WO2005010031A1 - チタン、銀、シリコンに結合能を有するペプチド - Google Patents

チタン、銀、シリコンに結合能を有するペプチド Download PDF

Info

Publication number
WO2005010031A1
WO2005010031A1 PCT/JP2004/011319 JP2004011319W WO2005010031A1 WO 2005010031 A1 WO2005010031 A1 WO 2005010031A1 JP 2004011319 W JP2004011319 W JP 2004011319W WO 2005010031 A1 WO2005010031 A1 WO 2005010031A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
peptide
binding
silver
amino acid
Prior art date
Application number
PCT/JP2004/011319
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Shiba
Kenichi Sano
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to ES04771321.9T priority Critical patent/ES2438190T3/es
Priority to US10/566,535 priority patent/US7498403B2/en
Priority to JP2005512129A priority patent/JP4885542B2/ja
Priority to DK04771321.9T priority patent/DK1661910T3/da
Priority to EP04771321.9A priority patent/EP1661910B1/en
Publication of WO2005010031A1 publication Critical patent/WO2005010031A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a method for screening a peptide capable of binding to titanium, a peptide capable of binding to titanium, silver and / or silicon, and a peptide capable of binding to titanium, silver and silicon or silicon.
  • Artificial protein in which a peptide capable of binding to silver, silver and / or silicon and a functional peptide or functional protein are bonded, or titanium, silver or silicon in which such artificial protein is bonded to titanium, silver or silicon.
  • a complex with an artificial protein, a conjugate of a peptide capable of binding to titanium, silver, silver, or silicon with a labeling substance or a peptide tag, or a chimeric protein in which a non-peptide compound is bound, or such a chimeric protein Is a complex of titanium, silver or silicon and a chimeric protein bound to titanium, silver or silicon, or a phage which displays a peptide capable of binding to titanium, silver and / or silicon on its particle surface.
  • the relationship between the implant and the surrounding mucosa unlike the relationship between the teeth and the gingiva, is considered to be scar tissue with low resistance to infection. Therefore, in order to solve this problem, the aforementioned hard matter has been studied, such as coating the surface of titanium with an antibacterial agent.However, such an approach based on hard matter involves dissection of the implant from the surrounding mucous membrane. The improvement of the histological and histological relationships is not considered.
  • Titanium is very susceptible to oxidation and forms dioxide immediately in air and water. Uses the photocatalytic activity of anatase crystals, one of the titanium dioxide crystals, to decompose and detoxify almost all harmful chemical substances It is used for various applications such as decomposition of odors such as sick house gas acetoaldehyde and fungicides. However, since the wavelength at which anatase crystals can be used is limited to the ultraviolet region, development of a photocatalyst that can be used in the visible light region is desired.
  • novel osteobontin-containing implants particularly those that increase the rate of osseointegration and the percentage of bone adhesion, including in a releasable form a material suitable for in vivo use in a subject
  • a novel protein, protein fragment, peptide, or a mutant thereof that binds a metal compound and enables control of its orientation and sequence at the molecular level.
  • An object of the present invention is to provide a peptide sequence, a phage, an artificial protein or a chimeric molecule, which has a binding ability to titanium, which is necessary for enhancing the function of a titanium material by soft matter.
  • Another object of the present invention is to provide a complex of a peptide, a phage, an artificial protein or a chimeric molecule having the peptide sequence and a functional peptide sequence with titanium.
  • a functional titanium implant material in which the peptide and the calcification promoting or bone growth / differentiation peptide or artificial protein / chimeric protein are bound to the surface, and the osseointegration is completed in a short time, or
  • the present invention provides a functional titanium plant material having a peptide or an artificial protein / chimeric protein having a high affinity for the above-mentioned peptide and gingiva bonded to the surface thereof, which is highly resistant to bacterial infection and the like.
  • the present invention provides a peptide or artificial protein / chimeric protein and a titanium dioxide complex, or a complex of the complex and a low-molecular compound such as a chromophore, which has a photocatalytic ability even in the visible light region.
  • Another object of the present invention is to provide a carbon dioxide fly pigment in which a chimeric protein and an artificial protein of the peptide and the skin-friendly collagen or the like are bonded to the surface.
  • the present inventors have conducted intensive research to solve the above-mentioned problems, and brought a phage group displaying various peptide sequences on phage particles into contact with metallic titanium in an aqueous solution, and the phage particles were brought into contact with the peptide sequences.
  • the phage particles bound to the resulting titanium are grown in E. coli, and then the phage population displaying the grown peptide sequence on the phage particles is again collected on the titanium.
  • the phage clones that bind to titanium were enriched by repeating the contacting Banning operation, and a phage library that specifically recognizes titanium and appears to display a peptide capable of binding to titanium was obtained. .
  • the resulting phage library was cloned and the amino acid sequence displayed was examined.
  • a clone displaying a sequence capable of strongly binding to titanium in particular is contained in a phage library.
  • RKLPDAPGMHTW peptide consisting of the amino acid sequence represented by SEQ ID NO: 3
  • SEQ ID NO: 3 the amino acid represented by SEQ ID NO: 3
  • the binding ability of phage clones displaying peptides consisting of amino acid sequences to titanium greatly exceeds the binding ability of phage clones displaying peptides consisting of the amino acid sequences represented by SEQ ID NOs: 16 to 38. It was found to be something.
  • the surface of titanium is immediately oxidized in water, and hydroxyl groups are bonded to titanium atoms.
  • the attached hydroxyl group is the hydroxyl that bridges between the two titanium atoms. It is thought to be divided into a group and a hydroxyl group of the terminal bonded to one titanium atom.
  • the hydroxyl groups of the bridge and the terminal have different pKs because they have different polarities. It is thought that the hydroxyl group of the bridge acts as an acid and the hydroxyl group of the terminal acts as a base.
  • the specificity of the peptide motif is examined by identifying residues that play an important role in function by introducing point mutations and by narrowing down functional regions by analyzing deletion mutants.
  • functional analysis of a series of alanine substitution point mutants called alanine scanning is often performed.
  • Substitution of alanine, which has no charge and has only one small methyl side chain, is thought to impair the function of the side chain of that amino acid residue.
  • Alanine scanning was performed on a phage clone displaying a peptide consisting of the amino acid sequence represented by SEQ ID NO: 3.
  • an insertion mutant (SEQ ID NO: 15) was prepared by inserting an alanine at the amino terminus of the amino acid sequence represented by SEQ ID NO: 3, and the ability to bind to titanium was examined. As a result, an increase in binding ability to titanium was observed.
  • the reason for the increase in binding ability is that the repulsion between the positive charge of the side chain of the second lysine of SEQ ID NO: 3 and the positive charge of the amino group at the amino terminal of the main chain is reduced by the insertion of one amino acid residue.
  • this is because the structure of the peptide consisting of the amino acid sequence represented by SEQ ID NO: 15 is more stabilized.
  • arginine does not always need to be at the head (amino terminus) for the peptide consisting of the amino acid sequence represented by SEQ ID NO: 3 to bind to titanium. This is an important finding that implies that the arrangement of SEQ ID NO: 1 or 3 is not subject to any primary structural restrictions when producing chimeric proteins, human proteins, synthetic peptides, etc. that bind to titanium. It is.
  • the hydrogen peroxide treatment causes more hydroxyl groups to bind to the titanium surface.
  • the amino acids represented by SEQ ID NOs: 1 and 3 The interaction between the peptide consisting of the acid sequence and the titanium surface is based on the charge of the hydroxyl group bound to titanium and the electrostatic charge between the first arginine side chain and the fifth aspartic acid side chain of SEQ ID NOS: 1 and 3. Interactions are thought to be dominant. If the amount of hydroxyl groups bound to titanium can be adjusted, it may be possible to adjust the amount of titanium and peptide bonds. In fact, the ability of phage clones displaying SEQ ID NO: 3 to bind to hydrogen peroxide-treated titanium was increased.
  • the amount of binding of the phage clone displaying SEQ ID NO: 3 to the titanium, the peptide of SEQ ID NO: 3, and the artificial protein / chimeric protein containing the same can be regulated. .
  • the present invention provides (1) contacting titanium with a phage population displaying a different peptide sequence on a phage particle, and recovering the titanium with the phage particle bound via the peptide sequence by centrifugation.
  • the phage particles bound to titanium are grown in the cells, and the phage population displaying the grown peptide sequence on the phage particles is repeatedly subjected to a baning operation to contact titanium, thereby binding to titanium.
  • a method for screening a peptide capable of binding to titanium which is characterized by concentrating phage protein; and (2) a method for binding to titanium, which is obtained by the screening method described in (1) above. It relates to a peptide having an ability.
  • the present invention relates to (3) a peptide capable of binding to titanium consisting of the amino acid sequence represented by SEQ ID NO: 1; and (4) an amino acid sequence represented by SEQ ID NO: 1 in which one or several amino acids are A peptide consisting of an amino acid sequence deleted, substituted or added and capable of binding titanium, (5) the amino acid residues 1, 4, and 5 of the amino acid sequence shown in SEQ ID NO: 1 are conserved; And (6) the amino acid sequence represented by SEQ ID NO: 2 in which the second lysine is substituted with alanine.
  • a peptide capable of binding to titanium according to the description, (7) a peptide capable of binding to titanium comprising the amino acid sequence represented by SEQ ID NO: 3, and (8) an amino acid sequence represented by SEQ ID NO: 3
  • a peptide capable of binding to titanium according to the above (8) which comprises an amino acid sequence represented by (11), a sequence number in which alanine is added and inserted at the N-terminus of the amino acid sequence shown in SEQ ID NO: 3.
  • (8) or (9) which comprises the amino acid sequence represented by SEQ ID NO: 15 or (1.2) the amino acid sequence represented by SEQ ID NO: 16 to 24;
  • an amino acid sequence represented by SEQ ID NOS: 16 to 24 which comprises an amino acid sequence in which one or several amino acids have been deleted, substituted or added,
  • have binding ability to titanium A peptide or a peptide having an ability to bind to titanium consisting of the amino acid sequence represented by (14) SEQ ID NOS: 25 to 38;
  • (15) the amino acid sequence represented by SEQ ID NOS: 25 to 38 A peptide having an amino acid sequence in which one or several amino acids have been deleted, substituted or added and having a binding ability to titanium, or (16) characterized in that it is chemically modified (15) A peptid
  • the present invention provides (17) the peptide described in any one of (2) to (16) above, wherein the titanium is metal titanium, a titanium alloy or titanium dioxide.
  • a titanium-peptide complex in which a peptide capable of binding to titanium according to any one of the above (2) to (16) is bound to titanium, or (19) a (2) to ( (16) An artificial protein capable of binding to titanium, which is a conjugate of the peptide capable of binding to titanium and the functional peptide or functional protein, and (20) )
  • a functional peptide or functional protein may form a two-dimensional crystal by self-assembly in cooperation with a peptide capable of binding to titanium.
  • the artificial protein or functional protein described in (19) above has a peptide sequence having cell recognition activity such as cell adhesion activity.
  • the artificial protein described in (19) above which is characterized by being a peptide or a protein, or (22)
  • (2) A conjugate of the peptide capable of binding to titanium according to any one of (1) to (17) and a labeling substance or a peptide tag, or a conjugate of a non-peptide compound and titanium.
  • (24) a titanium-chimera protein complex in which the chimeric protein described in (23) is bound to titanium, and (25) a chimeric protein described in (2) to (17) above.
  • (26) a phage that displays the peptide capable of binding to titanium on its particle surface and has the ability to bind titanium, (26) the phage described in ('25) above binds to titanium; (27) A method for modifying titanium surface or forming titanium particles, which comprises using a titanium-phage complex or a peptide capable of binding to titanium according to any one of (27) to (17) above. Or (2 8) Any one of the above (1 9) to (2 1) A method of modifying the surface of titanium, forming titanium particles, or aligning titanium, characterized by using a human protein having a binding ability to titanium described in (29).
  • a method of modifying titanium surface or forming titanium particles characterized by using a chimeric protein having a binding ability to titanium, and (30) using a phage capable of binding to titanium described in (25) above.
  • the present invention also relates to a method for aligning titanium or forming titanium particles, characterized by the following features: (31) An implant material containing the titanium-artificial protein complex described in (22) as an active ingredient.
  • the present invention also provides (32) an amino acid sequence represented by SEQ ID NO: 1. 4011319
  • a peptide capable of binding to silver or (33) an amino acid sequence represented by SEQ ID NO: 1 in which one or several amino acids have been deleted, substituted or added, and have an ability to bind to silver. (34) having the binding ability to silver described in (33) above, wherein the amino acid residues at positions 1, 4, and 5 of the amino acid sequence shown in SEQ ID NO: 1 are conserved.
  • a silver-peptide complex in which a peptide capable of binding to silver according to any one of the above (32) to (38) is bound to silver, and (40) the above (32) to (32) 38.
  • An artificial protein capable of binding to silver which is a conjugate of the peptide capable of binding to silver according to any of 8) and a functional peptide or a functional protein, and an artificial protein capable of binding to silver;
  • a peptide capable of binding to silver is presented on the particle surface and a phage capable of binding to silver or a silver phage in which the phage described in (44) is bound to silver 2004/011319
  • a method of forming silver particles or aligning silver which comprises using a phage having an ability to bind, a peptide having an ability to bind to (50) silicon having an amino acid sequence represented by SEQ ID NO: 1, 5 1)
  • SEQ ID NO: 1 silicon having an amino acid sequence represented by SEQ ID NO: 1, 5 1)
  • one or several amino acids are deleted or substituted.
  • a peptide consisting of an added amino acid sequence and capable of binding to silicon, and (52) the amino acid residues 1, 4, and 5 of the amino acid sequence shown in SEQ ID NO: 1 are conserved.
  • (50) a peptide capable of binding to silicon according to (50), (54) a peptide capable of binding to silicon comprising the amino acid sequence represented by SEQ ID NO: 3, and (55) an amino acid represented by SEQ ID NO: 3. It is characterized in that the sequence consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and has a silicon-binding ability, or (56) has been chemically modified.
  • (50) a peptide capable of binding to silicon according to any one of (50) to (55), and (57) a peptide capable of binding to silicon according to any one of (50) to (56).
  • an artificial protein having a binding ability to silicon which is a conjugate with a sex protein, and (59) a silicon-artificial protein complex in which the artificial protein described in (58) is bonded to silicon;
  • (6) a phage which displays a peptide capable of binding to silicon on its particle surface and has a binding ability to silicon; (63) a phage described in (62) above Conclusion Or (64) a silicon surface quality or a silicon particle characterized by using a peptide capable of binding to silicon according to any one of (50) to (56).
  • (65) a method of modifying a silicon surface, comprising using an artificial protein having an ability to bind to silicon according to the above (58), forming silicon particles, or aligning silicon;
  • (66) a method for modifying and modifying the silicon surface or forming silicon particles, characterized by using the chimeric protein capable of binding to silicon according to (60);
  • Capable peptide A peptide capable of binding to silver according to any of the above (32) to (38) or a peptide capable of binding to silicon according to any of the above (50) to (56) To use as a probe of an atomic force microscope (AFM). 2004/011319
  • FIG. 1 is a photograph showing the result of panning on titanium particles using the D-12 phage library.
  • FIG. 2 is a photograph showing the results of paving titanium particles using a C7C phage library.
  • FIG. 3 is a photograph showing the amino acid sequence of a peptide displayed by a clone obtained after repeating the tanning of titanium particles three times using the D_12 library.
  • _ Fig. 4 is a photograph showing the amino acid sequence of a peptide displayed by a clone obtained after repeating panning of titanium particles three times using a C7C library.
  • the amino acid sequence shown here contains a cysteine residue having a thiol group necessary for the display sequence of the C7C library to be circular at both ends.
  • FIG. 5 is a photograph showing the results of examining the binding ability of the cloned phage to titanium.
  • the vertical axis represents the logarithm of the value obtained by dividing the phage value of the eluted phage by the phage value
  • the abscissa represents the phage clones shown in FIGS.
  • Fig. 6 shows the results of analysis of the binding state of the phage clone displaying the peptide represented by SEQ ID NO: 3 to the titanium surface using the crystal oscillator type biomolecule interaction analyzer QCM-D300. It is a photograph.
  • FIG. 7 is a photograph of a schematic view of a phage binding state on a titanium crystal oscillator sensor.
  • FIG. 8 shows the nucleotide sequence of the primer used in the Example.
  • the word "alphanumeric one-letter alphabet" on the left of the first paragraph indicates the name of the mutant made using the primer.
  • the origin of the name is that the sequence of e 3 — 2 — 3 is represented by one letter of amino acid, the position of the amino acid residue from the amino end is represented by a number, and the last A means that it has been replaced with alanine.
  • P4A it is the primer used to substitute the fourth proline from the N-terminal of SEQ ID NO: 3 with alanine.
  • ⁇ 7 — 12F, ⁇ 7-12R, and K2A ⁇ 7-12R are primers used in the production of the deletion mutant described in Example 5.
  • the combination of ⁇ 7-12F and ⁇ 7-12R and the combination of ⁇ 7-12F and ⁇ 2 ⁇ 7-12R were used for PCR, respectively.
  • Alininsert is a primer used for the production of the insertion mutant described in Example 6.
  • FIG. 9 is a photograph showing the result of examining the effect of the point mutation on the binding ability to titanium of a phage clone presenting the peptides shown in SEQ ID NOs: 4 to 14.
  • the vertical axis represents the phage displaying the peptides represented by SEQ ID NOs: 4 to 14. 4 011319
  • the value of the binding ability of the point mutant when the binding ability to titanium is set to 1 is expressed in logarithm, and the horizontal axis represents each point mutant.
  • FIG. 10 is a photograph of a schematic diagram of a method for producing a deletion mutant using the PCR method. —
  • FIG. 11 is a photograph showing the result of examining the effect of the deletion mutation and the insertion mutation on the binding ability to the titanium of a phage clone displaying the peptides represented by SEQ ID NOS: 2 and 15.
  • the vertical axis shows the binding of the phage clone displaying the peptide represented by SEQ ID NO: 1 to titanium, and the binding ability of the point mutant when the ability is set to 1; the horizontal axis shows the deletion And insertion mutants.
  • FIG. 12 is a photograph showing the result of the effect of the hydrogen peroxide treatment of titanium particles on phage binding ability.
  • FIG. 13 is a photograph showing the result of examining the ability of a phage displaying a peptide consisting of the amino acid sequence represented by SEQ ID NO: 3 to bind to various metals.
  • the vertical axis represents the value obtained by dividing the binding amount of the phage displaying the peptide having the amino acid sequence represented by SEQ ID NO: 3 by the binding amount of the phage having no display sequence, and the amino acid sequence represented by SEQ ID NO: 3 Represents the contribution of binding by the peptide consisting of Both phage bound copper and iron were below the detection limit.
  • FIG. 14 is a photograph showing the result of examining the effect of an alanine substitution mutation on the binding to titanium, silver and silicon in a peptide consisting of the amino acid sequence represented by SEQ ID NO: 3.
  • the vertical axis represents the value normalized by assuming that the binding amount of the phage displaying the peptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is 1.
  • Fig. 15 is an electron microscope image of silver particles produced by biomineralization of a synthetic peptide consisting of the amino acid sequence shown in SEQ ID NO: 3.
  • 3 is a photograph showing an electron diffraction pattern.
  • FIG. 16 is a photograph showing the relationship between the amount of silica produced by biomineralization of a synthetic peptide having the amino acid sequence represented by SEQ ID NO: 3 and the peptide concentration.
  • FIG. 17 is a photograph showing a transmission electron microscope image and a scanning electron microscope image of silica particles generated by biomineralization of a synthetic peptide having the amino acid sequence represented by SEQ ID NO: 3. .
  • FIG. 18 is a photograph of a schematic diagram of construction of a ferritin expression vector in which a peptide consisting of the amino acid sequence represented by SEQ ID NO: 1 is fused.
  • FIG. 19 is a photograph showing the result of binding of recombinant ferritin having the amino acid sequence represented by SEQ ID NO: 1 to which a recombinant ferritin was fused, to the titanium surface.
  • the method for screening a peptide capable of binding to titanium includes contacting titanium with a phage population (phage library) displaying (displaying) different peptide sequences on phage particles. More preferably, the phage particles are contacted in an aqueous solution, the titanium to which the phage particles are bound via the peptide sequence is collected by centrifugation, and the obtained phage particles bound to the titanium are grown in cells such as Escherichia coli.
  • the screening method is not particularly limited as long as it is a screening method for enriching phage clones that bind to titanium by repeating a panning operation in which a phage population displaying the grown peptide sequence on phage particles is brought into contact with titanium. Examples of the above-mentioned titanium include metallic titanium, titanium alloy, titanium dioxide in the form of particles and plate, and the like.
  • Titanium such as tan can be used.
  • phage library chemically synthesized random DNA is introduced into phage DNA (phagemid), and the gene is introduced into host Escherichia coli.
  • a commercially available phage library random 7 mer, 12 mer, cyclic 7 mer, etc. can be used.
  • Examples of the peptide capable of binding to titanium, silver and / or silicon according to the present invention include titanium, silver and / or silicon obtained by the method for screening a peptide capable of binding to titanium according to the present invention. Examples thereof include a peptide having a binding ability and a mutant thereof.
  • a peptide ( ⁇ 7-12 mutant) having an amino acid sequence in which several amino acids are deleted, substituted or added, and having an ability to bind to titanium, silver and / or silicon is replaced with titanium, silver and / or Alternatively, it can be suitably exemplified in that it has an excellent binding ability to silicon.
  • a peptide (K 2 A— ⁇ 7-12) having the amino acid sequence shown in SEQ ID NO: 2 in which the second (Lys) is substituted with Ala has excellent binding ability to titanium, silver and silicon. It is particularly preferred in that it has.
  • the peptide of the present invention having the ability to bind to titanium, silver, Z or silicon has the amino acid sequence RKL PDAP GMH shown in SEQ ID NO: 3.
  • the peptide (e 3-2-3) capable of binding to titanium consisting of TW and the amino acid sequence shown in SEQ ID NO: 3 in which one or several amino acids have been deleted, substituted or added Peptides (e3-2-3 mutants) which are capable of binding to titanium, silver and Z or silicon are preferably exemplified in that they have excellent binding ability to titanium, silver and Z or silicon. can do.
  • the e3-2-3 mutant includes a peptide having the amino acid sequence shown in SEQ ID NOs: 4 to 14 in which the 1st to 5th and 7th to 12th amino acid residues are each substituted with Ala (R 1 A, K2A, L3A, P4A, D5A, P7A, .G8A, M9A, HIOA, T11A, W12A), e3—2—
  • Ala insert A peptide having the amino acid sequence shown in SEQ ID NO: 15 (Ala insert) in which A has been added and inserted at the N-terminus of 3 can be mentioned.
  • Ala insert is particularly preferred because it has excellent binding ability to titanium, silver and / or silicon. ''
  • a D12 library presenting a linear random peptide of 12 residues (New England Bio bs. (Beverly) -derived peptide comprising the amino acid sequence shown in SEQ ID NOs: 16 to 24, and in the amino acid sequence shown in SEQ ID NOs: 16 to 24, one or several amino acids are deleted or substituted.
  • Peptides which have an added amino acid sequence and have a binding ability to titanium can be exemplified.
  • a peptide capable of binding to titanium the amino acid sequence shown in SEQ ID NOS: 25 to 38 derived from a C7C library (New England Biolabs) which presents a 7-residue cyclic random peptide And an amino acid sequence shown in SEQ ID NOS: 25 to 38, wherein one or more amino acids are deleted, substituted or added, and the peptide has a binding ability to titanium. It is possible The
  • the degree of “substitution, deletion or addition” of amino acids and their positions are determined in the same manner as in the case of the modified peptide in which titanium, silver and All the same compounds having a binding ability to Z or silicon are included in the present invention.
  • titanium examples include titanium metal, titanium alloy, amorphous titanium dioxide, titanium dioxide anatase crystal, titanium dioxide rutile crystal, and titanium dioxide crystal.
  • peptides of the present invention having a binding ability to titanium (hereinafter, these peptides are referred to as “titanium-binding peptides”), and peptides having a binding ability to silver (hereinafter, these peptides are referred to as “the silver-binding peptides”)
  • titanium-binding peptides peptides having a binding ability to silver
  • silver-binding peptides A group of peptides capable of binding to silicon (hereinafter referred to as “the present silicon-binding peptide”) can be produced by a general chemical synthesis method according to the amino acid sequence. it can.
  • the chemical synthesis method includes ordinary liquid phase method and solid phase method for peptide synthesis.
  • the peptide synthesis method is based on the amino acid sequence information, and is based on the amino acid sequence information, in which the amino acids are successively linked one by one to extend the chain. Fragment-condensation method in which each fragment is synthesized in advance, and then each fragment is subjected to a coupling reaction.
  • the peptide of the present invention can be synthesized by any of these methods.
  • the condensation method employed for the above-mentioned peptide synthesis can also be in accordance with various known methods. Specific examples include the azide method, mixed acid anhydride method, DCC method, active ester method, oxidation-reduction method, DPPA (diphenyl phosphoryl azide) method, DCC + additive (1-hydroxybenzotriazole, N- Hydroxysuccinamide, N-hydroxy-5-norporene-1,2
  • the solvent that can be used in each of these methods can be appropriately selected from general solvents that are well known to be used in this type of peptide condensation reaction. Examples thereof include dimethylformamide (DMF), dimethylsulfoxide (DMSO), hexaphospholoamide, dioxane, tetrahydrofuran (THF), ethyl acetate, and the like, and a mixed solvent thereof.
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • ethyl acetate ethyl acetate
  • the hydroxyl group in an amino acid or a peptide not involved in the reaction is generally converted into a lower alkyl ester such as a methyl ester, an ethyl ester and a tertiary butyl ester by esterification, for example, a benzyl ester, p —Can be protected as methoxybenzyl ester, p-12 trobenzylyl aralkyl ester and the like.
  • a lower alkyl ester such as a methyl ester, an ethyl ester and a tertiary butyl ester by esterification, for example, a benzyl ester, p —Can be protected as methoxybenzyl ester, p-12 trobenzylyl aralkyl ester and the like.
  • an amino acid having a functional group in a side chain for example, a hydroxyl group may be protected with an acetyl group, a benzyl group, a benzyloxycarbonyl group, a tertiary butyl group, etc., but such protection is not always performed. No need.
  • the guanidino group of Arg is a nitro group, a tosyl group, a 2-methoxybenzenesulfonyl group, a methylene-12-sulfonyl group, a benzyloxy carbonyl group, an isopolonyloxycarbonyl group, an adamantyloxyl carbonyl group.
  • other suitable protecting groups for example, a hydroxyl group may be protected with an acetyl group, a benzyl group, a benzyloxycarbonyl group, a tertiary butyl group, etc.
  • the deprotection reaction of these protecting groups in the amino acid and peptide having the above protecting group and the finally obtained titanium-bonded peptide of the present invention can also be carried out by a commonly used method such as a catalytic reduction method, liquid ammonia Z sodium, hydrogen fluoride and the like. , Hydrogen bromide, hydrogen chloride, trifluoroacetic acid, acetic acid, formic acid, methanesulfonic acid, or the like.
  • the titanium-binding peptide of the present invention is normally used by genetic engineering techniques based on the nucleotide sequence information of the DNA encoding the titanium-binding peptide of the present invention. It can also be prepared by a method.
  • the thus obtained titanium-binding peptide and the like can be obtained by a conventional method, for example, ion-exchange resin, partition chromatography, gel chromatography, affinity chromatography, high-performance liquid chromatography (HPLC). Purification can be appropriately performed according to a method widely used in the field of peptide chemistry, such as a countercurrent distribution method.
  • titanium-binding peptide, the silver-binding peptide and the silicon-binding peptide of the present invention chemically modified peptides can be advantageously used.
  • chemical modification include chemical modification comprising substitution with an amino acid having a functional group, and chemical modification for easily forming a bond with a linker.
  • Titanium, silver, and silicon can be modified by chemical modification. A modification that does not reduce the binding ability of is preferred.
  • the chemical modification for easily forming the bond with the linker mention may be made of the covalent bond of biotin to the amino group of the peptide using an N-8-hydroxysuccinimide ester of biotin. it can. By the biotinylation of such a peptide, a chimeric molecule described later can be easily prepared.
  • Examples of the artificial protein capable of binding to titanium, silver, and silicon according to the present invention include a titanium-binding peptide, a silver-binding peptide, or a silicon-binding peptide, and a functional peptide or a functional protein.
  • the functional peptide or protein is not particularly limited as long as it is composed of a conjugate.
  • the functions of the functional peptide or protein include a secondary structure such as helical helix formation, a mushroom function, a calcification promoting function, and a bone growth differentiation.
  • chromophore binding function chromophore binding function
  • collagen binding function cell adhesion function
  • function of localizing proteins outside the cell function of targeting specific organelles (mitochondria, chloroplast, ER, etc.)
  • cell membrane Function to be embedded in amyloid fibril forming function fibrous protein forming function
  • proteinaceous gel forming machine Function protein film formation function
  • monolayer formation function self-assembly function such as the ability to form two-dimensional crystals by self-assembly
  • particle formation function function to assist the formation of higher-order structure of other proteins, virus, etc.
  • Antigen function to induce neutralizing antibodies immunostimulatory function (Nature Medicine, 3: 1266-1270, 1997), function to promote or suppress cell growth, function to specifically recognize cancer cells , Protein transduction function, cell death inducing function, antigen-determining residue presenting function, metal binding function, coenzyme binding function, catalytic activity function, fluorescence activation activity, binding to specific receptor and its receptor Function to activate DNA, bind to specific factors involved in signal transmission and modulate its function, and specifically recognize biological macromolecules such as proteins, DNA, RNA, and sugar, etc. Can be mentioned . These artificial proteins can be produced by directly or indirectly linking a functional peptide or a functional protein to a peptide capable of binding to titanium at the amino acid level or at the DNA level. it can.
  • the present inventors When producing at the DNA level, the present inventors have proposed a “method for producing a high-molecular micro gene polymer” (Patent No. 3415995) and a “multifunctional base sequence”. And an artificial gene containing the same ”(Japanese Patent Application Laid-Open No. 2001-325990) can advantageously use the technology for designing artificial proteins.
  • a peptide or protein capable of forming a two-dimensional crystal by self-assembly in cooperation with a peptide capable of binding to titanium, silver or silicon it is possible to construct an artificial protein capable of neatly aligning titanium, silver or silicon on a nanoscale along the two-dimensional crystal.
  • a virus eg, adenovirus, rotavirus, poliovirus
  • a virus can be used as a peptide or protein capable of forming a two-dimensional crystal by self-assembly.
  • ferritin family such as ferritin and apoferritin
  • DpsA protein and MrgA protein.
  • ferritin family such as ferritin and apoferritin
  • DpsA protein and MrgA protein examples of other peptides or proteins capable of forming a two-dimensional crystal by self-assembly include artificially designed artificial proteins having a high repetitive property.
  • methods for producing a two-dimensional crystal of a protein include a method in which a protein solution is spread on a water surface as a monomolecular film and then adsorbed on a solid substrate.
  • a leptide or a protein having a peptide sequence having a cell recognition activity such as a cell adhesion activity titanium, silver or silicon can be combined with a cell.
  • an artificial protein having a complex activity that can be recognized can be obtained.
  • Examples of such a peptide or protein having a peptide sequence having a cell recognition activity such as a cell adhesion activity include various ligands, a monoclonal antibody and its variable region, and a single-chain antibody. Not limited to the natural proteins as described above, and artificial proteins containing peptides having cell adhesion activity can be mentioned.
  • the chimeric protein capable of binding to titanium, silver or silicon of the present invention can be detected by reacting the present titanium-binding peptide, the present silver-binding peptide, or the present silicon-binding peptide alone or with another substance.
  • a chimeric molecule comprising a conjugate with a labeling substance or a peptide tag capable of producing a strong signal.
  • the labeling substance include an enzyme, a fluorescent substance, a chemiluminescent substance, a radioisotope, an Fc region of an antibody, and the like.
  • peroxidase for example, horserad ish pe rox id as e
  • alkaline phosphatase for example, horserad ish pe rox id as e
  • ⁇ - ⁇ -galactosidase glucose oxidase
  • glucose 6-phospho-detohydrogenase alcohol dehydrogenase
  • malate dehydrogenase ⁇ Enzymes such as nisilinases, lipases, apoglucose oxidases, ureases, luciferases or acetylcholinesterases, fluorescein isothiocynates, phycopyriproteins, rare earth metal chelates, dansyl chloride or fluorescent substances such as tetramethyl port one Damin'isochioshi Aneto, 3 H, 14 C, radioisotopes such as m I, mention may be made of 'chemiluminescent product quality.
  • peptide tags conventionally known peptide tags such as epitope tags such as HA, FLAG, and Myc, and affinity tags such as GST, maltose binding protein, biotinylated peptide, and oligohistidine (His). Can be specifically exemplified. For example, if the affinity between the His tag and Ni—NTA is used, the titanium peptide or protein complex can be easily purified.
  • the chimeric protein capable of binding to titanium, silver or silicon of the present invention includes the titanium-binding peptide, the silver-binding peptide or the silicon-binding peptide, and a non-peptide compound.
  • Chimeric molecules consisting of conjugates can be mentioned.
  • non-peptide compounds include fluorescent dyes such as fluorescein and rhodamine, antibiotics such as chloramphenicol and ampicillin, and non-peptide high-molecular compounds include polystyrene and Specific examples include polyalkylene glycols such as polypropylene, polyethylene, glass beads, silica gel, polysaccharides (including derivatives), and polyethylene dalicol.
  • the phage capable of binding to titanium, silver, or silicon of the present invention may be any phage that displays the present titanium-binding peptide, the present silver-binding peptide, or the present silicon-binding peptide on the particle surface.
  • the phage capable of binding to titanium, silver, or silicon may be used in the above-mentioned screening process in the case of titanium molecules, silver molecules, or silicon molecules. By separating peptide-displaying phage that strongly binds to the recon molecule from other phage populations, they can be obtained as phage clones that bind to titanium, silver, or silicon.
  • filamentous phages such as M13 and fd are in a liquid crystal state at a high concentration and have a regular alignment structure. If titanium is to be recognized, it is possible to create a state where the peptides are regularly arranged on the nanoscale. If titanium is brought into contact here, titanium can be aligned by the titanium recognition ability of the peptide.
  • Complex of titanium, silver or silicon and peptide of the present invention complex of titanium, silver or silicon and peptide of the present invention ', complex of titanium, silver or silicon and artificial protein, complex of titanium, silver or silico and chimeric protein, titanium, silver or silicon And a phage complex, such as the peptide capable of binding to titanium, silver and Z or silicon of the present invention, the artificial protein capable of binding to titanium, silver and Z or silicon of the present invention,
  • the chimeric protein capable of binding to titanium, silver and / or silicon of the present invention, and the phage capable of binding to titanium, silver and / or silicon of the present invention are ionized with titanium, silver or silicon.
  • the titanium-artificial protein composite can be advantageously used as an implant material, a photocatalyst, a pigment, and the like. Titanium-binding peptide fused to a site that promotes bone differentiation, for example, BMP is bonded to titanium implant material via a titanium-binding peptide It is expected that osseointegration will shorten the period of osseointegration due to active ossification near the titanium implant.
  • a peptide or protein that promotes the biomineralization of hydroxyapatite in which a titanium-binding peptide has been artificially fused is bonded to a titanium implant material via a titanium-conjugated peptide to provide titanium. It is expected that calcification of the implant surface will be promoted and the period of osseointegration will be shortened.
  • a peptide or protein or compound having an antibacterial effect obtained by artificially fusing a titanium-binding peptide is bonded to a titanium-made plant material via a titanium-binding peptide. Infections during osseointegration can be reduced.
  • collagen fibers that are not seen in conventional artificial roots are perpendicular to the artificial roots. Structures can be constructed as if they were joined. This mimics the mechanism of dispersing the force of the original tooth when a strong force is applied, which results in a higher stability than the conventional artificial tooth when a strong force is applied to the artificial tooth. Can have.
  • this titanium-binding peptide can also bind to silver at the same time, for example, cosmetics in which a titanium-binding peptide-fused collagen is combined with a titanium oxide pigment and silver can provide a high antibacterial effect.
  • a method of modifying the titanium surface using the titanium-binding peptide of the present invention, a modification of the titanium surface using the human protein of the present invention bound to the titanium-binding peptide, formation of titanium particles or alignment of titanium A method of modifying the titanium surface or forming titanium particles using the chimeric protein of the present invention bound to the titanium-binding peptide of the present invention; According to the method for aligning titanium or forming titanium particles using the fuzz of the present invention in which the particles are presented on the particle surface, the properties of the titanium surface and the physical properties of titanium can be improved, and in particular, self-assembly of proteins Nano-scale device development is also possible by patterning titanium oxide using the function.
  • a method of forming a silver surface / silicon surface or forming silver particles / silicon particles using the silver-binding peptide or the silicon-binding peptide of the present invention, or the silver-binding peptide of the present invention combined with the silicon-binding peptide of the present invention is also possible.
  • the present titanium-bonded peptide, the present silver-bonded peptide, and the present silicon-bonded peptide as a probe for an atomic force microscope (AFM)
  • AFM atomic force microscope
  • the titanium-binding peptide of the present invention, or a titanium-binding peptide fusion human protein / chimeric protein is solidified with a probe of an atomic force microscope, for example, by gold / thiol bond. Bringing the probe closer to the titanium 'silver' silicon substrate creates an interaction between the titanium-binding peptide and the substrate, which in turn is broken by releasing the probe. 'Tension generated at that time 9 can be measured.
  • a force map can be created using the bonding force between the substrate surface and the titanium binding peptide as an index. Based on the created force map, the range of choices of materials and crystal planes suitable for patterning is expanded.
  • washing of titanium particles is carried out by precipitating titanium particles by centrifugation at 130,000 rpm (Kokusan) at 13 000 rpm for 5 seconds, and removing the supernatant. Was. After washing, in order to block non-specific adsorption of the phage, the solution was further stirred with 1 ml of the same solution for 30 minutes at room temperature using a rotary stirrer rotator RT-50 (Titec).
  • Tabletop centrifuge H 13 00 (Kokusan) 13, OOO r pm, centrifugation for 5 seconds to remove the supernatant and wash 10 times with 1 ml TB S, 0.1% Tween—20 solution did. Washing was performed by precipitating titanium particles by centrifugation at 8,000 X g for 5 seconds. After removing the washing solution, add 1 ml of 0.2 M glycine (Wako Pure Chemical Industries, Ltd.) and hydrochloric acid buffer. PH 2.2, and rotate for 10 minutes at room temperature using a rotator RT-50 manufactured by Taitec Corporation. The phages bound to the titanium were eluted by stirring.
  • Titanium is precipitated by centrifugation, the supernatant is transferred to another 1.5 ml eppendorf tube, and further added with 1501 1 M Tris-HCl buffer pH 9.1. After the addition, the phage titer of the phage in the solution (plaque-forming ability per unit solution) is monitored by a standard method (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press). ] I decided.
  • proA + B + zzf : TnlO (TetR) fhuA2 supE thiA (lac-proAB) ⁇
  • the precipitated phage was collected by centrifugation in a Beckman centrifuge at 4 t, for 10 minutes, at 10,000 rpm. The phage precipitate was further centrifuged at 4,000 rpm for 1 minute to completely remove a small amount of the supernatant. The obtained phage precipitate was heated with 11111 chop, cooled on ice, and then the phage was gently suspended. The phage suspension was transferred to a 1.5 ml ethanol pen tube and centrifuged at 15,000 rpm for 5 minutes using a micro high-speed centrifuge (AT2018M rotor, Kubota) to separate the supernatant. To remove the unsuspended residue.
  • AT2018M rotor micro high-speed centrifuge
  • the phage solution was again added with 2001 in 20% PEG 6000, 2.5 M sodium chloride solution, mixed well with a mixer, and incubated on ice for 1 hour to precipitate the phage.
  • the phage sediment was collected by centrifugation at 15,000 rpm for 10 minutes using a micro high-speed centrifuge.
  • 0.02 sodium disulfide (Wako Pure Chemical Industries, Osaka) of 200/1 and TBS were added and completely suspended. Non-suspendable residues were removed by centrifugation at 15,000 rpm for 5 minutes in a micro high-speed centrifuge. The titer of the obtained concentrated phage solution was determined.
  • a series of operations such as the binding of phage to a target molecule (in this case, titanium), washing, recovery, and amplification with Escherichia coli as described above is called a panning operation.
  • a target molecule in this case, titanium
  • the baning operation By repeating the baning operation, phage clones that specifically bind to the target molecule can be enriched.
  • the second and subsequent panning operations of binding, washing, recovery, and propagation to titanium were repeated using the phage that had been once expanded in E. coli.
  • the following conditions were different from those of the first operation under the conditions of the second and subsequent operations. That is, the titer of the phage added in the second and subsequent baning operations was C 2.
  • Figure 1 shows the change in the ratio of the input power value to the output power value in the burning experiment using the C7C library.
  • the phage obtained in the third round with the D12 library and the C7C library were cloned according to a standard method (Phage Display A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001) and presented.
  • the nucleotide sequence of the peptide portion was determined.
  • a primer corresponding to the complementary strand of the nucleotide sequence located 96 bases downstream from the displayed peptide region was determined.
  • FIG. 3 The predicted peptide sequence predicted from the determined nucleotide sequence is shown in FIG. 3 (SEQ ID NOs: 3 and 16 to 24) for the D12 library, and FIG. 4 (SEQ ID NOs: 25 to 3) for the C7C library. See 8).
  • RKL P DAP GMHTW SEQ ID NO: 3
  • a peptide sequence presented by e3-2-3 phage obtained from the D12 library was the same among the 43 clones examined. There were 33 with an array.
  • One of the reasons that a particular phage clone becomes dominant in the population is that the phage clone has a strong binding ability to the target molecule.
  • Fig. 3 The phage displaying the peptides shown in Fig. 3 (SEQ ID NOs: 3, 16 to 24) and Fig. 4 (SEQ ID NOs: 25 to 38) were cloned, and the binding ability to titanium in the cloned state was determined as follows. The evaluation was made as shown in ,
  • Example 2 Using the phage clone obtained in Example 1, the binding ability to titanium was evaluated from the following experiment. The same operation as in the baning operation shown in Example 1 was performed. The differences from Example 1 were that the mixing time of titanium and phage clones was 1 hour, the concentration of Tween 20 in each solution was 0.5 BSA, and the concentration was 1%. mosquitoes valent phage, D 1 2 from clone 1 0 9 pfu, clones derived from C 7 C were performed at 1 O 11!) fu.
  • Fig. 5 shows the binding ability of each phage clone to titanium.
  • Example 2 in particular, for a clone that strongly binds to titanium (the peptide of SEQ ID NO: 3 is presented), the QCM-D300 (q-sense AB) , Gothenburg) to determine the bonding mode between the titanium surface and the phage.
  • the QCM-D300 q-sense AB
  • a QCM-D300 genuine titanium sensor was used as the crystal oscillator.
  • the temperature was set at 24.99 ° C, and the measured values ranged from 24.68 to 24.7 ° C.
  • Conditions and Blocking for Blocking Sensors with BSA The measurement was carried out under the condition not to run. When blocking was not performed with BSA, a reference value was measured with TBS, and then a phage solution adjusted so that the phage titer was 101 () pfuZm 1 was measured continuously.
  • Example 2 particularly for the clone (SEQ ID NO: 3) that strongly bound to titanium, a point mutant was prepared by substituting alanine having only one methyl group in the side chain, and the binding of each mutant phage to titanium was performed. The change in ability was examined. Since point mutants have alanine at position 6 in the display sequence, all the residues except for residue 6 were prepared.
  • FIG. 8 shows the synthetic DNA used for preparing the point mutant. The introduction of the point mutation was confirmed by determining the nucleotide sequence of the phage DNA. The DNA sequence was performed in the same manner as in Example 1. The binding ability of the obtained point mutant to titanium was measured by the method shown in Example 2 while adjusting the amount of the added phage to 10 lfl pfu.
  • Figure 9 summarizes the binding ability of each point mutant to titanium.
  • Example 4 From the results of Example 4, it is mainly focused on the amino terminal portion of SEQ ID NO: 3 that is mainly important for binding to titanium. Therefore, a mutant was deleted in which the 7th to 12th amino acids at the end of lipoxyl were deleted, and the change in binding ability to titanium was examined. In addition, a similar deletion mutant was prepared for the mutant in which the second lysine was replaced with alanine, which had an increased binding ability in Example 4, and the change in the binding ability to titanium was examined.
  • the deletion mutant was prepared by the method schematically shown in FIG.
  • Double-stranded DNA (hereinafter RF) of each phage clone was prepared using QIAGEN kit.
  • the obtained RF was subjected to PCR using the ⁇ type.
  • the primer used at this time (Fig. 8, SEQ ID NOS: 51 to 53) contains an additional 5 'site so that it can be cleaved with the restriction enzyme BamHI site and BamHI site on the 5' side.
  • a 3-residue poly G sequence was added to the side.
  • Reagents were run using the Expand TM Long Temp PCR PCR System (Boehringer), and the reaction was performed with one polymerase.
  • the DNA was excised and purified using Genecean II kit (Funakoshi) according to the attached protocol.
  • the purified DNA was incubated with restriction enzyme BamH, I (Boehringer) for 2 hours at 30 ° C. BamHI was inactivated by ethanol precipitation, and the DNA was dried.
  • the dried DNA was dissolved in 41 sterile water and 51 2X ligation buffer (Promega), and then dissolved in 1 n1 T4 DNA ligase (Roche) was added, and a ligation reaction was performed for 30 minutes at room temperature to allow self-ring closure.
  • Example 1 After adding a competent cell of Escherichia coli ER2738 strain described in Example 1 of 100111, the mixture was allowed to stand on ice for 30 minutes, and then subjected to a heat shock at 42 ° C for 40 seconds. Then, immediately put on ice for 3 minutes, then add 800 1 of 3 ⁇ (: culture medium, vigorously shake culture at 37 ° C for 3 hours, then log 1,1, 0, 100 M It was combined with 200 ⁇ 1 of the ER2738 strain in the growth phase, allowed to stand for 5 minutes, and then cloned according to a conventional method (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press). Was confirmed by sequencing the sequence of the phage DNA. The DNA sequence was determined in the same manner as in Example 1.
  • the binding ability of the resulting deletion mutant to titanium was measured.
  • the amount of added phage was adjusted to 10 fu, and the method was performed as described in Example 2.
  • the binding ability of both deletion mutants to titanium is shown in FIG. From stopping the.
  • Figure 1 1 Bae shown in SEQ ID NO: 1 that bind to titanium Phage clones displaying the peptide were found to bind with the same strength even in the first half of the phage.
  • Example 4 it was found that the positive charge of the first arginine side chain of SEQ ID NO: 1 plays an important role in binding to titanium. However, since this arginine is located at the amino end, the end of the main chain becomes positively charged-'
  • the insertion mutant was prepared in the same manner as in Example 4 except for annealing conditions. Annealing is performed at 85 ° C for 10 minutes, at 48 ° C for 15 minutes, and then the heat block (ALB121, I WAK I) is turned off and allowed to cool to room temperature. Was.
  • the primer used> sequence (SEQ ID NO: 54) is shown in FIG.
  • the introduction of the insertion mutation was confirmed by sequencing the phage DNA sequence.
  • the DNA sequence was performed in the same manner as in Example 1.
  • the binding ability of the obtained import mutant to titanium was measured by the method described in Example 2 while adjusting the amount of added phage to 101 () pfu.
  • FIG. 11 shows the binding ability of the insertion mutant to titanium.
  • Example 6 indicate that SEQ ID NO: 15 does not necessarily need to be preceded by arginine for binding to titanium. This is an important finding that means that there is no restriction on the arrangement of SEQ ID NOS: 1 and 3 when producing chimeric proteins, artificial proteins, synthetic peptides, and the like that bind to titanium.
  • the phage clone displaying the peptide represented by SEQ ID NO: 3 was linked to the one in which the hydroxyl group bonded to the titanium atom was charged. It is considered that they match. Therefore, the binding ability of a phage clone displaying the peptide shown in SEQ ID NO: 3 to titanium particles treated with hydrogen peroxide to increase the number of hydroxyl groups bound to the titanium surface was examined. Take 1 Omg of titanium particles (particle system 150mm or less, Sumitomo Titanium) into an Eppendorf tube, add 3% hydrogen peroxide (Wako Pure) in lm l, and add them at 120 ° C, 80 ° C, respectively.
  • Fig. 12 shows the results of the effect of the hydrogen peroxide treatment on the phage binding ability.
  • Example 7 It can be seen from the results of Example 7 that the treatment with hydrogen peroxide can increase the amount of binding of the phage clone displaying the peptide represented by SEQ ID NO: 3, thereby changing the state of the titanium surface. This suggests the possibility of controlling the amount of phage binding.
  • Example 4 In order to confirm whether the binding mode of phageclones that bind to silver and silicon and the sequence specificity of the phageclones showing the peptide consisting of the amino acid sequence represented by SEQ ID NO: 3 are the same as those in the case of binding to titanium, Example 4 was used.
  • the ability of the alanine-substituted mutant phage of SEQ ID NOs: 4, 5, 7, and 8 to bind to silver and silicon was determined by the method described in Example 2. The results are summarized in Fig.14. From the results shown in Fig. 14, the effect on silver-silicon bonding ability by each alanine substitution showed the same tendency as that of titanium. This suggested that the phage clone displaying SEQ ID NO: 3 binds to silver and silicon in the same molecular mechanism and sequence-specific manner as it binds to titanium.
  • the binding ability of the synthetic peptide having the amino acid sequence represented by SEQ ID NO: 3 to titanium particles was examined. After taking 1 Omg of the titanium particles used in Example 1 in an eppendorf tube and washing twice with 50 mM HE PES-NaOH, 150 mM NaC1, the SEQ ID NO: 1001 was obtained. 5 to 40 M of the synthetic peptide of No. 3 was added, and the mixture was rotationally stirred for 2 hours at room temperature using a rotary stirrer rotator RT-50 (Taitec).
  • Tabletop centrifuge H1300 (Kokusan Tokyo) The supernatant was collected by centrifugation at 13,000 rpm for 5 seconds, mixed with Fluoroaldehyde (Pierce's Rockford Illinois), and the spectral fluorescence was measured. Using a spectrometer (JASCO Tokyo), the amount of binding to titanium was determined from the peptide concentration in the supernatant from the excitation wavelength of 342 nm and the emission wavelength of 337 nm. Chita Specific surface area was determined from the density and the average particle system. Also, in the same way
  • the binding ability of the synthetic peptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was also examined for the silicon “tin” used in 13.
  • the obtained results were subjected to fitting using a Langmuir adsorption isotherm, and the maximum adsorption amount and dissociation constant were determined. Table 1 summarizes the results.
  • Synthetic peptide silicon consisting of the amino acid sequence represented by SEQ ID NO: 3 was tested for biomineralization ability by the following method. Synthetic peptide consisting of the amino acid sequence of SEQ ID NO: 3 dissolved in PBS or PBS Diluted to 12 mg / m 1 with 1 mM HC1 to a final concentration of 0.1 M 1 After adding 10 volumes of tetramethoxysilane (Shin-Etsu Chemical Tokyo) and leaving it to stand at room temperature for 5 minutes, the silica produced by centrifugation was recovered.
  • the recovered silica is washed well with distilled water, dissolved by incubating for 20 minutes at 0.5 NN aH at 98 ° C for 30 minutes, and diluted 100- to 500-fold with distilled water.
  • To 2501 add 10 times dilution of IOI, sulfuric acid for measuring harmful metals, and 10% of 10% aqueous solution of molybdenum ammonium, and incubate at 25 ° C for 10 minutes.
  • the amount of generated silicide was determined from the absorbance of ⁇ m.
  • the results are shown in Fig. 16 and the morphology of the formed silica was observed with a transmission electron microscope and a scanning electron microscope.
  • Fig. 17 summarizes the results. From these results, it was found that the synthetic peptide consisting of the amino acid sequence represented by SEQ ID NO: 3 had the capability of silica particles for mineralization.
  • a fusion protein obtained by fusing SEQ ID NO: 1 with a ferritin protein was used.
  • TBF a fusion protein obtained by fusing SEQ ID NO: 1 with a ferritin protein
  • Plasmid construction for expressing TBF was performed by the method schematically shown in FIG. That is, the peptide-fused recombinant ferritin expression vector comprising the amino acid sequence represented by SEQ ID NO: 1 is obtained by reconstituting pMK2 / ferritin, which is a recombinant ferritin expression vector, with the restriction enzymes BamHI and SacI.
  • the cut and annealed synthetic DNAs shown in SEQ ID NOs: 55 and 56 were inserted, and then cut with BamHI. There, pMK2 / ferritin was cut with BamHI. The occasional short DNA fragment was inserted and made.
  • the constructed TBF expression plasmid was transformed into Escherichia coli XL I_b1ue strain according to a conventional method (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press). After transforming the transformed strain in LB medium containing 5 ml 100 ⁇ g / m1 carpenicillin for 16-20 hours at 37 ° C, 500 ml 100 g Zm1 LB medium containing 1 carbenicillin was added. The cells were subcultured and further cultured at 37 ° C for 16-18 hours. After collecting E.
  • the cells were washed with 50 mM Tris HC lp H 8.0 buffer, and then 20 m / liter of 50 mM Tris HC 1
  • the cells were disrupted for 2 minutes using an ultrasonic disrupter Sonifer 250 (Danbury, Connecticut, manufactured by Branson), a small amount of chips, an output of 7, and a duty cycle of 50% for 2 minutes. Thereafter, the cells were repeatedly ice-cooled, crushed for 2 minutes, and ice-cooled, and the cells were well broken and pounded.
  • a titanium implant material that shortens the osseointegration period a titanium implant material that is highly resistant to bacterial infection by mimicking teeth. It is possible to provide titanium composites that can be advantageously used in nanobiotechnology, material engineering, semiconductors, pharmaceuticals, cosmetics, etc., such as titanium oxide materials that can be used as photocatalysts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Catalysts (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 ソフトマターによるチタン、銀、シリコン材料の高機能化を行うために必要なチタン、銀、シリコンへの結合能を持つペプチド配列、ファージ、人工タンパク質やキメラ分子、または前記ペプチド配列と機能性ペプチド配列を持つ、ペプチド、ファージ、人工タンパク質又はキメラ分子とチタンの複合体を提供するものである。チタン粒子等に、異なったペプチド配列をファージ粒子上に提示したファージ集団を接触させ、ファージ粒子が結合したチタン粒子を遠心操作により回収し、得られたファージ粒子を菌体中で増殖させ、次いで、パニング操作を繰り返すことにより、チタンに結合するファージクローンを濃縮する。このファージクローンから、チタンに結合能を持つペプチドRKLPDAPGMHTW等を同定する。チタン、銀、シリコンへの結合能を持つペプチドとして、RKLPDAやRALPDAを挙げることができる。

Description

チタン、 銀、 シリコンに結合能を有するペプチド 技術分野
本発明は、チタンに結合能を有するぺプチドのスクリ一二ング方法や、 チタン、 銀及び/又はシリコンに結合能を有するペプチドや、 チタン、 銀及びノ又はシリコンに結合能明を有するぺプチドがチタン、 銀又はシリ コンと結合したチタン、 銀又はシリコンとペプチドとの複合体や、 チタ 田
ン、 銀及び/又はシリコンに結合能を有するペプチドと機能性ペプチド 又は機能性タンパク質とが結合した人工タンパク質や、 かかる人工タン パク質がチタン、 銀又はシリコンと結合したチタン、 _艮又はシリコンと 人工タンパク質との複合体や、 チタン、 銀及びノ又はシリコンに結合能 を有するぺプチドと標識化物質若しくはべプチドタグとの結合体又は非 プチド系化合物とが結合したキメラタンパク質や、 かかるキメラタン パク質がチタン、 銀又はシリコンと結合したチタン、 銀又はシリコンと キメラタンパク質との複合体や、 チタン、 銀及び/又はシリコンに結合 能を有するぺプチドをその粒子表面上に提示したファージゃ、 かかるフ ァージがチタン、 銀又はシリコンと結合したチタン、 銀又はシリコンと ファージとの複合体や、 チタン、 銀及び 又はシリコンに結合能を有す るペプチド, チタン、 銀及び/又はシリコンに結合能を有する人工タン パク質, チタン、 銀及び Z又はシリコンに結合能を有するキメラタンパ ク質, チタン、 銀及び Z又はシリコンに結合能を有するファージを用い るチタン、.銀又はシリコン表面の改質又はチタンの整列化方法や、 銀又 はシリコン粒子の形成方法や、 チタン一人工タンパク質複合体を有効成 分とするインプラント材料に関する。 背景技術
1 9 5 2年のブローネマルクによるチタンと骨が結合組織を介するこ となく結合するォッセォインテグレーション現象の発見を契機に、 1 9 6 5年に初めて純チタン製のインプラン卜が臨床応用された。 現在に至 るまで、 ォッ,セオインテグレーション現象を利用した、 インプラント治 療は盛んに行われているが、チタンと骨が結合するまでに要する期間は、 3〜 6ヶ月と非常に長い時間が必要になっており、その間これまでにも、 この期間を短縮す.るために骨親和性を高める目的で、 表面仕上げに工夫 をしたり、 カルシウムやハイ ドロキシアパタイ トのチタン表面への蒸着 や、 材料にチタン合金を検討するなど、 主に機械的な材料改変である Λ 一ドマターの再設計からのアプローチは盛んに行われているが、 これま でのところ顕著な効果は得られていない。 例えば、 ハイ ド faキシァパタ イ トのようなセラミックの場合、 被膜の減少や物理的性質上、 負荷に弱 い _ことが問題となる。また、合金の場合これまで多数検討されてきたが、 多くの場合、 有害な組織反応を引き起こしており、 現在では、 純チタン とその合金である、 T i 6A 1 4Vが使われているに留まる。
また、 インプラントと周囲粘膜の関係は、 歯と歯肉の関係と異なり感 染に対する抵抗力が小さい瘢痕組織であると考えられている。そのため、 この問題を解決するために、 チタン表面に抗菌剤をコートするなど、 先 述したハードマタ一の検討がなされているが、 このようなハードマター からのアプローチでは、 インプラントと周囲粘膜との解剖学的 ·組織学 的な関係の改善は考慮されていない。
チタンは、 非常に酸化されやすく、 大気中 ·水中で直ちに二酸化物を 形成する。 二酸化チタン結晶のひとつである、 アナターゼ形結晶が持つ 光触媒活性を利用して、 ほぼすベての有害化学物質を分解 ·無害化する ことができるため、 シックハウスガスゃァセトアルデヒドなどの悪臭の 分解、 防カビ剤の様々な用途に用いられている。 しかし、 アナターゼ形 結晶が利用できる波長は紫外域に限られているため、 可視光域で利用で きる光触媒の開発が望まれている。
その他、 被験体に生体内利用するのに適した材料を、 放出可能な形の 形成した状態で含む、 ォッセオインテグレーションの速度及び骨接着の パーセンテージを増加させる新規なォステオボンチン含有インプラン卜 (特表 2 0 0 2— 5 0 0 8 9 8号公報) .や、 金属化合物を結合し、 分子 レベルでその配向や配列の制御を可能にした新規な蛋白質、蛋白質断片、 ペプチドまたはこれらの変異体の誘導体を提供するため、 蛋白質、 蛋白 質断片、 ペプチド、 またはこれらの変異体の有する特徴的な立体構造上 に、 二トリ口三酢酸構造などを有する官能基を導入することにより、 結 合する金属化合物の構造を分子レベルで制御する技術 (特開平 1 0— 3 3. 8 7 0 0号公報) や、 半導体物質に特異的に結合することができるァ ミノ酸オリゴマ一を有するように修飾された自己組織化生物分子を用い ることにより、 相や配置などの特異的な結晶的特性を有する半導体物質 のナノ結晶を作製する方法 (米国特許出願公開第 2 0 0 3 / 0 0 7 3 1 0 4号明細書) が提案されている。
上記のように、インプラントの分野におけるチタン材料の高機能化を、 ハードマ夕一による材料改変ではなく、 チタン表面に柔軟に結合するこ とのできるソフトマターであるタンパク質などの高分子ポリマ一により 行おうと考えたとき、 チタン表面を特異的に認識 ·結合するようなアミ ノ酸モチーフは天然には存在しないという問題がある。本発明の課題は、 ソフトマターによるチタン材料の高機能化を行うために必要なチタンへ の結合能を持つぺプチド配列、ファージ、人工夕ンパク質やキメラ分子、 または前記ペプチド配列と機能性ペプチド配列を持つ、 ペプチド、 ファ ージ、 人工タンパク質又はキメラ分子とチタンの複合体を提供すること にある。 具体的には、 前記ペプチドと石灰化促進または骨増殖 ·分化べ プチドもしくは人工タンパク質 · キメラタンパク質を表面に結合した機 能性チタンインプラント材料で、 ォッセォインテグレーションが短期間 で終了するもの、 あるいは、 前記ペプチドと歯肉に高い親和性を持つぺ プチドもしくは人工タンパク質 · キメラタンパク質を表面に結合した機 能性チタンィンプラント材料で、 細菌感染等に抵抗性の高いものを提供 する。 または、 可視光領域でも光触媒能を持つような、 前記ペプチドも しくは人工タンパク質 · キメラタンパク質と二酸化チタン複合体、 もし くは前記複合体とクロモフォアのような低分子化合物との複合体を提供 することや、 前記のペプチドと、 肌にやさしいコラーゲン等とのキメラ タンパク質 ·人工タンパク質を表面に結合した二酸化チタシ顔料を提供 することにある。
_本発明者らは、 上記課題を解決するため鋭意研究し、 金属チタンに水 溶液中で、 多様なぺプチド配列をファージ粒子上に提示したファージ集 団を接触させ、 ファージ粒子がぺプチド配列を介して結合したチタンを 遠心操作により回収し、 得られたチタンに結合したファージ粒子を大腸 菌中で増殖させ、 次いで、 増殖させたペプチド配列をファージ粒子上に 提示したファージ集団をチタンに再度接触させるバニング操作を繰り返 すことによりチタンに結合するファージクロ一ンを濃縮し、 チタンを特 異的に認識する、 チタンに結合能を有するぺプチドを提示すると考えら れるファージライブラリーを得た。
得られたファージライブラリーをクローン化し、 提示しているアミノ 酸配列を調べた。 前記のバニング操作を繰り返すことで、 特にチタンに 強く結合できる配列を提示するクローンがファージライブラリ一中に、 多数を占めることが予想されるが、 R K L P D A P G M H T W (配列番 号 3で表されるアミノ酸配列からなるぺプチド) を提示するファージク ローンが 4 3クローン中 3 3クローンあり、 配列番号 3で表されるアミ ノ酸配列からなるぺプチドを提示するファ一ジクローンのチタンへの結 合能は、 配列番号 1 6〜 3 8で表されるアミノ酸配列からなるペプチド を提示するファ一ジクローンの結合能を大きく上回るものであることを 見い出した。
チタンに対して、 得られた配列番号 3で表されるアミノ酸配列からな るペプチドを提示するクローンが、 果たして提示している配列を介して 結合しているかどうかを検討する必要がある。 水晶振動子形相互作用定 量装置で消散を同時に測定できる Q C M— D 3 0 0 ( q_s ens e AB社 ィ ェテポリ) を用いることで、 配列番号 3で表されるアミノ酸配列からな るべプチドを提示するファージクローンのチタンへの結合が、 提示する 配列を介して特異的に結合しているかどうかを確認することができる。 スァ一ジのように非常に長く伸びた分子が、 水晶振動子センサーに対し て垂直方向に結合したとき、 結合量を表す周波数の減少に対して、 消散 により測定される粘弾性が極端に上昇する。 また、 逆に非常に長く伸び た分子であっても、水晶振動子センサ一面に水平に方向に結合したとき、 周波数の減少に対して粘弹性の極端な上昇は見られない。 実際に、 配列 番号 3で表されるアミノ酸配列からなるぺプチドを提示するファ一ジク ローンは、 チタン表面に対して、 垂直方向に結合していることを示す結 果を得た。 水晶振動子形相互作用解析装置によるファージの結合様式を 調べた例は、 おそらく世界で初めてであり、 この方法が固体表面に結合 するファージの解析に非常に有用であることを同時に示した。
チタンは、 水中でその表面は直ちに酸化され、 水酸基がチタン原子に 結合する。 結合した水酸基は、 二つのチタン原子間をブリッジする水酸 基と、 ひとつのチタン原子と結合したターミナルの水酸基に別れると考 えられる。 ブリツジの水酸基とターミナルの水酸基ではそれぞれ極性が 異なるため、 異なる p Kを持つ。 ブリッジの水酸基は酸として、 ターミ ナルの水酸基は塩基として作用していると考えられている。 このチタン 表面に配列番号 3で表されるアミノ酸配列からなるぺプチドがどのよう な特異性で結合しているのかを調べることで、 チタンとぺプチドの結合 を制御することが可能になる。 .
一般にべプチドモチーフの特異性についての検討は、 点変異の導入に よる機能に重要な役割を果たす残基の同定、 欠失変異体の解析による機 能領域の絞り込みが行われる。 前者においては、 ァラニンスキャニング と呼ばれる一連のァラニン置換点変異体の機能解析がしばしば行われる。 電荷を持たず、 メチル基がひとつだけの小さな側鎖を持つァラニンへの 置換は、 そのアミノ酸残基の側鎖の機能を損なうと考えられている。 配 列番号 3で表されるアミノ酸配列からなるぺプチドを提示するファージ 久ローンについてァラニンスキャニングを行った。 配列番号 4〜 1 4で 表されるアミノ酸配列からなるぺプチドを提示する一連の点変異ファー ジクローンを作製し、 それぞれのクローンのチタンへの結合能を調べた 結果、 4番目のプロリンへの点変異体の結合能は、 今回調べた中で最も 大きく失われた。 プロリンは、 グリシンと同じくペプチドやタンパク質 の主鎖が大きく折れ曲がる役割をしている。 このことから、 配列番号 3 で表されるアミノ酸配列からなるぺプチドがチタンに結合するのに、 4 番目のプロリンに於ける主鎖の折れ曲がりが重要な役割を果たしている ことが強く示唆された。 また、 側鎖に電荷を持つアミノ酸のうち 1番目 のアルギ:!ンと 5番目のァスパラギン酸への点変異体の結合能が著しく 損なわれたことから、 これらの残基が前記したチタン表面の正負の電荷 と相互作用していることが示唆された。 1319
ァラニンスキャニングの結果、 配列番号 2の前半部、 配列番号 1の領 域が、 チタンへの結合に重要な役割を果たしていることを支持する結果 が得られたので、 配列番号 3で表されるアミノ酸配列からなるぺプチド の 7〜1 2番目を欠失した欠失変異体、 すなわち配列番号 1で表される アミノ酸配列からなるぺプチドを提示するファ一ジクローンを作製し、 チタンへの結合能を調べた。 チタンへの結合能は、 欠失により影響を受 けなかったことから、 配列番号 1で表されるアミノ酸配列部分だけで十 分にチタン結合能を有することが明らかになった。
配列番号 3のペプチド配列が、 チタンに結合する際、 一番目のアルギ ニンの側鎖の正電荷の重要性は前記の通りであるが、 同時に主鎖のアミ ノ末端のァミノ基と協調的に働いてチタンに結合している可能性が残る。 そこで、 配列番号 3で表されるアミノ酸配列についてァミノ末端にァラ ニンを挿入した挿入変異体 (配列番号 1 5 ) を作製し、 チ'タンへの結合 能を調べた。 その結果チタンへの結合能の上昇が見られた。 結合能の上 昇の理由としては、 配列番号 3の 2番目のリジンの側鎖の正電荷と主鎖 のァミノ末端のァミノ基の正電荷間の反発が、 一残基のアミノ酸の挿入 により減少し、 配列番号 1 5で表されるアミノ酸配列からなるペプチド の構造がより安定化したことによるものであると考えることができる。 また、 この結果は、 配列番号 3で表されるアミノ酸配列からなるぺプチ ドがチタンに結合するのに、 必ずしもアルギニンが先頭 (ァミノ末端) にある必要がないということを意味する。 このことは、 チタンに結合す るキメラタンパク質、人エタンパク質や合成べプチドなどを作製する際、 配列番号 1または 3の配置に一次構造上の制約を全く受けないことを意 味する重要な知見である。
過酸化水素処理により、 チタン表面により多くの水酸基が結合するこ とは知られている。 また、 前記の通り配列番号 1, 3で表されるァミノ 酸配列からなるぺプチドとチタン表面の相互作用は、 チタンに結合した 水酸基の電荷と、 配列番号 1, 3の一番目のアルギニンの側鎖と 5番目 のァスパラギン酸の側鎖間の静電的相互作用によるものが支配的だと考 えられる。 チタンに結合する水酸基の量を調節することができれば、 チ タンとぺプチドの結合量を調節することができる可能性がある。実際に、 過酸化水素処理したチタンへの配列番号 3を提示するファージクローン の結合能は上昇した。 このことは、 過酸化水素処理によるチタン表面へ の水酸基のさらなる付加により、 配列番号 3を提示するファージクロー ン、 配列番号 3のペプチド、 およびこれを含む人工タンパク質 · キメラ タンパク質の結合量を増やすことができる。 また、 逆にチタン表面から 水酸基を除いた場合、 配列番号 3で表されるアミノ酸配列からなるぺプ チドを提示するファージクローン、 配列番号 3のペプチド、 およびこれ を含む人工タンパク質 · キメラタンパク質の結合量を減らすことができ ると期待される。 チタン表面から水酸基を取り除く方法としては、 例え ばフッ化ナトリウム処理がある。 これらの方法を組み合わせることで、 チタンへの配列番号 3を提示するファージクローン、 配列番号 3のぺプ チド、 およびこれを含む人工タンパク質 · キメラタンパク質の結合量を 調節することができると期待される。
また、 チタン結合能を有するぺプチドの金属材料への結合の特異性を 調べたところ、 チタン以外にも銀、 シリコンに選択的に結合し、 金, 白 金 ·銅 ·鉄 ·錫 ·亜鉛 · クロム等には結合しないことを見い出した。 こ の金属材料結合特異性を利用して、 例えば金基盤上にチタンでパターン ニングを施し、 機能性化合物、 例えば半導体ナノ粒子を抱合したチタン 結合べプチド、 およびこれを含む人工タンパク質 ' キメラタンパク質を 加えることで、 チタン結合ペプチドを介して機能性化合物を金基盤上に パターン化することが期待できる。 本発明者らは、 上記知見に基づき、 本発明を完成するに至った 発明の開示
すなわち本発明は、 ( 1 ) チタンに、 異なったペプチド配列をファー ジ粒子上に提示したファージ集団を接触させ、 ファージ粒子がペプチド 配列を介して結合したチタンを遠心操作により回収し、 得られたチタン に結合したファージ粒子を菌体中で増殖させ、 次いで、 増殖させたぺプ チド配列をファージ粒子上に提示したファージ集団をチタンに接触させ るバニング操作を繰り返すことにより、 .チタンに結合するファージク口 —ンを濃縮することを特徴とするチタンに結合能を有するぺプチドのス クリーニング方法や、 ( 2) 上記 ( 1 ) 記載のスクリーニング方法によ り得られることを特徴とするチタンに結合能を有するぺプチドに関する。 また本発明は、 ( 3) 配列番号 1に示されるアミノ酸配^からなるチ タンに結合能を有するペプチドや、 (4) 配列番号 1に示されるァミノ 酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加 されたアミノ酸配列からなり、かつチタンに結合能を有するぺプチドゃ、 ( 5) 配列番号 1に示されるアミノ酸配列の 1, 4, 5番目のアミノ酸 残基が保存されていることを特徴とする上記 (4) 記載のチタンに結合 能を有するペプチドや、 ( 6) 2番目のリジンがァラニンに置換された 配列番号 2に示されるアミノ酸配列からなることを特徴とする上記( 5 ) 記載のチタンに結合能を有するペプチドや、 ( 7) 配列番号 3に示され るアミノ酸配列からなるチタンに結合能を有するペプチドや、 ( 8) 配 列番号 3に示されるアミノ酸配列において、 1若しくは数個のアミノ酸 が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつチタンに 結合能を有するペプチドや、 ( 9) 配列番号 3に示されるアミノ酸配列 の 1, 4, 5番目のアミノ酸残基が保存されていることを特徴とする上 記 ( 8) 記載のチタンに結合能を有するペプチドや、 ( 1 0) 1〜 5番 目及び 7〜 1 2番目のアミノ酸残基がそれぞれァラニンに置換された配 列番号 4〜 1 4に示されるアミノ酸配列からなることを特徴とする上記 (8) 記載のチタンに結合能を有するペプチドや、 ( 1 1 ) 配列番号 3 に示されるアミノ酸配列の N末端にァラニンが付加 ·挿入された配列番 号 1 5に示されるアミノ酸配列からなることを特徴とする上記 ( 8 ) 又 は ( 9 ) 記載のチタンに結合能を有するペプチドや、 ( 1.2) 配列番号 1 6〜 24に示されるアミノ酸配列からなるチタンに結合能を有するぺ プチドゃ、 ( 1 3) 配列番号 1 6〜 24に示されるアミノ酸配列におい て、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたァミノ 酸配列からなり、 かつチタンに結合能を有するペプチドや、 ( 1 4) 配 列番号 2 5〜 3 8に示されるアミノ酸配列からなるチタンに結合能を有 するぺプチドゃ、 ( 1 5) 配列番号 2 5〜 3 8に示される'アミノ酸配列 において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加された アミノ酸配列からなり、 かつチタンに結合能を有するペプチドや、 ( 1 6) 化学修飾されていることを特徴とする上記 (2) 〜 ( 1 5) のいず れか記載のチタンに結合能を有するぺプチドに関する。
さらに本発明は、 ( 1 7) チタンが、 金属チタン、 チタン合金又は二 酸化チタンであることを特徴とする上記 ( 2) 〜 ( 1 6) のいずれか記 載のチタンに結合能を有するペプチドや、 ( 1 8) 上記 ( 2) 〜 ( 1 6) のいずれか記載のチタンに結合能を有するぺプチドがチタンと結合した チタン一ペプチド複合体や、 ( 1 9) 上記 (2) 〜 ( 1 6) のいずれか 記載のチタンに結合能を有するぺプチドと、 機能性べプチド又は機能性 タンパク質との結合体であって、 かつチタンに結合能を有する人工タン パク質や、 (2 0) 機能性ペプチド又は機能性タンパク質が、 チタンに 結合能を有するぺプチドと協働して、 二次元結晶を自己集合で形成しう るペプチド又はタンパク質であることを特徴とする上記 ( 1 9) 記載の 人工タンパク質や、 ( 2 1 ) 機能性ペプチド又は機能性タンパク質が、 細胞接着活性等の細胞認識活性をもつぺプチド配列を有するぺプチド又 はタンパク質であることを特徵とする上記 ( 1 9).記載の人工タンパク 質や、 (2 2) 上記 ( 1 9) 〜 (2 1 ) のいずれか記載の人工タンパク 質がチタンと結合したチタン一人工タンパク質複合体や、 (2 3) 上記
( 2)〜( 1 7)のいずれか記載のチタンに結合能を有するぺプチドと、 標識化物質若しくはべプチドタグとの結合体、 又は非べプチド系化合物 との結合体であって、かつチタンに結合能を有するキメラタンパク質や、 ( 24) 上記 ( 2 3) 記載のキメラタンパク質がチタンと結合したチタ ン—キメラタンパク質複合体や、 ( 2 5) 上記 (2) 〜 ( 1 7) のいず れか記載のチタンに結合能を有するぺプチドをその粒子表面上に提示し、 かつチタンに結合能を有するファージゃ、 ( 2 6) 上記 ('2 5) 記載の ファージがチタンと結合したチタン一ファージ複合体や、 ( 2 7 ) 上記 (2) 〜 ( 1 7 ) のいずれか記載のチタンに結合能を有するペプチドを 用いることを特徴とするチタン表面の改質又はチタン粒子の形成方法や、 (2 8) 上記 ( 1 9) 〜 (2 1 ) のいずれか記載のチタンに結合能を有 する人エタンパク質を用いることを特徴とするチタン表面の改質、 チタ ン粒子の形成又はチタンの整列化方法や、 (2 9) 上記 (2 3) 記載の チタンに結合能を有するキメラタンパク質を用いることを特徴とするチ タン表面の改質又はチタン粒子の形成方法や、 ( 3 0) 上記 ( 2 5) 記 載のチタンに結合能を有するファージを用いることを特徴とするチタン の整列化又はチタン粒子の形成方法や、 ( 3 1 ) 上記 ( 2 2) 記載のチ タン一人工タンパク質複合体を有効成分とするインプラン卜材料に関す る。
また本発明は、 ( 3 2) 配列番号 1に示されるアミノ酸配列からなる 4011319
銀に結合能を有するペプチドや、 (3 3) 配列番号 1に示されるァミノ 酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加 されたアミノ酸配列からなり、かつ銀に結合能を有するぺプチドゃ、 ( 3 4) 配列番号 1に示されるアミノ酸配列の 1 , 4, 5番目のアミノ酸残 基が保存されていることを特徴とする上記 ( 3 3) 記載の銀に結合能を 有するペプチドや、 ( 3 5) 2番目のリジンがァラニンに置換された配 列番号 2に示されるアミノ酸配列からなることを特徴とする上記( 34) 記載の銀に結合能を有するペプチドや、 ( 3 6 ) 配列番号 3に示される アミノ酸配列からなる銀に結合能を有するペプチドや、 (3 7) 配列番 号 3に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠 失、 置換若しくは付加されたアミノ酸配列からなり、 かつ銀に結合能を 有するペプチドや、 ( 3 8) 化学修飾されていることを特徴とする上記 ( 3 2) 〜 (3 7 ) のいずれか記載の銀に結合能を有する プチドゃ、 ( 3 9) 上記 (3 2) 〜 (3 8) のいずれか記載の銀に結合能を有する プチドが銀と結合した銀一ペプチド複合体や、 (4 0) 上記 ( 3 2) 〜 ( 3 8) のいずれか記載の銀に結合能を有するペプチドと、 機能性べ プチド又は機能性タンパク質との結合体であって、 かつ銀に結合能を有 する人工タンパク質や、 (4 1 ) 上記 (40) 記載の人工タンパク質が 銀と結合した銀一人工タンパク質複合体や、 (42) 上記 ( 3 2) 〜 ( 3 8 ) のいずれか記載の銀に結合能を有するペプチドと、 標識化物質若し くはべプチドタグとの結合体、 又は非べプチド系化合物との結合体であ つて、 かつ銀に結合能を有するキメラタンパク質や、 (43) 上記 (4 2) 記載のキメラタンパク質が銀と結合した銀一キメラタンパク質複合 体や、 (4.4) 上記 (3 2) 〜 (3 8) のいずれか記載の銀に結合能を 有するペプチドをその粒子表面上に提示し、 かつ銀に結合能を有するフ ァージや、 (4 5 ) 上記 (44) 記載のファージが銀と結合した銀ーフ 2004/011319
ァージ複合体や、 (46 ) 上記 (3 2) 〜 ( 3 8) のいずれか記載の銀 に結合能を有するぺプチドを用いることを特徴とする銀表面の改質又は 銀粒子の形成方法や、 (4 7 ) 上記 (40 ) 記載の銀に結合能を有する 人工夕ンパク質を用いることを特徴とする銀表面の改質、 銀粒子の形成 又は銀の整列化方法や、 (4 8) 上記 (4 2) 記載の銀に結合能を有す るキメラタンパク質を用いることを特徴とする銀表面の改質又は銀粒子 の形成方法や、 (4 9) 上記 (44) 記載の銀に結合能を有するファー ジを用いることを特徴とする銀粒子の形成又は銀の整列化方法や、 ( 5 0 ) 配列番号 1に示されるアミノ酸配列からなるシリコン,に結合能を有 するペプチドや、 ( 5 1 )配列番号 1に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配 列からなり、 かつシリコンに結合能を有するペプチドや、 ( 5 2) 配列 番号 1に示されるアミノ酸配列の 1, 4, 5番目のアミノ酸残基が保存 されていることを特徴とする上記 (4 9 ) 記載のシリコンに結合能を有 するペプチドや、 ( 5 3) 2番目のリジンがァラニンに置換された配列 番号 2に示されるアミノ酸配列からなることを特徴とする上記 ( 5 0) 記載のシリコンに結合能を有するペプチドや、 ( 54) 配列番号 3に示 されるアミノ酸配列からなるシリコンに結合能を有するペプチドや、 ( 5 5) 配列番号 3に示されるアミノ酸配列において、 1若しくは数個 のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 か つシリコンに結合能を有するペプチドや、 ( 5 6) 化学修飾されている ことを特徴とする上記 ( 5 0 ) 〜 ( 5 5) のいずれか記載のシリコンに 結合能を有するペプチドや、 ( 5 7) 上記 ( 5 0) 〜 ( 5 6) のいずれ か記載のシリコンに結合能を有するペプチドがシリコンと結合したシリ コン—ペプチド複合体や、 ( 5 8) 上記 ( 5 0) 〜 ( 5 6) のいずれか 記載のシリコンに結合能を有するぺプチドと、 機能性べプチド又は機能
3 4011319
性タンパク質との結合体であって、 かつシリコンに結合能を有する人工 タンパク質や、 ( 5 9 ) 上記 ( 5 8 ) 記載の人工タンパク質がシリコン と結合したシリコン一人工タンパク質複合体や、 (6 0) 上記 ( 5 0) 〜 ( 5 6 ) のいずれか記載のシリコンに結合能を有するペプチドと、 標 識化物質若しくはペプチドタグとの結合体、 又は非ペプチド系化合物と の結合体であって、かつシリコンに結合能を有するキメラタンパク質や、 ( 6 1 ) 上記 ( 6 0) 記載のキメラタンパク質がシリコンと結合したシ リコンーキメラタンパク質複合体や、 ( 6 2) 上記 ( 5 0) 〜 ( 5 6) のいずれか記載の.シリコンに結合能を有するぺプチドをそ 粒子表面上 に提示し、 かつシリコンに結合能を有するファージゃ、 ( 6 3)上記( 6 2 )記載のファージがシリコンと結合したシリコン一ファージ複合体や、 (64) 上記 ( 5 0) 〜 ( 5 6 ) のいずれか記載のシリコンに結合能を 有するぺプチドを用いることを特徴とするシリコン表面の 質又はシリ コン粒子の形成方法や、 ( 6 5) 上記 ( 5 8 ) 記載のシリコンに結合能 を.有する人工夕ンパク質を用いることを特徴とするシリコン表面の改質、 シリコン粒子の形成又はシリコンの整列化方法や、 ( 6 6 ) 上記 ( 6 0 ) 記載のシリコンに結合能を有するキメラタンパク質を用いることを特徴 とするシリコン表面の改質改質又はシリコン粒子の形成方法や、 ( 6 7 ) 上記 ( 6 2) 記載のシリコンに結合能を有するファージを用いることを 特徴とするシリコン粒子の形成又はシリコンの整列化方法や、 (6 8) 上記 (2 ) 〜 ( 1 7) のいずれか記載のチタンに結合能を有するぺプチ ド、 上記 ( 3 2) 〜 (3 8) のいずれか記載の銀に結合能を有するぺプ チド、 又は、 上記 ( 5 0 ) 〜 ( 5 6) のいずれか記載のシリコンに結合 能を有するペプチドを原子間力顕微鏡 (AFM) の探針 (プローブ) と して使用する方法に関する。 2004/011319
図面の簡単な説明
第 1図は D— 1 2ファージライブラリ一を用いた、 チタン粒子へのパ ニングの結果を示す写真である。
縦軸は、 溶出されてきたファ一ジのカ価を加えたファージの力価で割 つた値を、 対数で表したもの、 横軸の数字は、 バニングの回数を表す。 第 2図は、 C 7 Cファージライブラリ一を用いた、 チタン粒子へのパ エングの結果を示す写真である。
縦軸は、 溶出されてきたファ一ジのカ価を加えたファージのカ価で割 つた値を、 対数で表したもの、 横軸の数字は、 バニングの,回数を表す。 第 3図は、 D _ 1 2ライブラリ一を用いて、 チタン粒子に対してバニ ングを 3回繰り返した後に得られたクローンが提示するべプチドのアミ ノ酸配列を示す写真である。
一番左はクローンの名前、 その横に提示配列をアミノ酸一文字表記に て示してある。
_第 4図は、 C 7 Cライブラリ一を用いて、 チタン粒子に対してパニン グを 3回繰り返した後に得られたクローンが提示するペプチドのアミノ 酸配列を示す写真である。
一番左はクローンの名前、 その横に提示配列をアミノ酸一文字表記に て示してある。 なお、 ここで示したアミノ酸配列には、 両端に、 C 7 C ライブラリーの提示配列が環状になるために必要なチオール基を持つシ スティン残基を含んでいる。
第 5図は、 クローン化したファージのチ夕ンへの結合能を調べた結果 を示す写真である。
縦軸は、.溶出されてきたファージのカ価を加えたファージのカ価で割 つた値を、 対数で表したもの、 横軸は、 図 3、 図 4中に示す各ファージ クローンを表す。 第 6図は、 水晶発振子形生体分子相互作用解析装置 Q C M— D 3 0 0 を用いた配列番号 3で示されるぺプチドを提示するファージクロ一ンの チタン表面への結合状態の解析結果を示す写真である。
第 7図は、 チタン製水晶発振子センサー上へのファージの結合状態の 模式図の写真である。
Q C M - D 3 0 0を用いたチタン表面へのファージク口一ンの結合を 模式的に表した。 上が、 B S Aでセンサーをブロッキングしたときの結 合状態、下は、ブロッキングをしなかったときの結合状態を示している。 第 8図は、 実施例で用いたプライマーの塩基配列を示す^真である。 この図の最初の段落の左に記されている 「アルファベット一数字—ァ ルファベッ ト」 は、 そのプライマーを使って作製した変異体の名前が書 かれている。名前の由来は、 e 3 — 2 — 3の配列をアミノ酸一文字表記、 そのアミノ酸残基のァミノ端からの位置を数字で表し、 最後の Aは、 ァ ラニンに置換したことを意味する。 例として P 4 Aをあげると、 配列番 号 3の N末端から 4番目のプロリンをァラニンに置換するのに用いたプ ライマーのことである。
次に、 Δ 7 _ 1 2 F、 Δ 7 - 1 2 R、 K 2 A Δ 7 - 1 2 Rは、 実施例 5に説明する欠失変異体作製に用いたプライマーである。 それぞれ、 △ 7— 1 2 Fと Δ 7— 1 2 Rの組み合わせ、 Δ 7— 1 2 Fと Κ 2 Α Δ 7— 1 2 Rの組み合わせで P C Rに用いた。
A l a i n s e r tは、 実施例 6に説明する挿入変異体作製に用い たプライマーである。
第 9図は、 点変異が及ぼす配列番号 4〜 1 4で示されるぺプチドを提 示するファージクローンのチタンへの結合能への影響を調べた結果を示 す写真である。
縦軸は、 配列番号 4〜 1 4で示されるぺプチドを提示するファージの 4 011319
チタンへの結合能を 1としたときの点変異体の結合能の値を対数で表し たもの、 横軸は、 各点変異体を表す。
第 1 0図は、 P C R法を用いた欠失変異体作製法の模式図の写真であ る。 —
第 1 1図は、 欠失変異と挿入変異が及ぼす配列番号 2と 1 5で示され るべプチドを提示するファージクローンのチタンへの結合能への影響を 調べた結果を示す写真である。
縦軸は、 配列番号 1で示されるぺプチドを提示するファージクローン のチタンへの結合.能を 1としたときの点変異体の結合能の値を表したも の、 横軸は、 欠失および挿入変異体を表す。
第 1 2図は、 チタン粒子の過酸化水素処理によるファージ結合能への 影響の結果を示す写真である。
第 1 3図は、 配列番号 3で示されるアミノ酸配列からな ¾ペプチドを 提示するファージの各種金属への結合能を調べた結果を示す写真である。
_縦軸は、 配列番号 3で示されるアミノ酸配列からなるペプチドを提示 するファージの結合量を、 提示配列を持たないファージの結合量で割つ た値であり、 配列番号 3で示されるアミノ酸配列からなるぺプチドによ る結合の寄与を表している。 銅と鉄は、 どちらのファージも結合量が検 出限界以下であった。
第 1 4図は、 配列番号 3で示されるアミノ酸配列からなるペプチドに おけるァラニン置換変異がチタン ·銀 · シリコンへの結合に及ぼす影響 を調べた結果を示す写真である。
縦軸は、 配列番号 3で示されるアミノ酸配列からなるぺプチドを提示 するファージの結合量を 1として規格化した値を表す。
第 1 5図は、 配列番号 3で示されるアミノ酸配列からなる合成べプチ ドのバイオミネラリゼ一ションにより生成された銀粒子の電子顕微鏡像 と電子線回折パターンを示す写真である。
第 1 6図は、 配列番号 3で示されるアミノ酸配列からなる合成べプチ ドのバイオミネラリゼ一シヨンにより生成されたシリカ量とペプチド濃 度との関係を示す写真である。
白抜き記号と点線部のペプチド濃度条件下では、 ゲル状のシリカが形 成され、 黒塗り記号と実線部のペプチド濃度条件下では、 粒子状のシリ 力が形成される。
第 1 7図は、 配列番号 3で示されるアミノ酸配列からなる合成べプチ ドのバイオミネラリゼ一ションにより生成されたシリカ粒子の透過型電 子顕微鏡像と走査型電子顕微鏡像を示す写真である。
第 1 8図は、 配列番号 1で示されるアミノ酸配列からなるぺプチドを 融合したフェリチン発現ベクター構築の模式図の写真である。
第 1 9図は、 配列番号 1で示されるアミノ酸配列からな 'るべプチドを 融合した組換えフェリチンのチタン表面への結合結果を示す写真である。
- 発明を実施するための最良の形態
本発明のチタンに結合能を有するぺプチドのスクリーエング方法とし ては、 チタンに、 異なったペプチド配列をファージ粒子上に提示 (ディ スプレイ) したファ一ジ集団 (ファージライブラリー) を接触、 好まし くは水溶液中で接触させ、 ファージ粒子がペプチド配列を介して結合し たチタンを遠心操作により回収し、 得られたチタンに結合したファージ 粒子を大腸菌等の菌体中で増殖させ、 次いで、 増殖させたペプチド配列 をファージ粒子上に提示したファージ集団をチタンに接触させるパニン グ操作を繰り返すことにより、 チタンに結合するファージクローンを濃 縮するスクリーニング方法であれば特に制限されるものではなく、 上記 チタンとしては、 粒子状、 板状等の金属チタン、 チタン合金、 二酸化チ
8 タンなどのチタンを用いることができる。 また、 上記ファージライブラ リ一は、 化学合成したランダム D N Aをファ一ジ D N A (ファージミ ド ) に揷入し、 宿主大腸菌に遺伝子導入することでファージウィルスを形 成する分子が生合成され、ウィルス粒子の外殻タンパク質 P IIIの N末端 の先にランダムペプチドが発現され、 ランダム化した部分のアミノ酸残 基 (-Xn_, X=any amino acid) を表層に提示するファ一ジとして調製す ることもできるが、市販されているファ一ジライブラリ一(random 7 mer, 12 mer, cyclic 7 merなど) を用いることもできる。
本発明のチタン, 銀及び/又はシリコンに結合能を有す べプチドと しては、 上記本発明のチタンに結合能を有するペプチドのスクリ一ニン グ方法により得られるチタン、 銀及び 又はシリコンに結合能を有する ペプチドやその変異体を挙げることができる。 具体的には、 配列番号 1 に示されるアミノ酸配列 RKL P DAからなるチタン、 銀及びシリコン に結合能を有するペプチド (Δ 7— 1.2) や、 配列番号 1に示されるァ ミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは 付加されたアミノ酸配列からなり、 かつチタン、 銀及び/又はシリコン に結合能を有するぺプチド (Δ 7 - 1 2変異体) を、 チタン、 銀及び/ 又はシリコンへの優れた結合能を有する点で好適に例示することができ る。 上記△ 7— 1 2変異体の中でも、 配列番号 1に示されるアミノ酸配 列の 1番目 (Arg) , 4番目 (Pro) , 5番目 (Asp) のアミノ酸残基が保 存されているペプチドが好ましく、 2番目 (Lys) が Alaに置換された配 列番号 2に示されるアミノ酸配列からなるぺプチド (K 2 A— Δ 7— 1 2) がチタン、 銀及びシリコンへの優れた結合能を有する点で特に好ま しい。
また、 本発明のチタン、 銀及び Z又はシリコンに結合能を有するぺプ チドとして、 配列番号 3に示されるアミノ酸配列 RKL PDAP GMH
9 TWからなるチタンに結合能を有するぺプチド ( e 3— 2— 3 ) や、 配 列番号 3に示されるアミノ酸配列において、 1若しくは数個のアミノ酸 が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつチタン、 銀及び Z又はシリコンに結合能を有するぺプチド ( e 3— 2— 3変異体 ) を、 チタン、 銀及び Z又はシリコンへの優れた結合能を する点で好 適に例示することができる。 上記 e 3— 2— 3変異体としては、 1〜 5 番目及び 7〜 1 2番目のアミノ酸残基がそれぞれ Alaに置換された配列 番号 4〜 1 4に示されるアミノ酸配列からなるペプチド (R 1 A, K 2 A, L 3 A, P 4 A, D 5 A, P 7 A, . G 8 A, M 9 A, H I O A, T 1 1 A, W 1 2 A) や、 e 3— 2— 3の N末端に A が付加 ·挿入された 配列番号 1 5に示されるアミノ酸配列からなるペプチド (Ala insert) を挙げることができる。 Ala insertは、 チタン、 銀及び/又はシリコン への優れた結合能を有する点で特に好ましい。 ' '
また、 本発明のチタンに結合能を有するペプチドとして、 e 3— 2— 3_同様に、 1 2残基の直線状ランダムべプチドを提示する D 1 2ライブ ラリ一 (New England Bio bs社、 Beverly) 由来の配列番号 1 6〜 24 に示されるアミノ酸配列からなるぺプチドゃ、 配列番号 1 6〜 24に示 されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換 若レくは付加されたアミノ酸配列からなり、 かつチタンに結合能を有す るペプチドを例示することができる。
さらに、 本発明のチタンに結合能を有するペプチドとして、 7残基の 環状ランダムペプチドを提示する C 7 Cライブラリ一 (New England Biolabs社)由来の配列番号 2 5〜 3 8に示されるアミノ酸配列からなる ペプチドや、 配列番号 2 5〜 3 8に示されるアミノ酸配列において、 1 若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列 からなり、 かつチタンに結合能を有するぺプチドを例示することができ る。
ここで、 アミノ酸の 「置換、 欠失若しくは付加」 の程度及びそれらの 位置などは、 改変されたペプチドが、 配列番号 1や 3で示されるァミノ 酸配列からなるペプチドと同様に、 チタン、 銀及び Z又はシリコンに結 合能を有する同効物であればすべて本発明に包含される。
また、 チタンとしては、 金属チタン、 チタン合金、 不定形二酸化チタ ン、 二酸化チタンアナタ一ゼ結晶、 二酸化チタンルチル結晶、 二酸化チ タンブルカイ ト結晶を例示することができる。
上記本発明のチタンに結合能を有するペプチド群 (以下、, これらぺプ チドを 「本件チタン結合ペプチド」 という) 、 銀に結合能を有するぺプ チド群 (以下、 これらペプチドを 「本件銀結合ペプチド」 という) 、 シ リコンに結合能を有するペプチド群 (以下、 これらペプチドを 「本件シ リコン結合ペプチド」 という) は、 そのアミノ酸配列に従らて、 一般的 な化学合成法により製造することができる。 そして、 化学合成法には、 通 _常の液相法及び固相法によるペプチド合成法が包含される。 かかるぺ プチド合成法は、 より詳しくは、 アミノ酸配列情報に基づいて、 各アミ ノ酸を 1個ずつ逐次結合させ鎖を延長させていくステツプワイズエロゲ —シヨン法と、 アミノ酸数個からなるフラグメントを予め合成し、 次い で各フラグメン卜をカツプリング反応させるフラグメント · コンデンセ ーシヨン法とを包含する。 本発明のペプチドの合成は、 そのいずれによ ることもできる。
上記べプチド合成に採用される縮合法も、 公知の各種方法に従うこと ができる。 その具体例としては、 例えばアジド法、 混合酸無水物法、 D C C法、 活性エステル法、 酸化還元法、 D P P A (ジフエニルホスホリ ルアジド) 法、 D C C +添加物 (1ーヒドロキシベンゾトリアゾール、 N ーヒドロキシサクシンアミ ド、 N—ヒドロキシ一 5 —ノルポルネン一 2,
2 3—ジカルポキシイミ ド等) 、 ウッドワード法等を例示できる。 これら 各方法に利用できる溶媒もこの種べプチド縮合反応に使用されることが よく知られている一般的なものから適宜選択することができる。 その例 としては、 例えば ジメチルホルムアミ ド (D M F ) 、 ジメチルスルホキ シド (D M S O ) 、 へキサホスホロアミ ド、 ジォキサン、 テトラヒドロ フラン (T H F ) 、 酢酸ェチル等及びこれらの混合溶媒等を挙げること ができる。
上記ペプチド合成反応に際して、 反応に関与しないアミノ酸やべプチ ドにおける力ルポキシル基は、 一般にはエステル化により、, 例えばメチ ルエステル、 ェチルエステル、 第三級ブチルエステル等の低級アルキル エステル、 例えばべンジルエステル、 p —メトキシベンジルエステル、 p一二トロべンジルエステルァラルキルエステル等として保護すること ができる。 また、 側鎖に官能基を有するアミノ酸、 例えば の水酸基 は、 ァセチル基、 ベンジル基、 ベンジルォキシカルポニル基、 第三級ブ チ_ル基等で保護されてもよいが、必ずしもかかる保護を行う必要はない。 更に例えば Argのグァニジノ基は、 ニトロ基、 トシル基、 2—メトキシ ベンゼンスルホニル基、 メチレン一 2—スルホニル基、 ベンジルォキシ カルポニル基、 イソポルニルォキシカルボ二ル基、 ァダマンチルォキシ 力ルポニル基等の適当な保護基により保護することができる。 上記保護 基を有するアミノ酸、 ペプチド及び最終的に得られる本件チタン結合べ プチド等におけるこれら保護基の脱保護反応もまた、 慣用される方法、 例えば接触還元法や、 液体アンモニア Zナトリウム、 フッ化水素、 臭化 水素、 塩化水素、 トリフルォロ酢酸、 酢酸、 蟻酸、 メタンスルホン酸等 を用いる方法等に従って、 実施することができる。
その他、 本件チタン結合ペプチド等は、 本件チタン結合ペプチド等を コードする D N Aの塩基配列情報により、 遺伝子工学的手法を用いて常 法により調製することもできる。 このようにして得られる本件チタン結 合ペプチド等は、 通常の方法に従って、 例えばイオン交換樹脂、 分配ク 口マトグラフィー、 ゲルク口マトグラフィ一、 ァフィ二ティーク口マト グラフィ一、 高速液体クロマトグラフィー (H P L C ) 、 向流分配法等 のペプチド化学の分野で汎用されている方法に従って、 適'宜その精製を 行うことができる。
また、 本件チタン結合ペプチド、 本件銀結合ペプチド、 本件シリコン 結合べプチドとして、 化学修飾がなされたぺプチドを有利に用いること ができる。 かかる化学修飾としては、 官能基を有するアミノ酸への置換 からなる化学修飾や、 リンカ一との結合を容易に形成させるための化学 修飾を挙げることができるが、 化学修飾によりチタン、 銀、 シリコンへ の結合能が低下しない修飾が好ましい。 例えば、 上記リンカ一との結合 を容易に形成させるための化学修飾としては、 ピオチンの N—八ィ ドロ キシサクシィミ ドエステル体を用いて、 ぺプチドのアミノ基へのビォチ ^の共有結合を挙げることができる。 かかるペプチドのピオチン化によ り、 後述するキメラ分子を容易に作製することができる。
本発明のチタン、 銀、 シリコンに結合能を有する人工タンパク質とし ては、 本件チタン結合ペプチド、 本件銀結合ペプチド、 又は本件シリコ ン結合べプチドと、 機能性べプチド又は機能性夕ンパク質との結合体か らなるものであれば特に制限されるものではなく、 上記機能性ペプチド 又はタンパク質の機能としては、 ひヘリックス形成等の二次構造を形成 しゃすい機能、 石灰化促進機能、 骨増殖分化誘導機能、 クロモフォア結 合機能、 コラーゲン結合機能、 細胞接着機能、 細胞外へタンパク質を局 在化させる機能、 特定の細胞内小器官 (ミ トコンドリア、 葉緑体、 E R など) にターゲットする機能、 細胞膜に埋め込まれる機能、 アミロイ ド 繊維形成機能、 繊維性タンパク質の形成機能、 タンパク質性ゲル形成機 能、 タンパク質性フィルム形成機能、 単分子膜形成機能、 二次元結晶を 自己集合で形成しうる等の自己集合機能、 粒子形成機能、 他のタンパク 質の高次構造形成を補助する機能、 ウィルス等の中和抗体を誘導する抗 原機能、 免疫賦活化する機能 (Nature Med i c i ne, 3 : 1266-1270, 1997 )、細胞增殖を促進又は抑制する機能、癌細胞を特異的に認 f する機能、 プロテイン · トランスダクシヨン機能、 細胞死誘導機能、 抗原決定残基 呈示機能、 金属結合機能、 補酵素結合機能、 触媒活性機能、 蛍光発色活 性機能、 特定の受容体に結合してその受容体を活性化する機能、 信号伝 達に関わる特定の因子に結合してその鳞きをモジュレートする機能、 夕 ンパク質, D N A, R N A , 糖などの生体高分子を特異的に認識する機 能などを挙げることができる。 これらの人工タンパク質は、 チタンに結 合能を有するペプチドに機能性べプチド又は機能性タンパク質を、 アミ ノ酸レベルで、 あるいは D N Aレベルで直接的又は間接的に 結するこ とにより作製することができる。 D N Aレベルで作製する際には、 本発 明 _者らにより提案されている 「高分子マイクロ遺伝子重合体の作成方法 」 (特許第 3 4 1 5 9 9 5号公報) や 「多機能塩基配列及びそれを含む 人工遺伝子」 (特開 2 0 0 1— 3 5 2 9 9 0号公報) に開示された人工 夕ンパク質の設計技術を有利に用いることができる。
上記機能性べプチド又は機能性タンパク質の中でも、例えば、チタン、 銀又はシリコンに結合能を有するペプチドと協働して、 二次元結晶を自 己集合で形成しうるべプチド又はタンパク質を用いると、 その二次元結 晶に沿ってチタン、 銀又はシリコンをナノスケールできれいに整列化す ることができる人工タンパク質を構築することができる。かかるチタン、 銀又はシリコンに結合能を有するぺプチドと協働して、 二次元結晶を自 己集合で形成しうるべプチド又は夕ンパク質として、ウィルス(例えば、 アデノウイルス、 ロタウィルス、 ポリオウイルス、 H K 9 7、 C C M V 等) 、 フェリチンやアポフェリチンのようなフェリチンファミリー、 D p s Aタンパク質や M r g Aタンパク質を挙げることができる。 その他 の、 二次元結晶を自己集合で形成しうるべプチド又はタンパク質として は、 人工的に設計された繰り返し性に富む人工タンパク質などを挙げる ことができる。また、タンパク質の二次元結晶を作製する方'法としては、 タンパク質溶液を水面上に単分子膜で展開させた後、 固体基板に吸着さ せる方法などを例示することができる。
また、 上記機能性ペプチド又は機能性タンパク質の中でも、 例えば、 細胞接着活性等の細胞認識活性をもつぺプチド配列を有す,るべプチド又 はタンパク質を用いると、 チタン、 銀又はシリコンと細胞を同時に認識 する複合活性をもつ人工タンパク質を得ることができる。 かかる細胞接 着活性等の細胞認識活性をもつぺプチド配列を有するぺプチド又はタン パク質としては、 各種リガンド、 モノクローナル抗体やその'可変領域、 1本鎖抗体等を例示することができる他、 上記のような天然タンパク質 限らず、 細胞接着活性を有するペプチドを含む人工タンパク質を挙げ ることができる。
本発明のチタン、 銀又はシリコンに結合能を有するキメラタンパク質 としては、 本件チタン結合ペプチド、 本件銀結合ペプチド、 又は本件シ リコン結合べプチドと、 単独又は他の物質と反応することにより検出可 能なシグナルをもたらすことができる標識化物質又はべプチドタグとの 結合体からなるキメラ分子を挙げることができる。 上記標識化物質とし ては、 酵素、 蛍光物質、 化学発光物質、 放射性同位体、 抗体の F c領域、 等を挙げることができ、 具体的には、 ペルォキシダーゼ (例えば、 ho r s erad i s h pe rox i d as e) 、 アルカリフォスファターゼ、 β - Ό —ガラ クトシダ一ゼ、 グルコースォキシダ一ゼ、 グルコース一 6—ホスフエ一 トデヒドロゲナーゼ、 アルコール脱水素酵素、 リンゴ酸脱水素酵素、 ぺ ニシリナーゼ、力タラ一ゼ、アポグルコースォキシダ一ゼ、 ゥレア一ゼ、 ルシフェラーゼ若しくはァセチルコリンエステラーゼ等の酵素、 フルォ レスセインイソチオシァネート、 フィコピリタンパク、 希土類金属キレ ート、 ダンシルク口ライ ド若しくはテトラメチル口一ダミンイソチオシ ァネート等の蛍光物質、 3H、 14 C、 m I等の放射性同位体、' 化学発光物 質を挙げることができる。 また、 ペプチドタグとしては、 H A、 F L A G、 M y c等のェピトープ夕グや、 G S T、マルトース結合タンパク質、 ピオチン化ペプチド、 オリゴヒスチジン ( H i s ) 等の親和性タグなど の従来知られているべプチドタグを具体的に例示すること できる。 例 えば、 H i sタグと N i —N T Aの親和性を利用すると、 チタン · ぺプ チドあるいはタンパク質複合体を容易に精製することができる。
また、 本発明のチタン、 銀、 又はシリコンに結合能を有するキメラ夕 ンパク質としては、 本件チタン結合ペプチド、 本件銀結合ぺ チド、 又 は本件シリコン結合べプチドと、 非べプチド系化合物との結合体からな るキメラ分子を挙げることができる。 上記非べプチド系化合物のうち、 非べプチド系低分子化合物としては、 フルォレセィン、 ローダミン等の 蛍光色素、 クロラムフエ二コール、 アンピシリン等の抗生物質を、 非べ プチド系高分子化合物としては、 ポリスチレン、 ポリプロピレン、 ポリ エチレン、 ガラスビーズ、 シリカゲル、 多糖類 (誘導体を含む) 、 ポリ エチレンダリコール等のポリアルキレングリコ一ルを具体的に例示する ことができる。
本発明のチタン、 銀、 又はシリコンに結合能を有するファージとして は、 本件チタン結合ペプチド、 本件銀結合ペプチド、 又は本件シリコン 結合べプチドをその粒子表面上に提示するファージであればどのような ものでもよく、 かかるチタン、 銀、 又はシリコンに結合能を有するファ ージは、 前記のスクリーニングの過程で、 チタン分子、 銀分子、 又はシ リコン分子に強く結合したぺプチド提示ファージを、 その他のファージ 集団から分離することにより、 チタン、 銀、 又はシリコンに結合するフ ァ一ジクローンとして得られる他、 本件チタン結合ペプチド、 本件銀結 合べプチド、 又は本件シリコン結合べプチドをコ一ドする D N Aを常法 によりファージミ ドベクターに組み込んで大腸菌等の宿主'細胞を形質転 換し、 ヘルパ一ファージを感染させることで得ることもできる。 一般的 に M 1 3や f dなどの繊維状ファージは、 高濃度の状態で.は液晶状態と なり、 規則的な整列構造をとることから、 チタンを認識するペプチドフ ァージを液晶状態にすることにより、 チタンを認識するべ,プチドが規則 的にナノスケールで配列した状態をつくることができる。 ここにチタン を接触させると、 ペプチドのチタン認識能力により、 チタンを整列させ ることができる。
本発明のチタン、 銀又はシリコンとペプチドとの複合体'や、 チタン、 銀又はシリコンと人工タンパク質との複合体や、 チタン、 銀又はシリコ とキメラタンパク質との複合体や、 チタン、 銀又はシリコンとファー ジとの複合体としては、 上記本発明のチタン、 銀及び Z又はシリコンに 結合能を有するペプチドや、 上記本発明のチタン、 銀及び Z又はシリコ ンに結合能を有する人工タンパク質や、 上記本発明のチタン、 銀及び/ 又はシリコンに結合能を有するキメラタンパク質や、 上記本発明のチタ ン、 銀及び/又はシリコンに結合能を有するファ一ジが、 チタン、 銀又 はシリコンにイオン結合、 パイ電子結合、 ファンデルワールス結合、 疎 水結合などの弱い結合のいずれか、 あるいは組み合わせにより結合した 複合体を挙げることができる。特に、チタン一人工夕ンパク質複合体は、 インプラント材料, 光触媒, 顔料等として有利に用いることができる。 チタン結合ペプチドを融合した骨分化を促進するサイ ト力イン、 例え ば B M Pをチタン製ィンプラント材にチタン結合べプチドを介して結合 したものを用いることで、 チタンインプラント近傍における積極的な骨 化が起こることにより、 ォッセォインテグレーションの期間が短縮でき ることが期待される。 また、 チタン結合ペプチドを人工的に融合したハ ィ ドロキシァパタイ トのバイオミネラリゼーシヨンを促進するペプチド あるいはタンパク質を、 チタン製インプラント材にチタン ^合ペプチド を介して結合したものを用いることで、 チタンインプラント表面の石灰 化が促進され、 ォッセオインテグレーションの期間が短縮できることが 期待される。 あるいは、 チタン結合ペプチドを人工的に融合した抗菌作 用を持つぺプチドあるいは夕ンパク質あるいは化合物を、 テ夕ン製ィン プラント材にチタン結合べプチドを介して結合したものを用いることで、 ォッセオインテグレーション中の感染症を低減することができる。 さら に、 チタン結合べプチドを融合したコラーゲンをチタン製イ プラント 材にチタン結合べプチドを介して結合することで、 これまで'の人工歯根 では見られない、 人工歯根に対し垂直にコラーゲン繊維が結合したよう 構造を構築することができる。 これは、 強い力がかかったとき、 本来 の歯が持つ力を分散させるメカニズムを模倣しており、 これにより人工 歯根に対して強い力がかかったときに、 従来の人工歯根よりも高い安定 性を持つことができる。
このチタン結合べプチドは、同時に銀にも結合することができるので、 例えば、 チタン結合ペプチドを融合したコラーゲンを、 酸化チタン顔料 と銀に結合させた化粧品は、 高い抗菌作用を付与することができる。 さらに、 本発明の本件チタン結合ペプチドを用いるチタン表面の改質 方法や、 本件チタン結合べプチドと結合した本発明の人エタンパク質を 用いるチタン表面の改質、チタン粒子の形成又はチタンの整列化方法や、 本件チタン結合べプチドと結合した本発明のキメラタンパク質を用いる チタン表面の改質又はチタン粒子の形成方法や、 本件チタン結合べプチ ドを粒子表面上に提示した本発明のファ一ジを用いるチタンの整列化又 はチタン粒子の形成方法によると、 チタン表面の性状やチタンの物性を 改善することができ、 特にタンパク質の自己集合能を利用した酸化チタ ンのパターンエングによる、ナノスケールのデバイス開発も可能となる。 また、 本件銀結合ペプチドや本件シリコン結合ペプチドを用いる銀表 面ゃシリコン表面の改質又は銀粒子ゃシリコン粒子の形成方法や、 本件 銀結合べプチドゃ本件シリコン結合べプチドと結合した本発明の人エタ ンパク質を用いる銀表面ゃシリコン表面の改質又は銀粒子ゃシリコン粒 子の形成、 銀又はシリコンの整列化方法や、 本件銀結合ペプチドや本件 シリコン結合べプチドと結合した本発明のキメラタンパク質を用いる銀 表面ゃシリコン表面の改質又は銀粒子ゃシリコン粒子の形成方法や、 本 件銀結合べプチドゃ本件シリコン結合べプチドを粒子表面上に提示した 本発明のファージを用いる銀粒子ゃシリコン粒子の形成、 銀又はシリコ ンの整列化方法によると、 銀表面ゃシリコン表面の性状や銀, シリコン の _物性を改善することができる。
特に、 チタン表面や銀表面やシリコン表面の改質により、 生物が自身 の体の内外に鉱物 (無機化合物) を作り出す生体鉱物形成能 (
biomineralization; を付 するしと力 きる。
また、 本件チタン結合べプチドゃ本件銀結合べプチドゃ本件シリコン 結合ペプチドを原子間力顕微鏡 (A F M) の探針 (プローブ) として用 いることにより、固体材料表面を水溶液中で分析することが可能となる。 例えば、 本件チタン結合ペプチド、 あるいはチタン結合ペプチド融合人 ェタンパク質 ·キメラタンパク質を、 原子間力顕微鏡の探針に、 例えば 金 ·チオール結合で固層化する。 探針を、 チタン '銀 ' シリコンの基盤 に近付けることで、 チタン結合ペプチドと基盤の間に相互作用が生じ、 今度は探釙を離すことで相互作用が切断される。'その時に発生する張力 9 を測定することができる。 また、 探針を二次元にスキャンすることで、 基盤表面とチタン結合べプチドの結合力を指標とした、 フォースマップ を作製することができる。 作製したフォースマップをもとに、 パターン ニングに適した、 材料および結晶面の選択などの幅が広がる。
以下、 実施例により本発明をより具体的に説明するが、 発明の技術 的範囲はこれらの例示に限定されるものではない。
(実施例 1 )
粒径 1 5 0 Mのチタン粒子 1 0 m g (住友チタニウム、 兵庫) を、 1. 5 m 1エツペンドルフチューブに入れ、 5 0 0 1 の; 5 0 mMトリ ス (ヒドロキシメチル) ァミノメタン (以下、 トリス (キシダ化学、 大 阪) ) 塩酸緩衝液 P H 7. 5、 1 5 OmM塩化ナトリウム (和光純薬、 大阪) 溶液 (以下 TB S) に、 0. 1 % ゥシ血清アルブミン (以下、 B S A) 0. 1 % Polyoxyethylenesorbi tan monolaurate ('以下、 T w e e n - 2 0 (シグマ社、 St. Louis) ) を添加した溶液で、 二回洗浄した。 チ_タン粒子の洗浄は、 卓上遠心機 H 1 3 0 0 (コクサン) 1 3 , 0 0 0 r pm, 5秒の遠心操作により、 チタン粒子を沈澱させ、 上清を取り除 <ことで行った。 洗浄後、 ファージの非特異的吸着をブロッキングする ために、 さらに 1 m 1同溶液で 3 0分間、 室温で、 回転撹拌機 r o t a t o r RT— 5 0 (タイテック社) を用いて回転撹拌した。
卓上遠心機 H 1 3 0 0 (コクサン) 1 3, O O O r prn, 5秒の遠心 操作により、 チタン粒子を沈澱させ、 上清を取り除いた後、 ペプチド提 示ファージライブラリー、 1 2残基の直線状ランダムペプチドを提示す る D 1 2ライブラリー (New England Biolabs社、 Beverly) 、 1. 7 x 1 011プラーク形成単位 (以下、 p f u) もしくは、 7残基の環状ラン ダムペプチドを提示する C 7 Cライブラリ一 (New England Biolabs社) 2. O x l O ^p f uを含む 1 m l TB S , 0. 1 % B S A, 0. 1 % Twe e n - 2 0溶液を加え、二時間、 室温で回転撹拌機 r o t a t o r RT— 5 0を用いて回転撹拌した。
卓上遠心機 H 1 3 0 0 (コクサン) 1 3 , O O O r pm, 5秒の遠心 操作により、 上清を取り除き、 1 m l TB S, 0. 1 % Twe e n— 2 0溶液で 1 0回洗浄した。 洗浄は、 8 , 0 0 0 X g , 5秒の遠心操作 により、 チタン粒子を沈澱させることで行った。 洗浄溶液を取り除いた 後、 1m lの 0. 2 M グリシン (和光純薬) ·塩酸緩衝液. PH 2. 2を 加え、 1 0分間、 室温でタイテック社製 r o t a t o r RT— 5 0を用 いて回転撹拌することでチタンに結合したファージを溶出レた。 遠心操 作により、 チタンを沈澱させ、 上清を別の 1. 5m lエツペンドルフチ ュ一ブに移し、 さらに 1 5 0 1 の 1 M トリス ·塩酸緩衝液 p H 9. 1 を添加することで中和した後に、 溶液中のファージのカ価 (単位溶液あ たりのプラーク形成能力) を常法 (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press) こ従レ 視!]定した。
_上記の操作で得られたファージ溶出液を L B培地 2 0 m 1中で対数増 殖中の大腸菌 ER 2 7 3 8株 [F' lacIqA (lacZ)M15
proA+B+zzf:: TnlO (TetR) fhuA2 supE thiA (lac-proAB) Δ
(iisdMS-mcrB)5(rk-mk-McrBC-)] に感染させ、 振とう培養機 (B R 4 0— L F、 タイテック社) を用い 3 7 °Cで激しく撹拌しながら 6時間インキ ュべ一トした。 ファージ感染菌培養液を遠心チューブ ( 5 0m l、 べッ クマン、 カルフォルニア) に移して、 ベックマン遠心機 (ベックマン、 J A— 1 2口一夕一) を用い 4 、 1 0分、 1 0, O O O r pmで遠心 して ER 2 7 3 8株を取り除く操作を 2度行い、 上清のファージ液を別 のチューブに移した。 ファージ液に 3. 5m l ( 1ノ6量) の 2 0 % Polyethylene glycol 6000 (以下 P EG 6 0 0 0、 Fluka社、 Buchs) 、 2. 5 M 塩化ナトリウム溶液を加え、 テストチューブミキサー、 TM 2 52 (イワキ)により良く撹拌して 4°C、 1 2時間インキュベートして、 ファージを沈殿させた。
沈殿したファージをベックマン遠心機で 4 t:、 1 0分、 1 0, 000 r pmで遠心して回収した。 ファージ沈殿を、 更に 4, 000 r pm、 1分で遠心し少量残っている上清を完全に取り除いた。 得られたファ一 ジ沈殿に、 11111の丁83を加ぇ、 氷上で冷却した後に、 穏やかにファ ージを懸濁した。 このファ一ジ懸濁液を、 1. 5m lエツペンドルフチ ユーブに移し、 微量高速遠心機 (AT 20 1 8 Mローター、 クボタ社) を用い 5分、 1 5 , 000 r p mで遠心して上清を別のチューブに移し、 懸濁されない残渣を取り除いた。 ファージ液に再度、 200 1の 20 %PEG 6 000、 2. 5 M 塩化ナトリゥム溶液を加えてミキサーで良 く撹拌し、 氷上で 1時間インキュベートしてファージを沈殿させた。 次 に、 微量高速遠心機により 1 0分、 1 5, 000 r pmで遠 >心してファ ージ沈殿を回収した。 得られたファージ沈殿に 200ん 1の 0. 02 ジ化ナトリウム (和光純薬、 大阪) 、 TB Sを加えて完全に懸濁させ た。 懸濁できない残渣を微量高速遠心機により 5分、 1 5, 000 r p mで遠心し取り除いた。 得られた濃縮ファージ液の力価を求めた。
上記に示すような標的分子 (この場合チタン) へのファージの結合、 洗浄、 回収、 大腸菌による増幅といった一連の作業はパニング操作と呼 ばれている。 バニング操作を繰り返すことにより、 標的分子へ特異的に 強く結合するファージクローンを濃縮していくことが可能である。 この 場合も、 1回目のバニング操作後、 一度大腸菌で増やしたファージを用 いて、 再度、 チタンに対する結合、 洗浄、 回収、 増殖の 2回目以降のパ ニング操作を繰り返していった。 2回目以降のバニング操作実験条件で、 1回目の操作と異なるのは以下の通りであった。 すなわち、 2回目以降 のバニング操作で加えるファージのカ価を、 D 1 2ライブラリー · C 7 Cライブラリーともに 2. 0 x 1 0 "、 3回目は、 D 1 2ライブラリ一 • C 7 Cライブラリ一ともに 2. 0 X 1 010, 4回目は、 D 1 2ライブ ラリーでは、 4. 3 x 1 09、 C 7 Cライブラリ一では、 2. 0 X 1 010 となるように調製した。 濃縮ファージを懸濁する溶液とチタンの反応溶 液、 及び、 その洗浄溶液中の Twe e n— 2 0濃度を 2回目のバニング 操作時で 0. 1 %、 3回目のバニング操作時で、 0. 3 %、 4回目のパ ニング操作で 0. 5 %とした。
D 1 2ライブラリーを用いたバニング実験のィンプッ トカ価 (標的分 子に加えたファージカ価) とアウトプッ ト力価 (洗浄後の襌的分子から 溶出されたファージカ価) の比の値の変化を図 1に、 また C 7 Cライブ ラリーでのバニング実験のインプットカ価とァゥトプッ トカ価の比の値 の変化を図 2に示す。
D 1 2ライブラリー、 C 7 Cライブラリ一で 3ラウンド目に得られた ファ一ジを、 それそれ常法 (Phage Display A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001) に従いクローン化し、 その提示 ぺプチド部分の塩基配列を決定した。 塩基配列の決定には提示べプチド 領域から 9 6塩基下流に位置する塩基配列の相補鎖に相当するプライマ
― [- 96gIII シ一ゲンシングプライマー ( 5, -H0C C CT CATAG
TTAGC GTAAC G— 3 ') (配列番号 3 9) 、 NEB社、 Bever ] を 用いて、 ダイデォキシターミネイ ト法により決定した (CEQ DTCS Quick start kit, ベックマン社、 カルフォルニア) 。 反応産物の泳動とデ一夕 解析には、 オートキヤビラリ一シーケンサー (CEQ2000、 ベックマン) を 用いた。
決定した塩基配列から予想される提示ペプチド配列を、 D 1 2ライブ ラリーについては図 3 (配列番号 3 , 1 6〜24) に、 C 7 Cライブラ リーについては図 4 (配列番号 2 5〜 3 8) にそれぞれ示す。 この中で、 D 1 2ライブラリ一から得られた e 3— 2— 3ファ一ジの 提示するペプチド配列、 RKL P DAP GMHTW (配列番号 3 ) は、 調べた 43個のクローンの中には同じ配列をもつものが 3 3個あった。 特定のファージクローンが集団中の大多数を占めるようになることの理 由の 1つに、 そのファ一ジクローンが標的分子に対して強い結合能力を もつことがあげられる。
図 3 (配列番号 3 , 1 6〜 24) 、 図 4 (配列番号 2 5〜 3 8) で示 したべプチドを提示するファージをクロ一ン化し、 クローン化状態での チタンに対する結合能力を以下に示すように評価した。 ,
(実施例 2)
実施例 1で得られたファ一ジクローンを用い、 チタンに対する結合能 力を次のような実験から評価した。 実施例 1で示したバニング操作と同 じ方法で行った。 実施例 1 と異なるのは、 チタンとファージ'クローンの 撹拌時間が 1時間であること、 各溶液中の Twe e n 2 0の濃度が 0. 5 B S Aの濃度が 1 %で行ったこと、 加えたファージのカ価を、 D 1 2由来のクローンは 1 09p f u、 C 7 C由来のクローンは 1 O 11!) f uで実施した。 各ファージクローンのチタンに対する結合能を図 5にま とめた。
(実施例 3 )
実施例 2で、 特にチタンと強く結合したクローン (配列番号 3のぺプ チドを提示) について、 水晶発振子形生体分子相互作用解析装置である Q CM-D 3 0 0 (q-sense AB社、 イェテボリ) による測定でチタン表 面とファ一ジの結合様式を調べた。
水晶発振子には、 Q CM— D 3 0 0純正品のチタンセンサ一を用いた。 温度は 24. 9 9 °Cに設定し、 実測値は、 24. 6 8 から 24. 7 0 °C付近であった。 B S Aでセンサーをブロッキングする条件とブロツキ ングしない条件で測定した。 B S Aでプロッキングを行わないときは、 TB Sで基準値を測定した後、 ファージのカ価が 1 01()p f uZm 1 と なるように調整したファージ溶液を引き続き測定した。 B S Aでブロッ キングを行うときは、 TB Sで基準値を測定した後、 T B S、 0. 1 % B S Aで約 1 0分間インキュベートしてブロッキングを行い、 再び TB S で遊離の B S Aを洗浄した後、 ファージのカ価が 1 0 llp f u/m 1 と なるように調整したファージ溶液で引き続き測定した。 そ.の結果を、 図 6に示す。
図 6に示す結果から、 B S A非存在下で、 センサーにフ,ァージクロー ンが結合したことは周波数の変化から明らかであるが、 粘弹性はそれほ ど大きく上昇はしないことから、 図 7 (下) に示すようにファージがチ タン表面と水平に、 固く結合していると考えられる。 一方、 B S Aでセ ンサ一をブロックした時、 センサーに結合するファージ量'は >少ないこと が周波数の変化量が小さいことから分かるが、 一方、 粘弾性は大幅に上 寻する。 これらの結果は、 図 7 (上) に示すように、 ファージがチタン 表面に対して、 提示したぺプチド領域でおもに結合し、 その他のファー ジ粒子部分はチタンとは結合することなく溶液中に存在する形で結合し ていることを示唆する。 一方、 コントロールのファージでは、 B S A非 存在下におけるチタン表面への非特異的吸着は同様に見られるが、 B S Aでブロッキングを行ったときには、 粘弾性の上昇は見られない。
(実施例 4)
実施例 2で、 特にチタンと強く結合したクローン (配列番号 3) につ いて、 側鎖にメチル基をひとつしか持たないァラニンに置換した点変異 体を作製し、各変異体ファージのチタンに対する結合能の変化を調べた。 点変異体は、 提示配列の 6番目にァラニンがあるため、 6番目残基を除 いた残りの全ての残基について作製した。 点変異体の作製は、 Ku n k e 1法 (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press) により行った。 点変異体作製に用いた合成 D N Aを 図 8 (配列番号 4 0〜 5 0) に示す。 点変異の導入の確認は、 ファージ DN Aの塩基配列を決定することにより確認した。 DNAシークェンス は、 実施例 1 と同様に行った。 得られた点変異体のチタンへの結合能の 測定は、 加えたファージ量を 1 0 lflp f uに合わせて、 実施例 2に示す 方法で行った。 各点変異体のチタンに対する結合能を図 9にまとめた。
図 9に示す結果から、 1番目のアルギニン、 5番目のァスパラギン酸 の側鎖の電荷が、 チタンとの結合に重要な役割を果たして ると考えら れる。 また、 4番目のプロリンの変異体の結果から、 4番目のプロリン に於けるべプチドの主鎖の折れ曲がりが、 非常に重要であることが示唆 される。
(実施例 5) ' >
実施例 4の結果から、 チタンとの結合に主に重要なのは配列番号 3の アミノ端部分に集中している。 そこで、 力ルポキシル端側の 7番目から 1 2番目までを欠失した変異体を作製し、 チタンへの結合能の変化を調 ベた。 また、 実施例 4で結合能が上昇した、 2番目のリジンをァラニン に置換した変異体についても同様の欠失変異体を作製し、 チタンへの結 合能の変化を調べた。
欠失変異体は、 図 1 0に模式的に示した方法で作製した。 各ファージ クローンの二本鎖 DN A (以下 RF) を、 Q I AGEN k i tを用いて 調製した。 得られた R Fを錶型にして P CRを行った。 この時に用いた プライマ一 (図 8、 配列番号 5 1〜 5 3) には、 5 ' 側に制限酵素 B a mH I切断サイ 卜と B amH Iで切断が可能になるように、 さらに 5 ' 側に 3残基のポリ G配列を付加した。試薬は、 Expand™ Long Tempi ate PCR System (ベーリンガー) を用いて行い、 反応は、 ポリメラーゼ 1 し 添付の 1 0 x緩衝液 2 1 0 1、 2. 5 mM d NT P s 8 j 1、 プラ イマ一各 1 O O pmo 1 e / IX 1を 1 1ずつ、 RF 0. 5 /z lを含む 1 0 0 1溶液で行った。 P C Rの反応は、 9 4° (:、 3 0秒、 6 0 °C、 30秒、 7 2°C、 6分を 30サイクル行った。 また、 サイクルの前に 9 4°C, 5分間プレヒートを行い、 サイクル後に 72°C、 7'分間インキュ ペートした。 P CR反応後、 生成物を 1 %ァガロースゲル電気泳動によ り分離し、目的の大きさである 7 k b付近のバンドを UV下で切り出し、 Ge n e c 1 e a n I I k i t (フナコシ) を用いて、 添付のプロトコ ルに従い精製した。 精製した DNAを、. 制限酵素 B amH,I (ベーリン ガー) で 2時間、 30 °Cでインキュベート後、 エタノール沈澱により B amH Iを失活させ、 DN Aを乾燥した。 乾燥した DN Aを、 4 1の 滅菌水、 5 1の 2 Xライゲーシヨンバッファー (プロメガ) に溶解し た後、 1 n 1 T 4 DN Aライゲース (ロシュ) を加え、 '室温 30分間 ライゲーシヨン反応を行い自己閉環させた。 反応溶液に対して、 1 00 11 1の実施例 1に記載の大腸菌 E R 2738株のコンビテントセルを加 え、 氷上で 30分間静置した後、 42°C、 40秒ヒ一トショックを加え たあと、 すぐに 3分間氷上に置いた。 その後、 800 1の3〇(:培地 を添加し、 3 7 °Cで 3時間激しく震盪培養した後、 1 , 1 0 , 1 0 0 M 1を、 対数増殖期の E R 27 38株 200 ^ 1 と裩合し、 5分間静地し た。その後、常法(Molecular Cloning Third Edi t ion, Cold Spr ing Harbor Laboratory Press) に従いクローン化した。 欠失の導入の確認は、 ファ —ジ DN Aの配列をシークェンスすることにより確認した。 DN Aシー クエンスは、 実施例 1と同様に行った。 得られた欠失変異体のチタンへ の結合能の測定は、 加えたファージ量を 1 0 f uに合わせて、 実施 例 2に示す方法で行った。 両欠失変異体のチタンに対する結合能を図 1 1にまとめた。 図 1 1から、 チタンに結合する配列番号 1で示されるぺ プチドを提示するファージクローンは、 前半部の 1一 6番目だけでも、 同じ強さで結合することが分かった。
(実施例 6)
実施例 4の結果、 配列番号 1の最初のアルギニンの側鎖の正電荷がチ タンへの結合に重要な役割を果たしていることが分かった。 しかし、 こ のアルギニンは、 ァミノ末端に位置するので、 主鎖の端に正に帯電した -'
アミノ基を持つ。 この正電荷が、 側鎖の正電荷と強調できに働いている 可能性を検討するために、 ァラニンを、 アルギニンの前に挿入した挿入 変異体を作製し、 チタン結合能への影彎を調べた。 ·,
挿入変異体の作製は、 アニーリング条件を除いて実施例 4と同じ方法 で行った。 アニーリングは、 8 5°C、 1 0分間、 4 8°C、 1 5分間の後、 ヒートブロック (AL B 1 2 1 , I WAK I ) のスィッチを切り、 室温 に下がるまでそのまま放置して行った。 用いたプライマーめ >配列 (配列 番号 54) を図 8に示す。 挿入変異の導入の確認は、 ファ一ジ DNAの 配 _列をシークェンスすることにより確認した。 DN Aシークェンスは、 実施例 1と同様に行った。 得られた揷入変異体のチタンへの結合能の測 定は、 加えたファージ量を 1 01()p f uに合わせて、 実施例 2に示す方 法で行った。 挿入変異体のチタンに対する結合能を図 1 1に示す。
実施例 6の結果は、 配列番号 1 5がチタンに結合するのに、 必ずしも アルギニンが先頭にある必要がないということを示している。 このこと は、 チタンに結合するキメラタンパク質、 人工タンパク質や合成べプチ ドなどを作製する際、 配列番号 1や 3の配置に制限を受けないことを意 味する重要な知見である。
(実施例 7 )
実施例 3〜 6の結果から、 配列番号 3で示されるペプチドを提示する ファージクローンは、 チタン原子に結合した水酸基が荷電したものと結 合していると考えられる。 そこで、 チタン表面に結合する水酸基を増や すために、 過酸化水素処理を行ったチタン粒子に対する、 配列番号 3で 示されるぺプチドをを提示するファージクローンの結合能を調べた。 チタン粒子 (粒子系 1 50mm以下、 住友チタニウム) 1 Omgをェ ッペンドルフチューブにとり、 3 %の過酸化水素 (和光純 ) を lm l 加えた後、 それぞれ、 1 20°C、 80 °C、 室温 ( r t ) で 1時間インキ ュペートした後、 TB Sで二回洗浄した後に、 配列番号 3で示されるぺ プチドを提示するファ一ジクローンの結合能の測定を、 加えるファージ 量を 1 01Qp f uに合わせて、 実施例 2に示す方法で行つ;^。 過酸化水 素処理による、 ファージ結合能への影響の結果を図 1 2に示す。
実施例 7の結果から分かることは、 過酸化水素処理により、 配列番号 3で示されるぺプチドを提示するファージクローンの結合量が増やすこ とができることで、 このことから、 チタン表面の状態を変え'ることで、 ファージの結合量をコントロールできる可能性が示唆される。
(_実施例 8)
配列番号 3で示されるアミノ酸配列からなるぺプチドを提示するファ ージクローンの金属材料への結合の特異性を検討するために、 金 (純度 > 99. 9 % 粒系 < 1 50 m) ·銀 (純度 > 9 9. 9 % 粒系く 7 5 m) ·銅 (純度 > 99 % 粒系 75— 1 50 m) ' 白金 (純度 > 99. 9 % 粒系く 7 5 m) ·鉄 (純度 > 99. 9 % 粒系 1 50 ^ m) ·錫 (純 度 > 99. 9 % 粒系く 1 50 im) ·亜鉛 (純度 > 9 9. 9 % 粒系 1 5 0 m) · クロム (純度 > 98 % 粒系 1 0 ^m) ·コバルト (純度 > 99 % 粒系く 7 5 m) · シリコン (純度 > 9 9 % 粒系く 1 50 zm) (高 純度化学研究所 ·埼玉) 各 1 Omgに対して、 配列番号 3で示されるァ ミノ酸配列からなるペプチドを提示するファージクローン 101 Qp f u/m 1を用いて、 実施例 2と同じ方法で各金属への結合能を調べた。 その結果を図 1 3にまとめた。 図 1 3に示される結果から、 配列番号 2 で示されるアミノ酸配列からなるぺプチドを提示するファージクローン はチタンのみならず銀ゃシリコンにも結合することがわかった。
(実施例 9 )
配列番号 3で示されるアミノ酸配列からなるぺプチドを il示するファ —ジクローンの銀ゃシリコンへの結合様式、 配列特異性がチタンに結合 する場合と同様であるかどうか確かめるために、 実施例 4で使用した配 列番号 4, 5, 7, 8のァラニン置換変異ファージの銀 · シリコンへの 結合能を実施例 2に示す方法でおこなつ.た。 その結果を図, 1 4にまとめ た。 図 1 4に示される結果から、 各ァラニン置換による銀 · シリコン結 合能への影響は、 チタンのときと同じ傾向を示した。 このことから、 配 列番号 3を提示するファージクローンは、 チタンに結合するときと同じ 分子機構 ·配列特異的に銀 · シリコンに結合することが示唆された。
(実施例 1 0 )
_配列番号 3で示されるアミノ酸配列からなる合成ペプチドが、 チタン 表面に結合することを確認するために、 配列番号 3で示されるアミノ酸 配列からなる合成べプチドのチタン粒子に対する結合能を調べた。 実施 例 1で用いたチタン粒子 1 Omgをエツペンドルフチューブにとり、 5 0 mM HE P E S— N a OH、 1 5 0 mM N a C 1で二回洗浄した後 に、 1 0 0 1 の配列番号 3の合成ペプチド 5〜 40 Mを添加し、 2 時間、 室温で回転撹拌機 r o t a t o r RT— 5 0 (タイテック社) を 用いて回転撹拌した。 卓上遠心機 H 1 3 0 0 (コクサン 東京) 1 3, 0 0 0 r pm、 5秒の遠心操作により、 上清を回収し、 フルォロアルデ ヒド (ピアス社 ロックフォード イリノイ) と混合し、 分光蛍光光度 計 (日本分光 東京) を用いて、 励起波長 3 42 nm、 蛍光波長 4 3 7 nmから、 上清中のペプチド濃度からチタンへの結合量を求めた。 チタ ンの比表面積は密度と平均粒子系から求めた。 また、 同じ方法で実施例
1 3で用いたシリコン '錫についても配列番号 2で示されるアミノ酸配 列からなる合成べプチドの結合能を調べた。 得られた結果に対して L a n gmu i r吸着等温式を用いてフィッティングをおこない、 最大吸着 量 ·解離定数を求めた結果を表 1にまとめた。
(表 1 )
Kd (μΜ) qm (mole / m 2)
Ti 11.1 ±2.8 2.5 + 0.3 X10 -6
Si 13.2 ±4.0 2.1 ±0.3 X10 -7
Sn ND ND
(実施例 1 1 ) ' > 無機材料結合べプチドは、 多くの場合その標的材料のバイオミネラリ ゼーシヨン能を有する。 そこで、 配列番号 3で示されるアミノ酸配列か らなる合成べプチドの銀のバイオミネラリゼーション能を以下の方法に より調べた。 TB Sに溶解した配列番号 3で示されるアミノ酸配列から なる合成ペプチド 0. 1〜 0. 4mMに、 硝酸銀水溶液を終濃度 0. 1 mMになるように添加し、 2 5 °Cで 48時間インキュベートした後、 遠 心操作により生成した銀を回収した。 回収した銀を、 蒸留水でよく洗浄 した後、 透過型電子顕微鏡で観察をおこなったその結果を、 図 1 5にま とめた。 図 1 5に示される結果から、 約 5 0 O nmの大きさの結晶性の 粒子が配列番号 3で示されるアミノ酸配列からなる合成べプチドにより 生成されることが分かった。
(実施例 1 2)
配列番号 3で示されるアミノ酸配列からなる合成べプチドのシリコン のバイオミネラリゼ一ション能を以下の方法により調べた。 TB Sある いは P B Sに溶解した配列番号 3で示されるアミノ酸配列からなる合成 ぺプチド 2 — 1 2 mg/m 1 に、 1 mM HC 1で終濃度 0. 1 Mになる ように希釈した 1ノ 1 0容量のテトラメトキシシラン(信越化学 東京) を添加し、 5分間室温で静置したあと、 遠心操作により生成したシリカ を回収した。 回収したシリカを、 蒸留水でよく洗浄し、 2 0 1 の 0. 5 N N a〇H、 9 8 °C 3 0分間インキュベートにより溶解、 蒸留水で 1 0 0〜 5 0 0倍に希釈した溶液2 5 0 1 に、 I O I の 1 0倍希 釈 ·有害金属測定用硫酸、 1 0 1 の 1 0 %モリブデン ンアンモニゥ ム水溶液を添加し、 2 5 °Cで 1 0分間インキュベートした後、 3 8 5 η mの吸光度から生成シリ力量の定量をおこなった。その結果を図 1 6に、 また生成したシリカの形態を透過型電子顕微鏡 ·走査型電子顕微鏡で観 察した結果を図 1 7にそれぞれまとめた。 これらの結果がら 配列番号 3で示されるアミノ酸配列からなる合成べプチドは、 シリカ粒子のバイ すミネラリゼ一ション能を持つことが分かった。
(実施例 1 3)
配列番号 1で示されるアミノ酸配列からなるぺプチドの配列を持つ融 合タンパク質が、 チタン結合能を獲得することを示すために、 配列番号 1をフェリチンタンパク質に融合した融合タンパク質 (以下 TB F) を 作製した。 TB Fを発現するためのプラスミ ド構築は、 図 1 8に模式的 に示した方法によりおこなった。 すなわち、 配列番号 1で示されるアミ ノ酸配列からなるぺプチド融合組換えフェリチン発現ベクターは、 ゥマ リコンビナントフエリチン発現べクタ一である pMK 2/ f e r r i t i nを制限酵素 B amH I と S a c Iで切断し、 ァニーリングした配列 番号 5 5及び 5 6に示される合成 D N Aを揷入し、 次に B amH Iで切 断した。 そこに、 pMK 2/ f e r r i t i nを B amH Iで切断した ときに生じる短い DN A断片を揷入し作製した。
構築した TB F発現プラスミ ドを大腸菌 XL I _b 1 u e株に常法 ( Molecular Cloning Third Edi t ion, Cold Spring Harbor Laboratory Press ) に従い形質転換した。 形質転換した菌株を、 5m l 1 0 0 ^ g/m 1 カルペニシリン含有 L B培地で 1 6— 20時間、 37 °Cで前培養の後、 500 m l 1 00 gZm 1カルべニシリン含有 L B培地に植え継ぎ、 さらに 1 6— 1 8時間、 37 °Cで培養をおこなった。 遠心操作により大 腸菌を集菌したあと、 5 0mM T r i s HC l p H 8. 0緩衝液で菌 体を洗浄したあと、 1 l i t e rの培養菌体あたり 20 m, 1の 50 mM T r i s H C 1 p H 8. 0緩衝液で菌体をよく分散させた後、超音波破 砕装置 S o n i f e r 250 (Branson社製 ダンバリー、 コネティカツ ト)、 微量チップ、 出力 7、 d u t y c y c l e 50 %で 2分間破砕し た後、氷冷、 2分間破砕、氷冷を繰り返し菌体を良く破枠し £。破碎後、 遠心操作により可溶性画分を回収し、 7 0° ( 、 1 5分間温浴し、 室温に 方 置して徐々に冷ました後、 遠心操作により上清を回収した。 回収した 溶液を、陰イオン交換担体である Q— S e p h a r o s e H P (Amersham ピスカタウェイ、 ニュージャージー) を用いたカラムクロマ卜グラフィ 一による精製をおこなった。 0— 400 mMの塩化ナトリウムのグラジ ェントにより TB Fを溶出した。 溶出した TB Fを限外ろ過により濃縮 した後、 S e p h a c r y l S - 400 (Amersham ピスカタウェイ、 ニュージャージー)を担体に用いたゲルろ過クロマトグラフィ一により、 T B Fの 24量体の溶出ピークを回収した。
この TB Fのチタンへの結合能を、 実施例 3で用いた Q CMによりお こなった。 対照として配列番号 1以外のチタンへの結合の寄与を、 配列 番号 1で示されるアミノ酸配列からなるぺプチドを含まない組換えフエ リチンタンパク質 ( f e r O) のチタンへの結合も調べた。 その結果を 図 1 9に示す。 図 1 9に示される結果から、 T B Fは i e r Oよりも強 くチタンに結合することが分かり、 配列番号 1で示されるァミノ酸配列 からなるぺプチドを含む融合タンパク質のチタンへの親和性が大幅に上 昇することが示された。 産業上の利用可能性
本発明によると、 例えば、 ォッセォインテグレーション期間を短縮す るチタンィンプラント材料、 歯を擬態することで細菌感染に抵抗性の高 いチタンィンプラン卜材料などの医療分野、 可視光城でも利用可能な光 触媒能をもつ酸化チタン材料など、ナノバイォテクノロジ一、材料工学、 半導体、 医薬品、 化粧品などに有利に用いることができるチタン複合体 を提供することができる。

Claims

請 求 の 範 囲
1 . チタンに、 異なったペプチド配列をファージ粒子上に提示したファ —ジ集団を接触させ、 ファージ粒子がぺプチド配列を介して結合したチ タンを遠心操作により回収し、 得られたチタンに結合したファージ粒子 を菌体中で増殖させ、 次いで、 増殖させたペプチド配列をファージ粒子 上に提示したファージ集団をチタンに接触させるバニング操作を繰り返 すことにより、 チタンに結合するファ一ジクローンを濃縮することを特 徵とするチタンに結合能を有するぺプチドのスクリーニン,グ方法。
2 . 請求項 1記載のスクリーニング方法により得られることを特徴とす るチタンに結合能を有するぺプチド。
3 . 配列番号 1に示されるアミノ酸配列からなるチタンに結合能を有す るペプチド。 '
4 . 配列番号 1に示されるアミノ酸配列において、 1若しくは数個のァ ミ_ノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつチ タンに結合能を有するぺプチド。
5 . 配列番号 1に示されるアミノ酸配列の 1 , 4 , 5番目のアミノ酸残 基が保存されていることを特徴とする請求項 4記載のチタンに結合能を 有するぺプチド。
6 . 2番目のリジンがァラニンに置換された配列番号 2に示されるアミ ノ酸配列からなることを特徴とする請求項 5記載のチタンに結合能を有 するペプチド。
7 . 配列番号 3に示されるアミノ酸配列からなるチタンに結合能を有す るペプチド。
8 . 配列番号 3に示されるアミノ酸配列において、 1若しくは数個のァ ミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつチ タンに結合能を有するぺプチド。
9 . 配列番号 3に示されるアミノ酸配列の 1 , 4 , 5番目のアミノ酸残 基が保存されていることを特徴とする請求項 8記載のチタンに結合能を 有するぺプチド。
1 0 . 1〜 5番目及び?〜 1 2番目のアミノ酸残基がそれ れァラニン に置換された配列番号 4〜 1 4に示されるアミノ酸配列からなることを 特徴とする請求項 8記載のチタンに結合能を有するぺプチ.ド。
1 1 . 配列番号 3に示されるアミノ酸配列の N末端にァラニンが付加 · 揷入された配列番号 1 5に示されるアミノ酸配列からなる;ことを特徴と する請求項 8又は 9記載のチタンに結合能を有するぺプチド。
1 2 . 配列番号 1 6〜 2 4に示されるアミノ酸配列からなるチタンに結 合能を有するぺプチド。
1 3 . 配列番号 1 6〜 2 4に示されるアミノ酸配列において、 1若しく は数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からな り、 かつチタンに結合能を有するぺプチド。
1 4 . 配列番号 2 5〜 3 8に示されるアミノ酸配列からなるチタンに結 合能を有するぺプチド。
1 5 . 配列番号 2 5〜 3 8に示されるアミノ酸配列において、 1若しく は数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からな り、 かつチタンに結合能を有するペプチド。
1 6 . 化学修飾されていることを特徴とする請求項 2〜 1 5のいずれか 記載のチタンに結合能を有するぺプチド。
1 7 . チタンが、 金属チタン、 チタン合金又は二酸化チタンであること を特徴とする請求項 2〜 1 6のいずれか記載のチダンに結合能を有する ペプチド。
1 8 . 請求項 2〜 1 6のいずれか記載のチタンに結合能を有するぺプチ ドがチタンと結合したチタン一ペプチド複合体。
1 9 . 請求項 2〜 1 6のいずれか記載のチタンに結合能を有するぺプチ ドと、 機能性ペプチド又は機能性タンパク質との結合体であって、 かつ チタンに結合能を有する人エタンパク質。
2 0 . 機能性ペプチド又は機能性タンパク質が、 チタンに結合能を有す るべプチドと協働して、 二次元結晶を自己集合で形成しうるべプチド又 はタンパク質であることを特徴とする請求項 1 9記載の人工タンパク質。
2 1 . 機能性ペプチド又は機能性タンパク質が、 細胞接着活性等の細胞 認識活性をもつぺプチド配列を有するぺプチド又は夕ンパク質であるこ とを特徴とする請求項 1 9記載の人工タンパク質。
2 2 . 請求項 1 9〜 2 1のいずれか記載の人工タンパク質がチタンと結 合したチタン一人工タンパク質複合体。
2 3 . 請求項 2〜 1 7のいずれか記載のチタンに結合能を有するぺプチ ドと、 標識化物質若しくはペプチドタグとの結合体、 又は非ペプチド系 化合物との結合体であって、 かつチタンに結合能を有するキメラタンパ ク質。
2 4 . 請求項 2 3記載のキメラタンパク質がチタンと結合したチタン一 キメラタンパク質複合体。
2 5 . 請求項 2〜 1 7のいずれか記載のチタンに結合能を有するぺプチ ドをその粒子表面上に提示し、 かつチタンに結合能を有するファージ。
2 6 . 請求項 2 5記載のファージがチタンと結合したチタン—ファージ 複合体。
2 7 . 請求項 2〜 1 7のいずれか記載のチタンに結合能を有するぺプチ ドを用いることを特徴とするチタン表面の改質又はチタン粒子の形成方 法。
2 8 . 請求項 1 9〜 2 1のいずれか記載のチタンに結合能を有する人工 夕ンパク質を用いることを特徴とするチタン表面の改質、 チタン粒子の 形成又はチタンの整列化方法。
2 9 . 請求項 2 3記載のチタンに結合能を有するキメラタンパク質を用 いることを特徴とするチタン表面の改質又はチタン粒子の形成方法。
3 0 . 請求項 2 5記載のチタンに結合能を有するファージを用いること を特徴とするチタンの整列化又はチタン粒子の形成方法。
3 1 . 請求項 2 2記載のチタン一人工タンパク質複合体を有効成分とす るィンプラン卜材料。
3 2 . 配列番号 1に示されるアミノ酸配列からなる銀に結合能を有する ペプチド。
3 3 . 配列番号 1に示されるアミノ酸配列において、 1若しくは数個の アミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ 銀に結合能を有するぺプチド。 '
3 4 . 配列番号 1に示されるアミノ酸配列の 1 , 4, 5番目のアミノ酸 残 _基が保存されていることを特徴とする請求項 3 3記載の銀に結合能を 有するぺプチド。
3 5 . 2番目のリジンがァラニンに置換された配列番号 2に示されるァ ミノ酸配列からなることを特徴とする請求項 3 4記載の銀に結合能を有 するぺプチド。
3 6 . 配列番号 3に示されるアミノ酸配列からなる銀に結合能を有する ぺプチド。
3 7 . 配列番号 3に示されるアミノ酸配列において、 1若しくは数個の アミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ 銀に結合能を有するぺプチド。
3 8 . 化学修飾されていることを特徴とする請求項.3 2〜 3 7のいずれ か記載の銀に結合能を有するぺプチド。
3 9 . 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有するぺプチド が銀と結合した銀一べプチド複合体。
4 0 . 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有するぺプチド と、 機能性ペプチド又は機能性ダンパク質との結合体であって、 かつ銀 に結合能を有する人工夕ンパク質。
4 1 . 請求項 4 0記載の人工タンパク質が銀と結合した銀一人工タンパ ク質複合体。
4 2 . 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有するぺプチド と、 標識化物質若しくはペプチドタグとの結合体、 又は非,ペプチド系化 合物との結合体であって、 かつ銀に結合能を有するキメラタンパク質。
4 3 . 請求項 4 2記載のキメラタンパク質が銀と結合した銀一キメラ夕 ンパク質複合体。
4 4 . 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有'す 'るべプチド をその粒子表面上に提示し、 かつ銀に結合能を有するファージ。
4 5 . 請求項 4 4記載のファージが銀と結合した銀—ファ一ジ複合体。
4 6 . 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有するぺプチド を用いることを特徴とする銀表面の改質又は銀粒子の形成方法。
4 7 . 請求項 4 0記載の銀に結合能を有する人工タンパク質を用いるこ とを特徴とする銀表面の改質、 銀粒子の形成又は銀の整列化方法。
4 8 . 請求項 4 2記載の銀に結合能を有するキメラタンパク質を用いる ことを特徴とする銀表面の改質又は銀粒子の形成方法。
4 9 . 請求項 4 4記載の銀に結合能を有するファージを用いることを特 徴とする銀粒子の形成又は銀の整列化方法。
5 0 . 配列番号 1に示されるアミノ酸配列からなるシリコンに結合能を 有するペプチド。
5 1 . 配列番号 1に示されるアミノ酸配列において、 1若しくは数個の アミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ シリコンに結合能を有するぺプチド。
5 2 . 配列番号 1に示されるアミノ酸配列の 1, 4 , 5番目のアミノ酸 残基が保存されていることを特徴とする請求項 4 9記載のシリコンに結 合能を有するペプチド。 '
5 3 . 2番目のリジンがァラニンに置換された配列番号 2に示されるァ ミノ酸配列からなることを特徴とする請求項 5 0記載のシリコンに結合 能を有するぺプチド。
5 4 . 配列番号 3に示されるアミノ酸配列からなるシリコ に結合能を 有するペプチド。
5 5 . 配列番号 3に示されるアミノ酸配列において、 1若しくは数個の アミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ シリコンに結合能を有するペプチド。 '
5 6 . 化学修飾されていることを特徴とする請求項 5 0〜 5 5のいずれ 記載のシリコンに結合能を有するぺプチド。
5 7 . 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドがシリコンと結合したシリコン一べプチド複合体。
5 8 . 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドと、 機能性べプチド又は機能性タンパク質との結合体であって、 かつシリコンに結合能を有する人工タンパク質。
5 9 . 請求項 5 8記載の人工タンパク質がシリコンと結合したシリコン —人工タンパク質複合体。
6 0 . 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドと、 標識化物質若しくはペプチドタグとの結合体、 又は非べプチ ド系化合物との結合体であって、 かつシリコンに結合能を有するキメラ タンパク質。
6 1 . 請求項 6 0記載のキメラタンパク質がシリコンと結合したシリコ ン—キメラタンパク質複合体。
6 2 . 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドをその粒子表面上に提示し、 かつシリコンに結合能を有するファ ーシ。
6 3 . 請求項 6 2記載のファージがシリコンと結合したシリコン—ファ ージ複合体。 .
6 4 . 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドを用いることを特徴とするシリコン表面の改質又は,シリコン粒子 の形成方法。
6 5 . 請求項 5 8記載のシリコンに結合能を有する人工タンパク質を用 'いることを特徴とするシリコン表面の改質、 シリコン粒子の形成又はシ リコンの整列化方法。 '
6 6 . 請求項 6 0記載のシリコンに結合能を有するキメラタンパク質を 用 _いることを特徴とするシリコン表面の改質改質又はシリコン粒子の形 成方法。
6 7 . 請求項 6 2記載のシリコンに結合能を有するファージを用いるこ とを特徴とするシリコン粒子の形成又はシリコンの整列化方法。
6 8 . 請求項 2〜 1 7のいずれか記載のチタンに結合能を有するぺプチ ド、 請求項 3 2〜 3 8のいずれか記載の銀に結合能を有するペプチド、 又は、 請求項 5 0〜 5 6のいずれか記載のシリコンに結合能を有するぺ プチドを原子間力顕微鏡 (A F M ) の探釙 (プロ一ブ) として使用する 方法。
5
PCT/JP2004/011319 2003-07-30 2004-07-30 チタン、銀、シリコンに結合能を有するペプチド WO2005010031A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES04771321.9T ES2438190T3 (es) 2003-07-30 2004-07-30 Péptido susceptible de unirse a titanio, plata y silicona
US10/566,535 US7498403B2 (en) 2003-07-30 2004-07-30 Peptides capable of binding to titanium silver silicone
JP2005512129A JP4885542B2 (ja) 2003-07-30 2004-07-30 チタン、銀、シリコンに結合能を有するペプチド
DK04771321.9T DK1661910T3 (da) 2003-07-30 2004-07-30 Peptider, der er i stand til at binde til titan, sølv og silicium
EP04771321.9A EP1661910B1 (en) 2003-07-30 2004-07-30 Peptides capable of binding to titanium, silver and silicone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-282509 2003-07-30
JP2003282509 2003-07-30

Publications (1)

Publication Number Publication Date
WO2005010031A1 true WO2005010031A1 (ja) 2005-02-03

Family

ID=34101015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011319 WO2005010031A1 (ja) 2003-07-30 2004-07-30 チタン、銀、シリコンに結合能を有するペプチド

Country Status (7)

Country Link
US (1) US7498403B2 (ja)
EP (1) EP1661910B1 (ja)
JP (1) JP4885542B2 (ja)
CN (1) CN100586959C (ja)
DK (1) DK1661910T3 (ja)
ES (1) ES2438190T3 (ja)
WO (1) WO2005010031A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099968A1 (ja) 2007-02-15 2008-08-21 Tohoku University 酸化亜鉛結合性抗体及びその用途
JPWO2006126595A1 (ja) * 2005-05-27 2008-12-25 独立行政法人科学技術振興機構 機能性材料の三次元構造体
WO2010007723A1 (ja) * 2008-07-17 2010-01-21 株式会社村田製作所 セラミックス結合ペプチド
US7825070B2 (en) 2007-11-16 2010-11-02 Panasonic Corporation Method of two-dimensionally arraying ferritin on substrate
WO2012086647A1 (ja) 2010-12-22 2012-06-28 味の素株式会社 融合タンパク質
WO2013022051A1 (ja) 2011-08-08 2013-02-14 味の素株式会社 多孔質構造体及びその製造方法
WO2013157410A1 (ja) * 2012-04-17 2013-10-24 Hoya株式会社 Fzd10結合性ペプチド
WO2016063926A1 (ja) * 2014-10-22 2016-04-28 国立大学法人広島大学 精製方法、精製キット、および、これらに用いられる酸化ケイ素結合タグ
WO2019163871A1 (ja) 2018-02-21 2019-08-29 味の素株式会社 融合タンパク質
WO2020090708A1 (ja) 2018-10-29 2020-05-07 味の素株式会社 有機化合物封入フェリチンの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309482B2 (en) * 2003-09-08 2007-12-18 E.I. Du Pont De Nemours And Company Long lasting waterproof sunscreen comprising metal oxide and peptide conditioner
AU2005323811B2 (en) 2004-12-02 2012-07-05 Csir Gram positive bacterial cells comprising a disrupted flagellin gene, flagellin-based fusion proteins and use in removal of metal ions from a liquid
JP5186689B2 (ja) * 2005-11-10 2013-04-17 国立大学法人広島大学 酸化ケイ素含有物質に結合するタンパク質を介したタンパク質の固定化方法および固定化剤
US20080015138A1 (en) * 2006-07-17 2008-01-17 Affinergy, Inc. Metal binding compounds, metal binding compositions, and their uses
US20100028387A1 (en) * 2007-06-12 2010-02-04 Ganesan Balasundaram Biocompatible Coated Nanostructured Titanium Surfaces
KR100979282B1 (ko) 2008-03-24 2010-08-31 한국과학기술원 실리카 결합단백질을 이용한 바이오-실리카 칩 및 그제조방법
US20100158822A1 (en) * 2008-12-18 2010-06-24 E .I. Du Pont De Nemours And Company Peptides that bind to silica-coated particles
EP2546342A4 (en) * 2010-03-11 2013-12-04 Riken METHOD FOR SELECTION OF A POLYPEPTIDE SEQUENCE, METAL OXIDE OR SILICON WITH A BONDING SPEPTIDE AND USE THEREOF
WO2013183048A1 (en) 2012-06-03 2013-12-12 Ben-Gurion University Of The Negev Research And Development Authority Functionalized titanium binding peptides and implants coated with same
US9771393B2 (en) * 2015-03-11 2017-09-26 The United States Of America, As Represented By The Secretary Of Agriculture Bioactive peptides having insecticide activity
US20190056394A1 (en) * 2015-09-18 2019-02-21 Hiroshima University Protein tag that binds to substances having a crystal structure, and uses thereof
IL243839B (en) 2016-01-28 2018-01-31 Sp Nano Ltd Conductive wires
IL243838A (en) 2016-01-28 2017-07-31 Sp Nano Ltd The composition containing sp1 protein and carbon nanoparticles and its uses
KR101934047B1 (ko) * 2016-07-26 2018-12-31 주식회사 나이벡 티타늄 결합능을 가지는 펩타이드
JP2019122306A (ja) * 2018-01-17 2019-07-25 国立大学法人 東京大学 金属結合ペプチドおよびその使用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338700A (ja) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd 新規ペプチド化合物
WO2001028605A1 (de) * 1999-10-19 2001-04-26 Miladin Lazarov Biokompatibles beschichtetes implant
WO2002060506A1 (en) * 2000-11-17 2002-08-08 Advanced Bio Prosthetic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US20030073104A1 (en) * 2001-10-02 2003-04-17 Belcher Angela M. Nanoscaling ordering of hybrid materials using genetically engineered mesoscale virus
WO2003078451A2 (en) * 2002-03-13 2003-09-25 New Century Pharmaceuticals, Inc. Method of isolating binding peptides from a combinatorial phage display library and peptides produced thereby

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833447B1 (en) * 2000-07-10 2004-12-21 Monsanto Technology, Llc Myxococcus xanthus genome sequences and uses thereof
US7214786B2 (en) * 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2002080186A1 (en) * 2001-03-30 2002-10-10 Johns Hopkins University Afm cantilevers and methods for making and using same
US20030113714A1 (en) * 2001-09-28 2003-06-19 Belcher Angela M. Biological control of nanoparticles
CA2467836A1 (en) * 2001-11-20 2003-09-04 Duke University Interfacial biomaterials
EP2255832A3 (en) * 2004-06-16 2011-02-09 Affinergy, Inc. IFBM's to promote attachment of target analytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338700A (ja) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd 新規ペプチド化合物
WO2001028605A1 (de) * 1999-10-19 2001-04-26 Miladin Lazarov Biokompatibles beschichtetes implant
WO2002060506A1 (en) * 2000-11-17 2002-08-08 Advanced Bio Prosthetic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US20030073104A1 (en) * 2001-10-02 2003-04-17 Belcher Angela M. Nanoscaling ordering of hybrid materials using genetically engineered mesoscale virus
WO2003078451A2 (en) * 2002-03-13 2003-09-25 New Century Pharmaceuticals, Inc. Method of isolating binding peptides from a combinatorial phage display library and peptides produced thereby

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAIK, R.R. ET AL: "Biomimetic synthesis and patterning of silver nanoparticles", NATURE MATERIALS, vol. 1, November 2002 (2002-11-01), pages 169 - 172, XP009032889 *
SANO, K. ET AL: "A Hexapeptide Motif that Electrostatically Binds to the Surface of Titanium", J. AM. CHEM. SOC., vol. 125, no. 47, 26 November 2003 (2003-11-26), pages 14234 - 14235, XP002904281 *
WHALEY, S.R. ET AL: "Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly", NATURE, vol. 405, 2000, pages 665 - 668, XP002909553 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006126595A1 (ja) * 2005-05-27 2008-12-25 独立行政法人科学技術振興機構 機能性材料の三次元構造体
US20100040862A1 (en) * 2005-05-27 2010-02-18 Japan Science And Technology Agency Three-Dimensional Structure of Functional Material
JP4592752B2 (ja) * 2005-05-27 2010-12-08 独立行政法人科学技術振興機構 機能性材料の三次元構造体
US8796417B2 (en) * 2005-05-27 2014-08-05 Japan Science And Technology Agency Three-dimensional structure of functional material
WO2008099968A1 (ja) 2007-02-15 2008-08-21 Tohoku University 酸化亜鉛結合性抗体及びその用途
US7825070B2 (en) 2007-11-16 2010-11-02 Panasonic Corporation Method of two-dimensionally arraying ferritin on substrate
WO2010007723A1 (ja) * 2008-07-17 2010-01-21 株式会社村田製作所 セラミックス結合ペプチド
US9187570B2 (en) 2010-12-22 2015-11-17 Ajinomoto Co., Ltd. Fusion protein
WO2012086647A1 (ja) 2010-12-22 2012-06-28 味の素株式会社 融合タンパク質
WO2013022051A1 (ja) 2011-08-08 2013-02-14 味の素株式会社 多孔質構造体及びその製造方法
WO2013157410A1 (ja) * 2012-04-17 2013-10-24 Hoya株式会社 Fzd10結合性ペプチド
JPWO2013157410A1 (ja) * 2012-04-17 2015-12-21 Hoya株式会社 Fzd10結合性ペプチド
WO2016063926A1 (ja) * 2014-10-22 2016-04-28 国立大学法人広島大学 精製方法、精製キット、および、これらに用いられる酸化ケイ素結合タグ
JPWO2016063926A1 (ja) * 2014-10-22 2017-08-17 国立大学法人広島大学 精製方法、精製キット、および、これらに用いられる酸化ケイ素結合タグ
US10253064B2 (en) 2014-10-22 2019-04-09 Hiroshima University Purification method, purification kit, and silicon oxide-binding tag for use therein
WO2019163871A1 (ja) 2018-02-21 2019-08-29 味の素株式会社 融合タンパク質
WO2020090708A1 (ja) 2018-10-29 2020-05-07 味の素株式会社 有機化合物封入フェリチンの製造方法

Also Published As

Publication number Publication date
JP4885542B2 (ja) 2012-02-29
US7498403B2 (en) 2009-03-03
JPWO2005010031A1 (ja) 2007-11-22
EP1661910A4 (en) 2007-10-17
CN100586959C (zh) 2010-02-03
CN1829734A (zh) 2006-09-06
EP1661910A1 (en) 2006-05-31
ES2438190T3 (es) 2014-01-16
US20070112174A1 (en) 2007-05-17
DK1661910T3 (da) 2013-12-16
EP1661910B1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2005010031A1 (ja) チタン、銀、シリコンに結合能を有するペプチド
US7462462B2 (en) Peptide capable of binding to nanographite structures
JP6603390B2 (ja) 新規ペプチド・ライブラリー及びその使用
JP2012010712A (ja) 可溶性検体の検出および増幅
US20220326235A1 (en) S-layer protein 2d lattice coupled detergent-free gpcr bioelectronic interfaces, devices, and methods for use thereof
WO2009140039A2 (en) Synthetic antibodies
US20100203653A1 (en) Protein G-Oligonucleotide Conjugate
WO2010111299A2 (en) Synthetic antibodies
WO2014103203A1 (ja) 微小タンパク質の骨格構造に基づく分子ライブラリ
US20100173430A1 (en) Cysteine-tagged staphylococcal protein g variant
EP2092343B1 (en) Detection conjugate
WO2022181550A1 (ja) 抗SARS-CoV-2抗体
JP4832291B2 (ja) ラベル用物質とキメラ物質、これらの物質の作製方法、並びに該ラベル用物質を用いて生体物質を捕捉、構造解析又は/及び同定する方法
WO2002074950A1 (fr) Procede d&#39;analyse d&#39;interaction intermoleculaire
JP2010107491A (ja) バイオセンサ
KR20220031856A (ko) 사상균 포자 결합 펩타이드
EP4025911A1 (en) Conjugates composed of membrane-targeting peptides for extracellular vesicles isolation, analysis and their integration thereof
Dremann The Development Of Peptide Ligands To Target H69 Rrna
JP2008232916A (ja) 標的物質検出キット
JP2002098698A (ja) Dna結合蛋白質アッセイ法
WO2005035751A1 (ja) 高機能性タンパク質の迅速、高効率な選択法、それによって得られる高機能性タンパク質、およびその製造方法と利用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021511.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005512129

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004771321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007112174

Country of ref document: US

Ref document number: 10566535

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004771321

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10566535

Country of ref document: US