WO2005008330A1 - 2次元画像形成装置 - Google Patents

2次元画像形成装置 Download PDF

Info

Publication number
WO2005008330A1
WO2005008330A1 PCT/JP2004/010746 JP2004010746W WO2005008330A1 WO 2005008330 A1 WO2005008330 A1 WO 2005008330A1 JP 2004010746 W JP2004010746 W JP 2004010746W WO 2005008330 A1 WO2005008330 A1 WO 2005008330A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion plate
dimensional image
image forming
forming apparatus
light
Prior art date
Application number
PCT/JP2004/010746
Other languages
English (en)
French (fr)
Inventor
Ken'ichi Kasazumi
Kiminori Mizuuchi
Kazuhisa Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005511943A priority Critical patent/JP4158987B2/ja
Priority to EP04771006A priority patent/EP1655636B1/en
Priority to US10/565,390 priority patent/US7271962B2/en
Publication of WO2005008330A1 publication Critical patent/WO2005008330A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0056Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam

Definitions

  • the present invention relates to a two-dimensional image forming apparatus, and more particularly, to an image display apparatus such as a television receiver and a video projector, and an image forming apparatus such as a semiconductor exposure apparatus.
  • an image display apparatus such as a television receiver and a video projector
  • an image forming apparatus such as a semiconductor exposure apparatus.
  • FIG. 7 is a diagram showing a schematic configuration of a conventional laser display.
  • This laser display 100 has laser light sources 1 O la to 101 c corresponding to three colors of RGB, and laser light L a to l 0 output from the laser light sources 101 a to 101 c. It has optical modulators 106 a to 106 c for intensity-modulating L c according to primary color signals S a to S c of the input video signal.
  • the laser display 100 is composed of a mirror 103 that reflects the laser light La modulated by the optical modulator 106 a and a laser light Lb that is modulated by the optical modulator 106 b.
  • the laser display 100 has a condenser lens 107 for condensing the laser light multiplexed by the dichroic mirror 110b, and a condenser lens 107 for condensing the laser light.
  • the laser beams L a to L c from the laser light sources 101 a to l 01 c corresponding to the three RGB colors are converted into optical modulators 106 a according to the primary color signals S a to S c of the input video signal.
  • the intensity is modulated by .about.106 c and multiplexed by an optical system consisting of a mirror 103 and dichroic mirrors 102a and 102b.
  • the laser beam condensed by the condenser lens 107 The light is scanned in the X direction by the polygon scanner 104 and in the y direction by the galvano scanner 105, and a two-dimensional image is displayed on the screen 108.
  • the conventional laser display 100 since the light emitted from the RGB laser light sources 101a to 101c is monochromatic light, a laser light source with an appropriate wavelength must be used. This makes it possible to display vivid images with high color purity.
  • a conventional laser display has a problem that so-called speckle noise occurs because a laser light source that outputs highly coherent light is used as the light source. This speckle noise is minute noise generated when the laser light is scattered by the screen 108 and the scattered lights scattered by each part on the screen 108 interfere with each other.
  • a method for removing such speckle noise is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 7-29711, in which a diffusing plate is arranged on the optical path of a condensing optical system. Then, a method of removing the speckle noise by rotating the diffusion plate is described.
  • the present invention has been made in view of the above-described problems, and prevents image degradation due to speckle noise using a diffusion plate without significantly increasing the device scale. It is an object of the present invention to obtain a two-dimensional image forming apparatus capable of displaying a bright image while effectively suppressing loss of the image. Disclosure of the invention
  • the two-dimensional image forming apparatus is an apparatus for forming a two-dimensional image by light modulation, comprising: a coherent light source; a diffuser for diffusing light; and the coherent light source.
  • An illumination optical system that irradiates light from a light source to the diffusion plate; a diffusion plate swinging unit that swings the diffusion plate; and the coherent light source that is installed close to the diffusion plate and diffused by the diffusion plate.
  • a spatial light modulator that modulates light from the light source.
  • the diffuser is swung at a speed that satisfies the following equation, V> dX30 (millimeter Z seconds).
  • the two-dimensional image forming apparatus is an apparatus for forming a two-dimensional image by light modulation, comprising: a coherent light source; and a diffusing plate for diffusing light.
  • An illumination optical system for irradiating the light from the coherent light source to the diffusion plate; and a space installed near the diffusion plate and modulating the light from the coherent light source diffused by the diffusion plate.
  • a light modulation element, and a projection lens for projecting an image obtained by light modulation by the spatial light modulation element onto a certain surface in space, wherein the diffusion plate has a diffusion angle that is substantially equal to the illumination optical system. It is determined based on the typical numerical aperture and the brightness of the projection lens.
  • the diffusion angle of the diffusion plate, the substantial numerical aperture of the illumination optical system, and the brightness of the projection lens are in an appropriate relationship, preventing loss of light amount due to shaking of the projection lens and enabling bright image display. This has the effect.
  • the two-dimensional image forming apparatus according to claim 3 of the present invention is the two-dimensional image forming apparatus according to claim 2, wherein the diffusion plate has a diffusion angle of 0 and the illumination optics.
  • the relationship of ⁇ Z 2 + S in — 1 (NA in) ⁇ 2 XT an — 1 (1/2 f) exists between the effective numerical aperture NA in of the system and the brightness f of the projection lens. It holds.
  • the two-dimensional image forming apparatus is an apparatus for forming a two-dimensional image by light modulation, comprising: a coherent light source; a diffusion plate for diffusing light; An illumination optical system that irradiates the light from the coherent light source to the diffusion plate; and a spatial light modulation element that is installed close to the diffusion plate and modulates the light from the coherent light source diffused by the diffusion plate.
  • the diffusion angle of the diffuser, the substantial numerical aperture of the illumination optical system, and the screen size in the diagonal direction of the spatial light modulator are in an appropriate relationship. This has the effect of preventing light from being scattered down to a point, and reducing the total light quantity loss in the light transmission path from the coherent light source to the screen.
  • the two-dimensional image forming apparatus according to claim 5 of the present invention is the two-dimensional image forming apparatus according to claim 4, wherein the diffusion plate has a diffusion angle of 0 and the illumination optics.
  • the relation of XL ⁇ DZ 3 holds.
  • the two-dimensional image forming apparatus is an apparatus for forming a two-dimensional image by light modulation, comprising: a coherent light source; a diffusion plate for diffusing light; An illumination optical system for irradiating the light from the coherent light source to the diffuser; and a spatial light modulator installed near the diffuser and modulating the light from the coherent light source diffused by the diffuser. And a projection lens for projecting an image of the spatial light modulator on a certain surface in space, wherein the spatial light modulator and the diffuser have a pitch of transmittance unevenness of the diffuser, and an illumination. They are spaced apart by a g separation, which is determined based on the actual numerical aperture of the optical system.
  • the diffusion angle of the diffusion plate, the pitch of the transmittance unevenness of the diffusion plate, the actual numerical aperture of the illumination optical system, and the distance between the diffusion plate and the spatial light modulator become an appropriate relationship, and the local distribution of the diffusion plate This has the effect of preventing deterioration of the image due to uneven transmittance and enabling high-quality image display.
  • the two-dimensional image forming apparatus according to claim 7 of the present invention is the two-dimensional image forming apparatus according to claim 6, wherein the pitch P of the transmittance unevenness of the diffusion plate;
  • the substantial numerical aperture NA in of the illumination optical system, the spatial light modulator and the above The relationship LX NA i n> P is established between the distance L and the diffusion plate.
  • the two-dimensional image forming apparatus according to claim 8 of the present invention is the two-dimensional image forming apparatus according to any one of claims 1 to 7, wherein the illumination optical system includes: It includes an optical integrator.
  • the two-dimensional image forming apparatus according to claim 9 of the present invention is the two-dimensional image forming apparatus according to claim 8, wherein the optical integrator includes at least two lens arrays. It consists of
  • the two-dimensional image forming apparatus according to claim 10 of the present invention is the two-dimensional image forming apparatus according to claim 8, wherein the optical integrator is a rod-type optical integrator. It consists of one night.
  • the two-dimensional image forming apparatus according to claim 11 of the present invention is the two-dimensional image forming apparatus according to any one of claims 1 to 7, wherein the diffusion plate is: It is made of a pseudo-random diffuser plate whose surface has been processed to obtain a desired diffusion angle.
  • the two-dimensional image forming apparatus according to claim 12 of the present invention is the two-dimensional image forming apparatus according to claim 11, wherein the pseudorandom diffusion plate includes a transparent substrate. A cell region partitioned on the surface in a lattice shape is processed so that adjacent cell regions have different heights.
  • the diffusion angle of the light passing through the diffusion plate can be strictly controlled according to the size of the cell, and the light use efficiency can be improved.
  • the two-dimensional image forming apparatus according to claim 13 of the present invention is the two-dimensional image forming apparatus according to claim 12, wherein the two-dimensional image forming apparatus is a pseudo-random image obtained by processing the transparent substrate.
  • the diffusing plate is set so that the height difference between adjacent cell regions shifts the phase of light passing through these cell regions by ⁇ / 4.
  • the diffusion plate can be manufactured so that the diffusion angle is constant, and there is an effect that the light use efficiency can be improved.
  • the two-dimensional image forming apparatus according to claim 14 of the present invention is the two-dimensional image forming apparatus according to claim 11, wherein the pseudo-random diffusion plate has a surface. It has an uneven surface shape whose height changes continuously.
  • FIG. 1 is a diagram illustrating a two-dimensional image forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an illumination optical system in the two-dimensional image forming apparatus according to the first embodiment.
  • FIG. 3 (a) shows the numerical aperture of the illumination light, the numerical aperture of the light emitted from the spatial light modulator, the distance between the diffusion plate and the spatial light modulator in the two-dimensional image forming apparatus of the first embodiment.
  • FIG. 3 (b) is a diagram showing a diffusion angle of a diffusion plate in the two-dimensional image forming apparatus of the first embodiment.
  • FIG. 4 (a) is a diagram illustrating a numerical aperture of illumination light and a numerical aperture of light emitted from a spatial light modulator in a two-dimensional image forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 (b) is a diagram illustrating a divergence angle of a diffusion plate in the two-dimensional image forming apparatus according to the second embodiment.
  • FIG. 5 is a view for explaining a two-dimensional image forming apparatus according to Embodiment 3 of the present invention, and shows a pseudo random diffusion plate used in the two-dimensional image forming apparatus.
  • FIG. 6 (a) is a diagram illustrating a two-dimensional image forming apparatus according to a fourth embodiment of the present invention, and is a plan view illustrating a pseudo random diffusion plate used in the two-dimensional image forming device.
  • FIG. 6 (b) is a cross-sectional view illustrating a pseudo random diffusion plate used in the two-dimensional image forming apparatus according to the fourth embodiment.
  • FIG. 7 is a schematic configuration diagram showing a conventional two-dimensional image forming apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram illustrating a two-dimensional image forming apparatus according to Embodiment 1 of the present invention.
  • the two-dimensional image forming apparatus 110 shown in FIG. 1 includes laser light sources 1 a to lc corresponding to each of the three primary color signals of RGB, which are coherent light sources, and diffusion plates 6 a to 6 for diffusing light, An illumination optical system for irradiating the laser beams L1a to L1c output from the laser light sources 1a to 1c to the diffusion plates 6a to 6c, respectively. Also, the two-dimensional image forming apparatus 110 is provided with a diffusion plate swinging part 13 a to 13 c for swinging each of the diffusion plates 6 a to 6 c, and a diffusion by the diffusion plates 6 a to 6 c.
  • the above laser light sources 1a to 1 pass through the spatial light modulators 7a to 7c, which modulate the light from Lc and are constituted by liquid crystal panels and the like, and the spatial light modulators 7a to 7c.
  • the laser light source 1a is a red laser light source that outputs a red laser light L1a
  • the laser light source 1b is a green laser light source that outputs a green laser light L1b
  • the laser light source lc is a blue laser. It is a blue laser light source that outputs light L1c.
  • laser light sources 1a to: Lc include gas lasers such as He—Ne laser, He_Cd laser, and Ar laser, and A1GaI] 1? It is possible to use & ⁇ type semiconductor lasers or SHG (Second Harmonic Generation) lasers that use the output light of a solid-state laser as a fundamental wave.
  • the illumination optical system corresponding to the red laser light source 1a is configured to two-dimensionally separate the beam expander 2a for expanding the light from the laser light source 1a and the light expanded by the beam expander 2a.
  • an optical integrator 3a for enlarged projection.
  • the optical system includes a condenser lens 12a for condensing the light enlarged and projected by the optical integrator 3a, a mirror 15a for reflecting the condensed light, and the mirror 15a.
  • a field lens 8a for converting the reflected light from the lens and irradiating the light to the diffusion plate 6a.
  • the field lens 8a converts the light incident on the spatial light modulator 7a through the diffusion plate 6a into a convergent beam so that the light can efficiently pass through the opening of the projection lens 10. It is something to convert.
  • the illumination optical system corresponding to the green laser light source 1b is configured to two-dimensionally separate the beam expander 2 for expanding the light from the laser light source lb and the light expanded by the beam expander 2b. And an optical integrator 3b for enlarging and projecting.
  • the optical system includes a condenser lens 12 for condensing the light enlarged and projected by the light integrator 3b, and a field lens 8 for converting the condensed light and irradiating the light to the diffusion plate 6b. b.
  • the field lens 8b converts the light incident on the spatial light modulator 7b via the diffusion plate 6b into a convergent beam so that the light can efficiently pass through the opening of the projection lens 10. Is what you do.
  • the illumination optical system corresponding to the blue laser light source 1c is configured to two-dimensionally separate the beam expander 2c for expanding the light from the laser light source 1 and the light expanded by the beam expander 2c. 3c for optical projection.
  • the optical system includes a condenser lens 12b for condensing the light enlarged and projected by the optical integrator 3c, a mirror 15c for reflecting the condensed light, and a mirror 15c. and a field lens 8c for converting the reflected light from c and irradiating the light to the diffusion plate 6c.
  • the field lens 8c converts the light incident on the spatial light modulator 7c via the diffusion plate 6c into a convergent beam so that the light can efficiently pass through the opening of the projection lens 10. Is what you do.
  • FIG. 2 is a schematic diagram showing a simplified illumination optical system corresponding to the red laser light source 1a in the two-dimensional image forming apparatus shown in FIG. Note that the same symbols as in Fig. 1 The symbols indicate the same components.
  • the illumination optical system corresponding to the green laser light source 1b and the illumination optical system corresponding to the blue laser light source 1c have the same configuration as the illumination optical system corresponding to the red laser light source 1a. is there.
  • the beam expander 2a includes a magnifying lens 21 into which light from a light source is incident, and a collimator lens 22 that converts light emitted from the magnifying lens 21 into a parallel light beam.
  • the optical integrator optical system 3a includes two two-dimensional lens arrays 4 and 5.
  • the lens array 4 includes a plurality of element lenses 41 arranged in a matrix
  • the lens array 5 includes a plurality of element lenses 51 arranged in a matrix.
  • Each of the lens arrays 4 and 5 is arranged such that the image of the element lens 41 on the light source side is formed on the spatial light modulation element 7a by the element lens 51 on the spatial light modulation element side. Are placed.
  • the collimated light from the collimating lens 22 is distributed such that it is bright near the center on the lens array 4 and dark around it.
  • the light irradiated on the lens array 4 is cut by each element lens 41 corresponding to a minute area of the lens array 4, and the light cut by each element lens 41 is all spatial light.
  • the light intensity distribution on the spatial light modulator 7 is made uniform by superimposing on the modulator 7a.
  • the diffuser oscillating section 13a oscillates the diffuser 6a so as to reduce speckle noise existing in the image projected on the screen. Speckle noise can be effectively reduced by defining operating conditions and the like for swinging the.
  • the light that has passed through each of the spatial light modulators 7a to 7c is multiplexed by the dichroic prism 9, and the multiplexed light is transmitted to the screen 1 by the projection lens 10. Projected onto one.
  • the light from the laser light source la is expanded by the beam expander 2a, and the expanded light is output by the light integrator 3a.
  • Enlarged projection is performed two-dimensionally.
  • the light enlarged and projected by the light integrator 3a is condensed by the condenser lens 12a, and enters the diffusion plate 6a via the mirror 15a and the field lens 8a.
  • the field lens 8a the light incident on the spatial light modulator 7a via the diffusion plate is converted into a convergent beam so that the light efficiently passes through the opening of the projection lens 10.
  • the illumination optical system corresponding to the green laser light source 1b unlike the illumination optical system corresponding to the red laser light source la, the light condensed by the condenser lens 12b is directly applied to the field lens 8a. Incident. In the illumination optical system corresponding to the blue laser light source 1c, the light output from the laser light source 1c is guided to the diffusion plate 6c in exactly the same manner as the illumination optical system corresponding to the red laser light source 1a.
  • the diffuser swing units 13a to 13c swing the corresponding diffusers 6a to 6c while projecting the modulated laser light onto the screen. Operate to reciprocate in a certain direction.
  • FIG. 3 (a) shows an illumination optical system corresponding to the red laser light source 1a in the two-dimensional image forming apparatus 110 of the first embodiment, and shows a numerical aperture NA in of the illumination optical system, spatial light modulation.
  • FIG. 9 is a diagram showing a numerical aperture NA out of light emitted from an element 7a, and a distance L between the diffusion plate 6a and the spatial light modulator 7a.
  • FIG. 3 (b) is a diagram showing a diffusion angle 0 of the diffusion plate 6a.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • the operating conditions of the diffuser are the same as those of the illumination optical system corresponding to the red laser light source 1a. Identical.
  • the light passing through the diffusion plate 6a is applied to the spatial light modulator 7a, a speckle pattern corresponding to the granularity of the diffuser 6a is formed on the spatial light modulator 7a.
  • the speckle noise is suppressed by oscillating the diffusion plate 6a using the diffusion plate oscillating portion 13a. That is, the swing of the diffusion plate 6a causes the speckle pattern to move parallel to the spatial light modulator 7a, and the speckles in the observed image are averaged. At this time, the swing speed of the diffusion plate 6a is defined by its granularity.
  • the swing speed of the diffusion plate 6a is determined by the particle size d determined by the granularity of the diffusion plate 6a, for example, the distance between peaks or valleys or valleys in the random surface shape of the diffusion plate 6a. This is the speed at which d can be moved during the afterimage time (about 1/30 second), which is a characteristic of the human eye. Therefore, the swing speed V (mm / s) of the diffuser 6a is
  • the rocking speed of the diffusion plate 6a is several hundred micrometers per second to several hundred micrometers. Millimeters per second may be used.
  • the swing speed of the diffusion plates 6b and 6c is set in the same manner as the swing speed of the diffusion plate 6a.
  • the diffusion angle 0 of the diffusion plate 6 a is limited by the f-number of the projection lens 10. That is, light rays incident at an angle exceeding lZf radians with respect to the f-value of the projection lens 10 are blocked by the projection lens 10. Therefore, in order to sufficiently secure the light use efficiency, the numerical aperture NAout of the light emitted from the spatial light modulator 7a needs to be 1 / f or less. That is, between the diffusion angle ⁇ of the diffusion plate 6 a, the substantial numerical aperture NA in of the illumination optical system including the light integrator 3 a, and the brightness f of the projection lens 10,
  • the diffusion angle 0 is defined as an angle (full angle) at which the intensity of the outgoing light when parallel light enters the diffusion plate becomes 1Z2 of the central intensity.
  • the projection lens 10 may be about f5.
  • the diffusion angles of the diffusion plates 6b and 6c are set in the same manner as the diffusion angle of the diffusion plate 6a.
  • the distance between the diffusion plate 6a and the spatial light modulator 7a is determined.
  • the distance must be specified.
  • part of the light scattered by the diffuser 6a extends to the outside of the image display portion of the spatial light modulator 7a. Scattered, resulting in total light loss.
  • the distance L between the diffuser 6a and the spatial light modulator 7a must be such that the diffusion angle of the diffuser 6a is 0 and the illumination optics including the light integrator 3a A substantial numerical aperture NA in the system, a distance L between the diffuser 6a and the spatial light modulator 7a, and a diagonal length D of the image display range of the spatial light modulator 7a,
  • the diffusion plate 6a When a structure having a random uneven pattern formed on the surface is used as the diffusion plate 6a, the local diffusion angle and transmittance differ depending on the location on the diffusion plate 6a. For this reason, if the diffusion plate 6a is located near the spatial light modulator 7a, the uneven distribution of the transmittance causes a variation in the light intensity distribution on the spatial light modulator 7a, and The movement of the brightness unevenness corresponding to the movement of the plate 6a appears on the screen and is superimposed on the image. In order to prevent this, the diffusion plate 6a must be installed at a certain distance or more from the spatial light modulator 7a.
  • the diffusion plate 6a and the spatial light modulator 7a By taking a sufficient distance L between them, the brightness unevenness due to the light from each element lens diffused by the diffusion plate 6a is averaged. That is, the distance L between the diffusion plate 6a and the spatial light modulator 7a is determined by the pitch P of the transmittance unevenness of the diffusion plate 6a and the light input The difference between the substantial numerical aperture NA in of Tegray 3a and the S giant separation L between the diffuser 6a and the spatial light modulator 7a,
  • the distance L between the diffusion plate 6a and the spatial light modulator 7a is calculated from the above (Equation 3) and (Equation 4)
  • the pitch P of the transmittance unevenness of a normal diffuser is less than 10 times the granularity d of the diffuser 6a, for example, an illumination optical system including a light integrator 3a with a numerical aperture of 0.1 was used.
  • the distance between the diffusion plate 6a and the spatial light modulator 7a is several hundred micrometers to 10 millimeters or more. Should be kept apart.
  • the distance between the diffuser 6b and the spatial light modulator 7b and the distance between the diffuser 6c and the spatial light modulator 7c are also the distance between the diffuser 6a and the spatial light modulator 7a.
  • the laser light sources 1 a to lc of three colors of RGB, the diffusion plates 6 a to 6 c for diffusing light, and the light from the laser light source 1 are applied to the diffusion plate.
  • the swing speed of the diffusion plates 6 a to 6 c is set between the particle size d of the diffusion plate and the speed V of swinging the diffusion plates 6 a to 6 c. > Since dX 30 (millimetres / second) is established, speckle noise in the image projected on the screen 11 can be effectively reduced.
  • the diffusion angle 0 of the diffusion plates 6 a to 6 c is determined based on the substantial numerical aperture NA in of the illumination optical system and the brightness f of the projection lens 10.
  • NA in of the illumination optical system the substantial numerical aperture NA in of the illumination optical system
  • the brightness f of the projection lens 10 the diffusion angle of the diffuser, the effective numerical aperture of the illumination optical system, and the brightness of the projection lens are in an appropriate relationship, preventing loss of light amount due to shaking by the projection lens, and displaying a bright image. It is possible.
  • the distance L between the spatial light modulators 7a to 7c and the diffusion plates 6a to 6c is defined as a diffusion angle ⁇ of the diffusion plate
  • the numerical aperture NA in and the screen size D in the diagonal direction of the spatial light modulator are determined based on the actual numerical aperture NA in, the diffusion angle of the diffuser, the actual numerical aperture of the illumination optical system, and the space.
  • the screen size in the diagonal direction of the light modulator is in an appropriate relationship, preventing light from being scattered outside the image display part of the spatial light modulator by the diffuser, and transmitting light from the laser light source to the screen. It is possible to reduce the total light amount loss in the route.
  • the distance L between the spatial light modulators 7a to 7c and the diffusion plates 6a to 6c is defined as the pitch of the transmittance unevenness of the diffusion plate, and the illumination optics.
  • the actual numerical aperture of the system is determined based on NA in, so the diffusion angle of the diffuser, the pitch of the transmittance unevenness of the diffuser, the substantial numerical aperture of the illumination optical system, the diffuser and the spatial light.
  • the distance from the modulating element is in an appropriate relationship, preventing image deterioration due to local transmittance unevenness of the diffusion plate, and enabling high-quality image display.
  • the illumination optical system includes an optical integrator, uniform illumination on the spatial light modulator can be realized.
  • FIGS. 4 (a) and 4 (b) are diagrams for explaining a two-dimensional image forming apparatus according to Embodiment 2 of the present invention
  • FIG. 4 (a) is a diagram showing a numerical aperture of illumination light. NA in and the numerical aperture NA out of the light emitted from the spatial light modulator 7a are shown.
  • FIG. 4 (b) shows the diffusion angle 0 of the diffusion plate 6a.
  • the same or corresponding components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
  • the illumination optical system corresponding to the red laser light source 1a of the two-dimensional image forming apparatus 120 of the second embodiment corresponds to the red laser light source 1a of the two-dimensional image forming apparatus 110 of the first embodiment. It has a rod-type optical integrator 14a and a projection lens 15a instead of the optical integrator 3a and the condenser lens 12a of the illumination optical system.
  • the rod-type optical integrator 14a is a rectangular This is a transparent medium having a cross section, in which a reflection surface for reflecting light is formed. Inside the medium, the light magnified by the magnifying lens 21 is internally reflected, and its light intensity distribution is uniform at the exit end face. The light is emitted as a uniform distribution.
  • the projection lens 15a modulates the light from the rod-type optical integrator 14a such that the light-emitting end face of the light is in one-to-one correspondence with the image display portion of the spatial light modulator 7a. It is projected onto the element 7.
  • the illumination optical system corresponding to the green laser light source 1b and the blue laser light source 1c of the two-dimensional image forming apparatus 120 of the second embodiment is the same as that of the second embodiment.
  • the light of the illumination optical system corresponding to the green laser light source 1b and the blue laser light source 1c of the two-dimensional image forming apparatus 110 of the first embodiment It has a rod-type optical integrator and a projection lens instead of the integrators 3b and 3c and the condenser lenses 12b and 12c.
  • light emitted from the red laser light source, the green laser light source, and the blue laser light source is The light enters the diffuser through the corresponding illumination optical system, and is diffused by the diffuser.
  • the spatial light modulator is illuminated by the laser light diffused by the diffuser, and a two-dimensional image is formed on each spatial light modulator.
  • the light passing through each spatial light modulator is multiplexed by a dichroic prism, and the multiplexed light is projected on a screen by a projection lens.
  • the light from the laser light source la enters the rod-type optical integrator 14a via the magnifying lens 21 and the rod-type optical integrator 1a. Internal reflection is repeated within 4a, and the light is emitted with a uniform light intensity distribution on the emission end face.
  • the emitted light is projected by the projection lens 15a onto the spatial light modulator 7a such that the exit side end face thereof corresponds to the image display portion of the spatial light modulator 7a on a one-to-one basis.
  • the light illuminating the spatial light modulator 7a has a uniform light intensity distribution.
  • the illumination optical system corresponding to the green laser light source is different from the illumination optical system corresponding to the red laser light source la, as shown in Fig. 1, and condensed by a condenser lens 12b.
  • the emitted light directly enters the field lens 8a.
  • the illumination optical system corresponding to the blue laser light source 1c the light output from the laser light source 1c is guided to the diffusion plate 6c in exactly the same manner as the illumination optical system corresponding to the red laser light source la.
  • a bright and noise-free high-quality image display can be performed by defining the operating conditions and the like for swinging the diffusion plates 6a to 6c.
  • the illumination optical system is made of a transparent medium such as glass having a rectangular cross section instead of the optical integrator having the two two-dimensional lens arrays 4 and 5 of the first embodiment. Since it includes a rod-type light integrator, uniform illumination on the spatial light modulator can be achieved with a simple configuration.
  • FIG. 5 is a view for explaining a two-dimensional image forming apparatus according to Embodiment 3 of the present invention, and shows a diffusion plate constituting the two-dimensional image forming apparatus.
  • Embodiments 1 and 2 The difference from Embodiments 1 and 2 is that, in Embodiments 1 and 2, a frosted glass-like diffusion plate having a random irregular shape on the surface is used as the diffusion plate. Is that a pseudo-random diffuser plate 18 having a regular uneven surface is used.
  • the diffusion plates of Embodiments 1 and 2 are usually manufactured by randomly roughening the surface of a transparent substrate such as glass or resin, whereas the pseudo-random diffusion plate 18 of Embodiment 3 is The surface of the transparent substrate is divided into a lattice shape, and each of the divided small regions is processed so that its height is different from the height of an adjacent small region, and irregularities are formed in the surface region. That is, the surface of the pseudo-random diffuser plate 18 is divided into two-dimensional lattice cells 19, and the height thereof is set randomly so that the phase of light passing through each cell changes randomly. You.
  • the two-dimensional image forming apparatus of the third embodiment differs from the two-dimensional image forming apparatuses of the first and second embodiments only in that a pseudo random diffusion plate is used as a diffusion plate.
  • a pseudo random diffusion plate is used as a diffusion plate.
  • the advantage of using the pseudo-random diffusion plate 18 shown in FIG. 5 is that the diffusion angle of light passing through the pseudo-random diffusion plate 18 can be strictly controlled by the size of the cell. That is, light passing through the pseudo-random diffuser 18 is diffused according to the following intensity distribution represented by (Equation 6).
  • dc is the cell pitch of the grid cells 19, and 0 is the diffusion angle.
  • the cell pitch dc the cell pitch dc
  • the pseudo-random diffuser plate 18 can be manufactured using a photolithography method and an etching method used in a normal semiconductor process. In this case, a method of forming a concavo-convex pattern on a glass plate can be used, in which case, as shown in Fig.
  • the depth of the lattice cell 19 is equivalent to a phase shift of 0,% / 2, and 3 vertices / 4. If the depth is set to the desired value, the surface of the glass plate will be etched twice, that is, equivalent to tZ4 and phase shift. And etching process to a depth etched by the etching process to a depth etching corresponding to 7T / 2 phase shift, the pseudorandom diffuser 1 8 can be easily manufactured.
  • the pseudo random diffusion plate 18 is used as the diffusion plate, a uniform diffusion angle and transmittance can be realized, and a bright image with less noise can be realized. Display becomes possible.
  • the diffusion plate 18 since the cell regions partitioned in a grid on the surface of the pseudo random diffusion plate 18 are processed so that adjacent cell regions have different heights, the diffusion plate 18 The diffusion angle of light passing through the cell can be strictly controlled by the size of the cell, and this has the effect of improving light use efficiency.
  • the difference in height between adjacent cell regions on the surface of the pseudo random diffusion plate 18 is set so that the phase of light passing through these cell regions is shifted by 7TZ4. Therefore, the diffusion plate can be manufactured stably so that the diffusion angle becomes constant, and there is an effect that the light use efficiency can be improved.
  • FIG. 6 (a) and 6 (b) are diagrams illustrating a two-dimensional image forming apparatus according to Embodiment 4 of the present invention
  • FIG. 6 (a) is a diagram illustrating the two-dimensional image forming apparatus
  • FIG. 6 (b) is a plan view showing a diffuser plate included therein
  • FIG. 6 (b) is a view showing a cross section taken along AA ′ of FIG. 6 (a).
  • the two-dimensional image forming apparatus according to the fourth embodiment is different from the two-dimensional image forming apparatus according to the third embodiment in that the pseudorandom diffusion plate 18 has a structure in which the unevenness of the surface is smooth. 0 is used.
  • the two-dimensional image forming apparatus according to the fourth embodiment uses a pseudo random diffusion plate 20 having a different surface shape from the diffusion plate of the two-dimensional image forming apparatus according to the third embodiment. Since this embodiment is different from the third embodiment, advantages of using the pseudo random diffusion plate 20 will be described below.
  • the diffraction angle of the diffracted light depends on the size d of the granularity of the uneven shape.
  • the diffraction angle can be suppressed to a certain value or less by setting the graininess size d to be a certain value or less, and as a result, the f value of the projection lens 10 is exceeded. There is no light and the light utilization efficiency is improved.
  • the pseudo random diffusion plate 20 having a concave and convex shape that smoothly changes first, the glass substrate surface is randomly distributed so that the glass substrate surface becomes a step shape having a random in-plane distribution. It is processed so as to have a finished surface shape.
  • a photoresist is spin-coated on the surface of a glass substrate, and a resist pattern having a random in-plane distribution is produced by a photolithography method.
  • the fabricated resist pattern is transferred to the surface shape of the glass substrate by a method such as ion beam etching or wet etching.
  • the surface of the glass substrate manufactured in this manner has a step shape in which concave portions and convex portions are randomly distributed.
  • the surface of the glass substrate is polished so that the unevenness of the surface becomes smooth.
  • a soft material such as puff is used for the polishing plate, as shown in Fig. 6 (b)
  • the step shape on the substrate surface where the concaves and convexes are randomly distributed changes the height of the surface. Has a gradual uneven shape.
  • the depth of the recesses on the substrate surface decreases, so in order to obtain the desired depth Dx of the recesses, the depth of the recesses on the substrate surface prepared by etching should be reduced to the desired depth DX 2 to 3 times better.
  • the pseudo-random diffusion plate 20 having a structure in which the unevenness of the surface is smooth is used as the diffusion plate, a large difference caused by a step between adjacent uneven portions on the surface of the diffusion plate.
  • the generation of high-order diffracted light scattered at an angle can be avoided, and the light use efficiency can be improved by eliminating the loss of the light amount due to the shaking in the projection lens 10.
  • a color image projection device has been described as an example.
  • the present invention is also applicable to a monochromatic laser image projection device, for example, a semiconductor exposure device.
  • the two-dimensional image forming apparatus is a projection type display in which a projection optical system and a screen are provided separately.
  • Rear-projection type two-dimensional image forming apparatus in which an image forming apparatus and a transmission screen are combined.
  • the two-dimensional image forming apparatus of the present invention enables bright and noise-free high-quality image display, and is used in image forming apparatuses such as television receivers and video projectors and image forming apparatuses such as semiconductor exposure apparatuses. It is useful.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明の2次元画像形成装置は、レーザ光源(1a)~(1c)と、光を拡散する拡散板(6a)~(6c)と、上記レーザ光源(1a)~(1c)からの光を上記拡散板(6a)~(6c)に照射する照明光学系と、上記拡散板(6a)~(6c)を揺動する拡散板揺動部(13a)~(13c)と、上記拡散板(6a)~(6c)に近接して設置され、該拡散板(6a)~(6c)で拡散された、上記レーザ光源(1a)~(1c)からの光を変調する空間光変調素子(7a)~(7c)とを備え、拡散板(6a)~(6c)を、拡散板揺動部(13a)~(13c)により、拡散板の粒子サイズdと拡散板(6a)~(6c)の揺動速度Vとの間に成立するV>d×30(ミリメートル/秒)の関係を満たす速度で揺動させるものであり、これにより、スクリーン(11)上に投影される画像に存在するスペックルノイズを有効に低減することができるものである。

Description

明 細 書
2次元画像形成装置 技術分野
本発明は、 2次元画像形成装置に関し、 テレビ受像機、 映像プロジェクタなど の画像表示装置や、 半導体露光装置などの画像形成装置に関するものである。 背景技術
第 7図は、 従来のレ一ザディスプレイの概略構成を示す図である。
このレーザディスプレイ 1 0 0は、 R G B 3色に対応するレ一ザ光源 1 O l a 〜1 0 1 cと、 レ一ザ光源 1 0 1 a〜l 0 1 cから出力されたレーザ光 L a〜L cを、 入力映像信号の原色信号 S a〜S cに応じて強度変調する光変調器 1 0 6 a〜l 0 6 cとを有している。 レーザディスプレイ 1 0 0は、 光変調器 1 0 6 a にて変調されたレーザ光 L aを反射するミラ一 1 0 3と、 光変調器 1 0 6 bにて 変調されたレーザ光 L bとミラー 1 0 3で反射されたレーザ光 L aとを合波する ダイクロイツクミラー 1 0 2 aと、 光変調器 1 0 6 bにて変調されたレーザ光 L bとダイクロイツクミラー 1 0 2 aからのレーザ光とを合波するダイクロイツク ミラー 1 0 2 bとを有している。 さらに、 このレ一ザディスプレイ 1 0 0は、 ダ ィクロイツクミラ一 1 0 2 bで合波されたレーザ光を集光する集光レンズ 1 0 7 と、 該集光レンズ 1 0 7により集光されたレーザ光を X方向に走査するポリゴン スキャナ 1 0 4と、ポリゴンスキャナ 1 0 4からの光を、スクリーン 1 0 8上に、 2次元の画像が形成されるよう y方向に走査するガルバノスキャナ 1 0 5とを有 している。
次に動作について説明する。
R G B 3色に対応するレーザ光源 1 0 1 a〜l 0 1 cからのレーザ光 L a〜L cは、 入力映像信号の各原色信号 S a〜S cに応じて光変調器 1 0 6 a〜 1 0 6 cで強度変調され、 ミラー 1 0 3及びダイクロイツクミラー 1 0 2 a、 1 0 2 b からなる光学系にて合波される。 さらに、 集光レンズ 1 0 7により集光されたレ —ザ光は、 ポリゴンスキャナ 1 0 4によって X方向に、 ガルバノスキャナ 1 0 5 によって y方向に走査され、 スクリ一ン 1 0 8上に 2次元の画像が表示される。 以上のように、 従来のレーザディスプレイ 1 0 0では、 R G Bそれぞれのレー ザ光源 1 0 1 a〜l 0 1 cから照射される光が単色光であるため、 適当な波長の レーザ光源を用いることで、 色純度が高く、 鮮やかな画像の表示が可能となる。 ところで、 このような従来のレ一ザディスプレイでは、 光源に干渉性の高い光 を出力するレーザ光源を用いていることから、 いわゆるスペックルノイズが生じ るという問題がある。 このスペックルノイズは、 レ一ザ光がスクリーン 1 0 8で 散乱される際、 スクリーン 1 0 8上の各部分で散乱された散乱光同士が干渉する ことによって生じる微細なノイズである。
このようなスペックルノイズを除去する方法は、 例えば、 特開平 7— 2 9 7 1 1 1号公報に開示されており、 この公報には、 集光光学系の光路上に拡散板を配 置し、 この拡散板を回転させることにより上記スペックルノイズを除去する方法 が記載されている。
ところが、拡散板を回転させるための機構により装置規模が大きくなる、また、 拡散板で散乱される光のロスにより、 スクリーン上に表示される画像の明るさが 低下するなどの問題があった。
本発明は、 上記のような問題点に鑑みてなされたものであり、 スペックルノィ ズによる画像の劣化を拡散板により、 装置規模をそれほど大きくすることなく防 止するとともに、 拡散板により散乱される光のロスを効果的に抑えて、 明るい画 像表示を行うことができる 2次元画像形成装置を得ることを目的とする。 発明の開示
本発明の請求の範囲第 1項に記載の 2次元画像形成装置は、 光変調により 2次 元画像を形成する装置であって、 コヒーレント光源と、 光を拡散する拡散板と、 上記コヒ一レント光源からの光を拡散板に照射する照明光学系と、 上記拡散板を 揺動する拡散板揺動部と、 上記拡散板に近接して設置され、 該拡散板で拡散され た、 上記コヒーレント光源からの光を変調する空間光変調素子とを備え、 上記拡 散板揺動部は、 上記拡散板の粒子サイズ dと、 上記拡散板を揺動する速度 Vとの 間に成立する次式、 V> d X 3 0 (ミリメートル Z秒) を満たす速度で、 上記拡 散板を揺動するものである。
これにより、 スクリーン上に投影される画像に存在するスペックルノイズを低 減することができ、 高品質の画像表示が可能となる。
また、'本発明の請求の範囲第 2項に記載の 2次元画像形成装置は、 光変調によ り 2次元画像を形成する装置であって、 コヒ一レント光源と、 光を拡散する拡散 板と、 上記コヒ一レント光源からの光を拡散板に照射する照明光学系と、 上記拡 散板に近接して設置され、 該拡散板で拡散された、 上記コヒーレント光源からの 光を変調する空間光変調素子と、 上記空間光変調素子での光変調により得られた 像を空間上のある面に投写する投写レンズとを備え、 上記拡散板は、 その拡散角 を、 上記照明光学系の実質的な開口数と、 上記投写レンズの明るさとに基づいて 決定したものである。
これにより、 拡散板の拡散角、 照明光学系の実質的な開口数、 投写レンズの明 るさが適切な関係となり、 投写レンズでのけられによる光量ロスを防ぎ、 明るい 画像表示が可能であるという効果がある。
また、 本発明の請求の範囲第 3項に記載の 2次元画像形成装置は、 請求の範囲 第 2項に記載の 2次元画像形成装置において、 上記拡散板の拡散角 0と、 上記照 明光学系の実質的な開口数 NA i nと、 上記投写レンズの明るさ f との間に、 Θ Z 2 + S i n— 1 (NA i n ) く 2 X T a n— 1 ( 1 / 2 f ) なる関係が成り立つも のである。
これにより、 投写レンズでのけられによる光量ロスを防ぎ、 明るい画像表示を 実現することができる。
また、 本発明の請求の範囲第 4項に記載の 2次元画像形成装置は、 光変調によ り 2次元画像を形成する装置であって、 コヒーレント光源と、 光を拡散する拡散 板と、 上記コヒ一レント光源からの光を拡散板に照射する照明光学系と、 上記拡 散板に近接して設置され、 該拡散板で拡散された、 上記コヒーレント光源からの 光を変調する空間光変調素子と、 上記空間光変調素子での光変調により得られた 像を空間上のある面に投写する投写レンズとを備え、 上記空間光変調素子と上記 拡散板とは、 上記拡散板の拡散角と、 上記照明光学系の実質的な開口数と、 上記 空間光変調素子の対角方向の画面サイズとに基づいて決定した距離だけ隔てて配 置されているものである。
これにより、 拡散板の拡散角、 照明光学系の実質的な開口数、 空間光変調素子 の対角方向の画面サイズが適切な関係となり、 拡散板により空間光変調素子の画 像表示部分の外側にまで光が散乱されるのを防ぎ、 コヒーレント光源からスクリ —ンに至る光伝達経路でのトータルの光量ロスを低減させることができる効果が ある。
また、 本発明の請求の範囲第 5項に記載の 2次元画像形成装置は、 請求の範囲 第 4項に記載の 2次元画像形成装置において、 上記拡散板の拡散角 0と、 上記照 明光学系の実質的な開口数 N A i nと、 上記空間光変調素子と上記拡散板との間 の距離 Lと、上記空間光変調素子の対角方向の画面サイズ Dとの間に、 ( Θ / 2 + S i n— 1 (NA i n ) ) X L <DZ 3の関係が成り立つものである。
これにより、 コヒーレント光源からスクリーンに至る光伝達経路でのトータル の光量ロスを低減させることができる効果がある。
また、 本発明の請求の範囲第 6項に記載の 2次元画像形成装置は、 光変調によ り 2次元画像を形成する装置であって、 コヒーレント光源と、 光を拡散する拡散 板と、 上記コヒーレント光源からの光を拡散板に照射する照明光学系と、 上記拡 散板に近接して設置され、 該拡散板で拡散された、 上記コヒ一レント光源からの 光を変調する空間光変調素子と、 上記空間光変調素子の像を空間上のある面に投 写する投写レンズとを備え、 上記空間光変調素子と上記拡散板とは、 上記拡散板 の透過率ムラのピッチと、 上記照明光学系の実質的な開口数とに基づいて決定し た g巨離だけ隔てて配置されているものである。
これにより、 拡散板の拡散角、 拡散板の透過率ムラのピッチ、 照明光学系の実 質的な開口数、 拡散板と空間光変調素子との距離が適切な関係となり、 拡散板の 局所的な透過率ムラによる画像の劣化を防ぎ、 高品質の画像表示が可能になると いう効果がある。
また、 本発明の請求の範囲第 7項に記載の 2次元画像形成装置は、 請求の範囲 第 6項に記載の 2次元画像形成装置において、 上記拡散板の透過率ムラのピッチ Pと、 上記照明光学系の実質的な開口数 NA i nと、 上記空間光変調素子と上記 拡散板との間の距離 Lとの間に、 L X NA i n>Pなる関係が成り立つものであ る。
これにより、 拡散板の局所的な透過率ムラによる画像の劣化を防ぎ、 高品質の 画像表示が可能になるという効果がある。
また、 本発明の請求の範囲第 8項に記載の 2次元画像形成装置は、 請求の範囲 第 1項ないし第 7項のいずれかに記載の 2次元画像形成装置において、 上記照明 光学系は、 光インテグレータを含むものである。
これにより、 空間光変調素子上での一様な照明を実現できる効果がある。 また、 本発明の請求の範囲第 9項に記載の 2次元画像形成装置は、 請求の範囲 第 8項に記載の 2次元画像形成装置において、 上記光インテグレー夕は、 少なく とも 2枚のレンズアレイからなるものである。
これにより、 明暗ムラを無くすことができる効果がある。
また、 本発明の請求の範囲第 1 0項に記載の 2次元画像形成装置は、 請求の範 囲第 8項に記載の 2次元画像形成装置において、 上記光インテグレー夕は、 ロッ ド型光インテグレ一夕からなるものである。
これにより、 空間光変調素子上での一様な照明を簡単な構成により実現するこ とができる効果がある。
また、 本発明の請求の範囲第 1 1項に記載の 2次元画像形成装置は、 請求の範 囲第 1項ないし第 7項のいずれか記載の 2次元画像形成装置において、 上記拡散 板は、 所望の拡散角が得られるよう表面が加工された擬似ランダム拡散板からな るものである。
これにより、 一様な拡散角と透過率を実現し、 よりノイズが少なく、 明るい画 像表示が可能になるという効果がある。
また、 本発明の請求の範囲第 1 2項に記載の 2次元画像形成装置は、 請求の範 囲第 1 1項に記載の 2次元画像形成装置において、 上記擬似ランダム拡散板は、 透明基板を、 その表面の格子状に区画されたセル領域を、 隣接するセル領域の高 さが異なるよう加工してなるものである。
これにより、 拡散板を通過する光の拡散角がセルの大きさによって厳密にコン トロールすることができ、 光利用効率を向上させることができる効果がある。 また、 本発明の請求の範囲第 1 3項に記載の 2次元画像形成装置は、 請求の範 囲第 1 2項に記載の 2次元画像形成装置において、 上記透明基板を加工してなる 擬似ランダム拡散板は、 隣接するセル領域の高さの差が、 これらのセル領域を通 過する光の位相が π/ 4だけずれるよう設定したものである。
これにより、 拡散角が一定なるよう拡散板を作製することができ、 光利用効率 を向上させることができる効果がある。
また、 本発明の請求の範囲第 1 4項に記載の 2次元画像形成装置は、 請求の範 囲第 1 1項に記載の 2次元画像形成装置において、 上記擬似ランダム拡散板は、 その表面の高さが連続して変化する凹凸表面形状を有するものである。
これにより、 拡散板表面の隣接する凹凸部間での段差により生じる大きな角度 で散乱される高次の回折光の発生を回避することができ、 投影レンズでのけられ による光量のロスをなくして光利用効率を向上させることができる。 図面の簡単な説明
第 1図は、 本発明の実施の形態 1による 2次元画像形成装置を説明する図であ る。
第 2図は、 上記実施の形態 1の 2次元画像形成装置における照明光学系を説明 する図である。
第 3 (a)図は、 上記実施の形態 1の 2次元画像形成装置における、 照明光の開口 数、 空間光変調素子の出射光の開口数、 拡散板と空間光変調素子との間の距離、 を示す図である。
第 3 (b)図は、上記実施の形態 1の 2次元画像形成装置における拡散板の拡散角 を示す図である。
第 4 (a)図は、 本発明の実施の形態 2による 2次元画像形成装置における、 照明 光の開口数、 空間光変調素子の出射光の開口数、 を表す図である。
第 4 (b)図は、上記実施の形態 2による 2次元画像形成装置における拡散板の拡 散角を表す図である。
第 5図は、 本発明の実施の形態 3による 2次元画像形成装置を説明する図であ り、 該 2次元画像形成装置で用いる擬似ランダム拡散板を示している。 第 6 (a)図は、本発明の実施の形態 4による 2次元画像形成装置を説明する図で あり、 該 2次元画像形成装置で用いる擬似ランダム拡散板を説明する平面図であ る。
第 6 (b)図は、上記実施の形態 4による 2次元画像形成装置で用いる擬似ランダ ム拡散板を説明する断面図である。
第 7図は、 従来の 2次元画像形成装置を示す概略構成図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を、 図面を参照しながら説明する。
(実施の形態 1 )
第 1図は、 本発明の実施の形態 1による 2次元画像形成装置を説明する概略構 成図である。
第 1図に示す 2次元画像形成装置 1 1 0は、 コヒーレント光源である R G B 3 色の各原色信号に対応するレーザ光源 1 a〜l cと、 光を拡散する拡散板 6 a〜 6じと、 上記レ一ザ光源 1 a〜; 1 cから出力されたレーザ光 L 1 a〜L 1 cをそ れぞれ上記拡散板 6 a〜6 cに照射する照明光学系とを有している。 また、 2次 元画像形成装置 1 1 0は、 上記各拡散板 6 a〜 6 cを揺動する拡散板揺動部 1 3 a〜 1 3 cと、 上記拡散板 6 a〜 6 cで拡散された上記各レーザ光源 1 a〜: L c からの光を変調する、液晶パネルなどで構成される空間光変調素子 7 a〜7 cと、 上記各空間光変調素子 7 a〜7 cを通過した光を合波するダイクロイツクプリズ ム 9と、 上記ダイクロイツクプリズム 9にて合波された光をスクリーン 1 1上に 投写する投写レンズ 1 0とを有している。
ここで、 レーザ光源 1 aは、 赤色レーザ光 L 1 aを出力する赤色レーザ光源、 レ一ザ光源 1 bは、 緑色レーザ光 L 1 bを出力する緑色レーザ光源、 レーザ光源 l cは、 青色レーザ光 L 1 cを出力する青色レーザ光源である。 また、 レーザ光 源 1 a〜: L cには、 H e— N eレーザ、 H e _ C dレ一ザ、 A rレーザなどの気 体レーザ、 A 1 G a I ]1 ?系ゃ0 & ^^系の半導体レーザ、 あるいは固体レーザの 出力光を基本波とする S H G (Second Harmonic Generation) レーザなどを 用いることができる。 上記赤色レーザ光源 1 aに対応する照明光学系は、 上記レーザ光源 1 aからの 光を拡大するビームエキスパンダ 2 aと、 上記ビームエキスパンダ 2 aにより拡 大された光を二次元的に区分して拡大投影する光インテグレー夕 3 aとを有して いる。 またこの光学系は、 上記光インテグレー夕 3 aにより拡大投影された光を 集光する集光レンズ 1 2 aと、 集光された光を反射するミラー 1 5 aと、 該ミラ 一 1 5 aからの反射光を変換して拡散板 6 aに照射するフィールドレンズ 8 aと を有している。 このフィ一ルドレンズ 8 aは、 上記投写レンズ 1 0の開口内を効 率よく光が通過するよう、 上記拡散板 6 aを介して上記空間光変調素子 7 aに入 射する光を収束ビームに変換するものである。
上記緑色レーザ光源 1 bに対応する照明光学系は、 上記レ一ザ光源 l bからの 光を拡大するビームエキスパンダ 2 と、 上記ビームエキスパンダ 2 bにより拡 大された光を二次元的に区分して拡大投影する光ィンテグレータ 3 bとを有して いる。 またこの光学系は、 上記光インテグレー夕 3 bにより拡大投影された光を 集光する集光レンズ 1 2 と、 集光された光を変換して拡散板 6 bに照射するフ ィ一ルドレンズ 8 bとを有している。 このフィールドレンズ 8 bは、 上記投写レ ンズ 1 0の開口内を効率よく光が通過するよう、 上記拡散板 6 bを介して上記空 間光変調素子 7 bに入射する光を収束ビームに変換するものである。
上記青色レーザ光源 1 cに対応する照明光学系は、 上記レーザ光源 1じからの 光を拡大するビームエキスパンダ 2 cと、 上記ビームエキスパンダ 2 cにより拡 大された光を二次元的に区分して拡大投影する光インテグレ一夕 3 cとを有して いる。 またこの光学系は、 上記光インテグレ一タ 3 cにより拡大投影された光を 集光する集光レンズ 1 2 bと、 集光された光を反射するミラー 1 5 cと、 該ミラ 一 1 5 cからの反射光を変換して拡散板 6 cに照射するフィールドレンズ 8 cと を有している。 このフィールドレンズ 8 cは、 上記投写レンズ 1 0の開口内を効 率良く光が通過するよう、 上記拡散板 6 cを介して上記空間光変調素子 7 cに入 射する光を収束ビームに変換するものである。
次に、上記赤色レーザ光源 1 aに対応する照明光学系の原理について説明する。 第 2図は、 第 1図に示す、 2次元画像形成装置における赤色レーザ光源 1 aに 対応する照明光学系を簡略化して示す模式図である。 なお、 図中第 1図と同一符 号は同一のものを示し、 緑色レーザ光源 1 bに対応する照明光学系及び青色レー ザ光源 1 cに対応する照明光学系は、 赤色レーザ光源 1 aに対応する照明光学系 と同一の構成である。
ビームエキスパンダ 2 aは、 光源からの光が入射する拡大レンズ 2 1と、 該拡 大レンズ 2 1からの出射光を平行光束にするコリメータレンズ 2 2とよりなる。 光インテグレー夕光学系 3 aは、 2枚の 2次元レンズアレイ 4及び 5からなる ものである。 レンズアレイ 4は、 マトリクス状に配列された複数のエレメントレ ンズ 4 1からなり、 レンズアレイ 5は、 マトリクス状に配列された複数のエレメ ントレンズ 5 1からなる。 これらのレンズアレイ 4及び 5は、 空間光変調素子側 のエレメントレンズ 5 1によって、 光源側のエレメントレンズ 4 1の像が全て空 間光変調素子 7 a上に結像するようにそれぞれのエレメントレンズが配置されて いる。 コリメ一夕レンズ 2 2からのコリメートされた光は、 該レンズアレイ 4上 の中央付近では明るく、 その周辺では暗くなるよう分布している。 レンズアレイ 4及び 5は、 レンズアレイ 4上に照射される光をレンズアレイ 4の微小領域に相 当する各エレメントレンズ 4 1で切り取り、 各エレメントレンズ 4 1により切り 取った光を、 全て空間光変調素子 7 a上で重ね合わせることで、 空間光変調素子 7上での光強度分布を一様にするものである。
また、 上記拡散板揺動部 1 3 aは、 スクリーン上に投影される画像に存在して いたスペックルノイズが低減されるよう、 拡散板 6 aを揺動するものであり、 拡 散板 6を揺動させる動作条件等を規定することによって、 スペックルノイズを有 効に低減することができる。
次に動作について説明する。
赤色レーザ光源 l a、 緑色レーザ光源 l b、 青色レーザ光源 1 cから出射した 光 L 1 a〜L 1 cは、 それぞれ対応する照明光学系を経て拡散板 6 a〜6 cに入 射し、 拡散板 6 a〜6 cにより拡散される。 該各拡散板 6 a〜6 cに隣接して配 置された空間光変調素子 7 a〜7 cは、 拡散板 6 a〜6 cにより拡散されたレ一 ザ光により照明され、 各空間光変調素子 7 a〜 7 c上には、 2次元画像が形成さ れる。 そして、 各空間光変調素子 7 a〜 7 cを通過した光は、 ダイクロイツクプ リズム 9により合波され、 合波された光は投写レンズ 1 0によってスクリーン 1 1上に投影される。
ここで、 赤色レーザ光源 1 aに対応する照明光学系では、 上記レーザ光源 l a からの光がビ一ムエキスパンダ 2 aにより拡大され、 該拡大された光は、 光イン テグレ一夕 3 aにより二次元的に区分して拡大投影される。 さらに該照明光学系 では、 上記光インテグレー夕 3 aにより拡大投影された光は、 集光レンズ 1 2 a により集光され、 ミラ一 1 5 a及びフィールドレンズ 8 aを経て拡散板 6 aに入 射する。 このとき、 上記フィールドレンズ 8 aでは、 上記投写レンズ 1 0の開口 内を効率よく光が通過するよう、 上記拡散板を介して上記空間光変調素子 7 aに 入射する光が収束ビームに変換される。
なお、 緑色レーザ光源 1 bに対応する照明光学系では、 赤色レーザ光源 l aに 対応する照明光学系とは異なり、 集光レンズ 1 2 bにより集光された光が直接フ ィ一ルドレンズ 8 aに入射する。青色レーザ光源 1 cに対応する照明光学系では、 該レーザ光源 1 cから出力された光が、 赤色レーザ光源 1 aに対応する照明光学 系と全く同様にして拡散板 6 cへ導かれる。
また、 拡散板揺動部 1 3 a〜 1 3 cは、 変調されたレーザ光をスクリーン上に 投影している状態で、 対応する拡散板 6 a〜 6 cをそれぞれ揺動するよう、 つま り一定方向に往復運動するよう動作させる。
以下、 上記拡散板の動作条件について第 3図を用いて説明する。
第 3 (a)図は、本実施の形態 1の 2次元画像形成装置 1 1 0における赤色レーザ 光源 1 aに対応する照明光学系を挙げて、 照明光学系の開口数 NA i n、 空間光 変調素子 7 aの出射光の開口数 NA o u t、 拡散板 6 aと空間光変調素子 7 aと の間の距離 Lを示す図である。第 3 (b)図は、 拡散板 6 aの拡散角 0を示す図であ る。 これらの図において、 第 1図と同じ符号は同一のものを示している。 また、 緑色レーザ光源 1 bに対応する照明光学系及び青色レーザ光源 1 cに対応する照 明光学系においても、 拡散板の動作条件は赤色レーザ光源 1 aに対応する照明光 学系のものと同一である。
まず、 拡散板 6 a〜 6 cの揺動速度について説明する。
拡散板 6 aを通過した光が空間光変調素子 7 a上に照射されると、 該空間光変 調素子 7 a上には、 拡散板 6 aの粒状性に応じたスペックルパターンが形成され る。 スペックルノイズは、 拡散板揺動部 13 aを用いて拡散板 6 aを揺動するこ とにより抑圧される。 つまり拡散板 6 aの揺動により、 スペックルパターンが空 間光変調素子 7 aに対して平行に移動することとなり、 観察映像中のスペックル が平均化される。 このとき、拡散板 6 aの揺動速度はその粒状性から規定される。 具体的には、 拡散板 6 aの揺動速度は、 拡散板 6 aの粒状性により決まる粒子サ ィズ d、 例えば拡散板 6 aのランダムな表面形状における山と山あるいは谷と谷 の距離 dを、 人間の目の特性である残像時間 (約 1/30秒) の間に移動させる ことができる速度である。従って、拡散板 6 aの揺動速度 V (ミリメートル/秒) は、
V>dX 30 · · · (式 1)
の条件を満たせばよい。 具体的には、 通常の拡散板 6 aは、 粒子サイズが 5マイ クロメートルから 100マイクロメートルである粒状性を持っため、 散板 6 a の揺動速度は、数百マイクロメ一トル毎秒から数ミリメートル毎秒とすれば良い。 なお、 拡散板 6 b, 6 cの揺動速度も、 上記拡散板 6 aの揺動速度と同様に設 定される。
次に、 拡散板 6 a〜 6 cの拡散角について説明する。
拡散板 6 aの拡散角 0は、 投写レンズ 10の f値によって制限される。 すなわ ち、 投写レンズ 10の f値に対して lZf ラジアンを越える角度で入射した光線 は投写レンズ 10で遮光される。 そのため十分に光の利用効率を確保するには、 空間光変調素子 7 aの出射光の開口数 NAout を 1 / f以下にする必要がある。 すなわち、 拡散板 6 aの拡散角 Θと、 光インテグレ一夕 3 aを含む照明光学系の 実質的な開口数 NA i nと、 投写レンズ 10の明るさ f との間に、
θ/2 + S i n-1 (NA i n) く 2XTan— 1 (1/2 f ) - · ' (式 2) の関係が成り立つようにすると良い。 ここで拡散角 0は、 拡散板に平行な光が入 射したときの出射光の強度が中心強度の 1Z2になる角度(全角)で定義される。 例えば、 拡散角 6> (6> =10度) の拡散板と開口数 NA i n (NA i n=0. 1) の光インテグレー夕を用いると、投写レンズ 10は、 f 5程度のものでよい。 簡単に説明すると、 上記 (式 2) を変形すると、 以下の (式 2 a) が得られる。
(2 XTan ((θ/2 + S i n— 1 (NA i n)) / 2) x> f · · - (式 2 a) この (式 2 a) の左辺の変数 0に 1 0、 NA i r^ O. 1を代入すると、 (2 X t an ((5度 +S i n 1 (0. 1)) /2)) ''= 5. 7
となる。 従って、 投写レンズ 1 0の明るさ は、 5程度あれば、 上記 (式 2) が 示す関係は満たされる。
なお、 拡散板 6 b, 6 cの拡散角も、 上記拡散板 6 aの拡散角と同様に設定さ れる。
また、 拡散板 6 aを効果的に用いるためには、 上述のような拡散板 6 aの揺動 速度や拡散角を規定する以外に、 拡散板 6 aと空間光変調素子 7 aとの間の距離 を規定する必要がある。 ここで、 空間光変調素子 7 aと拡散板 6 aとの距離が大 きくなると、 拡散板 6 aによって散乱された光の一部が空間光変調素子 7 aの画 像表示部分の外側にまで散乱され、 トータルの光量ロスとなる。 この光量ロスを 一定以下に抑えるためには、拡散板 6 aと空間光変調素子 7 aとの間の距離 Lは、 拡散板 6 aの拡散角 0、 光インテグレ一夕 3 aを含む照明光学系の実質的な開口 数 NA i n、 拡散板 6 aと空間光変調素子 7 aとの間の距離 L、 及び空間光変調 素子 7 aの画像表示範囲の対角線の長さ Dの間に、
(Θ/2+ΝΑ i n) XL<D/3 · · ' (式 3)
の関係が成り立つように設定すると良い。
また、 拡散板 6 aとして表面にランダムな凹凸パターンが形成された構造のも のを用いた場合には、 局所的な拡散角及び透過率が拡散板 6 a上の場所によって 異なる。 このため、 拡散板 6 aが空間光変調素子 7 aの近くに位置していると、 この透過率の偏在によつて空間光変調素子 7 a上での光強度分布にもばらつきが 生じ、 拡散板 6 aの動きに応じた明度のムラの動きがスクリーン上に現われ、 こ れが画像に重畳されてしまう。 これを防ぐため、 拡散板 6 aを空間光変調素子 7 aから一定以上の距離を離して設置することになる。 拡散板 6 aには、 光インテ グレー夕 3 aを構成するレンズアレイ 5の各エレメントレンズからの光が、 それ ぞれ異なる方向から入射するため、 拡散板 6 aと空間光変調素子 7 aとの間の距 離 Lを十分にとることで、 拡散板 6 aにより拡散された、 それぞれのエレメント レンズからの光による明度ムラが平均化される。 すなわち、 拡散板 6 aと空間光 変調素子 7 aとの間の距離 Lは、 拡散板 6 aの透過率ムラのピッチ Pと、 光イン テグレー夕 3 aの実質的な開口数 N A i nと、 拡散板 6 aと空間光変調素子 7 a との間の S巨離 Lとの間に、
L>P/NA i n · · · (式 4)
の関係が成り立つよう設定すると良い。
さらに、拡散板 6 aをより効果的に用いるためには、上記(式 3)及び上記(式 4) より、 拡散板 6 aと空間光変調素子 7 aとの間の距離 Lが、
P/NA i n く L < D/ (3 X (Θ/2 +ΝΑ i η)) · · ' (式 5) の関係が成り立つように設定すれば良い。
通常の拡散板の透過率ムラのピッチ Pは、 拡散板 6 aの粒状性 dの 10倍以下 であるから、 例えば、 開口数 0. 1の光インテグレー夕 3 aを含む照明光学系を 用いた時には、 拡散板 6 aの粒状性が 5マイクロメ一トルから 100マイクロメ 一トルであれば、 拡散板 6 aと空間光変調素子 7 aとの間は、 数百マイクロメ一 トルから 10ミリメ一トル以上の距離を離せばよい。
なお、 拡散板 6 bと空間光変調素子 7 bとの距離、 及び拡散板 6 cと空間光変 調素子 7 cとの距離も、 上記拡散板 6 aと空間光変調素子 7 aとの距離と同様に
B殳疋される。
このように、 本実施の形態 1では、 RGB 3色のレーザ光源 1 a〜l cと、 光 を拡散する拡散板 6 a〜6 cと、 上記レーザ光源 1からの光を上記拡散板に照射 する照明光学系と、 上記拡散板 6 a〜6 cを揺動する拡散板揺動部 13 a〜 13 じと、 上記拡散板 6 a〜 6 cに近接して設置され、 該拡散板 6 a〜 6 cで拡散さ れた、 上記レーザ光源 1 a〜 1 cからの光を変調する空間光変調素子 7 a〜 7 c とを備え、 上記拡散板 6 a〜6 cを揺動させる動作条件等を規定することによつ て、 明るくかつノイズのない高品質の画像表示が可能となる。
つまり、 本実施の形態 1では、 上記拡散板 6 a〜 6 cの揺動速度を、 拡散板の 粒子サイズ dと、拡散板 6 a〜6 cを揺動する速度 Vとの間に、 V〉dX 30 (ミ リメ一トル/秒) の関係が成り立つよう設定したので、 スクリーン 1 1上に投影 される画像に存在するスペックルノイズを有効に低減することができる。
また、 本実施の形態 1では、 上記拡散板 6 a〜 6 cの拡散角 0を、 照明光学系 の実質的な開口数 NA i nと、 上記投写レンズ 10の明るさ f に基づいて決定す るようにしたので、 拡散板の拡散角、 照明光学系の実質的な開口数、 投写レンズ の明るさが適切な関係となり、 投写レンズでのけられによる光量ロスを防ぎ、 明 るい画像表示が可能である。
また、 本実施の形態 1では、 上記空間光変調素子 7 a〜7 cと上記拡散板 6 a 〜 6 cとの間の距離 Lを、 上記拡散板の拡散角 Θと、 上記照明光学系の実質的な 開口数 NA i nと、 上記空間光変調素子の対角方向の画面サイズ Dとに基づいて 決定するようにしたので、 拡散板の拡散角、 照明光学系の実質的な開口数、 空間 光変調素子の対角方向の画面サイズが適切な関係となり、 拡散板により空間光変 調素子の画像表示部分の外側にまで光が散乱されるのを防ぎ、 レーザ光源からス クリーンに至る光伝達経路でのトータルの光量ロスを低減させることができる。 また、 本実施の形態 1では、 上記空間光変調素子 7 a〜 7 cと上記拡散板 6 a 〜6 cとの間の距離 Lを、 上記拡散板の透過率ムラのピッチと、 上記照明光学系 の実質的な開口数 N A i nとに基づいて決定するようにしたので、 拡散板の拡散 角、 拡散板の透過率ムラのピッチ、 照明光学系の実質的な開口数、 拡散板と空間 光変調素子との距離が適切な関係となり、 拡散板の局所的な透過率ムラによる画 像の劣化を防ぎ、 高品質の画像表示が可能である。
また、 本実施の形態 1では、 上記照明光学系が光インテグレー夕を含むので、 空間光変調素子上での一様な照明を実現可能である。
(実施の形態 2 )
第 4 (a)図及び第 4 (b)図は、本発明の実施の形態 2による 2次元画像形成装置を 説明するための図であり、 第 4 (a)図は、 照明光の開口数 NA i n、 及び空間光変 調素子 7 aの出射光の開口数 NA o u tを示し、 第 4 (b)図は、拡散板 6 aの拡散 角 0を示している。 図において、 第 3図と同一または相当する構成要素について は同じ符号を用い、 その説明を省略する。
本実施の形態 2の 2次元画像形成装置 1 2 0の赤色レーザ光源 1 aに対応する 照明光学系は、 上記実施の形態 1の 2次元画像形成装置 1 1 0の赤色レーザ光源 1 aに対応する照明光学系の光インテグレー夕 3 a及び集光レンズ 1 2 aの代わ る、 ロッド型光インテグレー夕 1 4 a及び投影レンズ 1 5 aを有している。 上記ロッド型光インテグレー夕 1 4 aは、 例えばガラスなどでできた、 矩形の 断面を持つ透明媒体で、その内部に光を反射する反射面が形成されたものであり、 拡大レンズ 2 1により拡大された光を内部反射して、 その出射側端面ではその光 強度分布を一様な分布として出射するものである。
上記投影レンズ 1 5 aは、 上記ロッド型光インテグレー夕 1 4 aからの光を、 その出射側端面が空間光変調素子 7 aの画像表示部分に対して 1対 1に対応する よう空間光変調素子 7上に投影するものである。
なお、 図示していないが、 本実施の形態 2の 2次元画像形成装置 1 2 0の緑色 レーザ光源 1 b及び青色レ一ザ光源 1 cに対応する照明光学系は、 この実施の形 態 2の赤色レーザ光源 1 aに対応する照明光学系と同様、 上記実施の形態 1の 2 次元画像形成装置 1 1 0の緑色レーザ光源 1 b及び青色レーザ光源 1 cに対応す る照明光学系の光ィンテグレ一タ 3 b、 3 c及び集光レンズ 1 2 b、 1 2 cの代 わる、 ロッド型光ィンテグレ一タ及び投影レンズを有している。
次に動作について説明する。
この実施の形態 2の 2次元画像形成装置 1 2 0においても、 実施の形態 1の 2 次元画像形成装置 1 1 0と同様、 赤色レーザ光源、 緑色レーザ光源、 青色レーザ 光源から出射した光は、 それぞれ対応する照明光学系を経て拡散板に入射し、 拡 散板により拡散される。 該拡散板により拡散されたレーザ光により空間光変調素 子は照明され、 各空間光変調素子上には、 2次元画像が形成される。 そして、 各 空間光変調素子を通過した光は、 ダイクロイツクプリズムにより合波され、 合波 された光は投写レンズによってスクリーン上に投影される。
ここで、 赤色レーザ光源 1 aに対応する照明光学系では、 上記レーザ光源 l a からの光は、拡大レンズ 2 1を介してロッド型光インテグレー夕 1 4 aに入射し、 ロッド型光インテグレー夕 1 4 a内で内部反射を繰り返し、 その出射側端面では 一様な光強度分布となって出射される。 出射された光は、 投影レンズ 1 5 aによ りその出射側端面が空間光変調素子 7 aの画像表示部分に対して 1対 1に対応す るよう空間光変調素子 7 a上投影される。 これにより、 空間光変調素子 7 aを照 明する光はその光強度分布が一様なものとなる。
なお、 緑色レーザ光源に対応する照明光学系では、 赤色レーザ光源 l aに対応 する照明光学系とは異なり、 第 1図に示すように、 集光レンズ 1 2 bにより集光 された光が直接フィールドレンズ 8 aに入射する。 青色レーザ光源 1 cに対応す る照明光学系では、 該レーザ光源 1 cから出力された光が、 赤色レーザ光源 l a に対応する照明光学系と全く同様にして拡散板 6 cへ導かれる。
このように本実施の形態 2では、 上記拡散板 6 a〜 6 cを揺動させる動作条件 等を規定することによって、 明るくかつノイズのない高品質の画像表示が可能と なる。
また、 この実施の形態 2では、 照明光学系を、 実施の形態 1の 2枚の 2次元レ ンズアレイ 4及び 5からなる光インテグレー夕に代わる、 矩形の断面を持つガラ スなどの透明媒体からなるロッド型光インテグレー夕を含むものとしたので、 空 間光変調素子上での一様な照明を簡単な構成により実現することができる効果が ある。
(実施の形態 3 )
第 5図は、 本発明の実施の形態 3による 2次元画像形成装置を説明するための 図であり、 該 2次元画像形成装置を構成する拡散板を示している。
上記実施の形態 1 , 2と異なる点は、 上記実施の形態 1, 2では、 拡散板とし て、 表面にランダムな凹凸形状を持つすりガラス状の拡散板を用いているが、 本 実施の形態 3では、 表面が規則的な凹凸形状を持つ擬^ (ランダム拡散板 1 8を用 いている点である。
実施の形態 1及び 2の拡散板は通常、 ガラスや樹脂等の透明基板表面をランダ ムに荒らすことによって作製されるものであるのに対し、 実施の形態 3の擬似ラ ンダム拡散板 1 8は、 透明基板の表面を格子状に区分し、 区分された各小領域を その高さが隣接する小領域の高さと異なるよう加工して、 その表面領域に凹凸を 形成したものである。 つまり、 この擬似ランダム拡散板 1 8の表面は、 2次元の 格子状セル 1 9に分割され、 それぞれのセルを通過する光の位相がランダムに変 移するよう、 その高さがランダムに設定される。 凹凸の最大の深さ dは、 凹部と 凸部を通過する光の位相差が λとなる場合であり、 拡散板の屈折率が η、 空気の 屈折率が 1であるので、 d x (n - 1 ) = λの関係式が成立する。 従って、 凹凸 の最大の深さ dは、 λ / (η - 1 ) とすればよい。
次に作用効果について説明する。 この実施の形態 3の 2次元画像形成装置は、 実施の形態 1及び 2の 2次元画像 形成装置とは、 拡散板として擬似ランダム拡散板を用いる点のみ異なるので、 以 下、 擬似ランダム拡散板を用いる利点について説明する。
つまり、 第 5図に示す擬似ランダム拡散板 1 8を用いる利点は、 擬似ランダム 拡散板 1 8を通過する光の拡散角がセルの大きさによって厳密にコントロールす ることができる点である。 すなわち、 擬似ランダム拡散板 1 8を通過する光は、 以下の (式 6) が示す強度分布でもって拡散される。
I (Θ) - { s i n ( ) /a} 2 ( ^ θ Χ άο (π · λ) ) · · · (¾
6)
ここで、 dcは、 格子状セル 1 9のセルピッチ、 0は、 拡散角である。
例えば、 擬似ランダム拡散板 1 8の拡散角の半値全角が 1 0度となる拡散板 1 8を作製するには、 上記(式 6)で I ( = 1/2, θ = 1 0 - (2 π/360) を代入して得られる。 青、 緑、 赤色の光波長がそれぞれ λ = 0. 473、 0. 5 32、 0. 640マイクロメ一トルのレーザ光源を用いた場合には、 セルピッチ dcはそれぞれ、 2. 4、 2. 7、 3. 2マイクロメートルで作製すれば良い。 擬似ランダム拡散板 1 8の作製方法としては、 通常の半導体プロセスで用いら れるフォトリソグラフィ一法とエッチング法によってガラス板上に凹凸パターン を形成する方法を用いることができる。 このとき、 第 5図のように、 格子状セル 1 9の深さを、 位相変移 0、 %/2, 3兀 /4に相当する深さに設定し ておくと、 ガラス板の表面を、 2回のエッチング処理、 つまり tZ4及び位相変 移に相当する深さだけエッチングするエッチング処理と、 7T/ 2位相変移に相当 する深さだけエッチングするエッチング処理により、 擬似ランダム拡散板 1 8を 容易に作製することができる。
このようにして拡散板を作製することで、 通常の拡散板では、 表面形状がラン ダムであることから生じていた課題を解決することができる。
つまり、 第 5図に示すような擬似ランダム拡散板 1 8では、 1) 場所によって 局所的な拡散角が異なり、 光利用効率が低下する、 2) 場所によって透過率が変 化し、 画像に強度分布ムラが生じる、 3) 拡散角が一定になるよう拡散板を作製 することが困難である、 4) 拡散角を大きく取った際には偏向方向が乱れる、 な どの課題を解決することが可能である。
このように本実施の形態 3では、 拡散板として、 擬似ランダム拡散板 1 8を用 いるようにしたので、 一様な拡散角と透過率を実現することができ、 よりノイズ が少なく、 明るい画像表示が可能となる。
また、 本実施の形態 3では、 上記擬似ランダム拡散板 1 8の表面の格子状に区 画されたセル領域を、 隣接するセル領域の高さが異なるよう加工しているので、 拡散板 1 8を通過する光の拡散角をセルの大きさによって厳密にコントロールす ることができ、 光利用効率を向上させることができる効果がある。
また、 本実施の形態 3では、 上記擬似ランダム拡散板 1 8表面の、 隣接するセ ル領域の高さの差を、 これらのセル領域を通過する光の位相が 7TZ 4だけずれる よう設定するようにしたので、 拡散角が一定になるよう安定に拡散板を作製する ことができ、 光利用効率を向上させることができる効果がある。
(実施の形態 4 )
第 6 (a)図及び第 6 (b)図は、本発明の実施の形態 4による 2次元画像形成装置を 説明する図であり、 第 6 (a)図は、 上記 2次元画像形成装置を構成する拡散板を示 す平面図であり、 第 6 (b)図は、 第 6 (a)図の A A '断面を示す図である。
この実施の形態 4の 2次元画像形成装置は、 実施の形態 3の 2次元画像形成装 置における擬似ランダム拡散板 1 8に代わる、 表面の凹凸の変化が滑らかである 構造の擬似ランダム拡散板 2 0を用いたものである。
次に、 作用効果について説明する。
この実施の形態 4の 2次元画像形成装置は、 実施の形態 3の 2次元画像形成装 置の拡散板とはその表面形状が異なる擬似ランダム拡散板 2 0を用いるものであ り、 この点のみ上記実施の形態 3と異なるので、 以下、 この擬似ランダム拡散板 2 0を用いる利点について説明する。
第 6図に示す擬似ランダム拡散板 2 0では、 拡散板表面の隣接する凹凸部間で の段差により生じていた大きな角度で散乱される高次の回折光が生じず、 光利用 効率を向上させることができる。
回折光の回折角は、 凹凸形状の粒状性のサイズ dに依存するものである。 この 粒状性サイズ dが大きいとき、 回折角は小さくなり、 粒状性サイズ dが小さいと き、 回折角は大きくなる。 本実施の形態 4では、 粒状性サイズ dが一定以下の大 きさになるよう設定することで、 回折角を一定以下に抑えることができ、 その結 果、 投影レンズ 1 0の f値を越える光線が無くなり、 光利用効率が向上する。 滑らかに変ィ匕する凹凸形状を持つ擬似ランダム拡散板 2 0の作製方法としては、 まず、 ガラス基板表面を、 ランダムな面内分布を持つ段差形状となるよう、 つま り段差部がランダムに分布した表面形状となるよう加工する。
つまり、 ガラス基板表面にフォトレジストをスピンコートし、 フォトリソダラ フィ一法によってランダムな面内分布を持つレジストパターンを作製する。 作製 したレジストパターンをイオンビームエッチング、 ゥエツトエッチング等の方法 によりガラス基板表面形状に転写する。 このようにして作製されたガラス基板表 面は、 凹部と凸部がランダムに分布する段差形状をなしている。
次に、 ガラス基板表面を、 その表面の凸凹の変化が滑らかになるよう研磨処理 する。 この際、 研磨板としてパフのような柔らかい材料を用いると、 第 6 (b)図に 示すように、 基板表面の、 凹部と凸部がランダムに分布する段差形状が、 表面の 高さの変化が緩やかな凸凹形状となる。 研磨の際、 基板表面の凹部の深さが減少 するので、 所望の凹部の深さ D xを得るためには、 エッチングによって作製する 基板表面の凹部の深さを、 所望の凹部の深さ D Xの 2〜 3倍とするのが良い。 このように本実施の形態 4では、 拡散板として、 その表面の凹凸の変化が滑ら かな構造の擬似ランダム拡散板 2 0を用いるので、 拡散板表面の隣接する凹凸部 間での段差により生じる大きな角度で散乱される高次の回折光の発生を回避する ことができ、 投影レンズ 1 0でのけられによる光量のロスをなくして光利用効率 を向上させることができる。
なお、 上記説明では、 カラー画像の投影装置を例に挙げたが、 本発明は単色レ —ザの画像投影装置、 たとえば半導体露光装置などにも利用可能である。
また、 上記各実施の形態では、 2次元画像形成装置が、 投影光学系とスクリー ンとが別体になった投写型ディスプレイである場合について説明したが、 2次元 画像形成装置は、 投影光学系と透過型スクリーンとを組み合わせた背面投写型 2 次元画像形成装置であつてもよい。 産業上の利用可能性
本発明の 2次元画像形成装置は、 明るくかつノィズのない高品質の画像表示を 可能とするものであり、テレビ受像機、映像プロジェクタなどの画像表示装置や、 半導体露光装置などの画像形成装置において有用なものである。

Claims

請 求 の 範 囲
1 . 光変調により 2次元画像を形成する装置であって、
コヒ一レント光源と、
光を拡散する拡散板と、
上記コヒーレント光源からの光を拡散板に照射する照明光学系と、
上記拡散板を揺動する拡散板揺動部と、
上記拡散板に近接して設置され、 該拡散板で拡散された、 上記コヒーレント光 源からの光を変調する空間光変調素子とを備え、
上記拡散板揺動部は、
上記拡散板の粒子サイズ dと、 上記拡散板を揺動する速度 Vとの間に成立する 次式、
V> d X 3 0 (ミリメ一トル/秒)
を満す速度で、 上記拡散板を揺動する、
ことを特徴とする 2次元画像形成装置。
2 . 光変調により 2次元画像を形成する装置であって、
コヒーレント光源と、
光を拡散する拡散板と、
上記コヒーレント光源からの光を拡散板に照射する照明光学系と、
上記拡散板に近接して設置され、 該拡散板で拡散された、 上記コヒーレント光 源からの光を変調する空間光変調素子と、
上記空間光変調素子での光変調により得られた像を空間上のある面に投写する 投写レンズとを備え、
上記拡散板は、 その拡散角を、 上記照明光学系の実質的な開口数と、 上記投写 レンズの明るさとに基づいて決定したものである、
ことを特徴とする 2次元画像形成装置。
3 . 請求の範囲第 2項に記載の 2次元画像形成装置において、
上記拡散板の拡散角 0と、 上記照明光学系の実質的な開口数 NA i nと、 上記 投写レンズの明るさ f との間に、 θ/2 + S i n -1 (NA i n) く 2XTan -1 (1/2 f ) なる関係が成り立つ、
ことを特徴とする 2次元画像形成装置。
4. 光変調により 2次元画像を形成する装置であって、
コヒ一レント光源と、
光を拡散する拡散板と、
上記コヒーレント光源からの光を拡散板に照射する照明光学系と、
上記拡散板に近接して設置され、 該拡散板で拡散された、 上記コヒ一レント光 源からの光を変調する空間光変調素子と、
上記空間光変調素子での光変調により得られた像を空間上のある面に投写する 投写レンズとを備え、
上記空間光変調素子と上記拡散板とは、 上記拡散板の拡散角と、 上記照明光学 系の実質的な開口数と、 上記空間光変調素子の対角方向の画面サイズとに基づい て決定した β巨離だけ隔てて配置されている、
ことを特徴とする 2次元画像形成装置。
5. 請求の範囲第 4項に記載の 2次元画像形成装置において、
上記拡散板の拡散角 0と、 上記照明光学系の実質的な開口数 NA i ηと、 上記 空間光変調素子と上記拡散板との間の距離 Lと、 上記空間光変調素子の対角方向 の画面サイズ Dとの間に、
(θ/2 + S i n"1 (NA i n)) XLく D/3
の関係が成り立つ、
ことを特徴とする 2次元画像形成装置。
6. 光変調により 2次元画像を形成する装置であって、
コヒ一レント光源と、
光を拡散する拡散板と、
上記コヒーレント光源からの光を拡散板に照射する照明光学系と、
上記拡散板に近接して設置され、 該拡散板で拡散された、 上記コヒーレント光 源からの光を変調する空間光変調素子と、
上記空間光変調素子の像を空間上のある面に投写する投写レンズとを備え、 上記空間光変調素子と上記拡散板とは、 上記拡散板の透過率ムラのピッチと、 上記照明光学系の実質的な開口数とに基づいて決定した距離だけ隔てて配置され ている、
ことを特徴とする 2次元画像形成装置。
7 . 請求の範囲第 6項に記載の 2次元画像形成装置において、
上記拡散板の透過率ムラのピッチ Pと、 上記照明光学系の実質的な開口数 N A i nと、 上記空間光変調素子と上記拡散板との間の距離 Lとの間に
L X NA i n > P
なる関係が成り立つ、
ことを特徴とする 2次元画像形成装置。
8 . 請求の範囲第 1項ないし第 7項のいずれかに記載の 2次元画像形成装置に おいて、
上記照明光学系は、 光インテグレー夕を含む、
ことを特徴とする 2次元画像形成装置。
9 . 請求の範囲第 8項に記載の 2次元画像形成装置において、
上記光インテグレー夕は、 少なくとも 2枚のレンズアレイからなる、 ことを特徴とする 2次元画像形成装置。
1 0 . 請求の範囲第 8項に記載の 2次元画像形成装置において、
上記光インテグレー夕は、 ロッド型光インテグレー夕からなる、
ことを特徴とする 2次元画像形成装置。
1 1 . 請求の範囲第 1項ないし第 7項のいずれかに記載の 2次元画像形成装置 において、
上記拡散板は、 所望の拡散角が得られるよう表面が加工された擬似ランダム拡 散板からなる、
ことを特徴とする 2次元画像形成装置。
1 2 . 請求の範囲第 1 1項に記載の 2次元画像形成装置において、
上記擬似ランダム拡散板は、 透明基板を、 その表面の格子状に区画されたセル 領域を、 隣接するセル領域の高さが異なるよう加工してなるものである、 ことを特徴とする 2次元画像形成装置。
1 3 . 請求の範囲第 1 2項に記載の 2次元画像形成装置において、
上記透明基板を加工してなる擬似ランダム拡散板は、 隣接するセル領域の高さ の差が、 これらのセル領域を通過する光の位相が 7T / 4だけずれるよう設定した ものである、
ことを特徴とする 2次元画像形成装置。
1 4. 請求の範囲第 1 1項に記載の 2次元画像形成装置において、
上記擬似ランダム拡散板は、 その表面の高さが連続して変化する凹凸表面形状 を有する、
ことを特徴とする 2次元画像形成装置。
PCT/JP2004/010746 2003-07-22 2004-07-22 2次元画像形成装置 WO2005008330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511943A JP4158987B2 (ja) 2003-07-22 2004-07-22 2次元画像形成装置
EP04771006A EP1655636B1 (en) 2003-07-22 2004-07-22 Two-dimensional image forming apparatus
US10/565,390 US7271962B2 (en) 2003-07-22 2004-07-22 Two-dimensional image formation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003277378 2003-07-22
JP2003-277378 2003-07-22

Publications (1)

Publication Number Publication Date
WO2005008330A1 true WO2005008330A1 (ja) 2005-01-27

Family

ID=34074636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010746 WO2005008330A1 (ja) 2003-07-22 2004-07-22 2次元画像形成装置

Country Status (6)

Country Link
US (1) US7271962B2 (ja)
EP (1) EP1655636B1 (ja)
JP (1) JP4158987B2 (ja)
KR (1) KR20060037389A (ja)
CN (1) CN100524000C (ja)
WO (1) WO2005008330A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137326A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2次元画像表示装置、照明光源及び露光照明装置
WO2007097177A1 (ja) * 2006-02-24 2007-08-30 Matsushita Electric Industrial Co., Ltd. 波長変換装置及び画像表示装置
JP2008191649A (ja) * 2007-01-12 2008-08-21 Seiko Epson Corp レーザ光源装置、照明装置、画像表示装置、及びモニタ装置
JP2008209688A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 液晶表示装置および拡散板
JPWO2007007389A1 (ja) * 2005-07-11 2009-01-29 三菱電機株式会社 スペックル除去光源および照明装置
JP2009058716A (ja) * 2007-08-31 2009-03-19 Seiko Epson Corp 照明装置、モニタ装置及び画像表示装置
JP2009098571A (ja) * 2007-10-19 2009-05-07 Goto Optical Mfg Co プラネタリウムにおける恒星の瞬き装置
WO2009118902A1 (ja) 2008-03-28 2009-10-01 Necディスプレイソリューションズ株式会社 投写型画像表示装置
WO2010116727A1 (ja) 2009-04-10 2010-10-14 パナソニック株式会社 画像表示装置
US8147068B2 (en) 2007-04-20 2012-04-03 Sony Corporation Projection display apparatus
CN102540672A (zh) * 2012-02-15 2012-07-04 凝辉(天津)科技有限责任公司 一种微型单镜片单光源阵列式激光扫描投影装置
JP2015079232A (ja) * 2013-07-09 2015-04-23 旭硝子株式会社 光学素子、投影装置及び光学素子の製造方法
CN105511087A (zh) * 2016-01-13 2016-04-20 晋煤激光科技股份有限公司 基于复眼透镜的激光显示匀场整形装置
US9436008B2 (en) 2013-02-06 2016-09-06 Denso Corporation Head-up display device
US9448416B2 (en) 2011-07-13 2016-09-20 Nec Display Solutions, Ltd. Light source device and projection-type display device
US9500935B2 (en) 2011-04-18 2016-11-22 Nec Display Solutions, Ltd. Projection image display device
US9939561B2 (en) 2012-12-28 2018-04-10 Asahi Glass Company, Limited Projector having diffuser
WO2024057971A1 (ja) * 2022-09-13 2024-03-21 株式会社小糸製作所 画像投影装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590509C (zh) * 2003-12-24 2010-02-17 松下电器产业株式会社 二维图像显示装置
US7399084B2 (en) * 2004-04-09 2008-07-15 Matsushita Electric Industrial Co., Ltd. Laser image display apparatus
WO2006090857A1 (ja) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 2次元画像形成装置
CN101142524A (zh) * 2005-03-16 2008-03-12 松下电器产业株式会社 图像投影器
US7954962B2 (en) * 2005-07-28 2011-06-07 Panasonic Corporation Laser image display, and optical integrator and laser light source package used in such laser image display
JP2007052226A (ja) * 2005-08-18 2007-03-01 Seiko Epson Corp 照明装置及びプロジェクタ
US20070047059A1 (en) * 2005-08-31 2007-03-01 Howard P G Illumination path shifting
JP4581946B2 (ja) * 2005-09-29 2010-11-17 セイコーエプソン株式会社 画像表示装置
JP5011919B2 (ja) * 2006-09-29 2012-08-29 セイコーエプソン株式会社 照明装置及びプロジェクタ
US20080079904A1 (en) * 2006-09-30 2008-04-03 Texas Instruments Incorporated Display systems with spatial light modulators
KR100858084B1 (ko) * 2006-12-01 2008-09-10 삼성전자주식회사 스펙클 노이즈를 저감하는 형상을 갖는 확산자 및 이를채용한 레이저 프로젝션 시스템
TWI398736B (zh) * 2007-01-29 2013-06-11 Dayen Technology Co Ltd An exposure device with a modular linear light source
JP5168936B2 (ja) * 2007-02-22 2013-03-27 株式会社日立製作所 投射型表示装置及び照明装置
EP1976303A1 (en) * 2007-03-31 2008-10-01 Sony Deutschland Gmbh Image generating apparatus
DE102007051521A1 (de) * 2007-10-19 2009-04-23 Seereal Technologies S.A. Dynamische Wellenformereinheit
CN101446749B (zh) * 2007-11-26 2011-07-20 亚洲光学股份有限公司 一种投影光学系统及其光学投影方法
JP2009151221A (ja) * 2007-12-21 2009-07-09 Seiko Epson Corp 照明装置、画像表示装置及び偏光変換拡散部材
CN101477295B (zh) * 2008-01-04 2010-10-06 中强光电股份有限公司 投影装置
US7738092B1 (en) 2008-01-08 2010-06-15 Kla-Tencor Corporation System and method for reducing speckle noise in die-to-die inspection systems
EP2196844B1 (en) 2008-12-10 2014-09-10 Delphi Technologies, Inc. A projection unit having a speckle suppression device based on piezoelectric actuating
JP5313029B2 (ja) * 2009-04-23 2013-10-09 オリンパス株式会社 投射型表示装置
JP2010256572A (ja) * 2009-04-23 2010-11-11 Olympus Corp 投射型表示装置
US8235531B2 (en) 2009-06-22 2012-08-07 Eastman Kodak Company Optical interference reducing element for laser projection
US20110234985A1 (en) * 2010-03-26 2011-09-29 Alcatel-Lucent Usa Inc. Despeckling laser-image-projection system
JP2011221504A (ja) * 2010-03-26 2011-11-04 Panasonic Corp 照明装置及びそれを用いた投写型画像表示装置
FR2959574B1 (fr) 2010-04-28 2012-08-17 Delphi Tech Inc Reducteur de speckles et unite de projection comprenant un reducteur de speckles
JP5866968B2 (ja) * 2011-01-13 2016-02-24 セイコーエプソン株式会社 プロジェクター
TW201232153A (en) * 2011-01-26 2012-08-01 Hon Hai Prec Ind Co Ltd Laser projecting device
US8905548B2 (en) * 2012-08-23 2014-12-09 Omnivision Technologies, Inc. Device and method for reducing speckle in projected images
TWI509344B (zh) 2013-09-18 2015-11-21 Coretronic Corp 照明系統以及投影裝置
TWI524129B (zh) 2013-11-21 2016-03-01 中強光電股份有限公司 照明系統以及投影裝置
US9753298B2 (en) * 2014-04-08 2017-09-05 Omnivision Technologies, Inc. Reducing speckle in projected images
CN104614354A (zh) * 2015-01-29 2015-05-13 北京海维尔科技发展有限公司 一种荧光成像装置及方法
KR101762063B1 (ko) * 2016-01-26 2017-07-28 한양대학교 산학협력단 헤드업 디스플레이 장치
US11838691B2 (en) * 2017-03-14 2023-12-05 Snap Inc. Laser illumination system with reduced speckle via phase shift
GB2567408B (en) * 2017-08-02 2020-12-02 Dualitas Ltd Holographic projector
US10712640B2 (en) 2018-05-28 2020-07-14 Mcmaster University Speckle reduced laser projection with color gamut optimization
GB2582965B (en) 2019-04-11 2021-09-15 Dualitas Ltd A diffuser assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594319B2 (ja) * 1988-05-31 1997-03-26 松下電器産業株式会社 画像情報処理装置及び画像情報記録装置
JP2001100316A (ja) * 1999-09-28 2001-04-13 Mitsubishi Rayon Co Ltd 画像投影用スクリーン
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム
JP2003279889A (ja) * 2002-01-15 2003-10-02 Eastman Kodak Co レーザ投影ディスプレイシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490827A (en) 1967-10-19 1970-01-20 American Optical Corp Method and apparatus for speckle reduction in the reconstruction of holographic images
US3754814A (en) * 1971-01-19 1973-08-28 Battelle Development Corp Coherent imaging with reduced speckle
JPS6053842B2 (ja) 1977-06-01 1985-11-27 松下電器産業株式会社 擬似ランダム拡散板
US4155630A (en) * 1977-11-17 1979-05-22 University Of Delaware Speckle elimination by random spatial phase modulation
US5313479A (en) * 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
JPH07297111A (ja) 1994-04-27 1995-11-10 Sony Corp 露光照明装置
JP4063896B2 (ja) * 1995-06-20 2008-03-19 株式会社半導体エネルギー研究所 有色シースルー光起電力装置
TW358890B (en) * 1996-06-25 1999-05-21 Seiko Epson Corp Polarizing converter, polarizing lighting, display and projection using these elements
JP2000330210A (ja) 1999-03-16 2000-11-30 Mitsubishi Rayon Co Ltd 透過型スクリーン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594319B2 (ja) * 1988-05-31 1997-03-26 松下電器産業株式会社 画像情報処理装置及び画像情報記録装置
JP2001100316A (ja) * 1999-09-28 2001-04-13 Mitsubishi Rayon Co Ltd 画像投影用スクリーン
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム
JP2003279889A (ja) * 2002-01-15 2003-10-02 Eastman Kodak Co レーザ投影ディスプレイシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1655636A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987708B2 (ja) * 2005-06-20 2012-07-25 パナソニック株式会社 2次元画像表示装置、照明光源及び露光照明装置
US8317333B2 (en) 2005-06-20 2012-11-27 Panasonic Corporation Method and device for converting an emission beam from a laser light source into 2-dimensional light
US8016428B2 (en) 2005-06-20 2011-09-13 Panasonic Corporation 2-dimensional image display device or illumination device for obtaining uniform illumination and suppressing speckle noise
WO2006137326A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2次元画像表示装置、照明光源及び露光照明装置
JPWO2007007389A1 (ja) * 2005-07-11 2009-01-29 三菱電機株式会社 スペックル除去光源および照明装置
US7903325B2 (en) 2006-02-24 2011-03-08 Panasonic Corporation Wavelength converter and image display device
WO2007097177A1 (ja) * 2006-02-24 2007-08-30 Matsushita Electric Industrial Co., Ltd. 波長変換装置及び画像表示装置
JP5259385B2 (ja) * 2006-02-24 2013-08-07 パナソニック株式会社 波長変換装置及び画像表示装置
JP2008191649A (ja) * 2007-01-12 2008-08-21 Seiko Epson Corp レーザ光源装置、照明装置、画像表示装置、及びモニタ装置
JP2008209688A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 液晶表示装置および拡散板
US8147068B2 (en) 2007-04-20 2012-04-03 Sony Corporation Projection display apparatus
JP2009058716A (ja) * 2007-08-31 2009-03-19 Seiko Epson Corp 照明装置、モニタ装置及び画像表示装置
JP2009098571A (ja) * 2007-10-19 2009-05-07 Goto Optical Mfg Co プラネタリウムにおける恒星の瞬き装置
WO2009118902A1 (ja) 2008-03-28 2009-10-01 Necディスプレイソリューションズ株式会社 投写型画像表示装置
CN101981493B (zh) * 2008-03-28 2012-12-19 Nec显示器解决方案株式会社 投影式图像显示设备
US8550633B2 (en) 2008-03-28 2013-10-08 Nec Display Solutions, Ltd. Laser projector having a diffuser vibrated by using component of a cooling mechanism
US8905549B2 (en) 2008-03-28 2014-12-09 Nec Display Solutions, Ltd. Laser projector having a diffuser vibrated by using component of a cooling mechanism
WO2010116727A1 (ja) 2009-04-10 2010-10-14 パナソニック株式会社 画像表示装置
US8955980B2 (en) 2009-04-10 2015-02-17 Panasonic Corporation Image display apparatus which reduces speckle noise and which operates with low power consumption
US9500935B2 (en) 2011-04-18 2016-11-22 Nec Display Solutions, Ltd. Projection image display device
US9448416B2 (en) 2011-07-13 2016-09-20 Nec Display Solutions, Ltd. Light source device and projection-type display device
CN102540672A (zh) * 2012-02-15 2012-07-04 凝辉(天津)科技有限责任公司 一种微型单镜片单光源阵列式激光扫描投影装置
US9939561B2 (en) 2012-12-28 2018-04-10 Asahi Glass Company, Limited Projector having diffuser
US9436008B2 (en) 2013-02-06 2016-09-06 Denso Corporation Head-up display device
JP2015079232A (ja) * 2013-07-09 2015-04-23 旭硝子株式会社 光学素子、投影装置及び光学素子の製造方法
JP2019061269A (ja) * 2013-07-09 2019-04-18 Agc株式会社 光学素子及び投影装置
CN105511087A (zh) * 2016-01-13 2016-04-20 晋煤激光科技股份有限公司 基于复眼透镜的激光显示匀场整形装置
WO2024057971A1 (ja) * 2022-09-13 2024-03-21 株式会社小糸製作所 画像投影装置

Also Published As

Publication number Publication date
EP1655636B1 (en) 2011-12-07
JPWO2005008330A1 (ja) 2006-09-07
CN100524000C (zh) 2009-08-05
EP1655636A1 (en) 2006-05-10
US7271962B2 (en) 2007-09-18
EP1655636A4 (en) 2006-11-15
KR20060037389A (ko) 2006-05-03
CN1826557A (zh) 2006-08-30
JP4158987B2 (ja) 2008-10-01
US20060227293A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
WO2005008330A1 (ja) 2次元画像形成装置
US7484340B2 (en) Displaying optical system and image projection apparatus
US8469515B2 (en) Illuminator, image display apparatus, and polarization conversion/diffusion member
US10481409B2 (en) Projection device and projection-type video display device
US7370972B2 (en) Two-dimensional image display device
JP4880746B2 (ja) レーザ照明装置及び画像表示装置
US7697079B2 (en) Illumination system eliminating laser speckle and projection TV employing the same
US6897992B2 (en) Illuminating optical unit in image display unit, and image display unit
US8690341B2 (en) Image projector and an illuminating unit suitable for use in an image projector
JP5386821B2 (ja) 光源装置及びプロジェクタ
JP5168526B2 (ja) 投射型映像表示装置
US20090040467A1 (en) Projector and projection unit
JP2008134269A (ja) 画像投影装置
JP2004045684A (ja) 画像表示装置における照明光学装置及び画像表示装置
JP4091632B2 (ja) 投影表示用光学システム及び該投影表示用光学システムを備えるプロジェクタ
JP3641979B2 (ja) 投写型表示装置
US7746414B2 (en) Illumination system eliminating laser speckle and projection TV employing the same
JP7336762B2 (ja) 光源装置及び投写型表示装置
JP2004191878A (ja) プリズム装置とこれを用いた投写型表示装置、リアプロジェクタ、及びマルチビジョンシステム
JP2008268465A (ja) 照明装置、モニタ装置、及びプロジェクタ
JP2016184064A (ja) デスペックル照明装置およびデスペックル照明方法、投写型表示装置
JP2008145845A (ja) スクリーン、リアプロジェクタ、プロジェクションシステム
JP2016099390A (ja) 照明光学系および画像表示装置
JP5429343B2 (ja) 画像表示装置
JP2018112595A (ja) 画像投射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021015.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511943

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067001447

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006227293

Country of ref document: US

Ref document number: 10565390

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771006

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067001447

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771006

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10565390

Country of ref document: US