by the line communication terminal located immediately below the middle mining device with low gain, and therefore, the line signal transmitted from the vicinity of the relay device is specified.
  • the central unit is not located immediately below the corresponding middle / il device ⁇ ⁇ Ik line communication terminal ⁇ ⁇ fm ⁇ ⁇ fm fm fm fm fm fm fm fm fm fm ⁇ fm
  • the configuration of the line communication system can be simplified, but the system can be built at low cost. Transmitting and receiving antenna section that absorbs the ⁇ fr ⁇ *.
  • the line signal transmitted by the ilif * line communication station located immediately below the middle device is transmitted by the m-wave absorber, so that the receiving antenna unit has a low gain for the ⁇ ⁇ * line signal.
  • o ⁇ ⁇ ⁇ ⁇ line signal transmitted from the vicinity of ⁇ ⁇ line base station can be within a predetermined range o
  • transmit and receive antennas should be composed of hollow antennas with bidirectional directivity.
  • the antenna should be placed in such a way that the reception density in the direct direction is within the specified level. You can place the roof antenna on the ceiling of the building ⁇ BX is placed on the floor in the building and the tunnel antenna is set on the wall inside the building Even if
  • the transmitting and receiving antenna unit is composed of the antenna and the wave absorber.
  • the transmit / receive antenna unit is connected to the second optical receiver unit.
  • the transmitter antenna unit transmits the converted lower signal to the line communication terminal as the f tmilt line signal, and the -ft ft line signal transmitted from the line communication terminal receives the upper signal.
  • the transmission antenna section to be used
  • the r Jnt line signal level limiting hand is provided in the transmission antenna section at a position where the line signal transmitted from the direct direction is cut off.
  • the wave absorber is provided, the directivity of the receiving antenna in the vertical direction can be limited. Therefore, the receiving antenna consists of an antenna and a radio wave absorber. System configuration can be further simplified compared to the case where
  • the “ ⁇ line signal level limiting means further attenuates the level of the signal received by the transmit / receive antenna unit, and the level of the line signal using that channel in each channel used by each line communication terminal. It may have a level attenuation section that makes the signal-to-noise ratio, which is the ratio of the level of the leaked signal from the end of the line communication terminal using channels other than the channel concerned, to a predetermined value or less.
  • each transmitting and receiving antenna unit has a unidirectionality such that it does not receive an edge signal from a line communication terminal located immediately below, and it is within the receivable range.
  • Frit presents the line signal transmitted from the telecommunication terminal within a predetermined level, and at least one of the transmitting and receiving antenna parts of the transmitting and receiving antenna parts is unidirectional.
  • the radio communication terminal located in the lower direction, or directly below the transmitting / receiving antenna unit in the relay unit m adjacent to the transmitting / receiving antenna unit receives the ⁇ * line signal from the line communication terminal, and the predetermined level is It is a level that falls within the specified range
  • the transmitting and receiving antennas do not receive a large signal level signal that is transmitted from the immediate vicinity of the clothing area, or from a short distance.
  • the signal level of the line signal input to the optical transmission unit of the device is within the predetermined range, multiple intermediate devices may be placed again for wide range communication. It is possible to transmit the signal with high Q quality as well as the power of the device.
  • the configuration of the line light transmission system can be simplified and the system can be built at low cost.
  • the transmitting and receiving antenna units of the middle device other than the middle device located at the end of the direction indicated by the unidirectionality are preferably positioned in the direction or direction of the unidirectionality, and -T i H r line signal from the end of the line communication m located immediately below the transmitting and receiving antenna unit in the middle device adjacent to the transmitting and receiving antenna unit
  • the directivity of each receiving antenna is directed from the vertically downward direction to the direction directly below the transmitting and receiving antenna at the adjacent relay station.
  • the reception range will be formed, which will improve the freedom of the location of the line communication terminal.
  • the transmitting and receiving antenna sections are adjacent to each other, and the relay apparatus having the transmitting and receiving antenna section is connected to the relay apparatus, and the optical transmission line connecting between the transmitting and receiving control section and the control apparatus It has unidirectionality and unidirectionality is acceptable.>
  • the delay time required for the transmission and reception antenna unit to receive the line signal transmitted from the area where the reception range overlaps and to be transmitted to the control device The difference between the time and the delay time required for the relevant line signal to be received by the transmit / receive antenna unit in the adjacent relay device and transmitted to the control device is adjusted within a predetermined time. If it is rejected, the one-way directivity can be adjusted by changing the spread angle of the one-way directivity.
  • It may be adjusted by changing the BX placement angle of the transmit / receive antenna unit.
  • ⁇ * line signal is transmitted from the area where the reception range overlaps due to
  • the unidirectionality of the receiving antenna unit is
  • the relay apparatus further includes a level adjustment unit for amplifying or attenuating the is line signal received by the transmission / reception antenna unit, and the level e rounding unit is from a region where the receivable ranges overlap.
  • the line signal is amplified or attenuated so that the level of the transmitted line signal becomes a predetermined level, and a predetermined level is transmitted from the overlapping area and received at the welded middle device. If the difference between the level of the line signal and the level of the line signal falls within a predetermined range, it is recommended that the line communication terminal communicate using line signals of different frequencies.
  • the second phase is a medium device that receives line signals transmitted from the end of a plurality of line communications that are occupied in a line communication section, converts them into optical signals, and transmits them via a transmission line.
  • a medium device that receives line signals transmitted from the end of a plurality of line communications that are occupied in a line communication section, converts them into optical signals, and transmits them via a transmission line.
  • the transmission and reception antenna unit that receives a wireline signal sent from a wired communication terminal and a line signal received by the transmitted / received antenna unit are converted into an optical signal, and it is used as an optical transmission path.
  • the transmission and reception antenna unit has directivity so that the sense of reception in the direct direction is within a predetermined level, and the reception signal strength of the received line signal is an optical transmission unit. And a level that falls within a predetermined range that is permitted by
  • the third aspect is a receiving antenna for receiving line signals transmitted from the ends of multiple line communications occupied in the line communication section, which is installed on the ceiling floor or wall in the building and received in the vertical direction
  • the orientation is such that the intensity is within the specified level
  • the predetermined level is a level at which the reception degree of the received wireless signal is within a predetermined range permitted by the optical transmission unit.
  • the relay apparatus transmits the optical signal transmitted from the control station connected via the optical transmission line to the electric signal.
  • a line communication system for transmitting to a line communication terminal, wherein the control device includes a first light transmitting unit for converting a lower electric signal to a lower light signal and transmitting it to the middle device via the light transmission path.
  • a first light receiving unit that converts a lower light signal that is transmitted from the control device via an optical transmission path into a lower electric signal and a lower light signal that is converted by the first light receiving unit It includes an antenna unit that transmits the signal as a line signal to the line communication terminal, evaluates the transmission quality in the optical transmission line, and determines whether the transmission P satisfies a predetermined condition.
  • the transmission stop means for stopping the transmission of the line signal is provided.
  • Te month _ Reniyo ⁇ optical transmission path sleep Keru transmission P port P protein is Ru Gadesa Stopping the transmission of the mouth line signal with a reduced It is not possible to send a line signal that does not meet the required conditions, so that it does not affect other communication devices or electric devices.
  • the quality evaluation means and the signal transmission stop means are relayed by the relay device, and the quality evaluation means evaluates the PP quality of the lower light signal, and the quality of the lower light signal satisfies the predetermined condition. If it is judged by the product ft value that the ⁇ quality of the lower light signal does not satisfy the predetermined condition, the transmission of the line signal is stopped.
  • the device can stop the transmission of the line signal of which the quality of the P signal and the quality of the lower light signal received from the control device is reduced.
  • Examples and to a quality evaluation means detects the c 0 Wa below Ri optical signal received by the relay apparatus -.
  • Receiving Pawa detector der which it is determined whether the Ru der than a predetermined value Ri signal transmission stop As a measure, it is determined by the light receiving part detection unit that the light signal intensity is lower than a predetermined value. The transmission of the signal is stopped.
  • the relay device stops transmission of the .mti * line signal when the power of the lower light signal is transmitted after being transmitted from the control master. For example, when an abnormality occurs in the optical transmission line Increase in transmission loss As the transmission loss of the signal increases, the optical signal's power decreases. The middle unit detects the power of the lower optical signal, and the signal transmission loss occurs. Evaluate the o
  • the quality evaluation means and the signal transmission stop shall be suspended by the intermediate equipment.
  • the quality evaluation means evaluates the quality of the lower electric signal, determines whether or not the quality of the lower electric signal satisfies a predetermined condition, and the means for stopping signal transmission is performed by the PP quality evaluation means.
  • the quality evaluation means detects the level of the frequency range component of the baseline signal transmitted from the antenna unit from the lower electrical signal converted by the first light receiving unit.
  • Unwanted radiation level detection that detects the level of the out-of-frequency component of the base line signal transmitted from the antenna section from the lower i signal that has been converted by the signal level detection unit and the first light reception unit And the line signal level detection unit to the level of the frequency band component detected by the unnecessary radiation level detection unit whether the level of the component outside the frequency band is equal to or higher than a predetermined level Level judgment section to judge and signal transmission stop stage Stops the transmission of the field signal when it is determined by the level determination unit that the level of the out-of-band component relative to the level of the frequency band component is above the fixed level
  • the middle device can stop the transmission of the line signal whose level of out-of-band components is large.
  • the level of out-of-band components included in the line signal is large.
  • control device further includes an test signal generation unit that generates two test signals of different frequencies, and the first light transmission unit is generated by the test signal generation unit.
  • Test signal Converted lower folded 5 ⁇ signal into lower light signal, and BPP evaluation means is ⁇ , experimental signal superimposed on the lower signal converted for the first light receiver. Detects the level of the frequency flr domain component of the signal, and detects the level of mutual distortion of the test signal superimposed on the lower X signal converted by the first test signal level detector and the first optical receiver.
  • the level judgment unit determines whether the level of intermodulation distortion with respect to the level of the frequency band component of the ⁇ -type signal is above a fixed level '> or more by the level judgment unit. Transmission of the til line signal determined to be To stop
  • the transmission of the ⁇ * line signal can be stopped, and it is sufficient to detect the level of a specific frequency or tntr line communication. Simplifies system configuration.
  • control device further includes an experiment signal generation unit that generates an experiment signal
  • the first light transmission unit is a combination of the expression signal generated by the experiment signal generation unit. Convert the electric signal into the lower light signal and
  • the PP quality evaluation means is a test signal level detection unit for detecting the level of the frequency component of the test signal superimposed on the lower electric signal converted by the first light receiving unit, and The distortion level detection unit and the test signal level detection unit that detect the level of high-frequency distortion of the test signal superimposed on the ground signal converted by the optical receiver unit of Signal level detection unit that determines whether the level of high-frequency distortion detected by the distortion level detection unit with respect to the level of the detected frequency band component is equal to or higher than a fixed level
  • the stopping means stops transmission of the line signal when it is judged by the level judging unit that the level of high-frequency distortion with respect to the level of the frequency band component of the test signal is equal to or higher than a predetermined level.
  • the antenna unit receives the tntr line signal transmitted from the line communication terminal and sets it as an upper power signal
  • the device further receives the upper signal received by the antenna section.
  • the controller includes a second optical transmission unit that converts the signal into an optical signal and transmits the signal to the control device via the optical transmission line.
  • the control device further transmits the signal from the relay device via the optical transmission line.
  • the quality evaluation means and the signal transmission stop means are included in the middle device, and the quality evaluation means includes the second light receiving section for converting the upper light signal into the upper electric signal. It is evaluated to determine whether the quality of the relevant upper light signal meets a predetermined condition, and the signal transmission stop is determined by the quality evaluation means that the PP quality of the upper light signal is predetermined. It was judged that the condition was not met
  • the quality evaluation means is an optical signal converted by the second optical transmission unit and reflected from the optical transmission line.
  • Optical power detection unit that detects reflected light that is branched by the light power plastic part that branches reflected light and the light power plastic part and determines whether or not the performance of the reflected light is a fixed value or more
  • the transmission detection stop means is determined by the light detection part that the reflected light power is greater than or equal to the fixed value, the transmission of the CI line signal is stopped by the light detection part. For example, connect the control device and the medium IT device? Light reflection is increased due to the occurrence of cross-hanging in the optical transmission line
  • the device can stop transmission of the line signal at 'O', and the device has been transmitted from the control station via the optical transmission line where the abnormality has occurred.
  • a signal with degraded PP quality is not converted into a line signal and sent out. Also, it is possible to simplify the configuration of the line communication system because it is only necessary to detect the reflected light from the optical transmission line.
  • the quality evaluation means and the signal transmission stop means are limited to the control device, and the quality evaluation means are for the lower light signal ⁇ .
  • the PP quality is evaluated and it is judged whether the quality of the lower light signal satisfies the predetermined condition or not.
  • the signal transmission stopping means is the quality evaluation means and the loss of the lower light signal.
  • the transmission of the line signal from the core may be stopped.
  • the product of the lower light signal is Under transmission ⁇ Stop transmission of optical signal ⁇ Since transmission of optical signal is stopped from the control unit down ⁇ ⁇ From relay unit ⁇
  • the quality evaluation means includes a light power plastic portion and a light power plastic portion which branches the lower light signal converted by the first transmission portion and the reflected light reflected from the light transmission path. From the light detection unit that detects the light of the reflected light that has been branched and determines whether the light of the reflected light is greater than or equal to a predetermined value.
  • ⁇ signal transmission stop hand stops transmitting light c 0 Wa
  • the control device may stop the transmission of the light signal by stopping the transmission of the light signal. Therefore, the line signal with degraded quality will not be transmitted from the intermediate equipment, and it is only necessary to detect the reflected light from the optical transmission line, so that the formation of the infrared communication system can be simplified.
  • the antenna unit receives the radio signal sent from the wire communication terminal and sets it as an upper signal, and the device is further received by the antenna unit. Includes a second optical transmitter that converts the upstream electrical signal into an upstream optical signal and sends it to the controller via the optical transmission path.
  • the controller also sends data from the intermediate device via the optical transmission line.
  • the quality evaluation means and the signal transmission stop means are provided in the control unit, and the B shell evaluation means is the quality of the upper light signal, including the two optical receivers that convert the received optical signal into the upper electric signal. Evaluate the signal transmission stop means ⁇
  • the DP quality evaluation means It is judged by the DP quality evaluation means that the quality of the upper light signal does not meet the predetermined condition.
  • the * ⁇ ⁇ * line from the middle equipment You may stop signal transmission
  • the control device stops transmission of the lower optical signal, and the optical transmission path where the abnormality occurs.
  • PP quality evaluation means on Ri optical signal control device receives path off - detecting a control device to come P also 0 1 Pawa of the on Ri optical signal to determine whether Ru fit below a predetermined value
  • control unit may stop the transmission of the lower light signal when the light receiving power drops, and the control device may have a function to detect the light receiving power.
  • the antenna unit was transmitted from the wireless communication terminal.
  • the control unit includes a second light transmission unit that converts the upper light m received by the antenna unit into an upper light signal and transmits the light signal to the control device via the light transmission path. And a second light receiving unit for converting an upper light signal transmitted from the middle device via the light transmission path into an upper light signal.
  • Means for stopping transmission is provided by the control unit, and evaluation means for snails is provided by the control unit.
  • the quality evaluation means evaluates the quality and the signal transmission stop means stops the transmission of the light signal when the quality evaluation means determines that the quality of the electric signal does not meet the predetermined condition. You may stop the transmission of the titrr line signal from the device.
  • Signal causes the PP quality of the signal to be degraded, and the control device 'does not properly demodulate the signal' and the transmission of the light signal is stopped.
  • the PP quality evaluator Eft. Is a signal level that detects the level of the frequency range component of the base line signal received from the line communication terminal from the upper electric signal converted by the second optical receiver.
  • the level of the out-of-band component detected by the unwanted south-reflection level detection unit to the level of the frequency powder component detected by the detection unit and the signal level detection unit is above the fixed level
  • the level judging unit and the signal transmission stopping means from the level judging unit determine the frequency band component level by the level judging unit. When the level of the component outside the frequency fT region is judged to be above the fixed level, the transmission of the light signal is stopped.
  • control unit can stop transmission of line signals that include outlier wave components above a specified level.
  • the relay station includes a test signal generation unit that generates two test signals of a further frequency, and the second light transmission unit is generated by the test signal generation unit.
  • the upper electrical signal on which the experimental signal is superimposed is converted to an upper optical signal, and the quality evaluation hand is converted by the second optical receiver to the superimposed signal.
  • the level of the mutual modulation distortion of the test signal> detected on the test signal level detection unit that detects the level of the frequency w component and the superimposed test signal that is converted by the second light receiving unit The level of the inter-cycle distortion detected by the strain level detector for the level in the frequency band detected by the strain level detector to be detected and the test signal level detector is above a fixed level Level judgment H to judge whether or not to stop signal transmission from Means stops the transmission of the lower ⁇ optical signal intermodulation distortion level against the level of the frequency band components Kenshin is judged as Ru because a constant level or higher Te by the level determining unit ⁇
  • the controller increases intermodulation distortion and stops the transmission of the degraded line signal.
  • the line communication system configuration is sufficient because it only needs to detect the level of a specific frequency. You can simplify
  • the relay apparatus further includes a test signal generation unit that generates an test signal
  • the second light transmission unit is a test signal generation unit.
  • the signal generated by the control unit is folded and the electric signal is converted into an optical signal, and the quality evaluation means is superimposed on the electric signal converted by the second optical receiver.
  • the level of the frequency component of the test signal being detected
  • the level of the test signal level detector and the second light receiver Converted by the second light receiver and superimposed on the electrical signal High wave of the test signal
  • the level of distortion is detected.
  • the level of high frequency distortion detected by the distortion level detection section to the level of the frequency band component detected by the distortion level detection section and the test signal level detection section is more than a certain level
  • the level determination unit has a level determination unit to determine whether or not the signal transmission stop means has a level determination unit to determine the level of harmonic distortion with respect to the level of the frequency band component of the test signal. It is judged that it is above Stop the transmission of the optical signal
  • control station can stop high-frequency distortion and stop the transmission of the degraded line signal, and the configuration of the line communication system can be simplified since it is sufficient to detect the level of a specific frequency.
  • the line signal is a signal used for the line LAN.
  • the optical wavelength for connecting the optical transmission line is all oblique polishing, and compared to the field ⁇ where other optical optical fibers are used.
  • the optical wavelength for connecting the optical transmission line is all oblique polishing, and compared to the field ⁇ where other optical optical fibers are used.
  • the neck is loosened, the light reflection to the light emitting element and the multiple reflection are prevented, and therefore the deterioration of the PP quality of the light signal is prevented.
  • FIG. 1 is a block diagram showing a configuration of a line communication system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of control device 10 shown in Figure 1
  • FIG. 3 is a block diagram showing the configuration of the relay clothes stand 20 shown in Figure 1
  • Fig. 4 A is a line based on the I IE E 8 0 2 • 1 1 a standard.
  • FIG. 8 is a diagram showing a spectrum of a line signal used by the repeater and received by the relay device.
  • Fig. 4B shows the lines L transmitted from the first and second line communication terminals using two channels separated by two channels.
  • Fig. 5 is a graph showing the relationship between the strength of the received signal in the middle mining equipment 20 and the distance between the middle equipment 20 and the wire communication terminal 30.
  • Fig. 6 is a block diagram showing a configuration of a control device 10a according to a modification of the first embodiment of the present invention.
  • Fig. 7 is a block diagram showing the configuration of the apparatus 20a according to a modification of the first embodiment.
  • Fig. 8 is a block diagram showing the configuration of a control device 1 Q b provided in the line communication system according to the second embodiment of the present invention.
  • Fig. 9 is a diagram showing the upper optical signal. Is a block diagram showing the formation of the control unit 1 0 c Figure 10 shows the input signal and light output input to the photon. It is a figure that shows the relationship with rabbits (Laser IL characteristics)
  • Fig. 11 is a block diagram showing the configuration of a control unit 10 d which can be realized by a line communication system according to a modification of the second embodiment.
  • Figure 12 is a block diagram showing the configuration of the control panel 1 0 e which adjusts the degree of light modulation by controlling the level of the light flow.
  • Figure 13 is a block diagram showing the configuration of the control device 1 • 0 f that adjusts the power of the lower light signal.
  • FIG. 14 is a block diagram showing the formation of middle 20 b provided in the line communication system according to the third embodiment of the present invention.
  • Figure 15 is a block diagram showing the formation of medium Ht 20 c provided in the line communication system according to the modification of the third embodiment,
  • 16 is a block diagram showing the configuration of the inner sheet device 20 d provided in the line communication system according to the fourth embodiment.
  • Figure 17 shows the detailed configuration of the nausea signal evaluation unit 2 1 4.
  • FIG. 18 is a block diagram showing the formation of a control unit 10 g provided in the line communication system according to the fourth embodiment of the present invention.
  • 1 9 is a block diagram showing the detailed configuration of the electric signal evaluation unit 2 14 e
  • Figure 20 shows the details of the electrical signal evaluation unit 214 f It is a block diagram
  • Figure 21 is a block diagram showing the formation m m of the control device 10 h according to the fifth embodiment
  • Fig. 22 is a block diagram showing a configuration of a control device 10 i provided in a line communication system according to a modification of the fifth embodiment ⁇ .
  • Figure 23 is a block diagram showing the formation of a control panel 10 j provided in the wire communication system according to the sixth embodiment of the present invention.
  • Figure 24 is a block diagram showing the formation of the middle lit device 20 f provided in the wire communication system according to a modification of the sixth embodiment ⁇ m.
  • FIG. 25 is a diagram showing the configuration of a communication system according to the seventh embodiment of the present invention.
  • FIG. 26 is a diagram showing the configuration of a wire communication system according to an eighth embodiment of the present invention.
  • Figure 27 shows the configuration of the line communication system in the mouth where five or more relay clothes are provided.
  • FIG. 28 shows a line communication system according to a ninth embodiment of the present invention.
  • FIG. 29 is a diagram showing the configuration of a line communication system according to Embodiment 10 of the present invention.
  • FIG. 30 is a diagram showing a configuration of a wire communication system according to a first embodiment of the present invention.
  • FIG. 31 is a diagram showing a wire communication system according to the 12th embodiment of the present invention.
  • 3 2 is a diagram showing the configuration of a line communication system provided with four relay units in the embodiment of 1 2
  • Fig. 3 3 is a diagram showing the configuration of a line communication system according to a thirteenth embodiment of the present invention.
  • Figure 3 4 is a diagram showing the configuration of the receiving antenna section 3 2 2 in Figure 3 3
  • Figure 3 5 is a graph representing the relationship between the strength of the received signal in the clothing store 32 and the distance between the media 32 and the line communication terminal.
  • 3 6 is a partial view of the ⁇ ⁇ * -line communication system according to the first to fourth embodiments of the present invention.
  • Reference numeral 3 7 is a partial view of a line communication system according to the first to fifth preferred embodiments of the present invention. Configuration of a receiving antenna section 3 2 2 y
  • Fig. 10 is a diagram schematically showing ⁇ ⁇ ⁇ and its reception range 3 7 y.
  • the m 3 8 is a partial view of the line communication system according to the 16th embodiment of the present invention and the structure of the receiving antenna 3 2 2 Z
  • Fig. 39 is a diagram showing the configuration of a line communication system according to a seventeenth embodiment of the present invention.
  • Fig. 40 is a diagram showing the configuration of an Art line communication system according to the eighteenth embodiment of the present invention.
  • Fig. 4 1 is a part of TIN ⁇ * line communication system in Fig. 4 0,
  • FIG. 4 2 shows the reception range of the reception antenna unit shown in Fig. 4 1 It's a formulaic figure.
  • Fig. 4 3 is a diagram showing the configuration of a conventional line communication system described in Japanese Patent Application Laid-Open No. Hei 9 2 3 3 0 5 0.
  • Fig.44 is a diagram showing the configuration of the conventional line communication system described in Patent No. 288514.3.
  • Figure 4 5 shows the I E E E 8 0 2 transmitted from the first and second line communication terminals using two adjacent channels.
  • Fig. 1 is a block diagram showing the configuration of a line communication system according to a first embodiment of the present invention.
  • the line communication system consists of a control unit 10 and a control unit 2 0 1 1 2 0 1 n (n • 1 or more natural numbers)
  • Control device 1 equipped with 4 ⁇ line communication terminal 3 0 1 3 0 1 n
  • the relay device 2 0-1 2 0-n are connected via the optical transmission line 4 0 1 4 0,-n, respectively, and the intermediate 2 0-1 2 0 1 n and the line Communication terminal 3 0-1 3
  • 0 n is connected to each other via a line
  • the route is, for example, an optical fiber
  • the control unit 10 and an external network are connected via an Ethernet (registered trademark) cable 60.
  • the control unit 10 and an external network h What is a cable? (Registration mark) Cable 60 It may be connected via a cable other than 0 (for example, 3 ⁇ 41 speech axis cable optical fiber)
  • Medium r-device 2 0 converts the line signal transmitted by the line communication terminal 3 0 into an upper light signal, and the control device 1 via the optical transmission line 4 0
  • the control device 10 transmitting to 0 converts the upper optical signal transmitted from the relay device 2 0 through the optical transmission line 40 into the upper electric signal and then recovers it. Registered quotient) Send to external network 7 via cable 6 0
  • control unit 10 converts the signal contained in the line communication terminal 3 0-1 to 3 0-m into a light signal and converts the signal into an optical signal and passes through the optical transmission line 4 0 1 to 4 0-n
  • the relay device that transmits to the IS location 2 0 1 1 to 2 0 ⁇ n 2 0 1 1 to 2 0 1 n receives the lower light tn
  • Fig. 2 is a block diagram showing a detailed configuration of control unit 10 shown in Fig. 1.
  • control unit 10 has a transmission signal.
  • Optical receiver 1 0 4 1 1 to 1 0 4 ⁇ and Received signal processor 1
  • the transmission signal processing unit 1 0 1 modulates the signal transmitted from the external network 7 via the cable ⁇ 0 of the ⁇ ⁇ -sanet (registered quotient) cable, and Output to transmitter 1 0 2
  • the optical transmission unit 102 converts the signal modulated by the transmission signal processing unit 101 into a downward optical signal, and outputs the optical signal to the optical distribution unit 103.
  • the optical distribution unit 1 0 3 branches the optical signal converted by the optical transmission unit 1 0 2 into ⁇ lower optical signals, and the optical transmission path 4 0 1 1
  • Optical receiver 1 0 4 1 1 to 1 0 4 ⁇ n is an optical transmission line 4 0 1 1
  • the received signal processor 1 0 5 has an optical receiver 1 0 4 1 1 1 4 4
  • the radio signal converted by n is recovered, and the received signal processing unit 1 0 5 transmits the recovered signal to the reception cable via a registration cable 60.
  • the received signal processing unit 105 may perform signal processing other than demodulation of the signal.
  • the signal processing may be performed, for example, by simple addition or delay processing. Reception, RAKE reception, amplitude adjustment, signal selection, etc.
  • FIG. 3 shows a detailed configuration of the relay apparatus 20 shown in FIG.
  • the relay device 20 receives the light A section 2 0 1, a line transmission section 2 0 2, a separation section 2 0 3, a transmission / reception antenna section 2 0 4, a line reception section 2 0 5 and a light transmission section 2
  • the optical receiver section 201 converts the lower optical signal into a lower electric signal when it receives the lower optical signal transmitted from the control device 10 via the optical transmission line 40 and transmits the lower optical signal again. Output to the level control unit 2 0 7
  • the level control unit 2 0 7 is, for example, an AGC (Au matic G ain C ontro 1) amplifier, and controls the level of the lower charge signal converted by the light receiving unit 2 0 1 to .
  • AGC Auto matic G ain C ontro 1
  • Line control unit 2 0 2 Output to level control unit 2 0
  • Line transmitting section 202 processes the under signal that is output from level control section 2.07 such as amplification and outputs it to separating section 20 3
  • the separation unit 2 0 3 outputs the bottom signal output from the line transmission unit 2 0 2 to the transmission / reception antenna unit 2 0 4.
  • the separation unit 2 0 3 receives the transmission / reception antenna unit 2 0 4 Output the received call to line receiver 2 0 5
  • the line receiver 205 performs processing such as amplification on the upper signal output from the separator 203, and outputs the processed signal to the optical transmitter 206.
  • the optical transmitter 2 0 6 outputs the signal from the radio receiver 2 0 5 It converts an electrical signal into an optical signal and sends it to the optical transmission line 40.
  • the transmit / receive antenna unit 2 0 4 is output from the separation unit 2 0 3
  • the transmitter and receiver antenna unit 2 0 4 sends an electrical signal to the air as a wire signal.
  • the line signal has a signal component 1 0 0 1, a signal leakage component 1 0 0 2 and a signal leakage component 1 0 0 3 shown in FIG. 4A.
  • a signal component with and • 1 '0 0 1 is a signal component that may be received by the relay device (TTRL)
  • the bandwidth is about 20 MHz at the end of the line communication, and the bandwidth is about 20 MHz.
  • the amplification is performed.
  • the -fctl- out-of-range frequency component of the transmit signal component is output in addition to the transmit signal component due to non-linearity.
  • Signal leakage component 1 0 0 2 is the outer band wave number component of signal component 1 0 0 1 and component leaking to the channel closest to signal component 1 0 0 1 (hereinafter referred to as adjacent channel)
  • the signal leakage component 1 0 0 3 is a band outer peripheral wave number component of the signal component 1 0 0 1 and leaks to a channel (hereinafter called the next adjacent channel) near the second signal component 1 0 0 1
  • each signal spectrum and parameter is defined as a fixed level.
  • the line signal modulation method is 6 4
  • the dynamic range of the peak is up to about 32 d B-and the leakage ratio 1004 is a signal leakage component 1002 and a signal component 1000
  • the level difference between 1 and 0 o Leakage ratio 1 0 0 5 is the level difference between signal leakage component 1 0 0 3 and signal component 1 0 0 1 and '.
  • the leakage ratio 1004 is about -25 dB or less.
  • the adjacent channel leakage ratio 1005 is about -40 dB or less.
  • d should be less than 3 dB in line signal, o i ⁇ ⁇ i ⁇ ⁇ ⁇ , It is not easy to keep the line signal's dynamic line below 3 dB or less, and it is not realistic, so it is impossible to use two adjacent channel signals.
  • Figure 4 B shows the first and second lines using two channels two channels apart m Send from the end
  • the solid line indicates the spectrum of the line LAN signal
  • the solid line indicates the spectrum of the signal a
  • the dotted line indicates the spectrum of the signal c.
  • the first channel A, the signal a transmitted by the line communication terminal, and the second channel c, the signal c transmitted by the remote communication terminal are signals of two channels separated from each other.
  • the signal a will be described as being interrupted by the components of the signal leaking from the signal c.
  • the signal a has a signal component 1 0 0 1 a and a signal leakage component 1 0 0
  • Signal component 1 having 2 a and signal leakage component 1 0 0 3 a
  • 0 0 1 a is the component of the base signal a received by the central station
  • fe W leakage component 1 0 0 2 a is an out-of-range frequency component of the signal component 1 0 0 1 a.
  • Signal leakage component 1003 a which is a component that leaks to an adjacent channel of 0 0 1 a, is an out-of-band frequency component of signal component 1 0 0 1 a and is a signal component.
  • Signal c which is a component leaking to the next adjacent channel of 1 0 0 1 a, has a signal component 1 0 0 1 c and a signal leakage component 1 0 0
  • a signal component 1 having 2 c and a signal leakage component 1 0 0 3 c
  • 0 0 1 C is the signal component of the signal c that the relay station should receive
  • ⁇ 1st item leakage component 1 0 0 2 C is the component of the signal that leaks to the adjacent channel of the signal component 1 0 0 1 c Signal leakage component
  • the D / U ratio 1006 is the leakage ratio from the next adjacent channel to the signal a In other words, it is the difference between the level of the signal component 1 0 0 1 a and the level of the signal leakage component 1 0 0 3 c
  • the level difference 1 0 0 7 indicates that the signal component 1 0 0 1 a
  • the next adjacent channel is used to secure 2 0 2 d 1 D 0 0 ratio of 1 0 0 6
  • the leak ratio is 40 d ⁇
  • the level difference 1 0 0 7 should be 1 8 d B.
  • the line signal received by the device is different. If the lens is 18 d B or less, the levels of signal a and signal c are less than 18 d B.
  • the level control unit 2 0 7 in the relay device 2 0 is configured so that the differential signal of the line signal received by the relay device 2 0 becomes 1 8 d-B or less. From the wire communication terminal 30 to the terminal of the line signal to be sent to the terminal e> Make sure that the line signal is transmitted by the relay device.
  • the relay device can communicate normally if the difference between the leak ratio to other channels and the D / U ratio in the channel is within a smaller range.
  • Fig. 5 is a graph showing the relationship between the strength of the received signal and the distance between the relay device 20 and the line communication terminal 30 at position 20.
  • the intensity of the line signal received by the device 20 is shown, and the horizontal axis is the distance between the inner clothes 2 0 and the end 3 0 of the line communication.
  • the strength of the line signal received by the medium unit 20 depends on the distance to the line terminal. For example, the line * line signal received at the medium hi unit is disturbed by the other channel. Tara ⁇ relay device 2 0 sends out to the end of line communication 3 0 The relay line signal path 7-is smaller than the relay
  • the relay device can adjust the existence of the communicable line communication terminal by adjusting the line signal to be transmitted to the line communication terminal. Therefore, the level of the line signal transmitted from the line communication terminal and received by the relay device can be kept within the range of the predetermined difference range, so that other channels can be received. If it is interfered with by the signal from ⁇ Line LAN signal consisting of multiple channels using the same file, it can communicate.
  • the optical transmission path 4 0 -1 is a single core consisting of two optical fibers.
  • Bi-directional transmission field ⁇ light transmission path 4 0-1 ⁇ consists of one core optical fiber, and in this embodiment, when the modulation method is 64 QAM Use the other modulation schemes Because the required DZU ratio becomes smaller ⁇ 13 ⁇ 4 channels, it is necessary to use the channels simultaneously.
  • distortion occurs when the level of the line signal received by the middle device is converted to a higher light signal.
  • the spacecraft device attenuates the level of the received line signal. It is possible to transmit optical signals of high quality by using even if
  • FIG. 6 is a block diagram of the control system 1 provided in the line communication system according to this modification.
  • Control device shown in FIG. 6, which is a block diagram showing the configuration of 0 a
  • the piggyback signal generator 1106 generates a piggyback signal and outputs it to the optical transmitter 1 02.
  • the microphone signal is a signal for controlling the level of the line signal transmitted from the repeater.
  • the signal level is lower than that of the line signal to be transmitted, and the level of the signal is received from the middle mining equipment.
  • the level of the signal is proportional to the level of the line signal.
  • the optical transmitter unit 102 causes the pilot signal generated by the pilot signal generation unit 106 to be superimposed on the lower signal output from the transmission signal processing unit 101, and the downstream light to be transmitted. Convert to signal
  • FIG. 7 is a block diagram showing the configuration of the intermediate device 20 0 a provided in the line communication system according to the present modification, and the intermediate receiver 20 a shown in FIG. 2 0 1 a, c, line transmission section 22 0, separation section 2 0 3 3, transmission / reception antenna section 2 0 4, line reception section 2 0 5, light transmission section 2 0 6 ,, Py DV ⁇ signal detection unit
  • FIG. 3 and FIG. 3 including the level control section 2 0 9 and the level control section 2 0 ' the same reference numerals are attached to the components as shown in FIG.
  • the optical receiver 20 1 a is connected to the control unit 1 via the optical transmission line 40.
  • the P / V signal detection unit 2 0 8 detects the level of the P / U signal superimposed on the lower electric signal, and detects the level of the detected low electric signal as the level control unit 2
  • the level control unit 2 0 9 that outputs 0 9 adjusts the level of the lower air signal to si.
  • the level control unit 2 0 9 which is output to the line transmission unit 2 0 2, is based on the level of the PV signal detected by the P / V signal detection unit 2 0 8, As the level of the low power signal is saved so that the level of the low power signal is always constant, the level control unit 20 9 makes the level of the low power signal relatively large. If it is smaller, the lower electric signal is amplified and vice versa
  • the control device transmits the signal from the relay unit and does not accurately demodulate the optical signal.
  • the range of the relay cloth may be narrowed. If the level of the line signal received from a telephone line terminal can be kept within a predetermined range, it may be blocked by the signal of another channel. ⁇ From multiple channels Communicate using the line LA N 'signal with the X'
  • FIG. 8 is a block diagram showing the 1 ⁇ configuration of the control device 10 b provided in the fn-line communication system according to the second embodiment of the present invention.
  • the transmission signal distribution unit is compared with the light distribution unit 1 0 3.
  • the middle lit apparatus 20 shown in FIG. 3 is the transmission signal processing in the m m bus control apparatus 10 b when the level control unit 2 0 7 is omitted.
  • Section 101 converts the signal received from the external network and outputs it to transmission signal distribution section 1 0 7
  • the transmission signal distribution unit 1 0 7 branches the signal converted by the transmission signal processing unit 1 0 1 into n pieces, and the transmission signal distribution unit 1 0 7 divides the distributed n signals.
  • Optical transmission unit 1 0 2-1 1 0 2 1 n is a transmission signal distribution unit 1
  • n lower optical signals are transmitted to each station.
  • one optical transmission unit outputs an electric power signal output from the transmission signal distribution unit 1 0 7 to the optical transmission unit 1 0 2-1 1 0 2-n. Because the level of the optical signal can be made smaller ⁇ it is possible to reduce the level of the iin * line signal transmitted by the relay station because the level of the lower optical signal is made ⁇ .
  • the control unit reduces the level of the optical signal transmitted to the relay unit, thereby derating the line signal transmitted from the middle mining unit to the line communication terminal. Since the available range of the wireless communication terminal that can communicate can be narrowed by t_
  • the line signal D transmitted by the relay device 20 and received by the repeater 20 is smaller than the line signal L. If the signal is interrupted by other channels, the line L consisting of a plurality of channels
  • the AN signal can be communicated using the same signal, and the branched lower power signal is converted to the lower light signal by the optical transmitter, so that it can be transmitted to one optical transmitter.
  • the level of the input electric signal is small ⁇ the level is large: distortion tends to occur when the electric signal is converted to the optical signal ⁇ optical transmission for converting the electric signal whose level is small in this embodiment.
  • the reliability of the light source (light emitting element) which the unit has can be improved, and an inexpensive light source can be used to handle an electronic signal with a low level.
  • an optical signal can be output from one light source. If the light source fails, the function of the system itself is lost. However, according to the present embodiment, when one light source fails, the function stops in the event of failure. It is only the light transmission unit that has that light source. Since only the function of the relay device corresponding to the optical transmission unit whose function has stopped can be stopped, the influence on the entire system can be reduced.
  • the n upper optical signals transmitted from each relay device are respectively received by the optical receivers 1 0 4-1 1 0
  • FIG. 9 which can be received by 4 n and can be received as ⁇ optical signals as a set of optical signals, it is possible to collect the upper optical signals as shown in FIG.
  • the control unit 10 c shown in FIG. 9 which shows the configuration of the control unit 10 C shown in FIG. 9 is a light wave section 1 in comparison with the control unit 10 shown in FIG. Contains 0 8 and controls
  • the optical ⁇ wave section 1 0 8 converts an upper light signal ⁇ transmitted through the optical transmission line 4 0-1 to 4 0-n into a single optical signal, Output to Receiver 1 0 4 0
  • the light receiving unit 104 converts the upper light signal multiplexed by the light wave unit 1 08 into an electric signal, and outputs the electric signal to the reception signal processing unit 1 0 5 o
  • the control device can collect a plurality of upper optical signals and receive them as one optical signal> Therefore, the optical receiver provided in the control device
  • the system configuration is simple because it requires only 1 and the system can be built at low cost. 0 Note that the wavelengths of multiple upper optical signals generate fields ⁇ and v h that are close to each other O When multiple upstream optical signals with close frequencies are received by a single optical receiver, the field ⁇ where frequency dips (bi) occur is 0 in this case.
  • the controller im adjusts the light variation of the light signal to be transmitted.
  • the degree of optical modulation is the degree of change in the amplitude of the carrier wave modulated by the optical signal.
  • FIG. 10 is a diagram showing the relationship between the input signal input to the light emitting element and the output power of light (laser IL characteristic).
  • Figure 1 In 0, the horizontal axis represents the current value of the input signal input to the photon, and the vertical axis represents the speed of the optical signal output from the light emitting element.
  • ⁇ I is the current value of the input signal
  • I b represents a bias current value
  • I th is a laser threshold (the lowest excitation level of the output) of the light emitting element (not shown)-the light flux is a light emitting element of the light transmitting unit
  • the bias current is a direct current for driving the drive, and the bias current gives centrality to the change of the transmission signal, which is an AC signal.
  • Fig. 1 1 is a block diagram showing the configuration of the control cabinet 10 d provided in the line communication system according to the present modification.
  • the control location 10 d is a transmission signal processing unit 1 0 1 d, optical transmitter 1 0 2 d, optical distributor 1 0 3 and optical receiver 1 0 4 ⁇
  • Received signal processing unit 1 0 5 d is an optical receiving unit 1 0 4-1 1 0
  • the subject and the viewer 1 0 9 evaluate the quality of the power signal output from the received signal processor 1 0 5 d, and the power signal is on another channel. It is judged whether the signal is disturbed by the channel or not, and the signal of the other channel leaks to the signal ⁇ 3 ⁇ 4 Signal ⁇ of the signal
  • the ⁇ -viewing unit 1 0 9 having degraded quality instructs the level control unit 1 1 0 to reduce the level of the input signal output to the optical transmission unit 1 0 2 d
  • the transmission signal processing unit 1 0 1 d outputs the modulated transmission signal to the level control unit 1 1 0.
  • the level control unit 110 controls the variable attenuator (not shown) or the visible amplifier (not shown) provided at the base of the optical transmission unit 102 to transmit the transmission signal.
  • the level control unit 1 1 0 outputs the signal whose level has been adjusted to the optical transmission unit 1 0 2 d.
  • the optical transmitter 1 0 2 d converts the transmission signal into a downstream optical signal
  • the light receiving unit 201 detects the average light receiving current flowing to the light receiving element, and from the value, the level of the line I, I, :: line signal, is detected.
  • the degree of modulation of light is changing
  • Figure 3 shows the level control unit 2 0 7
  • the controller controls the position of the line signal to be sent out from the station, but it can be received by the mining equipment. ⁇ : It is possible to control the lane ring of the line signal.
  • the controller evaluates the PP quality of the signal that is sent from the middle hi coat and sends it to the relay device if the quality of the upper signal does not meet the predetermined conditions. To reduce the level of the optical signal from the relay unit
  • the delay time of the line signal transmitted from the end of the line communication and received by the m device 20 will be small ⁇ and thus it will be disturbed by the other channel's signal. It is possible to communicate using a line LAN signal consisting of multiple channels using the same file.
  • control device generates an instruction to control the level of the line signal transmitted from the relay device, and transmits it as intermediate information to the intermediate device.
  • the level of the input signal to Although the method of controlling the light intensity has been described, the level of bias current may be controlled to adjust the degree of light modulation.
  • Figure 12 is a block diagram showing the configuration of the control device 10 e that adjusts the degree of light modulation by controlling the level of the noise current.
  • the control device 1 0 e shown in FIG. 1 2 includes a transmission signal processing unit 1 0 1, an optical transmission unit 1 0 2, an optical distribution unit 1 0 3, and an optical reception unit 1 0 4 1 1 to 1 0 4 — n, received signal processing unit 1 0 5 e, monitoring unit 1 0 9 e, and phase control unit 1 1 1
  • the transmission signal processor 1 0 1 is an optical transmitter that transmits the modulated transmission signal.
  • the monitoring unit 1 0 9 e receives the signal ⁇ from the reception signal processing unit 1 0 5 e.
  • the visual processing unit 1 0 9 instructs the bias control unit 1 1 1 to reduce the level of the heat flow output to the optical transmission unit 1 2 0 2
  • the light source control unit 1 1 1 In response to an instruction from the vision unit 1 0 9 e, the light source control unit 1 1 1 specifically reduces bias current input to the light emitting element of the light transmission unit 1 0 2
  • the bias control unit 1 1 1 controls the bias circuit (not shown) for driving the light emitting element to input the bias current to be input to the light element. Adjust the bias circuit (not shown)
  • the optical transmitter unit 10 2 transmits the received signal to the lower light signal.
  • the level of the bias current to be output to the optical transmission line 40 is reduced, so that the degree of light adjustment is reduced.
  • the lower optical signal output by 2 is reduced
  • the control system evaluates the quality of the signal transmitted from the relay clothing, and if the quality of the upper signal does not meet the predetermined conditions, it will transmit to the middle sheet 3 ⁇ 43 ⁇ 4:
  • the control system evaluates the quality of the signal transmitted from the relay clothing, and if the quality of the upper signal does not meet the predetermined conditions, it will transmit to the middle sheet 3 ⁇ 43 ⁇ 4:
  • the power of the line signal transmitted from the relay station to the line communication terminal is reduced, and communication becomes possible.
  • the possible range is narrow ⁇ d transmitted from the end of the line communication m Medium 20 2
  • the line coverage received by the line should be smaller than ⁇ d> but it may interfere with other channels' signals. Communicate with one another by using a single line LAN signal consisting of multiple channels.
  • Figure 13 is a block diagram showing the configuration of the control unit 1 0 f that adjusts the power of the lower optical signal.
  • Figure 1 3 shows the control unit 1 0 f is a transmission signal processing unit 1 0 1 And an optical transmitter 1 0 2 2 and an optical distributor 1 0 3 f and an optical receiver 1 0 4 1 1 1 0 4 ⁇ n and the received signal processor 1 0 5 and the viewer 1 0 9 f 1 1 1 1
  • the optical distribution unit 1 0 3 f outputs a downstream optical signal branched into ⁇ pieces to a variable optical attenuator 1 2 1-1 1 2 1-n described later.
  • a monitoring unit 1 0 9 f 1 1 1 0 9 f ⁇ n is the light receiving '.
  • Performance-Perimeter section 1 2 0 is a variable optical attenuator 1 2 1 1 1 2
  • variable light attenuator driver 1 2 2 and an optical transmitter
  • Variable optical attenuator 1 2 1-1 1 2 1-n is the light distribution unit 1 0
  • Variable light attenuation HP Drive unit 1 2 2 is monitoring unit 1 0 9-1 to ⁇
  • variable optical attenuator 1 is designed to reduce the 0 7 of the lower optical signal output from the optical distribution unit 1 0 3 according to the instruction of 0
  • the control unit sends it to the middle device. Reduces the power of the optical It is possible to reduce the bandwidth of the transmitted line signal
  • the line communication system detects that the quality of the optical signal is degraded, and the ⁇ line signal of the relay repeaters et al. Relates to the third embodiment of the present invention. Stop transmission of o The transmission and reception of HH ⁇ line signals of degraded quality may cause shadows on other communication devices and the human body. Therefore, communicate using line signals.
  • the pa quality of the line signal to be transmitted must be set in accordance with the official regulations stipulated in the Radio Law.
  • the line communication system is an optical signal.
  • Figure 14 is a block diagram showing the configuration of the storage unit 20 b provided in the line communication system according to this embodiment.
  • the relay clothing unit 20 b is an optical receiver 20 1 b, line transmission unit 2 0 2 b, separation unit 2 0 3 and transmission / reception antenna unit 2 0
  • the lower optical signal transmitted from the control station 1 0 through the optical transmission line 4 0 is converted to an electrical signal by the optical transmitter 2 0 1 b o
  • the optical transmitter 2 0 1 b is Output the converted bottom electrical signal to the line transmitter 2 0 2 b o
  • the light transmitting unit 2 0 6 b converts the upper electric signal output from the line receiving unit 2 0 5 into an upper light signal and outputs it to a light power plastic unit 2 1 0 described later o
  • the product evaluation unit 2 90 b has a light power plastic unit 2 1 0, an optical power detection unit 2 1 1 and a performance control unit 2 1 2
  • the optical power unit 2 1 0 transmits the optical signal converted by the optical transmission unit 2 0 6 b to the optical transmission line 4 0.
  • the optical power unit 2 1 0 is an optical transmission line 4 0
  • the light reflected from the light is output to the light beam detection unit 2 1 1
  • Light Ha 0 Wa detector 2 1 1 detects the level of light power plug unit 2 1 0 to the outputted reflected light, the level of the reflected light to determine whether Ru der on the predetermined value or more transmission An abnormality occurs in the path 40.
  • An optical signal is emitted to the optical transmission path 40.
  • the level of the reflected light increases.
  • the level of the reflected light is above the predetermined value.
  • the optical power detection unit 21 1 determines that an abnormality has occurred in the optical transmission line.
  • the power control unit 2 1 Point to 2 Send
  • ⁇ ° control unit 2 1 2 2 controls the transmission unit 2 2 0 2 b to stop transmission of line signal radio waves to the line communication terminal. More specifically, the puff control unit 2 1 2 is a line transmission unit 2 0 Turn off the power supply of 2 b or set the switch (not shown) of the signal path in the line transmission unit 202 b to o FF
  • the line signal and the roro quality are also defined in the wave method. Spear power and out-of-band radiated power that can not be satisfied when the specified conditions are met are considered to be the radiated power of unwanted waves outside the required frequency band other It is desirable that the incident power be as small as possible because it may disturb the communication equipment. Also, the allowable values for the spout power and out-of-band power may be determined by the Radio Law. transmission quality of the frequency relay device and that are specified in 2 0 the upper Ri optical signal reduced + in - stops transmission of the line signal
  • FIG. 15 is a block diagram showing the configuration of the relay device 20 c provided in the wire communication system according to the present modification.
  • 0 c denotes an optical receiver unit 201 C, a line transmitter unit 2022 c, a demultiplexing unit 203, and a transmission / reception antenna unit 2 0 4 And the line receiver unit 205, the optical transmitter unit 206c, and the ft evaluation unit 290c. Note that the same reference numerals as in FIG.
  • the optical receiver 20 1 c converts the lower optical signal sent from the optical transmission line 40 into an electrical signal and converts it into an electric signal and transmits it to the optical receiver 20 2 and a light reception detector 2 13 which will be described later.
  • the quality evaluation unit 2 90 c has a performance control unit 2 1 2 and a light reception puff detection unit 2 1 3
  • the light receiving part detecting part 2 1 3 detects a part V of the falling light signal received by the light receiving part 2 0 1 and judges whether the part of the falling light signal is equal to or more than a predetermined value.
  • Light reception level when the light signal power is less than the predetermined value-Detection unit 2 1 3 * is to stop transmission of edge signal puff control unit 2 1 2 pointing to puff control unit 2 1 2
  • the detection of the line signal is stopped in response to an instruction from the detection unit 2 1 3 or 2 b. Specifically, the control unit 2 1 2 turns off the power supply of the line transmission unit 2 0 2
  • the line control unit 2 1 2 When it is set to FF, the output of the wireline signal is stopped by the output.
  • the line control unit 2 1 2 outputs the line signal by turning off the path of the line transmitter 2 0 2 c by switching. May stop
  • the transmission quality of the optical signal is degraded. Therefore, when the abnormality in the optical transmission line is monitored, the transmission deterioration is detected indirectly.
  • the light receiving peak-the detection signal 2 1 3 Decreases after receiving the message on the device during
  • the relay apparatus may have a function of detecting the level of the optical signal transmitted from the control apparatus via the optical transmission line. There is no need to use complex detection circuits to measure spur emission and external radiation.
  • the equipment evaluates the quality of the electrical signal.
  • Fig. 16 is a block diagram showing the configuration of the relay station 20 d provided in the first communication system according to the present embodiment.
  • the relay device 20 d is an optical receiver 2 0 1 d, line transmission unit 2 0 2 d, separation unit 2 0 3 and transmission / reception antenna unit 2 0
  • the line transmitter 20 2 d carries out processing such as amplification on the lower electric signal converted by the light receiver 2 0 1 d, and then the demultiplexer 2.
  • P quality evaluation unit 2 9 0 d is power control unit 2 1 2 d and power 5 ⁇ Signal evaluation unit 2 1 4 and
  • Electric signal evaluation unit 2 1 4 is I I .:
  • FIG 17 shows the detailed configuration of the signal evaluation unit 2 1 4
  • the signal evaluation unit 2 1 4 is an n-nd pass filter-s (hereinafter referred to as B P F-s).
  • -S 2 5 1 is the frequency band of the transmission frequency band originally transmitted, and the transmission, and the corresponding frequency band, which removes the out-of-band frequency of the line signal B P F
  • the S 25 1 outputs the frequency component of the signal that has passed through to the level detection unit 2 5 3 1 1
  • the level of the signal output from P F 1 s 2 5 1 is detected and output to the level determination unit 2 5 4
  • the BPF 2 5 2-1 to 2 5 2-n passes the band outer wavenumber component of the line signal and outputs it to the level detection unit 2 5 3-2 to 2 5 3-n + 1. Note that BPF 2 5 2- 1 2 5 2- ⁇ let each different frequency pass
  • the level determination unit 2 5 4 is configured to detect the level of the frequency detected by the level detection unit 2 5 3-1.
  • the level of out-of-band frequency of the line signal Increase the level of the "irregularity" impact fe tirnc *.
  • the level judgment unit 2 5 4 instructs the control unit 2 1 2 to stop the transmission of the line signal.
  • the power control unit 2 1 2 stops the output of the line signal according to the instruction from the electrical signal evaluation unit 2 1 4 o Control unit
  • the level of the unwanted vehicle power to the level of the line signal is equal to or greater than a certain level in the medium device.
  • III The quality of the line signal meets the public condition.
  • control device is configured to lower the lower electric signal by superposing the IV * test signal. Convert to signals and send to relay equipment o Relay equipment evaluates the quality of the experimental signal received from the control equipment
  • the inner cover evaluates the intermodulation distortion of the test signal.
  • the intermodulation distortion is a signal that is generated when signals of multiple different frequencies are converted into an optical signal by the control device o Intermodulation distortion occurs due to nonlinearity in the IL characteristics of the light emitting device o
  • harmonics are generated other than the frequency of each fundamental wave.
  • Components such as the sum and difference of the frequency of the two main waves, the sum and difference of the frequency of the main wave and the frequency of the high wave, and the sum and difference of the frequencies of the two harmonics appear.
  • frequency components components other than harmonics
  • inter-variational P-period distortion two waves of frequency a and frequency b are used as light-emitting elements or amplification
  • the frequency 2 a-b generated by the frequency 2 a-b etc. as the input signal, intermodulation distortion etc. may disturb the main signal because it approaches the frequency of the main signal.
  • FIG. 18 is a block diagram showing the configuration of the control device 10 g provided in the present embodiment, the wireline communication system according to this modification.
  • g denotes a transmission signal processing unit 10 0, an optical transmission unit 10 2 g, an optical distribution unit 1 0 3, an optical reception unit 1 0 4 1 1
  • the experimental signal transmitter 1 1 2 generates a test signal to be superimposed on the lower charge signal, and outputs the signal to the optical transmitter 1 0 2 g.
  • the experimental i'm transmitter 1 1 2 generates an oscillation SG Have a and an oscillator SG one b
  • the oscillator S G-a generates an experimental signal a and an optical transmitter 10
  • Oscillator with a frequency of S test signal a output to 2 g as a
  • the optical transmission unit 102 g is output from the B-type test signal transmission unit 1 12 in response to the lower power signal output from the transmission signal processing unit 101. 'The experimental signal ab is folded and converted to the lower light signal. Next, the HIV transmitted from the control device 10 g, the relay signal to evaluate the experimental signal, is described.
  • the configuration of the middle device according to the example is the same as the configuration of the middle device 20 d shown in FIG.
  • FIG. 19 is a block diagram showing the detailed configuration of the signal evaluation unit 214 e.
  • the signal value unit 21 is a block diagram.
  • B P F-a public hall set-a
  • B P F-b bandpass filter-(2 a-b)
  • F ⁇ a 2 5 5 is a level detection unit 2 for the passed i test signal a
  • Level detection unit 2 5 3-1 that outputs to 1 detects the level of test signal a and outputs it to level judgment unit 2 5 4
  • B P F-(2 a-b) 2 5 6 passes the mutual distortion frequency (2 a-b) and outputs it to the level detection unit 2 5 3-2
  • the level determination unit 2 5 4 e is based on the level detection unit 2 5 3-1
  • the test signal a determines whether or not the level of the mutual distortion detected by the level detection unit 2 5 3-2 with respect to the level of the test signal a detected is equal to or higher than a predetermined level
  • the port level determination unit 2 5 4 e instructs the control unit 2 1 2 to stop transmission of the line signal.
  • the power control unit 212 stops the output of the ⁇ ull.lj line signal in response to an instruction from the electrical signal evaluation unit 21.4.
  • the medium position is transmitted from the control device to the
  • ⁇ harmonic wave is a component of a frequency that is an integral multiple of the fundamental frequency For example, if a signal of frequency a is input to a non-linear circuit, distortion occurs and the frequency 2 a or ⁇ ⁇ Signal transmission where a high frequency of frequency 3 a is output at frequency a
  • the signal transmission unit 1 1 shown in Fig. 8 1 Since only one type of experimental signal can be sent from the ⁇ control device to the middle device, the signal transmission unit 1 1 shown in Fig. 8 1
  • the air signal evaluation unit 2 1 4 e shown in FIG. 1 9 may have a pan pass filter 2 a that passes the frequency 2 a instead of the BPF ⁇ (2 a ⁇ b) o
  • Figure 20 is a block diagram showing the configuration of the electric signal evaluation unit 214 f o Detecting harmonic distortion o
  • the relay device 20 d shown in Figure 16 is a part of the electric signal evaluation unit 214 Instead of figure
  • the signal evaluation unit 2 1 4 f includes a signal evaluation unit 2 1 4 f.
  • the electric signal evaluation unit 2 1 4 f is a bandpass filter.
  • PF 1 a band pass filter 2 5 5
  • BPF 2 a band pass filter 2 5 7
  • level detection unit 2 5 3-1 to 2 5 3 1 It consists of 2 and the level judgment unit 2 5 4 f o
  • BPF-a 2 5 5 passes the B test signal a at frequency a To remove out-of-band frequencies of the 33 ⁇ 4 experimental signal a and
  • F 1 a 2 5 5 is a level detection unit 2 for passing the test signal a
  • the level detection unit 2 5 3-1 which outputs to 5 3 1 1 detects the level of the test signal a and outputs it to the level judgment unit 2 5 4
  • B P F 2 a 2 5 7 passes high frequency distortion frequency 2 a and outputs it to the level detection unit 2 5 3-2
  • the level determination unit 2 5 4 f is a harmonic detected by the level detection unit 2 5 3-2 with respect to the level of the test signal a detected by the level detection unit 2 5 3 -1.
  • Judge whether the level of distortion is above a fixed level ⁇ When the level of high frequency distortion with respect to the level of the test signal a becomes above a fixed level, the level judgment unit 2 5 4 e C, stop the transmission of the line signal and instruct the control unit 2 1 2
  • Control unit 2 1 2 d stops the output of line signal according to the signal from electric signal evaluation unit 2 1 2 4 The concrete operation of 2 1 2 d is shown in Fig. 1 Control unit shown in 5
  • the relay apparatus evaluates the harmonic distortion of the test signal i transmitted from the control device, and the level of the harmonic distortion with respect to the level of the test signal is Stop transmission of radio signals when the level exceeds a certain level. This can prevent the transmission of a white signal with degraded temperament.
  • the relay unit has clarified about ⁇ for evaluating the ⁇ quality of the line signal or the light signal. Position ⁇ of their signal
  • the control panel will evaluate the quality of line signals or light signals.
  • Fig. 21 is a block diagram showing the configuration of the control device 10 h provided in the wire communication system according to the fifth embodiment.
  • M 2
  • control unit 1 0 h includes the transmission signal processing unit 1 0 1, the light transmission unit 1 0 2 h, the light distribution unit 1 0 3 and the light reception unit 1 0.
  • Optical transmitter section 102 h is transmitted from an external network '> signaled
  • Light signal is converted to a lower light signal, and the light power
  • the quality evaluation unit 2900 has an optical power unit 1 1 3, an optical detection unit 1 1 4 and a power control unit 1 1 5
  • the optical power unit 1 1 3 outputs the light signal from the upper side to the light distribution unit 1 0 3 and outputs the light reflected from the light transmission path 4 0 to the light detection unit 1 1 4.
  • the light beam-detection unit 1 1 4 detects the puff of the reflected light output from the light power plastic unit 1 1 3 3 and sends the light signal under the condition that the light intensity of the reflected light exceeds a predetermined value. Stop 7 Instruct the control unit 1 1 5
  • the control unit 1 1 5 controls the light transmission unit 1 2 0 h to stop the transmission of the lower light signal. Specifically, the control unit 1 1 5
  • the middle Hi device has a configuration in which the relay clothes placement and quality evaluation unit 2 90 b shown in FIG.
  • the present embodiment it is possible to stop the transmission of the optical signal from the control device at n when an abnormality occurs in the optical transmission line, but a line which does not satisfy the public condition.
  • the configuration of the system can be simplified because it is only necessary to detect the reflected light at the control station without signals being transmitted from the middle device.
  • FIG. 2 is a block diagram showing the configuration of a control device 10 i according to a modification of the fifth embodiment.
  • control device 1 0 i is the transmission signal processing unit 1
  • the light distribution evaluation unit 2 90 i outputs an optical distribution unit 1 0 3 i to n variable optical attenuators 1 2 1-1 to 1 2 1-n, which will be described later.
  • Reception part detection unit 1 1 6 — 1 to 1 1 6 — n is the light receiving unit
  • 1 0 4-1 to 1 0 4 n detects the power of the received upper light signal and judges whether the power of the upper light signal is equal to or greater than a predetermined value.
  • 1 1 6 ⁇ ⁇ is the field ⁇ when the power of the upper light signal has not reached a predetermined value, and the light control signal is controlled so that transmission of the lower light signal is stopped variable light attenuation 1 2 1 ⁇ 1 to 1 2 1 ⁇ n is the light distribution unit 1 0
  • control unit 1 1 5 is a light receiving part ' ⁇ ⁇ detection part 1' ⁇ '6-1 ⁇
  • the transmission of the lower light signal can be stopped.
  • 1 2 1 1 to 1 2 1 ⁇ n controls the amount of attenuation of the lower light signal and stops the output of the lower light signal. Stop transmission of the bottom signal only to the generated optical transmission path. For example, when the power of the top optical signal detected by the light reception detection unit 1 16-2 is less than a predetermined value. 7 1 1 The control unit 1 1 5 controls the variable optical attenuator 1 2 1-2 and stops the transmission of the downward optical signal to the optical transmission line 4 0-2
  • control unit may have a function to detect the level of the optical signal transmitted from the control unit through the optical transmission line.
  • Figure 23 is a block diagram showing the configuration of the control device 10 j according to the sixth embodiment of the present invention o
  • control signal 1 0 j is a transmission signal processing unit 1
  • Received signal processing unit 1 0 5 j is an optical receiving unit 1 0 4-1 1 0
  • the quality evaluation unit 2 90 j has a performance control unit 1 1 5 and a signal evaluation unit 1 1 7
  • the signal 5 ⁇ 1 evaluation unit 1 1 7 is an input signal output from the reception signal processing unit 1 0 5 j.
  • Fig. 1 7 corresponds to 1 4, detailed explanation is omitted. Do.
  • the power control unit 1 1 5 is shown in FIG.
  • the power control unit 1 1 5 corresponding to 2 is a 3 ⁇ 4 signal evaluation unit 1
  • the relay station according to the present embodiment iii is shown in Fig. 14.
  • the configuration from the relay station to the quality evaluation unit 2900 will be abbreviated as follows. It is judged whether the level of unwanted radiation power with respect to the level of the transmitted signal is above a certain level. For example, if an abnormality occurs in the optical transmission line, the quality of the upper signal is degraded. o If you send a down signal to the middle device and send it to the device, it will transmit a degraded line signal ⁇ The control device will go down when the signal quality of the upper signal is lowered Stop sending the signal but the Tttf line signal which does not meet the public condition is not sent from the middle
  • the relay clothing superposes the test signal and converts it into an optical signal and controls it.
  • O Control device to send to the device evaluates the quality of the test signal received from the middle device
  • Fig. 24 is a block diagram showing the configuration of the relay m 20 f provided in the iHI * line communication system according to this modification.
  • Optical receiver unit 201 f 1 UH.
  • the optical receiver 2 0 1 f outputs the converted lower signal to the line transmitter 2 0 2
  • the experimental signal transmission unit 2 1 5 generates an experimental signal to be superimposed on the upper electric signal transmitted from the relay device 20 f, and outputs the experimental signal to the optical transmission unit 2 0 6 f 2 1 5 has an oscillator SG-a and an oscillation SG one b
  • the oscillator S G--a generates an experimental signal a and an optical transmitter 20
  • Oscillator with frequency of test signal a output to 6 f as a
  • test signal transmission unit 2 1 5 is shown in FIG. Equivalent to the test signal transmitter ⁇ 1 1 1 2 ⁇
  • the optical transmission unit 2 06 f superimposes the test ab output from the test signal transmission unit 2 15 on the upper charge signal output from the H and edge receiving unit 2 0 5 Convert to upper light signal
  • the configuration of the control device according to the present example of the present invention which will be described in the case of the control panel to be evaluated, transmitted from the central processing unit 20 0 f will be described with reference to FIG.
  • the configuration is the same except for the configuration of the signal evaluation unit.
  • the 1-value part of the electric signal is a 3rd grade experiment ⁇ 3 ⁇ 4 Instructs the PA control unit 1 1 5 to stop the transmission of the falling optical signal when the level of mutual distortion for the issue level exceeds the fixed level.
  • the controller evaluates the intermodulation distortion of the test signal transmitted from the center station, and the level of the intermodulation distortion with respect to the level of the test signal is greater than the predetermined level. o By stopping the transmission of the light signal from the bottom of the mouth, it is possible to prevent the transmission of the line signal of degraded quality from being transmitted.
  • the control device is The configuration of the signal evaluation unit of ⁇ ⁇ ⁇ can be evaluated as shown in Fig. 20 for the evaluation of the mutual distortion and the harmonic distortion as in the case of the example of the fourth embodiment.
  • Signal evaluation unit 2 1 Signal evaluation unit 2 1
  • the control position is the same as that of 4f, and in the present modification, the control signal is transmitted from the middle k.
  • Evaluation of harmonic distortion When the level of intermodulation distortion or harmonic distortion with respect to the level of the test signal exceeds a fixed level, the transmission of the line signal is stopped, and the quality of the o ⁇ n is degraded.
  • intermodulation distortion or high-frequency distortion that prevents transmission of line signals, for example,
  • the ill line communication system is a place to communicate using a line LAN signal.
  • the communication system can be used as a retransmit system for emission control of a nondisruptive area.
  • it is generally the upper signal. Therefore, it is considered unnecessary to evaluate the quality of the signal of the upper system as described in the fifth embodiment, the formability and the sixth embodiment.
  • it is possible to use the wire communication system according to the third and sixth embodiments.
  • the beveled surface is the most suitable for the 3 phase set which is most suitable. Since the reflection Te smell occurs PC Ne-click evening like calling 'place multiple reflections ⁇ reflection occupied there is more than one light reflection occurs to the optical element in the - the signal ⁇ quality to ⁇ occurred deteriorated
  • the line communication system according to the third and sixth embodiments is a system that can communicate with line signals from multiple channels in the same program. It is useful as a LAN service, etc., within the office building.
  • the line communication system according to the third and sixth embodiments can also be applied to the use of trains and aircraft nets 7 etc. and retransmit systems for the blind area countermeasure of broadcast waves.
  • the signal level of the line signal to be transmitted to the line communication terminal is set to a predetermined value.
  • the line communication system according to the first and second embodiments the line communication system according to the first and second embodiments of the present invention will be described. It is necessary to have multiple relay devices in order to power a wide communication range to be narrowed.
  • the length of the optical transmission path connecting each core and the control unit is different from that of multiple relay units.
  • a difference in delay time until radio signals transmitted by one wire communication terminal transmitted through different transmission paths received by a plurality of relay devices reach control device 31 is generated. Signals may interfere with each other (multipath interference) and the communication quality may deteriorate.
  • FIG. 25 is a diagram showing the configuration of a line communication system according to a seventh embodiment of the present invention.
  • the line communication system comprises a control unit 10 and a relay unit 2 0-1 2 0-2 and line communication terminal 3 0
  • the line communication terminal 30 and the middle device 2 0-1 2 0-2 are connected to each other by a wire.
  • the control device 10 according to the present embodiment has the same configuration as the control device according to the first embodiment or the second embodiment. Illustrates only the basic configuration of
  • control language 1 0 includes the signal processing unit 1 6 1, the electric light conversion unit ( ⁇ / ⁇ ) 1 6 2, and the photoelectric conversion unit (o / E)
  • the signal processing unit 1 6 1 includes, for example, a transmission signal processing unit shown in FIG.
  • the m air-to-light conversion unit 16 2 corresponds to the light transmission unit 10 0 2 s shown in FIG.
  • the light branching portion 1 6 4 corresponds to the light distributing portion 1 0 3 and the light wave portion 1 0 8 shown in FIG.
  • the light branching port 1 6 4 is the air-to-light converter 1 of the controller 10
  • the lower optical signal output from 6 3 is branched, and the optical transmission path 4 0 1
  • optical branch unit 1 6 4 transmits to 1 and 4 0-2 via the optical transmission line 4 0-1 4 0-2 and the relay apparatus 2 0-1,
  • the super-optical signal transmitted from 2 0-2 is output to the-conversion unit 1 6 3 of the control unit 1 0
  • the relay device 20-1 When the relay device 20-1 receives an optical signal transmitted through the transmission path 401, it converts the received optical signal into an electric signal, and transmits / receives the signal as a line signal. Antenna section 2 7 5 1 Send from 1 case
  • relay device 20-1 is the first embodiment. Control according to the form or the second embodiment
  • the level adjustment unit 2 0 3 1 has the same configuration, but the level adjustment unit 2 7 2 7 4 is additionally included in the clothing arrangement 2 0-1, the level adjustment unit 2 7 3 2 7 4
  • the other configuration is the same as in the first embodiment and the second embodiment, and therefore only the basic configuration of relay device 20-1 is shown in FIG. 25.
  • the inside of the inside 2 0 1 1 is a photoelectric device
  • the photoelectric conversion unit 2 71 corresponds to the light receiving unit 201 shown in FIG. 3 and converts the lower light signal transmitted from the light transmission line 401 into an electrical signal. Output to level adjustment section 2 7 3
  • the level adjustment unit 2 7 3 is, for example, a variable gain amplifier or a variable attenuator, and level adjustment for adjusting the level of the lower signal converted for the photoelectric conversion unit 2 7 1
  • the lower power signal whose level has been adjusted by section 2 7 3 passes through a radio transmitter section or separation section (not shown), and as a line signal, whether it is a transmission / reception antenna section 2 7 5 1 To be sent
  • Level adjustment unit 2 7 4 Having the same function as level adjustment unit 2 7 3, adjusts the level of the signal received by the transmitting and receiving antenna 2 Output to 2
  • the electric light conversion unit 2 72 2 corresponds to the light transmission unit 2 06 shown in FIG. 3, and the line signal received by the transmission / reception antenna unit 2 7 5 -1 is converted into an optical signal. Tip. Convert and send to optical transmission line 4 0-1
  • control device 10 when the control device 10 receives an optical signal sent vs. through the optical transmission line 40-1, the control device 10 restores the optical signal to a signal form for connecting to the external network.
  • the transmission / reception antenna unit is installed so that the wireless communication range of the transmission / reception antenna unit overlaps with the line communication range of the adjacent transmission / reception antenna unit. Therefore,
  • the II line communication terminal 3 0 has a line communication range 2 7 6-1 and 2 7 6 2 are located in the overlapping area
  • Line communication terminal 3 0 has the signals branched by the light branching portion 1 6 4 as central devices 2 0 1 and 2 0-2 When receiving via both
  • Control time is calculated by summing up the propagation time T (L o a) and the propagation time T (LW a) for the -' ⁇ ⁇ line signal to propagate in the ⁇ ⁇ * line communication range 2 5 6 a
  • the signal transmitted from position 1 0 passes through the medium HE device 2 0 1 2
  • a N system generally has a delay time difference of 2
  • the delay time difference is set to 20 0 ⁇ s.
  • the delay time difference of the line signal in the transmission line is set to 100 ns in the relevant system.
  • the possible delay time 'difference of 100 ns is about 20 m in terms of optical path length difference, and therefore the' signal 'in a line transmission line where the optical path difference exceeds 20 m.
  • the propagation time T (L o a) and the propagation time are required to eliminate the difference in delay time until line signals transmitted from multiple reception antennas reach one wireless communication terminal.
  • the level adjustment unit 2 7 3 controls the gain by adjusting the level of the line signal transmitted from the transmission / reception antenna unit 2 7 5 -1.
  • Line communication range 2 7 6-1 Forming relay station 2 0-2 Similarly, the level provided in middle it m 2 0 2
  • the line communication range 2 7 6-2 is formed by rotating the level of the line signal transmitted by the adjustment unit 2 7 3 five times.
  • the propagation speed of the optical signal propagating in the optical transmission path is 15 times the propagation degree of the line signal propagating in the air.
  • the directivity of each receiving antenna unit is adjusted to form the receiving range 2 7 6 1 2 7 6 2 so as to satisfy the relational expression. Specifically, the inclination angle of each receiving antenna unit is changed. Adjust the directivity by changing the spread angle of the directivity of each receiving antenna unit.
  • L wa ⁇ L wb 4 5 can be obtained from the equation (2) according to equation (2). 7 6 If the radius of 1 0 0 0 m wire communication range 2 7 6-2 is 5 5 m etc.
  • the level adjustment unit 2 7 4 adjusts the level of the line signal input to the electro-optical conversion unit 2 7 2 in the jnj-like manner.
  • the line communication section can be enlarged by using a plurality of middle devices, and by adjusting the gain, a plurality of line communication terminals can be obtained.
  • the line transmission line and the optical transmission line The delay time difference of each signal can be kept within a predetermined time to prevent signal degradation due to multipath interference.
  • the difference in delay time of the signal can be made to be within a predetermined time phase by adjusting the gain to 5 cycles similarly for the signal of the upper system. Therefore, even when a line signal is received by a plurality of transmission / reception antenna units, the difference in delay time of each line signal in the line transmission path and the optical transmission path can be accommodated within a predetermined time.
  • Figure 26 is a diagram showing the configuration of the line communication system according to the present embodiment.
  • the line communication system shown in Figure 26 is the ulIT according to the seventh embodiment shown in Figure 25. When compared to the system, they are mutually related in that they have middle units 2 0-3 and 2 0 14 in addition.
  • the relay station 2 0-3 and the control unit 1 0 are the optical transmission line 4 0-
  • Relay position 2 0-1? 2 0-2 is the relay station 2 0-3 2
  • a set 10 includes components for transmitting different 2 frequencies.
  • the control unit 10 includes a signal processing unit 1 6 1 a 1 6 1 b and an electro-optical conversion unit 1 6 2 a, 1
  • the control device 10 shown in FIG. 26 includes the 6 2 b, the light conversion unit 1 6 3 a 1 6 3 b, and the light branching and combining unit 1 6 4 a 1 6 4 b. Only the basic configuration is illustrated in the control panel 10 and
  • the signal processing unit 1 6 1 a transmits the signal transmitted from the external network via the Ethernet cable (registered) cable 6 0-1 and the lower signal.
  • the bottom signal is
  • ⁇ 3 ⁇ 4i conversion unit 1 62 2 a Converts the downward light signal by the t-branching D unit 1 6 4 a and outputs it to the light branching unit 1 6 4 a and the lower light signal Branch and send to optical transmission line 4 0-3 4 0-4
  • the signal processing unit 1 6 1 b is a digital signal processor.
  • a signal transmitted from an external wire via cable 6 0-2 is converted to a lower power signal, and the lower power signal is converted by the electro-optical conversion section 16 2 b.
  • Light branch signal is converted to the t-branch ⁇ part 1 6 4 b and output to the t branch ⁇ part 1
  • relay unit 20 1 3 2 0-4 The configuration of relay unit 20 1 3 2 0-4 is similar to that of relay unit 2 0-1 2 0-2 shown in Fig. 2 5, so the description is omitted.
  • Line communication range 2 7 6 1 3 formed by 3 is a relay device 2 0 1
  • the symbol 6-3 is formed by the transmission / reception antenna 2 75 1 of the relay device 2 0-4 c, overlapping with the line communication range 2 7 6-4.
  • 3 ⁇ 4 S light conversion unit 1 62 2 a and electro-optical conversion unit 1 62 2 b convert the air signal converted at different frequency into an optical signal and output the relay device 2 0 ⁇ 2 and the medium Hk device 2 0 1 3 3 transmit relayed ⁇ * line signals at different frequencies to the 13 ⁇ 4 communication terminal, and hence relay equipment If the line communication terminal exists in the area where the line communication range 2 7 6-2 formed by the station 2 0-2 and the line communication range 2 7 6-3 formed by the relay device 2 0-3 overlap. Even in this case, the frequency of the line used for communication is different, so multiple interference does not occur o
  • each level adjusting section 2 7 3 transmits a line to an area where the line communication sections overlap with each other. Adjust the gain so that the delay time of the signal falls within the specified time o And also in the same way 2 0-3 and relay equipment 2 0-
  • each level adjustment section 2 7 3 adjusts the gain so that the delay time 'of the line signal transmitted to the area where the line communication sections overlap with each other will fall within a predetermined time.
  • the line modulation signal it is possible to use frequency division multiplexing or code division multiplexing, etc.
  • frequency division multiplexing 2 0-1 2 0-2 and intermediate units 2 it can be said that the line signal received at a frequency different from that of the set of 0 1 3 2 0 1 4 should be used.
  • the two sets communicate using different frequencies, respectively, and by adjusting the gain by 0, the line communication terminal
  • the delay time difference between each line signal in the line transmission path and the optical transmission path may be within a predetermined time. It is possible to prevent signal degradation due to multis interference.
  • the delay time difference of the signal can be brought into a predetermined time phase by similarly adjusting the gain by P for the upper signal.
  • the delay time difference between the respective line signals in the line transmission path and the optical transmission path is set to a predetermined value. It will be possible to fit in time
  • the relay device can be any type of the relay device.
  • Fig. 27 is a diagram showing the configuration of the edge communication system when there are five or more repeaters ⁇ .
  • Fig. 26 shows the connection of the optical communication system shown in Fig. 26.
  • the optical transmission line branched from the port 1 6 4 b is 2 lines of the optical transmission line 4 0-1 4 0-2, while in the case of the line communication system shown in FIG. Branching the optical transmission line further from 1 6 4 b
  • An optical branching unit 1 6 4 c is connected to the optical transmission line branched off from the optical branch line SH 1 6 4 b
  • the connection part 1 6 4 c is an optical branch that splits the optical transmission path 4 0-5 and the optical transmission path 4 0 6 branched by the optical branch port 1 6 4 b.
  • a relay device 2 0 1 5 5 is connected to the optical transmission line 4 0-5 branched by the Polo sigma unit 1 6 4 c, and the middle of the optical transmission line 4 0-6 2 0-6 are connected
  • Line communication range 2 7 6 1 5 formed by 5 is a relay device 2 0 1
  • 6-5 are the transmitting and receiving antenna units of the relay device 2 0-6 2 7 5-
  • a line connecting the medium equipment 2 0-5 and the relay 2 0 16 that transmits the line gray scale signal is also a medium that transmits between the medium equipment 2 0 1 5 and the relay equipment 2 0-6 Adjust the signal level ⁇ m
  • the communication signal level from the position 2 0-1 is 2 0 1-2 and the signal level from the relay station is 2 0 1 5 1-
  • the received signal level difference from 6 be equal to or greater than the specified value.
  • an optical transmission line 4 0-1 4 0-6 is used to transmit a desired line signal from a desired middle ore coating.
  • communication may be performed using a wavelength division multiplexing method in which waves for each line signal are multiplexed to one optical transmission line.
  • frequency modulation is used for the line modulation method, it is recommended to provide a band and a bus filter that allow only the desired frequency band to pass through each device.
  • the line communication system according to the ninth embodiment to be described in the following ninth embodiment of the present invention comprises three or more relay devices as in the eighth embodiment, but the line communication system comprises ⁇ Store communicates using all frequencies. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • m 2 8 is a diagram showing the structure of the line communication system 'D'm in the present embodiment, and in FIG.
  • the transmitting and receiving antenna unit 2 0 2 has 2 7 7-1 2 7 7 2 2 as shown in Fig. 25 with the other components consisting of a directional antenna with directivity in the diagonal direction.
  • the same reference numerals are given to the components shown in Figure 25 and Figure II, and the explanation will be omitted.
  • the signal optically distributed from the control device 10 is relay device Ifnt as the same reception level via 2 0 1 1 and 2 0-2
  • Each directivity antenna 2 so that the sum of T (L w b) matches.
  • the directivity of 7 can be adjusted by changing the installation angle or keeping the spread angle of the antenna longer.
  • a speaker with a length difference of 30 m is also possible. Also, for example, a speaker with a length difference of 30 m.
  • the delay time difference between the line signals in the A 1 rt f transmission line and the optical transmission line can be accommodated within a predetermined time. ⁇ It is possible to prevent 1S degradation due to multipath interference o
  • the directivity of the antenna is adjusted by changing the placement angle and the spread angle of the antenna.
  • the gain adjustment by the TF unit is not necessary.
  • the repeater does not have the level adjustment unit.
  • the design angle and the spread angle of the antenna should not be changed.
  • the gain of the transmit / receive antenna unit can be controlled simply by adjusting the gain by the level adjustment unit.
  • FIG. 29 is a diagram showing the configuration of a line communication system according to the tenth embodiment of the present invention.
  • the same reference numerals as in FIG. 25 are used.
  • the relay clothes 2 0-1 to 2 0 3 are distributed by the optical branch ⁇ portion 1 6 4 a 1 6 4 b.
  • the light branching ⁇ part 1 6 4 a, 1 6 4 is an optical transmission line that splits one transmission line into two.
  • a light branching port is connected to the lamp, and another light branch TO or position is connected to the other lens.
  • each middle unit 2 0 As a method to reduce the difference in optical transmission line length between control cabinet 1 0 and each middle unit 2 0 to a fixed length or less, for example, transmit the optical transmission line to the inside or outside of each middle unit 2 0
  • a pre-processing unit that adds a predetermined delay time to the optical signal to be transmitted.
  • the optical transmission line has a length that corresponds to the delay time to be given to the signal, while the optical transmission line that has a short optical transmission line length.
  • the pre-length processing unit may be added to the inside of the middle unit 20.
  • a pseudo optical delay line for example, grating
  • the line LA signal of I line 80 2 • 1 1 a is generally a system that allows a communication range of about 5 hundred meters, for example, light
  • the fiber length is set to a distance of 300 meters and a radius of about 100 m to the air line.
  • the delay time difference between each of the: 1111 line signals in the line transmission line and the optical transmission line can be accommodated within a predetermined time. It is possible to prevent deterioration of the signal due to interference, and if a pre-length processing unit or a pseudo optical delay line is provided, it is possible to adjust the gain and to keep the delay time difference of the signal within a predetermined time. Do not place a level 1 adjustment section on each relay clothing station. ⁇ Right
  • the line communication system may be equipped with more than four relay clothes.
  • the line communication system according to the eleventh embodiment of the present invention will be described.
  • the line communication system according to the present embodiment is the same as the line communication system in which the middle device is connected to the scan type.
  • FIG. 30 is a diagram showing the configuration of a wireless communication system according to a first embodiment of the present invention.
  • the same components as in FIG. Add a sign to omit the light and simplify the figure
  • the light branching junctions provided inside the 1 0 may be disposed in the light transmission path. 1 1 part of the light branching junction 1 is divided into a plurality of light transmission paths 4 0-1 0 ⁇ Each relay device 2 0 1 2 0 ⁇ 3 that branches into 3 is an optical transmission line 4
  • the number of distributed optical signals should be less than the desired number and the number of distributed optical signals should be greater than that, and it is desirable to end idle ports and increase the number of repeaters.
  • control device 1 the control device 1
  • the optical transmission line length from 0 to each relay box 2 0 should be a fixed length or less, or the delay that the line communication system allows the difference in signal delay time to occur in the optical transmission line and the line transmission line.
  • the delay time difference between the respective line signals in the light * line transmission line and the optical transmission line can be accommodated within a predetermined time. Mouth of path interference
  • the delay time difference between signals can be kept within a predetermined time if the gain is adjusted. Do not place a level adjustment unit at each relay station.
  • the line communication system can have four or more relay devices.
  • FIG. 31 is a diagram showing the configuration of a line communication system according to a twelfth embodiment of the present invention.
  • the same reference numerals as in FIG. 26 are attached to the same components in FIG.
  • the lower optical signal is transmitted through the light transmission path 40 1 2
  • the lower light signal output from the electro-optical conversion section 16 2 b is transmitted to the medium fiber device 2 0-1 via the optical transmission line 40 1.
  • the communication range 2 7 5 1 formed by the receiving antenna 2 7 5 1 in the middle im device 2 0 1 is the line communication range formed by the receiving antenna 2 7 5 2 2 in the middle device 2 0 2 Overlap with part of 2 7 5-2
  • a signal is a signal whose frequency is not
  • the communication identification method frequency multiplexing, code division multiplexing, and the like can be used.
  • the line communication system has two relay devices, the line communication system has three or more. Upper relay equipment You may have
  • Figure 3 2 is a diagram showing the configuration of the wireless communication system with four relay stations, and the line communication system shown in Figure 3 2 is a diagram showing the configuration of the line communication system. Arc. Related to the eighth embodiment
  • the light branching ⁇ part 1 6 4 a in 3 2 is the control unit 1
  • the light signal output from the electro-optical conversion unit 1 6 2 a 0 is branched into an optical transmission line 4 0 ⁇ 2 4 0 ⁇ 4 'or an optical branch ⁇ unit 1
  • 3 ⁇ 4 Communicate using radio signals and line signals of different frequencies ⁇
  • the relay unit im 2 0-1's transmit / receive antenna unit 2 7 5-1 forms • III I line communication range 2 7
  • the relay device 40-4 is also required to communicate using a radio signal of a frequency different from that of the relay device 200 whose line communication range is negative. ⁇ No multipath interference occurs even during 4
  • adjacent relay stations communicate with each other by using line signals of different frequencies, and by arranging the middle device in the network, it is possible to prevent the occurrence of multipath interference.
  • Fig. 3 1 and Fig. 3 2 different optical transmission lines 40 1 140 4-4 are used to transmit radio signals from a desired middle device to a location, but the wavelength of each modulated signal is It is also possible to use a wavelength division multiplexing method in which multiplexing is performed on one optical transmission line, and in the case of using a frequency modulation method for line modulation, pass only the desired frequency band to each repeater. You may use a drive.
  • the first requirement described for the line communication system satisfying the first to third requirements in the conventional line communication system is the relay layout. If the level of the line signal to be received is within the predetermined dynamic range, the second requirement is that the leakage ratio of the line signal is below a certain level. The requirement of 3 is to maintain the D / U ratio of the line signal received by the medium hi ⁇ at a certain level or more.
  • the line communication can be performed.
  • the relay device receives the level of the line signal received.
  • FIG. 33 is a diagram showing the configuration of a line communication system according to the thirteenth embodiment of the present invention.
  • the line communication system includes a control station 31 and an intermediate unit 32.
  • a control unit 31 having a line communication terminal 33.sub.3 a.sub.3 b.sub.3 is a relay 'device 32 including a photoelectric conversion unit 31.sub.1 and a signal processing unit 32.12.
  • the line communication terminal 3 3 3 includes the reception antenna section 32 2 2 and the light emitting light conversion section 3 2 1.
  • Line communication terminal 3 3 a 3 3 b and middle IT device 32 are connected to each other by a line inside Hi cloth m 3 2 and control 3 1 mutually with optical fiber 3 6
  • the control station 3 1 connected via the network is connected via an external network (not shown) with a network (not shown) and via a cable (registered trademark) cable 35
  • Fig. 33 only the upper transmission system is shown, and the lower transmission system is omitted.
  • the external network and the control station 31 are other than the Ethernet V cable (registered trademark) cable. It may be connected via a transmission line, for example, it may be connected via a telephone line, an axis cable, or an optical fiber.
  • the line communication station which exists in the line communication section The number of terminals is two, but there can be one or more terminals in the line communication section, or no more than three or more terminals. Describe the operation of the line communication system when signals are transmitted.
  • Wire communication terminals 3 3 a and 3 3 3 b transmit signal to the terminal 3 2 2, while the device 3 2 is installed on the ceiling 3 4 of the building.
  • the communication antenna unit 3 2 2 is a line communication terminal
  • a light-to-light converter 3 21 converts an electric signal received by the receiving antenna 3 22 into an optical signal
  • the optical signal converted by the light-to-light converter 3 2 1 transmits the optical fiber 3 6 and is input to the photoelectric conversion unit 3 1 1 of the control station 3 1 control station In 3 1, the photoelectric conversion unit 3 1 1 converts the input optical signal into an electric signal.
  • the signal processing unit 3 1 2 transmits the electric signal to the external network.
  • the recovered signal is transmitted to the outside through the cable V5 (accommodation quoting) cable 5 5
  • Fig. 34 is a diagram schematically showing the configuration of the reception antenna unit 32 2 shown in Fig. 33 and the reception range 3 7 thereof. As shown in Fig. 34, the reception antenna unit 32 is shown in Fig. 34. 2 is the directivity antenna 3
  • Directional antenna 3 having 2 3 and radio wave absorber 3 2 4
  • 2 2 is a flat antenna, for example, a receiving antenna unit 3
  • the radio wave absorber 3 2 4 is placed directly under the directional antenna 3 2 3 3 4 3 from the directional antenna 3 2 3
  • the wave absorbers 3 2 4 which are set apart by a fixed distance are, for example, Even if it is the body that absorbs radio waves of a prescribed frequency, the antenna possessed by the signal antenna unit may be a bi-directional antenna.
  • the receiving antenna unit 3 2 2 is attenuated in the receiving sensitivity with respect to the direction immediately below the receiving antenna unit 3 2 2 and in the vicinity of the receiving antenna unit 3 2 2.
  • the line signal transmitted by the line communication terminal 3 3 a located immediately below the point is attenuated by being absorbed by the radio wave absorber 3 24 and reaches the directivity antenna 3 2 3
  • the line communication terminal (in this case, the line communication terminal 3 3 b) located far from the reception antenna section 3 2 2 is a wave absorber 3.
  • the signal level of the line signal received by the center will be the middle device 32 and the line communication terminal 33a, 33b, and so on.
  • the receiving radio signal from the end of the line communication transmitted from the end of the line communication terminal may be attenuated as it propagates through the line communication section. Can receive line signals with high gain
  • the line communication terminal located in the vicinity immediately below the receiving antenna unit 3 2 2 is the receiving range of the receiving antenna unit 3 2 2
  • Receive at low gain and receive at outside gain 3 7 Receive at low gain a line signal transmitted from outside Note that the area and thickness settings of the radio wave absorber 3 2 4 are changed By doing so, it is possible to adjust the attenuation of the radio wave, so that it is transmitted from the direct direction according to the dynamic range that the light transmission part 3 2 1 allows. It is possible to adjust the reception gain of the reception antenna unit 3 2 2 for the signal.
  • Fig. 35 is a graph showing the relationship between the received strength of the line signal in the relay device 32 and the distance between the middle device 32 and the line communication terminal 33.
  • the vertical axis is the middle
  • the horizontal axis representing the reception strength of the line signal received by the station 2 2 is the horizontal axis representing the distance between the fiber device 3 2 and the end of the line communication 3 ⁇
  • the receiving antenna section is the conventional receiving antenna section When the reception antenna unit 3 2 2 has only the directional antenna, the solid line showing the change in the reception intensity shows the change in the reception intensity in the reception antenna unit 3 2 2 according to the present invention Indicate
  • the conventional directional antenna unit receives a line signal that is transmitted from a close distance and receives a line signal, the reception intensity of the line signal is large. If a line signal with a high signal level and a high signal level is converted to an optical signal, distortion occurs in the optical signal, and high quality optical signal transmission is possible. Absent
  • the antenna unit 3 2 2 according to the present invention has a low gain for the line signal transmitted from the vertical direction, that is, from a short distance because the reception gain of the line signal transmitted from the vertical direction is limited. Because the signal is received by Part 3 2 1 can be placed within the scope of the dynamic range allowed
  • the receiving antenna unit 3 2 2 transmits from a line communication terminal located in the direction of receiving a line signal with a large signal level transmitted from a line communication terminal located in the vicinity with low gain.
  • a line signal with a small received signal level is received with high gain, and then the signal level difference of the line signal input to the light-to-optical converter 32 1 is reduced by t _.
  • the signal level difference of the line signal transmitted by each line communication end can be reduced and input to the electro-optical conversion unit.
  • the line signal received may be contained within the dynamic range that the electro-optical conversion unit accepts. O Therefore, since the configuration of the line communication system can be simplified, the system can be made inexpensive. It is to be noted that an amplifier can be provided between the receiving antenna unit and the electro-optical conversion unit. Or, if you want to reduce the attenuation, the signal level of the received signal can be further adjusted. Even if it is in ⁇ , simple amplification of constant gain may be performed.
  • FIG. 33 only the upper transmission system is shown, and the lower transmission system is omitted.
  • the signal processing section 321 to the electronic light conversion section (shown in the figure) Because the signal level input to the) is almost fixed, there is no need to make special adjustments for each signal, so the control station 31 sends signals to the respective line communication terminals 3 3 a 3 b.
  • the D / U ratio of the line signal transmitted / received in the middle HE device does not satisfy the predetermined D / U, relay an attenuation unit that attenuates the level of the received mi * line signal to ⁇ . Since the level difference between the line signals received by the device is small, the level of the line signal and the channel where communication is performed using a plurality of channels is also possible. If the signal leaked from the channel is increased by the difference between the signal and the level of the signal, the signal leaked from the other channel may be disturbed. It is.
  • FIG. 36 shows a radio communication system according to the first to fourth embodiments of the present invention.
  • FIG. 10 schematically shows a cross-sectional view of a 7 X cross section of the receiving antenna section 3 2 2 X which is the stem part 0 o
  • the receiving antenna according to the first to third embodiments of the present invention In the present embodiment, the receiving antenna unit 32 2 X has a directional antenna and the electromagnetic wave absorber has a directivity antenna and a radio wave absorber.
  • the other components are the same as in the first to third embodiments.
  • the relay device 3 2 including the receiving antenna portion 3 2 2 X ' is a pole which forms the receiving antenna portion 3 2 2 X installed on the ceiling 3 4 of the building.
  • the antenna is a linear antenna and has a slightly-collared circular bidirectional directivity (a figure of eight directionality) whose direction is perpendicular to the longitudinal direction of the pole. Note that the reception range 3 shown in Figure 3 6
  • the reception range 3 7 X only shows the cross section of the reception range, and in fact the reception range 3 7 X is formed in the shape of a nap centered on the reception antenna section 3 2 2 X o
  • the trlir wire communication terminal is a wire communication terminal located directly under or near the middle device 3 2 ( Then
  • Reception antenna unit 3 2 2 X of relay device 3 2 is located near For example, when the longitudinal direction of a general-purpose portal antenna is parallel to the direction of lead, it shall not be included in the reception area. Therefore, the directivity of the receiving antenna 3 2 2 X in the vertical direction is limited, and the receiving antenna 3 2 2 X has a receiving range 3 7 X in which the receiving sensitivity in the vertical direction is limited. Receiving antenna unit 3 2 2 X has a high gain for receiving the line signal transmitted by the line communication terminal located within the receiving area 3 7 X and receiving area 3 7 X nn line communication located outside The terminal receives the line signal with low gain
  • the line terminal 3 3 b located near the lower part of the receiving antenna unit 3 2 2 X-ray station 3 2 receives the signal.
  • Antenna section 3 2 2 X Reception range 3 7 2 X is not included in the reception range, so reception antenna section 3 2 2 X receives line signals transmitted by the line communication terminal 3 3 b with low gain.
  • the wireless communication terminal 3 3 a located at a distance from the station 3 2 is included in the reception area 3 7 2 X of the reception antenna 3 2 2 X.
  • the reception antenna 3 2 2 X is a communication terminal 3 3 a Transmits the signal on the ridge line with high gain
  • the electro-optical conversion unit allows the signal level of the ridge line signal input to the electro-optical conversion unit regardless of the distance between the line communication and the relay device. It is possible to limit the directivity of the antenna section in the vertical direction by providing an electromagnetic wave absorber. Receive If the antenna section has a wave absorber, the structure of the balance base can be simplified more.
  • Fig. 3 7 is a partial view of a line communication system according to Embodiment 1 Hp.
  • m schematically shows the configuration of a reception antenna 3 2 2 2 y and the reception range 3 7 y
  • the middle device is placed on the ceiling, while the middle device 3 2 is in the third embodiment.
  • the receiving antenna section 3 2 2 y installed at 4 0 has a pole antenna and the other configuration elements are
  • the distance between the line relay terminal 3 2 and the line communication terminal 3 2 is short.
  • the distance between the end (in the line communication terminal 3 3 b) and the line communication terminal 3 2 2 is a line communication terminal located directly above the relay device 3 2 (in the case of ⁇ ⁇ * Line communication end 3
  • the receiving antenna section 3 2 2 y of the relay station 3 2 is installed so that the line communication terminal 3 3 b located in the vicinity is not included in the receiving range. For example, as shown in FIG. If the longitudinal direction of the tena is parallel to the vertical direction, the receiving antenna for the straight direction 3
  • Section 3 2 2 y has a reception range 3 7 y with limited reception efficiency for lead a; direction Reception antenna 3 2 2 y is located within the reception range 3 7 y Line communication
  • the relay apparatus 3 2 is placed at 40 so that the line signal transmitted by the terminal is received with high gain and the line signal transmitted by the line communication terminal located outside the reception range 3 7 y is received with low gain.
  • the communication terminal 3 3 b located in the vicinity immediately above the line communication station 3 2 is not included in the reception range 3 7 y of the reception antenna 3 2 2 y, and therefore the reception antenna 3 2 2 y is a line communication station 32 that receives the line signal transmitted by the line communication end 33 b with low gain
  • the line communication terminal 3 3 a is the reception area of the reception antenna section 3 2 2 y Since it is included in 3 7 y, the receiving antenna unit 3 2 2 y receives the line signal transmitted by the line communication terminal 3 3 a with high gain
  • the light-to-light conversion unit allows the signal level of the line signal input to the light-to-light conversion unit regardless of the distance between the line communication terminal and the medium device.
  • the receiving antenna unit is composed of a porous antenna, but the receiving antenna unit is composed of a directional antenna and a radio wave absorber.
  • the radio wave absorber is located on the top of the directivity antenna ft It is good to be
  • Fig. 38 is a partial view of a radio communication system according to a sixteenth embodiment of the present invention.
  • Fig. 38 is a view schematically showing a configuration of a reception antenna section 32 2 2 z and its reception range 3 7 z. There is a first
  • the relay device is installed on the ceiling, whereas in the present embodiment, the relay device 32 is installed on the wall 41 and the receiving antenna portion 3 22 is the antenna.
  • the relay device 32 is installed on the wall 41 and the receiving antenna portion 3 22 is the antenna.
  • the relay device 32 is installed at 41 after the building ⁇
  • a short distance between the day relay device 32 and the line communication terminal is a line communication terminal located directly under the relay device 32 or in the vicinity End of the line 3 3 b)
  • the distance between the line communication station 3 2 and the line communication end 2 3 2 2) is located at a distance from directly below the middle device 3 2 (in the case of line end 3 2)
  • the longitudinal direction of a general-purpose port antenna can be selected, in which the receiving antenna unit 3 2 2 z of the relay apparatus 3 2 e is not included in the receiving range of the radio communication terminal 3 3 b placed in the vicinity.
  • the directivity of the receiving antenna 3 2 2 Z with respect to the vertical direction is limited, so that the receiving antenna 3 2 2 z is oriented in the rectangular direction.
  • Has a reception range of 3 7 z with limited reception intensity for This ⁇ receiver antenna unit 3 2 2 Z receives the line signal transmitted by the line communication terminal located within the reception range 3 7 ⁇ with high gain and is located outside the reception range 3 7 z ' ⁇ * line Receive line signals transmitted by communication terminals with low gain
  • the line communication terminal 33b located in the vicinity immediately below the line communication station 32 is the receiving area 3 7 2 of the receiving antenna section 3 2 2 z.
  • the receiving antenna unit 3 2 2 2z is located in the distance from the wire communication 3 2 which receives the line signal transmitted by the wire communication terminal 3 3 b with low gain.
  • the receiving antenna unit 3 2 2 2 z receives the line signal transmitted by the line communication terminal 3 a at a high gain.
  • the range of the dynamic range in which the electro-optical conversion unit accommodates the signal level of the linear signal input to the light-to-air conversion unit regardless of the distance between the end of the wiring and the middle and middle layer im ⁇ ⁇ can be stored inside am Also am an electromagnetic wave absorber
  • the directivity of the receiving antenna in the vertical direction can be limited, so that the configuration of the system can be further simplified when the receiving antenna has a wave absorber. To be done o
  • the receiving antenna unit is composed of a porous antenna, but the receiving antenna unit may be composed of a directional antenna and a radio wave absorber.
  • the receiving antenna unit receives the line signal transmitted by the wireless communication terminal located in the vertical direction with low gain and is not in the vertical direction.
  • the line signal transmitted by the line communication terminal located in the direction of the line is commonly received by gain ⁇
  • the receiving antenna unit is transmitted from the vertical direction force ⁇
  • the configuration is not limited to the above if it is possible to receive the line signal 'at a signal level below the upper limit of the dynamic range allowed by the electro-optical conversion unit.
  • the antenna of the receiving antenna unit has a multi-antenna antenna.
  • the line signal received from the vertical direction can be received.
  • FIG. 3 9 is a diagram showing the configuration of a line communication system according to a 17th embodiment of the present invention.
  • the line communication system shown in FIG. 39 is a line communication according to the 13th embodiment.
  • the middle station 32 further includes a transmission antenna unit 325 and a photoelectric conversion unit 323, and the control station 31 controls the electro-optical conversion unit 313.
  • the other constituent elements included in the configuration are the same as those of the 13th embodiment, and the same constituent elements as in FIG. 3 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the processing unit 3 1 1 is a signal converted by the signal processing unit 3 1 1 that modulates a signal transmitted from an external network through the Ethernet (quotient) cable 35.
  • the light is input to the light conversion unit 3 1 3.
  • the light conversion unit 3 1 3 converts the electric signal input from the signal processing unit 3 1 1 into an optical signal by the electric light conversion unit 3 1 3
  • the converted optical signal is transmitted through the optical fiber 3 6 and the photoelectric conversion unit 3 2 of the repeater 3 2
  • the photoelectric conversion unit 3 2 3 3 converts the optical signal input from the optical fiber 3 6 into an electric signal.
  • the transmission antenna unit 3 2 5 transmits the electric signal to the line communication section as shown in FIG. As shown in the figure, the transmitting antenna unit 3 2 5 is the receiving 'antenna unit
  • the transmission antenna unit is placed directly under 3 2 2
  • 3 2 5 and the receiving antenna unit 3 2 2 are spaced apart by a fixed distance.
  • the line signals are transmitted ⁇ antenna section 3 2 5 Reniyo Ri receiving ⁇ antenna section 3 2 2 id., Et al is Te by the the line communication end transmits the • f innT receive 1 .. a No. Sensing in low gain When receiving an o-way reception antenna
  • the 4fff line signal transmitted by the line communication terminal located in the direction of 3 2 2 is not blocked by the transmission antenna section 3 2 5 o
  • the reception antenna section 3 2 2 receives the 7ttnr line signal with high gain
  • the transmission antenna unit 3 2 5 is X
  • the receiving antenna unit 3 2 2 is vertically oriented.
  • the receiving antenna unit 3 2 2 transmits from a short distance because the reception intensity is reduced.
  • the signal level of the line signal being received is received with low gain, and when the line signal transmitted from the distance is received with high gain, the signal level difference of the line signal input to the light-to-light converter is In order to reduce the size of the network, it is possible to ease the restrictions on the data communication requirements of the relay device.
  • ⁇ Transmission antenna section 3 2 5 is reception antenna section
  • a radio wave absorber may be provided between the transmitting antenna unit 3 2 5 and the receiving antenna unit 3 2 2
  • FIG. 40 is a diagram showing the configuration of a j ul wire communication system according to the eighteenth embodiment of the present invention.
  • the wire communication system comprises a control 31 and a plurality of middle devices 3 2 a 3 2 c and a line communication terminal 33 2 c
  • a central storage unit 3 2 a includes an electro-optical conversion unit 32 1, a receiving antenna unit 3 2 2 a and a level adjustment unit 3 2 6 Since the other aspects are the same as those of the thirteenth embodiment, the same reference numerals are given to the components of the thirteenth embodiment and II-like components and the description thereof is omitted.
  • the middle antenna 32 2 a has a receiving antenna portion 32 2 a having a unidirectional antenna ⁇
  • the unidirectional antenna is, for example, a lapel antenna ⁇ ⁇ the receiving antenna portion 3 2 2 a is
  • the receiving area of the receiving antenna 3 2 2 a that has directivity such that it extends diagonally with respect to the vertical direction 4 2 a is connected to the control J 3 1 of the adjacent relay devices.
  • the distance between the light transmission path is longer than that of the medium (in the case of the relay device 32 b), the reception antenna part 3 2 2 a is located within the loss area 4 2 a JiU *
  • the level adjustment unit 3 2 6 amplifies the line signal received by the receiving antenna unit 3 2 2 a.
  • the signal level of the Arc. Line signal input to 1 is adjusted by P. However, the line signal amplified by the level adjustment unit 3 2 6 described later will be transmitted to the electro-optical conversion unit 3 2 1 Optical signals are converted to optical signals o Optical signals are transmitted through optical fiber, 3 6 a 3 6 d, and are input to the control station 3 1 o ⁇ ⁇ Position 3 2 b and C ⁇ 3 2 c also has a 1 ⁇ structure as shown in Figure 40.
  • relay stations 3 2 a to 3 2 c are connected in a bus type, but middle device 3 2 a ⁇ 3 2 c may be displayed in such a manner that each of the relay clothes is placed on a one-to-one basis with respect to the control station 31.
  • middle device 3 2 a ⁇ 3 2 c may be displayed in such a manner that each of the relay clothes is placed on a one-to-one basis with respect to the control station 31.
  • the receiving antenna part closest to 3 3 C is the receiving antenna part 3 2 2 b
  • each receiving antenna part has directivity extending obliquely in the vertical direction. Therefore, the wireless communication terminal 33 C is not included in the reception area 42 2 b of the reception antenna unit 32 2 b.
  • the wireless communication terminal 33 C is a relay station adjacent to the relay device 32 b.
  • the radio signal transmitted by the end of line communication 3 3 c is included in the reception range 4 2 a of 3 2 a and is received by the receiving antenna section 3 2 2 a of the relay apparatus 32 2 a.
  • each middle device since each middle device does not receive a signal level-large line signal sent from a short distance, the line signal input to the electric light conversion unit of the middle device is not received.
  • the signal is transmitted to the power source.
  • Fig. 4 1 shows that the line communication terminal exists in the area where multiple reception areas overlap.
  • the line communication terminal 33 c has a reception range 4 2 a and 4 2 b.
  • the line signal transmitted by the ⁇ -ray is a signal terminal 3 3 c located in the area to be connected is a reception antenna section 3 2 2 a and 3
  • the length of the optical fiber connecting between the relay unit 3 2 a and the control station 3 1 and the optical fiber connecting between the middle unit 3 2 b and the control station 3 1 is different from the length of the line, but different transmission paths are received by a plurality of reception antenna units,
  • the line signal transmitted by the line communication terminal 3 3 c is received by the reception antenna 7 to the reception unit 3 22 2 a and reaches the control station 3 1.
  • the propagation time T (LW a) propagating in the range 4 2 a and the optical signal are optical fiber 3 6 a
  • each receiving antenna unit is adjusted to satisfy the relation, and the receiving range 4 2 a 4 2 is formed. Specifically, the inclination angle of each receiving antenna unit is changed. Adjust the directivity by changing the spread angle of the directivity of the antenna unit.
  • L wa-LW b 4 5 can be obtained.
  • the reception range of the receiving antenna 3 ⁇ 2 a is 60 m
  • FIG. 4 2 is a diagram that schematically shows the reception range of the signal antenna section 32 2 a.
  • h represents the distance between the ceiling and the floor.
  • the height of the ceiling of a single house is about 2 m
  • the directivity is wide at 0 degrees a
  • the distance between the middle devices R is X-in the reception range of the receiving antenna unit 3 2 2 a and 3 2 2 b, the distance between the middle devices R:
  • the radius R of 5 (m) is about 50 m.
  • the distance R between relay stations is 5 0 m and the reception length L wa is 6 0 m
  • the spread angle of directivity is about 20 0
  • the distance y for not receiving a line signal and the overlap range X are specified as i5.
  • the distance R between the devices is predetermined. Even if the line signal is not received, the angle y of the line and the S range S can be determined by setting the value of the X range of the directivity. To obtain the maximum length LW a of
  • the line communication range of one relay station should be reduced to the range of one line transmission line assumed in advance in the line communication system using ⁇ fcs.
  • each medium does not receive a large line signal of the signal level transmitted from a close distance, but transmits an m-line communication at a fixed distance or more.
  • the relay unit receives the line signal and the relay unit
  • the signal can only be received at a level that does not exceed the upper limit of acceptable Dinar-Crenk. This includes the optical transmission of high-quality infrared signals.
  • the configuration of the line communication system can be simplified and the system can be made inexpensive.
  • multiple relay stations can be e)
  • the radio signal can be expanded by a plurality of receiving antenna units by adjusting the directivity of each receiving antenna unit, by which the line communication section can be expanded. o
  • the delay time difference of each line signal in the line transmission line and the optical transmission line can be kept within a predetermined time, and the signal by the multipath interference is obtained. Can prevent the deterioration of the
  • each receiving antenna unit has directivity in the downward straight direction of lead, but each receiving antenna unit is located directly below Arc.
  • each receiving antenna unit Do not receive radio signals transmitted from the end of the line communication terminal, or receive a line signal transmitted from a line communication terminal located directly below the adjacent middle hi device.
  • the directivity of each receiving antenna unit is not limited to the above-mentioned embodiment because it is sufficient if it has characteristics.
  • the radio communication system can transmit light using frequency division multiplexing according to the present invention.
  • the present invention is particularly effective.
  • the present invention is useful as a wireless communication system or the like which can keep the level of the signal received by the middle apparatus within the range of a predetermined dynamic range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本発明は、中継装置(20)において受信する無線信号のレベルを所定のダイナミックレンジの範囲内に収めることができる無線通信システムである。制御装置(10)において、送信部(102)は、下り電気信号を下り光信号に変換し、光伝送路(40)を介して中継装置(20)に送信する。中継装置(20)は、受信した下り光信号を下り電気信号に変換し、送受信アンテナ部(204)から無線信号として無線通信端末(30)に送信する。中継装置(20)において、レベル調整部(207)は、中継装置が受信する無線信号の受信強度が所定の範囲内に収まるように、中継装置(20)が送信する無線信号のレベルを調整する。

Description

明細書 無線通信シス テム 技術分野
本 明 は 制御 中 装 iilU
置が 置を介 して 線通信 末 と通信する シス テム に関 し よ り 特定的には 制御装置 と 中 装置 とが 光伝送路を介 して接続さ れてい る シス テム に関する
背 技
近年 線通信顺末 と 線で通信する 中 HE Jが 光伝送 路を介 して制御装置 と接 さ れる 線通信シスデムが用 い ら れる よ う に つ てきてい る (例えば 特開平 9 ― 2 3 3
0 5 0 号公報 ) o
図 4 3 は 特開平 9 ― 2 3 3 0 5 0 号公報に記載さ れて い る従来の 線通信システム の構成を示す図であ る 図 4
3 に示す 線通信システム において 制御壮置 1 9 は 亦 した信号を光信号に変換 し 光伝送路 5 9 を介 して 中 装置 2 9 に送信する 中 装置 2 9 は 制御装置 1 9 か ら 送信さ れてさた光信号を光 久換部 9 5 で 信号に変 換 し 送受信部 9 3 およびァ ンテナ部 9 2 を介 して ffm*.線 信号 と して ェ U ァ 内の 線通信端末 3 9 に送信する o ま た 中継装置 2 9 は 線通信端末 3 9 か ら 送信さ れてさ た 線信号をァ ンテナ部 9 2 で受信 し 送受信部 9 3 を介 し 電気光変換部 9 4 で光信号に 換 して 光伝送路 5 9 に送出する o の よ う に して 従来の 線通信シス テムで は 中継衣 と . in 線 信端末 と の間の通信が されてい ス 従来の 線 信システムは 良好な通信 Π
ΠΡ質を実現する ため.に 以下に示す第 1 第 3 の要求を満た さ なければな ら ない
第 1 の要求は 中継装置が受信する 線信号の レベルを 所定の範囲 に収めなければな ら ない とであ る 受信 した 線信号 を有効に再現する と ができ る 線信号の最大 レ ベルと最小 レベル と の差 をダィ ナ ッ ク レ ンン と い う 。 ヰ 継装置が受信する 線信号の レベルが大きすぎる場合 線信号を光信号に変換 した際に 光信号にひずみが発生 し て し ま う o 一方 中 装置が受信する 7111"線信号〖の レベルが 小さすぎる場 受信す さ 線信号 と ノ ィ ズと を分離す る と r 口
ができない o .UM 線信 を高 Π
BP質に光伝送する ため に は 中 衣置が受信する littr線信号の レベルを ダィ ナ ミ ッ' ク レ ンジの範囲 に収めな ければな ら ない
次に 中継装置が in 線 信 末に送信すベさ信号成分を 増幅する 際 増幅 の非線形性によ て 送信すベさ信号 成分以外に 达信すベき信号成分の帯域外周波数成分が出 力 されて し ま 帯域外周'波数成分は 帯域外周波数成分 と 同 じ周波数帯域を利用 して通信する他の通信機器や 線通信端末の周辺に存在する 電気機 EE等に亜影響を及ぼす したが て 中継装 が送信すベさ 線信号成分の レベ ルに対する帯域外周波数成分の レベルは 定 レベル以下 に収めな ければな ら ない o で 域外周波数成.分の レ ベルと 中 装置が ΉΙί*線通信 末に送信すベさ 線信号成 分の レベル と の比 を 洩比 と呼ふ の Ό に、 2 の 求は 、 線信号にお ける 洩比 を — -定 レベル以下に収め る 漏
とであ る 0
さ ら に 、 中継衣置が 線通信顺末 と正常に通信する ため には 、 送受信する ハ、、線信号の周波数 Wにお ける信号対妨 口 比 (以下 、 D / U ( D e s i r e d / U n d e s i r e d
) 比 と呼ぶ ) を 定 レベル以上に しな ければなら ない 0 な ぜな ら ば 、 D U比が低下 して し ま う と 、 中継衣 は受信 すベき信号 と ノ ィ ズと を分離する とがでさないか ら であ る 0 のよ Ό に 、 第 3 の要求は 、 中継装置が受信.する ,ιιτι*線 信号の D U比 を 定 レベル以上に保 とでめ る
1 で 、 第 1 の課 百を解決する ため に 、 図 4 に示す 線 信システムが七旱案さ れてい る (特許第 2 8 8 5 1 4 3 号明細 参照 ) 0 図 4 4 は 、 特許第 2 8 8 5 1 4 3 号明細 に記載さ れてい る従来の 線通信シス テム の構成を示す 図であ る 0 図 4 4 に す従来の 線通信システム にお いて
、 中 置 2 8 と制御装置 1 8 と は 、 光フ ァ ィ 5 8 を介 して接 さ れる 中継衣置 2 8 は 、 ァ ンテナ部 9 2 を介 し て 、 線通信端末 (図示せず ) か ら送信さ れて < る •ι'ΙΙ.ί:線信 号 を受信する 0 増幅 1 はゝ ァ ンテナ部 9 1 が受信 した電 気信号を増幅する 増幅 1 に よ て増幅さ れた信号は 、 分配器 2 によ て分配さ れた後 、 キサ 3 a 〜 3 d および シ ンセサィ ザ 4 a 〜 4 d に つ て 、 周波数変換さ れる 周 波数変換さ れた信号は 、 1 波分の通過帯域を つ nン ド、バ ス フ ィ ル夕 5 a 〜 5 d を通過後 、 非線形増幅 6 a 〜 6 d によ て所定の信号 レベルに 幅される 増幅された信号 は 成 7 において 成さ れた後 電気光 換 ¾5 8 に て光信号に変換さ れる 0 当該光信号は 光フ ァ ィ パ 5 8 を介 して 制御装置 1 8 に伝送される o 制御装置 1 8 にお いて 光電気 換器 2 1 は 光フ ァ ィ n 5 8 か ら送出 され る光信号を電 信号に変換する 0 当該電メ 信号は 、 分配器
1 1 において分配された後 キサ 1 2 a 2 3 d および 発信器 1 3 a 1 3 d によ て元の周波数帯に戻すため に 周波数変換される □ その後 周波数変換さ れた信号は 1 波分の通過帯域を有するバ ン パス フ ィ ル夕 1 4 a 1 4 d に て分離される 0 分離さ れた信号は 復調.器 1 5 a
1 5 d によ て復 さ れて外部 に出力 さ れる か 、 または 検波 ¾5 1 6 a 1 6 d によ て検知 さ れる α 検 '波器 1 6 a
1 6 d が検知 し 出力する信号は A / D 変換器 1 7 a
1 7 d によ つ てァィ ン夕ル信号に変換さ れた後 R O M
1 8 a 1 8 d に格納される o
以上のよ Ό に 特許第 2 8 8 5 1 4 3 号明細 に記載の 従来の 線通信システム は 中継 置 2 8 において、 受信 した信 を 1 波 と に分離 し 分離 し た各信号の信号 レベ ルを非線形増幅 ¾5 6 a 6 d に つ て調整する 0 したがつ て 非線形増幅 35 6 a 6 d を 中継装置 2 8 に設ける と によ て 中 壮置が受信する 線信号の レベルを、 所定 のダィ ナ V ク レ ンジの範囲 に収め る とがでさる 0 れ によ て 第 1 の要求を満たす とがでさ る 0
次に 第 2 第 3 の要求を満たすため に 例えば、 I E
E E 8 0 2 • 1 1 a 規格は 中 装置および _iJllr線通信顺末 i
が 受信する 線信号の Π
PP質を規定 してい る o I E E E 8 0 2 • 1 1 a 規格にお いて 線信号の久 方式が 6 4 Q
A M ( Q u a d r a t U r e A m Ρ 1 i t u d e M o d u 1 a t i o n ) であ り 他チャ ンネルか ら の干渉があ る場 中継壮置が受信する 線信号のダィ ナ ッ ク レ ン ンは 最大約 3 2 d B となるベさであ る と規定さ れてい る また I E E E 8 0 2 • 1 1 a 規格よ り D U比は約
2 2 d B 以上必要であ る と計算さ れる さ ら に A R I B
S T D ― T 7 1 において 線信号にお ける隣接チャ ンネ ルへの 洩比は ― 2 5 d B 以下 次隣接チャ ンネルへの漏 洩比は ― 4 0 d B 以下 とな るベさであ る と規定さ'れてい る れ ら の規定を満たす 線信号を用 いて通信する こ と に よ つ て 中 装置は 正常に通信する とがで る
しか しなが ら 特許第 2 8 8 5 1 4 3 号明細 に記載の 従来の 線通信システム は 線信号をダィ ナ ッ ク レ ン ン内に収め る ため に 例えば非線形増幅 6 a 6 d 等の 利得を制御する A G C ( A U t o m a i c G a i n
C ο n t r o 1 ) 機能を 中 装 mに 線チャ ネル数分備 えな ければな ら ない こ のため シス テム の構成が複雑に な て し ま う
また 周波数分割多重方式を利用 して信号を制御装置に 送信する場 α において システムの構成が複雑にな て し ま う と い う 問題があ る 中 装置は 複数の 線通信 末か ら 同時に 線信号を受信 した 複数の 線信号の 信 レベルを に調整する と がでさない 特許第 2 8
8 5 1 4 3 号明細 に記載の従来の 線通信シス テム にお いて 中継装置は 周波数変換 した信号を い たんチャ ン '
ネル数分に分離 し 信号の レ 'ベルを 定に 整してか ら多 する よ て 中継装置には 分配器や 線信号のチ ャ ネル数分の - キサ シ ンセサィ ザ nン ドゝパス フ ル夕 および非線形増幅器 と い た 多 ぐ の部品 を設けなければ な ら ない したが て 中 壮
mの構成が複雑にな Ό 中 装置を小 化する とが困難であ る
さ ら に 特許第 2 8 8 5 1 4 3 号明細 に記載の従来の 線通信システム において 中 装置お び制御装置には 発振 を設けなければな ら ない したがつ て シス テム の 成が高価にな て し ま う と い う 問題があ る
以上の よ Ό に 特許第 2 8 8 5 1 4 3 号明細 に記載の 従来の Ann線通信システムは 第 1 の要求を満た 'す と はで き る も のの システム の構成が複雑になつ て し ま う と い 題があ る
また I E E E 8 0 2 - 1 1 a において 中 装置が複 数のチャ ンネルの 線信号を利用する は想定されてい ないため I E E E 8 0 2 - 1 1 a で規定さ れた 線信号 を複数のチャ ンネルを用 いたシス テム に その ま ま 用す る とができない 以下 その理由 につ いて 明する
複数のチャ ンネルの信号を利用 して通信する場 各チ ャ ンネルに は それぞれ異なる周波数が割 Ό 当て ら れる m 4 5 は 隣接する 2 つ のチャ ンネルを利用する第 1 およ び第 2 の 線通信顺末か ら 送信される I Ε E E 8 0 2 •
1 1 a 規格に準拠した "Hflr線 L A N信号のスぺク h ラム を示 す図であ る 実線は 信号 a のスぺク 卜 ラ ム を示 し 占線 は 信号 b のス ぺク 卜 ラ ム を示す 1 en ハ、、線通信端末が送信する信号 a と 、 2 の に
ハ、、線 信端末が送信する信号 b と は 、 互い に隣接するチャ ンネル の信号であ る 以下 、 信号 a が 、 信号 b か ら漏洩する信号 の成分によ て妨口 を受ける α に いて説明する
信号 a は 、 信号成分 1 0 0 1 a と 、 信 漏洩成分 1 0 0
2 a と 、 信号漏洩成分 1 0 0 3 a と を有する 信号成分 1
0 0 1 a は 、 中継壮置が受信すベき信号 a の成分であ つ て
、 w域幅は 、 約 2 0 Μ H z であ る 信号漏洩成分 1 0 0 2 a fa 、 信号成分 1 0 0 1 a に敢 も近いチャ ンネル (以下 、 隣接チャ ンネル と呼ぶ ) に漏洩する成分であ る 信号漏洩 成分 1 0 0 3 a は 、 信号成分 1 0 0 1 a の -Hi-
W域外周波数成 分であ つ て 、 信号成分 1 0 0 1 a に 2 番 巨 に近い : 'チャ ンネ ル (以下 、 次隣接チャ ンネル と呼ぶ ) に漏洩する成分でめ る 信号の帯域外周波数が 当該信号に隣接する チャ ンネ ルの周波数 と aな つ てい る場 α 、 帯域外周波数成分が隣接 チャ ンネルに漏洩 して し ま う なお 、 説明 の簡単のため に
、 それぞれの信号スぺク ラ ム は 、 一定 レベルであ る も の と して説明する
ハ、、線通信システム にお いて 、 ハ、、線信号の変 方式が 6 4
Q A Mであ り 、 他チ ャ ンネルか ら の干渉があ る場 O 、 中継
装置が受信する ハ、、線信号のダィ ナ V ク レ ンンは敢大約 3
2 d B と なる ベきであ る と I Ε E E 8 0 2 1 1 a 規格で 規定さ れてい る また 、 I E Ε E 8 0 2 1 1 a 規格よ り
、 D / U比は約 2 2 d B 以上必要であ る と計算される
漏洩比 1 0 0 4 は 、 信号漏洩成分 1 0 0 2 a と信号成分
1 0 0 1 a と の比であ つ て 、 一 2 5 d B 以下 と な る さで あ る と規定されてい る また 信号の レベルを対数で ¾す 口 漏洩比 1 0 0 4 の対数は 、 信号漏洩成分 1 0 0 2 a の レベルの対数 と信号成分 1 0 0 1 a の レベルの対数 と の 差で表さ れる 以下 本明細書において 漏洩比 とは 、 対 数で表さ れてい る の と して 明する m洩比 1 0 0 5 は
、 信号漏洩成分 1 0 0 3 a の レベルと信号成分 1 0 0 1 a の レベル と の差であ て ― 4 0 d B 以下 とな る ベさであ る と規定さ れてい る
信号 b は 信号成分 1 0 0 1 b と 信号漏洩成分 1 0 -0
2 b と 信号漏洩成分 1 0 0 3 b と を有する 信号成分 1
0 0 1 b は 中維 置が受信すベき信号 b の信号成分であ
■ώ 信号漏洩成分 1 0 0 2 b は 信号成分 1 0 'ひ 1 b の隣 接チャ ンネルに漏洩する信号の成分であ る 信号漏洩成分
1 0 0 3 b は 信号成分 1 0 0 1 b の次隣接チャ ンネルに 漏洩する 信号の成分であ る
D z U比 1 0 1 0 は 信号成分 1 0 0 .1 a と信号漏洩成 分 1 0 0 2 b と の レベル差でめ る 信号漏洩成分 1 0 0 2 b は 隣接チャ ンネルでめ る信号 a に漏洩する したがつ て、 中 装置が 隣接チャ ネルか ら の漏洩に妨 されずに 信号 a のみを光信号に変換する ため には 信号成分 1 0 0
1 a の レベル と信号 洩成分 1 0 0 2 b の レベル と の差、 つ ま Ό D / U比 1 0 1 0 は 2 2 d B 以上でなければな ら ない
中継装置が受信する 線信号の レベルは 中 装置 線通信顺末 と の間の距離に依存する つ ま り 中 装置 と 無線通信顺末 と の距離が離れる ほ ど 中 装置のァ ンテナ 部によ て受信さ れる 線信号の レベルは小さ < なる したが て 中 置が受信する 線信号のダィ ナ ッ ク レ ンンが 3 2 d B であ る場 Π 第 1 の通信端末および第
2 の逋信 末の位置関係によ ては 信号成分 1 0 0 1 b の レベル と信号成分 1 0 0 1 a の レベルと の差が 最大 3
2 d B となる場 α があ る の場 口 隣接チャ ンネルへの 漏洩比が一 2 5 d B であ る とする と D / U比 1 0 1 0 は
― 7 d B となる したが て 所要の D / U比 2 2 d B を 満たす とがでぎない - のよ Ό に 複数の通信 末が隣接する 2 のチャ ンネ ルを利用 して通信する場 D 中 装置が受信する ,ιιτί*線信号 の品質が規格に定め ら れた品質を保ち かつ 線: >信号の レ ベルが規格で定め ら れたダィ ナ ッ ク レ ンンの範囲内であ つ て も 他チャ ンネルの信号 に妨 さ れ 正常に通信でさ な < なる 場 口 があ る の場 第 1 および第 2 の課題を 解決する とはでさ る が 所定の D / U比を満たすと い Ό 第 3 の 題を解決する とがでさない
次に 次隣接チャ ンネルか ら の漏洩信号に よ て通信が 妨 さ れる 場 に いて考え る 図 4 6 は 2 チャ ンネル 離れた 2 つ のチャ ンネルを利用する第 1 お よび第 3 の 線 通信 末か ら 送信される 線 L A N信号のスぺク 卜 ラ ム を 示す図であ る
実線は 信号 a のス ぺク 卜 ラ ム を示 し 占線は 信号 C のスぺク 卜 ラ ム を示す 第 1 の 線通信顺末が送信する信 号 a と 第 3 の 線通信端末が送信する信号 C と は 互い に 2 つ離れたチャ ンネルの信号 あ る 以下 信号 a が 信号 c か ら 洩する信号の成分に妨害を受ける場 につい て説明する
信号 a は 、 信号成分 1 0 0 1 a と 、 信 漏洩成分 1 0 0
2 a と 、 信号漏洩成分 1 0 0 3 a と を有する o 図 4 6 に示 す信号 a が有する信号成分は 、 図 4 5 に す信号 a が有す る信号成分 と 様であ る ため 、 明 を省略する
信号 c は 、 信号成分 1 0 0 1 C と 、 信号漏洩成分 1 0 0
2 c と 、 信号漏洩成分 1 0 0 3 c と を有する 信号成分 1
0 0 1 c は 、 中 衣置が受信すベさ信号 C の信号成分でめ る o 信号漏洩成分 1 0 0 2 c は 、 信号成分 1 0 0 1 c の隣 接チャ ンネルに漏洩する信号の成分であ る o 信号漏洩成分
1 0 0 3 c は 、 信号成分 1 0 0 1 c の次隣接チャ>ンネルに 漏洩する信号の成分であ る o
D / U比 1 0 1 0 は 、 信号成分 1 0 0 1 a の レベル と信 号漏洩成分 1 0 0 3 c の レベル と の差であ る o
中継壮置が受信する 線信号のダィ ナ ッ ク レ ンジが 3
2 d B で あ る場'合 、 第 1 の Am
、ヽ線通信 ntt:
顺末お よび第 3 の 4 jm 線 通信端末の位置関係 によ つ て 、 信号成分 1 0 0 1 c の レベ ルと信号成分 1 0 0 1 a の レベル と の差が 、 最大 3 2 d B となる Αψ.
π があ る の場合 、 次隣接チャ ンネル漏洩比が
― 4 0 d B でめ る とする と 、 D / U比 1 0 1 0 は 8 d B と な る し たが て 、 所要の D / U比 2 2 d B を たす と ができな い o
のよ に 、 複数の通信端末が 2 つ離れたチャ ンネルを 利用 して通信する場 σ 、 中 装置が受信する 線信号の品 が規格に定め ら れた品 を保ち 、 か 線信号の レベル が規格で定め ら れたダィ ナ ッ ク レ ンンの 囲内であ て も 他チャ ンネルの信号に妨害され 正常に通信できな < なる があ る こ の場 □ 第 1 および第 2 の要求を満た す と はでさ る が 所定の D / U比を滴たす と い う 第 3 の 求を満たす とがでさない 発明の開示
それゆえ に 本発明 の 的は 中 衣置にお いて受信す る 線信号の レベルを所定のダィ ナ ッ ク レ ンンの範囲内 に収め る とがでさ る πιττ*線通信システム を提供す'る とで あ る
また 本発明の さ ら な る 的は 第 1 第 3 'の >要求を満 たす すなわち 中継装置が受信する 線信号の レベルを 定のダ ナ ク レ ン ンの範囲 に収め る とがでさ 線信号にお ける漏洩比 を 定 レベル以下に収め る とがで き かつ 中 衣置が受信する 線信号の D U比を 定 レ ベル以上に保つ とがでさ る 線通信シス テム を提供する とで る
本発明は 上記のよ な 巨 的 を達成する ため に 以下に 述ベる よ う な特徴を有 してい る
第 1 の局面は 制御装置 と 制御装置 と光伝送路を介 し て接 hiされた 1 以上の 中 装 β と 中 装置 と 線通信す る複数の 線 信端末 と を備え る 線通信シス テムであ つ て 制御装置は 下 り 電 信号を下 り 光信号に変 し 光 伝送路を介 して中 置 に送信する第 1 の光送信部 と 光 伝送路を介 して中 衣置か ら 送信されて < る上 り 光信号を 上 り 電メ 信号に 換する第 1 の光受信部 と を含み
中 装置は 光伝送路を介 して制御装置か ら 送信さ れて
< る下 り 光信号を下 り 電 信号に変換する第 2 の光受信部 と 第 2 の光受信部によ つ て変換された下 電気信号を Am 線通信端末に ; 線信号 と して送信 し 線通信端末か ら送 信される 線信号を受信 して上 Ό 電 信号 とする送受信ァ ンテナ部 と 送受信ァ ンテナ部によ て受信さ 'れた上 電 信号を上 光信号に久換 し 光伝送路を介 して制御装置 に送信する第 2 の光送信部 と を含み 中 装置が受信する 線信号の受信強度が所定の範囲内に収ま る よ う.に 中継 装置が送信または受信する 線信号の レベルを調整する 線信号 レベル制限手段を備え る と を特徴 とす '
れによ り 中継装置が受信する 線信号の レベルを所 の範囲 に収め る とができ る 中継装 が受信する 線 信号を所定のダィ ナ ッ ク レ ンン に収め る とがでさ る た め 線信号を高 質 に光伝送する とがでさ る
好ま し < は 所定の範囲は 各 線通信端末が利用する それぞれのチ ャ ンネルにおいて 当該チャ ンネル以外のチ ャ ンネルに漏洩する周波数成分の レベルに対する 当該チャ ンネルを利用する 線信号の レベルの比であ る漏洩比 と 当該チャ ンネルを利用する 線信号の レベルに対する 当該 チャ ンネル以外のチャ ンネルを利用する 線通信端末か ら の漏洩信号の レベルの比であ る信号対雑立
曰 比 と の差よ り も 小さ い範囲であ る と よ い
れによ Ό 中継装置が受信する 線信号の レベルを 漏洩比 と信号対雑立
曰 比 ( D / U比 ) と の よ り ち小さ い範 ffl に収め る とがでさ る したがつ て 中 衣 は 他チ ャ ンネルか ら漏洩 してさた信号に妨害される とな < 正 常に通信する とがでさ る
1 の例 と して 線信号 レベル制限手段は 第 2 の光 受信部が出力する下 り 電ス 信号の レベルを調整する 中継装 置内 に 又け ら れた レベル制御部であ Ό レベル制御部は 下 り 電ス 信号の レベルを減衰さ せる と によ て 中継装 置の通信可能ェ ァ を狭 < し 通信可能ェ ァ内に存在す る 線通信顺末が送信する 線信号の レベルが所定の範囲 内 となる よ う にする
れによ り 中 壮置は 送信する 線信号の レベルを 減衰させる と によ て 中 装置の通信可能 U ァ を狭
< する と がでさ る したがつ て 通信可能 X U ァ内 に存 する 線通信顺末が送信する 線信号の レベルを所定の 範囲 に収め る とができ る したがつ て 中継装置が 複 数のチャ ンネルの 線信号を利用 して通信する場 □ に い て も 所要の D / U比 を満たす とがでさ る よ て 他 チャ ンネルか ら漏洩 して < る信号に妨金される とな < 正常に通信する とがで含 る
また 他の例 と して 制御 置は 第 1 の光送信部を複 数含み 線信号 レベル制限手段は 下 り 気信号を分岐 する制御装置内 に設け ら れた信号分配部でめ 信号分配 部は 下 り 電気信号を分岐 して当該下 り 電気信号の レベル を減衰させる と によ て 中継装置の通信可能ェ リ ァ を 狭 < し 通信可能ェ U ァ 内 に存在する 線通信端末が送信 する 線信号の レベルが所定の範囲内 とな る よ う に し 第 1 の光送信部は 信号分配部によ て分岐さ れた下 り 電 信号を下 り 光信号に変換する
れに よ り 制御装置か ら 送信さ れる下 り 光信号の レベ ルが低減される ため 中継装置が送信する 線 の レ 信号 ベ ルが低減さ れる と となる したが て 信可能ェ U ァ 内 に存在する 線通信端末が送信する 線信号の レベルを 所定の範囲 に収め る とがでぎ る したが て 中 装置 が、 複数のチャ ンネルの 線信号 を利用 して通信する場 において も 所要の D / U比を満たす とがでさ る よつ て、 他チ ャ ンネルか ら漏洩 して < る信号に妨 される こ と な く 正常に通信する とがでさ る
また 他の例 と して 線信号 レベル制限手'段は 下 り ¾信号 に重畳 して送信させる ため の ィ Π ッ 卜 信号を生 する 制御装置に設け ら れたパィ Π ッ 信号生成部であ り
、 第 1 の光送信部は ハ0ィ P ッ 信号が重畳さ れた下 Ό 電' 号 を下 り 光信号に変換 し 中 装置 •は さ ら に 第 2 の光受信部によ つ て変換さ れた下 Ό 電 信号に重畳さ れて い るパィ □ ッ 卜信号の レベルを検出するパィ π ソ 卜 信号検 出部 と パィ Π ッ 信号検出部に つ て検出 されたパィ P ッ 卜信号の レベルが 定 と'なる よ ラ に 線信号の レベル を制御する レベル制御部 と を含み パィ Π ッ 信号生成部 は、 生成するパィ Π ッ 信号の レベルを増大さ せる こ と に よ つ て 中継装置の通信可能ェ リ ァ を狭 < し 通信可能 X ひ ァ内 に存在する 線通信端末が送信する 線信 の レベ ルが所定の範囲 内 となる よ う にする
れによ り 制御装置が生成するパィ Π ッ 信号の レベ ルを大さ < する と によ ゥ て 中 ?1¾ 壮
置か ら送信する nrttt:線 信号の レベルを低減する とができ る したがつ て 中継 装置の通信可能ェ ァ を狭 < する とができ る ため 通信 可能ェ U ァ内 に存在する 線通信端末が送信する );線信号 の レベルを所定の範囲 に収め る とがでさ る
また 他の例 と して _i ,t.線信号 レベル制限手段は 制御 壮置に設け ら れ 第 1 の光受信部によ つ て変換さ れた上 Ό 電気信号の 質が所定の条件を満た してい る か否か を監視 する 臣 t視部 と 監視部によ て上 Ό 気信号の 質が所定 の条件を満た していない と判断さ れた Α-Β. 第 1 'の光送信 部に入力 される下 り 電気信号の レベルを低減 し 光変調度 を低下さ せる レベル制御部 と か ら な レベル '制御部は 光変 周度を低下させ 下 り 光信号のパ 7 を減衰する と に よ Ό て 中継装置の通信可能ェ ァ を狭 ぐ し 通信可能 ェ リ ァ内 に存在する .fm 線 信端末が送信する 線信号の レ ベルが所定の範囲内 と なる よ う にする
れによ り 上 り 電気信号の □
13ロ質が低下 した場 に 制 御壮置にお いて 下 り 光信号の変調度を低下させる と に て 中 lib 衣置に送信する下 Ό 光信号のパ ヮ ―を低減す る とがでさ る したがつて 中継装置の通信可能ェ ァ を狭 < する とがでさ るため 通信可能ェ ァ 内に存在す る ハ、、線通信端末が送信する 線信号の レベルを所定の範囲 に収め る とがでさる
また 他の例 と して 二 jff:線信号 レベル制限手段は 制御 衣置に設け ら れ 第 1 の光受信部によ て変換さ れた上 り 电気信号の品質が所定の条件を満た してい るか否か を監視 する 視部 と 視部によ て上 Ό 気信号の TO が所定 の条件を満た していない と判断さ れた 合 第 1 の光送信 部で S又定さ れるバィ ァス 流の レベルを低減 し 光変調 を低 '下させる レベル制御部 とか ら な り レベル制御部は 光変 B周度を低下さ せ 下 Ό 光信号の ヮ を減衰する と に よ つ て 中継装置の通信可能ェ ァ を狭 < し 通信可能 ェ ァ内 に存在する "iTTT*線通信端末が送信する 1111;線信号の レ ベルが所定の範囲 内 となる よ にする
れによ Ό 上 り 電 信号の品質が低下 した に 制 御装置にお いて バィ ァス電流の レベルを低減 し 下 り 光 信号の変調 を低下させる と によ て 中継装置に送信 する下 Ό 光信号の ヮ を低減する とができ し たが て 中継装置の通信可能 X U ァ を狭 < する とがでさ る ため 信可能ェ リ ァ 内 に存在する 線通信顺末が送信す る 線信号の レベルを所定の範囲 に収め る とがでさ る さ ら に 1111. 線信号 レベル制限手段は 第 2 の光送信部に よ Ό て変換さ れた上 り 光信号にひずみが発生 しない レベル に 線信号を減衰する レベル減衰部を有 していて も よ い れによ Ό 中継衣置に いて 線通信 末か ら 受信 する tlT ?線信号の レベルが大 'き い であ て も 線信号 の レベルを低減する と ができ る ため 上 り 光信号にひず みが発生 しない したがつ て Δπΐ.線信号を高 Π
ΠΡ質に光伝送 する とができ る
好ま し < は 互い に隣接する 中 装置の通信範囲 士は 部重複 してお り 中継装置は 線通信端末 と の間で 送受信する 線信号の レベルを 整する と に よ つ て利得 を制御する レベル B周 手段 を含み レベル 手段は 制 御装置か ら 送信さ れる信号が 中 装置を介 して 通信可 能範囲が重複する 区域に存在する 線通信端末に伝送さ れ る までに要する遅延時間 と 制御装置か ら 送信さ れる信号 が 隣接する 中継装置を介 して 通信可能範囲が重複する 区域に存在する 線通信顺末に伝送さ れる までに要する遅 延時間 と の差が所定時間内 と な る よ う に 線信号の レベル を 敕する と よ い
れによ 制御装置か ら 送信さ 口
れた光信 が複数の 中 継装置を 由 して 線通信端末に到達する 場 口 に.おいて ち 信号の遅延時間差を 線通システムが許容する遅延時間 差の範囲 に収め る こ と がでさ る れに り マ >ルチパス 干渉によ る信号の劣化を防止する とができ る また 逆 に 受信範囲が重複する 区域か ら 線信号が送信さ れ 当 該 線信号が複数の受信ァ ンテナ部によ つ て受信さ れた場
D に いて 受信ァ ンテナ部の単 ―指向性を 整する と によ つ て 受信範囲が重複する 区域か ら送信さ れる 線 信号の遅延時間差を所定の時間内 に収め る とができ る また 隣接する 2 つ の 中 装 を 1 組と した と き 隣 り う 中継装置の組は 別の隣 α 中 装置の組 と異なる 周波数を用 いて通信 して も い
れに よ り 信号の遅延時間差が調整さ れた中 装置の 組の受信範囲が 他の 中 装置の組の受信範囲 と重複する 場 にお いて 利用する 周波数が異なる ため マルチパ ス干渉が発生 しない
1 つ の例 と して 送受信ァ ンテナ部は 隣梓する 中 gの つ ち 当該送受信ァ ンテナ部を備 7L る 中継壮 よ り も 制御装置と の間を接続する光伝送路の長さ が長い中継装 置に向か う 指向性を有する o
'れによ Ό の周波数を利用 して通信する 中継装置 を 3 以上 して設置する と ができ る ο
さ ら に 制御装置 と各中継衣置 と を接 する光伝送路を 分岐する光分岐結 口 部を備え 分岐さ れた光フ 'ァ ィ バの 方の顺に 中継装置が接続さ れ も う 方の端に別の光分岐 手 が接 されていて も よ い し 光分岐結 部は 制御装 置内 に接 さ れる 1 本の光フ ァ ハ、を所定の数以上に分配 し 分配さ れた光フ ァ ィ パにそれぞれ中継衣置が接 さ れ ていて よ い ο
れによ り 多数の 中継衣置を設置する とがでさ る o また レベル Ρ周整部は 遅延時間が 線通信シス テム が許容する最大の遅延時間 と なる よ う に
Figure imgf000020_0001
線信号の レベ ルを 整して も よ い o
れによれば 中 装置を増 a il
Θ又する場 にお いて 増 又する 中 装置を経由 して Arc.線通信端末または制御装置に 到達する信号の遅延時間 を Arc.線通信システムが許容する最 大遅延時 1日] とすればよ い したがつ て 中継装置を増 す る 際に 他の既存の 中継装置の設定を 更する必要がな < なる o
他の例 と して 互い に隣接する 中継装置の M信範囲 士 は ―部重複 してお り 中 装置は 制御装置 と の間で送 受信する光信号の遅延時間 を制御する光信号制御手段を含 み 光信号制御手段は 制御装置か ら 送信さ れる信号が 中 ?1^装置を介 して 通信可能範囲が皿ネ复する 区域に存在す る ff 線通 15 m末に伝送さ れる までに要する遅延時間 と 制 御お衣置か ら送信される信号が 隣接する 中 装置を介 して 通信可能範囲が重複する 区域に存在する 線通信顺末に 伝送さ れる までに要する遅延時間 と の差が所定時間内 とな る よ う に光信号の遅延時間 を制御する
れによ り 利得を制御する レベル調整部を:中継装置に ける必要がな い したがつ て 線通信シス テム の構成 を簡易な の とする と ができ る
また 他の例 と して 中 装置は 隣接する 中継装置が 利用する周波数 と は異な る周波数で さ れた 線信号を 送受信 して も < レベル調整部は 同 の ΊΙΪΐτ '線変調信号 を使用する他の 中紘装置が形成する 線可能範囲 に対 し 線信号 レベルが所定の レベル以下 とな る よ う に 線信 レベルを制御 して も よ い
れによ り 中 装 の通信範囲が他の 中 装置の通信 範囲 と重複 してい る 合 において ルチ ス干渉が発 生 しない したが て 信号 □ 質の劣化 を防止する とが でさ る
好ま し < は 送受信ァ ン' 'テナ部は 直方向の受信感度 が所定の範囲内 と なる よ Ό な指向性を有 し 所定の範囲 は 第 2 の光送信部が許容する範囲であ る と よ い
れによ り 中 装置は 当該中鉱装置の直下近傍に位 置する 線通信端末が送信する 線信号を低利得で受信す る したがつ て 中継装置の近傍か ら 送信さ れる 線信号 を所定のダィ ナ ッ ク レ ンンに収め る と がでぎる また 中 装 は 当該中 /i l装置の直下近傍に位 しない ^ϊΐ Ik線 通信端末 つ ま Ό 遠方に位置する 線通信端末が送信する 線信号を高利得で受信する したが て ^fm 線信 の レ ベル 'を所定のダィ ナ ッ ク レ ンンの範囲内 に収め る とが で含 る o よ て高品質の上 り 光信号を制御装置に送信する とがでさ る o ま た 中継装置に A G C 回路を設ける必要 がないため 線通信シス テム の構成を簡易化する と が できる したがゥ て 当該システム を安価に構築する と ができ る o - 例 と して 線信号 レベル制限手段は 直方向か ら 送信されて < る ^frn*.線信号を吸収する送受信ァ ンテナ部 RX. け ら れた電波吸収体でめ る
れによ り 中 装置の直下近傍に位 imする ilif*線通信顺 が送信する 線信号は m波吸収体によ て吸収さ れる ため 受信ァ ンテナ部は 、 当該 ~τΐΠ*線信号を低利得で受信す る と とな る o れによ Ό ιΐϊΤτ線基地局の近傍か ら送信さ れる ιΠΙ*線信号を所定の範囲 に収め る とがでさ る o
他の例 と して 送受信ァ ンテナ部ば 双方向指向性を有 する ホ ルァ ンテナか ら構成されてね Ό ポ ルァ ンテナ は 直方向の受信咸度が.所定の レベル内 と なる に設 置さ れてい る o ポ ルァ ンテナは 建物内の天井 に 置さ れていても よ < 建物内の床に BX置さ れていて ち よ い ま た ポ ルァ ンテナは 建物内の壁に設 さ れていて も よ 置
V -*
れに よ り m Eg,波吸収体を P又ける こ と な ぐ 鉛直方向に 対する 送受信ァ ンテナ部の指向性を制限する とがでさ る o したが て 送受信ァ ンテナ部が ァ ンテナ と 波吸収 体とか ら構成さ れる a に比ベ シス テム の構成をよ 簡 略化する とがでさ る
他 'の例 と して 送受信ァ ンテナ部は 第 2 の光受信部に
■1
よ て変換さ れた下 り 電 号を 線通信端末に f tmilt"線信号 と して送信する 受信ァ ンテナ部 と 線通信端末か ら送信 さ れる -ft ft 線信号を受信 して上 Ό 信号 とする送信ァ ンテ ナ部 とか ら な り ■r Jnt 線信号 レベル制限手 は 送信ァ ンテ ナ部であ て 直方向カゝ ら 送信さ れて < る 線信号を遮 断する位置に設け ら れる 。 好ま し < は 送信ァ ンテナ部は 受信ァ ンテナ部が sru
3又け ら れた方向を除 < 方向に指向性を 有する と よ い ( .i
o
れによ り 波吸収体を設ける とな < 鉛直方向に 対する受信ァ ンテナ部の指向性を制限する とがでさ る したが て 受信ァ ンテナ部が ァ ンテナ と電波吸収体 と か ら構成さ れる 場 α に比ベ、 シス テム の構成を よ り 簡略化 する とができ る
"ΙΙΪΐτ線信号 レベル制限手段は さ ら に 送受信ァ ンテナ部 が受信する信号の レベルを減衰させ 各 線通信顺末が利 用するそれぞれのチャ ンネルに いて 当該チャ ンネルを 利用する 線信号の レベルに対する 当該チャ ンネル以外の チャ ンネルを利用する 線通信顺末か ら の漏洩信号の レベ ルの比であ る信号対雑 曰 比を所定値以下 とする レベル減衰 部を有する していて よ い。
れによ Ό 送信ァ ンテナ部か ら 受信ァ ンテナ部に回 り 込む ' ιιΓ*線信号を低減する こ とがでさ る したが て 線 地局内の電メ 回路にお ける発振や、 上 り 信号および下 Ό 信号の干渉によ る信号劣化を防 ぐ とができ る o
また 、 他の例 と して 、 各送受信ァ ンテナ部は 、 直下に位 置する 線通信端末か ら の '、、ヽ線信 を受信 しないよ う な単 指向性を有 し かつ受信可能範囲内 に存在する /frit線通信 端末か ら 送信さ れる 線信号を所定の レベル内で受信 し 、 送受信ァ ンテナ部の内 、 少な < と も 1 つ の送受信ァ ンテナ 部は 、 単 指向性が向か う 方向に位置 し 、 か 当該送受信 ァ ンテナ部に隣接する 中継装 m にお ける送受信ァ ンテナ部 の直下に位置する 線通信端末か ら の Πίϊΐ*線信号を.受信 し 、 所定の レベルは 、 所定の範囲内 と な る レベルであ る
れによ り 、 送受信ァ ンテナは 、 中 衣置の直'下近傍 、 つ ま 近距離か ら 送信さ れる信号 レベルの大さ い 線信号 を受信する とがない o したがつ て 、 第 2 の光送信部に入 力 される 線信号の信号 レベルを 、 所定の範囲内に収め る とがでぎ る れに り 、 複数の 中 装置を 又置する と によ つ て広範囲 の通信ェ U ァ を力 バ する とせに 、 信号 を高 Q 質 に光伝送する とができ る また 、 中 装置は 、
A G C 機能を有する必要がな いため 、 線光伝送シス テム の構成を簡易化 し 、 当該システム を安価に構築する とが でさる
好ま し < は 、 送受信ァ ンテナ部の内 、 単 指向性が示す 方向の 端箇所に位置する中 装置以外の 中 装置の送受 信ァ ンテナ部は 、 単 指向性が向か 方向に位置 し 、 かつ 当該送受信ァ ンテナ部に隣接する 中 装置にお ける送受信 ァ ンテナ部の直下に位置する 線通信 m末か ら の -tiHr線信号 を受信する と よ い 例 と して 各 受信ァ ン丁ナ部の単 一指向性は 鉛直斜め下方向か ら 隣接する 中継 置にお け る送受信ァ ンテナ部の直下方向に 向けた指向性であ る
また 互い に隣接する 中継装置の受信可能範囲同士は 部重複 してい る と い
れによ り 受信範囲が して形成さ れる こ と と な る ため 線通信端末の配置場所につ いての 自 由 を向上さ せる と ができ る □
好ま し < は 送受信ァ ンテナ部は 隣接 した 中 装置の う ち 当 該送受信ァ ンテナ部を備える 中継装置よ'り 制 御装置 と の 間 を接 する光伝送路の長さ が長い 中継 置に 向か う 単 指向性を有 し 単 指向性は 受信可 >能範囲が 重複する 区域か ら 送信さ れる 線信号が送受信ァ ンテナ部 によ て受信さ れ 制御装置に伝送さ れる までに要する遅 延時間 と 当該 線信号が隣接する 中継装置にお ける 送受 信ァ ンテナ部に よ て受信さ れ 制御装置に伝送される ま でに要する遅延時間 と の差が所定時間内 とな る よ う に調敕 さ れる と よ い 0 ま た 単 指向性は 当該単 指向性の広 が り 角度を 更する と によ ゥ て調整さ れて も よ < ま た
、 送受信ァ ンテナ部の BX置角度を変更する こ と によ て調 整されて も よ い
れに よ り 受信範囲が重複する 区域か ら ΠΙΙ*線信号が送 信さ れ 当 -ant
該 線信号が複数の受信ァ ンテナ部によ つ て受 信さ れた場 口 にお いて も 受信ァ ンテナ部の単 指向性 を
P周整する. と によ て 受信範囲が重複する 区域か ら 送信 される MΤΓMΓ.線信号の遅延時間差を所定の時間内 に収め る と がでさ る れに り マルチパス干渉によ る信号の劣化 を防止する とができ る
好ま し < は 中継装置は さ ら に 送受信ァ ンテナ部 に よ て受信された is線信号を増幅または減衰する レベル調 整部を備え レベル e周整部は 受信可能範囲が重複する 区 域か ら送信さ れて < る 線信号の レベルが所定の レベル と なる よ う に 線信号を増幅また は減衰 し 所定 'の レベルは 重複する 区域か ら送信さ れ 瞵接 した中 装置に つ て 受信された 線信号の レベル と の差が所定範囲内 となる -よ う な レベルであ る と よ い ま た 線通信顺末は それぞ れ異なる 周波数の 線信号を用 いて通信 して ち い
第 2 の局面は 線通信区間 に 占在する複数'の 線通信 顺末か ら 送信さ れる 線信号を受信 して光信号に変換 し 伝送路 を介 して伝送する 中 装置であ つ て 建物内の天 井 床 または壁に sru
B 置さ れてお り 線通信端末か ら 送 信される ιϊίΠ線信号を受信する送受信ァ ンテナ部 と 送受信 ァ ンテナ部に よ て受信さ れた 線信号を光信号に変換 し 光伝送路に送出する光送信部 と を備え 送受信ァ ンテナ 部は 直方向の受信感 が所定の レベル内 と な る よ な 指向性を有 し 所定の レベ.ルは 受信 した 線信号の受信 強 が光送信部が許容する所定の範囲内 とな る レベルで る と を特徴 とする
第 3 の局面は 線通信区間 に 占在する複数の 線通信 末か ら 送信さ れる 線信号 を受信する受信ァ ンテナであ て 建物内の天井 床 または壁に設置されてお り 鉛直方向の受信咸度が所定の レベル内 となる よ な指向 性を有 し 所定の レベルは 受信 した無線信号の受信弓 度 が光送信部が許容する所定の範囲内 となる レベルであ る と を特徴 とする
第 4 の局面は 光伝送路を介 して接続さ れてい る制御 置か ら送信さ れる光信号を 中継装置が電 信号に亦
久換 し 線信号 と して Arc.
線通信端末に送信する 線通信シス テム であ て 制御装置は 下 Ό 電気信号を下 り 光信号に変換 し 光伝送路を介して中 装置に送信する第 1 の光送信部 を含み 中 装置は 光伝送路を介 して制御装置か ら 送信 さ れて ぐ る下 り 光信号を下 Ό 電気信号に変換する第 1 の光 受信部 と 第 1 の光受信部に よ て変換さ れた下 り 信 号を 線信号 と して 線通信端末に送信する ァ テナ部 と を含み 光伝送路にお ける伝送品質 を評価 し 当該伝送 P が所定の条件 を満た してい る か否か を判断する PP質評価 手段 と Π
PP質評価手段に よ て 伝送品質が所定の条件を 満た していない と判断さ れた場合 線信号の送信を停止 する信号送信停止手段 と を備え る
( _れによ Ό 光伝送路にね ける伝送 P口P質が低下 した 口 線信号の送信を停止する と がでさ る したがつ て 例え ば 電波法等において規定さ れてい る公的な条件 を満 た さ ない 線信号が送信さ れる とがない よ つ て 他の 通信機 や電気機 に亜影 を及ぼさ ない よ にする ( _ と がでさ る
例えば □
Π口質評価手段 よび信号送信停止手段は 中継 装置に PXけ ら れ 品質評価手段は 下 り 光信号の PP質 を評 価 し 当該下 り 光信号の 口 質が所定の条件を満た してい る か否か を判断 し 信号送信停止手段は 品 ft 価手 によ つ て 下 Ό 光信号の π 質が所定の条件を満た していない と 判断さ れた場 ハヽ、線信号の送信 を停止する
れによ Ό 中 装置は 制御装置か ら 受信 した下 り 光 信号の P口P質が低下 した 口 線信号の送信を停止する とができる o したが て Π
ΡΠ質が劣化 した 線信号が送信 さ れる とがない
例 と して a 質評価手段は 中継装置が受信する下 り 光信号のハ0ヮ を検出 し ―が所定値以下であ る か否 か を判断する受光パヮ 検出部であ り 信号送信.停止手段 は 受光パヮ 検出部によ て 下 り光信号の ヮ ―が所 定値以下であ る と判断さ れた ύハι、ιΐ、ι線信号の送 >信を停止 する o
れによれば 中継装置は 制御壮置か ら送信さ れて含 た下 り 光信号のパ が低下する と .mti*線信号の送信を停 止する 例えば 光伝送路に異常が発生 した 合 信号の 伝送損失が増加する 信号の伝送損失が増加する と 下 り 光信号のパヮ が低下する o し たが て 中 装置は 下 り 光信号のパ V を検出する と によつ て 信号の伝送損 失を評価する とがでさ る o
また □ 質評価手段お よ び信号送信停止手 は 中 装 置に卩又け られ Π
ΠΡ質評価手段は 下 電気信号の品質 を評 価 し 当該下 Ό 電気信号の ΡΠ質が所定の条件を満た してい る か否か を判断 し 信号送信停止手段は PP質評価手 に よつて 下 り 電気信号の U
PP質が所定の条件を満た していな い と判断された場 *fmr,線信号の送信を停止 してもよ い れに よ り 中 '継装置は 下 り 電 信号の品 が低下 し た場 口 線信号の送信を停止する とがでさ る したが つ て 品質が劣化 した 線信号が送信さ れる とがない 他の例 と して 品質評価手段は 第 1 の光受信部によ て変換さ れた下 Ό 電気信号か ら ァ ンテナ部か ら送信すベ き 線信号の周波数 域成分の レベルを検出する 線信号 レベル検出部 と 第 1 の光受信部によ つ て変換 'された下 り i 信号か ら ァ ンテナ部か ら 送信すベさ 線信号の周波 数 域外成分の レベルを検出する不要輻射 レベル検出部と 線信号 レベル検出部によ て検出 さ れた周波数帯域成 分の レベルに対する 不要輻射 レベル検出部に よ て検出 さ れた周波数帯域外成分の レベルが 定 レベル以上でめ る か否か を判断する レベル判定部 とか ら な り 信号送信停止 段は レベル判定部によ つ て 周波数帯域成分の レベル に対する周波数帯域外成分の レベルが 定 レベル以上であ る と判断さ れた場 線信号の送信 を停止する
れによ り 中 装置は 周波数帯域外成分の レベルが 大きい 線信号の送信を停止する と ができ る 線信号 に含まれる周波数帯域外成分の レベルが大さ い場 当 該 周波数 W域外成分と 同 の周波数 W域を利用 して通信する 通信機器に亜 を及ぼす恐れがあ る ま た 特定の周波 数の レベルを検出すれば いため 線通信システム の構 成を簡易化する とがでさ る
他の例 と して 制御装置は さ ら に 異なる周波数の 2 つ の試験信号を生成する 験信巧生成部 を含み 第 1 の光 送信部は 式験信号生成部に よ つ て生成さ れた 験信号を 畳した下 Ό 電 5^信号を下 り 光信号に変換 し B□P 評価手 段は 第 1 の光受信部に つ て変換さ れた下 り 気信号に 重畳さ れてい る ϊλ,験信号の周波数 flr域成分の レベルを検出 する ø式験信 レベル検出部 と 第 1 の光受信部によ つ て変 換された下 り X 信号に重畳されてい る 験信号の相互 ひずみの レベルを検出する ひずみレベル検出部 と 試験 信号 レベル検出部に よ て検出 さ れた周波数帯域成分の レ ベルに対する ひずみ レベル検出部によ て検出 された相 互変 ひずみの レベルが 定 レベル以上であ る か否か を判 断する レベル判定部 とか ら な Ό 信号送信停止手'段は レ ベル判定部によ つ て β式 信号の周波数帯域成分の レベル に対する相互変調ひずみの レベルが 定 レベル '以 >上でめ る と判断さ れた til 線信号の送信を停止する
れによ Ό 中 装置は 相互変調ひずみが増大 し 品 質が劣化 した ιπι*線信号の送出 を停止する と がでさ る 0 ま た 特定の周波数の レベルを検出すればよ いため tntr線通 信シス テム の構成を簡易化する とがでさ る ο
他の例 と して 制御装置は さ ら に 験信号を生成す る 験信号生成部を含み 第 1 の光送信部は 験信号生 成部によ て生成さ れた 式験信号を重畳 した下 り 電 信号 を下 Ό 光信号に 換 し P
PP質評価手段は 第 1 の光受信部 に よ つ て変換さ れた下 り 電気信号に重畳さ れてい る試験信 号の周波数 域成分の レベルを検出する 験信号 レベル検 出部 と 第 1 の光受信部によ て変換さ れた下 り 電 信号 に重畳さ れてい る 験信号の高 波ひずみの レベルを検出 する ひずみ レベル検出部 と 験信号 レベル検出部に て検出 された周波数帯域成分の レベルに対する ひずみ レ ベル検出部によ つ て検出 さ れた高 波ひずみの レベルが 定 レベル以上であ るか否か を判断する レベル判定部 と を有 し 信号送信停止手段は レベル判定部によ つ て 験信 号の周波数帯域成分の レベルに対する高 波ひずみの レベ ルが 定 レベル以上であ る と判断された 合 線信号の 送信を停止する
れに よ り 中継壮置は 高 波ひずみが増大 し Π
ΠΡ質 が劣化 した 線信号の送出 を停止する とがでさ る また 特定の周波数の レベルを検出すれば いため 線 信 システム の構成を簡易化する とがでさ る
また ァ ンテナ部は 線通信端末か ら 送信 'さ'れてさた tntr線信号を受信 して上 り 電 信号 と し 中 装置は さ ら に ァ ンテナ部によ て受信さ れた上 Ό 信号を上 り 光 信号に変換 し 光伝送路を介 して制御装置に送信する第 2 の光送信部を含み 制御装置は さ ら に 光伝送路を介 し て中継装 か ら 送信さ れて < る 上 り 光信号を上 り 電 信号 に変換する第 2 の光受信部を含み 品質評価手段 よび信 号送信停止手段は 中 装置に 又け ら れ 品質評価手 s は 上 り 光信号の品質 を評価 し 当該上 り 光信号の Ρ口Ρ質が所 定の条件を満た してい る か否か を判断 し 信号送信停止手 は 品質評価手段によ つ て 上 Ό 光信号の PP質が所定の 条件を満た していない と判断さ れた 無
Π 線信号の送信 を停止 して ち よ い □
れに Ό 中 装置は 上 り 光信号の品質が低下 した 場 *†ti 線信号の送信を停止する とがでさ る ο したがつ て P
PP質が劣化 した無線信号が送信される こ とがない 例 と して 品質評価手段は 第 2 の光送 部によ て 変換さ れた上 り 光信号 と 当該光伝送路か ら 反射される 反 射光 と を分岐する光力 プラ部 と 光力 プラ部によ Ό て分岐 さ れた反射光の を検出 し 当該反射光のパ 7 が 定値以上であ るか否か を判断する光パヮ 検出部とか ら な り 信 送信停止手段は 光 ヮ 検出部に よつ て 反射 光のパヮ ―が ―定値以上であ る と判断さ れた場 CI 線信 号の送信を停止する - れに よ り 例えば、 制御装置 と 中 it装置 と を接 ? kする 光伝送路に異吊が発生する と に よ つ て光反射が増大 し た
O に 中 装置は 線信号の送信を停止す ' と がで き る れに よ り 異常が発生 した光伝送路を介 して制御 置か ら 送信されてきた Π
PP質が劣化 した信号が 線信号 に変換して送出 さ れる こ とがない また 光伝送路か ら の 反射光を検出すれば いため 線通信シス テム の構成を 簡易化する とができ る
また 質評価手段および信号送信停止手段は 制御装 置に け ら れ 品質評価手 は 下 Ό 光信号の □
PP質を評価 し 当該下 Ό 光信号の品質が所定の条件を満 7こ してい る か 否かを判断 し 信号送信停止手段は 品質評価手段によ つ て 下 り 光信号の Π
PP質が所定の条件を満た していない と判 断さ れた 当該下 り 光信号の送信を停止する と によ つ て 中 装 か ら の 線信号の送信を停止させて も よ い れによれば 制御装置は 下 り 光信号の品 が低下 し た場 下 Ό 光信号の送信を停止する □ れに Ό 制御 装置か ら下 り 光信号の送信が停止さ れる ため 中継装置か ら の □
ΡΡ が低下 した 線信号の送信を停止する とがでさ
Ό
例 と して 品質評価手段は 第 1 の 送信部によつ て 変換さ れた下 Ό 光信号 と 当該光伝送路か ら反射される 反 射光 と を分岐する光力 プラ部 と 光力 プラ部に 'よ て分岐 さ れた反射光の ヮ を検出 し 当該反射光の ヮ が 定値以上であ る か否か を判断する光 ヮ 検出部 とか ら な
Ό 信号送信停止手 は 光ハ0ヮ 検出部に つ.て 反射 光のパ 7 が 定値以上であ る と判断さ れた場 α 下 Ό 光 信号の送信を停止する
れに よ り 例えば 制御装置 と 中継装置 と を接 する
¾伝送路に異吊が発生する と に よ て光反射が増大 した 口 に 制御装置は 下 り 光信号の送信を停止する と に よ つ て 線信号の送信を停止する とがで含 る し たが つ て 品質が劣化 した 線信号が中鞭装置か ら送信さ れる こ とがない また 光伝送路か ら の反射光を検出すればよ いため ハ、ヽ線 信システム の 成を簡 化する とがでさ m また ァ ンテナ部は ハ、ヽ線通信端末か ら 送信さ れてさた 無線信号を受信 して上 り 気信号 と し 中 装置は さ ら に、 ァ ンテナ部によ て受信さ れた上 り 電気信号を上 り 光 信号に変換 し 光伝送路を介 して制御装 に送信する 第 2 の光送信部を含み
制御装置は さ ら に 光伝送路を介 して中 装置か ら 送 信されて < る 上 り 光信号を上 Ό 電 信号に変換する 2 の 光受信部を含み 品質評価手段および信号送信停止手段は 制御装置に設け ら れ B 貝評価手段は 上 光信号の品 質 を評価 し 信号送信停止手段は □
DP質評価手段によ て 上 Ό 光信号の品質が所定の条件を満た さ ない と判断さ れ た 下 り 光信号の送信を停止する と によ て 中 装置か ら の *·}ΙΒ*線信号の送信を停止させても い
れによれば 例えば 、 光伝送路に異常が発生 し 上 り 光信号の 叩質が劣化 した際に 制御装置は 下 Ό 光信号の 送信を停止する れに よ り 異常が発生 した光'伝送路を 伝送する と で Π
PP質が劣化 した下 Ό 光信号が 中 装置か ら 線信号 と して送信される と を防止する 'と'がでさ る o
―例 と して Π
PP質評価手段は 制御装置が受信する 上 り 光信号のパ フ ―を検出 し 、 当該上 り 光信号のパヮ が所定 値以下でめ る か否か を判断する制御装置にき P又 01け られた受光 パヮ ―検出部でめ り 信号送信停止手 は 受光パヮ 検 出部によつて 上 Ό 光信号のパ ヮ が所定値以下でめ る と 判断さ れた場 n 下り光信号の送信を停止する
れによ り 制御装 において受光パヮ が低下 し た場 に 下 Ό 光信号の送信を停止する とがでさ る o ま た 制御装置は 受光パヮ を検出する機能を有 していればよ いため 線通信シス テム の 成を簡 化する ( _ とがでさ ス
o
また ァ ンテナ部は 無線通信端末か ら 送信されてさた
Α πτππ:線信号 を受信 して上 り - 与信号 と し 中継装置は さ ら に ァ ンテナ部によつ て受信さ れた上 り メ m号を上 り 光 信号に変換し 光伝送路を介 して制御装置に送信する第 2 の光送信部を含み 制御装 は さ ら に 光伝送路を介 し て中 装置か ら 送信さ れて < る上 り 光信号を上 Ό ス 信号 に変換する第 2 の光受信部を含み D
BP質評価手段および信 口
送信停止手段は 制御装置に Πιけ ら れ ロロ貝評価手段は 上 り 電 号の Π
H 質 を評価 し 信号送信停止手段は 質評価手段によ て 上 り 電メ 信号の品質が所定の条件を 満たさ ない と判断された場 口 下 Ό 光信号の送信を停止す る と に よ つ て 中 装置か ら の titrr線信号の送信'を停止さ せても よ い 。
れに よ り 信号の PP質が低下 し 制御装置 'が'信号を正 常に復調する とがでさない 下 り 光信号の送信を停 止する と によ P
つ て 中継衣置か ら ΡΠ質が低下 した itttr線信 号を送信する と を防止する とがでさ る ο
例 と して 口
PP質評価手 Eft.は 第 2 の光受信部によ つ て 変換さ れた上 り 電気信号か ら 線通信端末か ら受信すベ さ 線信号の周波数 域成分の レベルを検出する信号 レベ ル検出部 と、 第 2 の光受信部によ つ て変換さ れた上 り 気 信号か ら 線通信端末かち 受信すベさ ntt:線 I R号の周波数 帯域外成分の レベルを検出する不要輻射 レベル検出部 と 信号 レベル検出部によ つ て検出 さ れた周波粉 毋域成分の レ ベルに対する 不要南 射 レベル検出部によ つ て検出 さ れた 周波数帯域外成分の レベルが 定 レベル以上であ る か否か を判断する レベル判定部 とか ら な 信号送信停止手段は レベル判定部によ て 周波数帯域成分の レベルに対す る 周波 fT域外成分の レベルが 定 レベル以上であ る と判 断された場 下 Ό 光信号の送信を停止する
れによ Ό 制御装置は 規定 レベル以上の 域外周波 数成分を含む 線信号の送信を停止する と がでさ る
他の例 と して 中継 置は さ ら に な る周波数の 2 つ の 験信号を生成する試験信号生成部を含み 第 2 の光 送信部は 3式験信号生成部によ つ て生成さ れた 験信号を 重畳した上 Ό 電気信号を上 り 光信号に変換 し a 質評価手 は 第 2 の光受信部 によ て変換さ れた上 り 信号に 重畳さ れてい る Β式験信号の周波数 w域成分の レベルを検出 する 験信号 レベル検出部 と 第 2 の光受信部に よ て変 換さ れた上 り ス 信号 に重畳さ れてい る 験信号 >の相互変 調ひずみの レベルを検出する ひずみ レベル検出部 と 試験 信-号 レベル検出部によ て検出 さ れた周波数帯域の レベル に対する ひずみレベル検出部によ つ て検出 さ れた相互変 周ひずみの レベルが 定 レベル以上であ る か否か を判断す る レベル判定 H とか ら な り 信号送信停止手段は レベル 判定部によ て 験信 の周波数帯域成分の レベルに対 する相互変調ひずみの レベルが 定 レベル以上でめ る と判 断さ れた 下 Ό 光信号の送信を停止する ο
れによ り 制御装置は 相互変調ひずみが増大 し ΡΡ 質が劣化 した 線信号の送出 を停止する と がでさ る o ま た 特定の周波数の レベルを検出すればよ いため 線通 信システム の構成を簡易化する とができ る ο
他の例 と して 中継装置は さ ら に 験信号を生成す る試験信号生成部を含み 第 2 の光送信部は 験信号生 成部によ て生成さ れた 信号を 畳した上 り 電メ 信号 を上 り 光信 に変換し 品質評価手段は 第 2 の光受信部 によ つ て変換さ れた上 Ό 電メ 信号に重畳さ れてい る試験信 号の周波数 域成分の レベルを検出する 験信号 レベル検 出部 と 第 2 の光受信部によ て変換さ た上 り 電気信号 に重畳さ れてい る 験信号の高 波ひずみの レベルを検出 する ひずみ レベル検出部 と 験信号 レベル検出部によ つ て検出 された周波数帯域成分の レベルに対する ひずみ レ ベル検出部に て検出 さ れた高 波ひずみの レベルが一 定 レベル以上であ る か否か を判断する レベル判定部と を有 し +信号送信停止手段は レベル判定部によ て 験信 号の周波数帯域成分の レベルに対する高調波ひず'みの レベ ルが 定 レベル以上であ る と判断さ れた 八 下 り 光信号 の送信を停止する
れによ り 制御 置は 高 波ひずみが増大 し 質 が劣化 し た 線信号の送出 を停止する とがでさ る また 特定の周波数の レベルを検出すればよ いため 線通信 システム の構成を簡易化する とができ る
また 線信号は 線 L A Nで用 い ら れる信号であ つ て ち < ま た 放送波の信号でめ て ち よ い
好ま し < は 光伝送路を接 する ため の光 ネ ク 夕 は すベて斜め研磨 ネク 夕 であ る と よ い れによ り 他の 光 ネ ク 夕 を用 い る場 α に比ベ 光 ネ ク 夕 が緩んだ状態 とな た 八において 発光素子への光反射や多重反射 を防止する とがでぎ る したが て 光信号の PP質の劣 化を防止する とがでさ る 図面の簡単な卩 明
図 1 は 本発明の第 1 の実施形 、 に係る 線通信システ ム の '構成を示すブ Π ッ ク 図であ る
図 2 は 図 1 に示す制御装置 1 0 の構成を示すブ口 ッ ク mであ り
図 3 は 図 1 に示す中継衣置 2 0 の構成 を示すブ ッ ク 図であ り
図 4 Aは I E E E 8 0 2 • 1 1 a 規格に 拠した 線
L A Nで用 い ら れ 中継装置が受信する 線信号のスぺク ラム を示す図であ り
図 4 B は 2 チャ ンネル離れた 2 つ のチャ ン 'ネルを利用 する第 1 および. -第 2 の 線通信顺末か ら 送信される 線 L
A N信号のス ぺ ク 卜 ラム を示す図であ り
図 5 は 中鉱装置 2 0 に ける 受信信号の強度 と 中 装置 2 0 およびハゝ、線通信端末 3 0 間の距離 と の関係 を表す グラ フであ り
図 6 は 本発明の第 1 の実施形 の変形例に係る制御装 置 1 0 a の構成 を示すブ P ッ ク 図でめ り
図 7 は 第 1 の実施形能 の変形例に係る 中 ft:装置 2 0 a の構成を示すブ □ ッ ク 図でめ Ό
図 8 は 本発明の第 2 の実施形目- に係る 線通信シス テ ムが備える制御装 1 Q b の 成を示すブ口 ッ ク 図であ り 置 図 9 は 上 Ό 光信号を ま と めて受信する 制御装 1 0 c の 成を示すブ D ッ ク 図であ り 図 1 0 は 光 子に入力 さ れる入力信号 と 光の 出力 ハ。ヮ と の関係 ( レ ザ I L 特性 ) を示す図であ Ό
図 1 1 は 第 2 の実施形 の変形例に係る 線通信シス テムが え る制御装 1 0 d の 成を示すブ Π ッ ク であ 備
V
図 1 2 は パィ ァス 流の レベルを制御する と によ て 光変調度を 整する 制御衣置 1 0 e の構成を示すブ Π ッ ク 図であ り
図 1 3 は 下 り 光信号のパヮ を調敕する制御装置 1 •0 f の構成を示すブ口 ッ ク 図であ Ό
図 1 4 は 本発明の第 3 の実施形能 に係る 線通信シス テムが備え る 中 2 0 b の 成を示すブ Π 、ゾク 図であ 置
Vリ] 図 1 5 は 第 3 の実施形目、 の変形例 に係 る 線通信シス テムが備え る 中 Ht 2 0 c の 成を示すブ D V ク 図でめ
V
1 6 は 第 4 の実施形 に係る 線通信システムが備 える 中紙装置 2 0 d の構成を示すブ π ッ ク 図であ り
図 1 7 は Λχ気信号評価部 2 1 4 の詳細な構成を示すブ
Π ッ ク 図でめ Ό
1 8 は 第 4 の実施形 の亦形例 に係る 線通信シス テムが備え る 制御装 1 0 g の 成を示すブ Π ッ ク でめ 置
1 9 は 電 信号評価部 2 1 4 e の詳細な構成を示す ブ Π ッ ク 図であ り
図 2 0 は 電気信号評価部 2 1 4 f の 細な 成を示す ブ口 ッ ク 図であ り 、
図 2 1 は 、 第 5 の実施形 に係る制御装 1 0 h の 成 m m を示すブ Π ッ ク 図であ 、
図 2 2 は 第 5 の実施形 ■ の変形例に係る 線通信シス テムが備える 制御装置 1 0 i の 成を示すブ Π V ク であ m
図 2 3 は 、 本発明 の第 6 の実施形 、 に係る 線通信シス テムが備える制御衣置 1 0 j の 成を示すブ π ッ ク であ m
図 2 4 は 、 第 6 の実施形 ■m の変形例 に係る 線'通信シス テムが備え る 中 lit装置 2 0 f の 成を示すブ D V ク 図であ り 、
図 2 5 は 、 本発明の第 7 の実施形 に係る 信シス テム の構成を示す図でめ り 、
図 2 6 は 、 本発明の第 8 の実施形 に係る 線通信シス テム の構成を示す図であ り 、
図 2 7 は 、 中継衣置 を 5 つ以上設ける 口 に ける 線 通信システム の構成を示す図であ り 、
図 2 8 は 、 本発明 の第 9 の 施形 、 に係る 線通信シス
テム の構成を示す図でめ Ό 、
図 2 9 は 、 本発明の第 1 0 の実施形能に係 る 線通信 シ ス テム の構成を示す図でめ り 、
3 0 は 、 本発明の第 1 1 の実施形 に係 る 線通信シ ステム の構成を示す図であ り 、
図 3 1 は 、 本発明の第 1 2 の実施形能に係る 線通信 シ ステム のネ書成を示す 0であ 3 2 は 1 2 の実施形 において 4 台の 中継装 を備え る 線通信システム の構成を示す図であ Ό
図 3 3 は 本発明の第 1 3 の実施形目 に係る 線通信シ ステム の構成を示す図でめ り
図 3 4 は 図 3 3 に す受信ァ ンテナ部 3 2 2 の構成 を 示す図であ Ό
図 3 5 は 中 衣置 3 2 にお ける受信信号の強度 と 中 置 3 2 および 線通信端末間の距離 と の関係を表すグ ラ フであ り
3 6 は 本発明の第 1 4 の実施形 に係る ^ϊιιι*■線通信シ ステム の部分図であ て 受信ァ ンテナ部 3 2 2 X の構成 xtOよびその受信 囲 3 7 X の断面を 式的に示す s であ り m
3 7 は 本発明の第 1 5 の実施形锥に係る 線通信シ ス テム の部分図でめ て 受信ァ ンテナ部 3 2 2 y の構成
^ίθよびその受信範囲 3 7 y を模式的に示す図であ り
m 3 8 は 本発明の第 1 6 の実施形能に係 る 線通信シ ス テム の部分図でめ て 受信ァ ンテナ部 3 2 2 Z の構成
-JO よびその受信範囲 3 7 z を椟式的に示す図で め
図 3 9 は 本発明の第 1 7 の実施形能に係る 線通信シ ス テム の構成を示す図であ Ό
図 4 0 は 本発明の第 1 8 の実施の形能に係る Art線通信 システム の構成を示す図でめ Ό
図 4 1 は 図 4 0 に TINす ΊΙΙΙ*線 信システム の部分 であ リ 、
4 2 は 図 4 1 に示す受信ァ ンテナ部の受信 囲 を 式的に す図であ Ό
図 4 3 は 特開平 9 一 2 3 3 0 5 0 号公報に記載の従来 の 線通信システムの構成を示す図であ り
図 4 4 は 特許第 2 8 8 5 1 4 3 号明細 に記載の従来 の 線通信シス テム の構成を示す図であ り
図 4 5 は 隣接する 2 つ のチャ ンネルを利用する第 1 お よび第 2 の 線通信端末か ら 送信さ れる I E E E 8 0 2
• 1 1 a 規格に準拠 し た 線 L A Ν信号のスぺク 卜 ラ ム を 示す mであ り - 図 4 6 は 2 チャ ンネル離れた 2 のチ ャ ンネルを利用 する第 1 お び第 3 の 線通信 m末か ら送信さ れる 線 L
A Ν信号のス ぺク h ラ ム を示す であ る 発明 を実施する ϋめ の最良の形態 以下 本発明の実施形 につ いて 図面を参 m しなが ら 明する
(第 1 の実施形能 )
図 1 は 本発明の第 1 の実施形 に係る 線通信システ ム の構成を示すブ D V ク 図であ る
図 1 において 線通信 'シス テムは 制御装置 1 0 と 中維装置 2 0 一 1 2 0 一 n ( n • 1 以上の 自 然数 ) と
4τπ 線通信 末 3 0 1 3 0 一 n と を備え る 制御装置 1
0 と 中継装置 2 0 ― 1 2 0 ― n と は それぞれ光伝送 路 4 0 一 1 4 0, ― n を介 して接 さ れてい る また 中 継 置 2 0 ― 1 2 0 一 n と 線通信顺末 3 0 ― 1 3
0 n と は それぞれ 線を介 して接 されてい る 光伝 送路は 例えば 光フ ァ ィ バであ る
制御装置 1 0 と外部のネ ッ 卜 ヮ ク (図示せず ) と は、 ィ サネ ッ 卜 (登録商標 ) ケ ブル 6 0 を介 して接 さ れ る なお 制御装置 1 0 と外部ネ ッ h ヮ ク と は ィ ―サ ネ ッ 卜 (登録 標 ) ケ ブル 6 0 以外のケ ブル (例え ば ¾1話線 軸ケ ブル 光フ ァ ィ パ ) を介 して接続さ れ て も よ い
以下 特に 区別する 必要がない 中継装置 2 0 一 1
〜 2 0 一 n ( n - 1 以上の 自 然数 ) t 線通信端末 3 0 -
1 〜 3 0 ― m ( m - 1 以上の 白 然数 ) 光伝送路 4 0 一 1
〜 Δ 0 一 n を 中 装置 2 0 線通信端末 3 0 光伝送 路 4 0 とネ公
m 称する
中 r -装置 2 0 は 線通信顺末 3 0 が送信する 線信号 を上 Ό 光信号に変換 し 光伝送路 4 0 を介 して制御装置 1
0 に送信する 制御装置 1 0 は 光伝送路 4 0 を介 して中 継装置 2 0 か ら送信さ れて < る 上 Ό 光信号を上 り 電 信号 に変換 し 復 した後 ィ サネ V (登録商 ) ケ ブ ル 6 0 を介 して外部ネ V 卜 7 ク に送信する
一方 制御 置 1 0 は 線通信顺末 3 0 ― 1 〜 3 0 - mに送信すベ含信号を下 り 光信号に変換 し 光伝送路 4 0 一 1 〜 4 0 ― n を介 して中 IS 置 2 0 一 1 〜 2 0 ― n に送 信する 中継装置 2 0 一 1 〜 2 0 一 n は 受信 した下 り 光 を tn
信号 線信号に変換 し 線通信顺末 3 0 ― 1 〜 3 0 一 mに送信する
図 2 は 図 1 に示す制御衣置 1 0 の詳細な構成を示すブ π ッ ク 図であ る 図 2 において 制御装置 1 0 は 送信信 号処理部 1 0 1 と、 光 信部 1 0 2 と、 光分配部 1 0 3 と
、 光受信部 1 0 4一 1 〜 1 0 4— と、 受信信号処理部 1
0 5 と を含む
送 '信信号処理部 1 0 1 は 、 ィ ' ^ -サネ ッ 卜 (登録商 ) ケ 一ブル 6 0 を介 して外部ネ ッ 7一ク か ら 送信されてさた 信号を変調 し 、 光送信部 1 0 2 に出力する
光送信部 1 0 2 は 、 送信信号処理部 1 0 1 に 'よ て変調 さ れた信号を下 り 光信号に変換 し 、 光分配部 1 0 3 に 出力 する □
光分配部 1 0 3 は 、 光送信部 1 0 2 によ て変換さ れた 光信号を 、 η個の下 Ό 光信号に分岐 し 、 光伝送路 4 0 一 1
4 0 ― η に送出する
光受信部 1 0 4一 1 〜 1 0 4 ― n は 、 光伝送路 4 0 一 1
4 0 η を介 して各中 衣置 2 0 ― 1 〜 2 0 ― n か ら 送 信さ れて さた上 Ό 光信号を受信する と 、 受信 した上 り 光信 号を電気信号に変換する
受信信号処理部 1 0 5 は 、 光受信部 1 0 4一 1 〜 1 0 4
— n によ て変換さ れた電 信号を復 する そ して 、 受 信信号処理部 1 0 5 は 、 復 周 した信号をィ ―サネ ッ 卜 (登 録商 ) ケ ブル 6 0 を介 して外部ネ ッ 卜 一ク に送信す る なお 、 受信信号処理部 1 0 5 は 、 信号の復調以外の信 号処理を行つ て も よ い 当該信号処理は、 例え ば、 単純な 加算 、 ダィ ハ、シティ 受信 、 R A K E 受信、 振幅調整、 信号 選択等であ る
図 3 は 、 図 1 に示す中継装置 2 0 の詳細な構成を示すブ
P ッ ク 図であ る 図 3 において、 中継装置 2 0 は、 光受信 部 2 0 1 と 線送信部 2 0 2 と 分離部 2 0 3 と 送受 信ァ ンテナ部 2 0 4 と 線受信部 2 0 5 と 光送信部 2
0 6 と レベル制御部 2 0 7 と を含む
光 '受信部 2 0 1 は 光伝送路 4 0 を介 して制御装置 1 0 か ら送信されて < る下 り 光信号を又信する と 受信 した下 り 光信号を下 り 電 信号に変換し レベル制御部 2 0 7 に 出力する
レベル制御部 2 0 7 は 例えば A G C ( A u t o m a t i c G a i n C o n t r o 1 ) ァ ンプであ て 、 光 受信部 2 0 1 によ て 換さ れた下 り 電ヌ 信号の'レベルを 制御 して Ant.
線送信部 2 0 2 に 出力する レベル制御部 2 0
7 は 中 Hi装置 2 0 が 線通信端末 3 0 か ら 受 する無線 信号の レベルが所定ダィ ナ V ク レ ン ンの範囲内 に収ま る よ う に 下 Ό メ 信号の レベルを調整する が 詳細につい ては後述する
線送信部 2 0 2 は レベル制御部 2 .0 7 か ら 出力 さ れ る下 り 気信号に増幅等の処理を行い 分離部 2 0 3 に出 力する
分離部 2 0 3 は 線送信部 2 0 2 か ら 出力 さ れる下 り 信号を送受信ァ ンテナ部 2 0 4 に 出 力する また 、 分 離部 2 0 3 は 送受信ァ ンテナ部 2 0 4 が受信 した電 号を 線受信部 2 0 5 に出力する
線受信部 2 0 5 は 分離部 2 0 3 か ら 出力 される 上 り 信号に増幅等の処理を行い 光送信部 2 0 6 に出力す る 。
光送信部 2 0 6 は、 無線受信部 2 0 5 か ら 出力 される 上 り 電気信号を上 り 光信号に変換 し、 光伝送路 4 0 に送出す る 。
送受信ァ ン丁ナ部 2 0 4 は 分離部 2 0 3 か ら 出力 さ れ
る下 り 電気信号を 線信 と して空中 に送出する また 送受信ァ ンテナ部 2 0 4 は ■ ιΤΠτ
ハ、、線通信 末 3 0 か ら送信さ れてさたハ、、線信号を受信する
で 下 Ό 電 信号の レベルを どの个王 調敕すベさか に いて P兑明する 図 4 A は I Ε Ε E 8 0 2 1 1 a 規 格に準拠した 線 L A Nで用 い ら れ 中継お が受信する
' 1 線信号のス ぺク h ラム を示す図であ る 図 4 A.に示すハ、、 線信号は 信号成分 1 0 0 1 と 信号漏洩成分 1 0 0 2 と 信号漏洩成分 1 0 0 3 と を有する 信号成分 •1 ' 0 0 1 は 中継装置が受信すベさ信号成分 ( ttrl
ハ、線通信 末が送信す ベき信号成分 ) でめ て 帯域幅は約 2 0 M H z であ る で ハ、、線通信端末が中 装置に送信すベさ信号成分を 増幅する 際 増幅 の非線形性に よ て 送信すベぎ信号 成分以外に 送信すベさ信号成分の -fctl- 域外周波数成分が出 力 されて し ま う
信号漏洩成分 1 0 0 2 は 信号成分 1 0 0 1 の帯域外周 波数成分であ つ て 信号成分 1 0 0 1 に最ち近いチャ ンネ ル (以下 隣接チ ャ ンネル と呼ふ ) に漏洩する成分であ る 信号漏洩成分 1 0 0 3 は 信号成分 1 0 0 1 の帯域外周 波数成分でめ て 信号成分 1 0 0 1 に 2 番 に近いチャ ンネル (以下 次隣接チャ ンネル と呼ふ ) に漏洩する成分 であ る 明の簡単のため に それぞれの信号スぺク 卜 ラ ム は 定 レベルであ る も の と して 明する ハ、、線通信シスァム にお いて ハ、 線信号の 調方式が 6 4
Q A M ( Q u a d r a t U r e A m P 1 i t u d e Μ o d u 1 a t i o n ) であ る場合 信号対妨 比 (以下
D / U ( D e s i r e d Z U n d e s i r e d ) 比 と呼ぶ
) が 約 2 2 d B 以上であれば 正 吊 に通信する とがで 含 る α また I E E E 8 0 2 • 1 1 a では 他チャ ンネル か ら の干渉があ る 場 o 中継装置が受信する信号のダィ ナ ミ ク レ ンンは 最大約 3 2 d B と なるベさであ る と規定 さ れてい る - また 漏洩比 1 0 0 4 は 信号漏洩成分 1 0 0 2 と信号 成分 1 0 0 1 と の レベル差で表さ れる o 漏洩比 1 0 0 5 は 信号漏洩成分 1 0 0 3 と信号成分 1 0 0 1 と 'のレベル差 であ る
A R I B S τ D ― T 7 1 において 漏洩比 1 0 0 4 は 約 ― 2 5 d B 以下 次隣接チャ ンネル漏洩比 1 0 0 5 は 約 ― 4 0 d B 以下 と な るベさであ る と規定さ れてい る
D / U比を 2 2 d B と し か 隣接するチャ ンネルへ の漏洩比 を 一 2 5 d B 以下 とする ため に は ιΤΠ*
ハ、、線通信端末 か ら受信する ハ、、線信号のダィ ナ ッ ク レ ンンを 3 d B 以下 と しな ければな ら ない o しか しなが ら 又信する iハs、、線信号 のダィ ナ ッ ク レ ンンを 3 d B 以下に抑え る と は困 で め Ό 現実的でないため 隣接する 2 チャ ンネルの信号を
(Hi時に使用する と はでさな い o
次に 2 チ ャ ンネル離れた 2 の信号を利用する塲八 に つ いて考え る o 図 4 B は 2 チ ャ ンネル離れた 2 つ のチ ャ ンネルを利用する第 1 お び第 2 の 線 信 m末か ら 送信 さ れる ハ、、線 L A N信号のスぺク 卜 ラ ム を す図であ る 実線は 、 信号 a のスぺク 卜 ラム を示 し 、 点線は 、 信号 c のス ぺク 卜 ラ ム を示す 第 1 のハ、、線通信端末が送信する信 号 a と 、 第 2 のノ、、ヽ線 信端末が送信する信号 c と は 、 互い に 2 つ離れたチャ ンネルの信号であ る 以下 、 信号 a が、 信号 c か ら漏洩する信号の成分に妨 を受ける ½ 口 につ レ て説明する
信号 a は 、 信号成分 1 0 0 1 a と 、 信号漏洩成分 1 0 0
2 a と 、 信号漏洩成分 1 0 0 3 a と を有する 信号成分 1
0 0 1 a は 、 中 衣置が受信すベさ信号 a の成分であ る fe W洩成分 1 0 0 2 a は 、 信号成分 1 0 0 1 a の 域外 周波数成分であ て 、 信号成分 1 0 0 1 a の隣接 ャ ンネ ルに漏洩する成分であ る 信号漏洩成分 1 0 0 3 a は 、 信 号成分 1 0 0 1 a の帯域外周波数成分であ て 、 信号成分
1 0 0 1 a の次隣接チャ ンネルに漏洩する成分であ る 信号 c は 、 信号成分 1 0 0 1 c と 、 信号漏洩成分 1 0 0
2 c と 、 信号漏洩成分 1 0 0 3 c と を有する 信号成分 1
0 0 1 C は 、 中継衣置が受信すベき信号 c の信号成分であ
Ό 。 1目号漏洩成分 1 0 0 2 C はゝ 信号成分 1 0 0 1 c の隣 接チヤ ンネルに 洩する信号の成分であ る 信号漏洩成分
1 0 0 3 c は 、 信号成分 1 0 0 1 c の次隣接チャ ンネルに 漏洩する信号の成分でめ る D / U比 1 0 0 6 は 、 信号 a に対する次隣接チャ ンネルか ら の漏洩比でめ て 、 信号成 分 1 0 0 1 a の レベル と信号漏洩成分 1 0 0 3 c の レベル と の差であ る
レベル差 1 0 0 7 は 、 信号成分 1 0 0 1 a の レベル と信 号 洩成分 1 0 0 3 c の レベル と の差であ る 調方式 と して 6 4 Q A Mを利用する場 D / U比 1 0 0 6 を 2 2 d Β 確保する ため には 次隣接チャ ンネル漏洩比が 4 0 d Β であ る とか ら レベル差 1 0 0 7 を 1 8 d B とすれ ばよ い とが分か る つ ま Ό 中 装置が受信する 線信 号のダィ ナ ッ ク レ ンンを 1 8 d B 以下 とすれば 信号 a および信号 c の レベル を 1 8 d B 以下 とする とがでさ 差
よ て 中継装置 2 0 にお いて レベル制御部 2 0 7 は 中継装置 2 0 が受信する 線信号のダィ ナ ッ 'ク レ ンジ が 1 8 d- B 以下 と なる よ う に 中継装置 2 0 か ら 線通信 顺末 3 0 に送出する 線信号のパヮ を e周整すれ >ばよ い のよ ラ に 中継装置が又信する 線信号の レベルを 各 線通信顺末が利用するそれぞれのチャ ンネルにお いて 他のチャ ンネルへの漏洩比 と D / U比 と の差よ も 小 さ い範囲 に収め る とで 中継装置は 正常に通信する と がでさ る
図 5 は 中 置 2 0 にお け る受信信号の強 と 中継 装置 2 0 および 線通信 末 3 0 間の距離 と の関係 を表す グラ フ であ る 図 5 に示すグラ フ において 縦軸は 中 装置 2 0 が受信する 線信号の強度を表 し 横軸は 中服 衣置 2 0 お び 線通信 末 3 0 の間の距離を表す
図 5 に示すよ に 中 装置 2 0 が受信する 線信巧の 強度は 線 信端末 と の距離に依存する 例えば 中 Hi 装置にお いて 受信 した ι ιι*線信号が他チャ ンネルの妨害を 受けた場 α 中継装置 2 0 は 線通信 末 3 0 に送出す る 線信号のパ 7 - ~を小さ < する れによ り 中継装
2 0 と通信可能な 線通信端末 3 0 の存在可能範囲が狭 < なる つ ま り 中継装置 と 線通信顺末 と の距離のば ら さが小さ < なる れによ り 狭め ら れた _uu*線通信区間 に 存在する 線通信端末か ら 送信さ れ 中 装置 2 0 が受信 する 線信号の ば ら つ さ を小 さ < する と がでさ る ため 受信する 線信号を所定ダィ ナ ッ ク レ ンジの :範囲内 (図
5 に示す縦線模様の部分 ) に収め る とがでさ る
以上の よ Ό に 本実施形 にお いて 中継装置は 線 通信端末 に送信する 線信号のパ ヮ を 整する れに よ り 通信可能な 線通信顺末の存在可能範囲 を 整する とができ る したがつ て 線通信端末か ら '送信さ れ 中継装置が受信する 線信号の レベルを所定ダィ ナ ッ ク レ ンジの範囲内 に収め る とがでさ る よ つ て 他チ ャ ン ネルの信号に妨 される と な < 複数のチャ ンネルか ら な る 線 L A N信号を 同 のェ U ァで用 .いて通信する と がでさ る
なお 制御装 か ら 送出 さ れる n個の下 Ό 光信号 およ び中継装置か ら 送出 さ れる n 個の上 り 光信号は 図 1 にお ける光伝送路 4 0 ― 1 4 0 ― n にそれぞれ対応 してい る 上 り 光信号 と下 り 光信号 と を異なる伝送路で伝送する 場 口 光伝送路 4 0 ― 1 η は 2 心の光フ ァ ィ バか ら 構成 さ れる ま た 一芯双方向伝送の場 α 光伝送路 4 0 ― 1 η は それぞれ 1 芯の光フ ァ ィ ハ、か ら構成さ れる また 本実施形能にお いて 変調方式が 6 4 Q A Mでめ る 場 につ いて説明 した で 他の変調方式を利用す る 口 必 な D Z U比が小さ < なる したがつ て 1¾接 するチャ ンネルを同時に使用 した場 にお いて ダィ ナ
V ク レ ンンを抑制する と に よ て通信が可能 とな る の場 において どの程度ダィ ナ V ク レ ンンを抑制 すればよ いかは 本実施形 と 様に考えればよ い
なお 本実施形 にお いて 中 装置が 信する 線信 号の レベルが大さ ぐ 上 り 光信号に変換 し た際にひずみが 発生する場 中艦装置は 受信 した 線信号の レベルを 減衰する減衰 を設けていて も よ い れに よ Ό 線信 号を高 質に光伝送する とができ る
次に 第 1 の実施形 の変形例に いて説明する 図 6 は 本変形例 に係る 線通信システムが備え る制 >御装置 1
0 a の構成を示すブ Π V ク 図であ る 図 6 に示す制御装置
1 0 a は 図 2 に示す制御壮置 1 0 と 比較する と ハ。ィ 口 ッ 卜信号生成部 1 0 6 を さ ら に含む 占で相理する それ以 外の構成は第 1 の実施形能 と 同様であ る ため 図 2 と 様 の構成要素には の符号を付 し 明 を 略する
パィ 口 ッ 卜 信号生成部 1 0 6 は パィ 口 ッ 卜 信号を生成 し 光送信部 1 0 2 に出力する ィ 口 ッ 信号は 中継 装置か ら 送出 さ れる 線信号の レベルを制御する ため の信 号であ て 送信さ れる 線信号よ り も低い周波数の信号 であ る パィ Π ッ 卜 信号の レベルは 中鉱装置か ら 信す さ 線信号の レベルに比例する 中 置 2 0 に いて 受信 した 線信号が他チャ ンネルの信号の妨口 を受けた場 合 ィ π ッ 信号生成部 1 0 6 は 生成するパィ Ρ ッ 信号の レベルを大さ < する 光送信部 1 0 2 は、 パィ Π ッ 信号生成部 1 0 6 によ て生成されたパィ Π ッ 信号を 、 送信信号処理部 1 0 1 か ら 出力 される下 Ό 信号に重畳させ 、 下 光信号に変換 する
図 7 は 、 本変形例 に係る ハ、、線通信シス テムが備える 中 装置 2 0 a の構成を示すブ Π ッ ク 図であ る 図 7 に示す中 継 置 2 0 a は 、 光受信部 2 0 1 a と 、 ハ、、線送信部 2 0 2 と 、 分離部 2 0 3 と 、 送受信ァ ンテナ部 2 0 4 と 、 メ 、線受 信部 2 0 5 と 、 光送信部 2 0 6 と 、 パィ D V 卜 信号検出部
2 0 8 と 、 レベル制御部 2 0 9 と を含む 図 3 と' 様の構 成要素には 一の符号を付 し 、 口 明 を 略する
光受信部 2 0 1 a は 、 光伝送路 4 0 を介 して 御装置 1
0 か ら送信さ れて た下 り 光信号を下 り 電気信号に変換 し
、 ィ Π ッ 卜 信号検出部 2 0 8 に 出力する
パィ Π V 卜 信号検出部 2 0 8 は 、 下 り 電気信号に重畳さ れてい るパィ U ッ 卜 信号の レベルを検出 し 、 検出 した レベ ル とせヽ に下 Ό 電ス 信号を レベル制御部 2 0 9 に出力する レベル制御部 2 0 9 は 、 下 り 気信号の レベルを si整 し
、 ハ、、線送信部 2 0 2 に出力する レベル制御部 2 0 9 は 、 パィ Π V 卜 信号検出部 2 0 8 によ つ て検出 さ れたパィ P V 信号の レベルを基準に して 、 パィ D ッ 卜 信号の レベルが 常に一定にな る よ に 、 下 り 電ス 信号の レベルを 救する つ ま り 、 レベル制御部 2 0 9 は 、 パィ D ッ 卜 信号の レベ ルが相対的に小 さ ぐ なれば 、 下 り 電気信号を増幅 し 、 逆に
、 ィ Π 信号の レベルが相対的に大ぎ < なれば 、 下 り 信号を減衰する 般的に 周波数変調された 線信号の レベルを正確に 検出する と は難 しい 特に 亦
久 方式 と して 振幅変調 やバ ―ス 卜 変 スぺク 卜 ラム拡散信号変 を利用 してい る場 ππ*
口 線信号の レベルを正確に検出する とが困難 と なる しか しなが ら 上述の方法によれば 中 装置 2 0 がパィ ッ 卜信号の振幅を検出すればよ いため 容易 に 線信号の レベルを 定する とがでさ る o
以上のよ に 本変形例に いて 制御装置は 中継装 置か ら送信さ れてさた上 り 光信号を正確 に復調する とが でさない 口 生成する ィ Π ッ 卜 信号の レベル'を大さ < する 中紘壮置は 制御装置か ら 受信するパィ 口 V 卜 信号 の レベルを 定 レベルに保つ よ に下 り 信号 'の レベル を低減する れによ り 中継衣置の通信可能範囲 を狭 < し 線通信端末か ら 受信する 線信号の レベルを所定の 範囲内 に収め る とがでさ る ο したがつ て 他チャ ンネル の信号に妨 口 される とな < 複数のチ ャ ンネルか ら な る 線 L A N'信号を I I の X 'J ァで用 いて通信する とがで さ る
( 2 の実施形能 )
図 8 は 本発明 の第 2 の実施形目、 に係 る fn 線通信システ ムが備え る 制御装置 1 0 b の 1β成を示すブ π ッ ク 図であ る
8 に ]sす制御装置 1 0 b は 2 に す制御装置 1 0 比較する と 光分配部 1 0 3 の代わ り に送信信号分配部
0 7 が け ら れてい る 占で相理する o それ以外の構成は 第 1 の実施形能 と 様であ る ため 図 2 と 1口 J じ 成要素 については同 の符号を付 し その詳細な 1½明 を ,
略する なお 本実施形 において 中 'lit装置 2 0 は 図 3 に示 す 成の う ち レベル制御部 2 0 7 が 略さ れた 成 とな m m ス 制御装置 1 0 b にお いて 送信信号処理部 1 0 1 は 外 部ネ V 卜 ヮ ク か ら受信 した信号を変 し 送信信号分配 部 1 0 7 に出力する
送信信号分配部 1 0 7 は 送信信号処理部 1 0 1 によ ゥ て変 さ れた信号を n個に分岐する そ して 送信信号分 配部 1 0 7 は 分配 した n 個の信号をそれぞれ光.送信部 1
0 2 ― 1 1 0 2 ― n に出力する
光送信部 1 0 2 ― 1 1 0 2 一 n は 送信信号'分配部 1
0 7 によ て分岐さ れた信号を下 Ό 光信号に変換して 光 伝送路 4 0 ― 1 4 0 ― n に送出する の よ Ό に n 個 の下 り 光信号が各局に光伝送さ れる
以上の構成によ り 送信信号分配部 1 0 7 が 分岐 し た 電ス 信号 を光送信部 1 0 2 ― 1 1 0 2 ― n に出力する こ と によ て 一つ の光送信部が出力する光パ を小 さ < する とができ る □ れによ り 下 り 光信号の レベルが小 さ < な る ため 中継 置が送信する iin*線信号の レベルを低 減する とがでさ る
以上の よ う に 本実施形能によれば 制御衣置は 中継 装置に送信する光信号の レベルを低減する れによ り 中鉱装置か ら 線通信顺末に送信さ れる 線信号のパ ― が低減さ れる と となる t _れによ り 通信可能な 線 信端末の存在可能範囲が狭 < なる ため 線通信端末か ら 送信され 中継装置 2 0 が受信する 線信号のダィナ V ク レ ンンは小さ < なる したがつ て 他チャ ンネルの信号 に妨害さ れる と な < 複数のチャ ンネルか ら なる 線 L
A N信号を 同 のェ U ァで用 いて通信する とがでさ る また 分岐された下 Ό 電 信号が光送信部によ つ て下 Ό 光信号に変換さ れる ため 1 つ の光送信部に入力 さ れる電 信号の レベルが小さ < な る レベルの大さ い :電気信号を 光信号に 換する 場 ひずみが発生 しやす < なる ため 本実施形 において レベルが小さ い電気信号を変換する 光送信部が有する光源 (発光素子 ) の信頼性が向上する ま た レベルが小さ い電 信号を扱 ため 廉価な光源を 用する とがでさ る さ ら に 1 つ の光源か 出力 さ れ る光信号を分配する その光源が故障する と シス テム 体の機能が失われて し ま う しか しなが ら 本実施形 によれば 1 つの光源が故障 した場八において 機能が 停止 して し ま の は その光源を有する光送信部だけであ る し たが •o て 機能が停止 した光送信部に対応する 中継 装置だけの機能停止で済むため シス テム全体への影響を 小さ < する とがでさ る
なお 本実施形 にお いて 各中継装置か ら伝送さ れる n 個の上 り 光信号は それぞれ光受信部 1 0 4 ― 1 1 0
4 n によ て受信さ れる こ で η 個の上 Ό 光信号を ま と めて つ の光信 と して受信する こ と ち可能であ る 図 9 は 上 り 光信号を ま と めて受信する制御装置 1 0 C の構成を示すブ口 、リ ク 図であ る 図 9 に示す制御壮置 1 0 c は 図 2 に示す制御装置 1 0 と比較する と 光 波部 1 0 8 を さ ら に含み、 制御壮
置 1 0 C に口又け ら れてい る光受 信部が 1 つであ る と い ハ占、ヽで相 する ο それ以外の構成は
、 図 2 と |PJ]様でめ る ため 、 図 2 と じ構成要素につ いては 同一の符号を付 し 、 説明 を 略する o
光 α 波部 1 0 8 は 、 光伝送路 4 0 ― 1 〜 4 0 ― n を介 し て送信さ れて < る η 個の上 り 光信号を 1 つ の光信号に α 波 し 、 光受信部 1 0 4 に 出力する 0
光受信部 1 0 4 は 、 光 波部 1 0 8 によ て合波さ れた 上 Ό 光信号を電 信号に変換 し 、 受信信号処理部 1 0 5 に 出力する o
以上の構成によ り 、 制御装 は 、 複数の上 り 光信号を ま と めて 1 つ の光信号 と して受信する こ と ができ る > したが て 、 制御装置に設ける光受信部が 1 で済むため 、 シス テム の構成が簡易 と な る o て 、 システム を安価に構築 する とがでさ る 0 なお 、 複数の上 光信号の波長が互い に近い場 α 、 ビ一 h を発生する o 周波数が接近 した複数の 上 り 光信 を 1 つ の光受信部で受信する と 、 周波数の ね り ( ビ ) が発生する場 α がめ る 0 その •ψ.
、 ビ h の 生を防止する なん ら かの 能を制御装 にき ける と よ い 発 m
o
次に 、 本実施形能 iii、の第 1 の変形例 に いて 明する o 本 形例 にお いて 、 制御装 imは 、 送信する光信号の光変 /又 を調整する 。 光変調度 と は、 光信号で変調 した搬送波の振 幅変化の度合い を い う 。
図 1 0 は、 発光素子に入力 さ れる入力信号 と 、 光の出力 パ ヮ一 と の関係 ( レーザ I L 特性) を示す図であ る 。 図 1 0 において 横軸は 光 子に入力 される入力信号の電 流値を表 し 縦軸は 発光素子か ら 出力 さ れる光信号のパ
7 を表す
で 光変 度 mは
m 二 Δ / ( I b ― I t ) • • • ( 1 )
で表さ れる 式 ( 1 ) において Δ I は入力信号の電流値
I b はバィ ァス電流値を表す また I t h は 発光素 子 (図示せず) の レ ザ閾値 (出力 の最低の励起 位 ) で あ る - パィ ァス 流は 光送信部が有する発光素子を駆動する ため の直流電流であ る また バィ ァス電流は 交流信号 であ る送信信号の変化の 中心 占 を与え る
制御衣置か ら 送信する光信号の光亦
久調度を 整する と に よ て 中 装置か ら 送信さ れる 線信号の レベルを間 接的に調整する とがでさ る
図 1 1 は 本変形例に係る 線通信システムが備え る 制 御衣置 1 0 d の構成を示すブ口 V ク 図であ る 図 1 1 にお いて 制御 置 1 0 d は 送信信号処理部 1 0 1 d と 光 送信部 1 0 2 d と 光分配部 1 0 3 と 光受信部 1 0 4 ―
1 1 0 4 ― n と 受信信号処理部 1 0 5 d と 監視部 1
0 9 と レベル制御部 1 1 0 と を含む
受信信号処理部 1 0 5 d は 光受信部 1 0 4 ― 1 1 0
4 一 n によ て変換さ れた上 り 電 信号を臣と視部 1 0 9 に 出力する
臣と視部 1 0 9 は 受信信号処理部 1 0 5 d か ら 出力 さ れ る 上 電 信号の品質 を評価 し 上 り 電 信号が他チャ ン ネルによ る妨害を受けてい るかか否か を判断する 上 Ό ¾ 信号に他チャ ンネルの信号が 洩し 上 り ス 信号の α
TO
質が劣化 してい る α 視部 1 0 9 は 、 光送信部 1 0 2 d に出力する入力信号の レベルを低減する よ 、 レベル制 御部 1 1 0 に指示する
送信信号処理部 1 0 1 d は 、 変調 した送信信号を レベル 制御部 1 1 0 に出力する
レベル制御部 1 1 0 は 、 光送信部 1 0 2 の 刖段に設け ら れている 可変減衰器 (図示せず ) または可亦増幅器 (図示 せず ) を制御する れによ り 、 送信信号の レベルが 整 さ れる レベル制御部 1 1 0 は 、 レベルを 整した信号を 光送信部 1 0 2 d に出力する
光送信部 1 0 2 d は 送信信号を下 光信号に変換 し て
、 光伝送路 4 0 に 出力する の と さ 、 送信信号の レベル が低減さ れてい る 、 光変 度が低減さ れる したがつ て 、 光送信部 1 0 2 d が出力する下 り 光信号のパ ヮ が低 減さ れる
中継装置にお いて 、 光受信部 2 0 1 が受光素子に流れる 平均受光電流を検出 し 、 その値か ら ハI、I、:線信号,の レベルを検 出 してい る場 α 下 光信号の光変調度が変化 していて
、 受光素子に流れる平均受光電流は 化 しない したが て 、 中紘装置 2 0 にお ける動作は 、 述の第 1 の実施形 と 同様であ る なお 、 の場 σ 、 中継装置 2 0 には 、 図 3 に示す レベル制御部 2 0 7 を u
けていな < て も よ い の う に 、 制御装置 1 0 が 、 中継装置 2 0 に送信する 光信号の光変調度を大き < する と 中 /鉱装 mか ら送信 さ れ る 線信号のパ 7 が大き < な る 方 制御装 が中 置 2 0 に送信する光信号の光亦 度を小さ く する と 中 継 置か ら 送出する 線信号のパヮ が小さ < なる つま 中継壮置か ら 送出する 線信号のパ ― を制御装置が 制御する とがでさる したがゥ て 中鉱装置が受信する ίίΐ] Γ:線信号のダィ ナ ッ ク レ ンンを制御する こ と がでさ る 以上のよう に 本亦
久形例 によれば 制御装置は 中 Hi 衣 置か ら 送信さ れて < る信号の PP質 を評価 し 、 上 Ό の信号の 品質が所定の条件を満た さ な < なる と 中継装置に送信す る光信号の レベルを低減する れに よ Ό 、 中継装 か ら
Am線 信端末に送信さ れる 線信号のパヮ が低減される と とな る れによ Ό 通信可能な 線通信 '端末の存在
< m
可能範囲が狭 なる ため 線通信 末か ら 送信され 中 m装置 2 0 が受信する 線信号のダィ ナ ッ ク レ ンジは小 さ < な る したがつ て 他チャ ンネルの信号に妨害さ れる とな < 複数のチャ ンネルか ら なる 線 L A N信号を 同 のェ U ァで用 いて通信する とがでさ る
なお 臣と視部 1 0 9 は 信号の □
PP質が劣化 した と を検 出する と その と を光送信部 1 0 2 を通 じて中 置に 通知 し 中 置において送出する 線信号の送出 /\°ヮ を低減する よ 制御する こ と と して ち い 。 その場 □ 制 御装置に レベル制御部を Xけな < て も よ い。
また 中継装置か ら 送信する 線信号の レベルを制御す る ため の命令を制御装置が生成 し 丁ィ ン夕 ル情報 と して 中 装置に送信 して ち よ い
以上では 光変 を 整する ため に入力信号の レベル を制御する方法につ いて説明 したが、 光変調度を調整する ため に、 バイ アス電流の レベルを制御する こ と と して も よ い 。
図 1 2 は、 ノ ィ ァス電流の レベルを制御する こ と によ つ て、 光変調度を調整する制御装置 1 0 e の構成を示すプロ ッ ク 図であ る 。
図 1 2 に示す制御装置 1 0 e は、 送信信号処理部 1 0 1 と、 光送信部 1 0 2 と、 光分配部 1 0 3 と 、 光受信部 1 0 4 一 1 〜 1 0 4 — n と、 受信信号処理部 1 0 5 e と 、 監視 部 1 0 9 e と 、 パィ ァス制御部 1 1 1 と を含む なお 、
1 1 と 同様の構成要素には同一の符号を付 し 、 明 を 略 する
送信信号処理部 1 0 1 は 、 変調 した送信信号を光送信部
1 0 2 に出力する
監 rm.視部 1 0 9 e は 、 受信信号処理部 1 0 5 e か ら 出力 さ れる上 り 電 信号の α
ΡΠ質 を評価 し 、 上 り 電気信号が他チャ ンネルによ る妨害を受けてい る か否か を判断する σ 上 り 電 信号に他チ ャ ンネルの信号が漏洩し 、 上 り 電気信号の品 質が劣化 してい る Π 、 視部 1 0 9 は 、 光送信部 1 0 2 に出力する ハ、ィ ァス 流の レベルを低減する よ う 、 バィ ァ ス制御部 1 1 1 に指示する
ハ、ィ ァス制御部 1 1 1 は 、 視部 1 0 9 e か ら の指示に 応 じて 、 光送信部 1 0 2 の発光素子に入力 さ れるバィ ァス 電流を 敕する 具体的には バィ ァス制御部 1 1 1 は 発光素子を駆動する ため のバィ ァス 回路 (図示せず ) を制 御する と によ て 、 光素子に入力 される パィ ァス電流 を調整する 。
光送信部 1 0 2 は 信信号を下 り 光信号に亦
久換して 光伝送路 4 0 に出力する の と ぎ バィ ァス電流の レベ ルが低減さ れてい る ため 光亦調度が低減される と とな 口 る したがゥ て 光送信部 1 0 2 が出力する下 り 光信 の パヮ が低減さ れる
以上の よ に 本亦
久形例によれば 制御壮 は 中継衣 置か ら送信さ れて < る信号の品質 を評価 し 、 上 り の信号の 品質が所定の条件を満た さ な < なる と 中紙 ¾¾:置に送信す る光信号の レベルを低減する れに よ り 、 中継 置か ら 線通信顺末に送信さ れる 線信号のパヮ が低減さ れる と とな る れに り 通信可能な 線通 1目 ^末の存在 可能範囲が狭 < な る ため 線通信 末か ら 送信さ れ 中 m装置 2 0 が受信する 線信号のダィ ナ ッ ク レ ンジは小 さ < なる したが て 他チャ ンネルの信号に妨口 さ れる とな < 複数のチャ ンネルか ら な る 線 L A N信号 を 1口 J 一のェ U ァで用 いて通信する とがでさ る
なお 本実施形能において 制御装置が送信する光信号 のパヮ を 整する手 Stについて 明 したが、 下り光信号 のパヮ ―を調整する とができる手段でめれば < 上述 の手段に限 ら れない 例え ば 下 Ό 光信号のパ V を調整 するパ •7 ― 整部を制御装置に設けてもよ い。
図 1 3 は 下 り 光信号のパヮ ―を 周整する制御装置 1 0 f の構成を示すブ D ッ ク 図であ る 図 1 3 お いて 制御 装置 1 0 f は 送信信号処理部 1 0 1 と 光送信部 1 0 2 と 光分配部 1 0 3 f と 光受信部 1 0 4 一 1 1 0 4 ― n と 受信信号処理部 1 0 5 と 視部 1 0 9 f 一 1 1
0 9 f 一 n と パ ヮ一 周敕部 1 2 0 と を含む o なお、 図 1
2 と 同様の 成 素には同 の符号を付 し 明 を省略す る 。
光分配部 1 0 3 f は η 個 に分岐 した下 Ό 光信号を 、 後 述する可変光減衰器 1 2 1 ― 1 1 2 1 ― n に出力する 監視部 1 0 9 f 一 1 1 0 9 f ― n は 光受 '.信部 1 0 4
- 1 1 0 4 ― n が受信 した上 Ό 光信号の品質を監 ηττ.視する o 監 rm.視部 1 0 9 f ― 1 1 0 9 f ― n は 上 り 光信号の品 質が劣化 してい る場 α 光分配部 1 0 3 か ら 出力 さ れる下 り 光信号の レベルを低減する よ 後述する可変光減 駆動部 1 2 2 に指示する ο
パ ヮ ― 周敕部 1 2 0 は 可変光減衰器 1 2 1 1 1 2
1 一 n と 可変光減衰器駆動部 1 2 2 と を有 し 光送信部
1 0 2 f か ら 出力 される下 Ό 光信号のパ を調 する 。 可変光減衰器 1 2 1 ― 1 1 2 1 ― n は 光分配部 1 0
3 f か ら 出力 さ れる下 Ό 光信号のパ 7 ―を減衰させ 光伝 送路 4 0 ― 1 4 0 ― η に送出する o
可変光減衰 HP.駆動部 1 2 2 は 監視部 1 0 9 ― 1 〜 丄
0 9 f ― n の指示に応 じて 光分配部 1 0 3 か ら 出力 さ れ る下 Ό 光信号のハ0 7 が低減する う に 可変光減衰器 1
2 1 — 1 1 2 1 ― η を駆動する電流の レベルを調整する のよ つ に 中継 置か ら 送信さ れてさた上 り 光信号の 品質が低下 した場 制御 置は 中 装置に送信する下 り 光信号のパ ヮ を低減する れによ り 中 Hi装置カゝ ら 送信される 線信号のパ ヮ を低 mする とができ る
(第 3 の実施形 )
以下 本発明 の第 3 の実施形 に係る illl:線通信システム について卩兑明する 本実施形 に係る 線通信システム は 光信号の 質が低下 した と を検知する と 中継壮置か ら の ππ 線信号の送信を停止させる o 品質が劣化 した HH^線信 号を送受信する と 他の通信機器や人体に 影 を及ぼす 可能性があ る o したがつ て 線信号を利用 して通信する 口 通信機 が送信する 線信号の pa質 を 電波法に定 め ら れてい る公的な条件を たす も の に しな ければな ら な い o 本実施形 においては 線通信システムが光信号の
13
PP質 を評価する + を例に 明する
図 1 4 は 本実施形 に係る 線通信システムが備え る 衣置 2 0 b の構成を示すブ Π ッ ク 図であ る 図 1 4 に おいて 中継衣置 2 0 b は 光受信部 2 0 1 b と 線送 信部 2 0 2 b と 分離部 2 0 3 と 送受信ァ ンテナ部 2 0
4 と 線受信部 2 0 5 と 光送信部 2 0 6 b と Π αΡ質評 価部 2 9 0 b と を含む o なお 図 3 と 様の構成要素には 同一の符号を付 し 明 を 略する
光伝送路 4 0 を介して制御 置 1 0 か ら 送信さ れてきた 下 Ό 光信号は 光送信部 2 0 1 b に て下 り 電気信号 に 変換さ れる o 光送信部 2 0 1 b は 変換 した下 り 電気信号 を 線送信部 2 0 2 b に出力する o
一方 光送信部 2 0 6 b は 線受信部 2 0 5 か ら 出力 さ れる 上 り 電 信号を上 り 光信号に変換 し 後述する光力 プラ部 2 1 0 に出 力する o 品 評価部 2 9 0 b は 光力 プラ部 2 1 0 と 光パヮ 検出部 2 1 1 と パ 制御部 2 1 2 と を有する
光力 プラ部 2 1 0 は 光送信部 2 0 6 b によつて変換さ れた上 Ό 光信号を光伝送路 4 0 に送出する また 光力 プ ラ部 2 1 0 は 光伝送路 4 0 か ら 反射さ れる反射光を光パ ヮ ―検出部 2 1 1 に出 力する
光ハ0ヮ 検出部 2 1 1 は 、 光力 プラ部 2 1 0 か ら 出力 さ れる反射光の レベルを検出 し、 反射光の レベルが所定値以 上であ る か否か を判断する 伝送路 4 0 に異常が発生 し た 口 光伝送路 4 0 に光信号を出射 した の反'射光の レ ベルが増大する 反射光の レベルが所定値以上であ る
光パヮ 検出部 2 1 1 は 、 光伝送路に異常が発 >生 した と 判断する その場 口 光パ ヮ 検出部 2 1 1 は 線信号 波の 出 を停止する よ 、 パヮ ―制御部 2 1 2 に指示す 送
;\°ヮ 制御部 2 1 2 は 送信部 2 0 2 b を制御 して 線通信端末への 線信号電波の送出 を停止する 具体 的 には パ フ 制御部 2 1 2 は 線送信部 2 0 2 b の電 源を O F F にする か または、 線送信部 2 0 2 b にお け る信号の 路のスィ チ (図示せず ) を o F F にする
光伝送路 4 0 に異吊 が発生 し 光信号の伝送 質が低下 する と 線信号にロロ質も 波法に定め ら れてい る ス プ ァス発射電力や帯域外輻射電力等の項 百 につ いて 規定 の条件を満たす とができな く なる ス プ U ァス発射電力 および 域外輻射電力 と は、 必要な周波数帯域外にお け る不要波の発射電力 を いう れ ら が 射さ れる と 他の 通信機 を妨虫 して し ま 恐れがあ る ため 不 波の 射 電力は でさ る だけ小さ い とが望ま し い また ス プ U ァス発射電力 よび帯域外輻射電力 の許容値は 電波法 において 周波 と に規定されてい る 中継装置 2 0 は 上 り 光信号の伝送 質が低下 した +― に 線信号の 送信を停止する
以上のよ に 、 本実施形 によれば 光伝送路に異常が 発生 した場合に 、 中継装置か ら の 線信号の送信を停止す る とができ る 。 したが て 公的な条件を満たさ ない 線信号が送ィ言さ れる とがない また 中 装置'にお いて 反射光の レベルを検出する だけでよ いため システム の 構成を簡易な の とする とがでさ る
なお 光伝送路が 2 サ
心の光フ ァィ パか ら な る 口 に いて 光 フ ァ ィ バの障宝は じケ ブル内 に光フ ァ ィ パに同 じ よ う に する とが多い したがつ て 本方法 は有効でめ る また 芯双方向伝送の は 片方向だ けに影響する可能性は極めて小さ いため 本方法は有効で あ る
次に 第 3 の実施形 の変形例 につ いて 明する 本変 形例 に係 る 線通他 シス テム にお いて 中継装 β 2 0 c は 制御装 1 0 カゝ ら 又信 した下 り 光信号の を評価する 図 1 5 は 本変形例 に係 る 線通信システムが備え る 中 継装置 2 0 c の構成を示すブ Π ッ ク 図であ る 図 1 5 にお いて 中鞭 衣置 2 0 c は 光受信部 2 0 1 C と 線送信 部 2 0 2 c と 、 分離部 2 0 3 と、 送受信ア ンテナ部 2 0 4 と 線受信部 2 0 5 と 光送信部 2 0 6 c と ft評価 部 2 9 0 c と を含む なお 図 3 と 様の構成要素には の符号を付 し 明 を省略する
光受信部 2 0 1 c は 光伝送路 4 0 か ら 送出 される下 り 光信号を下 り 電気信号に変換 して 線 信部 2 0 2 と 後述する受光パ V 検出部 2 1 3 と に出力する
質評価部 2 9 0 c は パ υ 制御部 2 1 2 と 受光パ フ 検出部 2 1 3 と を有する
受光パ 検出部 2 1 3 は 光受信部 2 0 1 が受信 した 下 り 光信号のパ V を検出 し 下 り 光信号のパ ヮ. が所定 値以上であ る か否か を判断する 下 り 光信号のパヮ が所 定値未満 と な た 受光パヮ ―検出部 2 1 ' 3*は 脏線 信号の送信を停止する よ う パヮ 制御 '部 2 1 2 に指示す パフ 制御部 2 1 2 は 受光パ 7 検出部 2 1 3 か b の 指示に応 じて 線信号の 出力 を停止させる 具体的 には パヮ ―制御部 2 1 2 は 線送信部 2 0 2 の電源を O
F F にする と によつ て 挺線信号の出力 を停止させる なお パ V 制御部 2 1 2 は 線送信部 2 0 2 c の経路 をスィ ッ チによ て O F F とする とで 線信号の 出力 を停止させてもよ い
光伝送路 4 0 に異常が発生 した場合 的 には 光信 号の伝送品質が劣化する し たがつ て 光伝送路の異常を 監視する と に つ て 間接的に伝送 □ 質の劣化を検出す る と がでさ る 伝送路に異常が発生 し 伝送損失が増加 する と 受光パ y ―検出部 2 1 3 が検出する光信号のパヮ が低下する □ したが て 中 装置にお いて 受信する 口
下 り 光信 のパ を監視する _ と によ つ て 光信号の伝 送 Π
PP質を評価する とがでさ る
以上のよ に 本変形例に れば 、 光伝送路に異常が発 生 した に 中 装置か ら の 線信号の送信を停止する とができ る したがつ て 公的な条件を満た さ ない 線 信号が送信さ れる とがない また 、 本変形例 おいて 中継装置は 光伝送路を介 して制御装置か ら送信されて < る光信号の レベルを検出する機能を有 していればよ < ス プ リ ァス発射 力や 域外輻射 力 を測定する た'め の複雑 な検出回路を ける必要がない
(第 4 の実施形 )
以下 本発明 の第 4 の実施形能に係 る 線通信シス テム つ いて 明する fhr
□ 本実施形能 に係
Figure imgf000067_0001
f 線通信システム に お いて 中 装置は 下 り 電気信号の品質 を評価する
図 1 6 は 本実施形 に係る 線通 1目 システムが備え る 中継 置 2 0 d の構成を示すブ Π ッ ク 図であ る 図 1 6 に おいて 中継装置 2 0 d は 光受信部 2 0 1 d と 線送 信部 2 0 2 d と 分離部 2 0 3 と 送受信ァ ンテナ部 2 0
4 と 線受信部 2 0 5 と 光送信部 2 0 6 と P 質評価 部 2 9 0 d と を含む なお 図 3 と J様の構成要素には
I J の符号を付 し その説明 を省略する
線送信部 2 0 2 d は 光受信部 2 0 1 d に よ て変換 された下 り 電気'信号に増幅等の処理を行 た後 分離部 2
0 3 と 後述する電 信号評価部 2 1 4 と に出力する
P ΡΠ質評価部 2 9 0 d は パ V 制御部 2 1 2 d と 電 5^ 信号評価部 2 1 4 と を有する
電気信号評価部 2 1 4 は I I.:
、 ハゝ、線送信部 2 0 2 d か ら 出 力 さ れる下 り 電 信号の品質を評価する
図 1 7 は、 電 信号評価部 2 1 4 の詳細な構成を すブ
D ッ ク 図であ る o 図 1 7 に いて 、 信号評価部 2 1 4 は 、 n ン ドパス フ ィ ル夕 ― s (以下 、 B P F ― s と呼ぶ )
2 5 1 と 、 パン ド、 ス フ ィ ル夕 (以下 、 B P F と呼ふ ) 2
5 2 一 1 〜 2 5 2 ― n と 、 レベル検出部 2 5 3 ― 1 2 5
3 ― n と 、 レベル判定部 2 5 4 とか ら なる
B P F 一 s 2 5 1 B P F 2 5 2 ― 1 〜 2 5 2 ― n は 、 ス ぺク h ラ ムマス ク に応 じた周波数を通過させる B P F
― s 2 5 1 は 、 本来送信す さ周波数帯域の ハ、、 信 を通 過させ 、 当該ハ、、線信号の帯域外周波数を除去する B P F
― S 2 5 1 は 、 通過させた信号の周波数成分を レベル検出 部 2 5 3 一 1 に 出力する レベル検出部 2 5 3 ― 1 は 、 Β
P F 一 s 2 5 1 か ら 出力 さ れる信号の レベルを検出 し 、 レ ベル判定部 2 5 4 に出力する
B P F 2 5 2 ― 1 〜 2 5 2 ― n は 、 線信号の帯域外周 波数成分 通過 させ 、 レベル検出部 2 5 3 ― 2 〜 2 5 3 ― n + 1 に 出力する なお 、 B P F 2 5 2 ― 1 2 5 2 ― η は 、 それぞれ異な る周波数を通過させる
レベル判定部 2 5 4 は 、 レベル検出部 2 5 3 ― 1 に よ て検出 さ れた周波数の レベルに対 して 、 レベル検出部 2 5
3 ― 2 〜 2 5 3 n + 1 に つ て検出 さ れた帯域外周波数 の レベルが一定 レベル以上であ る か否か を判断する ノ >、、線 信 の α
ΡΡ質が低下する と 、 ハ、、線信号の帯域外周波数の レベ ル つ ま り 不 率"射 力 の レベルが増加する fe tirnc*.
o 線信号 の レベルに対する不要輻射電力 の レベルが 定 レベル以上 になつ た -Η: レベル判定部 2 5 4 は 線信号の送信を 停止する よ パ 制御部 2 1 2 に指示する
パヮ 制御部 2 1 2 は 電気信号評価部 2 1 4 か ら の指 示に応 じて 線信号の 出力 を停止させる o パ 制御部
2 1 2 の具体的な動作は 図 1 5 に示すパ フ ―制御部 2 1
2 と 様であ る ため 明 を省略する o
以上のよ に 本実施形 において 中 装置は 線 信号の レベルに対する不要車 射電力 の レベルが一'定 レベル 以上 と な り III:線信号の ΠΡ質が公的な条件 を満たす とが でさ rt
な < な た と判断 し A
た 線信号の送 を停止す る o したがつ て 公的な条件を満たさ な い 線信号が送信 さ れる とがない o
次に 第 4 の実施形能の変形例 につ いて卩兑明する 本変 形例に係 る 線通信シス テム にお いて 制御装置は IV*験 信号を重畳した下 り 電気信号を下 Ό 光信号に変換して中継 装置に送信する o 中継装置は 制御装置か ら 受信 した 験 信号の Ρ αΠ質 を評価する
具体的 には 中 衣置は 験信号の相互変調ひずみを 評価する 相互変調ひずみ と は 複数の異なる周波数の信 号が 制御装置に いて下 り 光信号に変換さ れる に発生 する信号を い う o 相互変調ひずみは 発光素子の I L 特性 に非直線性があ る ため に発生する o
——-般的に 異なる 2 波の信号が発光 子や増幅器等に入 力 される と それぞれの基本波の周波数以外に 高調波成 分や、 2 つ の 本波の周波数の和 よび差、 本波の周波 数と高 波の周波数と の和および差 、 2 つの高調波の周波 数の和および差な どの成分が現れる し のよ に、 複数の 周波数の相互関係か ら 生 じ る 周波数成分 (高調波以外の成 分) を相互変 P周ひずみ と呼ぶ 例えば 、 周波数 a と 、 周波 数 b の 2 波が発光素子や増幅 等に入力 さ れた场 口 、 相互 変調ひずみ と して 、 周波数 2 a ― b な どが発生する 周波 数 2 a ― b は 、 主信号の周波数に接近するため 、 主信号を 妨害する恐れがあ る
図 1 8 は 、 本変形例に係 る ノ、、ゝ線通信システムが備え る 制 御装置 1 0 g の構成を すブ口 ッ ク 図で る 図 1 8 にお いて、 制御衣置 1 0 g は 、 送信信号処理部 1 0 ' と 、 光送 信部 1 0 2 g と 、 光分配部 1 0 3 と 、 光受信部 1 0 4 一 1
〜 1 0 4 ― n と 、 受信信号処理部 1 0 5 と 、 験信号送信 部 1 1 2 と を含む なお 、 図 2 と 同様の構成要素に は 同 一の符号を付 し 、 明 を 、略する
験信号送信部 1 1 2 は 、 下 り 電ス 信号に重畳させる た め の試験信号を生成 し 、 光送信部 1 0 2 g に出力する 式 験 i'm 送信部 1 1 2 は 、 発振 S G ― a と 、 発振器 S G 一 b と を有する
発振器 S G ― a は 、 験信号 a を生成 し 、 光送信部 1 0
2 g に出力する S式験信号 a の周波数を a とする 発振器
S G — b は 、 験信号 b を生成 し 、 光送信部 1 0 2 g に出 力する 験信号 b の周波数を b とする
光送信部 1 0 2 g は 、 送信信号処理部 1 0 1 か ら 出力 さ れる下 り 電 信号に 、 B式験信号送信部 1 1 2 か ら 出力 さ れ る '験信号 a b を 畳させて下 り 光信号に ¾5換する 次に 、 制御装置 1 0 g か ら 送信されて < る HIV,験信号を評 価する 中継装置に Ό いて 明する 本亦形例 に係る 中 装 置の構成は 、 図 1 6 に示す中 装置 2 0 d の構成 と比較す る と 、 電気信号評価部の構成以外は同様であ る ため 、 図 1
6 を援用 し 、 電気信号評価部につ いてのみ 明する また
、 本 形例 に係 る 中 装置が含む電気信号評価 を図 1 7 に示す電 信号評価部 2 1 4 と 区別する ため に 、 本変形例 に係る 中 装置が含む電メ 信号評価部 を電 信号評価部 2
1 4 e と呼
図 1 9 は 、 電 信号評価部 2 1 4 e の詳細な構成を示す ブ Π ッ ク 図であ る 図 1 9 にお いて 、 電 信号 価部 2 1
4 e は 、 ハ、ン ス フ ィ ル夕 ― a (以下 、 B P F ― a と呼 ふ ) 2 5 5 と 、 バ ン パス フ ィ ル夕 ― ( 2 a ― b ) (以下
、 B P F 一 ( 2 a ― b ) と呼ふ ) 2 5 6 と 、 レベル検出部
2 5 3 一 1 〜 2 5 3 ― 2 と 、 レベル判定部 2 5 4 e とか ら な る o
B P F ― a 2 5 5 は 、 周波数 a の 験信号 a を通過させ て 、 §式 i信号 a の帯域外周波数を除去する そ して 、 Β Ρ
F ― a 2 5 5 は 、 通過させた i 験信号 a を レベル検出部 2
5 3 一 1 に出力する o レベル検出部 2 5 3 ― 1 は 、 験信 号 a の レベルを検出 し 、 レベル判定部 2 5 4 に出力する ο
B P F ― ( 2 a ― b ) 2 5 6 は 、 相互 調ひずみの周波 数 ( 2 a ― b ) を通過 させ 、 レベル検出部 2 5 3 ― 2 に出 力する
レベル判定部 2 5 4 e は 、 レベル検出部 2 5 3 ― 1 によ つ て検出 さ れた試験信号 a の レベルに対 して レベル検出 部 2 5 3 一 2 によ て検出 された相互変 ひずみの レベル が 定 レベル以上でめ るか否か を判断する 験信号 a の レベルに対する相互変調ひずみの レベルが 定 レベル以上 になつ た場 口 レベル判定部 2 5 4 e は 線信号の送信 を停止する よ う フ 制御部 2 1 2 に指示する
パヮ ―制御部 2 1 2 は 電 信号評価部 2 1 .4 か ら の指 示に応 じて ^ull.lj線信号の出力 を停止さ せる パヮ ―制御部
2 1 2 の具体的な動作は 図 1 5 に示すパヮ 制御部 2 1
2 と 様であ る ため 兑明 を 略する
以上の よ う に 本変形例 によれば 中維 置は 制御装 置か ら 送信さ れて < る 験信号の相互亦
久 5周ひず 'み'を評価 し 験信号の レベルに対する相互変調ひずみの レベルが一 レベル以上 となつ た 線信号の送信 を停止する れによ り ΠΡ質が劣化 した 線信号を送信する と を防 止する とができ る
73X的に ス プ リ ァス発射 m力や帯域外 射電力等を直 接測定する と は困難であ り れ ら を測定する ため の ス 高い しか しなが ら 本変形例 によれば 験用信 号の相互変 e周ひずみを測定すればよ い 相互変 ひずみを 測定する ため には 例えば 予め 定 した周波数だけを観 測す 'ればよ いため 簡易な回路で実現でき る と い Ό メ リ ッ があ る
なお 上記変形例においては 験信号の相互久調ひず みを測定する方法について 明 したが 相互変調ひずみの 代わ り に P5 験信号の高 P周波ひずみを測定する と に よ つ て 伝送 α
pa質 を 価する と と して よ い o 冋調波 と は 基本周波数の整数倍の周波数を 成分を い 例えば 周波数 a の信号 a を非直線回路に入力する と ひずみが発生 し 周波数 2 a や周波数 3 a の高 周波が 周波数 a と に出 力 さ れる ο 信号の伝送 Π
PP質が低下する と れ ら の高調波の レベルが上昇する したが て 高調 波ひずみを測定する と によ ゥ て 伝送 Π
PP質 を 価する と もでさ る
その場 α 制御装置か ら 中 装置に送信さ れる 験信号 は 1 種類でよ いため 図 1 8 に示す 信号送'信部 1 1
2 は 発振 S G 一 a のみを有 していればよ い o れに よ り 中 衣置に は 験信号 a が重畳さ れた下ザ光信号が 送信さ れる と と な る 中継 置にお いて 図 1 9 に示す 気信号評価部 2 1 4 e は B P F ― ( 2 a ― b ) の代わ り に 周波数 2 a を通過させるパン パス フ ィ ル夕 ― 2 a を有 していればよ い o
図 2 0 は 電気信号評価部 2 1 4 f の構成を示すブ口 ッ ク 図であ る o 高調波ひずみを検出する 図 1 6 に示す 中継装置 2 0 d は 電 信号評価部 2 1 4 の代わ り に 図
2 0 に示す 信号評価部 2 1 4 f を含む o 図 2 0 におい て 電 信号評価部 2 1 4 f は バン パス フ ィ ル夕 ― a
(以下 Β P F 一 a と呼ぶ ) 2 5 5 と バ ン ドパス フ ィ ル 夕 ― 2 a (以下 B P F ― 2 a と呼ふ ) 2 5 7 と レベル 検出部 2 5 3 ― 1 〜 2 5 3 一 2 と レベル判定部 2 5 4 f と か ら な る o
B P F ― a 2 5 5 は 周波数 a の B式験信号 a を通過させ て、 3¾験信号 a の 域外周波数を除去する そ して、 B Ρ
F 一 a 2 5 5 は 、 通過させた 験信号 a を レベル検出部 2
5 3 一 1 に出力する レベル検出部 2 5 3 ― 1 は 、 験信 号 a の レベルを検出 し 、 レベル判定部 2 5 4 に出力する
B P F 2 a 2 5 7 は 、 高 波ひずみの周波数 2 a を通 過 させ 、 レ ベル検出部 2 5 3 ― 2 に出力する
レベル判定部 2 5 4 f は 、 レベル検出部 2 5 3 ― 1 に よ つ て検出 された試験信号 a の レベルに対 して 、 レベル検出 部 2 5 3 ― 2 に よ て検出 された高調波ひずみの レベルが 定 レベル以上であ るか否か を判断する □ 式験信号 a の レ ベルに対する高 e周波ひずみの レベルが 定 レベル以上にな つ た場 、 レベル判定部 2 5 4 e は 、 ハ、、線信号 送信を停 止する よ n フ 制御部 2 1 2 に指示する
^ パ 7 制御部 2 1 2 d は 、 電 信号評価部 2 1 4 か ら の 曰 に応 じて 、 線信号の出力 を停止させる パ 制御 部 2 1 2 d の具体的な動作は 、 図 1 5 に示すパ ヮ 制御部
2 1 2 と 同様であ る ため 、 明 を省略する
以上のよ う に 、 本変形例によれば 、 中継装置は 、 制御装 置か ら送信さ れて < る 験 i 号の高調波ひずみを評価 し 、 式験信号の レベルに対する 高調波ひずみの レベルが 定 レ ベル以上 と なつ た場 口 、 無線信号の送信を停止する これ によ り 、 叩質が劣化 したハゝヽ 白信号を送信する と を防止す る こ とができ る
以上 、 第 3 の実施形能 よび第 4 の実施形能 に いて 、 中継装 が 線信号または光信号の □ 質 を評価する α に つ レ て 兌明 した で 、 中継 置ではな < 、 制御衣置が れ ら の信号の ο
Figure imgf000075_0001
を評価 して も よ い 以下 制御衣置が ハ、、線信号または光信号の品質を評価する場 口 について卩½明 する
( 5 の実施形能 )
図 2 1 は 第 5 の実施形 に係る 線通信システムが備 える制御装置 1 0 h の構成を示すブ D ッ ク 図であ る m 2
1 にお いて 制御衣置 1 0 h は 送信信号処理部 1 0 1 と 光送信部 1 0 2 h と 、 光分配部 1 0 3 と 光受信部 1 0
4 ― 1 1 0 4 ― n と 、 受信信号処理部 1 0 5 と PP質評 価部 2 9 0 h と を含む 。 なお 図 2 と 同様の構成 ·要素には 同一の符号を付 し 説明 を 略する
光送信部 1 0 2 h は 、 外部ネ V ヮ ク か ら送' >信さ れて
< る信号 を下 り 光信号に変換 し 後述する光力 プラ部 1 1
3 に出力する
品質評価部 2 9 0 は、 光力 プラ部 1 1 3 と 光 ヮ 検出部 1 1 4 と パヮ 制御部 1 1 5 と を有する
光力 プラ部 1 1 3 は 、 上 り 光信号を光分配部 1 0 3 に出 力 し 光伝送路 4 0 か ら 反射さ れる反射光を光 一検出 部 1 1 4 に 出力する
光パヮ ―検出部 1 1 4 は 光力 プラ部 1 1 3 か ら 出力 さ れる反射光のパ フ を検出 し 反射光のパヮ ―が所定値以 上でめ る σ 下 り 光信号の送出 を停止する う パ 7 制御部 1 1 5 に指示する
パヮ ―制御部 1 1 5 は、 光送信部 1 0 2 h を制御 して 下 り 光信号の送出 を停止する 具体的 には パ 一制御部
2 1 2 は 光送信部 1 0 2 h の電源を 〇 F F にする か ま たは 光送信部 1 0 2 h にお ける信号の経路のスィ ッ チ ( 図示せず ) を 〇 F F にする なお 光力 プラ部 1 1 3 光 ヮ 検出部 1 1 4 およびパヮ ―制御部 1 1 5 は それ ぞれ図 1 4 に示す光力 プラ部 2 1 0 光パヮ 検出部 2 1
1 およびパヮ 制御部 2 1 2 と 同 の機能を有する ため 細な 明 を , 略する
なお 本実施形 に係る 中 Hi装置は 図 1 4 'に示す中継 衣置か ら 質評価部 2 9 0 b を 、略した構成 となる
以上のよ Ό に 本実施形 によれば 光伝送路に異常が 発生 した n に 制御装置か ら の光信号の送信を停止する とがでさ る したが て 公的な条件を満た さ ない 線 信号が中 装置か ら 送信さ れる とがない ま 制御 置において 反射光を検出する だけでよ いため シス テム の構成を簡易なもの とする と がでさ る
次に 第 5 の実施形 の変形例について 兌明する 図 2
2 は 第 5 の実施形 の変形例 に係る 制御装置 1 0 i の構 成を示すブ D ッ ク 図でめ る
図 2 2 において 制御装置 1 0 i は 送信信号処理部 1
0 1 と 光送信部 1 0 2 と 光分配部 1 0 3 i と 光受信 部 1 0 4 ― 1 〜 1 0 4 n と 受信信号処理部 1 0 5 と ΡΡ質評価部 2 9 0 i と を含む なお 図 2 と 同様の構成要 には 同 の符号を付 し 明 を省略する □
光分配部 1 0 3 i は n 個 に分岐した下 り 光信号を 後 述する可変光減衰器 1 2 1 ― 1 〜 1 2 1 ― n に出力する ΡΡ質評価部 2 9 0 i は パ フ 制御部 1 1 5 と 受光パ
7 検出部 1 1 6 ― 1 1 1 6 n と 可変光減衰 55 1 2 1 — 1 〜 1 2 1 一 n と を有する 。
受光パ ヮ一検出部 1 1 6 — 1 〜 1 1 6 — n は、 光受信部
― 口
1 0 4 ― 1 〜 1 0 4 n が受信 した上 Ό 光信 のパヮ を 検出 し 、 上 光信号のパ 一が所定値以上であ る か否か を 判断する 受光 ―検出部 1 1 6 1 〜 1 1 6 ― η は 、 上 Ό 光信号のパヮ一が所定値未 となつた場 α 、 下 り 光信 号の 信を停止する よう 、 パ 制御部 1 1 5 ヒ指示する 可変光減衰 1 2 1 ― 1 〜 1 2 1 ― n は 、 光分配部 1 0
3 i か ら 出力 さ れる下 Ό 光信号の フ一を減衰させ 、 光伝 送路 4 0 ― 1 〜 4 0 ― n に送出する
パ 7 一制御部 1 1 5 は 、 受光パヮ ' ~~検出部 1 'Γ' 6 ― 1 〜
1 1 6 ― n か ら の指示に応 じて 、 下 Ό 光信号の送信を停止 きせる 具体的には 、 パヮ 制御部 1 1 5 は 、 可変光減衰
1 2 1 1 〜 1 2 1 ― n にお ける下 り 光信号の減衰量を 制御 し 、 下 り 光信号の 出力 を停止させる ま た 、 の と さ パヮ ―制御部 1 1 5 は 、 異常が発生 した光伝送路のみに 対する下 り 信号の送信を停止する 例えば 、 受光パヮ一検 出部 1 1 6 ― 2 に よ て検出 された上 り 光信号のパヮ一が 所定値未満であ る 場 口 、 パ 7 一制御部 1 1 5 は 、 可変光減 衰器 1 2 1 ― 2 を制御 し 、 光伝送路 4 0 ― 2 への下 り 光信 号の送出 を停止する
なお 、 受光パヮ一検出部 1 1 6 およ びパヮ ―制御部 1 1
5 の機能は 、 それぞれ図 1 5 に示す受光パ V 一検出部 2 1
3 、 およ びハ0ヮ 制御部 2 1 2 の機能 と 1口 J様であ る ため 、 細な 兌明 を省略する 以上のよ に 本 ^形例 によれば 光伝 路に異常が 生 し 4-B ^
Λ_ ¾ 口 に 制御装置か ら の下 り 光信号の送信を停止す る とがでさ る したが て 公的な条件を ' た さ な い 線信号が中 ¾衣置 imか ら 送信さ れる とがない また 本変 形例 にお いて 制御装置は 光伝送路を介 して制御装置か ら 送信さ れて < る光信号の レベルを検出する機能 を有 して いればよ く ス プ リ ァス発射電力や帯域外輻射 '電力 を測定 する ため の複雑な検出回路を設ける必要がない o
(第 6 の実施形 )
図 2 3 は 本発明の第 6 の実施形 に係 る制御装置 1 0 j の構成を示すブ ッ ク 図であ る o
図 2 3 において 制御壮置 1 0 j は 送信信 '号処理部 1
0 1 と 、 光送信部 1 0 2 と 光分配部 1 0 3 と 光受信部
1 0 4 - 1 1 0 4 ― n と 又信信号処理部 1 0 5 j と ロロ 評価部 2 9 0 j と を含む なお 図 2 と 同様の構成要 素には、 同 の符号を付 し 明 を省略する o
受信信号処理部 1 0 5 j は 光受信部 1 0 4 ― 1 1 0
4 η によ つ て変換さ れた上 り 電気信号を 後述する 電 信号評価部 1 1 7 に出力する □
品質評価部 2 9 0 j は パ ヮ 制御部 1 1 5 と 気信 号評価部 1 1 7 と を有する
電 5^ 1 評価部 1 1 7 は 受信信 処理部 1 0 5 j か ら 出力 さ れる 与信号の Π
PP質 を評価 し 電 信号の Π
PP質が低 下 し •f^ . ^
場 口 には 下 り 光信号の送信を停止する o で - 与信号評価部 1 1 7 は 図 1 7 に示す電 信号評価部 2
1 4 に相当する ため 図 1 7 を援用 し 細な卩 明 を 略 する 。
パヮ 制御部 1 1 5 は 図 1 6 に すパ 制御部 2 1
2 に相当する パヮ 制御部 1 1 5 は ¾ 信号評価部 1
1 7 か ら の指示に応 じて 光送信部 1 0 2 か ら の下 光信 号の出力 を停止させる o
なお 本実施形能 iii に係 る 中継 ¾置は 図 1 4 に示す中継 置か ら 質評価部 2 9 0 を z 略した構成 となる o 以上の よ に 本実施形 において 制御装置は 中継 装置か ら 送信さ れて < る信号の レベルに対する不要輻射電 力 の レベルが 定以上であ る か否か を判断する 例えば 光伝送路に異常が発生する と 上 り の信号の品質が低下 し て し ま o の 下り の信号を 中 装置に送 >信 して し まう と Π 質が劣化 した 線信号を送信する と にな て まう ο 制御装置は 上 り の信号の Π 質が低下する と下 Ό 光信号の送信 を停止する ο したが て 公的な条件を満た さ ない Tttf 線信号が中 置か ら 送信される とがない
次に 第 6 の実施形 の久形例に いて 明する □ 本 形例に係 る 線 信シス テム において 中継衣置は 験 信号を重畳 した上 り 電 信号 を上 り 光信号 に変換 して制御 装置に送信する o 制御 置は 中 装置か ら 受信 した 験 信号の 質 を評価する
図 2 4 は 本変形例に係 る iHI*線通信シス テムが備え る 中 継装 m 2 0 f の構成を示すブ口 ッ ク 図であ る ΰ 図 2 4 にお いて 中継 2 0 f は 光受信部 2 0 1 f と 1UH.線送信 部 2 0 2 と 分離部 2 0 3 と 送受信ァ ンテナ部 2 0 4 と 線受信部 2 0 5 と 光送信部 2 0 6 f と 試験信号送 信部 2 1 5 と を含む
光受信部 2 0 1 f は 、 変換 した下 り 気信号 ハ、、線送信 部 2 0 2 に出力する
験信号送信部 2 1 5 は 、 中継装置 2 0 f か ら送信する 上 り 電気信号に重畳させる ため の 験信号を生成 し 、 光送 信部 2 0 6 f に出力する 験信号送信部 2 1 5 は 、 発振 器 S G ― a と 、 発振 S G 一 b と を有する
発振器 S G -— a は 、 験信号 a を生成 し 、 光送信部 2 0
6 f に出力する 験信号 a の周波数を a とする 発振器
S G — b は 、 験信号 b を生成 し 、 光送信部 2 0 ' 6 f に出 力する 験信号 b の周波数を b とする なお 、 験信号 送信部 2 1 5 は 、 図 1 8 に示す B式験信号送信部 ■1 1 1 2 に相 当する □
-光送信部 2 0 6 f は 、 ハ、ヽ線受信部 2 0 5 か ら 出力 される 上 り 電ス 信号に 、 試験信号送信部 2 1 5 か ら 出力 さ れる p 験 a b を重畳させて上 り 光信号に変換する
次にゝ 中 装置 2 0 f か ら 送信さ れて < る 3 験信号 ¾:評 価する制御衣置に いて 明する 本亦形例 に係る制御装 置の構成は 、 図 2 3 に示す制御装置 1 0 j の構成 と 比較す る と、 電 信号評価部の構成以外は同様であ る ため 、 図 2
3 を援用 し 、 その相 ノ占》、ヽ に いてのみ説明する 相互変調 ひずみを評価する場 にお ける電気信号評価部の構成は、 図 1 9 に示す電 信号評価部 2 1 4 e の構成 と I ]様であ る ため、 図 1 9 を援用する 電気信号評価部は 、 受信信号処 理部 1 0 5 j か ら 出力 さ れる 上 Ό 気信号に重畳されてい 信号の PP胃を評価する 電 信号 1?価部は 、 3式験 {¾ 号の レベルに対する相互変 ひずみの レぺルが 定 レベル 以上 となつ た場 下 り 光信号の送信を停止させる よ う パ 制御部 1 1 5 に指示する
以上のよ う に 本変形例に よれば 制御装置は 中 装 置か ら 送信さ れて < る 験信号の相互変調ひずみを評価 し 試験信号の レベルに対する相互変 周ひずみの レベルが 定 レベル以上 とな o た 口 下 り 光信号の送信を停止する れによ り 中 衣置か ら □ 質が劣化 し た 線信号を送 信する と を防止する とがでさ る - なお 本変形例 において 制御装置は 相互変 ひずみ を評価 した で 第 4 の実施形能の亦形例 と 同様に 高調波ひずみを評価する と と して よ い そ 'の ·> の 信号評価部の構成は 図 2 0 に示す電気信号評価部 2 1
4 f と 同様であ る ため 図 2 0 を援用 し 明 を 略する 以上の よ つ に 本変形例 において 制御衣 置は 中 k 置か ら 送信さ れて < る 験信号の相互 周ひずみまた は高 調波ひずみを評価 し 験信号の レベルに対する相互変調 ひずみまたは高調波ひずみの レベルが 定 レベル以上 と な た場 口 ハ、、線信号の送信を停止する れによ り o □n質 が劣化 した 線信号を送信する と を防止する とがでさ る 相互変調ひずみま たは高 波ひずみを測定する ため に は 例えば 予めき
又定 した周波数だけを観測すればよ いた め 簡易な回路で実現でさ る と い Ό メ U ッ があ る
以上 第 3 〜第 6 の実施形能に いては • ill 線通信シス テム は ハ、、線 L A N信号を利用 して通信する場 を想定 し て 明 した で 信システム は 放 波の不咸 地対策用 の再送信シス テム と して利用する と もでぎ る ただ し 放送波を用 いて通信する システム において 般 的には 上 り 系の信号は不要であ る と考え ら れる したが つ て 第 5 の実.施形能および第 6 の実施形能において 兑明 したよ う に 上 り 系の信号の品質 を評価する と い Ό 手法は とれないが その他の方法に関 しては 第 3 第 6 の実施 形 に係る 線通信シス テム を利用する とがでさ る
また 光伝送路 士 または光伝送路 と装置 と を接 す る光 3 ネ ク タ と しては 斜め研磨 Π ネク 夕 が最も適してい る 3 ネ ク 夕 が緩んだ状 になる と ネ ク 夕端面におい て反射が発生する ので P C ネ ク 夕等では 発 ! '光素子へ の光反射が発生 した Ό 反射 占が複数あ る場 多重反射 が-発生 し た Ό する ため 信号 □ 質が劣化 して し ま Ό しか しなが ら 斜め研磨 ネ ク 夕 を採用する と によ Ό て ネ ク 夕が緩んだ状 で も発光素子への光 射や多重反射が 発生せず 信号品質が劣化 し ない と い メ リ ッ 卜 があ る 以上 説明 したよ Ό に 第 3 第 6 の実施形 に係る 線通信シス テム は 同 じェ ァ において複数のチャ ンネル か ら な る 線信号で通信でさ る システムであ 業 用 ビ ル内ネ V 卜 7 ―ク tote線 L A Nサ ビス等 と して有用 であ る また 第 3 第 6 の実施形 に係る 線通信シス テム は 列車や航空機内ネ ッ 卜 7 ―ク 等の用 途や放送波の不感 地対策用再送信システム に も応用でき る
以上の よ に 第 1 第 2 の実施形食 にお いては 線 通信顺末 に送信すベさ 線信号の信号 レベルを 所定のダ ィ ナ V ク レ ンンの 囲内 に収め る 線通信 システム につ いて説明 した しか し 第 1 〜第 2 の実施形態に係る 線 通信シス テム において 1 つ の 中 装置が力バ ―する ェ U ァが狭め ら れる ため り 広い通信範囲 を力 バ する ため には 複数の 中継装置を備え る必要があ る
しか し なが ら 各中 装 と制御装置 と を接続する光伝 送路の長さ は 複数存在する 中継装置 と に異なるため
1 台の 線通信端末が送信 した無線信号が 複数の中継装 置によ て受信された 異な る伝送路を 由 した信号 が制御装置 3 1 に到達する までの遅延時間差が生.じ る れに り 信号が互い に干渉 レ 口 い (マルチパス干渉 ) 通信 口 質が劣化 して し ま と い う 問題があ る
以下 異な る 線伝送路および光伝送路を伝送する信号 延時間 を所定の時間内 に収め る方法 につ いて 明す
(第 7 の実施形 )
図 2 5 は 本発明の第 7 の実施形 に係る 線通信シス テム の構成を示す図であ る 図 2 5 にお いて 線通信シ ステム は 制御装置 1 0 と 中継衣置 2 0 ― 1 2 0 ― 2 と 線通信端末 3 0 と を備え る
、線通信端末 3 0 と 中 装置 2 0 ― 1 2 0 ― 2 と は 互い に 線で接 Miされる 中継装置 2 0 ― 1 と制御装置 1
0 と は 光伝送路 4 0 ― 1 を介 して接 iさ れ 中 装置 2
0 一 2 と制御装 i 1 0 と は 光伝送路 4 0 2 を介 して接 される 図 2 5 において 通信区間 に存在する 線 通信 末は 1 台であ る が 線通信区間に存在する 線通 信端末は 2 台以上であ て よ い
本実施形 に係る制御装置 1 0 はゝ 第 1 の実施形能 また は第 2 の実施形 に係る制御衣置 と 同様の構成を有 し てい る ため 、 m 2 5 には 、 制御装置 1 0 の基本的な構成のみを 図示する
図 2 5 に示す制御衣置 1 0 において 、 制御壮 語 1 0 は、 信号処理部 1 6 1 と 、 電メ 光変換部 ( Ε / ο ) . 1 6 2 と、 光電気久換部 ( o / E ) 1 6 3 と 、 光分岐結合部 1 6 4 と を含む - 信号処理部 1 6 1 は 、 例え ば図 9 に示す送信信号処理部
1 0 1 お よび受信信号処理部 1 0 5 に相当する また、 m 気光変換部 1 6 2 は 、 図 9 に示す光送信部 1 0 ' 2s に相 当 し
、 光電気変換部 ( 0 E ) 1 6 3 は 、 図 9 に示す光受信部
1 0 5 に相当する また 、 光分岐 部 1 6 4 は 、 図 9 に 示す光分配部 1 0 3 および光 波部 1 0 8 に相当する
光分岐 口 部 1 6 4 は 、 制御装置 1 0 の 気光変換部 1
6 3 か ら 出力 さ れる下 り 光信号を分岐し 、 光伝送路 4 0 一
1 , 4 0 ― 2 に送出する ま た 、 光分岐 部 1 6 4 は、 光伝送路 4 0 ― 1 4 0 ― 2 を介 して中継装置 2 0 ― 1 ,
2 0 - 2 か ら 送信さ れて < る 上 り 光信号を制御装置 1 0 の - 変換部 1 6 3 に出力する
中継装置 2 0 ― 1 は 、 伝送路 4 0 1 を介 して伝送さ れ て く る光信号を受信する と 、 受信 した光信号を電 信号に 変換 し 、 ハ、、線信号と して送受信ァ ンテナ部 2 7 5 一 1 カゝ ら 送信する
また、 本実施形 に係る 中継装置 2 0 ― 1 は 、 第 1 の実施 形態または 2 の実施形能 に係る制御壮
置 と 本的に は 様の構成を有するが 、 レベル調整部 2 7 3 2 7 4 を さ ら に含む 占で相理する 中 衣置 2 0 ― 1 において 、 レベル 調整部 2 7 3 2 7 4 以外の構成は 、 第 1 の実施形目、 お よ び第 2 の実施形 と 同様であ る ため 図 2 5 に は 、 中継装 置 2 0 ― 1 の基本的な構成のみを 図示する
図 2 5 に示す中 tit装置 2 0 ― 1 において 、 中 壮置 2 0 一 1 は 、 光電 亦
メ 換部 2 7 1 と 、 光変換部 2 7 2 と 、 レベル調救部 2 7 3 ? 2 7 4 と 、 送受信ァ ンテナ部 2 7 5 一 1 を含む
光電気変換部 2 7 1 は 、 図 3 に示す光受信部 2 0 1 に相 当 し 、 光伝送路 4 0 一 1 か ら 送出 される下 り 光 '信 >号を電気 信号に変換 して レベル調整部 2 7 3 に出力する
. レベル 整部 2 7 3 は 、 例えば 、 利得可変増幅器や 、 可 変減衰器であ て 、 光電気変換部 2 7 1 に つ て変換さ れ た下 り 電 信 の レベルを 整する レベル 周整部 2 7 3 に よ て レベルが調整された下 Ό 電 信号は 、 図示 し な い 無線送信部や分離部を経由 し 、 ハ、、線信号 と して送受信ァ ン テナ部 2 7 5 1 か ら 送信さ れる
レベル調整部 2 7 4 ち ま た 、 レベル調整部 2 7 3 と 同様 の機能を有 し 、 送受信ァ ンテナによ つ て受信さ れた電 信 号の レベルを調整 し 、 電 光変換部 2 7 2 に出力する
電 光変換部 2 7 2 は 、 図 3 に示す光送信部 2 0 6 に相 当 し 、 送受信ァ ンテナ部 2 7 5 ― 1 に て受信さ れたハ、、 線信号を上 り 光信号に Tip.換 し 、 光伝送路 4 0 ― 1 に送出す
•0 以上 、 中継装置 2 0 ― 1 に いて 兌明 したが 、 中鉱装 置 2 0 ― 2 中継壮
置 2 0 1 と 同様のネ冓成 有する 。 また 制御装置 1 0 は 光伝送路 4 0 ― 1 を介して vs.送 さ れて < る光信号を受信する と 当該光信号を外部ネ ッ 卜 ヮ ク に接 する ため の信号形 に復 し ィ ーサネ ッ 卜
(登録商 ) ケ ブル 6 0 を介 して外部のネ ッ 卜 ヮ ク に 送信する
で 送受信ァ ンテナ部は 送受信ァ ンテナ部の無線 通信範囲の 部が 隣接する送受信ァ ンテナ部の 線通信 範囲の 部 と重複する う に設置さ れてい る 。 したがつて
、 各送受信ァ ンテナ部の 線通信範囲 には 隣接する送受 信ァ ンテナ部の 線通信範囲が重複する 区域が存在する 図 2 5 に示すよ に II 線通信端末 3 0 が 線通信範 囲 2 7 6 ― 1 お び 2 7 6 2 が重複する 区域に位置する 場合 線通信端末 3 0 は 光分岐結 部 1 6 4 によ つ て 分岐さ れた信号を 中 装置 2 0 1 および 2 0 ― 2 の両 方を介 して受信する と と な る
制御装置 1 0 か ら 送信さ れた信号が 中 装置 2 0 1 を経由 し 線通信端末 3 0 1 に到達する までにかか る送 所要時間は 光信号が光フ ァ ィ バ 4 0 a を伝搬する伝搬時 間 T ( L ο a ) と -'' ΙΗ^線信号が ^ίιιι*線通信範囲 2 5 6 a を伝 搬する伝搬時間 T ( L W a ) と の和でめ る また 制御装 置 1 0 か ら 送信さ れた信号が 中 HE装置 2 0 一 2 を経 由 し
111*線通信端末 3 0 に到達する までにかか る送所要時間は
、 光信号が光フ ァ ィ パ 4 0 b を伝搬する伝搬時間 Τ ( L o b ) と 線信号が 線 信範囲 2 7 6 ― 2 を伝搬する伝 搬時間 Τ ( L w b ) と の和であ る で I E E E 8 0 2 • 1 1 a や I E E Ε 8 0 2 • 1
1 と い つ た規格に いて 〇 F D M変調方式を利用する
M:線 L A N システム は 般的に 信号の遅延時間差 を 2
5 0 n s 程度許容する とがでさ る 線伝送路 よび光 伝送路にお ける信号の遅延時間差に余裕を持たせる ため に 当該遅延時間差を 2 0 0 η s に設定する場 口 に いて考 え る と 例えば、 当該システム において 線 送路 にお ける 線信号の遅延時間差を 1 0 0 n s に低減する と に よ て 光伝送路にお ける許容遅延時間差を 1 0 0 n s ま で許容する とができ る 1 0 0 n s の遅延時間'差は 光 路長差に換算する と約 2 0 mであ る したが て 光路長 差が 2 0 mを超え る 線伝送路にお ける '信 >号の遅延 時間差を縮小する と によ て マルチパス干渉の影響を 減する とができ る
したが Ό て 、 複数の受信ァ ンテナ部か ら 送信さ れる 線 信号が 1 台の無線 信顺末に到達する までの遅延時間差を 解消する ため には 伝搬時間 T ( L o a ) よび伝搬時間
T ( L w a ) の和 と 伝搬時間 T ( L o b ) および伝搬時 間 T ( L w b ) の和 とが所定時間内 に収ま る よ う な位置に 線通信範囲 2 7 6 — * 1 2 7 6 ― 2 を形成すればよ い とが分か る
中継装置 2 0 一 1 において レベル調整部 2 7 3 は 送 受信ァ ンテナ部 2 7 5 ― 1 か ら 送信さ れる 線信号の レベ ルを調整する こ と によ て 利得を制御する れに よ Ό 線通信範囲 2 7 6 ― 1 を形成する 中継壮置 2 0 ― 2 において も 様に 中 it m 2 0 2 に設け ら れた レベル 調 部 2 7 3 が送信する 線信号の レベルを 5周 する と によ つ て、 線通信範囲 2 7 6 ― 2 が形成される
例え ば、 光伝送路中 を伝搬する光信号の伝搬速度が 空 中 を伝搬する 線信号の伝搬 度の 1 5 倍であ る σ
L W a 一 L W b 1 - 5 X ( L o b 一 L o a ) • • • ( o
J
と い う 関係式を満たす う に 各受信ァ ンテナ部の指向 性を 整 し 受信範囲 2 7 6 ― 1 2 7 6 ― 2 を形成する 具体的 には 各受信ァ ンテナ部の傾斜角 又を変更 した Ό 各受信ァ ンテナ部が有する指向性の広が り 角度を変更 し た り する こ と によ て 指向性を 整する
例えば、 光路差 ( L o b ― L o a ) が 3 0 mであ る 場 O 式 ( 2 ) よ り L w a ― L w b 4 5 が求め られる し たがつ て、 の α には 線通信範囲 2 7 6 一 1 の半径 を 1 0 0 m 線通信範囲 2 7 6 ― 2 の半径を 5 5 mな ど とすればよ い
なお では 下 り 系の信号につ いて説明 したが 上 り 系の信号につ いて jnj様に レベル誘整部 2 7 4 が電 光変換部 2 7 2 に入力 さ れる 線信号の レベルを調整すれ ば い
以上の よ Ό に 本実施形 によれば 複数の 中 装置を ける こ と によ て 線通信区間を 大する とがでさ る また、 利得を 整する と によ て 線通信顺末が 複数の送受信ァ ンテナ部か ら 送信さ れる 線信号を受信 し た 合 に いて 線伝送路および光伝送路にお ける 各 信号の遅延時間差を所定の時間内 に収め る とがで さ る れによ り マルチパス干渉に よ る信号の劣化を防 止する とがでさ る
なお 上記実施形 では 下 Ό 系の信号にフ いて説明 し たが 上 系の信号に いて も 同様に 利得を 5周整する と によ て 信号の遅延時間差を所定時間相 に収め る と がでさ る れによ り 線信号が複数の送受信ァ ンテナ 部によ て受信さ れた場 において も 線伝送路および 光伝送路に ける 各 線信号の遅延時間差 を所定の時間内 に収め る とがでさ る
(第 8 の実施形目、 )
以下 本発明 の第 8 の実施形 につ いて 明 る 第 7 の実施形能に係 る 線 信システムが備え る 中継衣置は 2 であ たの に対 し 本実施形能 に係 る 'ίΙ(:線通信システム は 3 つ以上の 中 装置を備え る 占ヽで相連する
図 2 6 は 本実施形目 に係る 線通信システム の構成を 示す図であ る 図 2 6 に示す 線通信システム は 図 2 5 に示す第 7 の実施形 に係 る ulIT;線通 \% シス テム と比較する と 中紘装置 2 0 ― 3 および 2 0 一 4 を さ ら に備える点で 相連する
中継 置 2 0 ― 3 と制御装置 1 0 と は 光伝送路 4 0 ―
3 を介 して接 さ れ 中 装 id 2 0 一 4 と制御衣置 1 0 と は 光伝送路 4 0 ― 4 を介 して接 hiさ れる
中継 置 2 0 ― 1 ? 2 0 ― 2 は 、 中継 置 2 0 ― 3 2
0 ― 4 が 線通信端末 と の間で送受信する 線信号の周波 数 と は な る 周波数を利用 して無線通信顺末 と通信する 制御壮
置 1 0 は 、 異なる 2 の周波 を送信する ため の 構成要素を ―組含む 具体的 にはゝ 制御装置 1 0 は 、 信号 処理部 1 6 1 a 1 6 1 b と 、 電 光変換部 1 6 2 a 、 1
6 2 b と 、 光 m気 換部 1 6 3 a 1 6 3 b と 、 光分岐結 合部 1 6 4 a 1 6 4 b と を含む なお 、 図 2 6 に示す制 御装置 1 0 は 、 図 2 5 に示す制御壮置 1 0 と |pj に 、 基本 的な構成のみが図示さ れてい る
信号処理部 1 6 1 a は 、 ィ サネ ッ 卜 (登録 ) ケ一 ブル 6 0 ― 1 を介 して外部ネ ッ 卜 ―ク か ら 送信.さ れてき た信号を し 、 下 Ό 電 信号 とする 下 り 信号は、
Λ ¾i 変換部 1 6 2 a によ て下 り 光信号に亦換 'さ れ 、 t 分岐結 D 部 1 6 4 a に出力 さ れる 光分岐 ロ α 部 1 6 4 a 、 下 り 光信号を分岐し 、 光伝送路 4 0 ― 3 4 0 ― 4 に 送出する
また 、 信号処理部 1 6 1 b は 、 ィ ―サネ ッ ( 容 、'-録商標
) ケーブル 6 0 ― 2 を介 して外部ネ 卜 ―ク か ら送信さ れてきた信号を変 し 、 下 Ό 電 信号 とする 下 Ό 電 号は、 電 光変換部 1 6 2 b によ つ て下 Ό 光信号に変換さ れ、 t分岐 α 部 1 6 4 b に出力 さ れる 光分岐結 α 部 1
6 4 b は 、 下 り 光信号を分岐 し 、 光伝送路 4 0 ― 1 ? 4 0 一 2 に送出する
光伝送路 4 0 ― 3 4 0 ― 4 を介 して 中紘装置 2 0 一 3
, 2 0 ― 4 か ら 送信されて < る 上 り 光信号は 、 光分岐結合 部 1 6 4 a に よ つ て結 σ さ れ 、 制御装置の光電気変換部 1
6 3 a に入力 さ れる また 、 光伝送路 4 0 ― 1 ラ 4 0 一 2 を介 して中継 置 2 0 ― 1 2 0 ― 2 か ら送信されて く る 上 り 光信号は 光分岐 /|口 O 部 1 6 4 b によ て結 口 され、 制御装置の光電気変換部 1 6 3 b に入力 される
中継装置 2 0 一 3 2 0 ― 4 の構成は 図 2 5 に示す中 継装置 2 0 ― 1 2 0 ― 2 と ιρ]様であ る ため 明 を省略 する。
中継装置 2 0 一 1 2 0 一 2 にお いて それ 'ぞれの レベ ル調整部 2 7 3 は、 互い に dan
ハ、、線信号の送信 レベルを調整 し ゝ ^\ 通信範囲 2 7 6 ― 1 および 2 7 6 2 を形成 してい る の 2 の 中継装置 2 0 ― 1 2 0 ― 2 には 制御装 置 1 0 内の電 光変換部 1 6 2 b か ら 出力 さ れ 光分岐結 合部 1 6 4 b に よ つ て分岐さ れた光信号が伝送 れる 。 中 継装置 2 0 ― 1 2 0 一 2 か ら は 同 周波数で変 さ れ 無線信号が送信される
中継衣置 2 0 一 3 において 送受信ァ ンテナ部 2 7 5 一
3 が形成する 線通信範囲 2 7 6 一 3 は 中継装置 2 0 一
2 の送受信ァ ンテナ部 2 7 5 ― 2 が形成する ι 11*
ハ、、線通信範囲
2 7 6 ― 2 の一部 と重複する ま た 中 置 2 0 ― 3 の 达受 ί ァ ンテナ部 2 7 5 ― 3 が形成する 線通信範囲 2 7
6 - 3 は 中継装置 2 0 ― 4 の送受信ァ ンテナ部 2 7 5 一 が形成する ハ、ヽ線通信範囲 2 7 6 ― 4 の 部 と重複する 。
¾ ス 光変換部 1 6 2 a と 電気光変換部 1 6 2 b と は、 異な る 周波数で変換さ れた 気信号を光信号に 換 して出 力する o れに よ り 中継装置 2 0 ― 2 と 中 Hk装置 2 0 一 3 と は それぞれ異なる周波数で亦換さ れた ιΤΠ*線信号を 無 1¾通信端末に送信する と と な る したがつ て 中継装 置 2 0 ― 2 が形成 した 線通信範囲 2 7 6 ― 2 と 中継装 置 2 0 ― 3 が形成する 線通信範囲 2 7 6 ― 3 とが重畳す る 区域に 線通信端末が存在する 場 α にお いて も 通信に 用 い る 線信 の周波数が異なる ため マルチ Λス干渉が 生 じない o
第 7 の実施形锥で 明 したよ う に 中 装置 2 0 一 1 お よび中 置 2 0 ― 2 にお いて 各 レベル 整部 2 7 3 は 互い の 線通信区間が重畳する 区域に送信する 線信号 の遅延時間が所定時間内 に収ま る よ に 利得を調整する o また 同 に 中 置 2 0 ― 3 お び中継装'置 2 0 ―
4 において 各 レベル調敕部 2 7 3 は 互い の 線通信区 間が重畳する 区域に送信する 線信号の遅延時間'が所定時 間内 に収ま る よ う に 利得を調敕する で 中継 m
2 0 一 2 と 中継装置 2 0 3 と は 異な る周波数を利用 し て通信する ため 中 装置 2 0 ― 2 と 中継装 im 2 0 ― 3 と の間で 信号の遅延時間 を Ρ周整する必要はな い o
なお 線変調信号 と しては 周波数多重や 符号分割 多重方式な どを用 い る とがでさ る 例えば 周波数多重 方式の場 α 中 置 2 0 ― 1 2 0 ― 2 の組 と 中 装 置 2 0 一 3 2 0 一 4 の組 とが 異な る周波数で さ れ た 線信号を用 いて 信する と とすればよ い
以上のよ う に 本実施形能 によれば 線通信シス テム に 最大 4 つ の 中 装置を PX置する とがでさ る 信号の 遅延時間差が 整された 2 つ の 中 装置を 組とする と
2 の組は それぞれ異なる周波数を利用 して通信する o れに よ 0 利得を調整する と によ て 線通信端末 が、 数の送受信ァ ンテナ部か ら 送信さ れるハ、、線信号を受 信 した場 Π にお いて も 線伝送路および光伝送路におけ る各 線信号の遅延時間差を所定の時間内 に収め る とが でき る また マルチ ス干渉によ る信号の劣化を防止す る こ とができ る
なお 上 実施形目 では 下 り 系の信号にフ いて 明 し たが 上 Ό 系の信号につ いて ち 同様に 利得を P周整する と によ て 信号の遅延時間差を所定時間相 に収め る と がでさ る れによ Ό 線信号が複数の送受信ァ ンテナ 部によ て受信された場 α にお いても 線伝送'路および 光伝送路にお ける各 線信号の遅延時間差を所定の時間内 に収め る と がでさ る
また 本実施形 を応用する と によ て 中継装置を
5 つ以上 e又置する と でき る
図 2 7 は 中継装 を 5 つ以上 3又ける場 ο における "、ヽ線 通信シス テム の構成を示す図でめ る 図 2 6 に示すハ、、線通 信シス テム にお いて 光分岐結 口 部 1 6 4 b か ら分岐する 光伝送路は 光伝送路 4 0 ― 1 4 0 ― 2 の 2 本であ た れに対 し 図 2 7 に 線通信システム に いては 光 分岐結 Π 部 1 6 4 b か ら さ ら に光伝送路を分岐する 光分 岐結 SH 1 6 4 b か ら 分岐さ れた光伝送路に は 光分岐 合部 1 6 4 c が接 feeさ れる 光分岐結 口 部 1 6 4 c は 光 分岐 口 部 1 6 4 b に よ て分岐された光伝送路を 光伝 送路 4 0 ― 5 および光伝送路 4 0 6 を分岐する 光分岐 ±
ポロ σ 部 1 6 4 c によ つ て分岐さ れた光伝送路 4 0 ― 5 には 中継装置 2 0 一 5 が接 ¾7Gさ れ 光伝送路 4 0 ― 6 には中 2 0 ― 6 が接 さ れる
中 置 2 0 ― 5 において 送受信ァ ンテナ部 2 7 5 ―
5 が形成する 線通信範囲 2 7 6 一 5 は 中継装置 2 0 一
4 の送受信ァ ンテナ部 2 7 5 ― 4 が形成する 4ml線通信範囲
2 7 6 ― 4 の一部 と重複する また 中継装置 2 0 ― 5 の 送受信ァ ンテナ部 2 7 5 ― 5 が形成する .tm.線通信範囲 2 7
6 ― 5 は 中継装置 2 0 ― 6 の送受信ァ ンテナ部 2 7 5 ―
6 が形成する 卜線通信範囲 2 7 6 一 6 の一部 と重複する
― 線亦調信号を送出する 中 装置 2 0 ― 5 および中 継 置 2 0 一 6 を接 する α も 中 装置 2 0 一 5 と 中 継装置 2 0 ― 6 と の間で 互い に送信する 線信号の レベ ルを 整 < m
する 好ま し は 任 の位置に あ る 線通信顺 末において 中 置 2 0 ― 1 も し ぐ は 2 0 1 ― 2 か ら の 信信号 レベル と 中継お 2 0 1 一 5 も し < は 2 0 1 ―
6 か ら の受信信号 レベル差が所定値以上 とな る う にする と よ い
例え ば I E Ε E 8 0 2 1 1 a や I E E E 8 0 2 1
1 g な どの 〇 F D M 亦 周 を用 いた 線 L A N信号を送信す る場 信号 レベル差が 2 0 d B 以上めれば マルチパス によ る遅延時間差が 5 s e c 以上生 じて 伝送 レ一 卜 の 劣化は起 ら ない れに り 簡易な装置構成でマルチ ス干渉を防ぎなが ら 複数台の 中 装置 を e け 線通 信範囲 を拡大する とがでさ る
なお 図 2 6 および図 2 7 に示す 線通信システム に いて 所望の 中鉱装 か ら所望の 線 信号を送信する ため に な る光伝送路 4 0 ― 1 4 0 ― 6 を用 いてい る が、 ハ、、線 信号毎に な る波 を用 いて 1 つ の光伝送路 に多重する波長多重方式を用 いて通信する と と して も よ い。 また ハ、、線変調方式 に周波数多重方式を用 い る場 各中 装置に所望の周波数帯だけを通過させるバン ド、バス フ ィ ル夕 を設ける と と して よ い
(第 9 の実施形 )
以下 本発明 の第 9 の実施形 に いて 明 'する 第 9 の実施形 に係る 線通信システム は 第 8 の実施形 と 同様に 3 つ以上の中継装置を備える が 線通信シス テ ムが備え る 衣置が全て の周波数を利用 して通信す る ハ占、、にお いて 第 8 の実施形 と相 する
m 2 8 は 本実施形目 におけるハ、、線通信シス 'デム の構成 示す図であ る 図 2 8 にお いて 中継装 im 2 0 1 , 2
0 一 2 が有する送受信ァ ンテナ部 2 7 7 ― 1 2 7 7 一 2 は、 斜め方向に向か う 指向性を有する指向性ァ ンテナか ら な る それ以外の構成要素は 図 2 5 と伺様であ る ため 図 2 5 と I I様の構成要素に は同 の符号を付 し 卩 明 を省 略する
光伝送路 4 0 ― 2 が光伝送路 4 0 一 1 よ り 光路が長い 場 口 中継装置 2 0 ― 1 の送受信ァ ンテナ 2 7 7 1 は よ り 光路が長い光伝送路 4 0 ― 2 に接 された 中継 置 2
0 一 2 に向か 指向性 を有する また 図 は していな い が、 さ ら に複数の中紘装置を接続する に 様に そ れぞれの 中 装置の送受信ァ ンテナ部は よ り 遠方に位置 する 中継装置が存在する方向に指向性を有する
その際 制御装置 1 0 か ら光分配された信号が中継装置 2 0 一 1 および 2 0 ― 2 を介 して 同 じ受信 レベルと して ifnt
線通信端末 3 0 1 に到達する までのそれぞれの所要時間 であ る T ( L 0 a ) と Τ ( L W a ) の和 T ( L O b ) と
T ( L w b ) の和が一致する よ う に 各指向性ァ ンテナ 2
7 5 一 1 お び 2 7 5 ― 2 を P周 する o すなわち 刖述 の式 ( 1 ) の関係を満たすよ Ό に 各送受信ァ ンテナ 2 7
7 の指向性を 整する 0 で 各送受信ァ ンテナ部 2 7
7 の指向性は 設 角度を亦更 した り ァ ンテナの広が り 角度を久 した する こ と に よ つ て調 する とがでさ る
0
また 例えば フ ァ ィ ハ、長差が 3 0 mの 口 上記の式
( 2 ) よ L w a ― L w b 4 5 ( m ) と求ゆら れる 0 こで 一 m.的な家屋に中 装置を 又置する -BL 天井の 高 さ は約 2 mであ る o したが て L w b = 0 ( m ) であ る と近似する と L W a = 4 5 ( m ) とな る 0 天井高 さ を ゼ Π とみな した場 L W a の長さ は JJU;線通信範囲の最大 長さ に等 し い と考え ら れる ため , ιϊΐΐ 線通信範囲 2 7 8 ― 1
2 7 8 ― 2 の敢大長さ を 4 5 m とすればよ い ο
以上のよ Ό に 本実施形能によれば A 1 rt f?線伝送路お よび 光伝送路にお ける各 線信号の遅延時間差を所定の時間内 に収め る とができ る 0 れによ Ό マルチパス干渉によ る 1S の劣化を防止する とができ る o
なお 本実施形能 に いて ァ ンテナの指向性は ァ ン テナの 置角度や広が り 角度を変更する と によ つ て調整 さ れる 0 の と さ レベル調敕
■TF .部によ る利得の調整が不要 であ る 八には 中継装置は レベル 整部を けていな < と よ い ま た ァ ンテナの設 角度や広が り 角度は変 更せず レベル調整部に よ る利得の 整だけで送受信ァ ン テナ部の利得を制御する と と して よ い
(第 1 0 の実施形態 )
図 2 9 は 本発明の第 1 0 の実施形能に係る 線通信シ ステムの構成を示す図であ る 図 2 9 にお いて 図 2 5 と じネ《成 につ いては 兑明 を省略 し 図 簡略化する 図 2 9 にお いて 各中継衣置 2 0 ― 1 〜 2 0 3 は そ れぞれ光分岐 α 部 1 6 4 a 1 6 4 b に よ て.分配さ れ た光伝送路 4 0 ― 1 〜 4 0 ― 3 に接 さ れてい る 図 2 9 に すよ う に 光分岐 α 部 1 6 4 a , 1 6 4 は 1 本 の伝送路を 2 分配する 光伝送路の 顺には光分岐結 口 部 が接続さ れ 他顺には 別の光分岐 TO 部 または中 置が接 さ れる よ う に構成さ れる れによ Ό 制御装置
1 0 と各中 装置 と を 芯数が少ない光フ ァ ィ ハ、を介 して 接 In:する と がでさ る また の と さ 制御装置 1 0 か ら 各中継装置までの光伝送路長差を ―定長以下にするか ま たは 光伝送路 と 線伝送路によ て生 じ る 信号遅延時 間の差を 線通信システム にお いて許容さ れてい る遅延 時間以下 とする
制御衣置 1 0 と各中 装置 2 0 と を接 する光伝送路長 差を 定長以下にする方法 と しては 例え ば 各中 装 置 2 0 の内部また は外部に 光伝送路を伝送する光信号に 所定の遅延時間 を付加する予 処理部を備え る とが考え ら れる 例えば 制御装置 1 0 と 中 7|¾装置 2 0 ― 1 と の間 で送受信される光信号に所定の 延時間 を与んる 4ψ, 信 号に与えるベさ遅延時間 に相当する長さ の光伝送路を 取 も光伝送路長が短い光伝送路 4 0 ― 1 に予長 と して追加 し て よい 好ま し < は 予長処理部は 中 装置 2 0 の内 部 に 又ける と よ い 0
また 制御装置 1 0 と各中 装置 2 0 と を接 する光路 長差が 定長以下 と な る う に 各光伝送路に 疑似光遅 延線路 (例えば グ レ 丁ィ ング ) 等を設けて も よ い 0 さ ら に 光伝送路および 線伝送路にお いて生 じ る 信 号遅延時間 を予め 送信する .ΙΙΠΓ線通信シス テムの'通信が可 能 と なる取大遅延時間 に統 する と と して ち い 例え ば I Ε Ε Ε 8 0 2 • 1 1 a の 線 L A Ν信号は > 般的 に 5 6 百 m程度の通信範囲 を許容する シス テム と な つ て い る ため 例え ば 光 フ ァ ィ バ長を 2 3 百 m Air 線通信 範囲 を半径 1 0 0 m程 とする ( とがでさ る れに よ り 中 装置を増 ru
又する 際に も光 フ ァ ィ バ長や中 装置の 定を変更する とな < 光伝送路および 線伝送路にお い て生 じ るネ公
、信号遅延時間差を 所定時間以内 とする i _ とが でさ る
以上の よ う に 本実施形 に よれば 線伝送路お よび 光伝送路にお ける各 :1111?線信号の遅延時間差 を所定の時間内 に収め る とがでさ る れによ り マルチパス干渉 によ る信 の劣化 を防止する と ができ る また 予長処理部 や疑似光遅延線路を設ける と とすれば 利得を調整する と な < 信号の 延時間差を所定時間内 に収め る とが でさ る その場 α 各中継衣置 に レベル 1整部を 又けな < て ち よ い
なお 本実施形 において ハ、、 is if ンステムが備 る 中 装置は 3 台であ つ たが ハ、、線通信シス テム は 4 台以 上の中継衣置を備えていて もか まわない
-
(第 1 1 の実施形 )
以下 本発明の第 1 1 の実施形 に係る ハ、、線通信シス テ ム につ いて 明する 第 1 0 の実施形態 に係 る ゝヽ線通信シ ステム において 中 装置がバス型に接 さ れていたの に 対 して 本実施形 に係る 、、線通信システム は 中 装置 がス 夕 型 に接 さ れてい るハ占、、で相理 f る
図 3 0 は 本発明の第 1 1 の実施形態 に係る ハ、、線通信シ ス テム の構成を示す図であ る 図 3 0 にお いて \- 図 2 5 と 同様の構成要素には の符号を付 して 明 を 略し 図 簡略化する
図 3 0 において 光分岐結 部 (図示せず ) は 制御壮
1 0 の内部に設け ら れてい る な 光分岐結 部は 光伝送路中 に配置さ れていて よ い 光分岐結 1=1部は 1 の光路を複数の光伝送路 4 0 ― 1 0 ― 3 に分岐する 各中継装置 2 0 1 2 0 ― 3 は 、 それぞれ光伝送路 4
0 ― 1 4 0 ― 3 に接 さ れてい る
なお 光信号の分配数は 所望の分配数 し < は そ れ以上の分配数に して 空きポ 卜 は終顺 してお < とが 望ま し い れによ Ό 中継装置を増 n する 際に ち 光分 配 BS.の空ぎポ ― 卜 に新た に光フ ァ ィ バを接 する とが容 易であ る また すでに 又置さ れてい る 中 装置に も 新 たな中継 ¾置の増 BXによ る受光パ ヮ の変動がない した が て 中継装 内の 幅器の利得を 予め最適 占 に 定 する とがで含 る
また こ の と さ 第 9 の実施形態 と 様に 制御装置 1
0 か ら 各中継衣置 2 0 までの光伝送路長を 定長以下 とす る か または 、 光伝送路および 線伝送路において生 じ る 信号遅延時間の差を 線通信シス テムが許容する遅延 時間以下 とする とが望ま し い さ ら に 光伝'送路 と 線 伝送路によ つ て生 じ る ϋ、信号遅延時間 を予め 送信する mt 線通信シス テム の通信が可能 となる最大遅延時間 に統 す る と と して も よ い
以上のよ う に 本実施形能によれば ΊΙΤΤ*線伝送路 よび 光伝送路にあ ける 各 線信号の遅延時間差を所 .定の時間内 に収め る こ とがでさる れによ Ό マルチパス干渉に る 口
信 の劣化を防止する とがでさ る また 予長処理部 や疑似光遅延線路を設ける と とすれば 利得を 周整する とな ぐ 、 信号の 延時間差を所定時間内に収め る ( _ とが でさ る その場 α 各中継 置に レベル調整部を けな
< て も よ い。
なお 本実施形能にお いて jllii線通信シス テムが備え る 中継 置は 3 台であ たが 線通信システム は 4 台以 上の 中継装置を備えていて ちか まわない
(第 1 2 の実施形能 )
図 3 1 は、 本発明の第 1 2 の実施形態に係 る 線通信シ ステム の構成を示す図であ る 図 3 1 において 図 2 6 と じ構成要素に は の符号を付 し 説明 を 略する 制御壮置 1 0 において 電気光変 部 1 6 2 a か ら 出力 さ れる下 り 光信号はゝ 光伝送路 4 0 一 2 を介 して中 it装
2 0 ― 2 に送信さ れる また 、 電気光変換部 1 6 2 b か ら 出力 される下 Ό 光信号は 、 光伝送路 4 0 一 1 を介 して 中維 装置 2 0 ― 1 に送信さ れる
中 im装置 2 0 ― 1 の受信ァ ンテナ 2 7 5 ― 1 が形成する 線通信範囲 2 7 5 1 は 、 中 装置 2 0 ― 2 の受信ァ ン テナ 2 7 5 ― 2 が形成する 線通信範囲 2 7 5 ― 2 の一部 と重複する
で 、 信号処理部 1 6 1 a か ら電 光亦換部 1 6 2 -a に出力 さ れる変調信号 と 、 信号処理部 1 6 1 b か ら 光 換部 1 6 2 b に出力 さ れる変調信号 と は 、 周波 が な ス
なお 、 信 の変識方式 と しては 、 周波数多重や符号分割 多重方式な ど を使用する とができ る 例えば 、 周波数多 重方式を用 い る 口 、 中継装置 2 0 ― 1 と 中継装置 2 0 ―'
2 と は 、 異な る周波数で変調さ れた 線信号を用 いて通信 すれば い
れに り 図 3 1 に示すよ う に 、 中継装置 2 0 ― 1 2
0 ― 2 か ら は異な る 線変調信号が送信さ れる ため 、 マル チパス によ る干渉が発生 し ない
以上の よ う に 、 本実施形 に れば 、 隣接する 中 衣置 士は 、 異なる 周波数を用 いて通信する ため 、 マルチパス によ る干渉が発生 しない したが て 、 マルチパス干渉に よ る信号の劣化 を防止する と がでぎ る
また 、 本実施形能、にね いて 、 線通信 シス テムが備え る 中継装置は 2 台であ たが 、 線通信システム は 、 3 台以 上の中継装
Figure imgf000102_0001
を備えていて も よ い ο
図 3 2 は 4 台の中継壮置を備えるハ ^ί|、 ι.ί、:線通信システム の 構成を示す図であ る 図 3 2 に示すハ、、線通信システム は 図 2 6 に示す第 8 の実施形 に係 る Arc.
線通信システム と 比 る と \=£ι.
較す 各中 βが PX置さ れる位置が相 する その 他の構成要素は図 2 6 と 同様であ る ため 図 2 6 と 同様の 構成要素には の符号を付 し 説明 を ,
略す 'る
3 2 において 光分岐 α 部 1 6 4 a は 制御装置 1
0 の電気光変換部 1 6 2 a か ら 出力 される光信号を光伝送 路 4 0 ― 2 4 0 ― 4 に分岐する 'ま た 光分岐 α 部 1
6 4 b は 制御装置 1 0 の 気光 換部 1 6 2 b か ら 出力 される光信号を光伝送路 4 0 ― 1 4 0 一 3 に '分岐する で 中 装置 2 0 一 1 2 0 ― 4 は 隣接する 中
¾置 と は異な る周波数のハ、、線信号を利用 して通信する ο 例 え ば 中継 置 2 0 ― 2 の送受信ァ ンテナ部 2 7 5 ― 2 が 形成する 線通信範囲 2 7 6 ― 2 は 中継装 im 2 0 ― 1 の 送受信ァ ンテナ部 2 7 5 ― 1 が形成する • III I 線通信範囲 2 7
6 - 1 および中継装置 2 0 ― 3 の送受信ァ ンテナ部 2 7
5 一 3 が形成する 線通信端末 2 7 6 ― 3 の Mil,線通信範囲
2 7 6 ― 3 の一部 と重複する 中 装置 2 0 ― 1 , 2 0 ―
3 は互い に 同 じ周波数の 線信号を用 いて通信する が 中 継装置 2 0 ― 2 は 中 '鉱衣置 2 0 ― 1 2 0 ― 3 と は異な る周波数のハ 線信号を用 いて通信する したが て 中継
¾置 2 0 ― 1 2 0 一 3 にお いて 同 の周波数を用 いて 通信する 中継装置の通信範囲 は重複 しないため マルチパ ス干渉が発生 しない また 中継装置 4 0 ― 4 も また 線通信 囲が ネ复す る 中継装置 2 0 一 3 と は異な る周波数の無線信号を用 いて 通信する ため 中継衣置 2 0 ― 3 お び中継装置 2 0 ― 4 の間において も マルチパス干渉が発生 しない
こ のよ に 隣接する 中継衣置同士が異なる周波数の 線信号を利用 して通信する よ ラ に 中 装置を配 する と によ て マルチパス干渉の 生を防止する とがでさ 発
ス なお 図 3 1 および図 3 2 では 所望の 中 装置か ら 所 の無線 信号を送信する ため に 異なる光伝送路 4 0 一 1 4 0 ― 4 を用 いてい る が 変調信号毎に なる 波長 を用 いて 1 つ の光伝送路に多重する波長多重方式を使用 し て も よ い また 線変調方式に周波数多重方式を用 い る ナ 合は 各中継装置に所望の周波数帯だけを通過させる ハ、 ン ドバス フ ィ ル夕 を用 いて も よ い
以上 第 1 第 1 2 の実施形能では 従来の 線通信シ ス テム にお ける第 1 第 3 の要求を満たす とがでさ る 線通信システム に いて 明 した 第 1 の要求は 中継衣 置が受信する 線信号の レベルを所定のダィ ナ ッ ク レ ン ンの範囲 に収め る とであ Ό 第 2 の要求は 線信号 に お ける漏洩比 を一定 レベル以下に収め る とであ る 第 3 の要求は 中 Hi 壮置が受信する 線信号の D / U比を一定 レベル以上に保つ とでめ る 上記の実施形 では 中 装置の通信可能 X V ァ を狭め る と に よ て 線通信顺 末が送信する 線信号の レベルを所定の範囲 に収めていた で 中継装置は 受信する 線信号の レベルが 気 光変換 が許容する 囲 に収ま る よ Ό に、 大きすぎる レベ ルの 線信号を受信 しないよ う に して も よ い 以下 、 電気 光 換 が許容する とがでさ る レベルの 線信号のみを 中 WE装置が受信する と によ つ て 、 第 1 の要求を満た し 、 線信号を高品質に光伝送する とがで含る 線通信シス テム につ いて 明する
( 1 3 の 施形能 )
図 3 3 は 、 本発明の第 1 3 の実施形能、に係る 線通信シ ステム の構成を示す図であ る 図 3 3 において 、 線通信 システム は 、 制御局 3 1 と 、 中 装置 3 2 と 、 線通信端 末 3 3 a 3 3 b と を備え る 制御 3 1 は 、 光電 変換 部 3 1 1 と 、 信号処理部 3 1 2 と を含む 中継 '装置 3 2 は
、 受信ァ ンテナ部 3 2 2 と 、 電ス 光変換部 3 2 1 と を含む なお 、 線通信端末 3 3 a および 3 3 b を特に区別する 必要がない場 D には 、 線通信端末 3 3 と Φ公称する
線通信顺末 3 3 a 3 3 b と 中 it装置 3 2 と は 、 互い に 線で接 さ れる 中 Hi 衣 m 3 2 と制御 3 1 と は 、 互 い に光フ ァ ィ バ 3 6 を介 して接 さ れる 制御局 3 1 と外 部のネ ッ 卜 ヮ ―ク (図示せず ) と ほ 、 ィ ―サネ ッ 卜 (登録 商亇 ) ケ ブル 3 5 を介 して接続されてい る
なお 、 図 3 3 では 、 上 Ό 伝送系 のみを示 し 、 下 Ό 伝送系 を省略 してい る また 、 外部ネ ッ 卜 ク と制御局 3 1 と は ィ サネ V 卜 (登録商標 ) ケ ブル以外の伝送路を介 して接 eさ れていて も よ ぐ 、 例え ば 、 電話線 、 軸ケ ブ ル 、 または光フ ァ ィ パを介 して接 さ れていて も よ い ま た 、 図 3 3 にお いて 、 線通信区間に存在する 線通信顺 末は 2 台であ る が、 ハ、、線通信区間 に存在するハ、、線 信端末 は 1 台であ て も よ < 、 また 、 3 台以上であ つ て ち よ い 以下 、 上 り 信号が伝送さ れる 場 Π にお ける 、 ハ、、線通信シス テム の動作について 明する
、、線通信端末 3 3 a および 3 3 b は 、 申継衣置 3 2 にハ、ヽ 線信号を送信する 中 装置 3 2 は 、 建築物の天井 3 4 に 設置されてお Ό &
、 叉信ァ ンテナ部 3 2 2 は 、 線通信端末
3 3 a 3 3 b か ら 送信さ れて < る 線信号を受信する m気光変換部 3 2 1 は 、 受信ァ ンテナ部 3 2 2 が受信 した 電気信号を光信号に変換する光送信部であ る ス 光変換 部 3 2 1 によ て変換された光信号は 、 光フ ァ ィ バ 3 6 を 伝送 し 、 制御局 3 1 の光電気 換部 3 1 1 に入かされる 制御局 3 1 にお いて 、 光電気変換部 3 1 1 は 、 入力 さ れ 光信号を電 信号に亦久換する 信号処理部 3 1 2 は 、 電 信号を 、 外部ネ ッ ヮ ク に送信する ための信号形 に 復 P周する 復 さ れた信号は 、 ィ サネ V 卜 (容録商 ) ケ ブル 3 5 を介 して外部に伝送される
図 3 4 は 、 図 3 3 に示す受信ァ ンテナ部 3 2 2 の構成お よびその受信範囲 3 7 を模式的 に示す図であ る 図 3 4 に 示すよ う に 、 受信ァ ンテナ部 3 2 2 は 、 指向性ァ ンテナ 3
2 3 と 、 電波吸収体 3 2 4 と を有する 指向性ァ ンテナ 3
2 2 は 、 例え ば 、 平面ァ ンテナでめ る 受信ァ ンテナ部 3
2 2 にお いて 、 指向性ァ ンテナ 3 2 3 の直下には 、 電波吸 収体 3 2 4 が P又置さ れてい る 電波吸収体 3 2 4 は 、 指向 性ァ ンテナ 3 2 3 か ら 定の距離を離 して設 される 電 波吸収体 3 2 4 は 、 例えば 、 ゴム またはフ X ラィ 卜 の焼 体であ て、 所定の周波 の電波を吸収する なお 信 ァ ンテナ部が有する ァ ンテナは 二 指向性ァ ンテナであ つ て も よ い
のよ う に 指向性ァ ンテナ 3 2 3 の直下に 波吸収体
3 2 4 を設ける と によ Ό 受信ァ ンテナ部 3 2 2 は 受 信ァ ンテナ部 3 2 2 の直下お よびその近傍の方向に対する 受信感度が減衰される したがつ て ァ ンテナ部 3 2 2 の 直下近傍に位置する 線通信端末 3 3 a が送信する 線信 号は 電波吸収体 3 2 4 に吸収される と によ て 減衰 して指向性ァ ンテナ 3 2 3 に到達する
方 受信ァ ンテナ部 3 2 2 の遠方に位置する 線通信 末 ( こ では 線 信端末 3 3 b ) は 電 "波吸収体 3
2 4 に吸収 さ れる こ と な < 指向性ァ ンテナ 3 2 3 に到 す また 、 中 置が受信する 線信号の信号 レベルは 中 装置 3 2 と 線通信顺末 3 3 a , 3 3 b と の間の距 離に依存する したが て 方にあ る 線通信顺末か ら 送信され † 線信号は 線通信区間 を伝搬する につれ あ る 王 減衰する の の 受信ァ ンテナ部 3 2 2 は 当該 線信号を高利得で受信する とがでさ る
のよ う に 指向性ァ ンテナの直下に電波吸収体を 又置 する と に よ て 受信ァ ンテナ部 3 2 2 の直下近傍に位 置する 線通信 末は 受信ァ ンテナ部 3 2 2 の受信範囲
3 7 か ら 除外さ れる 受信ァ ンテナ部 3 2 2 は 受信範囲
3 7 内か ら 送信さ れる ハ、、線信号を一
冋利得で受信 し 受信範 囲外 3 7 外か ら 送信さ れる 線信号を低利得で受信する なお 電波吸収体 3 2 4 の面積や厚み 設 位 を変 する と によ つ て 電波の減衰 を調 する とができ る れに り 電ス 光久換部 3 2 1 が許容する ダィ ナ ッ ク レンジに応 じて 直方向か ら 送信さ れて < る信号に対 する受信ァ ンテナ部 3 2 2 の受信利得を 整する とがで さ る
図 3 5 は 中継装置 3 2 にお ける 線信号の受信強度 と 中 装置 3 2 および 線通信端末 3 3 の間の距離 と の関 係を示すグラ フであ る 図 3 5 において 縦軸は 中 置 3 2 が受信する 線信号の受信強度を示す 横軸は 中 維装置 3 2 よび 線通信 末 3 3 の間の距離を示す 占 線は 受信ァ ンテナ部が従来の受信ァ ンテナ部であ る場 つ ま Ό 受信ァ ンテナ部 3 2 2 が 指向ァ ン 'デナのみを 有する にお ける 受信強度の変化を示す 実線は 本 発明に係る受信ァ ンテナ部 3 2 2 にお ける 受信強度の変 化を示す
図 3 5 に示すよ う に 従来の 指向性ァ ンテナ部が 近 距離か ら 送信さ れる 線信号を受信する場 線信号の 受信強ゾ又が大き いため 光変換部 3 2 1 が許容する ダ ィ ナ ッ ク レ ン ンの上限を えて し ま Ό のよ な信号 レベルの大き い 線信号を光信号に変換する と 光信号に 歪みが発生する ため 信号を高 質に光伝送する と がで さない
方 本発明 に係る ァ ンテナ部 3 2 2 は 鉛直方向か ら 送信さ れて < る 線信号の受信利得が制限さ れてい る よ て 鉛直方向 すなわち近距離か ら送信さ れる 線信号 は 低利得で受信される ため 当該 線信号を電気光変換 部 3 2 1 が許容する ダィ ナ ッ ク レ ンジの 囲内 に収め る とがでさ る
の よ Ό に 受信ァ ンテナ部 3 2 2 は 近傍に位置する 線通信端末か ら 送信さ れる 信号 レベルが大さ い 線信 号を低利得で受信 し 方に位置する 線通信顺末か ら送 信さ れる 信号 レベルが小さ い 線信号を高利得で受信す る したが て メ 光変換部 3 2 1 に入力 さ 'れる 線信 号の信号 レベル差を縮小する t _ とがでさ る これによ り 線通信端末および中 装 1 の距離に関わ ら ず 広範囲 に存在する inn
線通信端末か ら の送信信号を 電気光変換部
3 2 1 の許容ダィ ナ V ク レ ンンの範囲 内で受信する と がでさ る よ て 信号を高 PP質 に光伝送する' とができ る o また 電 光変換部 3 2 1 に入力 さ れる 線信号の信 号 レベル差が縮小さ れる ため 電ス 光変換部 3 2 1 に要求 される ダィ ナ ッ ク レ ンンの制限を 和する とがでさ る o
以上の に 本実施形 によれば 線通信 末が広 範囲 に存在する にお いて も 各 線通信 末が送信す る 線信号の信号 レベル差を縮小 して電気光変換部に入力 する と ができ る o ί _れによ り 中継装置に A G C機能を 付加する とな < 受信 した 線信号 を電 光変換部が許 容する ダィ ナ ッ ク レ ンンの範囲 に収め る とがでさ る o したがつ て 線通信システム の構成を簡易化する とが でさ る ため 当 該システム を安価に する とができ る なお、 受信ア ンテナ部 と電気光変換部 と の間 に、 増幅器 または減衰 を ける と と して よ い これによ 受 信信号の信号 レベルを さ ら に よ < 調整する とがで さ る の α にお いて も 定利得の簡易な増幅 も し
< は減衰器を用思すればよ いため A. G C 回路を 又ける 口 に比ベ 線 信シス テム の構成を簡 化する と がで さ る
なお 図 3 3 において 上 り 伝送系 のみが図示され 下 り 伝送系 の図示は 略さ れていた 下 Ό 信号を伝送する 制御局 3 1 において 信号処理部 3 1 2 か ら電 光久 換部 (図示せず ) に入力 さ れる信号 レベルは ほぼ 定で め る ため 信号毎に特別な調整を行 う 必要がな い し たが つ て 制御局 3 1 か ら 各 線通信端末 3 3 a 3 b に信 号を伝送する下 り 伝送系 に必要な設備は 従来の構成の ま までよ い
なお 中 HE装置において送受信する 線信号の D / U比 が 所定の D / U を満足する こ とがでさない場 σ には 受 信 した mi*線信号の レベルを減衰さ せる減衰部を 中継装置に 又ける と と して も い れに り 中 装置が受信す る 線信号の レベル差が小さ < な る ため 当該 線信号の レベル と 複数のチャ ンネルを利用 して通信する場 に 他チャ ンネルか ら漏洩 して < る信号の レベルと の差を大さ ぐ する と がでさ る したがつ て 他チ ャ ンネルか ら漏洩 する信号に妨害さ れる と な < 正常に 信する とがでさ る 。
(第 1 4 の実施形態)
図 3 6 は、 本発明 の第 1 4 の実施形態 に係る無線通信シ ステム の部分 0であ て 受信ァ ンテナ部 3 2 2 X のネ冓成 およびその受信範囲 3 7 X の断面を模式的 に示す図であ る o 第 1 3 の実施形 にお いて 受信ァ ンテナ部は 指向性 ァ ンテナ と 電波吸収体 と を有 していた o t れに対 し 本 実施形 において 受信ァ ンテナ部 3 2 2 X は ポ ルァ ンテナを有する 占で第 1 3 の実施形能 と相 する ο それ以 外の構成要素は 第 1 3 の実施形 と 様であ 'る ため 第
1 3 の 施形 と じ 成
Figure imgf000110_0001
には * の参照符号を付 し その説明 を ,J - 略する
図 3 6 に示すよ う に 受信ァ ンテナ部 3 2 2 X 'を含む中 継装置 3 2 は 建築物の天井 3 4 に設置される ο 受信ァ ン テナ部 3 2 2 X を構成する ポ ルァ ンテナは 線状の ァ ン テナであ て ポ ルの長手方向に対 して垂直な方向が ピ ク と な る ややつぶれた 円形の双方向指向性 ( 8 の字指 向性 と い ) を有する なお 図 3 6 に示す受信範囲 3
7 X は 受信範囲の断面を示すにすぎず 実際には 受信 範囲 3 7 X は 受信ァ ンテナ部 3 2 2 X を 中心 と した ナッ形に形成さ れてい る o
中 装置 3 2 を建築物の天井 3 4 に B又置 した場 中継 装置 3 2 と の距离 が近い tlrir線通信端末は 中 k装置 3 2 の 直下ま たはその近傍に位置する 線通信端末 ( では
ι
線通信顺末 3 3 b ) でめ る o 一方 rHH 線通信局 3 2 と の 距離が い 線通信顺末は 中 装置 3 2 の直下か ら 離れ
nfrtnrf*?. Ui
た場所 に位置する 線通信 末 ( では "ΐ 1 線通信顺末
3 3 a ) であ る
中継装置 3 2 の受信ァ ンテナ部 3 2 2 X は 近傍に位置 す 線通信顺末 3 3 b を受信 囲 に含まない よ つ に 又 さ れる 例え ば 汎用 のポ ―ルァ ンテナの長手方向を 鉛 直方向に対 して平行になる よ に口又置する と によ て 鉛直方向に対する受信ァ ンテナ部 3 2 2 X の指向性が制限 さ れる れによ り 受信ァ ンテナ部 3 2 2 X は 鉛直方 向に対する受信感度が制限さ れた受信範囲 3 7 X を有する と と な る 受信ァ ンテナ部 3 2 2 X は 受信 囲 3 7 X 内 に位置する 線通信顺末が送信する 線信号を高利得で 受信 し 受信範囲 3 7 X 外に位置する nn線通信端末が送信 す 線信号を低利得で受信する
こ のよ Ό に 中継装置 3 2 を天井 3 4 に 又置する と に よ り 、 受信ァ ンテナ部 3 2 2 X 線 信局 3 2 の 下近傍に 位置する 線通信顺末 3 3 b は 受信ァ ンテナ部 3 2 2 X 受信範囲 3 7 X に含まれない したがつ て 受信ァ ンテ ナ部 3 2 2 X は 線通信端末 3 3 b が送信する 線信号 を低利得で受信する 方 線通信局 3 2 の遠方に位置 する 無線通信端末 3 3 a は 受信ァ ンテナ部 3 2 2 X の受 信範囲 3 7 X に含まれる ため 受信ァ ンテナ部 3 2 2 X は 、泉通信端末 3 3 a が送信する ハ、ヽ線信号を高利得で又信 する
以上の よ う に 本実施形能 によれば 線通信 末ね よ び中継装置間の距離に関わ ら ず 電気光変換部に入力 さ れ る 挺線信号の信号 レベルを 電気光変換部が許容する ダィ ナ ¾ ッ ク レ ンジの範囲内 に収め る とができ る また 電 波吸収体を設ける とな < 鉛直方向 に対するス信ァ ンテ ナ部の指向性を制限する とができ る したが て 受信 ァ ンテナ部が 波吸収体を有する 合に比ベ シス丁ム の 構成をよ り 簡略化する とがでさ る
(第 1 5 の実施形锥 )
図 3 7 は 本発明の第 1 5 の実施形 Hp.に係る 線通信シ ステム の部分図であ て 受信ァ ンテナ邵 3 2 2 y の構成 およびその受信範囲 3 7 y を模式的に示す mでめ る 第 1
3 の実施形 において 中 装置は 天井に さ れてい た れに対 し 本実施形 にお いて 中 装置 3 2 は
4 0 に設置さ れてい る ま た 受信ァ ンテナ部 3 2 2 y は ポ ―ルァ ンテナを有する それ以外の構成要.素は 第
1 3 の実施形能 と 同様であ る ため 第 1 3 の実施形 S と I じ 成 に は同 の参照符号を付し その を ,
略す 構 中継装置 3 2 を建築物の床 4 0 に設置 した場 口 中継装 置 3 2 と の距離が近い 線通信端末は 中 it 衣置 3 2 の直 上またはその近傍に位置す 線通信顺末 ( では 線通信顺末 3 3 b ) であ る 方 線通信 3 2 と の距 離が い 線通信端末は 中継装置 3 2 の直上か ら 離れた 所に位置する 線通信端末 ( では πιΤΤ*線通信 末 3
3 a ) であ る
中継 置 3 2 の受信ァ ンテナ部 3 2 2 y は 近傍に位置 する 線通信端末 3 3 b を受信範囲 に含まない よ に設置 さ れる 例え ば 図 3 7 に示すよ Ό に 汎用 のポ ルァ ン テナの長手方向 を 鉛直方向 に対 して平行にな る よ う に 又 置する と によ て 直方向 に対する受信ァ ンテナ部 3
2 2 y の指向性が制限さ.れる れによ り 受信ァ ンテナ 部 3 2 2 y は 鉛 a;方向に対する受信咸度が制限された受 信範囲 3 7 y を有する と と な る 受信ァ ンテナ部 3 2 2 y は 受信範囲 3 7 y 内に位置する 線通信 末が送信す る 線信号を高利得で受信 し 受信範囲 3 7 y 外に位置す る 線通信端末が送信する 線信号を低利得で受信する のよ に中継装置 3 2 を 4 0 に 置する と に よ り 線通信局 3 2 の直上近傍に位置する 線通 '信端末 3 3 b は 受信ァ ンテナ部 3 2 2 y の受信範囲 3 7 y に含まれ ない したが て 受信ァ ンテナ部 3 2 2 y は 線通信 末 3 3 b が送信する 線信号を低利得で受信する 方 線通信局 3 2 の 方に位置する 線通信端末 3 3 a は 受信ァ ンテナ部 3 2 2 y の受信範囲 3 7 y に '含まれる た め 受信ァ ンテナ部 3 2 2 y は 線通信端末 3 3 a が送 信する 線信号を高利得で受信する
以上の に 本実施形 に よれば 線通信端末およ び中 装置間の距離に関わ ら ず 電 光変換部に入力 され る 線信号の信号 レベルを 電 光変換部が許容する ダィ ナ ッ ク レ ンンの範囲内 に収め る とがでさ る また 電 波吸収体を ける こ と な < 直方向 に対する 信ァ ンテ ナ部の指向性を制限する と がでさ る したが て 受信 ァ ンテナ部が電波吸収体を有する場 α に比ベ シス テム の 構成を よ り 簡略化する とがでさ る
なお 本実施形 において 受信ァ ンテナ部は ポ ―ル ァ ンテナか ら 構成さ れていたが 受信ァ ンテナ部は 指 向性ァ ンテナおよび電波吸収体か ら構成さ れていて ち よ い その場 π 電波吸収体は 指向性ァ ンテナの上部にき ft け られる と よ い
(第 1 6 の実施形 )
図 3 8 は 本発明の第 1 6 の実施形 に係る 無線通信 シ ス テム の部分図であ て 受信ァ ンテナ部 3 2 2 z の構成 お びその受信範囲 3 7 z を模式的に示す図であ る 第 1
3 の実施形能において 中継装置は 天井 に設置されてい た れに対 し 本実施形 において 中継装置 3 2 は、 壁 4 1 に設置されてい る また 受信ァ ンテナ部 3 2 2 ζ は ポ ルァ ンテナを有する それ以外の構成要素は 、 第
1 3 の実施形能 と 様であ る ため 第 1 3 の実施形 と 同 じ構成要素には の参日召符号を ,
付 し その 明 を 略す る
中継装置 3 2 を建築物の后 4 1 に設置 した ±昼 中継装 霉 3 2 と の距離が近い 線通信端末は 中継装置 3 2 の直 下またはその近傍に位置する 線通信端末 ( では 線 信顺末 3 3 b ) であ る 方 線通信局 3 2 と の距 離が遠い 線通信顺末は 中 装置 3 2 の直下か ら離れた 場所に位置する 線通信顺末 ( では 線 信 末 3
3 a ) であ る
中継装置 3 2 の受信ァ ンテナ部 3 2 2 z は 近傍に 1 置 する 線 信端末 3 3 b を受信範囲 に含まな い よ に e さ れる 例えば 汎用 のポ ―ルァ ンテナの長手方向を 、 铅 直方向に対 して平行になる よ に 又置する と に て、 鉛直方向に対する受信ァ ンテナ部 3 2 2 Z の指向性が制限 さ れる れによ 受信ァ ンテナ部 3 2 2 z は 直方 向に対する受信咸度が制限された受信範囲 3 7 z を有する こ と と なる ο 受信ァ ンテナ部 3 2 2 Z は 受信範囲 3 7 Ζ 内 に位 する 線通信端末が送信する 線信号を高利得で 受信 し 受信範囲 3 7 z 外に位置する 'ΊΙΐΐ*線通信端末が送信 する 線信号を低利得で受信する
の に中継装置 3 2 を壁 4 1 に 又置する と に よ り 線通信局 3 2 の直下近傍に位置する 線通信端末 3 3 b は 受信ァ ンテナ部 3 2 2 z の受信範囲 3 7 ζ に含まれ な い し たがつ て 受信ァ ンテナ部 3 2 2 z は 線通信 端末 3 3 b が送信する 線信号を低利得で受信する 方 線通信 3 2 の遠方に位置する *[ Π*線通信顺末 3 3 a は
、 又信ァ ンテナ部 3 2 2 z の受信範囲 3 7 Z にきまれる た め、 受信ァ ンテナ部 3 2 2 z は 線通信端末 3 a が送 信する ハ、、線信号を高利得で受信する o
-.以上のよ に 本実施形能 によれば Arc.
ハ、、線 信 末お よ び中鉱装 im間 の距離に関わ ら ず 気光変換部に入力 さ れ 線信号の信号 レベルを 電気光変換部が 容する ダィ ナミ ッ ク レ ンンの範囲 内 に収め る とがでさ る ο また 電 波吸収体を am
又ける と な < 鉛直方向 に対する受信ァ ンテ ナ部の指向性を制限する とがでさ る したが て 受信 ァ ンテナ部が 波吸収体を有する場 口 に比ベ システム の 構成を よ り 簡略化する とがでさ る o
なお 本実施形能において 受信ァ ンテナ部は ポ ル ァ ンテナか ら構成さ れていたが 受信ァ ンテナ部は 指 向性ァ ンテナお よび電波吸収体か ら構成されていて も よ い
。 その場 α 波吸収体は 指向性ァ ンテナの下部 に け ら れる と よ い o 以上 1 3 の実施形 1 6 の実施形 について 明 したが れ ら の実施形能において 受信ァ ンテナ部は 鉛直方向に位置する 無線通信顺末が送信する 線信号を 低利得で受信 し 鉛直方向以外の方向 ま Ό 方に位置 する 線通信端末が送信する 線信号を 利得で受信する 占で共通する □ なお、 上記の実施形 s において 受信ァ ン テナ部は 鉛直方向力、 ら送信されて < る 線信号 ' を電気光 亦換部が許容する ダイ ナ ッ ク レ ンンの上限以下の信号 レ ベルで受信する とがでさ る構成であればよ < 上述の構 成に限定さ nない 。 例え ば 受信ァ ンテナ部のァ ンテナは 複数の ァ ンテナ ら なる ァ レ ァ ンテナを有 していて よ い の Αψ. 口 ア レーァ ンテナを構成する複数のァ ンテ ナの指向性を 鉛直方向を sru
除 < 方向に PX定する と によ て 鉛直方向か ら 送信さ れて < る 線信号の受信利 4
Ί を制 限する とがでさ る。
(第 1 7 の実施形態)
図 3 9 は 本発明の第 1 7 の実施形能に係る 線通信シ ス テム の構成を示す図でめ る 図 3 9 に示す 線通信シス テム は 第 1 3 の実施形 に係 る 線通信シス テム の構成 に加え 中 '鉱 置 3 2 が 送信ァ ンテナ部 3 2 5 と 光電 気変換部 3 2 3 と を さ ら に含み 制御局 3 1 が 電気光変 換部 3 1 3 を さ ら に含む 占で相連する それ以外の構成要 素は 第 1 3 の実施形態 と 様であ る ため 図 3 3 と 同様 の構成要素に は同一の符号 を付 し その 口 明 を省略する 以下 下 り の信号を伝送する にお ける 線通信シス テム の動作につ いて説明する 制御局 3 1 に いて 信号 処 部 3 1 1 は ィ サネ ( 商 ) ケ ブル 3 5 を介して外部ネ ッ ヮ ク か ら 伝送さ れて < る信号を変調 する 信号処理部 3 1 1 に よ つ て変 さ れた信号は 光変換部 3 1 3 に入力 される o ス 光変換部 3 1 3 は 信 号処理部 3 1 1 か ら入力 さ れる電 信号を光信号に変換す る 電気光変換部 3 1 3 に よ て変換さ れた光信号は 光 フ ァ ィ バ 3 6 を伝送し 中継装置 3 2 の光電気変換部 3 2
3 に入力 される
光電 変換部 3 2 3 は 光フ ァ ィ パ 3 6 か ら入力 さ れる 光信号を電 信号に変換する 送信ァ ンテナ部 3 2 5 は 当該電メ 信号を 線通信区間 に送信する で 図 3 9 に示すよ う に 送信ァ ンテナ部 3 2 5 は 受信' ンテナ部
3 2 2 の直下に 又置さ れる 好ま し < は 送信ァ ンテナ部
3 2 5 と 受信ァ ンテナ部 3 2 2 と は 定の距離を離 して 配 mする と よ い
受信ァ ンテナ部 3 2 2 の 下に位置する il 1 * J
線通信 末が 送信する 線信号は 送信ァ ンテナ部 3 2 5 によ て id. ら れる れによ り 受信ァ ンテナ部 3 2 2 は 当該 •f innT1..線信 号を低利得で受信する と と な る o 方 受信ァ ンテナ部
3 2 2 の 方に位置する 線通信端末が送信する 4fff 線信号 は 送信ァ ンテナ部 3 2 5 に遮 ら れない o つ て 受信ァ ンテナ部 3 2 2 は 当該 7ttnr線信号を高利得で受信する と がでさ る o し たが て 本実施形 に係る 線通信シス テ ム にお いて 送信ァ ンテナ部 3 2 5 を Xける と によ つ て 受信ァ ンテナ部 3 2 2 の鉛直方向に対する受信咸度が低 減さ れる ため 受信ァ ンテナ部 3 2 2 は 近距離か ら 送信 される 線信号の信 レベルを低利得で受信 し 距 か ら 送信さ れる 線信号を高利得で受信する とがでさ る れによ メ 光変換部に入力 さ れる 線信号の信号 レ ベル差が縮小さ れる と とな る ため 中継装置に要求さ れ る ダィ ナ ッ ク レ ンン の制限を緩和する とがでさ る
好ま し < は 送信ァ ンテナ部 3 2 5 は 受信ァ ンテナ部
3 2 2 が 置されてい る方向 と は逆方向に信号を送信する よ Ό な指向性を有する と い これによ り 送信ァ ンテナ 部 3 2 5 か ら 受信ァ ンテナ部 3 2 2 に回 り 込む 線信号を 低減する ができ る したが Ό て 中継装置 3 2 内 の 気回路にお ける発振や 上 り 信号および下 り 信号の干渉に よ る信号劣化 を防 ぐ とがでさ る
また 送信ァ ンテナ部 3 2 5 と受信ァ ンテナ部 3 2 2 と の間 に 電波吸収体を設ける と と して も よ い れによ
Ό 送信ァ ンテナ部 3 2 5 か ら 受信ァ ンテナ部 3 2 2 に回
Ό 込む ) 線信号を さ ら に低減する とができ る
(第 1 8 の実施形能 )
図 4 0 は 本発明の第 1 8 の実施形 に係 る j ul線通信シ ステム の構成を示す図でめ る 図 4 0 において 線通信 システム は 制御 3 1 と 複数の 中 装置 3 2 a 〜 3 2 c と 線通信顺末 3 3 c と を備え る 中紘衣置 3 2 a は 電 光変換部 3 2 1 と 受信ァ ンテナ部 3 2 2 a と レ ベル 整部 3 2 6 と を含む それ以外は 第 1 3 の実施形 と 同様でめ る ため 第 1 3 の実施形能 と I I様の構成要素 には同 の符号 を付 し その説明 を 略する なお 図 4
0 にねいて 線通信区間 に存在する 線通信端末は 1 台 であ る が 線通信区間に存在する挺線通信端末は 2 台以 上であ て ¾ よ い o
中 装置 3 2 a において 受信ァ ンテナ部 3 2 2 a は 単一指向性ァ ンテナを有する ο 単 指向性ァ ンテナは 例 えば ラ ポ ラ ァ ンテナであ る ο 受信ァ テナ部 3 2 2 a は 鉛直方向に対 して斜め方向 に伸びる よ う な指向性を有 する ま た 受信ァ ンテナ部 3 2 2 a の受信範囲 4 2 a は 隣接する 中継装置の う ち 制御 J 3 1 と接 さ れた光伝 送路の距離がよ Ό 長い 中 装置 ( では 中継装置 3 2 b ) の方向に向か て形成さ れる 受信ァ ンテナ.部 3 2 2 a は 喪信範囲 4 2 a 内 に位置する JiU*
ハ、、線通信端末か ら 送信 さ れる 線信号のみを受信 し 受信範囲 4 2 a 外'か ら 送信 さ れる ffrrc線信号は受信 しない ο
レベル 整部 3 2 6 は 受信ァ ンテナ部 3 2 2 a が受信 した 線信号を増幅する と に つ て 電気光変換部 3 2
1 に入力 さ れる Arc.線信号の信号 レベルを P周整する が 詳細 につ いては後述する レベル調整部 3 2 6 によ つ て増幅 さ れた 線信号は 電 光変換部 3 2 1 によ て光信号に亦 換される o 光信号は 光フ ァ ィ ハ、 3 6 a 3 6 d を伝送 し 制御局 3 1 に入力 さ れる ο なお 中 置 3 2 b お よ び 中 装置 3 2 c も 中 k 衣置 3 2 a と 様の 1β成を有する なお 、 図 4 0 において 、 中継 置 3 2 a 〜 3 2 c は、 バ ス型に接続さ れてい る が 、 中 装置 3 2 a 〜 3 2 c は、 制 御局 3 1 に対 して 、 それぞれの 中継衣置が 1 対 1 で さ れる よ う なス 夕 ―型に捽 さ れていて も よ い 次に 本実施形 に係る 信シス テム にお ける 無線 信号の受信動作に いて説明する 例えば 線通信端末
3 3 C か ら最も近い位置に あ る受信ァ ンテナ部は 受信ァ ンテナ部 3 2 2 b であ る しか し 各受信ァ ンテナ部は、 鉛直方向に対 して斜め方向に伸びる指向性を有する ため、 無線通信顺末 3 3 C は 受信 Ύ ンテナ部 3 2 2 b の受信範 囲 4 2 b に含まれない 方 線通信 末 3 3 C は 、 中 継装置 3 2 b に隣接する 中継壮置 3 2 a の受信範囲 4 2 a に含まれる したが て 線通信 末 3 3 c が送信す-る 無線信号は 中継装置 3 2 a の受信ァ ンテナ部 3 2 2 a に よ つ て受信さ れる
こ のよ う に 各中 装置は 近距離か ら 送 さ れる信号 レベル - の大き い 線信号を受信する とがない したがつ て、 中 装置の電メ 光変換部に入力 さ れる 線信号の信号 レベルを 電ス 光変換部が許容する ダィ ナ ッ ク レ ンジの 上限内 に収め る とがでさ る れによ り 複数の 中継装 置を 置する と によ つ て広範囲 の 信ェ ァ を力ハ、 す る とせヽ に 信号を髙 Π
PP質に光伝送する とがでさ る で 各受信ァ ンテナ部は 当該受信ァ ンテナ部の受 信範囲の 部が 隣接する受信ァ ンテナ部の受信範囲 の 部 と 複する よ う に設置されてい る したが て 各受信 ァ ンテナ部の受信範囲 には 隣接する受信ァ ンテナ部の受 信範囲が重複する 区域が存在する 図 4 1 は 複数の受信 範囲が重複する 区域に 線通信端末が存在する場 にお け 線通信シス テム の部分図であ る 図 4 1 に示すよ う に 線通信顺末 3 3 c は 受信範囲 4 2 a よび 4 2 b が ネ复する 区域に位 する の α 線 is信端末 3 3 c が送信する 線信号は 受信ァ ンテナ部 3 2 2 a および 3
2 2 b の両方で受信さ れる こ と とな る 中 装置 3 2 a の 受信ァ ンテナ部 3 2 2 a において受信さ れた 信号は光 信号に変換さ れた後 光フ ァィ バ 3 6 a 3 6 d を伝送 し て制御局 3 1 に到達する 方 中継衣置 3 2 b の受信ァ ンテナ部 3 2 2 b にお いて受信さ れた nTl*線信号は光信号に 変換さ れた後 光フ ァ ィ バ 3 6 b 3 6 d を伝送 して制御 局 3 1 に到達する
しか しなが ら 中継装置 3 2 a お び制御局 3 1 の間 を 接 する光フ ァ ィ パの長さ と 中 装置 3 2 b および制御 局 3 1 の間 を接 する光フ ァ ィ パの長さ と は異せる した が て 1 台の 線通信 末が送信 した 線信号が 複数 の受信ァ ンテナ部によ て受信さ れた 異な る伝送路 鹱,
を経由 した信号が制御局 3 1 に到達する までの 延時間差 が生 じ る れによ り 信号が互い に干渉 し σ い (マルチ パス干渉) 通信品質が劣化 して し ま と い Ό 問題があ る
線通信端末 3 3 c が送信する 線信号が受信ァ ン 7~ナ 部 3 2 2 a によ て受信さ れ 制御局 3 1 に到達する まで にかか るネ公所要時間は 線信号が受信範囲 4 2 a を伝搬 する伝搬時間 T ( L W a ) と 光信号が光フ ァ ィ バ 3 6 a
3 6 d を伝搬する伝搬時間 T ( L O a ) と の和であ る また 線通信顺末 3 3 C か ら 送信さ れた 線信号が受信 ァ ンテナ部 3 2 2 b によ •o て受信され 制御局 3 1 に到達 する までにかか る 所要時間は 線信号が 信範囲 4 2 b を伝 する伝搬時間 T ( L W b ) と 光信号が光フ ァ ィ バ 3 6 b 3 6 d を伝搬する伝搬時間 Τ ( L o b ) と の和 であ る
したが て 複数の受信ァ ンテナ部に よ て 信される 無線信号が制御局 に到達する までの遅延 間差を解消する ため には 伝搬時間 T ( L o a ) および伝搬時間 T ( L w a ) の和 と 伝搬時間 T ( L o b ) および伝搬時間 T ( L w b ) の和 とがほぼ一致する よ な位置に受信範囲 4 2 a 4 2 b を形成すればよ い とが分か る
例えば 光フ ァ ィ パ、内 を伝搬する光信号の伝搬'速 が 空気中 を伝搬する 線信号の伝搬速度の 1 5 倍であ る場 α
L w a ― L w b = 1 5 X ( L o b 一 L O a ) • • • ( a )
と い う 関係式を満たす Ό に 各受信ァ ンテナ部の指向 性を 整 し 受信範囲 4 2 a 4 2 を形成する 具体的に は、 各受信ァ ンテナ部の傾斜角度を変更 した Ό 各受信ァ ンテナ部が有する指向性の広が り 角 を変更 し た Ό する と によ つ て 指向性を 整する
以下 光伝送路の長さ の差 L o b ― L o a が 3 0 mであ る場 にお ける 中継装置および受信ァ ンテナ部の sru
置方法 につ いて 明する
L O b ― L o a が 3 0 mであ る場 式 ( 3 ) よ L w a ― L W b 4 5 が求め ら れる で 例えば 受信 ァ ンテナ部 3 λ 2 a の受信可能範囲が 6 0 mであ る
L w a 6 0 ( m ) と老え ら れる 図 4 2 は、 信ァ ンテナ部 3 2 2 a の受信範囲 を槟式的 に示す図であ る 図 4 2 において 、 h は 、 天井 と床 と の距 離を表す。 一 的な家屋の天井の高 さ は約 2 mであ る ため
、 h = 2 ( m ) と して 明する o また 、 ァ ンテナの直下周 辺において、 、
ダィ ナ ッ ク レ ンンの上限 超えないよ Ό に
、 無線信号を受信 しない範囲は予め決め ら れてい る o ( _ では、 受信ァ ンテナ部直下か ら のハ、、線信号を受信 しな い距 離 y = 5 ( m ) とする y = 5 、 h = 2 であ る か ら 、 直角 三角形の定理よ り 、 L W b = 5 • 3 9 ( m ) と求め ら れる o し し し 、 L W a ― 6 0 ( m ) であ る ため 、 L W. a ― L W b = 4 5 を満たすため には 、 L W b = 1 5 ( m ) とする の が理想的であ る しか し 、 L w b が 1 5 mであ :る i □ 、 受 信ア ンテナ部 3 2 2 a の又信範囲が狭 < な て し ま う o ま た、 無線通信区間 において 、 1 0 m 亇王 ゾ又 の誤差は許容さ れ る ため、 こ こでは L w b 5 • 3 9 ( m ) とする o そ して
、 L w a = 6 0 、 h = 2 であ る か ら 、 直角二角形の定理よ り 、 y + z = 5 9 • 9 7 が求め ら れる また 、 y 5 であ る か ら 、 受信範囲 の底面の長さ z 5 4 • 9 7 と な る o 次に、 受信ァ ンテナ部 3 2 2 a にお ける指向性の広が り 角度 α を求め る o L w a = 6 0 、 L w b = 5 • 3 9 、 Z =
5 4 . 9 7 であ る か ら 、 余弦定理 Ό 、 c o s a = 0 9
4 と求め ら れる よ て 、 指向性の広が 0 角度 a を約 2 0
° とすればよ い とが分か る
また、 受信ァ ンテナ部 3 2 2 a お び 3 2 2 b の受信範 囲 において、 重複 してい る 区域の長さ を X -とする と 、 中 装置間の距離 R :
y + z ― y ― X と さ れる 例えば 、 X = 5 ( m ) の と さ R は約 5 0 m となる 。
以上よ Ό 中継 置間の距離 R が 5 0 m 信範囲の取 大長さ L w a が 6 0 m 指向性の広が り 角 が約 2 0 となる よ Ό に 中 壮置 3 2 a お よび 3 2 b を言殳置すれば よ い とが分かる の よ う に 光伝送路の長さ に制限が あ る にお いて も 線信号を受信 しない距離 y および 重複範囲 X を i5 定する と によ つ て 指向性の '広が り 角 と 受信範囲 の最大長さ L w a と 中継装 間の距離 R を求め る とがでさ る
なお 中 装置間の距離 Rが予め定め ら れてい.る に おいて も 線信号を受信 しない距離 y ねよび S複範囲 X の値を 定する と によ て 指向性の角 'ど 受信範 囲 の最大長さ L W a と を求め る とがでさ る
一-好ま し < は 一台の 線通信 末 3 3 c が送信する 線 信号を複数の 中 装置が受信する場 α 光フ ァ ィ バ 3 6 a および 3 6 b に送出 さ れる光信号の信号 'レベルの差が所定 範囲内 に収ま る よ m
う に ■ :*1f11 κ*.線信号の信号 レベルを e周整する と よ い 線信号の信号 レベルは レベル調救部 3 2 6 に よ つ て調敕する とがでさ る
また 好ま し < は 1 つの 中継 置が力バ する 線通 信範囲 を ■fcsミ供する 線通信システム において予め想定さ れてい る 1 つ の 線伝送路の範囲 よ り 縮小する と よ い これによ り 線信号の遅延時間のば ら つ き を縮小する と がでぎ る したが て 中継装置および制御局 を接 さ れる光フ ァ ィ パ長にば ら つ さがあ る場 において ち マル チハ0ス干渉に よ る通信品質の劣化 を低減する とができ る 以上のよ つ に 本実施形態、によれば 各中 装 は、 近 距離か ら 送信さ れる信号 レベルの大さ い 線信号を受信せ ず、 定距離以上離れた 線通信 m末が送信す. 、る 線信号 を受信する し たが て 中継装置は 電 光 換部が許
容する ダィ ナ - ッ ク レ ンンの上限を超えない レベルの信号 のみを受信する とがでさ る これに Ό 線信号を高 品質に光伝送する とがで含 る また 中継壮置は A G
C機能 を有する必要がないため ハ、、線通信システム の構-成 を簡 化 し 当該システム を安価に する とができ る m築 さ ら に 本実施形能、によれば 複数の 中継 體を e又ける こ と に て ハ、、線通信区間 を拡大する とができ る た、 各受信ァ ンテナ部の指向性を 整する と によ て、 無線信号が複数の受信ァ ンテナ部によ ■o て受信された場合. にお いて 線伝送路および光伝送路に ける各 線信 号の遅延時間差を所定の時間内 に収め る とがでさ る れによ り マルチパス干渉によ る信号の劣化を防止する こ とがでさ る
なお 上記実施形能にお いて 各受信ァ ンテナ部は 、 鉛 直斜め下方向に対する指向性を有 してい る が 各受信ァ ン テナ部は 直下に位置する Arc
ハ、、線通信顺末か ら 送信さ れる 無 線信号を受信せず 隣接する 中 Hi装置の直下に位置す 線通信端末か ら 送信される 線信号を受信する とができ る よ Ό な指向性 を有 していればよ いため 各受信ァ ンテナ 部の指向性は 上記実施形能 に限 ら れない なお、 第 1 3 の実施形態〜第 1 8 の 実施形锥のいずれの 実施形態において も 、 無線通信システム は 、 周波数分割多 化方式を利用 して光伝送する こ とができ る 本発明 によ れば、 複数のノ、、ヽ線通信端末がそれぞれ異なる周 数を利用 して中継装置 と通信する場合において も 、 Λ 周波数に依存す る こ と な < ゝ ハ、ヽ線信号 を電気光変換部が許容する ダィ ナ - ッ ク レ ンンの範囲内 に収め る こ とができ る したが て 、 ハ、ヽ線信号を高品質に光伝送する こ とがでさ る また 、 受信 信号を分離する帯域通過フ ィ ル夕や、 信号 レベルを 整す る A G C 回路を卩又ける必要がないため、 中継装置'の構成を 簡易化する とができ る 。 さ ら に、 各無線通信端.末に割 当て ら れた周波数帯域幅が狭 く 、 帯域通過フ ィ ル'夕 の作製 が困難であ る屋内利用 の無線 L A N の光伝送システム の場
、 本 明は特に有効であ る 。
発 産業上の利用可能性
本発明 は 、 中 装置にお いて受信する ハ、ヽ線信号の レベル を所定のダィ ナ ッ ク レ ンジの範囲内 に収め る とがでさ る 無線通信シス テム等 と して有用 であ る

Claims

請求の範囲
1 • 制御装 « と 、 刖記制御装置 と光伝送路を介 して さ れた 1 以上の 中継装置 と 、 記中 装置 と 線 信する複 数の 線通信端末 と を備え る ■/i、l、|l、*線通信シス テムであ て 、 前記制御装置は 、
下 り 電気信号を下 Ό 光信号に変換 し 、 刖記光伝送路を 介 して前記中継装置に送信する第 1 の光送信部 と 、
記光伝送路を介 して刖記中継装置か ら 送信されて < る 上 り 光信号を上 Ό 電気信号に変換する第 1 の光受信部 と を含み 、 刖記中 装置は 、 刖記光伝送路を介 して 記制御装置か ら 送信さ れて < る 刖記下 り 光信号を 記下 り 電 信号に変換する第 2 の光 受信部 と 、
前記第 2 の光受信部によ ■ て変換された下 り 電 信号 を 刖記 線通信顺末に 線信号 と して送信 し 、 刖記 線通 信顺末か ら送信さ れる ίίΠ'線信号を受信 して刖記上 り 気信 号 とする送受信ァ ンテナ部 と 、 刖記送受信ァ ンテナ部によ て受信さ れた 刖記上 り 電 気信号 を 記上 口
り 光信 に変換 し 、 記光伝送路を介 して 刖記制御衣置に送信する第 2 の光送信部 と を含み 、
中鉱 置が受信する 線信夸の受信強度が所定の範 囲内 に収ま る に 、 刖記中 装置が送信また は受信する 線信号の レベルを調整する 線信号 レベル制限手段を備 え る と を特徴 とする 、 線通信システム
2 刖記所定の 囲は 各 4
刖記 .mnti,線 信 末が利用するそ れぞれのチャ ンネルにおいて 当該チャ ンネル以外のチャ ンネルに漏洩する 周波数成分の レベルに対する 当該チャ ン ネルを利用する 線信号の レベルの比であ る漏 比 と 当 該チャ ンネルを利用する 線信号の レベルに対する 当該チ ャ ンネル以外のチャ ンネルを利用する ; 線通信端末か ら の 漏洩信号の レベルの比であ る信号対雑立
曰 比 と の差よ Ό 小 さ い範囲であ る と を特徴とする 請求項 1 に記載の 線 通信システム -
3 口
刖記 線信 レベル制限手段は 前記第 2 の光受信部 が出力する 記下 り 電 信号の レベルを調整する 刖記中 装置内 に設け ら れた レベル制御部であ り
刖記 レベル制御部は 前記下 Ό 電 信号の レベルを減衰 さ-せる ( _ と によ て 記中継装置の通信可能ェ ァ を狭 ぐ し 通信可能ェ U ァ 内 に存在する 線 信端末が送信す る 線信号の レベルが前記所定の範囲内 とな る よ Ό にする と を特徴とする 請求項 2 に記載の 線通信システム
4 • 記制御装置は 記第 1 の光送信部を複数含み
f
刖記 ■ jtnntr-線信号 レベル制限手段は 記下 り 電気信号を分 岐する 刖記制御装置内 に P又け ら れた信号分配部でめ り
記信号分配部は 前記下 り 電ス 信号を分岐して当該下
Ό 電 信号の レベルを減衰さ せる と によ て 前記中継 置の通信可能ェ ァ を狭 < し 通信可能ェ リ ァ内 に存在 する 線通信端末が送信する 線信号の レベルが前記所定 の範囲内 となる よ う に し
前記第 1 の光送信部は 刖記信号分配部に よ Ό て分岐さ れた下 り 気信号を下 り 光信号に変換する 求項 2 に記 載の 線通信システム
5 刖記 線信号 レベル制限手段は 前記下 り 気信号に 重畳して送信させる ため のパィ Π ッ 信号を生 ,成する 刖記 制御装置に設け ら れたパィ 口 ッ h 信号生成部であ り
刖記第 1 の光送信部は 記パィ 口 ッ 卜 信号が重畳さ れ た下 り メ 信号を下 光信号に変換 し
記中 置は さ ら に
記中第 2 の光受信部によ つ て変換さ れた下 り 電 信 号に重畳されてい る ィ V 信号の レベルを検出するパ ィ Π ッ 卜 信号検出部 と
刖記パィ ッ 信号検出手段によ つ て検出 れたパィ 口 ッ 卜 信号の レベルが 定 と なる よ に 記 線信号の レベルを制御する レベル制御部 と を含み
記ハ0ィ 口 ッ 信号生成部は 生成する 前記パィ Π ッ 信 の レベルを増大させる と に よ て 記中 lit装置の 通信可能ェ ァ を狭 < し 通信可能ェ リ ァ内 に存在する ιπι, 線通信顺末が送信する 線信号の レベルが刖記所定の範囲 内 とな る よ Ό にする と を特徴とする 請求項 2 に記載の 線通信システム
6 刖記 "IIH 線信号 レベル制限手 は 記制御装置に設け ら れ
前記第 1 の光受信部によ つ て変換さ れた上 り 電気信号 の ΡΡ質が所定の条件を滴た してい る か否か を 視する 監視 部 と
刖記臣と視部によ て刖記上 り 電 信号の Ρ
口 0 が所定の 条件を滴た していない と判断さ れた 八□ 記 1 の光 信部に入力 さ れる 記下 電気信号の レベルを低減 し 光 変 周度を低下させる レベル制御部 とか ら な り
m記 レベル制御部は 刖記光変調度を低下さ 'せ 刖記下 口
り 光信可のパ ヮ ―を減衰する と に て 記中継装置 の通信可能ェ ァ を狭 < し 通信可能ェ U ァ内 に存在する 線通信 if trinrp?.
顺末が送信する 線信号の レベルが刖記所定の範 囲 内 となる よ う にする と を特徵 とする 請求項 2 に記載 の ΝΙ*線通信シス テム
7 刖記 ^ΊΐΤΐ*線信号 レベル制限手段は 刖記制御装置に設け ら れ
前記第 1 の光受信部によ つ て変換さ れた 電気信号 の品質が所定の条件を满た してい るか否か を監視する 視 部 と
刖記臣と視部にぶ て前記上 り 信号の P
PP質が所定の 条件を満た して いない と判断さ れた場 記第 1 の光送 信部で 15又定さ れるバィ ァス電流の レベルを低減 し 光変調 度を低下さ せる レベル制御部 とか ら な り
刖記 レベル制御部は 刖記光変 周 を低下さ せ 前記下 り 光信号のパ 7 を減衰する と に cfc て 記中継装置 の通信可能ェ υ ァ を狭 < し 通信可能ェ U ァ内 に存在する 線通信端末が送信する 線信号の レベルが刖記所定の範 囲 内 と な る よ Ό にする こ と を特徵 とする 求項 2 に記載 の 線通信システム
8 - 刖記 線信号 レベル制限手 は 記第 2 の光送信部 に よ て久換 さ れた 記上 り 光信号にひずみが発生 し な い レベルに 刖記 線信号を減袞する レベル減衰部を有する 請求項 2 に記載の 線通信シス テム
9 . 互い に隣接する前記中 装置の通信範囲同士は 部 重複 してお Ό
刖記中継装置は 刖記 '"till*線通信顺末 と (D間で送受信する na
刖 線信号の レベルを調整する こ と によ て利得を制御 する レベル e周整手段を含み
刖記 レベル 整手段は 刖記制御装置か ら 送信さ れる信 号が iff 記中継装 Λを介 して 刖記通信可能範囲が重複す る 区域に存在する 記 .m.L線通信端末に伝送さ れる.までに要 する遅延時間 と 刖記制御衣置か ら送信さ れる信号が 隣 接する 記中継 置を介 して 刖記通信可能範酉'が重複す る 区域に存在する 記 線通信顺末に伝送される まで に要 する 延時 日] と の差が所定時間内 となる よ に刖記 線信 号の レベルを 整する と を特徴 とする 請求項 2 に記載 の無線 信シス テム
1 0 隣接する 2 の 記中 装置を 1 組と した と き 隣 り 合 刖記中 装置の組は 別の隣 り う 中 装置の組 と 異なる 周波数を用 いて通信する と を特徴 とする 請求項
9 に記載の 線通信システム
1 1 - 刖記送受信ァ ンテナ部は 隣接する 記中継装置の う ち 当該送受信ァ ンテナ部を備え る 中 装置よ り 刖 記制御装置 と の間を接 する光伝送路の長さ が長い 中 壮 置に向か 指向性を有する と を特徴 とする 求項 9 に 記載の通信シス テム
1 2 さ ら に 刖記制御 置 と各刖記中紘壮 と を接 す る光伝送路を分岐する光分岐結 部を備え 分岐さ れた 刖 記光フ ァ ィ バの 方の端に 中 装置が接 iさ れ も 方 の端に別の光分岐手段が接 さ れる と を特徵とする 請 求項 9 〜 1 1 のいずれか 1 項に記載の 線通信 、システム
.>
1 3 • 前記光分岐結 部は 刖記制御装置内 に接 さ れる
1 本の光フ ァ ィ パを所定の数以上に分配 し 分配された光 フ ァ ィ にそれぞれ中継装置が接 さ れる と を特徴 とす る 求項 9 〜 1 1 のいずれか 1 項に記載の 線通信シス テ ム。
1 4 刖記 レベル 部は 刖記 延時間が 記 4nt線通 信システムが許容する最大の 延時間 と な る よ う. に 前記 線信号の レベルを 5周整する と を特徴 とする 請求項 9 に記載の 線通信シス テム
1 5 • 互い に隣接する 記中 装置の 信範囲同士は 部重複 してお Ό
刖記中 rtm装置は 前記制御装置 と の間で送受信する 刖記 光信号の遅延時間 を制御する光信号制御手段を含み
記光信号制御手段は 刖記制御装置か ら 送信さ れる信 号が 刖記中 置を介 して 刖記通信可能範囲が重複す る 区域に存在する前記 線通信端末に伝送さ れる までに要 する遅延時間 と 刖記制御壮置か ら送信さ れる信号が 隣 接する 記 中鉱衣 を介 して 刖記通信可能範囲が重複す る 区域に存在する f
刖記 4ff 線通信端末に伝送さ れる まで に要 する 延時間 と の差が所定時間内 と な る よ Ό に 記光信号 の遅延時間 を制御する と を特徴 とする 請求項 2 に記載 の 線 i甬信シス テム 1 6 • 刖記 受信ァ ンテナ部は 鉛 方向の受信感度が前 記所定の範囲内 となる よ な指向性を有 し
刖記所定の範囲は 刖記第 2 の光送信'部が許容する 範囲 であ る と を特徴とする 請求項 1 に記載の 通信シス テム
1 7 • 前記 線信号 レベル制限手段は 直方向か ら 送信 さ れて < る Am線信号を吸収する 刖記送受信ァ ンテナ部に設 け ら れた電波吸収体であ る と を特徵 とする 請求項 1 6 f BD載の Art線光伝送.シス テム
1 8 • 刖記送受信ァ ンテナ部は 双方向指向性を'有する ポ ルァ ンテナか ら構成さ れてね り
刖記ポ ―ルァ ンテナは 鉛直方向の受信感度が'前記所定 の レベル内 とな る よ う に さ れている と を特徵 とする 求項 1 6 に記載の 線光伝送シス テム
1 9 • 刖記ポ ルァ ンテナは 建物内の天井に PX置さ れて い る と を特徵 とする 請求項 1 8 に記載の Ιίί 線光伝送シ ス テム o
2 0 • 記ポ ルァ ンテナは 建物内の床に設置 されてい る と を特徴 とする 請求項 1 8 に記載の ■ΠΤΠ線光伝送シス テム o
2 1 - 刖記ポ ―ルァ ンテナは 建物内の壁に設置されてい る こ と を特徴とする 請求項 1 8 に記載の IHI*線光伝送シス テム o
2 2 • 記送受信ァ ンテナ部は
前記第 2 の光受信部によ て変換さ れた下 Ό 電気信号を 前記無線通信 末に ΠΙΙ.線信号 と して送信する受信ァ ンテナ 部 と、
前記 線通信顺末か ら 送信さ れる 線信号を受信 して前 記上 り 信号 とする 送信ァ ンテナ部 とか ら な り 、
刖記ハ、ヽ線信号 レベル制限手段は 、 刖記送信ァ -ンテナ部で あ て 、 直方向か ら 送信さ れて < る 線信号を 断する 位置に Xけ ら れる と を特徴 とする 、 請求項 1 6 に記載の 線光伝送システム
2 3 • 刖記送信ァ ンテナ部は 、 刖記受信ァ ンテナ部が設け ら れた方向を除 < 方向 に指向性を有する と を特徴 とする
、 請求項 2 2 に記載のハ、、線光伝送システム
2 4 • 刖記 、、線信号 レベル制限手段は 、 さ ら に 、 刖記送受 信ァ ンテナ部が受信する信号の レベルを減衰さぜ 、 各刖記 線通信端末が利用するそれぞれのチャ ンネルにお いて 、 当該チャ ンネルを利用する ハ、ヽ線信号の レベルに対する 当該 チャ ンネル以外のチャ ンネルを利用する 線通信 m末か ら の漏洩信 の レベルの比でめ る信号対雑立
曰 比を所定値以下 とする レベル減衰部を有する 、 請求項 1 6 に記載のハ、、線通 信シス テム
2 5 • 各刖記送受信ァ ンテナ部は 直下に位置する 刖記 線通信端末か ら の 線信号を受信 しないよ う な単 指向性 を有 し 、 かつ受信可能範囲 内 に存在する 刖記ハ、、線通信 末 か ら 送信さ れる 線信号を所定の レベル内で受信 し 、
記送受信ァ ンテナ部の内 、 少な < と も 1 の 刖記送受 信ァ ンテナ部は 、 記単 指向性が向か 方向 に位置 し 、 かつ 該送受信ァ ンテナ部に隣接する 中 装置にお ける送 受信ァ ンテナ部の直下 に位置する 線通信端末か ら の 線 信号を受信 し
前記所定の レベルは 前記所定の範囲内 となる レベルで め る と を特徴 とする 請求項 1 6 に 載の 線光伝送シ ステム
2 6 前記送受信ァ ンテナ部の内 記単 指向性が示す 方向の最端箇所に位置する 中 装置以外の 中 装置の送受 信ァ ンテナ部は 刖記単 指向性が向か う 方向に位置 し かつ当該送受信ァ ンテナ部に隣接する 中継装置における送 受信ァ ンテナ部の直下に位置する 線通信顺末か ら の 線 信号を受信する と を特徵 とする 請求項 2 5 に '記載の 線光伝送システム
2 7 各前記送受信ァ ンテナ部の単 指向性は '鉛直斜め 下方向か ら 隣接する前記中 装 Λにお ける 記送受信ァ ン 亍.ナ部の直下方向に向けた指向性でめ る と を特徵 とする 請求項 2 6 に記載の 線光伝送システム
2 8 互い に隣接する 刖記中 装置の 信可能範囲 士は 部重複 してい る と を特徴 とする 請求項 2 7 に記載 の 線光伝送システム
2 9 - 刖記送受信ァ ンテナ部は 隣接 した刖記中 装置の
Ό ち 当該送受信ァ ンテナ部 を備え る 中継装置よ Ό ち 制 御装置 と の 間を接 する光伝送路の長さ が長い 中 装置に 向か う 単 指向性を有 し
刖記単 指向性は 前記受信可能範囲が重複する 区域か ら 送信さ れる 線信号が刖記送受信ァ ンテナ部 によ て受 信され 刖記制御装置に伝送さ れる までに要する遅延時間 と 当該 線信号が隣 する 刖記中 壮 にお ける 刖記送 受信ァ ンテナ部によ つ て受信され 刖記制御装 に伝送さ れる までに要する遅延時間 と の差が所定時間内 とな る よ う に P周整さ れる と を特徴 とする 請求項 2 8 に記載の till*線 光 システム
3 0 . 刖記単 指向性は 当該単 指向性の広が Ό 角度を 変更する と によ て調整さ れる と を特徴 とする 請求 項 2 9 に Am
記載の 線光伝送システム
3 1 . 記単一指向性は 刖記送受信ァ ンテナ部の設置角 度を変更する と によ つ て 周整さ れる と を特徴 とする ロ 求項 2 9 に記載の 線光伝送システム
3 2 . 前記中 Hi装置は さ ら に 刖記送受信ァ ノ 、 .テナ部に よ つ て受信さ れた Amil:線信号を増幅または減衰する'レベル調 敕部を備え
- 刖記 レベル 整部は 受信可能範囲が重複する 区域か ら 送信さ れて < る 線信号の レベルが所定の レベル と な る よ 線信号を増幅または減衰 し
所定の レベルは 記重複する 区域か ら 送信さ れ 隣接 した 記中継装置によ て受信さ れ 線信号の レベ ル と の差が所定範囲内 となる よ Ό な レベルであ る と を特 徴 とする 請求項 2 9 に記載の 線光伝送システム
3 3 . 記 線通信端末は それぞれ異なる周波数の 線 信号を用 いて通信する と を特徵 とする ott求項 1 6 に記 載の無線光伝送システム
PCT/JP2004/010779 2003-07-25 2004-07-22 無線通信システム WO2005011316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/530,976 US7460829B2 (en) 2003-07-25 2004-07-22 Wireless communication system
JP2005512078A JP4555226B2 (ja) 2003-07-25 2004-07-22 無線通信システム
EP04748043A EP1659812A4 (en) 2003-07-25 2004-07-22 RADIOCOMMUNICATION SYSTEM

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-279806 2003-07-25
JP2003279806 2003-07-25
JP2004057199 2004-03-02
JP2004-057199 2004-03-02
JP2004161732 2004-05-31
JP2004-161732 2004-05-31

Publications (2)

Publication Number Publication Date
WO2005011316A1 true WO2005011316A1 (ja) 2005-02-03
WO2005011316B1 WO2005011316B1 (ja) 2005-03-24

Family

ID=34108572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010779 WO2005011316A1 (ja) 2003-07-25 2004-07-22 無線通信システム

Country Status (5)

Country Link
US (1) US7460829B2 (ja)
EP (1) EP1659812A4 (ja)
JP (1) JP4555226B2 (ja)
KR (1) KR101064386B1 (ja)
WO (1) WO2005011316A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277717A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 光伝送システムとその光受信装置
JP2009141553A (ja) * 2007-12-05 2009-06-25 Kddi Corp 監視装置、インサービス監視方法及び監視システム
WO2019163093A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 多方路監視装置

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342518B2 (ja) * 2003-10-02 2009-10-14 富士通株式会社 リピータ及びその中継送信方法
EP2262131A2 (en) * 2005-03-29 2010-12-15 Panasonic Corporation Communication system, communication relay apparatus, and communication relay method
US7495560B2 (en) * 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8472767B2 (en) * 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US20080045145A1 (en) * 2006-08-17 2008-02-21 Fujitsu Limited Radio Relay Communication Method, Radio Base Station, and Radio Relay Station in Radio Communication System
JP4952138B2 (ja) * 2006-08-17 2012-06-13 富士通株式会社 中継局、無線基地局及び通信方法
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US7684709B2 (en) * 2006-09-29 2010-03-23 Massachusetts Institute Of Technology Fiber aided wireless network architecture
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
JP4973299B2 (ja) * 2007-01-19 2012-07-11 ソニー株式会社 光通信装置、光通信方法
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
US8060007B2 (en) * 2008-08-27 2011-11-15 The United States Of America As Represented By The Secretary Of The Navy Adaptive crosspole technique
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
EP2394379B1 (en) 2009-02-03 2016-12-28 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010090999A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
JP5423505B2 (ja) * 2010-03-17 2014-02-19 富士通株式会社 無線基地局及び通信方法
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
WO2012115843A1 (en) 2011-02-21 2012-08-30 Corning Cable Systems Llc Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
EP2702710A4 (en) 2011-04-29 2014-10-29 Corning Cable Sys Llc DETERMINING THE TRANSMISSION DELAY OF COMMUNICATIONS IN DISTRIBUTED ANTENNA SYSTEMS AND CORRESPONDING COMPONENTS, SYSTEMS AND METHODS
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9385834B2 (en) 2013-01-18 2016-07-05 Electronics And Telecommunications Research Institute Method for interference alignment using multiple antennas in overlapped multi-cell overlapped environment
KR102150547B1 (ko) 2013-01-18 2020-09-02 한국전자통신연구원 다중 셀 중첩환경에서 다중 안테나를 이용한 실용적인 간섭정렬 방법
KR101419922B1 (ko) * 2013-03-04 2014-07-14 한국항공우주산업 주식회사 통신 중계 장치 및 통신 중계 방법
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
KR101597646B1 (ko) * 2013-12-11 2016-02-26 주식회사 쏠리드 광 중계기에서의 광 커넥터 분리 감지 시스템 및 그 방법
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
KR101520395B1 (ko) * 2014-05-09 2015-05-14 에스케이텔레콤 주식회사 신호중계장치 및 신호중계장치의 동작 방법
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
EP3235336A1 (en) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
WO2017032406A1 (en) * 2015-08-24 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Control of an optical transmitter in a radio over fibre system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
EP3481102B1 (en) * 2016-06-29 2020-08-05 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission system, data transmission method, data aggregation method and apparatus
KR102179519B1 (ko) * 2020-09-11 2020-11-18 주식회사 엘파코리아 긴급 상황 하향 신호의 상시 온 출력이 가능한 소방용 무선 통신 시스템 및 소방용 파워 라인 앰프

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621870A (ja) * 1990-12-07 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
JPH0818616A (ja) * 1994-06-25 1996-01-19 Nec Corp 多周波信号受信回路
JPH0936891A (ja) * 1995-07-07 1997-02-07 Internatl Business Mach Corp <Ibm> 無線ネットワークの通信方法およびその装置
JPH0964815A (ja) * 1995-08-30 1997-03-07 Nec Corp 光通信方式
JP2000059849A (ja) * 1998-07-01 2000-02-25 Nokia Mobile Phones Ltd 無線システム及びデ―タ送信方法
JP2001045042A (ja) * 1999-05-21 2001-02-16 Matsushita Electric Ind Co Ltd バス型光伝送システムおよび移動体通信システム並びに当該システムに用いられる装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233050A (ja) 1996-02-22 1997-09-05 Kokusai Electric Co Ltd 無線ネットワークシステム及び光伝送方法
US6192216B1 (en) * 1997-12-24 2001-02-20 Transcept, Inc. Remotely controlled gain control of transceiver used to inter-connect wireless telephones to a broadband network
IL135030A0 (en) * 1999-03-17 2001-05-20 Transcept Inc Gain equalization for optical fiber distribution network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621870A (ja) * 1990-12-07 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
JPH0818616A (ja) * 1994-06-25 1996-01-19 Nec Corp 多周波信号受信回路
JPH0936891A (ja) * 1995-07-07 1997-02-07 Internatl Business Mach Corp <Ibm> 無線ネットワークの通信方法およびその装置
JPH0964815A (ja) * 1995-08-30 1997-03-07 Nec Corp 光通信方式
JP2000059849A (ja) * 1998-07-01 2000-02-25 Nokia Mobile Phones Ltd 無線システム及びデ―タ送信方法
JP2001045042A (ja) * 1999-05-21 2001-02-16 Matsushita Electric Ind Co Ltd バス型光伝送システムおよび移動体通信システム並びに当該システムに用いられる装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1659812A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277717A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 光伝送システムとその光受信装置
JP4592313B2 (ja) * 2004-03-24 2010-12-01 株式会社東芝 光伝送システムとその光受信装置
JP2009141553A (ja) * 2007-12-05 2009-06-25 Kddi Corp 監視装置、インサービス監視方法及び監視システム
WO2019163093A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 多方路監視装置
JPWO2019163093A1 (ja) * 2018-02-23 2020-06-18 三菱電機株式会社 多方路監視装置

Also Published As

Publication number Publication date
JP4555226B2 (ja) 2010-09-29
WO2005011316B1 (ja) 2005-03-24
JPWO2005011316A1 (ja) 2006-09-14
EP1659812A4 (en) 2011-10-19
US20050266797A1 (en) 2005-12-01
US7460829B2 (en) 2008-12-02
KR20060036369A (ko) 2006-04-28
KR101064386B1 (ko) 2011-09-14
EP1659812A1 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
WO2005011316A1 (ja) 無線通信システム
AU2005251169B2 (en) Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
ES2390268T3 (es) Repetidor con canalizador digital
US20070243899A1 (en) Systems and methods for analog transport of rf voice/data communications
JP4276664B2 (ja) 地上デジタルテレビジョン放送の送受信装置
JP2008131623A (ja) アンテナを内蔵したフィードーバック干渉信号除去無線中継装置
US9065567B2 (en) Communications system, apparatus and method
KR20150140666A (ko) 높은 근거리-원거리 성능을 갖는 분배형 안테나 시스템
JP3875599B2 (ja) 共同受信システム
US8346163B2 (en) Radio frequency signal distribution using data cable system
KR101729016B1 (ko) 소방 및 업무용 무전기를 이용한 소방 무선 지령 시스템
CN210016465U (zh) 一种光纤中继拉远设备
CA2834725A1 (en) Duplexer with signal cancellation
JP2005354149A (ja) 中継放送装置
KR101212805B1 (ko) Tv 신호용 소출력 콤팩트형 중계장치
KR102131343B1 (ko) 디지털 복조신호의 노이즈 리덕션 기능을 구현하여 전파음영지역의 방송품질을 개선한 재난방송 무선중계시스템
US8462830B2 (en) Radio frequency distribution with spreading
JP3993578B2 (ja) 電界通信システム
KR20180080722A (ko) UL Noise Power 분산을 통한 SINR 개선과 Coverage 확장 기술 및 장치
JP4589671B2 (ja) 無線通信システム
JP4768502B2 (ja) 送信装置
US20110026920A1 (en) Systems and Methods of Supporting Powerline Communications
KR100728624B1 (ko) 가상 셀을 구비한 이동통신 시스템
TWM553502U (zh) 多頻段分散式天線系統
JP2009065569A (ja) 中継装置および無線通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims

Effective date: 20050112

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10530976

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005512078

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004748043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057008099

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048016019

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008099

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004748043

Country of ref document: EP