WO2005011109A1 - 増幅装置 - Google Patents

増幅装置 Download PDF

Info

Publication number
WO2005011109A1
WO2005011109A1 PCT/JP2004/010877 JP2004010877W WO2005011109A1 WO 2005011109 A1 WO2005011109 A1 WO 2005011109A1 JP 2004010877 W JP2004010877 W JP 2004010877W WO 2005011109 A1 WO2005011109 A1 WO 2005011109A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
output
supply voltage
signal
quantizer
Prior art date
Application number
PCT/JP2004/010877
Other languages
English (en)
French (fr)
Inventor
Taichi Ikedo
Mamoru Arayashiki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005512089A priority Critical patent/JPWO2005011109A1/ja
Priority to EP04748085A priority patent/EP1650864A4/en
Priority to US10/565,369 priority patent/US20060245517A1/en
Publication of WO2005011109A1 publication Critical patent/WO2005011109A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier

Definitions

  • the present invention relates to an amplifying device used for a wireless transmitter.
  • FIG. 1 is a block diagram showing a configuration example of a linear transmission modulator to which polar modulation is applied. Do not show! /
  • the baseband amplitude modulation signal (for example, I 2 + Q 2 ) 101 separated from the baseband modulation signal by the amplitude / phase separation unit is used to control the power supply voltage of the high-frequency power amplifier 102.
  • the control signal is input to the power supply voltage controller 105 which forms the control signal.
  • the control signal generated by the power supply voltage controller 105 is sent to the high frequency power amplifier 102.
  • the phase-modulated high-frequency signal 103 is input to the high-frequency power amplifier 102.
  • the phase component for example, the angle between the modulation symbol and the I axis
  • the carrier frequency is determined by the phase component. This is obtained by modulating the signal.
  • the high-frequency power amplifier 102 is a non-linear amplifier, and a power supply voltage value is set according to a control signal from the power supply voltage control unit 105.
  • the transmission output signal 10 which is obtained by amplifying the signal obtained by multiplying the power supply voltage value and the phase-modulated high-frequency signal 103 by the gain of the high-frequency power amplifier 102, is obtained. 4 is output.
  • Transmission output signal 104 is an antenna (not shown) Sent from ⁇
  • the phase-modulated high-frequency signal 103 input to the high-frequency power amplifier 102 can be a constant envelope signal having no fluctuation component in the amplitude direction.
  • a high-efficiency non-linear amplifier can be used as the power amplifier 102.
  • the power supply voltage control section 105 is often realized by using a switching mode power supply having a class D amplifier as its output stage. Normal switching mode power supplies are often implemented using pulse width modulation, and the output of such a power supply 1 has a Hi (high level) / Lo (low level) ratio of baseband. It is a rectangular wave representing the amplitude modulation signal 101. However, when pulse width modulation is performed in the power supply voltage control unit 105, intermodulation distortion occurs in the transmission output signal. As a technique for solving this, as shown in FIG. 2, a power supply voltage control unit 105 is provided with an adder 121, a quantizer 122, a low-pass filter 122, and a trap.
  • a delta modulation circuit configuration composed of a compensator 125 and an attenuator 124, and delta-modulates the baseband amplitude modulation signal 101 and supplies it to the high-frequency power amplifier 102 (for example, Japan Japanese Patent Laid-Open No. 10-2566863).
  • the switching mode power supply is delta-modulated, and the distortion appearing in the transmission output signal 104 can be improved by the delta modulation negative feedback loop.
  • the polyphase quantizer 1 26 is composed of N quantizers (1 to N). Each quantizer has a sampling rate (1 ZN) and (3 It operates with a phase shift of 60 ZN) degrees, and combines the outputs of each quantizer with a combiner 128 to output it as an (N + 1) value.
  • the waveform of the polyphase quantizer 126 has the shape shown in Fig. 5A, and is a composite wave of the outputs of a plurality of quantizers as shown in Figs. 5B to 5E.
  • the speed of each quantizer can be reduced, and the requirements for the quantizer can be relaxed.
  • wider band amplitude modulation becomes possible.
  • delta modulation cannot transmit a DC (direct current) component, and therefore cannot output a fixed voltage (DC component) from the power supply voltage controller 105.
  • the power supply voltage control unit 105 includes an adder 131, 1332, an integrator 1333, a quantizer 1334, and a low-pass filter 1
  • a delta-sigma modulator having a configuration of a delta-sigma modulator composed of an attenuator 13, an attenuator 13 6, a 13 7, and a phase compensator 1 38 (for example, Japanese Patent Application Laid-Open No. 2000-2000). _3 0 7 3 5 9).
  • the baseband amplitude modulation signal 101 is delta-sigma modulated and supplied to the high-frequency power amplifier 102, the DC component can be transmitted using delta-sigma modulation instead of pulse width modulation.
  • the DC component can be transmitted using delta-sigma modulation instead of pulse width modulation.
  • the output of the low-pass filter 135 that removes quantization noise due to delta-sigma modulation is phase-compensated (phase of the low-pass filter). It has a characteristic that cancels out the characteristics.) It passes through 1 3 8 and then feeds back to the input of the delta-sigma modulation section. As a result, distortion generated in the low-pass filter 135 is improved.
  • the loop gain of each loop needs to be appropriately distributed due to the double loop configuration. There is a disadvantage that qualitativeness increases. Disclosure of the invention
  • An object of the present invention is to provide an amplifying device capable of stably performing a high-frequency power amplifying operation and reducing distortion of its output.
  • the purpose is to add the baseband amplitude modulation signal and the negative feedback signal to the power supply voltage control unit of the high-frequency power amplifier, an integrator that integrates the output of the adder, and quantize the output of the integrator.
  • an integrator that integrates the output of the adder, and quantize the output of the integrator.
  • the amount of feedback of the negative feedback signal having the inverse characteristic of the low-pass filter or a characteristic similar thereto is reduced. This is achieved by providing a compensator to compensate.
  • Figure 1 is a block diagram showing the configuration of a conventional amplifier
  • FIG. 2 is a block diagram showing the configuration of a conventional power supply voltage control unit
  • FIG. 3 is a block diagram showing another configuration of the conventional power supply voltage control unit
  • Figure 4 is a block diagram showing the configuration of the polyphase quantizer
  • Figure 5A shows the output waveform of the combiner provided after the polyphase quantizer
  • FIGS. 5B to 5E are diagrams showing output waveforms' of each quantizer constituting the polyphase quantizer
  • Figure 6 is a block diagram showing the configuration of the power supply voltage control unit of the conventional delta-sigma modulator configuration
  • FIG. 7 is a block diagram illustrating a configuration of a linear transmission modulator according to the first embodiment
  • FIG. 8 is a block diagram illustrating a configuration of a power supply voltage control unit according to the second embodiment
  • FIG. 9 is a block diagram illustrating a configuration of a power supply voltage control unit according to the third embodiment
  • FIG. 10 is a block diagram illustrating a configuration of a power supply voltage control unit according to the fourth embodiment
  • FIG. 11 is a block diagram showing a configuration of a power supply voltage control unit according to the fifth embodiment.
  • FIG. 12 is a block diagram showing a configuration of an amplifying device according to a sixth embodiment
  • FIG. 13 is a block diagram showing a configuration of an amplifying device according to a seventh embodiment
  • FIG. 14 is a block diagram showing an eighth embodiment. Block diagram showing the configuration of the power supply voltage control unit in FIG.
  • FIG. 15 is a block diagram illustrating a configuration of a variable output quantizer according to the eighth embodiment.
  • the linear transmission modulator according to the present embodiment is mounted on a wireless device that performs wireless transmission using the polar modulation method.
  • the amplifying device of the present invention is used, for example, in a mobile terminal device of a mobile communication system, or a base station device performing wireless communication with the mobile terminal device.
  • FIG. 7 is a block diagram showing a configuration of the linear transmission modulator according to the first embodiment of the present invention.
  • the linear transmission modulator is configured such that the baseband modulation signal 100 is a baseband amplitude modulation signal 101 that is an amplitude modulation component (for example, I 2 + Q 2 ) and a phase modulation component (for example, a modulation symbol And an I-axis) and a baseband phase-modulated signal 102 that separates the baseband phase-modulated signal 102 from the baseband phase-modulated signal 102.
  • a frequency synthesizer 4 for phase-modulating a high-frequency signal to convert it to a phase-modulated high-frequency signal 103, a non-linear high-frequency power amplifier 2 for amplifying the phase-modulated high-frequency signal 103 output from the frequency synthesizer 4, and a base.
  • a power supply voltage control unit 200 that forms a control signal (in this embodiment, a delta-sigma modulated signal) S1 for controlling the power supply voltage of the high-frequency power amplifier 2 based on the band amplitude modulation signal 101 Having.
  • the power supply voltage control unit 200 has a delta-sigma modulator configuration, and delta-sigma modulates the baseband amplitude modulation signal 101 to obtain a delta-sigma modulation signal S 1, which is supplied to the power supply of the high-frequency power amplifier 2. Output as a voltage control signal.
  • the power supply voltage control unit 2000 adds an adder 11, an integrator 12 that integrates an output of the adder 11, and quantizes an output of the integrator 12 according to a predetermined threshold value.
  • Each element of the power supply voltage control unit 200 may be realized by an analog circuit or a digital circuit.
  • the baseband modulation signal 100 is separated into a baseband amplitude modulation signal 101 and a baseband phase modulation signal 102 by the amplitude / phase separation unit 3. Then, the baseband amplitude modulation signal 101 is input to the power supply voltage control unit 200, and the baseband phase modulation signal 102 is input to the frequency synthesizer 4.
  • the adder 11 of the power supply voltage controller 200 adds the input baseband amplitude modulation signal 101 to the output of the attenuator 16 provided in the feedback loop (actually subtracts because of negative feedback) I do.
  • the integrator 12 integrates the output of the adder 11 and the quantizer 13 quantizes the output of the integrator 12 according to a predetermined threshold.
  • the low-pass filter 14 removes quantization noise included in the output of the quantizer 13. Low pass fill
  • the output of the data 14 is sent to the high-frequency power amplifier 2 as a delta-sigma modulated signal S 1 and sent to a compensator 15 provided in a negative feedback loop.
  • the compensator 15 generates a compensation value for feeding back the output of the low-pass filter 14 and sends this to the attenuator 16.
  • the attenuator 16 attenuates the compensation value to a predetermined level, adjusts it to the level of the baseband amplitude modulation signal 101, and outputs the result to the adder 11 as a negative feedback signal.
  • the power supply voltage control section 200 operates as a normal class D amplifier.
  • the frequency synthesizer 4 phase-modulates the high-frequency signal with the input baseband phase-modulated signal 102 to convert it into a phase-modulated high-frequency signal 103 and outputs this to the high-frequency power amplifier 2.
  • the high-frequency power amplifier 2 sets a power supply voltage in accordance with a delta-sigma modulation signal S 1 that is a power supply voltage control signal, and amplifies the phase-modulated high-frequency signal 103 with the set power supply voltage. In other words, this corresponds to synthesizing by multiplying the phase-modulated high-frequency signal 103 by the delta-sidder modulation signal S1 provided from the power supply voltage control unit 200.
  • the inverse characteristic of the low-pass filter 14 is given by the compensator 15 so that the low-pass filter 14 is put into the negative feedback loop of the delta-sigma modulation. Even so, the operation is established.
  • the distortion generated in the low-pass filter 14 can be improved by the negative feedback loop.
  • the power supply voltage control unit 200 having a delta-sigma modulator configuration to perform delta-sigma modulation of the baseband amplitude modulation signal 101 to control the power supply voltage of the high-frequency power amplifier 2, high-frequency power
  • the distortion of the transmission output signal S2 output from the amplifier 2 can be improved.
  • the characteristic of the compensator 15 does not necessarily have to completely match the inverse characteristic of the low-pass filter 14 and may be an approximation of the inverse characteristic.
  • the low-pass filter is configured as an LC filter, and the order may be such that a force inverse characteristic of a second-order filter is approximated as a first-order characteristic. With this configuration, the distortion generated in the low-pass filter 14 can be improved by the negative feedback loop of the delta-sigma modulation.
  • FIG. 8 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows the configuration of a power supply voltage control unit according to the second embodiment of the present invention.
  • the power supply voltage control section 300 of this embodiment also basically has a delta-sigma modulator configuration like the first embodiment, but the configuration is partially different from that of the first embodiment.
  • the power supply voltage control unit 300 includes a compensator 15 instead of a feedback loop between the adder 11 and the integrator 12, and compensates the output of the adder 11 by the compensator 15.
  • the output of 15 is integrated by the integrator 12. Others are the same as in the first embodiment.
  • the compensator 15 provided in the negative feedback loop in the first embodiment is provided between the adder 11 and the integrator 12. As a result, the circuit size of the negative feedback loop can be reduced. Although the position of the compensator 15 is different, the loop gain is almost the same between the first embodiment and the second embodiment.
  • the compensator 15, the integrator 12, and the quantizer 13 can be easily integrated as compared with the low-pass filter 14 and the attenuator 16. Thus, even if the compensator 15 is provided in the main loop, the scale of the entire circuit does not increase.
  • the attenuator 16 is provided in the negative feedback loop.
  • the circuit size of the feedback loop can be reduced.
  • FIG. 9 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows the configuration of a power supply voltage control unit according to the third embodiment of the present invention.
  • the power supply voltage control unit 400 of this embodiment also basically has a delta-sigma modulator configuration like the first embodiment, but the configuration is partially different from that of the first embodiment.
  • the power supply voltage control unit 400 includes an envelope detector 17 and, instead of feeding back the output of the low-pass filter 14 as shown in the first embodiment of FIG.
  • the baseband amplitude modulation signal is extracted from the transmission output signal S2 output from the amplifier 2 by the envelope detector 17 and fed back to the adder 11 via the compensator 15 and the attenuator 16. Others are the same as the first embodiment.
  • the output of the high-frequency power amplifier 2 is fed back to the adder 11 at the input stage, and the negative feedback of the desolet sigma modulation is added to the distortion generated in the low-pass filter 14. Accordingly, it is possible to improve the distortion generated in the high-frequency power amplifier 2.
  • Other effects are the same as the effects shown in the first embodiment.
  • FIG. 10 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows the configuration of a power supply voltage control unit according to the fourth embodiment of the present invention.
  • the power supply voltage control section 500 of this embodiment also basically has a delta-sigma modulator configuration like the first embodiment, but the configuration is partially different from that of the first embodiment.
  • the power supply voltage control section 500 is provided with an AD converter 18.
  • the AD converter 18 converts the output of the low-pass filter 14 into AD (analog-to-digital), and then converts the output to an attenuator 15 and an attenuator. Feedback is provided to adder 1 1 via 1 6.
  • the adder 11, the integrator 12, the quantizer 13, the compensator 15, and the attenuator 16 of the power supply voltage control unit 500 are realized by digital circuits. . Others are the same as the first embodiment. According to the fourth embodiment, it is possible to digitally process the baseband modulation signal, and it is possible to make the power supply voltage control unit 500 have a constant characteristic that is not easily affected by element variations. it can.
  • the transmission output signal S2 as specified can be obtained with the operating characteristics of the high-frequency power amplifier 2 aligned.
  • the AD converter 18 is provided on the output side of the low-pass filter 14 in the above embodiment, the output side of the envelope detector 17 of the third embodiment shown in FIG. 9 is shown in FIG.
  • the power supply voltage control unit 400 can be digitized in the same manner even if an AD converter is provided, and the same effect can be obtained.
  • FIG. 11 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows a configuration of a power supply and a voltage control unit according to a fifth embodiment of the present invention.
  • the power supply voltage control section 600 of this embodiment also has a delta-sigma modulator configuration basically like the first embodiment, but the configuration is partially different from that of the first embodiment.
  • the power supply voltage control section 600 is provided with a polyphase quantizer 19 as a quantizer. Others are the same as the first embodiment.
  • the polyphase quantizer 19 is composed of N quantizers (1 to N), similar to the one shown in Fig. 4, and each quantizer has a sampling rate (1 ZN). The phase shifts by (360 / N) degrees, and the outputs of the quantizers are combined by a combiner and output as (N + 1) values.
  • a polyphase quantizer 19 is used in place of the quantizer 13 of the first embodiment, so that in addition to the effects of the first embodiment, However, by reducing the speed of each quantizer, the requirements for the quantizer can be relaxed, so that a wider range of amplitude modulation, such as a wider signal band, can be performed.
  • FIG. 12 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows the configuration of an amplifying device according to the sixth embodiment of the present invention.
  • the amplification device according to the sixth embodiment includes a selection circuit 700 corresponding to an example of an input selection unit, and includes a power supply voltage control unit 200 having a delta-sigma modulator configuration (the power supply voltage control unit includes a first power supply voltage control unit 200). Or any of the configurations of the fifth embodiment or the eighth embodiment to be described later) as the input signal, either the baseband amplitude modulation signal 101 or the fixed voltage Viix. Select by 700.
  • the selection circuit 700 switches the input signal of the power supply voltage control unit 200 by using a modulation mode switching control signal S7 that specifies the presence or absence of amplitude modulation in the modulation method to be used.
  • a modulation mode switching control signal is used for a modulation scheme without an amplitude modulation signal (such as a GSM scheme).
  • the power supply voltage control section 200 when the input base span signal is only a phase modulation signal, the power supply voltage control section 200 is operated as a DC-DC converter, and when the baseband signal includes the phase modulation signal and the amplitude modulation signal, The power supply voltage control unit 200 is operated as a class D amplifier.
  • whether to input a baseband amplitude modulation signal or a fixed voltage to a power supply voltage control unit having a delta-sigma modulator configuration is switched according to a modulation method. This makes it possible to switch the operation of the power supply voltage control unit from a normal operation as a class D amplifier to an operation as a DC-DC converter.
  • the power supply voltage of the high-frequency power amplifier 2 can be fixed, so that it is possible to cope with a modulation method without an amplitude modulation signal and to cope with various modulation methods.
  • the power supply voltage control unit can form the delta-sigma modulated signal S8 composed of a DC component, so that even a plurality of modulation schemes, for example, a modulation scheme without an amplitude modulation signal (such as a GSM scheme) can be used.
  • the power supply voltage control unit can be shared.
  • FIG. 13 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals as in FIG. 1 shows a configuration of an amplifying device in a state.
  • the amplifying device includes a selection circuit 700 and a two-mode high-frequency power amplifier 800 having two operation modes.
  • the selection circuit 700 switches an input signal of the power supply voltage control unit 200 by an operation mode switching control signal S9 that specifies an operation mode. Further, the high-frequency power amplifier 800 is switched to one of the switching operation mode and the square operation mode by the operation mode switching control signal S9. With this configuration, it is possible to control switching of the high-frequency power amplifier 800 between a switching operation and a linear operation by the operation mode switching control signal S9.
  • the input of the selection circuit 700 is performed by the operation mode switching control signal S9.
  • a constant voltage data sigma modulation signal S 8 is given to the high frequency power amplifier 800.
  • the operation mode of the high-frequency power amplifier 800 is switched from the switching operation to the linear operation to operate as a linear amplifier. That is, the high-frequency power amplifier 800 operates linearly when the power supply voltage control unit 200 operates as a DC_DC converter, and the high-frequency power amplifier operates when the power supply voltage control unit 200 operates as a class D amplifier.
  • the switching operation of the amplifier 800 is performed.
  • whether the baseband amplitude modulation signal or the fixed voltage is input to the power supply voltage control unit having the delta-sigma modulator configuration is determined by the mode of the two-mode high-frequency power amplifier.
  • appropriate power supply voltage control appropriate for each mode is performed regardless of whether the high-frequency power amplifier operates in the switching mode or the f-spring mode. Will be able to do it.
  • FIG. 14 in which parts corresponding to those in FIG. 7 are assigned the same reference numerals, shows the configuration of a power supply voltage control unit according to the eighth embodiment of the present invention.
  • the power supply voltage controller 900 of the eighth embodiment has a variable output quantizer 901 as a quantizer and a variable attenuator 902 as an attenuator. Others are the same as the first embodiment.
  • the variable output quantizer 901 changes the output level according to a gain control signal S10 that specifies the gain of the high-frequency power amplifier 2.
  • the variable attenuator 902 changes the attenuation rate according to the gain control signal S10 so that the loop gain of the delta-sigma modulation negative feedback loop becomes constant. That is, the product of the output level of the variable output quantizer 90 1 and the attenuation rate of the variable attenuator 90 2 is constant based on the gain control signal S 10. Is set to be
  • variable output quantizer 901 includes a quantizer 903, a switch driver 904, an output transistor switch 905, and a power supply regulator 906.
  • the power supply regulator 906 changes the power supply voltage of the output transistor switch 905 according to the gain control signal S10. Accordingly, the signal level of the delta-sigma modulated signal S11 from the power supply voltage control unit 900 is changed by changing the maximum output voltage of the output transistor switch 905.
  • the quantum delta sigma modulation As the modulation signal level decreases with respect to the noise, the SZN ratio decreases.
  • the signal level of the delta-sigma modulation signal S 11 is changed by the variable output quantizer 90 1 as in this embodiment, both the quantization noise and the modulation signal change. The decrease in the S / N ratio can be suppressed as compared with the former.
  • the delta sigma output from the power supply voltage controller 900 By providing a variable output quantizer 901, which changes the signal level of the modulation signal, and by changing the signal level of the delta-sidder modulation signal by the output of the quantizer, the S / N ratio can be suppressed, It is possible to expand the dynamic range of the delta-sigma modulated signal S11.
  • the power supply voltage control unit that forms the control signal for controlling the power supply voltage of the high-frequency amplifier is configured as a delta-sigma modulator, so that the negative feedback of the delta-sigma modulation is achieved.
  • the loop can reduce distortion.
  • the power supply voltage control unit since the power supply voltage control unit has a delta-sigma modulation configuration with a one-loop negative feedback circuit, it is possible to realize a high-efficiency amplifier that can stably perform high-frequency power amplification in a high-frequency power amplifier.
  • the power supply voltage control unit of the present embodiment can also generate a delta-sigma modulation signal composed of a DC component, when attempting to realize an amplifier that can support a plurality of modulation methods, a modulation method without an amplitude modulation signal (GSM method) Etc.) can share the power supply voltage controller. Therefore, it can correspond to various modulation methods.
  • GSM method amplitude modulation signal
  • the high-frequency power amplifier can be switched from switching operation to linear operation, and the power supply voltage of the high-frequency power amplifier can be fixed. It is also possible to cope with the amplitude modulation in.
  • the present invention is not limited to this, and a non-linear high-frequency power amplifier for amplifying the first input signal. And a power supply voltage control unit for forming a control signal for controlling the power supply voltage of the high-frequency amplifier based on the second input signal, wherein the high-frequency power amplifier controls the signal level of the first input signal to the second level.
  • the present invention can be widely applied to an amplifying device that amplifies a signal to a level corresponding to the input signal.
  • a non-linear amplifier for amplifying the first input signal A high-frequency power amplifier, and a power supply voltage control unit that forms a control signal for controlling a power supply voltage of the high-frequency amplifier based on the second input signal.
  • the power supply voltage control unit includes an adder that adds the second input signal and the negative feedback signal, and an output of the adder.
  • the power supply voltage control unit can be configured by one negative feedback loop, so that the delta-sigma modulation of the second input signal can be performed stably, and the low voltage can be reduced by the delta-sigma modulation negative feedback loop.
  • the distortion generated by the band-pass filter can be improved. As a result, the amplification operation of the high-frequency power amplifier can be stably performed, and the output distortion can be reduced.
  • the compensator is provided in a negative feedback loop from the low-pass filter to the adder, and compensates a part of the output of the low-pass filter. Feedback. '
  • the power supply voltage control unit has a negative feedback loop that feeds back from the output of the low-pass filter, and outputs the output of the low-pass filter to the inverse characteristic of this low-pass filter or the characteristic approximating this.
  • the power supply voltage section can be configured with one negative feedback loop. This makes it possible to stably perform the delta-sigma modulation of the second input signal and stabilize the operation of the high-frequency power amplifier.
  • the compensator is provided in a main loop from the adder to the low-pass filter, and compensates a part of an output of the adder.
  • the compensator since the compensator is provided in the main loop instead of the negative feedback loop in the power supply voltage control unit, the circuit size of the negative feedback loop can be reduced, and the circuit Oscillation can be prevented, and delta-sigma modulation of the second input signal can be performed stably to stabilize the operation of the high-frequency power amplifier.
  • the quantizer is constituted by a polyphase quantizer having a plurality of quantizers.
  • the power supply control unit further comprises: input selection means for selectively inputting one of the second input signal and the fixed voltage to the power supply voltage control unit.
  • the operation of the power supply voltage control unit is switched between an operation as a class D amplifier and an operation as a DC-DC converter according to input switching of the means.
  • the power supply voltage control unit can operate as a DC_DC converter, A fixed voltage can be supplied to the amplifier through the power supply voltage control unit. For this reason, for example, when a signal of a modulation method having no amplitude modulation component is handled, a fixed voltage can be applied as a power source to the high-frequency power amplifier to cope with various modulation methods. Further, in this case, a power supply voltage control unit that performs delta-sigma modulation in a plurality of modulation schemes can be shared.
  • the high-frequency power amplifier has a configuration having a switching operation mode and a linear operation mode, and the high-frequency power amplifier is operated when the power supply voltage controller operates as a DC-DC converter. Switch to the Izumi mode.
  • a fixed voltage is applied to the high-frequency power amplifier by inputting a fixed voltage to the power supply voltage control unit and operating as a DC-DC converter.
  • the high-frequency power amplifier can be operated linearly.
  • the power supply voltage control unit further includes: an AD converter that converts an analog output of the low-pass filter into a digital signal. A part of the output of the unit is compensated and fed back, and the adder, the integrator, the quantizer and the compensator are constituted by digital circuits.
  • the power supply voltage control unit includes a variable attenuator having a variable attenuation factor in a negative feedback loop from the low-pass filter to the adder.
  • the quantizer is constituted by a variable output quantizer having a function of changing an output level, such that the product of the output level of the variable output quantizer and the attenuation factor of the variable attenuator is constant. Make it work. With this configuration, the output of the power supply voltage control unit can be changed by the output of the quantizer, so that the control signal output from the power supply voltage control unit and, consequently, the output of the high-frequency power amplifier can be suppressed while suppressing the decrease in the SZN ratio. It is possible to expand the dynamic range of the signal.
  • an amplifying device that can stably perform a high-frequency power amplifying operation and reduce distortion of its output. Further, it is possible to realize an amplifying device which can support various modulation methods by applying a fixed voltage to the high-frequency power amplifier.
  • the amplifying device of the present invention is suitable for application to, for example, a wireless transmitter of a polar modulation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

電源電圧制御部200に、ベースバンド振幅変調信号101と負帰還信号とを加算する加算器11と、加算器11の出力を積分する積分器12と、積分器12の出力を量子化する量子化器13と、量子化器13の出力から量子化雑音を除去する低域通過フィルタ14とに加えて、低域通過フィルタ14の逆特性またはこれを近似した特性を有し負帰還信号の帰還量を補償する補償器15と設ける。

Description

技術分野
本発明は、 無線送信機に用いられる増幅装置に関する。 明
背景技術
従来の線形送信変調器の設計においては、 一般に効率と線形性との間にトレ 田
ードオフの関係がある。 しかし、 最近では、 ポーラ変調を用いることで,線形送 信変調器において高効率と線形性とを両立可能とした技術が提案されている。 図 1はポーラ変調を適用した線形送信変調器の構成例を示したプロック図 である。 図示しな!/、振幅位相分離部によってベースバンド変調信号から分離さ れたベースバンド振幅変調信号 (例えば I 2 + Q 2) 1 0 1が、 高周波電力増 幅器 1 0 2の電源電圧を制御するための制御信号を形成する電源電圧制御部 1 0 5に入力される。 電源電圧制御部 1 0 5によって形成された制御信号は、 高周波電力増幅器 1 0 2に送出される。
高周波電力増幅器 1 0 2には、 位相変調高周波信号 1 0 3が入力される。 位 相変調高周波信号 1 0 3は、 先ずベースバンド変調信号の位相成分 (例えば、 変調シンポルと I軸のなす角度) が振幅位相分離部 (図示せず) によって分離 され、 この位相成分によってキヤリァ周波数信号が変調されることにより得ら れたものである。
高周波電力増幅器 1 0 2は非線形増幅器でなり、 電源電圧制御部 1 0 5から の制御信号に応じて電源電圧値が設定されるようになされている。 これにより、 高周波電力増幅器 1 0 2からは、 電源電圧値と位相変調高周波信号 1 0 3を掛 け合わされた信号が高周波電力増幅器 1 0 2の利得分だけ増幅されてなる送 信出力信号 1 0 4が出力される。 送信出力信号 1 0 4はアンテナ (図示せず) から送信される。 ·
このようにポーラ変調方式を用いると、 高周波電力増幅器 1 0 2に入力され る位相変調高周波信号 1 0 3を、 振幅方向の変動成分をもたない定包絡線信号 とすることができるため、 高周波電力増幅器 1 0 2として高効率の非,線形増幅 器を用いることができるようになる。
ところで、 電源電圧制御部 1 0 5は、 効率を最大にするため、 その出力段と して D級増幅器を有するスイッチングモード電源を使って実現されることが 多い。 通常のスィツチングモード電源はパルス幅変調を利用して実現されてい ることが多く、 そのような電¾1の出力は、 H i (ハイレべノレ) / L o (ローレ ベル) の比率がベースバンド振幅変調信号 1 0 1を表す矩形波となっている。 ところが、 電源電圧制御部 1 0 5においてパルス幅変調を行うと、 送信出力 信号に相互変調歪が発生する。 これを解決するための技術として、 図 2に示す ように、 電源電圧制御部 1 0 5を、 加算器 1 2 1と、 量子化器 1 2 2と、 低域 通過フィルタ 1 2 3と、 捕償器 1 2 5と、 減衰器 1 2 4とからなるデルタ変調 回路構成とし、 ベースバンド振幅変調信号 1 0 1をデルタ変調して高周波電力 増幅器 1 0 2に供給するものがある (例えば、 日本国の特開平 1 0— 2 5 6 8 4 3号公報参照) 。 これにより、 スイッチングモード電源をデルタ変調し、 こ のデルタ変調の負帰還ループにより送信出力信号 1 0 4に現れる歪を改善す ることができる。
さらに、 図 3に示すように、 電源電圧制御部 1 0 5を、 ポリフェーズ量子化 器 1 2 6を使用したデルタ変調器構成としたものも提案されている (例えば、 日本国の特開 2 0 0 1— 1 5 6 5 5 4号公報参照) 。 ポリフェーズ量子化器 1 2 6は、 図 4に示すように、 N個の量子化器 (1〜N) で構成され、 各量子化 器はサンプリングレートの (1 ZN) の速度で、 (3 6 0 ZN) 度ずつ位相が ずれて動作し、 各量子化器出力を合成器 1 2 8により合成して (N + 1 ) 値で 出力するものである。
図 5 A〜図 5 Eはこのポリフェーズ量子化器 1 2 6の波形 (N = 4の場合) を示したものである。 ポリフェーズ量子化器 1 2 6の波形は図 5 Aで示す形を しており、 図 5 B〜図 5 Eで示したような複数の量子化器の出力の合成波とな つている。 このようなポリフェーズ量子化器 1 2 6を使用することで、 各量子 化器の速度を低減することができるので、 量子化器への要求条件を緩和するこ とができ、 電源電圧制御部 1 0 5においてより広帯域な振幅変調が可能になる。 しかしながら、 デルタ変調は D C (直流) 成分を伝送できないために、 電源 電圧制御部 1 0 5から固定電圧 (D C成分) を出力することができない。 すな わち、 デルタ変調を用いた場合は高周波電力増幅器 1 0 2の電源として固定電 圧を与えることが困難である。 そのため、 例えば複数の変調方式に対応できる 送信変調器を実現しようとした場合、 振幅変調信号が無い変調方式 (G S M方 式など) では電源電圧制御部を共用することができなくなる。 また、 高周波電 力増幅器 1 0 2の前段で振幅変調しなければならない場合、 高周波電力増幅器 1 0 2をスイッチング動作から線形動作に切り替えなければならないが、 その ときに高周波電力増幅器 1 0 2の電源として固定電圧を与えることが困難で ある。
そこで、 図 6に示すように、 電源電圧制御部 1 0 5を、 加算器 1 3 1と、 1 3 2と、 積分器 1 3 3と、 量子化器 1 3 4と、 低域通過フィルタ 1 3 5と、 減 衰器 1 3 6、 1 3 7と、 位相補償器 1 3 8とからなるデルタシグマ変調器構成 としたものも提案されている (例えば、 日本国の特開 2 0 0 0 _ 3 0 7 3 5 9 号公報参照) 。 この構成によれば、 ベースバンド振幅変調信号 1 0 1をデルタ シグマ変調して高周波電力増幅器 1 0 2に供給するので、 パルス幅変調の代わ りにデルタシグマ変調を利用して D C成分を伝送できるようになる。
この図 6の例では、 デルタシグマ変調部の負帰還ループとあわせて、 デルタ シグマ変調による量子化雑音を除去する低域通過フィルタ 1 3 5の出力を位 相補償器 (低域通過フィルタの位相特性を相殺する特性を有する) 1 3 8に通 してからデルタシグマ変調部の入力にフィードバックする、 2重ループ構成と している。これにより、低域通過フィルタ 1 3 5で発生する歪を改善している。 しかしながら、 上記のデルタシグマ変調を用いた電源電圧制御部 1 0 5では、 2重ループ構成のため、 各ループのループ利得を適切に配分する必要があり、 ループが 1つの場合よりも帰還による不安定性が増加する欠点があった。 発明の開示
本発明の目的は、 高周波電力増幅動作を安定に行うことが可能でかつその出 力の歪を低減することが可能な増幅装置を提供することである。
この目的は、 高周波電力増幅器の電源電圧制御部に、 ベースバンド振幅変調 信号と負帰還信号とを加算する加算器と、 加算器の出力を積分する積分器と、 積分器の出力を量子化する量子化器と、 量子化器の出力から量子化雑音を除去 する低域通過フィルタとに加えて、低域通過フィルタの逆特性またはこれを近 似した特性を有し負帰還信号の帰還量を補償する補償器と設けることにより 達成される。 図面の簡単な説明
図 1は、 従来の増幅装置の構成を示すプロック図;
図 2は、 従来の電源電圧制御部の構成を示すプロック図;
図 3は、 従来の電源電圧制御部の他の構成を示すブロック図;
図 4は、 ポリフェーズ量子化器の構成を示すプロック図;
図 5 Aは、 ポリフェーズ量子化器の後段に設けられた合成器の出力波形を示 す図;
図 5 B〜図 5 Eは、 ポリフェーズ量子化器を構成する各量子化器の出力波形 ' を示す図;
図 6は、従来のデルタシグマ変調器構成の電源電圧制御部の構成を示すプロ ック図;
図 7は、 第 1の実施形態における線形送信変調器の構成を示すプロック図; 図 8は、 第 2の実施形態における電源電圧制御部の構成を示すブロック図; 図 9は、 第 3の実施形態における電源電圧制御部の構成を示すブロック図; 図 1 0は、 第 4の実施形態における電源電圧制御部の構成を示すプロック 図;
図 1 1は、 第 5の実施形態における電源電圧制御部の構成を示すプロック 図;
図 1 2は、 第 6の実施形態における増幅装置の構成を示すブロック図; 図 1 3は、 第 7の実施形態における増幅装置の構成を示すブロック図; 図 1 4は、 第 8の実施形態における電源電圧制御部の構成を示すプロック 図;
及び
図 1 5は、 第 8の実施形態における可変出力量子化器の構成を示すブロック 図である。 発明を実施するための最良の形態
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。 以下の実施の形態では、 本発明の増幅装置を、 送信装置における高効率型の 線形送信変調器に適用した構成例を示す。 本実施形態における線形送信変調器 は、 ポーラ変調方式により無線送信を行う無線機に搭載されている。 実際上、 本発明の増幅装置は、 例えば、 移動体通信システムの携帯端末装置、 又はこの 携帯端末装置と無線通信を行う基地局装置などに用いられる。
(第 1の実施形態)
図 7は本発明の第 1の実施形態における線形送信変調器の構成を示すプロ ック図である。
本実施形態の線形送信変調器は、 ベースバンド変調信号 1 0 0を振幅変調成 分(例えば I 2 + Q 2) であるベースバンド振幅変調信号 1 0 1と位相変調成 分 (例えば、 変調シンボルと I軸のなす角度) であるベースバンド位相変調信 号 1 0 2とに分離する振幅位相分離部 3と、ベースバンド位相変調信号 1 0 2 により高周波信号を位相変調して位相変調高周波信号 1 0 3に変換する周波 数シンセサイザ 4と、 周波数シンセサイザ 4の出力の位相変調高周波信号 1 0 3を増幅する非線形型の高周波電力増幅器 2と、 ベースパンド振幅変調信号 1 0 1に基づいて高周波電力増幅器 2の電源電圧を制御するための制御信号 (こ の実施形態の場合、 デルタシグマ変調信号) S 1を形成する電源電圧制御部 2 0 0とを有する。
電源電圧制御部 2 0 0は、 デルタシグマ変調器構成でなり、 ベースバンド振 幅変調信号 1 0 1をデルタシグマ変調することでデルタシグマ変調信号 S 1 を得、 これを高周波電力増幅器 2の電源電圧制御信号として出力する。 この電 源電圧制御部 2 0 0は、 加算器 1 1と、 加算器 1 1の出力を積分する積分器 1 2と、積分器 1 2の出力を所定のしきい値に応じて量子化する量子化器 1 3と、 量子化器 1 3の出力に含まれる量子化雑音を除去する低域通過フィルタ 1 4 と、 低域通過フィルタ 1 4の出力をフィードバックする際の帰還量を補償する 補償器 1 5と、 捕償器 1 5の出力をベースバンド振幅変調信号 1 0 1のレベル に合わせて加算器 1 1に出力する減衰器 1 6とを有して構成されている。 電源 電圧制御部 2 0 0の各要素は、 アナログ回路で実現してもよいし、 ディジタル 回路で実現してもよい。
次に、 第 1の実施形態の線形送信変調器の動作について説明する。 ベースバ ンド変調信号 1 0 0は、振幅位相分離部 3によりベースバンド振幅変調信号 1 0 1とベースバンド位相変調信号 1 0 2とに分離される。 そして、 ベースバン ド振幅変調信号 1 0 1は電源電圧制御部 2 0 0に入力され、 ベースバンド位相 変調信号 1 0 2は周波数シンセサイザ 4に入力される。
電源電圧制御部 2 0 0の加算器 1 1は、 入力されるベースバンド振幅変調信 号 1 0 1と帰還ループに設けられた減衰器 1 6の出力とを加算 (実際は負帰還 のため減算) する。 積分器 1 2は加算器 1 1の出力を積分し、 量子化器 1 3は 積分器 1 2の出力を所定のしきい値に応じて量子化する。 低域通過フィルタ 1 4は、 量子化器 1 3の出力に含まれる量子化雑音を除去する。 低域通過フィル タ 1 4の出力はデルタシグマ変調信号 S 1として高周波電力増幅器 2に送出 されると共に、 負帰還ループに設けられた補償器 1 5に送出される。 補償器 1 5は低域通過フィルタ 1 4の出力をフィードバックするための補償値を生成 し、 これを減衰器 1 6に送出する。 減衰器 1 6は、 補償値を所定レベルに減衰 させてベースバンド振幅変調信号 1 0 1のレベルに合わせてから負帰還信号 として加算器 1 1に出力する。 このとき、 電源電圧制御部 2 0 0は通常の D級 増幅器として動作する。
—方、 周波数シンセサイザ 4は、 入力されるベースバンド位相変調信号 1 0 2で高周波信号を位相変調して位相変調高周波信号 1 0 3に変換し、 これを高 周波電力増幅器 2に出力する。
高周波電力増幅器 2は、 電源電圧制御信号であるデルタシグマ変調信号 S 1 に応じて電源電圧を設定し、 設定した電源電圧で位相変調高周波信号 1 0 3を 増幅する。 これは換言すれば、 位相変調高周波信号 1 0 3に電源電圧制御部 2 0 0から与えられるデルタシダマ変調信号 S 1を掛け合わせて合成すること に相当する。
この実施形態の電源電圧制御部 2 0 0では、補償器 1 5によって低域通過フ ィルタ 1 4の逆特性を与えることで、 低域通過フィルタ 1 4をデルタシグマ変 調の負帰還ループに入れても動作が成り立つようにしている。 これにより、 従 来のように 2重のフィードバックループを必要とせず、 1つのフィードバック ループでデルタシグマ変調器構成の電源電圧制御部 2 0 0を構成することが でき、 しかも、 このデルタシグマ変調の負帰還ループによって低域通過フィル タ 1 4で発生する歪を改善することができる。 このようにフィードバック回路 を 1ループ構成とすることにより、 デルタシグマ変調の安定性を向上させるこ とができ、 これによつて高周波電力増幅器 2から出力される送信出力信号 S 2 を安定化させることができる。 また、 デルタシグマ変調器構成の電源電圧制御 部 2 0 0を用いてベースバンド振幅変調信号 1 0 1をデルタシグマ変調して 高周波電力増幅器 2の電源電圧を制御するようにしたことにより、 高周波電力 増幅器 2から出力される送信出力信号 S 2の歪を改善できる。
なお、 補償器 1 5の特性は必ずしも低域通過フィルタ 1 4の逆特性と完全に —致させる必要はなく、 逆特性を近似したものでもよい。 低域通過フィルタは L Cフィルタとして構成されることが多く、 次数としては 2次のフィルタにな る力 逆特性を 1次の特性として近似してもよい。 このように構成することで、 デルタシグマ変調の負帰還ループにより、 低域通過フィルタ 1 4で発生する歪 を改善することができる。
(第 2の実施形態)
図 7との対応部分に同一符号を付して示す図 8は、 本発明の第 2の実施形態 における電源電圧制御部の構成を示す。 この実施形態の電源電圧制御部 3 0 0 も第 1の実施形態と同様に基本的にはデルタシグマ変調器構成でなるが、 その 構成が第 1の実施形態と一部異なる。
電源電圧制御部 3 0 0は、 補償器 1 5を帰還ループではなく加算器 1 1と積 分器 1 2の間に備え、 加算器 1 1の出力を補償器 1 5によって補償し、 補償器 1 5の出力を積分器 1 2によって積分する構成としている。 その他は第 1の実 施形態と同様である。
一般に、 負帰還^^ープの回路規模が増大すると、 信号が帰還する経路が長く なり、 発振などが生じて回路が不安定になることがある。 そこで本実施形態で は、 第 1の実施形態では負帰還ループに設けられていた補償器 1 5を加算器 1 1と積分器 1 2との間に設ける。 これにより、 負帰還ループの回路規模を削減 することができる。 補償器 1 5の位置が異なるものの、 第 1の実施形態と第 2 の実施形態とでは、 ループ利得はほぼ同じになる。
さらに、 補償器 1 5、 積分器 1 2、 および量子化器 1 3は、 低域通過フィル タ 1 4および減衰器 1 6に比較して容易に集積ィ匕することができ、 本実施形態 のように補償器 1 5をメインループに設けても、 回路全体の規模が増大するこ ともない。
第 2の実施形態によれば、 負帰還ループには減衰器 1 6のみが設けられるこ とになり、 帰還ループの回路規模を削減することができる。
(第 3の実施形態)
図 7との対応部分に同一符号を付して示す図 9は、 本発明の第 3の実施形態 における電源電圧制御部の構成を示す。 この実施形態の電源電圧制御部 4 0 0 も第 1の実施形態と同様に基本的にはデルタシグマ変調器構成でなるが、 その 構成が第 1の実施形態と一部異なる。
電源電圧制御部 4 0 0は、 包絡線検波器 1 7を備え、 図 7の第 1·の実施形態 で示したように低域通過フィルタ 1 4の出力をフィードバックするのではな く、 高周波電力増幅器 2から出力される送信出力信号 S 2から包絡線検波器 1 7によりベースバンド振幅変調信号を抽出し、 これを補償器 1 5および減衰器 1 6を介して加算器 1 1にフィードバックする。 その他は第 1の実施形態と同 様である。
第 3の実施形態によれば、 高周波電力増幅器 2の出力から入力段の加算器 1 1にフィードバックされるデゾレタシグマ変調の負帰還^"ープにより、 低域通過 フィルタ 1 4で発生する歪に加えて、 高周波電力増幅器 2で発生する歪をも改 善することができる。 他の効果は第 1の実施形態で示した効果と同様である。
(第 4の実施形態)
図 7との対応部分に同一符号を付して示す図 1 0は、 本発明の第 4の実施形 態における電源電圧制御部の構成を示す。 この実施形態の電源電圧制御部 5 0 0も第 1の実施形態と同様に基本的にはデルタシグマ変調器構成でなるが、 そ の構成が第 1の実施形態と一部異なる。
電源電圧制御部 5 0 0は、 AD変換器 1 8を備え、 低域通過フィルタ 1 4の 出力を AD変換器 1 8によって AD (アナログ一ディジタル) 変換した後、 捕 償器 1 5および減衰器 1 6を介して加算器 1 1にフィードバックする。 このた め、 本実施形態では、 電源電圧制御部 5 0 0の加算器 1 1、 積分器 1 2、 量子 化器 1 3、 補償器 1 5、 減衰器 1 6をディジタル回路で実現している。 その他 は第 1の実施形態と同様である。 第 4の実施形態によれば、 ベースバンド変調信号をディジタル的に処理する ことが可能となり、 電源電圧制御部 5 0 0を素子バラツキなどの影響を受けに くい特性が一定なものにすることができる。 これにより、 高周波電力増幅器 2 の動作特性を揃えて仕様どおりの送信出力信号 S 2を得ることができる。 なお、 上記実施形態では低域通過フィ^^タ 1 4の出力側に AD変換器 1 8を 設けているが、 図 9に示した第 3の実施形態の包絡線検波器 1 7の出力側に A D変換器を設けても同様に電源電圧制御部 4 0 0をディジタル化でき、 同様の 効果が得られる。
(第 5の実施形態)
図 7との対応部分に同一符号を付して示す図 1 1は、 本発明の第 5の実施形 態における電源、電圧制御部の構成を示す。 この実施形態の電源電圧制御部 6 0 0も第 1の実施形態と同様に基本的にはデルタシグマ変調器構成でなるが、 そ の構成が第 1の実施形態と一部異なる。
電源電圧制御部 6 0 0は、 量子化器としてポリフェーズ量子化器 1 9が設け られている。 その他は第 1の実施形態と同様である。 ポリフェーズ量子化器 1 9は、 図 4に示したものと同様、 N個の量子化器 (1〜N) で構成され、 各量 子化器はサンプリングレートの (1 ZN) の速度で、 (3 6 0 /N) 度ずつ位 相がずれて動作し、 各量子化器出力を合成器により合成して (N + 1 ) 値で出 力するものである。
第 5の実施形態によれば、 第 1の実施形態の量子化器 1 3に代えてポリフエ ーズ量子化器 1 9を用いるようにしたことにより、 第 1の実施形態での効果に 加えて、 各量子化器の速度を低減することによって、 量子化器への要求条件を 緩和することができるため、 信号帯域を広帯域化するなど、 より広範囲な振幅 変調を行うことが可能となる。
(第 6の実施形態)
図 7との対応部分に同一符号を付して示す図 1 2は、 本発明の第 6の実施形 態における増幅装置の構成を示す。 第 6の実施形態の増幅装置は、入力選択手段の一例に相当する選択回路 7 0 0を備え、 デルタシグマ変調器構成でなる電源電圧制御部 2 0 0 (電源電圧制 御部としては第 1〜第 5の実施形態または後述する第 8の実施形態のどの構 成を適用してもよい) の入力信号として、 ベースバンド振幅変調信号 1 0 1又 は固定電圧 V i i xのいずれかを選択回路 7 0 0により選択する。 選択回路 7 0 0は、使用する変調方式における振幅変調の有無を指定する変調モード切り替 え制御信号 S 7によって、 電源電圧制御部 2 0 0の入力信号を切り替える。 この第 6の実施形態では、複数の変調方式に対応できる送信変調器を実現し ようとした場合に、 振幅変調信号がない変調方式 (G SM方式など) に対して は、 変調モード切り替え制御信号 S 7によって選択回路 7 0 0の入力選択を切 り替え、 固定電圧 V f i xを電源電圧制御部 2 0 0に入力することにより、 電源 電圧制御部 2 0 0を D C—D C変換器として動作させる。 すなわち、 入力のベ 一スパンド信号が位相変調信号のみの場合は電源電圧制御部 2 0 0を D C— D C変換器として動作させ、ベースバンド信号に位相変調信号と振幅変調信号 とが含まれる場合は電源電圧制御部 2 0 0を D級増幅器として動作させる。 第 6の実施形態によれば、 デルタシグマ変調器構成でなる電源電圧制御部に、 ベースバンド振幅変調信号を入力するか又は固定電圧を入力するかを、 変調方 式に応じて切り替えるようにしたことにより、 電源電圧制御部を通常の D級増 幅器としての動作から D C— D C変換器としての動作に切り替えることがで きるようになる。 これにより、 高周波電力増幅器 2の電源電圧を固定電圧とす ることも可能となるので、振幅変調信号がない変調方式などにも対応可能とな り、 各種の変調方式に対応することができる。 このように本実施形態では電源 電圧制御部で D C成分でなるデルタシグマ変調信号 S 8を形成できるため、複 数の変調方式、 例えば振幅変調信号がない変調方式 (G S M方式など) に対し ても、 電源電圧制御部を共用することができるようになる。
(第 7の実施形態)
図 7との対応部分に同一符号を付して示す図 1 3は、 本発明の第 7の実施形 態における増幅装置の構成を示す。
第 7の実施形態の増幅装置は、 選択回路 7 0 0を備えるとともに、 2つの動 作モードを持つ 2モード型の高周波電力増幅器 8 0 0を有する。 選択回路 7 0 0は、 動作モードを指定する動作モード切り替え制御信号 S 9によって、 電源 電圧制御部 2 0 0の入力信号を切り替える。また、高周波電力増幅器 8 0 0は、 動作モ一ド切り替え制御信号 S 9によって、 スィッチング動作または锒形動作 のいずれかの動作モードに切り替わる。 この構成により、 動作モード切り替え 制御信号 S 9によって、 高周波電力増幅器 8 0 0をスィツチング動作させるか、 或いは、 線形動作させるかの切り替え制御が可能となっている。
この第 7の実施形態では、 高周波電力増幅器 8 0 0の前段で位相変調高周波 信号 1 0 3を振幅変調しなければならない場合に、 動作モード切り替え制御信 号 S 9によって選択回路 7 0 0の入力選択を切り替え、 固定電圧 V f i xを電源 電圧制御部 2 0 0に入力することにより、 高周波電力増幅器 8 0 0に定電圧の デ タシグマ変調信号 S 8を与える。 そして、 高周波電力増幅器 8 0 0の動作 モードをスィツチング動作から線形動作に切り替えて線形増幅器として動作 させる。 すなわち、 電源電圧制御部 2 0 0を D C _ D C変換器として動作させ るときは高周波電力増幅器 8 0 0を線形動作させ、 電源電圧制御部 2 0 0を D 級増幅器として動作させるときは高周波電力増幅器 8 0 0をスィツチング動 作させる。
第 7の実施形態によれば、 デルタシグマ変調器構成でなる電源電圧制御部に、 ベースバンド振幅変調信号を入力するか又は固定電圧を入力するかを、 2モー ド型の高周波電力増幅器のモードに連動させて切り替えるようにしたことに より、高周波電力増幅器がスィツチングモード及び f泉形モードのどちらのモー ドで動作する場合であっても、 各モードに適合した適切な電源電圧制御を行う ことができるようになる。 この結果、 高周波電力増幅器の前段で位相変調高周 波信号 1 0 3を振幅変調する場合にも対応することができる。
(第 8の実施形態) 図 7との対応部分に同一符号を付して示す図 1 4は、本発明の第 8の実施形 態における電源電圧制御部の構成を示す。
第 8の実施形態の電源電圧制御部 9 0 0は、 量子化器として可変出力量子化 器 9 0 1を有するとともに、 減衰器として可変減衰器 9 0 2を有する。 その他 は第 1の実施形態と同様である。
可変出力量子化器 9 0 1は、 高周波電力増幅器 2の利得を指定する利得制御 信号 S 1 0によって、 出カレべノレを変化させる。 可変減衰器 9 0 2は、 利得制 御信号 S 1 0によって、 デルタシグマ変調の負帰還ループのループ利得が一定 となるように減衰率を変化させる。 すなわち、 可変減衰器 9 0 2の減衰率は、 利得制御信号 S 1 0に基づき、 可変出力量子化器 9 0 1の出力レベ^^と可変減 衰器 9 0 2の減衰率の積が一定となるように設定される。
ここで可変出力量子化器 9 0 1の構成例を図 1 5に示す。 なお図 1 5では、 図 1 4と同一部分には同一の記号を付す。 図 1 5において可変出力量子化器 9 0 1は、 量子化器 9 0 3と、 スィツチドライバ 9 0 4と、 出力トランジスタス イッチ 9 0 5と、 電源レギユレータ 9 0 6とから構成される。 電源レギユレ一 タ 9 0 6は利得制御信号 S 1 0によって出力トランジスタスィツチ 9 0 5の 電源電圧を変化させる。 これにより出力トランジスタスィッチ 9 0 5の最大出 力電圧が変化することで電源電圧制御部 9 0 0からのデルタシグマ変調信号 S 1 1の信号レベルが変えられる。
ここで、 一般に、 ベースバンド振幅変調信号 1 0 1そのものを利得に応じて 変化させ同様にデルタシグマ変調器構成の電源電圧制御部の出力レベルを変 化させた場合には、 デルタシグマ変調による量子化ノィズに対して変調信号レ ベルが低下するので SZN比が低下する。これに対し、この実施形態のように、 可変出力量子化器 9 0 1でデルタシグマ変調信号 S 1 1の信号レベルを変化 させた場合には、 量子化ノイズと変調信号の両方が変化するので前者に比べて S /N比の低下を抑えることができる。
第 8の実施形態によれば、 電源電圧制御部 9 0 0から出力するデルタシグマ 変調信号の信号レベルを変化させる可変出力量子化器 9 0 1を設け、 デルタシ ダマ変調信号の信号レベルを量子化器の出力で変えるようにしたことにより、 S /N比の低下を抑えつつ、 デルタシグマ変調信号 S 1 1のダイナミックレン ジを拡大することが可能となる。
上述したように本実施形態によれば、 高周波増幅器の電源電圧を制御するた めの制御信号を形成する電源電圧制御部を、 デルタシグマ変調器構成としたこ とにより、 デルタシグマ変調の負帰還ループにより歪を低減できる。 加えて、 電源電圧制御部を 1ループ負帰還回路のデルタシグマ変調構成としているた め、 高周波電力増幅器における高周波電力増幅動作を安定に行うことができる 高効率の増幅装置を実現可能である。
また、 本実施形態の電源電圧制御部は D C成分でなるデルタシグマ変調信号 も形成できるため、複数の変調方式に対応できる増幅装置を実現しようとした 場合、 振幅変調信号がない変調方式 (G S M方式など) でも電源電圧制御部を 共用することができる。 よって、 各種変調方式に対応可能である。 また、 高周 波電力増幅器の前段で振幅変調しなければならない場合でも、 高周波電力増幅 器をスィツチング動作から線形動作に切り替えると共に高周波電力増幅器の 電源電圧を固定電圧とすることができ、 電力増幅前段での振幅変調にも対応す ることができる。
なお上記実施形態では、 本発明による増幅装置をポーラ変調方式の送信機に 適用した場合について述べたが、 本発明はこれに限らず、 第 1の入力信号を増 幅する非線形型の高周波電力増幅器と、 第 2の入力信号に基づいて高周波増幅 器の電源電圧を制御するための制御信号を形成する電源電圧制御部とを有し、 高周波電力増幅器によって第 1の入力信号の信号レベルを第 2の入力信号に 応じたレベルに増幅する増幅装置に広く適用することができる。
本発明は、 上述した実施の形態に限定されずに、 種々変更して実施すること ができる。
本発明の増幅装置の一つの態様においては、 第 1の入力信号を増幅する非線 形型の高周波電力増幅器と、 第 2の入力信号に基づいて高周波増幅器の電源電 圧を制御するための制御信号を形成する電源電圧制御部とを有し、 高周波電力 増幅器によって第 1の入力信号の信号レベルを第 2の入力信号に応じたレべ ルに増幅する増幅装置において、 電源電圧制御部を、 第 2の入力信号と負帰還 信号とを加算する加算器と、 加算器の出力を積分する積分器と、 積分器の出力 を所定の閾値に応じて量子化する量子化器と、 量子化器の出力から量子化雑音 を除去する低域通過フィノレタと、 低域通過フィルタの逆特性またはこれを近似 した特性を有し負帰還信号の帰還量を補償する補償器と、 を有する構成とする。 この構成により、 電源電圧制御部を 1つの負帰還ループによつて構成できる ため、 第 2の入力信号のデルタシグマ変調を安定に行うことができるとともに、 デルタシグマ変調の負帰還ループによつて低域通過フィルタで発生する歪を 改善できる。 これによつて、 高周波電力増幅器の増幅動作を安定に行うことが できるとともに、 出力の歪を低減することが可能となる。
また、 本宪明の一つの態様においては、 前記補償器を、 前記低域通過フィル タから前記加算器へ向かう負帰還ループ内に設け、 前記低域通過フィルタの出 力の一部を補償してフィードバックする。 '
この構成では、 電源電圧制御部において低域通過フィルタの出力からフィ一 ドバックする負帰還ループを持つとともに、 低域通過フィルタの出力を、 この 低域通過フィルタの逆特性またはこれを近似した特性を有する補償器に入力 して負帰還信号の帰還量を補償するので、 電源電圧部を 1つの負帰還ループに よって構成可能となる。 これにより、 第 2の入力信号のデルタシグマ変調を安 定に行って高周波電力増幅器の動作を安定化できる。
また、 本発明の一つの態様においては、 前記補償器を、 前記加算器から前記 低域通過フィルタへ向かうメインループ内に設け、 前記加算器の出力の一部を 補償するようにする。
この構成では、 電源電圧制御部において補償器を負帰還ループではなくメイ ンループに設けたので、 負帰還ループの回路規模を削減でき、 これにより回路 の発振などを防止することができ、 第 2の入力信号のデルタシグマ変調を安定 に行って高周波電力増幅器の動作を安定化できる。
また、 本発明の一つの態様においては、 前記量子化器を、 複数の量子化器を 有してなるポリフエーズ量子化器により構成する。
この構成では、 電源電圧制御部における量子化器として複数の量子化器を有 してなるポリフェーズ量子化器を用いたため、 例えば各量子化器の速度を低減 できるなど、 量子化器への要求条件を緩和することができ、 より広範囲なデル タシグマ変調を行うことが可能となる。
また、 本発明の一つの態様においては、 前記電源電圧制御部に前記第 2の入 力信号と固定電圧とのいずれか一方を選択的に入力する入力選択手段、 をさら に備え、 前記入力選択手段の入力切り替えに応じて前記電源電圧制御部の動作 を D級増幅器としての動作と D C— D C変換器としての動作とに切り替える ようにする。
この構成により、 例えば、 入力選択手段で固定電圧を選択して固定電圧を電 源電圧制御部に入力することで、 電源電圧制御部を D C _ D C変換器として動 作させることができ、 高周波電力増幅器に電源電圧制御部を通して固定電圧を 与えることが可能となる。 このため、 例えば、 振幅変調成分が無い変調方式の 信号を扱う場合などに、 高周波電力増幅器に電源として固定電圧を与えて対応 することができ、 各種変調方式に対応することが可能である。 またこの場合、 複数の変調方式においてデルタシグマ変調を行う電源電圧制御部を共用でき る。
また、 本発明の一つの態様においては、 前記高周波電力増幅部を、 スィッチ ング動作モードと線形動作モードとを有する構成とし、 電源電圧制御部が D C 一 D C変換器として動作するときに高周波電力増幅部を f泉形動作モードへ切 り替えるようにする。
この構成により、 例えば、 電源電圧制御部に固定電圧を入力して D C— D C 変換器として動作させることで、 高周波電力増幅器に電源として固定電圧を与 えるとともに、 高周波電力増幅器を線形動作させることが可能となる。 これに より、 高周波電力増幅器の前段で振幅変調する場合にも対応でき、 前段で振幅 変調された信号を高周波電力増幅器で線形増幅することができる。
また、 本発明の一つの態様においては、 前記電源電圧制御部に、 前記低域通 過フィルタのアナログ出力をディジタル信号に変換する AD変換器、 をさらに 設け、 かつ前記補償器によって、 前記 AD変換器の出力の一部を捕償してフィ 一ドバックし、かつ前記加算器、'前記積分器、前記量子化器及び前記補償器を、 ディジタル回路で構成するようにする。
この構成により、 電源電圧制御部をディジタル化することにより、 素子バラ ツキなどの影響を受け難くなり、 この結果デルタシグマ変調の特性を一定に保 つことができ、 装置の動作特性を揃えることが可能となる。
また、 本発明の一つの態様においては、 前記電源電圧制御部が、 前記低域通 過フィルタから前記加算器へ向かう負帰還ループに減衰率の可変機能を有す る可変減衰器を備えた構成とし、 かつ前記量子化器を、 出力レベルの可変機能 を有する可変出力量子化器により構成し、 前記可変出力量子化器の出力レベル と前記可変減衰器の減衰率の積が一定となるように動作させるようにする。 この構成により、 電源電圧制御部の出力を量子化器の出力で変えることがで きるので、 SZN比の低下を抑えつつ、 電源電圧制御部から出力される制御信 号、 ひいては高周波電力増幅器の出力信号のダイナミックレンジを拡大するこ とが可會 gとなる。
以上説明したように本発明によれば、 高周波電力増幅動作を安定に行うこと が可能でかつその出力の歪を低減することが可能な増幅装置を実現できる。 ま た、 高周波電力増幅器に固定電圧を与えて各種変調方式に対応することが可能 な増幅装置を実現できる。
本明細書は、 2003年 7月 250出願の特願 2003— 280256、 2 003年 9月 29日出願の特願 2003— 336801及び 2004年 2月 24日出願の特願 2004-48341に基づく。 その内容はすべてここに含 めておく。 産業上の利用可能性
本発明の増幅装置は、 例えばポーラ変調方式の無線送信機等に適用して好適 なものである。

Claims

請求の範囲
1 . 第 1の入力信号を増幅する非線形型の高周波電力増幅器と、 第 2の入力信号に基づいて前記高周波増幅器の電源電圧を制御するための制 御信号を形成する電源電圧制御部とを有し、 前記高周波霉カ増幅器によって前 記第 1の入力信号の信号レベルを前記第 2の入力信号に応じたレベルに増幅 する増幅装置であって、
前記電源電圧制御部は、
前記第 2の入力信号と負帰還信号とを加算する加算器と、 前記加算器の出力 を積分する積分器と、 前記積分器の出力を所定の閾値に応じて量子化する量子 化器と、 前記量子化器の出力から量子化雑音を除去する低域通過フィルタと、 前記低域通過フィルタの逆特性またはこれを近似した特性を有し前記負帰還 信号の帰還量を補償する補償器と、 を有する
2 . 前記補償器は、前記低域通過フィルタから前記加算器へ向か う負帰還ループ内に設けられ、 前記低域通過フィルタの出力の一部を捕償して フィードバックする、 請求項 1記載の増幅装置。
3 . 前記補償器は、前記加算器から前記低域通過フィルタへ向か うメインループ内に設けられ、 前記加算器の出力の一部を補償する、 請求項 1 記載の増幅装置。
4 . 前記電源電圧制御部は、前記高周波電力增幅部の出力から前 記第 2の入力信号成分を抽出する検波器、 をさらに備え、
前記補償器は、 前記検波器の出力の一部を補償してフィードバックする 請求項 1記載の増幅装置。
5 . 前記量子化器は、複数の量子化器を有してなるポリフェーズ 量子化器により構成されている、 請求項 1記載の増幅装置。
6 . 前記 ¾g電圧制御部は、前記第 2の入力信号又は固定電圧の いずれか一方を選択的に入力する入力選択手段、 をさらに備え、 前記入力選択手段の入力切り替えに応じて前記電源電圧制御部の動作を D 級増幅器としての動作と D C—D C変 m¾としての動作とに切り替える 請求項 1記載の増幅装置。
7 . 前記高周波電力増幅部は、 スィツチング動作モードと線形動 作モードとを有し、 前記電源電圧制御部が D C - D C変換器として動作すると きに線形動作モードを行う
請求項 6記載の増幅装置。
8 . 前記電源電圧制御部は、前記低域通過フィルタのアナログ出 力をディジタル信号に変換する AD変換器、 をさらに備え、
前記補償器は、 前記 AD変換器の出力の一部を補償してフィードバックし、 前記加算器、 前記積分器、 前記量子化器、 および前記補償器は、 ディジタル 回路で構成される
請求項 1記載の増幅装置。
9 . 前記電源電圧制御部は、前記低域通過フィルタから前記加算 器へ向かう負帰還ループに減衰率の可変機能を有する可変減衰器を備え、 前記量子化器は、 出力レベルの可変機能を有する可変出力量子化器により構 成され、
前記可変出力量子化器の出力レベルと前記可変減衰器の減衰率の積が一定 となるように動作させる
請求項 1記載の増幅装置。
1 0 . 前記可変出力量子化器は、 出力トランジスタスィッチと電 源レギュレータとを備え、
前記出力トランジスタスィツチの電源電圧を、 前記電源レギユレータにより 変化させる
請求項 9記載の増幅装置。
1 1 . 前記増幅装置は、 ポーラ変調送信機に設けられ、 前記第 1の入力信号は、 ベースバンド変調信号の位相変調信号によってキヤ リァ周波数を変調した位相変調高周波信号であり、
前記第 2の入力信号は、 前記ベースバンド変調信号の振幅変調信号である 請求項 1記載の増幅装置。
PCT/JP2004/010877 2003-07-25 2004-07-23 増幅装置 WO2005011109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005512089A JPWO2005011109A1 (ja) 2003-07-25 2004-07-23 増幅装置
EP04748085A EP1650864A4 (en) 2003-07-25 2004-07-23 GAIN DEVICE
US10/565,369 US20060245517A1 (en) 2003-07-25 2004-07-23 Amplifier apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-280256 2003-07-25
JP2003280256 2003-07-25
JP2003-336801 2003-09-29
JP2003336801 2003-09-29
JP2004048341 2004-02-24
JP2004-048341 2004-02-24

Publications (1)

Publication Number Publication Date
WO2005011109A1 true WO2005011109A1 (ja) 2005-02-03

Family

ID=34108573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010877 WO2005011109A1 (ja) 2003-07-25 2004-07-23 増幅装置

Country Status (4)

Country Link
US (1) US20060245517A1 (ja)
EP (1) EP1650864A4 (ja)
JP (1) JPWO2005011109A1 (ja)
WO (1) WO2005011109A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295534A (ja) * 2004-03-11 2005-10-20 Matsushita Electric Ind Co Ltd 送信変調装置
JP2006246028A (ja) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及び無線通信機
JP2006295900A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 増幅装置、ポーラ変調送信装置及び無線通信装置
JP2007104651A (ja) * 2005-09-08 2007-04-19 Matsushita Electric Ind Co Ltd ポーラ変調送信装置、及び無線通信装置
WO2008090721A1 (ja) * 2007-01-24 2008-07-31 Nec Corporation 電力増幅器
JP2009516963A (ja) * 2005-11-18 2009-04-23 クゥアルコム・インコーポレイテッド 無線通信のためのディジタル送信機
JP2009530914A (ja) * 2006-03-13 2009-08-27 インターデイジタル テクノロジー コーポレーション デジタル送信機
WO2009104610A1 (ja) * 2008-02-19 2009-08-27 日本電気株式会社 無線送信器及び無線送信方法
CN1905375B (zh) * 2005-07-29 2012-07-04 Mks仪器有限公司 高可靠性的射频发生器结构
WO2015041067A1 (ja) * 2013-09-18 2015-03-26 株式会社日立国際電気 無線装置及び増幅部への供給電圧制御方法
US9270241B2 (en) 2011-05-13 2016-02-23 Nec Corporation Power supply device, transmission device using same, and method for operating power supply device
JP2016029835A (ja) * 2010-06-25 2016-03-03 パナソニックIpマネジメント株式会社 増幅装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961498B2 (ja) * 2004-02-27 2007-08-22 松下電器産業株式会社 高周波回路装置
US7787563B2 (en) * 2004-12-08 2010-08-31 Texas Instruments Incorporated Transmitter for wireless applications incorporation spectral emission shaping sigma delta modulator
US20060194551A1 (en) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. Power amplifier and polar modulation system
US7352237B2 (en) * 2005-03-25 2008-04-01 Pulsewave Rf, Inc. Radio frequency power amplifier and corresponding method
FR2888286B1 (fr) * 2005-07-07 2007-08-17 Renault Sas Dispositif et procede de traitement d'un signal de mesure de pression d'une chambre de combustion d'un moteur a combustion interne
US8341689B2 (en) * 2005-09-07 2012-12-25 Intersil Americas Inc. Automatic frequency compensation of video signals transmitted across cables
FI20075958A0 (fi) 2007-12-21 2007-12-21 Nokia Corp Lähetettävien signaalien prosessointi radiolähettimessä
CN101953157B (zh) * 2008-02-29 2014-03-05 美国亚德诺半导体公司 用于视频补偿的反馈系统和装置
US8390740B2 (en) 2008-11-03 2013-03-05 Intersil Americas Inc. Systems and methods for cable equalization
US8558955B2 (en) * 2008-11-03 2013-10-15 Intersil Americas Inc. Cable equalization locking
US8576966B2 (en) 2010-02-01 2013-11-05 Techwell, Inc. Systems and methods for detecting tampering with video transmission systems
US8767856B2 (en) 2011-09-09 2014-07-01 Intersil Americas LLC Frame structure for a QAM system
JP2011188123A (ja) * 2010-03-05 2011-09-22 Panasonic Corp ポーラ変調方式を用いた送信回路及び通信機器
JP5625437B2 (ja) * 2010-03-30 2014-11-19 セイコーエプソン株式会社 手術機器
US9305506B2 (en) * 2011-02-25 2016-04-05 Maxim Integrated Products, Inc. VCOM amplifier with transient assist circuit
US9130514B2 (en) 2011-02-25 2015-09-08 Maxim Integrated Products, Inc. Vcom switching amplifier
US8537041B2 (en) 2011-05-12 2013-09-17 Andrew Llc Interpolation-based digital pre-distortion architecture
US8872978B2 (en) 2011-06-09 2014-10-28 Intersil Americas LLC Cable equalization and monitoring for degradation and potential tampering
US20130195219A1 (en) * 2012-01-27 2013-08-01 Research In Motion Limited Mobile wireless communications device with selective power amplifier control and related methods
US9413298B2 (en) 2012-12-28 2016-08-09 Peregrine Semiconductor Corporation Amplifier dynamic bias adjustment for envelope tracking
US9716477B2 (en) 2012-12-28 2017-07-25 Peregrine Semiconductor Corporation Bias control for stacked transistor configuration
US11128261B2 (en) 2012-12-28 2021-09-21 Psemi Corporation Constant Vds1 bias control for stacked transistor configuration
US9780942B2 (en) 2014-06-20 2017-10-03 GM Global Technology Operations LLC Optimized data converter design using mixed semiconductor technology for cellular communications
US9692458B2 (en) 2014-06-20 2017-06-27 GM Global Technology Operations LLC Software programmable cellular radio architecture for telematics and infotainment
WO2016073925A1 (en) * 2014-11-06 2016-05-12 GM Global Technology Operations LLC Software programmable cellular radio architecture for wide bandwidth radio systems including telematics and infotainment systems
WO2016073940A1 (en) 2014-11-06 2016-05-12 GM Global Technology Operations LLC Dynamic range of wideband rf front end using delta sigma converters with envelope tracking and injected digitally equalized transmit signal
WO2016073934A1 (en) * 2014-11-06 2016-05-12 GM Global Technology Operations LLC Optimized data converter design using mixed semiconductor technology for flexible radio communication systems
WO2016073928A1 (en) 2014-11-06 2016-05-12 GM Global Technology Operations LLC Software programmable, multi-segment capture bandwidth, delta-sigma modulators for flexible radio communication systems
WO2016073932A1 (en) 2014-11-06 2016-05-12 GM Global Technology Operations LLC Power efficient, variable sampling rate delta-sigma data converters for flexible radio communication systems
US9698845B2 (en) 2014-11-06 2017-07-04 GM Global Technology Operations LLC High oversampling ratio dynamic element matching scheme for high dynamic range digital to RF data conversion for radio communication systems
US9780801B2 (en) * 2015-09-16 2017-10-03 Semiconductor Components Industries, Llc Low-power conversion between analog and digital signals using adjustable feedback filter
US9837965B1 (en) 2016-09-16 2017-12-05 Peregrine Semiconductor Corporation Standby voltage condition for fast RF amplifier bias recovery
US9960737B1 (en) 2017-03-06 2018-05-01 Psemi Corporation Stacked PA power control
US10276371B2 (en) 2017-05-19 2019-04-30 Psemi Corporation Managed substrate effects for stabilized SOI FETs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256843A (ja) * 1997-03-03 1998-09-25 Hewlett Packard Co <Hp> 線形増幅装置および方法
JP2000307359A (ja) * 1999-04-21 2000-11-02 Sharp Corp Δς変調を用いるスイッチング増幅器
JP2001156554A (ja) * 1999-10-08 2001-06-08 Ma-Com Eurotec インターリーブされたデルタ変調を使用してデジタル情報を送信する装置及び方法
JP2002532932A (ja) * 1998-12-07 2002-10-02 エリクソン インコーポレイテッド Rf増幅器の振幅変調から位相変調への打ち消し方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135099A (en) * 1999-02-26 2000-10-24 Thomas C. Marrs Ignition system for an internal combustion engine
US6735419B2 (en) * 2001-01-18 2004-05-11 Motorola, Inc. High efficiency wideband linear wireless power amplifier
JP3838547B2 (ja) * 2001-12-11 2006-10-25 株式会社ルネサステクノロジ 高周波電力増幅回路用の電源装置
WO2004032345A1 (ja) * 2002-10-03 2004-04-15 Matsushita Electric Industrial Co., Ltd. 送信方法及び送信装置
US7620377B2 (en) * 2006-08-30 2009-11-17 General Dynamics C4 Systems Bandwidth enhancement for envelope elimination and restoration transmission systems
US7298308B1 (en) * 2006-09-11 2007-11-20 Cirrus Logic, Inc. Delta-sigma modulator having predictive-controlled power consumption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256843A (ja) * 1997-03-03 1998-09-25 Hewlett Packard Co <Hp> 線形増幅装置および方法
JP2002532932A (ja) * 1998-12-07 2002-10-02 エリクソン インコーポレイテッド Rf増幅器の振幅変調から位相変調への打ち消し方法
JP2000307359A (ja) * 1999-04-21 2000-11-02 Sharp Corp Δς変調を用いるスイッチング増幅器
JP2001156554A (ja) * 1999-10-08 2001-06-08 Ma-Com Eurotec インターリーブされたデルタ変調を使用してデジタル情報を送信する装置及び方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295534A (ja) * 2004-03-11 2005-10-20 Matsushita Electric Ind Co Ltd 送信変調装置
JP4628142B2 (ja) * 2005-03-03 2011-02-09 パナソニック株式会社 ポーラ変調送信装置、無線通信機及び電源電圧制御方法
JP2006246028A (ja) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及び無線通信機
JP2006295900A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 増幅装置、ポーラ変調送信装置及び無線通信装置
US9214909B2 (en) 2005-07-29 2015-12-15 Mks Instruments, Inc. High reliability RF generator architecture
CN1905375B (zh) * 2005-07-29 2012-07-04 Mks仪器有限公司 高可靠性的射频发生器结构
JP2007104651A (ja) * 2005-09-08 2007-04-19 Matsushita Electric Ind Co Ltd ポーラ変調送信装置、及び無線通信装置
JP4707631B2 (ja) * 2005-09-08 2011-06-22 パナソニック株式会社 ポーラ変調送信装置、及び無線通信装置
JP2009516963A (ja) * 2005-11-18 2009-04-23 クゥアルコム・インコーポレイテッド 無線通信のためのディジタル送信機
JP2012105288A (ja) * 2005-11-18 2012-05-31 Qualcomm Inc 無線通信のためのディジタル送信機
US8411788B2 (en) 2005-11-18 2013-04-02 Qualcomm, Incorporated Digital transmitters for wireless communication
JP2009530914A (ja) * 2006-03-13 2009-08-27 インターデイジタル テクノロジー コーポレーション デジタル送信機
US7965140B2 (en) 2007-01-24 2011-06-21 Nec Corporation Power amplifier
JP5131201B2 (ja) * 2007-01-24 2013-01-30 日本電気株式会社 電力増幅器
WO2008090721A1 (ja) * 2007-01-24 2008-07-31 Nec Corporation 電力増幅器
WO2009104610A1 (ja) * 2008-02-19 2009-08-27 日本電気株式会社 無線送信器及び無線送信方法
JP2016029835A (ja) * 2010-06-25 2016-03-03 パナソニックIpマネジメント株式会社 増幅装置
US9270241B2 (en) 2011-05-13 2016-02-23 Nec Corporation Power supply device, transmission device using same, and method for operating power supply device
WO2015041067A1 (ja) * 2013-09-18 2015-03-26 株式会社日立国際電気 無線装置及び増幅部への供給電圧制御方法
JPWO2015041067A1 (ja) * 2013-09-18 2017-03-02 株式会社日立国際電気 無線装置及び増幅部への供給電圧制御方法
US9882536B2 (en) 2013-09-18 2018-01-30 Hitachi Kokusai Electric Inc. Wireless apparatus and method for controlling voltage supplied to amplifier unit

Also Published As

Publication number Publication date
EP1650864A4 (en) 2006-06-28
US20060245517A1 (en) 2006-11-02
JPWO2005011109A1 (ja) 2006-09-14
EP1650864A1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
WO2005011109A1 (ja) 増幅装置
EP1235403B1 (en) Combined frequency and amplitude modulation
US7230996B2 (en) Transmitting circuit device and wireless communications device
US8693578B2 (en) Transmission device
KR101354853B1 (ko) 펄스 변조기로부터의 펄스 변조된 참조 신호의 전력 증폭 동안에 스위칭 전력 증폭단에 도입되는 비선형성 및 잡음의 소스에 대하여 보정하는 방법 및 시스템
US7881399B2 (en) Transmission circuit and communication device
US7091778B2 (en) Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
EP2378658B1 (en) Switched mode power amplification
US8249530B2 (en) Apparatus and method for power amplification in wireless communication system
JP2004048703A (ja) 増幅回路、送信装置、増幅方法、および送信方法
JP4817890B2 (ja) 増幅装置、ポーラ変調送信装置及び無線通信装置
US7502422B2 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture
US6784817B2 (en) Data generating method, data generator, and transmitter using the same
US6903619B2 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture
JP2002057732A (ja) 送信回路装置
US7460843B2 (en) Amplifier apparatus, polar modulation transmission apparatus and wireless communication apparatus
JP3878029B2 (ja) 送信回路装置
WO2008099724A1 (en) Linc transmission circuit and communication device using the same
US20160164554A1 (en) Transmitter with Quantization Noise Compensation
EP1550230A2 (en) Transmitter and method of transmission using separate phase and amplitude modulators
JP2005295534A (ja) 送信変調装置
WO2004034667A2 (en) Electromagnetic wave trasmitter systems, methods and articles of manufacture
EP1750411B1 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020855.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512089

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004748085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006245517

Country of ref document: US

Ref document number: 10565369

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004748085

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10565369

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004748085

Country of ref document: EP