WO2005010969A1 - ガス反応装置及び半導体処理装置 - Google Patents

ガス反応装置及び半導体処理装置 Download PDF

Info

Publication number
WO2005010969A1
WO2005010969A1 PCT/JP2004/010895 JP2004010895W WO2005010969A1 WO 2005010969 A1 WO2005010969 A1 WO 2005010969A1 JP 2004010895 W JP2004010895 W JP 2004010895W WO 2005010969 A1 WO2005010969 A1 WO 2005010969A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
passage
chamber
reaction
outlet
Prior art date
Application number
PCT/JP2004/010895
Other languages
English (en)
French (fr)
Inventor
Hachishiro Iizuka
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/565,676 priority Critical patent/US7413611B2/en
Publication of WO2005010969A1 publication Critical patent/WO2005010969A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles

Definitions

  • the present invention relates to a gas reaction apparatus and a semiconductor processing apparatus, and more specifically, to an apparatus of this type having a vaporizing section for vaporizing a liquid raw material to generate a reaction gas or a processing gas.
  • the semiconductor processing refers to a semiconductor substrate, an insulating layer, a semiconductor substrate, a glass substrate for a liquid crystal display (LCD) or a flat panel display (FPD), or a semiconductor substrate, an insulating layer, or the like.
  • a conductive layer or the like By forming a conductive layer or the like in a predetermined pattern, a structure including a semiconductor device, a wiring connected to the semiconductor device, an electrode, and the like can be manufactured on the substrate to be processed. Means the various processes performed. Background art
  • a gas reaction apparatus is used in a semiconductor production line, a liquid crystal display production line, or the like, in which a raw material gas is introduced into a reaction chamber to perform various processes.
  • a film forming apparatus for forming an insulating thin film on the surface of a substrate to be processed such as a semiconductor wafer
  • CVD apparatus chemical vapor deposition apparatus
  • CVD apparatuses have been used to form multi-component metal oxide thin films such as PZT (lead zirconate titanate). '
  • An organometallic compound used as a raw material for a thin film such as PZT is generally solid at normal temperature and normal pressure. Therefore, in order to use this kind of solid raw material in a CVD system, it is necessary to gasify the solid raw material and supply it to the processing chamber. In this case, the solid material is usually converted to a suitable solvent. It is dissolved to form a liquid (called a solution raw material), which is converted into a liquid in a vaporizer and supplied to the processing chamber. Such a raw material supply method is called a solution method. In recent years, the solution vaporization method has been actively researched and developed as one of the promising gasification methods to replace the Bling method and the solid sublimation method (for example, see Japanese Patent Application Laid-Open No. 7-94426). ) ⁇
  • this film forming apparatus 100 stores different raw material solutions in each of raw material containers divided into a plurality of systems.
  • these raw material containers include a raw material container 101a storing a solution of a lead-based raw material, a raw material container 101b storing a solution of a zirconium-based raw material, and a solution of a titanium-based raw material.
  • Raw material container 101a storing a solution of a lead-based raw material
  • a raw material container 101b storing a solution of a zirconium-based raw material
  • a solution of a titanium-based raw material a solution of a titanium-based raw material.
  • the raw material solution is pushed out to the supply pipes 103a, 103b and 103c by the supply of the pressurized gas through the pressure-feed gas pipe 102, and the yjfe landscape It flows to the main piping 107 through the controllers 105a, 105b and 105c.
  • a carrier gas B such as an inert gas (for example, He, Ar) is supplied with a flow controller.
  • the solution raw material and the carrier gas are mixed in the PB piping 110 through the pipe 115, and vaporized in a gas-liquid mixed state and sent to the vaporizer 11 ⁇ .
  • a solvent container 101d containing solvents such as tan and THF (tetrahydrofuran, ⁇ -furan) is also provided.
  • Solvent contained in the solvent container 101 d of Pressurized gas A pushes out to supply pipe 104 and controls flow rate 1
  • Nozzle 1 1 1 is installed in the
  • the above-mentioned main pipe 107 is connected to 11.
  • the carrier gas C is flow-controlled by the piping 108 through the nozzle 111.
  • the nozzle 1 1 1 is provided with a nozzle opening having a double pipe structure.
  • the solution raw material supplied to the inner pipe by the carrier gas C supplied to the outer pipe is formed in the chemical chamber. Sprayed into 1 1 2
  • the nozzle portion is also described by the chamber so that the vaporization temperature is low and the solvent does not vaporize first.
  • the inner surface of the vaporization chamber 1 1 2 is a vaporization surface 1 1
  • the mist-like solution raw material that emerges from 1 is vaporized once and instantaneously on the vaporizing surface 112a, and becomes a raw material gas in the vaporization chamber 112. From the gas outlet 1 13 through the gas transport pipe 1 16
  • the gas transport pipe 1 16 supplied to the processing chamber 1 2 1 is heated so that the raw material gas passing through it does not solidify or liquefy.
  • the processing chamber 12 there are arranged a head 1 and 2 2 to which the gas transport pipe 1 16 is connected, and a susceptor 1 2 3 for mounting the substrate W to be processed.
  • the processing head 122 the raw gas is fed into the processing chamber 122 through the reaction gas supply pipe 117.
  • IX oxidizing gas such as O 2 , No, and N ⁇ It is.
  • oxidizing gas such as O 2 , No, and N ⁇ It is.
  • a thin film is formed on the substrate W to be processed by the reaction between the above-mentioned source gas and the oxidizing gas.
  • the gas transport pipe 1 16 between the vaporizer 110 and the processing chamber 121 is long. For this reason, there is a problem that particles are easily generated in the raw material gas, or the supply amount of the raw material gas fluctuates, and the film composition and the uniformity of the film thickness decrease.
  • Means and its temperature control means are required.
  • the present invention is intended to make it easier and more compact to put on clothes when it is possible to prevent the generation of particles during the transport of raw material gas and to realize a high-quality gas reaction. It is an object of the present invention to provide a possible gas reaction device and semiconductor processing device.
  • the gas reaction device includes:
  • a reaction chamber for reacting the reaction gas for reacting the reaction gas
  • the vaporizer is integrally formed with a component defining the reaction chamber, and the reaction chamber generated in the vaporizer is provided. Reaction gas is introduced directly into the reaction chamber.
  • the gas anti-J-core device it is not necessary to provide a gas transport pipe connecting the gas and the eccentric, so that there is no need to provide a means for heating the gas transport pipe.
  • the transport distance of the repulsive gas is reduced, the staying time during the i-pipe is reduced, and it is also possible to avoid the occurrence of typhoon during transportation.
  • IX means that the J-core gas is directly introduced into the reaction chamber.Then, it flows out of the anti-J-core gas carburetor and the components that define the reaction chamber via a pipe, and then enters the reaction chamber. To be introduced "
  • the gasification is performed directly outside the gas introduction part for introducing the reaction gas into the self-reaction chamber.
  • reaction gas generated by the gasifier is directly introduced into the gas introduction section located inside the reactor, and the path leading up to the reaction chamber is further reduced.
  • the gas introduction section is equipped with a gas introduction chamber for introducing the reaction gas.
  • the gas introduction portion provided with the ports include those having a plurality of gas introduction ports and having a structure.
  • the vaporization is sd S Ji-, which is preferably configured above the chamber, and thus ⁇
  • Decomposition work such as gasifiers and gas introduction sections Easy o
  • the carburetor and the gas introduction part are physically configured, and the carburetor 'together with the gas introduction part ⁇ If it is removable, for example, it is preferable to configure it so that it can be opened and closed.
  • the storage device includes a spray nozzle, a vaporization chamber that forms a mist space of the spray nozzle, a narrow passage communicating with the formation chamber, and the narrow passage and the id.
  • the liquid raw material is vaporized by the atomization of the liquid raw material into the gasification chamber by the atomization nozzle, and the reaction is performed. Gas is generated. Thereafter, the reaction gas reaches the outlet through a narrow passage, and is introduced into the reaction chamber from there. At this time, the centrifugal gas generated in the vaporization chamber passes through a narrow passage before being guided to the reaction chamber. ⁇ It is contained in the reaction gas. And it is easy to reproduce. 1) It is possible to further increase the vaporization rate of the reaction gas and to further reduce the number of particles introduced into the reaction chamber.
  • the body is arranged in a ring around the self-evaporation chamber.
  • the body of the body is composed of multiple passages. ⁇ U ⁇ Ci
  • annular outlet passage is preferable to provide an annular outlet passage. O This makes it possible to reduce the thickness of the carburetor. In addition, it is possible to ensure a sufficient flow cross-sectional area of the narrow passage without increasing the size of the device. In addition, an annular outlet passage that leads to a narrow passage is provided. By doing so, the conductance of the reaction gas that has passed through the narrow passage can be made sufficiently large. For this reason, a stagnation portion of the gas is generated in the introduction path of the reaction gas into the reaction chamber, whereby the number of particles introduced into the reaction chamber can be further reduced.
  • the annular outlet passage is preferably disposed around a narrow passage.
  • the annular outlet passage is preferably formed coaxially with the narrow passage.
  • the gas reactor according to the first aspect has a heater for heating the inner surface of the gas passage and the inner surface of the narrow passage, so that the gas is vaporized in the vaporization chamber.
  • the effect can be obtained, and the mist can be vaporized even on the inner surface of the narrow passage, so that the vaporization rate of the reaction gas can be increased and the performance can be improved.
  • the gas introduction section can be simultaneously heated by the heater.
  • a finoleta that captures a solid substance or a liquid substance in the reaction gas is disposed in a part of the ftu outlet passage. Is preferred.
  • the self-fining device be disposed at an outlet of the outlet passage communicating with the reaction chamber. The space can be minimized to reliably capture solids and liquids in the reaction gas.
  • a valve element for opening and closing the outlet is disposed, and the filter covers the valve element.
  • the filter is disposed so as to surround the valve element, the filter can be accommodated using the accommodation space of the valve element. Can be configured into a compact.
  • the gas reaction device has a heater for heating the filter. This makes it possible to vaporize the mist captured in the finoleta, thereby improving the vaporization rate and reducing clogging of the filter.
  • the m-th G finoleta is configured to be in thermal contact with the inner surface of the outlet passage and to receive the heat of the heater from the inner surface of the outlet passage. Because it is preferable to arrange the heaters outside the derivation route, the degree of freedom in the arrangement of the heaters is increased, and the derivation route is con- nected. It can be configured into a class. This heater can be common to the heater for heating the vaporization chamber described above.
  • a heat transfer portion that is in thermal contact with a portion other than the edge of the filter is disposed in the outlet passage. It is preferable that it is set up. As a result, the filter can be more uniformly heated, so that the vaporization rate can be increased and, at the same time, the local clogging of the filter can be reduced.
  • a protrusion that protrudes from the inner surface of the outlet passage and contacts the filter surface is exemplified.
  • a semiconductor processing apparatus includes:
  • a container forming a processing chamber for processing a substrate to be processed; and the container has a detachable roof.
  • a support member disposed in the container, for supporting the substrate to be processed
  • the shower head for supplying a processing gas into the processing chamber and the shower head described above are mounted on the ceiling so as to face the substrate to be processed supported by the support member. Being disposed on the lower surface of the
  • a vaporization chamber disposed on an upper surface of the roof for vaporizing a liquid raw material to generate the processing gas
  • a gas passage for flowing the processing gas formed so as to connect the vaporization chamber and the shear head through the roof.
  • FIG. 1 is a schematic vertical sectional view showing an apparatus main body of a gas reaction apparatus (semiconductor processing apparatus) according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view showing a part of the vaporizer in the apparatus main body shown in FIG.
  • FIG. 3 is an enlarged section showing a part of the modification of the vaporizer shown in Fig. 2.
  • Fig. 4 is an enlarged cross section showing a part of another modification of the vaporizer shown in Fig. 2.
  • FIGS. 5A and 5B are a vertical side view and a vertical front view, respectively, schematically showing a spray nozzle that can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIGS. 6A-D are cross-sectional views along the lines VIA, VIB, VIC, VID in FIG. 5A.
  • FIGS. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle which can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle which can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle which can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle which can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle which can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing
  • FIGS. 8A-E show lines VIIIA, VIIIB, VIIIC in FIG.
  • FIG. 9 is a vertical sectional front view schematically showing another spray nozzle that can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. 10 is a schematic configuration diagram showing the whole of a conventional gas reaction apparatus (film forming apparatus).
  • a gas reaction apparatus (semiconductor processing apparatus) according to an embodiment described below is configured as a film formation apparatus (CVD apparatus) for performing a film formation process on a substrate to be processed W in a reaction chamber.
  • the present invention relates to another gas reaction apparatus (semiconductor processing apparatus) having a vaporization section for generating a reaction gas or a processing gas by vaporizing a liquid raw material, for example, a dry etching apparatus, a plasma etching apparatus, and the like. It can also be applied to
  • FIG. 1 is a schematic vertical sectional view showing an apparatus main body of a gas reaction apparatus (semiconductor processing apparatus) according to an embodiment of the present invention.
  • the film forming apparatus main body 220 includes a container casing 221 having an open top.
  • a gas inlet (shower head) 222 is provided above the container casing 222.
  • a susceptor (substrate holder) 223 is provided inside the container casing 221.
  • a reaction chamber (processing chamber) 221A is constituted by the space between the gas introduction part 222 and the susceptor 223.
  • An exhaust device E S is connected to the container casing 222 through an exhaust space 222 o. The pressure in the reaction chamber 222 A is reduced by being exhausted by the exhaust device ES.
  • the susceptor 2 2 3 with a-ring structures such as, for example, A 1 N, I by the A 1 2 O 3, supporting bearing member 2 2 4 constituted by etc. quartz or Aluminum two U beam Supported.
  • a shield ring 225 made of quartz or the like is provided on the upper surface of the support body 224.
  • the support body 224 is supported by the shield base 225b via the attachment 225a.
  • An annular rectifying plate 225c is mounted around the outer periphery of the sinored base 225b.
  • the reaction chamber 221A communicates with the exhaust space 221o via the rectifying plate 225c.
  • a window member 226 made of quartz or the like is attached below the susceptor 223. Heat outside (lower) of window material 2 2 6 Lamp 2 27 is arranged. The heating lamp 2 2 7
  • the lower surface of the susceptor 223 is irradiated with light through 6 to heat it.
  • a heating lamp is provided between the susceptor 22 and the window material 22.
  • An annular reflector 222 reflecting the light emitted from 222 is arranged.
  • a temperature sensor 229 such as a thermocouple is externally introduced into the susceptor 223. Heating source, embedded inside the resistance of the susceptor 2 2 3 A 1 2 O 3 ⁇ A 1 N, it may also be a click Heater Previous si C and whether Ranaru Sera les.
  • a load port 2 21 i is formed in the container casing 2 21 so as to be openable and closable by a gate knob 22 1 X.
  • a lift mechanism (not shown) is provided in the container casing 221, and the lift mechanism can make a plurality of foot pins protrude and retract on the susceptor 223. You.
  • the substrate to be processed W is connected to the port 22 1 i by a transfer means (not shown).
  • the substrate W to be introduced introduced into the container casing 22 1 via the container is supported by a lifter pin of a dip mechanism that projects from the susceptor 22 3.
  • the substrate W to be processed has a lifter pin in the susceptor 222.
  • HX is integrated on the lower surface of the.
  • a middle plate is placed on the lower surface of the roof 230 to form a shear head, 222.
  • Source gas diffusion chamber 2 2 2 a is formed between the middle plate 2 2 ⁇ and the roof 2 3 0 A. Chamber 2 2 2a force, etc., middle plate 2 2 2 A and lower plate 2 2
  • the plurality of source gas supply paths 2 22 a X extending through 2 B and opening into the reaction chamber 22 1 A extend.
  • reaction gas diffusion chamber 2 2 2b is formed. From the reaction gas diffusion chamber 22 b, a plurality of reaction gas supply paths 22 22 b X forces S extend through the lower plate 22 B and open to the reaction chamber 22 A.
  • the reaction gas diffusion chamber 2 2 2 b is an anti-J-core gas supply pipe 2 2 2
  • the reaction gas (eg, oxidizing gas such as O 2 , N 2 : ⁇ , ⁇ ⁇ 2) is supplied from the reaction gas supply unit RGS via the S.
  • a carburetor 230 is disposed on the upper surface of the roof 230 A, which is introduced into the reaction gas diffusion chamber 222 b, that is, above the gas inlet 222 BX 2 ⁇ 0 vaporizer 23
  • a rising portion 2 32 S defining the side wall of the vaporization chamber 2 32 is formed on the top surface of the roof 230 A. That is, the recessed portion of the vaporization chamber 232 is formed on the upper surface of the roof 230A by the rising portion 232S.
  • the cap 2330B is air-tight on the top surface of the roof 230A so that it covers the rising portion 232S. It is arranged on a detachable girder.
  • the vaporization chamber 232 is formed as a space surrounded by the rising portion 232S between the top plate 230A and the cap 230B. 5 ⁇
  • the inner surface shape of the side wall of 232 can be concavely curved, hemispherical, or circular.
  • a heater (heating means) 232 ⁇ is arranged inside the roof ⁇ 230 A and a small portion of the cap 230 ⁇ ⁇
  • the top plate 230A and the cap 230B are heated to the vaporization chambers 2332 and d ⁇ by the 2332H.
  • Hita 2 3 2 H is the roof 2 3
  • the heater 2332H has a surface 2332a, which will be described later, having a thickness of 180 to 2 when a film such as PZT or BST is formed on a silicon substrate.
  • the heater 2332H also heats the gas introduction section 222, whereby the inside of the gas introduction section 222 is maintained at a predetermined temperature.
  • a fog nozzle 231 is fixed in the center of the cap 230B.
  • the nozzle P of the spray nozzle 231 is disposed so as to face the inside of the gasification chamber 232.
  • a supply system LMS for a liquid material mixed with a vacuum gas and a supply system CGS for a carrier gas are connected to the spray nozzle 231. ⁇ These supply systems are substantially the same as those shown in Figure 10.
  • a narrow path 23 3 is formed between the inner surface of 30 B and o ⁇ ⁇ . Specifically, the upper surface of the rising portion 23 S and the cap 2 The inner surface of 30 B forms a conical surface with it, and these confront each other with a small gap therebetween, whereby a narrow passage 2 33 is formed. Therefore, the narrow passage 233 forms an annular shape so as to surround the vaporization chamber 232. As will be described later, the narrow passage 233 functions as a passage for vaporizing the gas contained in the vaporized gas.
  • annular outlet passage 234 is formed coaxially around the narrow passage 233.
  • a part of the outlet passage 234 is provided with an outlet 234a communicating with the reaction chamber 221A via the gas inlet 224, and the cap 230B is formed with a outlet 234a.
  • An on-off valve 235 for opening and closing the outlet 234a is provided.
  • the valve element 235a of the on-off valve 235 is arranged so as to face the outlet 234a.
  • a finoleta 2 3 that captures mist (solid or ⁇ liquid in the vaporized gas)
  • Filter 3 2 3 6 Force S is arranged on the part surrounding 3 3 a ⁇
  • another part of the outlet passage 2 3 4 is provided with exhaust ⁇ 2 3 4 b, and the exhaust port 2
  • An exhaust device BS is connected to 34 b via an exhaust path 2 37 b.
  • An on-off valve 2 37 is disposed in the exhaust path 2 37 b, and the inside of the outlet passage 2 3 4 is exhausted by the on-off valve 2 37 1
  • the valve element 23 7a of 37 is arranged so as to face the exhaust P2 34b.
  • only one derivation ⁇ ⁇ is RX-distributed, but two or more derivation Ps may be disposed in the derivation passage 234. Similarly, only one exhaust P is provided, but two or more ⁇ ru
  • the air may be arranged.
  • the roof 23 OA is configured as a body that can be closed by a hinge portion 230 C attached to the upper edge of the container casing 222. Therefore, the roof 23 OA and the cap 230B can rotate integrally with the container casing 221, about the hinge portion 230C. In other words, the vaporization 230 and the gas introduction section 222 are configured as a part of a structure capable of opening and closing the upper opening of the container casing 222. Therefore,
  • portion forming the vaporization ⁇ ff 230 and the portion forming the lid or the gas introduction portion 222 may be fixed to each other.
  • FIG. 2 is an enlarged cross-sectional view showing a portion of the vaporization 230 discharged from the apparatus main body shown in FIG. 1 from the vaporization chamber 232 to the outlet P234a of the outlet passage 234. As shown in Fig. 2
  • the liquid material in a soot state is sprayed into the vaporization chamber 2 32.
  • the liquid material is heated by the heater 2 3 2 H.
  • it collides with the vaporized surface 2 32 a it is instantaneously vaporized and becomes a raw material gas (reactive gas).
  • the narrow passage 233 opens at the top of the chemical conversion chamber 232. As a result, it is unlikely that the mist sprayed from the nozzle P 2 3 1a will directly enter the narrow passage 2 33. Not at all. Also, when the sprayed mist collides with the vaporized surface 232a, the fine mist (splash) remaining without being completely vaporized also reaches the finholeta 236. Peg. As a result, clogging of the filter 236 is reduced, and its service life is extended.
  • the narrow passage 233 extends from the opening to the vaporization chamber 232 so as to incline slightly downward, so that the mist reaching the opening of the narrow passage 233 is formed.
  • the mist is a narrow passage as it is 2 3
  • the inner surface (upper limit surface) of the narrow passage 2 33 is heated by the heater 23 2 H in the same manner as the vaporized surface 2 32 a, so that the mist contacting the inner surface of the narrow passage 2 33 is However, the raw material gas is generated.
  • annular narrow passage 233 is integrally formed around the chemical conversion chamber 232, but a plurality of narrow passages are formed in the chemical conversion chamber 232.
  • .3 may be arranged annularly (radially) around 2
  • the width (vertical width) of the narrow passage 2 3 3 is, for example, about 0.5 to
  • the width of the passage is preferably about 10.0 mm or the pressure difference between the vaporization chamber 232 and the reaction chamber is 1.0 to 4.5 kP. a It is preferable to secure as much as possible.Below these ranges, narrow passages 2 3 3 Clogging is more likely to occur. Conversely, if it exceeds the above range, the above-mentioned re-vaporization performance is extremely lowered.
  • the width (longitudinal width) of the above-mentioned passage is larger (longer distance) than the average free path ⁇ of the mist (for example, particle diameter of about 1 ⁇ to about 100 m). Better than
  • the outlet passage 2 3 4 is located between the vaporization chamber 2 and the narrow passage 2 3 3.
  • the outlet passage 234 is arranged such that the raw material gas flows in from the annular narrow passage 233 and is smoothly discharged from the outlet 234a. Therefore, it is preferable that the outlet passage 234 has a sufficient conductance.
  • the vertical width of the outlet passage 234 is substantially equal to the vertical width of the vaporization chamber 232.
  • the above-mentioned valve element 2 35 a is disposed so as to be vertically movable. When the valve element 235a descends to reach the bottom of the outlet passage 234, the outlet ⁇ 234a is completely closed. Conversely, when the force S of the valve element 235a rises, the n-ductance of the derived P234a increases according to the height.
  • the filter 236 has a cylindrical shape (cylindrical shape in the illustrated example) as a whole, and the outlet passage 234 surrounds the outlet 233 a of the narrow passage 233. It is installed in. More specifically, the filter 236 is arranged so as to surround the narrow passage 233 from the outside in an annular shape in the outlet passage 234. Note that a filter 2336 '(see FIG. 3) described later may be used in place of the filter 2336.
  • the finalizer 236 is made of a fibrous material such as metal. It has a mesh structure obtained, a nonwoven solidified fibrous material, or a porous structure having many fine pores. More specifically, the finoleta 2336 is composed of a support frame 23a composed of metal and the like arranged vertically and a filter fixed to the support frame 23a. And material 2 36 b. Upper and lower support frames 2 3
  • the finalizer 23 captures minute mist particles contained in the raw material gas flowing into the outlet passage 234, and forms the reaction chamber 2.
  • Filter 2336 is also heated B by heat from roof 230A and cap 230B. As a result, a small amount of the fine mist trapped in the filter 236 and a part of the fine mist are vaporized to become a raw material gas.
  • the lead-out P234a is closed by the on-off valve 235, and the outlet port 237 is opened by the open-close valve 237.
  • 34 b is opened, and the liquid material is sprayed from the spray nozzle 23 1, and the raw material gas generated in the gasification chamber 23 2 is supplied to the narrow passage 23 3 and the outlet passage 23 After passing through 4, it is discharged from the exhaust port 2 3 4b.
  • the lead-out P2334a is opened by the on-off valve 235, and the exhaust P232b is closed by the on-off valve 237. Is done.
  • the raw material gas is introduced into the reaction chamber 221A via the gas introduction section 222.
  • Organometallic gases for film formation such as T and STO, and TiC14 (titanium tetrachloride) and WF6 (tungsten hexafluoride) ⁇ Ta
  • Refractory metal compound gases such as (oC 2 H 5) 5 (pentetoxytantalum) and organic silicon compound gases such as pentethoxysilane are exemplified.
  • an appropriate other reaction gas is introduced into the gas introduction section 222.
  • Such other DJ heart gases include H 2 , NH 3 , and S i H 4 ⁇ S i as reducing gases.
  • the vaporizer 230 and the reaction chamber 222 are formed by integrally forming the vaporizer 230 with respect to the reaction chamber 221A.
  • Ru is in the configuration of the entire apparatus co down Nono 0 click and.
  • the vaporizer 230 is integrally formed outside the gas inlet 222, the raw material gas generated in the vaporizer 230 must be directly introduced into the gas inlet 222. Can be done.
  • the transport distance of the source gas from the vaporizer 230 to the reaction chamber 222 A can be configured to be short. As a result, PZT and PZT, which can further suppress the occurrence of particulation and stabilize the supply of raw material gas,
  • the narrow passage 23 is arranged annularly around the vaporization chamber 23, and the outlet passage is further coaxially arranged around the narrow passage 23. Arrange 2 3 4. By doing so, it is possible to significantly reduce the thickness of the carburetor 230 while sufficiently securing the conductance of the degassing chamber 232, the narrow passage 233, and the outlet passage 234. And can be.
  • the above-mentioned finale 2 3 6 is a narrow passage 2 3
  • the filter 2336 is easily replaced by removing the cap 230B in order to surround the outlet 233a of 3.
  • the cleaning fCS is not necessary.
  • FIG. 3 is an enlarged cross-sectional view showing a-part of a modified example 230 'of the vaporizer shown in FIG.
  • This vaporizer 230 ' has a modified cap 230B' and is located in the upper part of the vaporizer chamber 32
  • pores 2 3 2 c communicate with the introduction passage 2 3 2 d, and the introduction passage 2 3 2 d communicates with the narrow passage 2 3 3 configured as described above.
  • the mist sprayed by the spray nozzle 231 is vaporized and generated in the vaporization chamber 232.
  • the source gas thus collected flows into the introduction passage 23d through the fine holes 23c.
  • the raw material gas flows into the narrow passage 233 through the introduction passage 233d, and thereafter, the outlet 234 through the outlet passage 234 as in the above embodiment. a It is discharged from the power and supplied to the reaction chamber 221A via the gas introduction part 222.
  • the fine pores 232c and the introduction passages 2332d are formed in an annular shape around the spray nozzle 231, in the upper part of the vaporization chamber 2332. Further, the plurality of pores 2 32 c and the introduction passages 2 3 2 d may be arranged in an annular (radial) manner in the upper part of the vaporization chamber 2 32. As a result, a sufficient conductance of the gas route to the narrow passage 233 can be secured.
  • the fine mist contained in the raw material gas generated in the vaporization chamber 232 is caught and re-vaporized in the above-mentioned pores 232c and the introduction passage 232d. For this reason, the fine mist in the raw material gas flowing into the narrow passageway 233 can be reduced, the vaporization rate can be further increased, and the generation of particles can be further suppressed. . In addition, this makes it possible to reduce the occurrence of clogging of the narrow passages 233 and finoleta 236 arranged on the downstream side.
  • off I filter 2 3 6 ' have a whole and to tubular (cylindrical in the illustrated example), derived earthenware pots by enclosing the valve body 2 3 5 a and outlet 2 3 4 a It is installed in passage 2 3 4. More specifically, the filter 236 'is arranged such that the outlet 234a is accommodated inside one of the openings, and the filter 236' is inserted into the outlet passage 234 with the axis thereof being vertical. Be placed. The other opening edge of the fin roller 23 6 ′ abuts on the upper part of the outlet passage 2 34. Cylindrical file The valve body 235a is accommodated inside the rotor 236 'so as to be movable in the axial direction, that is, in the vertical direction.
  • the above-described finoleta 23 6 may be used in place of the finoleta 23 36 ′.
  • Figure 4 shows another modification of the vaporizer shown in Figure 2.
  • Example 230 It is an expanded sectional view which shows a part of Example 230.
  • This vaporizer 230 "has a modified roof 23 O A O and a cap 230 B"
  • a plurality of protruding heat transfer sections 2 3 4 c are formed at the filter 2 36. These multiple heat transfer sections are formed.
  • the 234 c contacts the surface of the finoleta material 236 b, and the contact portions thereof are distributed almost uniformly.
  • the heat transfer section 23 34 c comes into thermal contact with the filter surface of the finalizer 23 36, and the heat from the roof 23 OA and the cap 230 B is generated. Is more easily transmitted to the filter 236, the entire surface of the finlet is more uniformly heated by dtfc. Therefore, the accuracy and uniformity of the temperature on the entire filter surface are improved. Therefore, the finale The re-vaporization of the mist in the filter 236 is promoted, and the clogging of the filter 236 is also suppressed.
  • the above-mentioned finoleta 236 can be used instead of the finoleta 236.
  • FIGS. 5A and 5B are respectively a vertical side view and a vertical front view schematically showing a spray nozzle that can be used in the vaporizer shown in FIGS. 2 to 4.
  • FIG. FIGS. 5A and 5B show cross-sectional structures when cut along vertical planes orthogonal to each other.
  • 6A-D are cross-sectional views along the lines VIA, VIB, VIC, VID in FIG. 5A.
  • the carrier gas introduced from 08 is supplied to the supply channel 2311D.
  • the supply channel 2311D has a plurality of diffusion chambers 2311D1 and 2311 corresponding to the above-mentioned liquid materials. D 2, 2 3 1 are supplied to D 3. From each of the diffusion chambers, coaxial paths extending coaxially with the supply paths 23A, 2311B, and 2311C extend. Carrier gas supplied by this coaxial path is supplied to supply paths 23 A, 23 B, 23
  • the liquid raw material supplied by 1C is supplied to the nozzle ports 2 3 1a and 2 3
  • the nozzles 23 1 X spray multiple liquid raw materials from different nozzles, as shown in Fig. 10, the liquid raw materials are sprayed by the nozzles and holes formed in the main piping. No need to mix.
  • a dedicated nozzle port is provided for each raw material, it is possible to adjust the spray mode (the raw material spray amount, the amount of carrier gas to be mixed, the spray pressure, etc.) for each raw material.
  • FIGS. 7A and 7B are respectively a vertical side view and a vertical front view schematically showing another spray nozzle that can be used for the vaporizer shown in FIGS. 2 to 4.
  • FIG. FIGS. 7A and 7B show cross-sectional structures taken along vertical planes orthogonal to each other.
  • 8A to 8E are cross-sectional views taken along lines VIIIA, VIIIB, VIIIC and VIIID VIIIE in FIG. 5A.
  • a plurality of different liquid raw materials (or a liquid mixture of a liquid raw material and a carrier gas) are supplied to the piping 1
  • Power is supplied from 07 A, 107 B, and 107 C to the supply paths 23 A, 23 B, and 23 C, respectively, which are independently provided in the nozzle. Also, the carrier gas introduced from the pipe 108 is supplied to the supply channel 23
  • the common supply path and the coaxial path formed on the shaft extend.
  • the carrier gas supplied through the coaxial path converts the liquid raw material supplied through the common supply path into a nozzle 2
  • the spray nozzle 2311Y mixes a plurality of liquid raw materials in the nozzle, the mixing of the liquid raw materials is performed by a manifold formed in the main pipe as shown in FIG. No need to do. Also Since a plurality of types of raw materials can be uniformly mixed, the mixed raw materials are vaporized in the vaporization space and supplied to the film formation chamber. This improves the reproducibility of the composition ratio of the film.
  • FIG. 9 is a longitudinal sectional front view schematically showing still another spray nozzle which can be used for the gasifier shown in FIGS. 2 to 4.
  • This spray nozzle 213Z is a configuration example of a nozzle ⁇ port that uses the liquid material supply system shown in FIG. 10 as it is.
  • the liquid raw material mixed in advance by the main pipe 107 shown in FIG. 10 is supplied to the supply path 2311A in the spray nozzle 2311Z.
  • D3 forces are the supply paths 2 31 A a and 23 1 A b ⁇ 23 1 A c, respectively-a plurality of coaxial paths configured coaxially extend ⁇ by these coaxial paths.
  • the supplied carrier gas is supplied via the supply channels 23 1 Aa and 23 1 Ab ⁇ 23 1 A c, and the supplied liquid raw material is used as nozzles ⁇ 23 1 a and 23 1 b Spray in mist on '2 3 1 c.
  • the nozzle structure can be easily configured. Further, by having a plurality of nozzles, it is possible to efficiently spray the liquid raw material. That is, the gas reaction apparatus and the semiconductor processing apparatus according to the present invention are not limited to the above-described illustrated examples, and various changes are made without departing from the scope of the present invention. This can be done. For example, in the above-described embodiment, the case where a plurality of liquid raw materials are mixed to form a raw material gas is described. The number of liquid raw materials according to the present invention is not limited at all, and only one liquid raw material is vaporized: even if it is vaporized in a vessel.
  • a high-quality gas reaction can be realized by shortening the transport distance of the reaction gas, and the apparatus can be simplified and compact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Filtering Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

明 細 書
ガス反応装置及び半導体処理装置
技術分野
本発明はガス反応装置及び半導体処理装置に関 し、 よ り 具 体的には、 液体原料を気化 して反応ガスまたは処理ガス を生 成する ための気化部を有する この種の装置に関する。 こ こで、 半 導 体 処 理 と は 、 半 導 体 基 板 や L C D (Liquid crystal display)や F P D ( Flat Panel Display) 用のガラ ス基板な ど の被処理基板上に半導体層、 絶縁層、 導電層な どを所定のパ ターンで形成する こ と に よ り 、 該被処理基板上に半導体デバ イ スや、 半導体デバイ ス に接続される配線、 電極な どを含む 構造物を製造するために実施される種々 の処理を意味する。 背景技術
一般に、 半導体製造ライ ンや液晶表示体製造ライ ンな どに おいて、 原料ガスを反応室内に導いて種々 の処理を行 う ガス 反応装置が使用される。 例えば、 半導体ウェハな どの被処理 基板の表面に絶縁薄膜を形成する成膜装置 と して、 ガス反応 によ って成膜を行 う 化学気相成長装置 ( C V D装置) が公知 である。 近年、 P Z T (チタ ン酸ジルコ ン酸鉛) 等の多元系 金属酸化物薄膜を成膜する ため、 C V D装置が使用 されてい る。 . '
P Z T等の薄膜の原料と なる有機金属化合物は、 一般的に、 常温常圧で固体であ る。 こ のため、 こ の種の固体原料を C V D装置で使用する には、 固体原料をガス化 して処理室に供給 する必要がある。 この場合、 通常、 固体原料を適当な溶媒に 溶解させて (溶液原料と 呼ばれる) 液体 と し それを気化器 において 化 して処理室に供給する。 こ の よ う な原料供給方 式は溶液 化法と呼ばれる。 溶液気化法は / ブ リ ング法や 固体昇華法に代わる有望なガス化法の一つ と して近年盛んに 研究開発がな されている (例えば、 特開平 7 ― 9 4 4 2 6 号 公報参照 ) ο
上記の溶液気化法を用いて例えば 3 兀系の金属酸 化物薄膜を成膜する場合について説明する o 図 1 0 は、 従来 のガス反応装置 (成膜装置) の全体を示す概略構成図である 図 1 0 に示すよ う に、 こ の成膜装置 1 0 0 は 複数の系統に 分け られた原料容器の夫々 に異なる原料溶液が貯蔵される。 例えば、 れらの原料容器は 、 鉛系原料の溶液を貯蔵 した原 料容器 1 0 1 a 、 ジルコ ユ ウム系原料の溶液を貯蔵 した原料 容器 1 0 1 b 、 及ぴチタ ン系原料の溶液を貯 した原料容器
1 0 1 c からなる
原料溶液は、 圧送ガス管 1 0 2 を介 して加圧ガス Αが供給 される こ と によ り 供給管 1 0 3 a 、 1 0 3 b 及び 1 0 3 c に 押 し出 され yjfe景制御器 1 0 5 a 、 1 0 5 b 及び 1 0 5 c を 通 して主配管 1 0 7 に流れる 。 主配管 1 0 7 には 、 不活性ガ ス (例えば H e 、 A r ) な どのキャ リ アガス B が流量制御器
1 1 5 を通 して供 PB レ o 配管 1 0 7 内で 溶液原料と キ ャ リ アガス と が混合され、 気液混合状態で気化 1 1 ◦ へと 送られる σ なお、 例えば酢酸ブチル、 オタ タ ンや T H F (テ 卜 ラ ヒ ド、 π フ ラ ン ) な どの溶剤を収容 した溶剤容器 1 0 1 d も配設される。 の溶剤容器 1 0 1 d に収容された溶剤も、 加圧ガス Aに よ り 供給管 1 0 4 に押 し出 され、 流量制御 1
0 6 を介 して主配管 1 0 7 ! :こ流れる。
化器 1 1 0 にはノ ズル 1 1 1 が配設され、 のノ ズル 1
1 1 に上記主配管 1 0 7 が接 される。 また、 ノ ズノレ 1 1 1 には 、 配管 1 0 8 に よ つてキャ y ァガス Cが流 制御 1 0
9 を通 して供給される 。 ノ ズル 1 1 1 には二重管構造を有す る ノ ズノレ口 が配設され 、 例えばヽ 外管内に供給される キャ V ァガス C に よ って内管に供給された溶液原料が 化室 1 1 2 内へ噴霧される。 こ で、 使用 される溶媒の気化温度 と原料 その も のの気ィ匕温度は通常異な る ので、 気化温度の低レ、溶媒 が先に気化 しないよ ラ にノ ズル部分は室 曰
輒以下に冷却 され Ό o 気化室 1 1 2 の内面は原料を 化させるための気化面 1 1
2 a であ り 、 例えば 2 0 0 °c刖後に加熱される ノ ズノレ 1 1
1 か ら嘖出 した霧状の溶液原料は気化面 1 1 2 a し つかつ て瞬時に気化 し、 化室 1 1 2 内において原料ガス と なる この原料ガスは、 フ ィ ノレタ 1 1 4 を通 してガス導出 口 1 1 3 から導出 され、 ガス輸送管 1 1 6 通 して成膜装置本体 1 2
0 の処理室 1 2 1 に供給される ガス輸送管 1 1 6 は 内部 を通過する原料ガスが固化若し < は液化 しないよ う に加熱さ れる
処理室 1 2 1 内には 、 ガス輸送管 1 1 6 が接 されたシャ ヮ 一 へッ ド、 1 2 2や 、 被処理基板 Wを載置するためのサセプ タ 1 2 3 な どが配置さ れる シャ ヮ一 へッ ド、 1 2 2 にはヽ 反 応ガス供給管 1 1 7 を介 して 処理室 1 2 1 内で原料ガス と
IX 、 さ せる O 2 、 N o 、 N ο な どの i酸化性ガス も供給さ れる。 処理室 1 2 1 内では、 上記原料ガス と 酸化性ガス と の 反応によ って被処理基板 W上に薄膜が形成される。
しカゝ しなが ら、 上記従来の成膜装置 1 0 0 において 、 気化 器 1 1 0 と 処理室 1 2 1 と の間のガス輸送管 1 1 6 が長い。 こ のた め 、 原料ガス 中にパーティ クルが発生 し易い、 或いは 原料ガス の供給量が変動 して、 膜組成や膜厚の均一性が低下 する と い う 問題点が生じる。
また、 輸送中に原料ガスが固化或いは液化 しないよ う に、 ガス輸送管 1 1 6 の内部を全体に亘つて原料の 化温度以上 且つ分解温度以下に加熱制御する必要がある の場合、 加 熱手段及びその温度制御手段が必要にな り ヽ 構 が複雑化す
O。 よ 7こ 、 気化器 1 1 0 、 ガス輸送管 1 1 6 及び処理室 1 2
1 を別々 に加熱する必要があ り 、 消費電力 も増大する 。 更に 加熱手段を伴っ た気化器 1 1 0 やガス輸送管 1 1 6 が付随す るため、 装置全体が大型化する。
発明の開示
本発明は、 原料ガスの輸送中におけるパ一ティ クルの発生 を防止 して高品位のガス反応を実現でき る と itに 、 衣置の簡 易化や小型化な どを図 る こ と の可能なガス反応装置及び半導 体処理装置を提供する こ と を 目的とする。
本発明の第 1 の視点に係るガス反応装置は、
液体原料を気化 して反応ガスを生成する気化器と 、
前記反応ガスを反応させる反応室と、
を具備 し、 前記気化器は、 前記反応室を画成する構成部材に 対 して一体的に構成 され、 前記気化器内で生成された前記反 応ガスが前記反応室に直接導入される。
第 1 の視点に係る ガス反 J心装置によれば、 化 と反心 と を結ぶガス輸送管を ける必要がな く なる と に ガス輸 送管を加熱する手段を ける必要も な く なる また 反心ガ スの輸送距離が 縮される と に よ り i送管中の滞在時間が 縮され 輸送途中に けるノ^ · "~ティ クノレの 生も回避でさ ス
で IX J心ガスが反応室に直接導入される と は Γ反 J心 ガス カ ¼化器及び反応室を画成する構成部材の外部に一 配 管を介 して出てか ら反応室に導入される」 こ と 匕
を除 < 趣曰 で あ ό
第 1 の視点に係る ガス反応装置に いて、 し 化 は 刖 己反応室に前記反応ガス を導入する ガス導入部の外側に直
- 接に構成さ れる と が好ま しい。 化器にて生成された反応 ガス をその - 内側に配置されたガス導入部へと 直接導 < と に り 、 反応室に導入される までの経路を更に < する と が
- でき る。 のため ハ。一テ ィ ク ノレを更に低減する と がでさ る と 共に 反応ガス の安定性を高める こ と ができ る こで、 ガス導入部には反応ガス を導入する ための反応室内に す るガス導入 口 が配 される ガス導入部と しては 、 複数のガ ス導入口 を有する シャ V 一へ V ド、構造を有する も のが挙げら れる。
pp 第 1 の視点に係る ガス反 J心 ¾晋に いて、 前記気化 は sd S Ji - 、室の上方に構成される こ と が好ま しレ、 れに よ り ヽ
Ή化器やガス導入部な どの分解作 (メ ンテナンス作 ) が 容易にな o
なおヽ 全体構成と してはヽ 気化器と ガス導入部 と がー体的 に構成され、 気化器'をガス導入部 と共にヽ 反 J心室を画成する 構成部材の他の部分に対 して取 り 外し可能と する と 、 例え ば開閉可能に構成する こ と、 . が好ま しい。
第 1 の視点に係る ガス反応装置においてヽ 記 化器は、 噴霧ノ ズルと 、 該噴 ノ スルの 霧空間を構成する気化室と 、 化室に連通する狭隘通路 と ヽ 該狭^通路及び id反 }心 3&
·>- に連通する導出部と を有する こ と が好ま しい の 、 噴 霧ノ ズノレに よ って液体原料がヽ 化室內に Bき霧さ れる こ と に よ つて液体原料が気化 されて反応ガスが生成される 。 その後、 反応ガ - ス は狭隘通路を経て導出部に至 り ヽ こ か ら反応室に 導入される。 こ の と き、 気化室で生成された反心ガス は 、 反 応室に導人される前に狭隘通路を通過する ためヽ 反応ガス 中 に含まれる ί ポ田 ス ト が通路内面にて捕捉され 、 再 ¼化さ れやすく な る。 その ;1¾ 、 反応ガス の気化率を更に高め る こ と ができ る と共に、 反応室に導入されるパ一ティ クルも更に 低減でき
第 1 の視点に係る ガス反 !' Lヽ装置においてヽ 前記狭隘通路は、
H
刖 己気化室の周囲に環状に配 HX されたー体の若し < は複数の 通路で構成され、 冃 U ¾Ci ¾出部には 、 m記狭隘通路に連通する
- 環状の導出通路が配 5· る と が好ま しい o これに よ り 、 気化器の薄型化を図 る こ と がでさ る。 また 、 装置を大型化す る こ と な しに狭隘通路の流通断面積を充分に確保する こ と も 可能になる 。 更に、 狭隘通路に 通する環状の導出通路が配 g される こ と に よ り 、 狭隘通路を通過 した反応ガスの コ ンダ ク タ ンス を十分に大き く する こ と ができ る 。 このため 反応 室への反応ガス の導入経路内にガスの滞留部が発生しに < < な り 、 これによ つて反応室へ導入されるパ一ティ クルを更に 低減でき る。 こ で、 上記環状の導出通路は、 気化器を更に 小型化するため 、 狭隘通路の周囲に配設される こ と が好ま し く 、 特に 、 狭隘通路と 同軸に構成;きれる こ とが望ま しレヽ 第 1 の視点に係る ガス反応装置においてヽ 刖 気ィ匕至の内 面及び刖記狭隘通路の内面を加熱する ヒ 一タ を有する と が 好ま しい れに よ り 、 気化室の内 において気化作用が得 られる こ と はも ちろんのこ と、 狭隘通路の内面において も ミ ス ト を気化させる こ と ができ る このため 、 反応ガスの気化 率を高める こ と ができ る と共にパ一テ ィ クルの低減を図 る こ
- と ができ る。 こ で、 ガス導入部の外側に気化器を直接に構 成する場合には 、 上記ヒ ータ に よ つてガス導入部をも 同時に 加熱する こ と ができ る。
第 1 の視点に係る ガス反応装置におレヽて 、 ftu記導出通路の 內部には 、 m記反応ガス 中の固形物若 し < は液状物を捕捉す る フ ィ ノレタ が配置さ れる こ と が好ま しレヽ フ ィ ル'タ に よ つて
/X応ガス 中の固形物や液状物を捕捉でき る ため、 反応室へ導 入さ れるノ · ~·テ ィ ク ノレを更に低減でき る また、 こ の フ ィ ノレ タ を導出通路の >- 内部に配置する と に よ つて フ イ ノレタ 面積を 充分に確保する こ と ができ る。 また 、 、 ス ト の捕捉機能を備 えた狭隘通路の下流側にフ ィ ルタ が配置される こ と と な る た め、 フ ィ ルタ の 目詰ま り を低減でき る。 第 1 の視点に係る ガス反応装置において、 刖 §己フ ィ ノレタ は、 前記反応室に連通する前記導出通路の導出 口 に配設される こ と が好ま しい これに よ り 、 フ ィ ルタ設置空間を最小限に と どめて確実に反応ガス中の固形物や液状物を捕捉でき る。
第 1 の視点に係る ガス反応装置において、 前記導出 口 を開 閉するための弁体が配設 され、 前記フ ィ ルタ は前記弁体を包
·
囲する よ つ に配設される こ と が好ま しい。 これに よ り 、 弁体 によ り 導出 を開閉する こ と ができ る。 また 、 弁体を包囲す る よ う にフ ィルタが配設される こ と に よ り 、 弁体の収容空間 を利用 してフ ィ ルタ を収容する こ と ができ る ため、 気化器を 更にコ ンパク 卜 に構成でき る。
第 1 の視点に係るガス反応装置において、 前記フ ィ ルタ を 加熱する ヒ タ を有する こ と が好ま しい。 これに よ り 、 フ ィ ノレタ において捕捉された ミ ス ト を気化させる こ と ができ るた め、 気化率を向上でき る と 共にフ ィ ルタ の 目詰ま り を低減で き る。
第 1 の視点に係る ガス反応装置において、 m目 Gフ ィ ノレタ は、 記導出通路の内面 と 熱接触 し、 前記導出経路の内面か ら 刖 記ヒ ータ の熱を受ける よ う に構成される こ と が好ま しい れに よ りヽ ヒ一タ を導出経路の外側に配置する こ と ができ る ので、 ヒ一タ の配置の 自 由度が高め られる と 共に、 導出経路 をコ ンハ。ク 卜 に構成でき る。 こ の ヒ ータ は、 上記の気化室を 加熱するためのヒ ータ と共通のもの とする こ <と ができ る。
第 1 の視点に係る ガス反応装置において、 刖記導出通路に は、 刖記フ ィ ルタ の端縁以外の部位に熱接触する伝熱部が配 設される こ と が好ま しい。 これに よ り 、 フ ィ ルタ をよ り 均一 に加熱する こ と ができ るため、 気化率を高め る こ と ができ る と 同時に、 フ ィ ルタ の局所的な 目詰ま り を低減でき る。 伝熱 部と しては、 導出通路の内面か ら突出 してフ ィ ルタ面に接触 する突起が挙げられる。
本発明の第 2 の視点に係る半導体処理装置は、
被処理基板を処理する処理室を形成する容器と 、 前記容器 は着脱可能な天盤を有する こ と と 、
前記容器内に配設 された、 前記被処理基板を支持する支持 部材と 、
前記処理室内に処理ガス を供給する シャ ワ ー へッ ド と 、 前 記シャ ワ ー へッ ドは、 前記支持部材に よ り 支持された前記被 処理基板に対向する よ う に、 前記天盤の下面上に配設 される こ と と、
前記天盤の上面上に配設された、 液体原料を気化 して前記 処理ガスを生成する気化室と 、
前記天盤を通 して前記気化室 と 前記シャ ヮ一へッ ド と を接 続する よ う に形成された前記処理ガスを流すガス通路と 、 を具備する。
図面の簡単な説明
図 1 は、 本発明の実施形態に係るガス反応装置 (半導体処 理装置) の装置本体を示す概略縦断面図。
図 2 は、 図 1 に示す装置本体における気化器の一部を示す 拡大断面図。
図 3 は、 図 2 に示す気化器の変更例の一部を示す拡大断面 図。
図 4 は、 図 2 に示す気化器の別の変更例の一部を示す拡大 断面
図 5 A、 Bは、 夫々 、 図 2 乃至図 4 に示す気化器に用いる こ と のでき る噴霧ノ ズルを概略的に示す縦断側面図及び縦断 正面図
図 6 A〜 D は、 図 5 A中の線 VIA 、 VIB 、 VIC 、 VID に沿つた断面図。
図 7 A、 Bは、 夫々、 図 2 乃至図 4 に示す気化器に用いる こ と のでき る別の噴霧ノ ズルを概略的に示す縦断側面図及び 縦断正面図。
図 8 A〜 E は、 図 5 A中の線 VIIIA 、 VIIIB 、 VIIIC 、 照及
VIIID 、 VIIIE に沿つた断面図。
図 9 は、 図 2 乃至図 4 に示す気化器に用いる こ と のでき る 更( 別の噴霧ノ ズルを概略的に示す縦断正面図。
1 0 は、 従来のガス反応装置 (成膜装置) の全体を示す 概略構成図。
発明を実施するための最良の形態
以下に、 本発明の実施形態について図面を参 して説明す る。 なお、 以下の説明において、 略同一の 能 び構成を有 する構成要素については、 同一符号を付 し 説明は必要 な場合にのみ行う。 以下に説明する実施形態に係るガス反応装置 (半導体処理 装置 ) は、 反応室内において被処理基板 Wに成膜処理を施す ための成膜装置 ( C V D装置) と して構成される。 しか し、 本発明は、 液体原料を気化 して反応ガス または処理ガス を生 成する ための気化部を有する他のガス反応装置 (半導体処理 装置) 例えば、 ドラ イ エ ッチング装置、 プラ ズマア ツ シング 装置な どにも適用する こ と ができ る。
図 1 は、 本発明の実施形態に係る ガス反応装置 (半導体処 理装置) の装置本体を示す概略縦断面図である。 図 1 に示す よ う に、 成膜装置本体 2 2 0 は、 上部が開 口 した容器ケーシ ング 2 2 1 を含む。 容器ケーシング 2 2 1 の上部に、 ガス導 入部 (シャ ワ ーヘッ ド) 2 2 2 が配設 される。 容器ケーシン グ 2 2 1 の内部に、 サセプタ (基板ホルダ) 2 2 3 が配設さ れる。 こ こで、 ガス導入部 2 2 2 と サセプタ 2 2 3 と の間の 空間に よ って反応室 (処理室) 2 2 1 Aが構成される。 容器 ケーシング 2 2 1 には、 排気空間 2 2 1 o を介 して排気装置 E S が接続される。 反応室 2 2 1 Aは、 排気装置 E S に よ つ て排気される こ と によ り 、 減圧される。
サセプタ 2 2 3 は、 リ ング構造等を備えた、 例えば、 A 1 N、 A 1 2 O 3 、 石英又はアル ミ ニ ウ ム な どで構成さ れた支 持体 2 2 4 によ って支持される。 支持体 2 2 4 の上面には、 石英な どで構成される シール ド リ ング 2 2 5 が配設される。 支持体 2 2 4 は、 アタ ッチメ ン ト 2 2 5 a を介 してシール ド ベース 2 2 5 b に支持される。 シーノレ ドベース 2 2 5 b の外 周に環状の整流板 2 2 5 c が装着される。 整流板 2 2 5 c を 介 して、 反応室 2 2 1 Aが排気空間 2 2 1 o に連通する。
サセプタ 2 2 3 の下方には、 石英な どで構成される窓材 2 2 6 が取 り 付け られる。 窓材 2 2 6 の外部 (下方) に、 加熱 ラ ンプ 2 2 7 が配置される。 加熱ラ ンプ 2 2 7 は、 窓材 2 2
6 を通 してサセプタ 2 2 3 の下面に光を照射 してこれを加熱 する。 サセプタ 2 2 3 と 窓材 2 2 6 と の間には 、 加熱ラ ンプ
2 2 7 か ら照射される光を反射する環状の リ フ レク タ 2 2 8 が配置さ れる 。 サセプタ 2 2 3 には外部か ら熱電対な どの温 度セ ンサ 2 2 9 が導入される。 加熱源は、 サセプタ 2 2 3 の 内部に抵抗体を埋め込んだ A 1 2 O 3 ヽ A 1 N 、 s i C等か らなるセラ へへ ック ヒ ータ と しても よレ、。
容器ケ一シング 2 2 1 には、 ゲー トノ ノレブ 2 2 1 Xに よ つ て開閉可能にロ ー ドポー ト 2 2 1 i が形成される。 容器ケー シング 2 2 1 には、 リ フ ト機構 (図示せず) が配設され、 こ の リ フ 卜機構は、 サセプタ 2 2 3 上に複数の フ タ一ピ ンを 出没させる と ができ る。
被処理基板 (例えば半導体ウェハな ど) Wに対 して成膜処 理が施される時、 被処理基板 Wは、 搬送手段 (図示せず) に よ り 口一 ポー ト 2 2 1 i を介 して容器ケーシング 2 2 1 に 導入される 導入された被処理基板 Wは、 サセプタ 2 2 3 か ら突出 した ジ フ ト機構の リ フ ター ピンに よ つ て支持される。 次に、 被処理基板 Wは、 リ フ ター ピンがサセプタ 2 2 3 内に
· - 没する と に よ ってサセプタ 2 2 3 上に載置 される 一方、 被処理基板 Wに対する成膜処理が終了する とヽ 上記 リ フ ト機 構の リ フ タ一ピンが上昇する こ と に よ つて被処理基板 Wがサ セプタ 2 2 3 上から上方へ持ち上げられる。 次に、 被処理基 板 Wは 、 搬送手段に よ り 把持さ れ、 口一 ドポ一 卜 2 2 1 i を 介 して外部へ取り 出される。 容器ケ シング 2 2 1 の上部開 口 は 天盤 2 3 0 Aに よ つ て気密に閉鎖される。 ガス導入部 (シャ フ ク ) 2 2 2 は、 天盤 2 3 0 A ョ ru
の下面上に一体的に配 HX される 。 シャ ヮ一 へッ ド、 2 2 2 を形成するため 、 天盤 2 3 0 Αの下面上に中板
2 2 2 A及び下板 2 2 2 B が配設される o 中板 2 2 2 Β と天 盤 2 3 0 A と の間には原料ガス拡散室 2 2 2 a が形成され ο 原料ガス拡散室 2 2 2 a 力、らは、 中板 2 2 2 A及び下板 2 2
2 B を通過 して反応室 2 2 1 Aに開 口する複数の原料ガス供 給経路 2 2 2 a X が伸びる。
中板 2 2 2 A と 下板 2 2 2 B と の間には 、 反 J心ガス拡散室
2 2 2 b が形成さ る。 反応ガス拡散室 2 2 2 b から は 、 下 板 2 2 2 B を通過 して反応室 2 2 1 Aに開 口する複数の反応 ガス供給経路 2 2 2 b X 力 S伸びる。 反応ガス拡散室 2 2 2 b は、 天盤 2 3 0 Aの上面上から伸びる反 J心ガス供給管 2 2 2
S を介 して反応ガス供給部 R G S に接 される o 応ガス供 給部 R G S か ' ら 、 反応ガ ス (例 えば、 O 2 、 N 2 : ο、 Ν Ο 2 な どの酸化性ガス) が、 反応ガス拡散室 2 2 2 b に導入され 天盤 2 3 0 Aの上面上、 即ちガス導入部 2 2 2 の上方には 気化器 2 3 0 が配 BX 2·れ ό 0 気化器 2 3 0 の気化室 2 3 2 を 形成 る ため、 天盤 2 3 0 Aの上面上には、 気化室 2 3 2 の 側壁を規定する立ち上が り 部 2 3 2 S が形成される。 即ち、 立ち上が り 部 2 3 2 S によ り 、 天盤 2 3 0 Aの上面上に気化 室 2 3 2 の凹部が形成される 。 ち上が り 部 2 3 2 S を覆 う よ う にヽ 天盤 2 3 0 Aの上面上にキヤ yプ 2 3 0 Bが気密に 着脱可能目匕に配設 される。 気化室 2 3 2 はヽ 天盤 2 3 0 A と キ ャ ッ プ 2 3 0 B と の間で 、 立ち上が り 部 2 3 2 S に包囲 され た空間 と して形成される 。 5¾ィ匕を効率よ く 行 ラ ためヽ 化室
2 3 2 の側壁の内面形状は、 凹湾曲状ヽ 半球状 、 円状と する こ と ができ 。
天盤 2 3 0 A及びキ ヤ ッ プ 2 3 0 Β の少な < と あ一方の内 部には ヒ ータ (加熱手段) 2 3 2 Ηが配 BX される ヒ 一タ
2 3 2 Hに よ つて、 気化室 2 3 2 と d±に天盤 2 3 0 A及びキ ヤ ッ プ 2 3 0 B が加熱される。 ヒ 一タ 2 3 2 Hは 、 天盤 2 3
-
0 A と キャ ップ 2 3 0 B の夫々 に配 される と が好ま しい。 なお、 ヒ ータ 2 3 2 Hは 、 シ リ n ン基板上に P Z Tや B S T な どを成膜する場合、 後述する 化面 2 3 2 a が 1 8 0 〜 2
5 0 °C 、 望ま し く は 2 0 0 〜 2 2 0 。c と なる よ Ό に制御 され る。 ヒ ―タ 2 3 2 Hは、 ガス導入部 2 2 2 を も加熱 し 、 これ によ つてガス導入部 2 2 2 の内部に レ、て も原料ガス inn.度が 所定温度に維持される。
キャ ク プ 2 3 0 B の中央には卩賁霧ノ ズル 2 3 1 が固 され る。 噴霧ノ ズル 2 3 1 の ノ ズ、ノレ P は 、 化室 2 3 2 の内部に 臨むよ Ό に配置 される。 噴霧ノ ズル 2 3 1 にはヽ キャ V ァガ ス と 混 Π さ れた液体原料の供給系 L M S及びキャ リ ァガスの 供給系 C G S が接続される。 ~れらの供給系はヽ 図 1 0 に示 すもの と実質的に同 じである。
天盤 2 3 0 A の立ち上が り 部 2 3 2 S の上面と キャ シ プ 2
3 0 B の内面 と の間には 、 狭隘 路 2 3 3 が形成される o σ^. り 具体的には、 立ち上が り 部 2 3 2 S の上面及びキャ プ 2 3 0 B の内面は itに円錐面をな し、 これら が僅かな隙間を介 して対向する こ と に よ り 狭隘通路 2 3 3 が形成される。 従つ て、 狭隘通路 2 3 3 は、 気化室 2 3 2 の周囲を囲むよ う に環 状をなす。 狭隘通路 2 3 3 は、 後述する よ う に、 気化された ガス 中に含まれる ス ト を気化させる ための通路 と して機能 する。
更に、 狭隘通路 2 3 3 の周囲には、 環状の導出通路 2 3 4 が同軸状に形成される。 導出通路 2 3 4 の一部には、 ガス導 入部 2 2 2 を介 して反応室 2 2 1 Aに連通する導出 口 2 3 4 a が形成される キヤ ップ 2 3 0 B には、 導出 口 2 3 4 a を 開閉する ための開閉弁 2 3 5 が配設される。 開閉弁 2 3 5 の 弁体 2 3 5 a は 導出 口 2 3 4 a に臨むよ う に配置される。
導出 P 2 3 4 a と狭隘通路 2 3 3 と の間には ミ ス ト (気 化ガス 中の固形物若 し < は液状物 ) を捕捉する フ ィ ノレタ 2 3
6 が配卩ス される c*- り 具体的には 、 狭隘通路 2 3 3 の出 口 2
3 3 a を包囲する ぶ ラ にフ ィ ルタ 2 3 6 力 S配置される ο 更に、 導出通路 2 3 4 の別の一部には排気 Π 2 3 4 b が配設され、 排気口 •2 3 4 b に排気経路 2 3 7 b を介 して排 装置 B S が 接 k < れる 。 排気経路 2 3 7 b には開閉弁 2 3 7 が配 Ρス れ、 開閉弁 2 3 7 に よ り 導出通路 2 3 4 内を排気する 1¾閉弁 2
3 7 の弁体 2 3 7 a は 排気 P 2 3 4 b に臨むよ う に配置さ れる。
実施形態では、 上記導出 Π は一つだけ配 RX される が、 導 出通路 2 3 4 に 2 以上の導出 P が配設されていて も よい。 ま た同様に 上記排気 P も ―つだけ配設される が 2 以上の排 ≡ru
気口が配 Pスされていても よい。
天盤 2 3 O Aは、 容器ケーシング 2 2 1 の上縁に取 り 付け られた ヒ ンジ部 2 3 0 C に よ って 閉可能 よ 体 と して構成 される。 従つて、 天盤 2 3 O A及ぴキヤ ッ プ 2 3 0 B は、 容 器ケーシング 2 2 1 に対して、 ヒ ンジ部 2 3 0 C を中心 と し て一体的に旋回可能である。 換言する と 、 気化 2 3 0 及び ガス導入部 2 2 2 は、 容器ケーシング 2 2 1 の上部開 口 を開 閉可能な 構造体の部分と して構成される 。 従つて 、 化
2 3 0及びガス導入部 2 2 2 は、 ―体的に容器ケ一シング 2
2 1 に対 して開閉可能と な る。 なね 、 気化 ^ff 2 3 0 を構成す る部分と ヽ 蓋体或いはガス導入部 2 2 2 を構成する部分と が 相互に固定されてなる構成とする こ ( もでき る。
図 2 は、 図 1 に示す装置本体にねける気化 2 3 0 の う ち 気化室 2 3 2 か ら導出通路 2 3 4 の導出 P 2 3 4 a に至る部 分を示す拡大断面図である 図 2 に示すよ う にヽ 嘖霧ノ ズル
2 3 1 のノ ズノレ口 2 3 1 a か ら - ヽ 、 ス ト状の液体原料が気化 室 2 3 2 内に噴霧される 液体原料は、 ヒ一タ 2 3 2 Hに よ つ て加熱さ れた気化面 2 3 2 a に衝突する と ヽ 瞬間的に気化 し、 原料ガス (反応ガス ) と なる こ の原料ガスは、 応
2 2 1 Αの減圧状態に よ つ て生ずる圧力勾配にぶ り 気化室 2
3 2 の周囲に形成された狭隘通路 2 3 3 に流れヽ 更に導出通 路 2 3 4 に流入する。
上述の よ う に、 狭隘通路 2 3 3 は 、 化室 2 3 2 の最上部 において開 口する。 これに よ り ヽ ノ ズノレ P 2 3 1 a か ら嘖霧 された ミ ス ト が、 狭隘通路 2 3 3 に直接に飛び込むこ と はほ と ん どない。 ま た、 噴霧された ミ ス ト が気化面 2 3 2 a に 突 した と き に完全に気化 さ れずに残っ た微細な ミ ス ト ( 沫) も、 フ イ ノレタ 2 3 6 に到達 しに く い。 こ のため、 フ ィ タ 2 3 6 の 目詰ま り が低減され、 その使用寿命が長く なる。
ま た、 狭隘通路 2 3 3 はヽ 気化室 2 3 2 に対する開 ロ カ ら やや下方に向けて傾斜する よ う に伸びる これに よ り 、 狭隘 通路 2 3 3 の開 口 に到達した ミ ス ト がヽ 狭隘通路 2 3 3 の内 面に接触 しやすい。 従つて ミ ス トがそのまま狭隘通路 2 3
3 を通 り 抜けて導出通路 2 3 4 に到達する のを防止する こ と を抑制でさ る。 狭隘通路 2 3 3 の内面 (上限両面 ) は 、 気化 面 2 3 2 a と 同様に ヒ ータ 2 3 2 Hに よ つて加熱される ので 狭隘通路 2 3 3 の内面に接触 した ミ ス 卜 は でも 化 し、 原料ガスが生成される。
本実施形態において、 化室 2 3 2 の周囲に環状の狭隘通 路 2 3 3 が一体に構成されるが、 複数の狭隘通路を 化室 2
.3 2 の周囲に環状 (放射状 ) に配置 しても よい 化室 2 3
2 の周囲に環状に狭隙通路 2 3 3 が構成される と に よ り 、 狭隘通路 2 3 3 の通路幅 (最も狭い方向の幅、 図示例では上 下幅) を小さ く して も、 )t=JJ囲全体 と しては充分な流通断面積 を確保する こ と ができ る c
狭隘通路 2 3 3 の通路幅 (上下幅) はヽ 例えばヽ 0 . 5 〜
1 0 . 0 m m程度であ る と が好ま しい 或いはヽ 上記通路 幅 (上下幅 ) を、 気化室 2 3 2 と それに糸冗く 反応室と の圧力 差が 1 . 0 〜 4 . 5 k P a 程度 なる よ に確保する こ と が 好ま しい これ らの範囲を下回る と さ には狭隘通路 2 3 3 の 目詰ま り が発生 しやす く なる。 逆に上記範囲を上回る と 上述 の再気化性能が極端に低下する。 特に、 上記通路幅 (上下 幅) は 、 ミ ス ト (例えば粒径 1 Ό β 〜 ェ 0 0 m程度) の 平均 自 由行程 λ よ り も大き な幅 (長い距離 ) である こ と が望 ま しレ、
導出通路 2 3 4 は 上記狭隘通路 2 3 3 を挟んで気化室 2
3 2 の外周に沿つて 状に構成される 。 導出通路 2 3 4 は、 環状に形成された狭隘通路 2 3 3 から原料ガスが流入 して、 導出 口 2 3 4 a からス ムーズに排出 される よ う に配設 される。 従っ て 、 導出通路 2 3 4 は、 十分なコ ンダク タ ンス を有する こ と が好ま しい。 図示例では、 導出通路 2 3 4 の上下幅は気 化室 2 3 2 の上下幅と ほぼ等 しい寸法と なつている。 導出通 路 2 3 4 の導出 口 2 3 4 a の上方には上述の弁体 2 3 5 a が 上下移動可能に配置される。 弁体 2 3 5 a が下降 して導出通 路 2 3 4 の底部まで する と 、 導出 Π 2 3 4 a が完全に閉鎖 される 。 逆に 、 弁体 2 3 5 a 力 S上昇する と 、 その高さ に応 じ て導出 P 2 3 4 a の n ンダク タ ンス は増大する。
フ ィ ル タ · 2 3 6 は全体 と して筒形状 (図示例では円筒形 状) を有 し、 狭隘通路 2 3 3 の出 口 2 3 3 a を包囲する よ う に導出通路 2 3 4 内に設置される。 よ り 具体的には、 フ ィ ル タ 2 3 6 は、 導出通路 2 3 4 内において、 狭隘通路 2 3 3 を 外側か ら環状に取 り 巻く よ う に配置される。 なお、 こ の フ ィ ルタ 2 3 6 の代わ り に、 後述する フ イ ノレタ 2 3 6 ' (図 3 参 照) を用いても よい。
フ イ ノレタ 2 3 6 は、 金属な どの繊維状材料によ っ て構成さ れたメ ッ シュ構造、 繊維状材料を不織 状 固めた構造、 或 いは微細な細孔を多数備えた多孔質構造な どを有する。 よ り 具体的には、 フ イ ノレタ 2 3 6 はヽ 上下に配設 された金属な ど で構成される支持枠 2 3 6 a と ヽ この支持枠 2 3 6 a に固定 されたフ ィ ルタ材料 2 3 6 b と を有する。 上下の支持枠 2 3
6 a は導出通路 2 3 4 の上面部 (即ち 、 キヤ ッ プ 2 3 0 B の 内面部) と 、 導出通路 2 3 4 の底面部 (即ち、 天盤 2 3 0 A の内面部) と に固定される。
フ イ ノレタ 2 3 6 は、 導出通路 2 3 4 内に流入 した原料ガス に含まれる微細な ミ ス トゃパーティ クルを捕捉 し 、 反応室 2
2 1 内にパーテ ィ ク ルがほ と ん ど導入されないよ う にする。 フ ィ ルタ 2 3 6 もまた、 天盤 2 3 0 A及びキヤ V プ 2 3 0 B から の熱に よ って力 B熱される。 こ のため、 フ ィ ルタ 2 3 6 に 捕捉される微細な ミ ス ト の少な < と あ一部は気化 し 、 原料ガ ス と なる。
上記構成において、 例えば、 化器 2 3 0 の稼動当初にお いて、 開閉弁 2 3 5 に よ っ て導出 P 2 3 4 a は閉鎖され、 開 閉弁 2 3 7 によ って排気口 2 3 4 b は開放される そ して、 噴霧ノ ズル 2 3 1 か ら液体原料が噴霧さ れ、 ¼化室 2 3 2 に て生成された原料ガス は狭隘通路 2 3 3 及び導出 路 2 3 4 を経て排気口 2 3 4 b か ら排出 される 。 化器 2 3 0 の気化 状態が十分に安定する と 、 開閉弁 2 3 5 に よ り 導出 P 2 3 4 a が開放される と共に開閉弁 2 3 7 によ り 排気 P 2 3 4 b が 閉鎖される。 これに よ り 原料ガス はガス導入部 2 2 2 を介 し て反応室 2 2 1 A内に導入される。 上記ガス導入部 2 2 2 か ら導入される原料ガス と しては、 P b 、 Z r 、 T i な どの有機金属化合物ガス の他に、 A l 2 o 3 ヽ H f 〇 2 、 R u O、 Z r O、 S B T、 B L T、 P L Z
T 、 S T O等の成膜用有機金属ガス、 また、 T i C 1 4 (四 塩化チ タ ン) 、 W F 6 (六 フ ッ 化 タ ン グス テ ン) ヽ T a
( o C 2 H 5 ) 5 (ペン ト ェ ト キシタ ンタル) な どの高融点 金属化合物ガス、 また、 ペン トエ ト キシシラ ンな どの有機シ コ ン化合物ガスが挙げられる。 また、 ガス導入部 2 2 2 に はヽ 気化器 2 3 0 に よ り 供給される上記原料ガス の他に 、 適 宜の他の反応ガスが導入される。 この よ う な他の D J心ガス と しては、 還元性ガス と しての H 2 、 N H 3 、 S i H4 ヽ S i
H 2 C 1 2 、 酸化性ガス と しての O 2 、 O 3 、 N 2 O、 N O 2
H2 Oなどが挙げられる。
本実施形態では、 反応室 2 2 1 Aに対 して気化器 2 3 0 が 一体的に構成される と によ り 、 気化器 2 3 0 と 反応室 2 2
1 A と の間に長レヽガス輸送管を設ける必要がな く なる この ため、 原料ガスの輸送距離が長 く なる こ と に よ り 輸送途中に おレ、てパ一ティ クルが発生する と いつ た恐れが低減され また、 ガス輸送管内 における原料ガスの固化や液化を防止す るために管路を加熱する必要もな く なる。
ま たヽ 化器と反 J心室を別々 に設置 し 、 その間を管路で接 続する必要がな く な る ため、 装置全体をコ ンノヽ0ク ト に構成で さ る。 特にヽ 気化器 2 3 0 はガス導入部 2 2 2 の外側に一体 的に構成される ので 気化器 2 3 0 にて生成された原料ガス を直接にガス導入部 2 2 2 に導入する こ と ができ る。 また、 気化器 2 3 0 カゝ ら反応室 2 2 1 A ま での原料ガス の輸送距離 を短 く 構成する こ と ができ る。 こ のため、 パーテ ィ ク ノレの発 生を更に抑制で き 、 原料ガス の供給状態も安定する P Z T 、
B S T等の成膜に使用 される有機金属 ソースガス は非常に高 価である ので、 原料ガス の輸送経路が短縮される と に よ り 、 原料ガス の無駄が少な く なる こ と は有利であ る。
上記の よ う な構成において装置全体を よ り コ ンノヽ0ク ト に構 成する には、 気化器 2 3 0 を薄型化する必要がある 。 そ こで、 本実施形態では、 上記のよ う に気化室 2 3 2 の周囲に狭隘通 路 2 3 3 を環状に配置 し、 その狭隙通路 2 3 3 の 囲に更に 同軸状に導出通路 2 3 4 を配置する。 こ の よ う にする と 、 ¼ 化室 2 3 2 、 狭隘通路 2 3 3 及び導出通路 2 3 4 のコ ンダク タ ンス を充分に確保 しつつ、 気化器 2 3 0 を大幅に薄型化す る こ と ができ る。 ま た、 上記フ イ ノレタ 2 3 6 が狭隘通路 2 3
3 の出 口 2 3 3 a を包囲する ため、 キャ ッ プ 2 3 0 B を取 り 外すこ と に よ って容易にフ ィ ルタ 2 3 6 を交換ヽ 清 f C s な 。
図 3 は、 図 2 に示す気化器の変更例 2 3 0 ' の ―部を示す 拡大断面図である。 こ の気化器 2 3 0 ' は、 変更 されたキ ヤ ップ 2 3 0 B ' を有 し、 気化室 2 3 2 の上部 (嘖霧ノ ズノレ 2
3 1 の設置側の壁面) に細孔 2 3 2 c が複数形成され
れらの細孔 2 3 2 c は導入通路 2 3 2 d に連通 しヽ こ の導入 通路 2 3 2 d は上記 と 同様に構成された狭隘通路 2 3 3 に連 通する
こ の気化器 2 3 0 ' において、 噴霧ノ ズル 2 3 1 に.よ っ て 噴霧された ミ ス ト は気化室 2 3 2 内において気化 し 、 生成さ れた原料ガスは上記細孔 2 3 2 c を通 して導入通路 2 3 2 d に流入する。 そ して、 導入通路 2 3 2 d を通 して原料ガスは 狭隘通路 2 3 3 内に流入 し、 その後は、 上記実施形態 と 同様 に導出通路 2 3 4 を介 して導出 口 2 3 4 a 力 ら排出され、 ガ ス導入部 2 2 2 を介 して反応室 2 2 1 Aに供給される。
上記細孔 2 3 2 c 及び導入通路 2 3 2 d は、 気化室 2 3 2 の上部において噴霧ノ ズル 2 3 1 の周 り に環状に構成される こ と が好ま しい。 また、 複数の細孔 2 3 2 c 及び導入通路 2 3 2 d が、 気化室 2 3 2 の上部において環状 (放射状) に配 列されていても よい。 これに よ り 、 狭隘通路 2 3 3 までのガ ス経路のコ ンダク タ ンス を十分に確保でき る。
上記の細孔 2 3 2 c 及び導入通路 2 3 2 d では、 気化室 2 3 2 内で生成された原料ガス中に含まれる微細な ミ ス ト が捕 捉され、 再気化される。 こ のため、 狭隘通路 2 3 3 に流入す る原料ガス 中の微細な ミ ス ト を低減する こ と ができ、 気化率 を更に高める こ と ができ る と共にパーティ クルの発生を更に 抑制でき る 。 また、 これに よ り 、 下流側に配設された狭隘通 路 2 3 3 ゃフイ ノレタ 2 3 6 の 目詰ま り の発生を低減でき る。
本変更例において、 フ ィ ルタ 2 3 6 ' は全体と して筒形状 (図示例では円筒形状) を有 し、 弁体 2 3 5 a 及び導出 口 2 3 4 a を包囲する よ う に導出通路 2 3 4 内に設置される。 よ り 具体的には、 フ ィ ルタ 2 3 6 ' は、 導出 口 2 3 4 a を一方 の開 口 の内側に収容する態様で、 その軸線を垂直に した姿勢 で導出通路 2 3 4 内に配置される。 フ イ ノレタ 2 3 6 ' の他方 の開 口縁は導出通路 2 3 4 の上部に当接する。 筒状のフ ィ ル タ 2 3 6 ' の内部において、 上記弁体 2 3 5 a が軸線方向、 即ち、 垂直方向に移動可能に収容される。
こ の よ う に フ イ ノレタ 2 3 6 ' が開閉弁 2 3 5 の弁体 2 3 5 a の収容部分に配置される こ と に よ り 、 弁体 2 3 5 a の収容 部分を利用 してフ ィ ルタ 2 3 6 ' を設置でき る。 のため、 導出通路 2 3 4 をいたずら に大き く 構成せずに、 フ ィ ルタ 2
3 6 をコ ンパク ト に収容でき る。 また 、 開閉弁 2 3 5 を取 り 外すこ と によ って容易にフ イ ノレタ 2 3 6 ' を交換 清掃で き る。 また、 ベロ ーズバルブを用いる場 σ 弁体 2 3 5 a の ベロ ーズに原料ガス が付着 し、 ベローズが変形する と によ り ノ ーテイ クノレが発生する と いつ たこ と が防止さ れる なお この変更例にぉレヽて、 フ イ ノレタ 2 3 6 ' の代わ り に上述のフ イ ノレタ 2 3 6 を用いても よい。
図 4 は、 図 2 に示す気化器の別の変更 〃
例 2 3 0 の一部を 示す拡大断面図であ る。 こ の気化器 2 3 0 " では 変更 され た天盤 2 3 O A〃 及びキャ ップ 2 3 0 B " を有 し 導出通路
2 3 4 " の内面には、 フ ィ ルタ 2 3 6 の 部分に複数の突 起状の伝熱部 2 3 4 c が形成される。 これ ら の多数の伝熱部
2 3 4 c は、 フ ィ ノレタ材料 2 3 6 b の表面に接触 し それら の接触部位がほぼ均一に分散配置される。
上記の伝熱部 2 3 4 c が、 フ イ ノレタ 2 3 6 のフ ィ ルタ面に 熱接触する こ と に よ り 、 天盤 2 3 O A及ぴキャ ッ プ 2 3 0 B か ら の熱がフ ィ ルタ 2 3 6 に伝達されやすく なる と dtfcに 、 フ イ ノレタ面全体がよ り 均等に加熱される。 このため フ ィ ルタ 面全体の温度の精度及び均一性が向上する。 従つ て フ ィ ノレ タ 2 3 6 における ミ ス ト の再気化が促進され、 また、 フ ィ ル タ 2 3 6 の 目詰ま り も抑制 される。 なお、 この変更例におい ても、 フ イ ノレタ 2 3 6 の代わ り に上記のフ ィ ノレタ 2 3 6 を 用いる こ と ができ る。
図 5 A、 B は、 夫々 、 図 2 乃至図 4 に示す気化器に用いる こ と のでき る噴霧ノ ズルを概略的に示す縦断側面図及び縦断 正面図である。 図 5 A、 B は、 相互に直交する垂直面で切断 した と き の断面構造を示す。 図 6 A〜 D は、 図 5 A 中の線 VIA 、 VIB 、 VIC 、 VID に沿った断面図である。
の噴霧ノ ズル 2 3 1 Xでは、 異なる複数の液体原料 (或 いはヽ 液体原料 と キャ リ アガス (例えば、 A r N 2 、 H e な ど 、 以下同様) と の気液混合物) が、 配管 1 0 7 A 、 1 0
7 B ヽ 1 0 7 C 力 ら夫々独立にノ ズノレ内に配設された供給路
2 3 1 Aヽ 2 3 1 B 、 2 3 1 C に供給される。 また、 配管 1
0 8 か ら導入 したキャ リ アガスが、 供給路 2 3 1 D に供給さ れる 供 厶路 2 3 1 D は上記複数の液体原料に対応する複数 の拡散室 2 3 1 D 1 、 2 3 1 D 2 、 2 3 1 D 3 に供給される。 各拡散室か らは、 上記供給路 2 3 1 A、 2 3 1 B 、 2 3 1 C と 同軸に構成された同軸路が伸びる。 この同軸路によ つて供 給されたキャ リ アガスが、 供給路 2 3 1 A、 2 3 1 B 、 2 3
1 C に よ り 供給された液体原料を、 ノ ズル口 2 3 1 a 、 2 3
1 b ヽ 2 3 1 c において ミ ス ト状に噴霧する。
の噴 ノ ズル 2 3 1 Xは、 複数の液体原料を別々 の ノ ズ ノレ Π から 霧するため、 図 1 0 に示すよ う に、 主配管に構成 されるマ , ホール ドにて液体原料の混合を行 う 必要がない。 また、 原料別に専用の ノ ズル口 を備えてい る ため、 原料毎に 噴霧態様 (原料の噴霧量、 混合するキャ リ アガスの量、 噴霧 圧力な ど) を調整する こ と ができ る。
図 7 A、 B は、 夫々 、 図 2 乃至図 4 に示す気化器に用いる こ と のでき る別の噴霧ノ ズルを概略的に示す縦断側面図及び 縦断正面図であ る。 図 7 A 、 B は、 相互に直交する垂直面で 切断 した と きの断面構造を示す。 図 8 A〜 E は、 図 5 A中の 線 VIIIA 、 VIIIB 、 VIIIC ヽ VIIID VIIIE に沿つ た断面図 である。
この噴霧ノ ズ /レ 2 3 1 Yでは、 異なる複数の液体原料 (或 いは、 液体原料と キャ リ アガス と の 液混合物) が 、 配管 1
0 7 A、 1 0 7 B、 1 0 7 Cか ら夫々独立に ノ ズノレ内に配設 された供給路 2 3 1 A、 2 3 1 B 、 2 3 1 C に供給される。 また、 配管 1 0 8 か ら導入 したキヤ リ ァガス が、 供給路 2 3
1 D に供給される。 ただしヽ 供給路 2 3 1 A、 2 3 1 B 、 2
3 1 C は、 図 8 A〜 C に示す断面の位置で順次に共 mの供給 路に合流する。 また 、 供給路 2 3 1 D は、 こ の共通の供給路 に対応する拡散室 2 3 1 D 1 に供給される。 この拡散室 2 3
1 D 1 力、 ら は、 上記共通の供給路 と 軸に構成された同軸路 が伸びる。 この同軸路によ つて供給されたキヤ リ ァガスが、 上記共通の供給路に よ り 供ホロ された液体原料を、 ノ ズルロ 2
3 1 a において ミ ス ト状に噴霧する。
こ の噴霧ノ ズル 2 3 1 Yは 、 複数の液体原料がノ ズノレ内に て混合されるので、 図 1 0 に示すよ に主配管に構成される マ二ホール ドにて液体原料の混合を行 う 必要がない。 また 複数種類の原料を均一に混合する こ と ができ る こ と から、 気 化空間内において混合原料が気化 されて成膜室内に供給され る。 これによ り 、 膜の組成比の再現性が向上する。
図 9 は 、 図 2 乃至図 4 に不す 化器に用いる こ と のでき る 更に別の噴霧ノ ズノレを概略的に示す縦断正面図である。 こ の 噴霧ノ ズル 2 1 3 Z は 、 図 1 0 に示す液体原料の供給系をそ のま ま用いる ノ ズノレ λ口の構成例である 。 こ こで 、 図 1 0 に 示す主配管 1 0 7 に よ り 予め混 a された液体原料が、 噴霧ノ ズノレ 2 3 1 Z 内の供給路 2 3 1 Aに供給 &れる。 供給路 2 3
1 Aは拡散室 2 3 1 A 1 に連通 しヽ ^ ~ の拡散室 2 3 1 A 1 か ら複数の供給路 2 3 1 A a 、 2 3 1 A b 、 2 3 1 A c が伸び 一方、 配管 1 0 8 に よ り キャ V ァガスが、 供給路 2 3 1 D に供給され、 複数の拡散室 2 3 1 D 1 ヽ 2 3 1 D 2 、 2 3 1
D 3 に導入される。 fe散室 2 3 1 D 1 ヽ 2 3 1 D 2 ヽ 2 3 1
D 3 力、ら は、 夫々供給路 2 3 1 A a 、 2 3 1 A b ヽ 2 3 1 A c と 夫々 - 同軸に構成された複数の同軸路が伸びる ο れ らの 同軸路に よ って供給されたキャ V ァガスが、 供給路 2 3 1 A a 、 2 3 1 A b ヽ 2 3 1 A c に り 夫 供給された液体原料 を、 ノ ズル Π 2 3 1 a 、 2 3 1 b '2 3 1 c におレ、て夫々 ミ ス ト状に噴霧する。
こ の噴霧ノ ズル 2 3 1 Z を用レ、る と さ には 、 予め複数の液 体原料が混合される ため、 ノ ズル構造を簡易に構成する こ と ができ る 。 また 、 複数のノ ズノレ Π を有する こ と に よ つて効率 的に液体原料の噴霧を行う こ と ができ る。 なね ヽ 本発明に係る ガス反応装置及び半導体処理装置は、 上述の図示例にのみ限定される も のではな く 、 本発明の安 ¾=r ヒ 曰 を逸脱 しない範囲内において種々変更を加える こ と がでさ る。 例えば、 上記実施形態では、 複数の液体原料を混合 して原料 ガス を構成する場合について説明 している。 し力、 しヽ 本発明 に係る液体原料の数は何ら限定される も のではな く ヽ 一つの 液体原料のみを気化:器で気化する も のであっても ょレヽ
産業上の利用可能性
本発明に係る ガス反応装置及び半導体処理装置よれば 、 反 応ガス の輸送距離を短 く する こ と によ って高品位のガス反応 を実現でき る と 共に、 装置を簡易且つ コ ンパク ト に構成でき

Claims

請 求 の 範 囲
1 . ガス反応装置であって、
液体原料を気化して反応ガスを生成する気化器と、
前記反応ガスを反応させる反応室と、
を具備し、 前記気化器は、 前記反応室を画成する構成部材に 対して一体的に構成され、 前記気化器内で生成された前記反 応ガスが前記反応室に直接導入される。
2 . 請求の範囲 1 に記載の装置において、
前記気化器は、 前記反応室に前記反応ガスを導入するガス 導入部の外側に直接に構成される。
3 . 請求の範囲 1 に記載の装置において、
前記気化器は、 前記反応室の上方に構成される。
4 . 請求の範囲 1 に記載の装置において、
前記気化器は、 噴霧ノ ズル と 、 該噴霧ノ ズルの噴霧空間を 構成する気化室と、 該気化室に連通する狭隘通路と、 該狭隘 通路及び前記反応室に共に連通する導出部と を有する。 -
5 . 請求の範囲 4 に記載の装置において、
前記狭隘通路は、 前記気化室の周囲に環状に配設された一 体の若し く は複数の通路で構成され、 前記導出部には、 前記 狭隘通路に連通する環状の導出通路が配設される。
6 . 請求の範囲 4 に記載の装置において、
前記気化室の内面及び前記狭隘通路の内面を加熱する ヒ ー タを有する。
7 . 請求の範囲 5 に記載の装置において、
前記導出通路の内部には、 前記反応ガス 中の固形物若しく O 2005/010969
29 は液状物を捕捉する フ イ ノレタ が配置される。
8 冃求の範囲 7 に記載の装置において、
刖記フ ィ ルタ は、 前記反応室に連通する前記導出通路の導 出口に配 BXされる。
9 求の範囲 8 に記載の装置において、
刖記導出 口.を開閉するための弁体が配設されヽ m記フ ィノレ タは m記弁体を包囲する よ う に配設される。
1 0 求の範囲 7 に記載の装置において、
記フィルタを加熱する ヒータを有する。
1 1 冃求の範囲 1 0 に記載の装置において、
m記フ ィ ルタ は、 前記導出通路の内面と熱接触
出経路の内面から前記ヒ ータ の熱を受ける。
1 2 ョ虫求の範囲 1 1 に記載の装置において、
前記導出通路には、 前記フ ィ ルタ の端縁以外の部位に熱接 触する 1K熱部が配設される。
1 3 . 半導体処理装置であって、
被処理基板を処理する処理室を形成する容器と 、 刖記谷 は着脱可能な天盤を有するこ と と、
記容 SB.内に配設された、 前記被処理基板を支持する支持 部材と、
前記処理室内に処理ガスを供給する シャ ヮ ー ッ ド、と、 前 記シャ ヮ 一ヘッ ドは、 前記支持部材によ り 支持された前記被 処理基板に対向する よ う に、 前記天盤の下面上に配設される こ と と、
前記天盤の上面上に配設された、 液体原料を気化 して前記 O 2005/010969
30 処理ガスを生成する気化室と、
前記天盤を通 して前記気化室と前記シャ ワー へッ ドと を接 続する よ う に形成された前記処理ガスを流すガス通路と、 を具備する。
1 4 . 請求の範囲 1 3 に記載の装置において、
前記気化室は、 前記天盤と前記'天盤の上面上に取り 付け ら れたキャ ップと の間の空間と して形成される。
1 5 . 請求の範囲 1 4 に記載の装置において、
前記ガス通路は、 前記キャ ップと前記天盤との間の 0 . 5
〜 1 0 . 0 m mの隙間からなる狭隘通路を含みヽ 記狭隘通 路は前記処理ガス中に含まれる ミ ス ト を気化させるための通 路と して機能する。
1 6 . 請求の範囲 1 5 に記載の装置において、
前記天盤の上面上に、 前記気化室の側壁を規 する ち上 が り 部が形成され、 前記狭隘通 は、 前記立ち上が り 部の上 面と前記ギヤ ップの内面との間に形成される。
1 7 . 請求の範囲 1 6 に記載の装置において、
前記ガス通路は、 前記気化室を包囲する よ にヽ 甫 U記 XL ¾ 上が り 部の外側面と前記ギャ ップの内面と の間に形成された 環状通路を具備 し、 前記環状通路から前記シャ V 一 へ V ドへ 向けて、 前記天盤に導出孔が形成される。
1 8 . 請求の範囲 1 7 に記載の装置において、
前記キャ ップに取 り 付け られた、 前記導出孔を開閉する弁 を更に具備する。
1 9 . 請求の範囲 1 4 に記載の装置において O 2005/010969
31 前記キ ヤ ップに取 り 付け られた、 前記気化室内に前記液体 原料を噴霧する噴霧ノ ズルを更に具備する。
2 0 . 請求の範囲 1 4 に記載の装置において、
前記天盤は前記容器の本体に対 してヒ ンジ部を介して接続 され、 前記天盤及び前記キ ヤ ップは前記容器の本体に対 して、 前記ヒ ンジ部を中心と して一体的に旋回可能である。
PCT/JP2004/010895 2003-07-25 2004-07-23 ガス反応装置及び半導体処理装置 WO2005010969A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/565,676 US7413611B2 (en) 2003-07-25 2004-07-23 Gas reaction system and semiconductor processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003279970A JP4202856B2 (ja) 2003-07-25 2003-07-25 ガス反応装置
JP2003-279970 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005010969A1 true WO2005010969A1 (ja) 2005-02-03

Family

ID=34100843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010895 WO2005010969A1 (ja) 2003-07-25 2004-07-23 ガス反応装置及び半導体処理装置

Country Status (5)

Country Link
US (1) US7413611B2 (ja)
JP (1) JP4202856B2 (ja)
KR (1) KR100742411B1 (ja)
CN (1) CN100414674C (ja)
WO (1) WO2005010969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900071A1 (fr) * 2006-08-24 2007-10-26 Kemstream Soc Par Actions Simp Dispositif d'introduction ou d'injection ou de pulverisation d'un melange de gaz vecteur et de composes liquides et procede de mise en oeuvre dudit dispositif

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4263206B2 (ja) * 2005-11-15 2009-05-13 東京エレクトロン株式会社 熱処理方法、熱処理装置及び気化装置
US7654010B2 (en) * 2006-02-23 2010-02-02 Tokyo Electron Limited Substrate processing system, substrate processing method, and storage medium
JP4877748B2 (ja) * 2006-03-31 2012-02-15 東京エレクトロン株式会社 基板処理装置および処理ガス吐出機構
FR2900070B1 (fr) 2006-04-19 2008-07-11 Kemstream Soc Par Actions Simp Dispositif d'introduction ou d'injection ou de pulverisation d'un melange de gaz vecteur et de composes liquides et procede de mise en oeuvre dudit dispositif.
JP5427344B2 (ja) * 2007-05-23 2014-02-26 株式会社渡辺商行 気化装置、及び、気化装置を備えた成膜装置
WO2009013984A1 (ja) * 2007-07-24 2009-01-29 Kabushiki Kaisha Toshiba 化合物半導体気相成長装置用AlN製部材およびそれを用いた化合物半導体の製造方法
KR101046119B1 (ko) * 2009-01-12 2011-07-01 삼성엘이디 주식회사 화학 기상 증착 장치
WO2010101077A1 (ja) * 2009-03-04 2010-09-10 株式会社堀場エステック ガス供給装置
KR101559470B1 (ko) * 2009-06-04 2015-10-12 주성엔지니어링(주) 화학 기상 증착 장치
US20110249960A1 (en) * 2011-01-28 2011-10-13 Poole Ventura, Inc. Heat Source Door For A Thermal Diffusion Chamber
CN105714271B (zh) * 2014-12-22 2020-07-31 株式会社堀场Stec 汽化系统
KR102649715B1 (ko) * 2020-10-30 2024-03-21 세메스 주식회사 표면 처리 장치 및 표면 처리 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335940A (ja) * 2000-02-01 2001-12-07 Applied Materials Inc 基板処理システムにおける材料蒸着方法及び装置
JP2002535483A (ja) * 1999-01-13 2002-10-22 東京エレクトロン株式会社 先駆物質液を用いて金属層を化学蒸着する処理装置および方法
JP2004047887A (ja) * 2002-07-15 2004-02-12 Asm Japan Kk 枚葉式cvd装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
US5776254A (en) * 1994-12-28 1998-07-07 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming thin film by chemical vapor deposition
JP3360098B2 (ja) * 1995-04-20 2002-12-24 東京エレクトロン株式会社 処理装置のシャワーヘッド構造
TW322602B (ja) * 1996-04-05 1997-12-11 Ehara Seisakusho Kk
US6074487A (en) * 1997-02-13 2000-06-13 Shimadzu Corporation Unit for vaporizing liquid materials
US6409839B1 (en) * 1997-06-02 2002-06-25 Msp Corporation Method and apparatus for vapor generation and film deposition
JP2000345345A (ja) * 1999-06-04 2000-12-12 Mitsubishi Electric Corp Cvd装置およびcvd装置用気化装置
JP4220075B2 (ja) * 1999-08-20 2009-02-04 東京エレクトロン株式会社 成膜方法および成膜装置
US6635114B2 (en) * 1999-12-17 2003-10-21 Applied Material, Inc. High temperature filter for CVD apparatus
US6517634B2 (en) * 2000-02-28 2003-02-11 Applied Materials, Inc. Chemical vapor deposition chamber lid assembly
US6302965B1 (en) * 2000-08-15 2001-10-16 Applied Materials, Inc. Dispersion plate for flowing vaporizes compounds used in chemical vapor deposition of films onto semiconductor surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535483A (ja) * 1999-01-13 2002-10-22 東京エレクトロン株式会社 先駆物質液を用いて金属層を化学蒸着する処理装置および方法
JP2001335940A (ja) * 2000-02-01 2001-12-07 Applied Materials Inc 基板処理システムにおける材料蒸着方法及び装置
JP2004047887A (ja) * 2002-07-15 2004-02-12 Asm Japan Kk 枚葉式cvd装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900071A1 (fr) * 2006-08-24 2007-10-26 Kemstream Soc Par Actions Simp Dispositif d'introduction ou d'injection ou de pulverisation d'un melange de gaz vecteur et de composes liquides et procede de mise en oeuvre dudit dispositif

Also Published As

Publication number Publication date
JP4202856B2 (ja) 2008-12-24
US20060180078A1 (en) 2006-08-17
US7413611B2 (en) 2008-08-19
KR100742411B1 (ko) 2007-07-24
CN100414674C (zh) 2008-08-27
KR20060026477A (ko) 2006-03-23
CN1701422A (zh) 2005-11-23
JP2005045170A (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
US6849241B2 (en) Device and method for depositing one or more layers on a substrate
WO2005010969A1 (ja) ガス反応装置及び半導体処理装置
KR101039163B1 (ko) 반도체 처리 시스템 및 기화기
US8026159B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US6548112B1 (en) Apparatus and method for delivery of precursor vapor from low vapor pressure liquid sources to a CVD chamber
JP5214832B2 (ja) 基板処理装置
JP4696561B2 (ja) 気化装置及び処理装置
US7579276B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR100636038B1 (ko) 가스 공급 장치 및 이를 갖는 막 형성 장치
TWI421914B (zh) 汽化裝置及半導體製程系統
CN101509129B (zh) 成膜槽上盖与喷头的一体化构造体
US20060070575A1 (en) Solution-vaporization type CVD apparatus
TW201425635A (zh) 熱絲化學氣相沉積腔室之噴頭設計
JP2005511894A (ja) 化学蒸着用ベーパライザ
US6789789B2 (en) High throughput vaporizer
KR101308310B1 (ko) 성막 장치 및 성막 방법
JP4777173B2 (ja) 基板処理装置および半導体装置の製造方法
JP2022012502A (ja) 成膜方法及び成膜装置
JP2013044043A (ja) 基板処理装置
JP2004217956A (ja) 基板処理装置
KR20070010830A (ko) 가스 공급 장치 및 이를 갖는 박막 형성 설비
JP5396528B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048010614

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067000140

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006180078

Country of ref document: US

Ref document number: 10565676

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067000140

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10565676

Country of ref document: US

122 Ep: pct application non-entry in european phase