WO2005005812A1 - 内燃機関の吸入空気量推定装置 - Google Patents

内燃機関の吸入空気量推定装置 Download PDF

Info

Publication number
WO2005005812A1
WO2005005812A1 PCT/JP2004/009580 JP2004009580W WO2005005812A1 WO 2005005812 A1 WO2005005812 A1 WO 2005005812A1 JP 2004009580 W JP2004009580 W JP 2004009580W WO 2005005812 A1 WO2005005812 A1 WO 2005005812A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
air amount
intake
calculated
pressure
Prior art date
Application number
PCT/JP2004/009580
Other languages
English (en)
French (fr)
Inventor
Harufumi Muto
Isamu Toshimitsu
Takahiro Anami
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2005511515A priority Critical patent/JP4148263B2/ja
Priority to EP04747049.7A priority patent/EP1645743B1/en
Priority to US10/529,942 priority patent/US7085643B2/en
Publication of WO2005005812A1 publication Critical patent/WO2005005812A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure

Definitions

  • the present invention relates to an intake air amount estimation device for an internal combustion engine.
  • the fuel injection amount must be determined based on the amount of intake air actually supplied to the cylinder.
  • an air flow meter is arranged in the engine intake system to detect the intake air amount.However, the air flow meter has a response delay, so the intake air amount Accurate detection of is not possible. For this reason, it has been proposed to estimate the intake air amount by calculation, including during engine transients (see, for example, Japanese Patent Application Laid-Open Nos. 200-130 and 39-200). 2—2 0 19 9 8).
  • the throttle valve In order to estimate the intake air amount, the throttle valve is modeled and passed through the throttle valve based on the difference between the intake pressure upstream of the throttle valve and the intake pressure downstream of the throttle valve. It is necessary to calculate the amount of air to be generated. In calculating the amount of air passing through the throttle valve, in the above-described conventional technology, the intake pressure downstream of the throttle valve, that is, the intake pipe pressure is changed, but the upstream side of the throttle valve is changed. Since the intake pressure of the air is set to the atmospheric pressure, an accurate amount of air passing through the throttle valve cannot be calculated. As a result, an accurate intake air amount cannot be estimated. Disclosure of the invention
  • an object of the present invention is to estimate an intake air amount more accurately than in the past. It is an object of the present invention to provide a device for estimating the amount of intake air of an internal combustion engine, which makes it possible to determine the amount of intake air.
  • the intake air amount estimating apparatus for an internal combustion engine uses an upstream intake pressure upstream of a throttle valve and a downstream intake pressure downstream of a throttle valve.
  • An intake air amount estimating device for an internal combustion engine which calculates the throttle valve passing air amount based on the throttle valve passing air amount, and estimates the intake air amount based on the throttle valve passing air amount.
  • the upstream intake pressure used in the calculation is measured or calculated in consideration of at least a pressure loss of the air cleaner with respect to the atmospheric pressure.
  • the upstream intake pressure used to calculate the throttle valve passing air amount is actually different from the atmospheric pressure due to the pressure loss upstream of the throttle valve in the engine intake system. . Accordingly, in the intake air amount estimating device for an internal combustion engine according to claim 1, the upstream intake pressure is measured or calculated in consideration of at least the pressure loss of the air cleaner with respect to the atmospheric pressure. .
  • the intake air amount estimating device for an internal combustion engine according to claim 1 calculates the throttle valve passing air amount this time.
  • the upstream intake pressure used this time is calculated by subtracting the pressure loss of the air cleaner from the atmospheric pressure, and the pressure loss is determined by an air flow meter as an air flow amount passing through the air cleaner. It is characterized in that it is calculated using the detected intake air amount or the previously calculated throttle valve passage air amount.
  • the intake air amount estimating device for an internal combustion engine wherein the pressure loss passes through the throttle valve passing through the previously calculated throttle valve.
  • the pressure loss passes through the throttle valve passing through the previously calculated throttle valve.
  • the present upstream suction pressure based on the previously calculated throttle valve passing air amount is practically a value close to the previous upstream suction pressure.
  • the previous temporary throttle valve passage air amount calculated using the current upstream intake pressure and the previous downstream intake pressure is calculated by using the previous upstream intake pressure and the previous downstream intake pressure. It is closer to the true value than the previous throttle valve air flow calculated using the barometric pressure. Therefore, the difference between the previous provisional throttle valve passing air amount and the previous throttle valve passing air amount can be considered as the output error of the previous throttle valve passing air amount.
  • the throttle valve passage air amount calculated this time using the current upstream intake pressure and the current downstream intake pressure is Correction is based on the difference between the provisional throttle valve passing air volume and the previous throttle valve passing air volume.
  • the internal combustion engine intake air amount estimating apparatus according to the third aspect, wherein the previous provisional throttle valve passage air amount is provided.
  • the previous downstream intake pressure is calculated again based on the provisional throttle valve passing air amount.
  • the previous throttle valve passing air amount is recalculated based on the previous temporary throttle valve passing air amount close to the true value. I have.
  • the intake air amount estimating device for an internal combustion engine according to claim 5 of the present invention is the intake air amount estimating device for an internal combustion engine according to any one of claims 1 to 4, wherein the throttle valve passing air amount is Is calculated based on the ratio of the downstream suction pressure to the upstream suction pressure and the opening area or opening of the throttle valve.
  • the intake air amount estimating device for an internal combustion engine according to claim 6 of the present invention is the intake air amount estimating device for an internal combustion engine according to claim 5, wherein the throttle valve passing air amount is the opening amount.
  • a first function in which only the area or the opening is a variable
  • a second function in which the ratio is a variable is a variable
  • FIG. 1 is a schematic diagram of an internal combustion engine to which the intake air amount estimation device according to the present invention is attached.
  • Fig. 2 is a map showing the relationship between the throttle valve opening TA and the flow coefficient ⁇ .
  • Fig. 3 is a map showing the relationship between the throttle valve opening ⁇ ⁇ and the throttle valve opening area A.
  • Fig. 4 is a map showing the relationship between the ratio between the intake pipe pressure P m and the upstream intake pressure P ac and the function ⁇ .
  • FIG. 5 is a flowchart for calculating the intake air amount.
  • FIG. 1 shows an internal combustion engine equipped with an intake air amount estimation device according to the present invention.
  • FIG. 1 is the engine body, and 2 is a surge tank common to each cylinder.
  • Reference numeral 3 denotes an intake branch pipe for communicating the surge tank 2 with each cylinder, and reference numeral 4 denotes an intake passage on the upstream side of the surge tank 2.
  • a fuel injection valve 5 is disposed in each intake branch pipe 3, and a throttle valve 6 is disposed immediately upstream of the surge tank 2 in the intake passage 4.
  • the throttle valve 6 may be linked to the accelerator pedal, but here, the opening can be freely set by a drive device such as a step motor.
  • Reference numeral 7 denotes a pressure sensor for detecting the intake pressure upstream of the throttle valve 6 in the intake passage 4.
  • the upstream intake pressure is lower than the atmospheric pressure during the operation of the engine because of the pressure loss of the air cleaner 11 provided at the most upstream portion of the engine intake system.
  • the intake air amount is estimated by modeling the engine intake system as follows.
  • T a is the intake air temperature (K) upstream of the throttle valve
  • P ac (i) is the upstream temperature upstream of the throttle valve.
  • Side intake pressure (kPa), and Pm is the intake pipe pressure downstream of the throttle valve, that is, the downstream intake pressure (kPa).
  • will be described later. That.
  • equation (1) is replaced with equation (1) ′ using the standard value T 0 of the intake air temperature upstream of the throttle valve and the standard value Pa 0 of the upstream intake pressure. be able to.
  • the correction term for converting the standard value T 0 of the intake air temperature to the current intake air temperature T a is the first correction term ktha
  • the standard value P a 0 of the upstream intake pressure is the current upstream intake pressure P ac.
  • Equation (1) ' can be replaced by Equation (1)''if the correction term for conversion to) is the second correction term kpac.
  • Equation (1) '' is a function F (TA (i) ) having only the throttle valve opening TA as a variable, a function ⁇ , and a first 4009580 Equation (1) '', which is the product of the correction term ktha and the second correction term kpac, can be used.
  • the mapping of the function F is easy, and the throttle valve passing air amount mt (i ) can be easily calculated.
  • the function F may be replaced by a function that uses only the opening area A of the throttle valve) as a variable.
  • the current intake air temperature Ta ( i ) on the upstream side of the throttle valve used for calculating the current first correction term ktha is calculated using the temperature sensor on the upstream side of the throttle valve 6 in the intake passage 4. (Not shown), it is preferable to detect the temperature with this temperature sensor. However, it may be considered that this intake temperature is almost equal to the outside air temperature regardless of the pressure loss of the air turbine 11.
  • the outside air temperature detected by the outside air temperature sensor may be used as the intake air temperature.
  • the current upstream intake pressure Pac is detected by the pressure sensor 7 every time the throttle valve passing air amount mt is calculated. Is preferably used for calculating the second correction coefficient kpac).
  • the upstream-side suction pressure P ac (i ) can be calculated without using the pressure sensor 7.
  • the difference between the atmospheric pressure Pa and the upstream-side intake pressure P ac can be expressed by the following formula (3) using the Norenney-theorem.
  • Equation (3) Equation (3)
  • equation (3) ′ can be replaced with equation (3) ′′ using a function f (G a) having only the flow rate G a as a variable.
  • Equation (3) ′ can be modified as in equation (4), which represents the current upstream intake pressure P ac (i) .
  • Equation (4) the current flow rate G a) can be detected by the air flow meter if an air flow meter is provided immediately downstream of the ecleaner 11. Further, the pressure correction coefficient ekpa can be set according to the detected current atmospheric pressure, and the temperature correction coefficient ektha can be set according to the detected current atmospheric temperature.
  • the flow rate G a (i) of the air passing through the air cleaner 11 can be considered as the throttle valve passing air amount mt, and the equation (4)
  • equation (4) can be transformed into equation (4) ′.
  • the current upstream intake air pressure P ac is used to calculate the current throttle valve passage air amount mt.
  • To calculate the current upstream intake pressure P ac use the previous throttle valve passing air amount mt (i ⁇ ) as the throttle valve passing air amount. I have to do it.
  • the intake valve is modeled. Since the amount of intake air supplied to the cylinder mc (g / sec) changes almost linearly based on the downstream intake pressure, that is, the intake pipe pressure P m (i) , the following equation ( It can be expressed by the linear function shown in 5).
  • Tm (i) where T m (is the intake air temperature (K) downstream of the throttle valve. 2004/009580
  • a and b are parameters for specifying the linear function.
  • b is a value equivalent to the amount of residual burned gas in the cylinder. If there is a par wrapper wrap, the burnt gas flows back to the intake pipe, so the value of b increases so as to be insignificant .
  • the intake pipe pressure P m is equal to or higher than the predetermined pressure, the higher the intake pipe pressure, the more the backflow of burned gas decreases. Then, the value of a is increased and the value of b is decreased.
  • the primary function used to calculate the intake air amount m c differs for each internal combustion engine and also changes according to the engine operating state. Accordingly, it is preferable to map the parameters a and b for each internal combustion engine and each engine operating state.
  • V is the volume of the intake pipe (m 3 ), that is, the volume on the downstream side of the throttle valve in the engine intake system.
  • V is a part of the intake passage 4, the surge tank 2, and the intake branch pipe 3.
  • Equations (6) and (7) are discretized, and the following equations (8) and (9) are obtained, respectively, and the current intake pipe pressure P m (is obtained by equation (9).
  • the intake air temperature T m in the intake pipe this time can be obtained by Expression (8).
  • the discrete time At is the execution interval in the flow chart (Fig. 5) for calculating the intake air amount mc (i ), and is 8 ms, for example. .
  • the previous intake pipe pressure P m— n (the initial value is the atmospheric pressure Pa), and the previous throttle valve passage
  • the air amount mt is D—the intake air temperature T a upstream from the previous throttle valve
  • the previous intake air amount mc (i u is the previous intake air temperature in the intake pipe T m ⁇ - D (initial value is the intake air temperature on the upstream side) and calculate the current intake pipe pressure P m.)
  • the initial value of the throttle valve passing air amount mt is calculated using the other initial values.
  • the initial value of the intake air amount mc- u is It is calculated by equation (5) using other initial values.
  • step 102 the intake air temperature T m ( u in the intake pipe this time is calculated using equation (8). Then, in step 103, equation (4) is used. Then, the previous throttle valve passage air amount mt (based on iu, the upstream intake pressure P ac) is calculated, and in step 101, the downstream intake pressure P m () is calculated.
  • the current throttle valve opening TA ( u is used based on the current throttle valve opening TA ( u ) using the equation (1)
  • the amount of passing air (mt) can be calculated.
  • the current upstream side calculated in step 103 The intake pressure P ac) is based on the previous throttle valve passage air amount mt-D, and is therefore practically a value close to the previous upstream intake pressure. Therefore, the current downstream intake pressure P m (and the current upstream intake pressure P ac (i) do not coincide with each other in time, and even if the function ⁇ is calculated based on these ratios, It is not possible to calculate the exact amount of air passing through the throttle valve (mt).
  • step 104 the previous provisional throttle valve passage air amount mt 1 ( ) is calculated by the following equation (10). Equation (10) is obtained by calculating the throttle valve opening, the first correction coefficient, the second correction coefficient, and the upstream intake pressure P ac ( And the previous intake air pressure mt D calculated by the equation (10) is the previous intake air amount mt D calculated by the equation (10). The value is close to the true value of the passing air volume.
  • step 105 the following downstream intake pressure P m (i is calculated based on the previous provisional throttle valve passage air amount mt 1 or D using the following equation (11).
  • the throttle valve passing air amount and the calculated downstream intake pressure are the same time.
  • Pm (il) Pm (i -2) + At * K ' Ma (mtl (i- 1) ⁇ Ta (il- mC (i- 1) ⁇ Tm (i- 1)) • ( to you this ID , if the previous re downstream intake air pressure P mt i ⁇ ) is calculated, in step 1 0 6 recalculates the downstream intake air temperature Tm (i _ n previous using equation (8), In step 107, the previous intake air amount mc or -D is calculated again using equation (5).
  • step 108 using the same equation as equation (10), a new temporary provisional air pressure based on the previous downstream intake pressure P m (i ⁇ D recalculated in step 105 is obtained.
  • P mt 2 the upstream side suction pressure P ac ) to be used may be calculated again using mt I ⁇ D.
  • the previous provisional throttle valve passage air amount mt 2 (or the value closer to the true value).
  • step 109 the difference between the new previous provisional throttle valve passage air amount mt 2 ⁇ ) and the old previous provisional throttle valve passage air amount mt 1 (D is the set value. d, it is determined whether or not the newly calculated tentative throttle valve passing air amount mt 2 (i _ has sufficiently converged to the true value. If the determination in step 109 is denied, in step 110, the new previous provisional throttle valve passing air amount mt S ⁇ -D is replaced with the old previous provisional throttle valve.
  • step 105 The amount of air passing through the valve is assumed to be mtl ⁇ i-D, and the processing after step 105 is repeated.At this time, in step 105, the amount of air passing through the previous provisional throttle valve mt1 is equal to D. Not only that, the previous downstream intake air temperature Tm-D and the previous intake air amount mc) are also close to their true values, so they are calculated. Last downstream intake air pressure P m which (i) is also further closer to the true value.
  • step 109 If the determination in step 109 is affirmative, the previous temporary The throttle valve passing air amount mt 2 (i) is almost a true value.
  • the throttle valve opening TA () used in the calculation of the throttle valve passing air amount m in this case is determined based on the throttle valve driving device ( It is estimated in consideration of the response delay of the step motor).
  • step 112 based on the current downstream intake air pressure P m (and the current downstream intake air temperature Tm () calculated in steps 101 and 102, using equation (5), This time, the intake air amount mc is calculated.) Since the accurate throttle valve passage air amount is calculated as described above, the downstream-side intake pressure calculated based on this is accurate. Then, the intake air amount calculated based on the downstream intake pressure is also accurate, and then, although not shown in the flowchart, the current downstream intake pressure P m (i the current downstream intake temperature T m The current throttle valve passage air amount mt ), the current intake air amount mc (i), and the current upstream intake air temperature Ta (i) are stored as the previous values, respectively. Be prepared for the next flowchart.
  • the previous provisional throttle valve passing airflow amount mt 2 ( i.sub.i) is brought close to the true value (until the judgment in step 109 is affirmed).
  • the number of repetitions may be set in advance.
  • the processing of steps 105 to 110 is omitted, and in step 104, the previous provisional throttle valve passage air amount mt1 is calculated.
  • the throttle valve passing air amount mt (may be calculated.
  • mt 2 ⁇ in the equation in step 11 1 is replaced with mt 1 ⁇ -). good.
  • the fuel injection amount in order to control the combustion air-fuel ratio accurately, the fuel injection amount must be determined by estimating the accurate intake air amount into the cylinder before starting the fuel injection.
  • the throttle valve opening TA at each time is based on the amount of change in the accelerator pedal depressed with respect to the current time, and based on the assumption that this depressed change lasts until the intake valve is closed, the accelerator pedal depressed amount at each time is calculated as follows. It is conceivable to make an estimation and determine the estimated amount of depression in consideration of the response delay of the throttle valve actuator. This one The law can also be applied when the throttle valve is mechanically connected to the accelerator pedal.
  • the estimated throttle valve opening TA ( i + n ) when the intake valve is closed is only a prediction and there is no guarantee that it will match the actual value.
  • the throttle valve may be controlled with a delay.
  • the throttle valve opening changes with a delay due to the response delay of the actuator, but this delay control intentionally increases the response delay of the throttle valve. It is.
  • the actual response delay (wasteful) is set so that the throttle valve opening corresponding to the current depression amount of the accelerator pedal when determining the fuel injection amount is realized when the intake valve is closed.
  • the throttle valve opening TA every time from the present time to the closing of the intake valve TA (i TA (i + 1) , ⁇ ⁇ ⁇ TA ( i + n )
  • the actuation signal is not immediately sent to the actuator, but the fuel injection amount is determined.
  • An operation signal is sent to the actuator when a time period obtained by subtracting the dead time from the time from when the intake valve closes is used, of course.
  • Corresponding to Rusuro Tsu Torr valve opening may be carried out delay control of throttle valve so as to realize after the time when the intake valve is closed.
  • the upstream intake pressure used to calculate the throttle valve passing air amount is at least that of the air turbine with respect to the atmospheric pressure. Measured by a pressure sensor located upstream of the throttle valve in the intake passage, taking into account pressure loss. Or at least the pressure loss of the air cleaner with respect to the atmospheric pressure is taken into account, so that the calculated slot is lower than when atmospheric pressure is used as the upstream intake pressure.
  • the amount of air passing through the throttle valve is accurate, and the amount of intake air calculated using the amount of air passing through the throttle valve can be accurate.

Abstract

スロットル弁より上流側の上流側吸気圧とスロットル弁より下流側の下流側吸気圧とを使用してスロットル弁通過空気量を算出し、スロットル弁通過空気量に基づき吸入空気量を推定する内燃機関の吸入空気量推定装置において、スロットル弁通過空気量の算出に使用される上流側吸気圧は、少なくとも大気圧に対するエアクリーナの圧損が考慮されて測定又は算出される。

Description

明 細 書 内燃機関の吸入空気量推定装置 技術分野
本発明は、 内燃機関の吸入空気量推定装置に関する。 背景技術
正確な空燃比制御を実現するためには、 実際に気筒内へ供給され た吸入空気量に対して燃料噴射量を決定しなければならない。 吸入 空気量を検出するために、 一般的には、 機関吸気系にエアフローメ ータが配置されているが、 エアフローメータは応答遅れを有してい るために、 機関過渡時となると吸入空気量の正確な検出は不可能で ある。 それによ り、 機関過渡時を含めて計算によ り吸入空気量を推 定することが提案されている (例えば、 特開 2 0 0 2— 1 3 0 0 3 9号及び特開 2 0 0 2— 2 0 1 9 9 8号参照) 。
吸入空気量の推定には、 ス ロ ッ トル弁をモデル化し、 ス ロ ッ トル 弁上流側の吸気圧とス ロ ッ トル弁下流側の吸気圧との違いに基づき ス ロ ッ トル弁を通過する空気量を算出することが必要とされる。 こ のス ロ ッ トル弁通過空気量の算出に際して、 前述の従来技術では、 ス ロ ッ トル弁下流側の吸気圧、 すなわち、 吸気管圧力は変化させて いるが、 ス ロ ッ トル弁上流側の吸気圧は大気圧と しているために、 正確なスロ ッ トル弁通過空気量が算出されない。 それによ り、 正確 な吸入空気量を推定することができない。 発明の開示
従って、 本発明の目的は、 従来に比較して正確な吸入空気量の推 定を可能とする内燃機関の吸入空気量推定装置を提供するこ とであ る。
本発明による請求項 1に記載の内燃機関の吸入空気量推定装置は 、 ス ロ ッ トル弁より上流側の上流側吸気圧とス ロ ッ トル弁より下流 側の下流側吸気圧とを使用してス ロ ッ トル弁通過空気量を算出し、 前記ス口 ッ トル弁通過空気量に基づき吸入空気量を推定する内燃機 関の吸入空気量推定装置において、 前記ス ロ ッ トル弁通過空気量の 算出に使用される前記上流側吸気圧は、 少なく とも大気圧に対する エアク リーナの圧損が考慮されて測定又は算出されることを特徴と する。
スロ ッ トル弁通過空気量を算出するのに使用される上流側吸気圧 は、 機関吸気系におけるス口 ッ トル弁上流側の圧損があるために、 実際的には大気圧と異なるものである。 それによ り、 請求項 1に記 载の内燃機関の吸入空気量推定装置では、 上流側吸気圧は、 少なく とも大気圧に対するエアク リーナの圧損が考慮されて測定又は算出 されるよ うにしている。
また、 本発明による請求項 2に記載の内燃機関の吸入空気量推定 装置は、 請求項 1に記載の内燃機関の吸入空気量推定装置において 、 今回の前記スロ ッ トル弁通過空気量を算出するために使用する今 回の前記上流側吸気圧は、 大気圧からエアタ リーナの前記圧損を減 算して算出され、 前記圧損は、 前記エアク リーナを通過する空気流 量と して、 エアフローメータによ り検出される吸入空気量又は前回 算出されたスロ ッ トル弁通過空気量を使用して算出されることを特 徴とする。
また、 本発明による請求項 3に記載の内燃機関の吸入空気量推定 装置は、 請求項 2に記載の内燃機関の吸入空気量推定装置において 、 前記圧損を前回算出されたス口 ッ トル弁通過空気量を使用して算 出することにより今回の前記上流側吸気圧を算出し、 算出された前 記今回の上流側吸気圧と今回の前記下流側吸気圧とを使用して今回 の前記ス ロ ッ トル弁通過空気量が算出され、 算出された前記今回の ス ロ ッ トル弁通過空気量は、 前記今回の上流側吸気圧と前回の下流 側吸気圧とを使用して算出される前回の仮のス ロ ッ トル弁通過空気 量と、 前回の上流側吸気圧と前回の下流側吸気圧とを使用して算出 される前回のス ロ ッ トル弁通過空気量との差により補正されること を特徴とする。
前回算出されたス ロ ッ トル弁通過空気量に基づく今回の上流側吸 気圧は、 実際的には、 前回の上流側吸気圧に近い値である。 それに より、 今回の上流側吸気圧と前回の下流側吸気圧とを使用して算出 される前回の仮のス ロ ッ トル弁通過空気量は、 前回の上流側吸気圧 と前回の下流側吸気圧とを使用して算出される前回のス ロ ッ トル弁 通過空気量よ り真値に近い。 従って、 前回の仮のス ロ ッ トル弁通過 空気量と前回のス ロ ッ トル弁通過空気量との差は前回のス ロ ッ トル 弁通過空気量の箅出誤差と考えることができる。 こ う して、 請求項
3に記載の内燃機関の吸入空気量推定装置では、 今回の上流側吸気 圧と今回の下流側吸気圧とを使用して算出された今回の前記ス口 ッ トル弁通過空気量を、 前回の仮のスロ ッ トル弁通過空気量と前回の スロ ッ トル弁通過空気量との差によ り捕正している。
また、 本発明による請求項 4に記載の内燃機関の吸入空気量推定 装置は、 請求項 3に記載の内燃機関の吸入空気量推定装置において 、 前記前回の仮のス ロ ッ トル弁通過空気量が算出された時には、 前 記仮のス ロ ッ トル弁通過空気量に基づき前回の下流側吸気圧を算出 し直すことを特徴とする。 請求項 4に記載の内燃機関の吸入空気量 推定装置では、 真値に近い前回の仮のス口 ッ トル弁通過空気量に基 づき前回のス ロ ッ トル弁通過空気量を算出し直している。 また、 本発明による請求項 5に記載の内燃機関の吸入空気量推定 装置は、 請求項 1から 4のいずれかに記載の内燃機関の吸入空気量 推定装置において、 前記スロ ッ トル弁通過空気量は、 前記下流側吸 気圧と前記上流側吸気圧との比と、 ス ロ ッ トル弁の開口面積又は開 度とに基づき算出されることを特徴とする。
また、 本発明による請求項 6に記載の内燃機関の吸入空気量推定 装置は、 請求項 5に記載の内燃機関の吸入空気量推定装置において 、 前記ス ロ ッ トル弁通過空気量は、 前記開口面積又は前記開度だけ を変数とする第一関数と、 前記比を変数とする第二関数と、 前記第 一関数をス口 ッ トル弁より上流側の現在の吸気温度に基づき補正す る第一補正項と、 前記第一関数を現在の前記上流側吸気圧とに基づ き補正する第二補正項との積によって算出されることを特徴とする
図面の簡単な説明
図 1は、 本発明による吸入空気量推定装置が取り付けられる内燃 機関の概略図であり、
図 2は、 ス ロ ッ トル弁開度 T Aと流量係数 μ との関係を示すマ ツ プであり、
図 3は ス ロ ッ トル弁開度 Τ Α とス ロ ッ トル弁の開口面積 Aと の 関係を示すマップであり、
図 4は、 吸気管圧力 P mと上流側吸気圧 P a c との比と、 関数 Φ との関係を示すマップであり、
図 5は、 吸入空気量を算出するためのフローチャートである。 発明を実施するための最良の形態
図 1は、 本発明による吸気量推定装置が取り付けられる内燃機関 を示す概略図である。 同図において、 1は機関本体であり、 2は各 気筒共通のサージタンクである。 3はサージタンク 2 と各気筒とを 連通する吸気枝管であり、 4はサージタンク 2の上流側の吸気通路 である。 各吸気枝管 3には燃料噴射弁 5が配置され、 吸気通路 4に おけるサージタンク 2の直上流側にはスロ ッ トル弁 6が配置されて いる。 スロ ッ トル弁 6は、 アクセルペダルに連動するものでも良い が、 ここではステップモータ等の駆動装置によって自由に開度設定 可能なものと している。 7は吸気通路 4のスロ ッ トル弁 6よ り上流 側の吸気圧を検出するための圧力センサである。 この上流側吸気圧 は、 機関吸気系の最上流部に設けられているエアク リーナ 1 1の圧 損があるために、 機関運転中においては大気圧よ り低い圧力となつ ている。
内燃機関 1 における燃焼空燃比を、 例えば、 理論空燃比等の所望 空燃比にするためには、 機関過渡時を含めて気筒内へ流入した吸入 空気量を正確に把握しなければならない。 本実施形態においては、 機関吸気系を以下のよ うにモデル化して吸入空気量を推定するよう にしている。
先ず、 スロ ッ トル弁 6をモデル化することによ り、 吸気がスロ ッ トル弁 6を通過する際のエネルギ保存則、 運動量保存則、 及び、 状 態方程式を使用して、 今回のス ロ ッ トル弁通過空気量 m t ( i ) ( g / s e c ) が、 次式(1 )によって表される。 以下の式を含めて、 ス ロ ッ トル弁通過空気量等の変数の添え字 ( i ) は今回 (現在) を示 し、 ( i _ 1 ) は前回を示している。 mt(i)= βω· Αω· ψ · (Pm(1)/Pac(i)) …ひ)
=u .A - P Q -厂 TO . Pac(i) . )
…ひ)"
Figure imgf000008_0001
= F(TA(i)) · ktha · kpac · Φ (Pm(i)/Pac(i)) …ひ)," こ こで、 μ ( は流量係数であり、 A( はス ロ ッ トル弁 6の開口 面積 (m2) である。 もちろん、 機関吸気系にアイ ドルス ピー ドコ ントロールパルプ ( I S C弁) が設けられている時には、 A( に は、 I S C弁の開口面積が加えられる。 流量係数及びスロ ッ トル弁 の開口面積は、 それぞれがス ロ ッ トル弁開度 T A( u (度) の関数 となっており、 図 2及び 3には、 それぞれのス ロ ッ トル弁開度 T A に対するマップが図示されている。 は気体定数であり、 T a はス 口 ッ トル弁上流側の吸気温度 (K) であり、 P a c ( i )はス ロ ッ ト ル弁よ り上流側の上流側吸気圧 ( k P a ) であり、 P m( はス ロ V トル弁下流側の吸気管圧力、 すなわち、 下流側吸気圧 ( k P a ) である。 また、 関数 Φに関しては後述する。
ところで、 式(1)は、 スロ ッ トル弁上流側の吸気温度の標準値 T 0 と、 上流側吸気圧の標準値 P a 0 とを使用して式(1)'のように置 き換えることができる。 吸気温度の標準値 T 0を現在の吸気温度 T aへ変換するための補正項を第 1補正項 k t h a と し、 上流側吸気 圧の標準値 P a 0を現在の上流側吸気圧 P a cい)へ変換するため の補正項を第 2補正項 k p a c とすれば、 式(1)'は式(1)''のよ う に置き換えることができる。 さらに、 式(1)''は、 スロ ッ トル弁開 度 TAい)だけを変数とする関数 F (T A( i )) と、 関数 Φと、 第 1 4009580 補正項 k t h a と、 第 2補正項 k p a c との積の形とした式(1)'', のように置き換えることができる。 このよ うに、 式(1)を置き換え ることによって、 関数 Fのマップ化は容易であり、 ス ロ ッ トル弁通 過空気量 m t ( i)を簡単に算出することができる。
こ こで、 関数 Fは、 ス ロ ッ トル弁の開口面積 Aい)だけを変数と する関数に置換しても良い。 現在の第 1補正項 k t h a ( の算出 に使用される現在のス口 ッ トル弁上流側の吸気温度 T a ( i )は、 吸 気通路 4のス ロ ッ トル弁 6の上流側に温度センサ (図示せず) を配 置して、 この温度センサによ り検出することが好ましいが、 この吸 気温度は、 エアタ リーナ 1 1の圧損とは無関係に外気温度とほぼ等 しいと考えることができ、 外気温度センサにより検出された外気温 度を吸気温度と して使用しても良い。
—方、 上流側吸気圧は、 刻々変化するために、 ス ロ ッ トル弁通過 空気量 m t を算出する毎に圧力センサ 7によつて現在の上流側吸気 圧 P a cい)を検出し、 これを第 2補正係数 k p a c )の算出に使 用することが好ましい。
関数 Φ (P m( i )/P a c は、 比熱比 κ を使用して次式(2) によって表されるものであり、 図 4には P m/ P a c に対するマツ プが図示されている。
JP2004/009580
1 ー丄の場合
Figure imgf000010_0001
… )
1 ciし ·、> fv Γ 丄の場合
Figure imgf000010_0002
ところで 、 式(1) (又は式( 1 ) ' ' ' ) 及び式(2)において、 上流側吸 気圧 P a c ( i)は、 圧力センサ 7を使用しないで算出することも可 能である。 大気圧 P a と上流側吸気圧 P a c との差は、 、ノレヌ ~ィ の定理により、 次式(3)のよ うに表すことができる。
Figure imgf000010_0003
一 f(Ga) 一
ekpa · ektha
Figure imgf000010_0004
—pa— •(4),
ekpa · ektha こ こで、 pは大気密度であり、 vはエアク リーナ 1 1 を通過する 空気の流速であり、 G aはエアク リーナ 1 1 を通過する空気の流量 であり、 kは V と G aの比例係数である。 標準大気密度 と、 標 準大気密度 p 0を現在の大気密度 pへ変換するための圧力補正係数 e k p a及び温度補正係数 e k t h a とを使用すれば、 式(3)は式(
3) 'のように置き換えることができる。 さ らに、 式(3)'は、 流量 G aだけを変数とする関数 f (G a ) を使用して式(3)''のように置 き換えることができる。
式(3)',は、 現在の上流側吸気圧 P a c ( i )を表す式(4)のように 変形することができる。 式(4)において、 現在の流量 G aい)は、 ェ ァク リーナ 1 1 の直下流側にエアフ ローメータが設けられている場 合には、 このエアフローメータによ り検出することができる。 また 、 圧力補正係数 e k p aは、 検出される現在の大気圧により設定可 能であり、 温度補正係数 e k t h aは、 検出される現在の大気温度 によ り設定可能である。
また、 式(4)において、 エアク リーナ 1 1 を通過する空気の流量 G a ( i )は、 スロ ッ トル弁通過空気量 m t と考えることができ、 式(
4)は式(4)'のように変形することができる。 但し、 式(1) (又は式( 1)" ') において説明したよ うに、 現在のス ロ ッ トル弁通過空気量 m tい)を算出するためには現在の上流側吸気圧 P a cい)が必要で あるために、 現在の上流側吸気圧 P a c )を算出するには、 ス ロ ッ トル弁通過空気量と して前回のス ロ ッ トル弁通過空気量 m t { i→ )を使用せざるを得ない。
次いで、 吸気弁をモデル化する。 気筒内へ供給される吸入空気量 m cい) ( g / s e c ) は、 下流側吸気圧、 すなわち、 吸気管圧力 P m( i )に基づきほぼ線形に変化するものであるために、 次式(5)に 示す一次関数によって表すことができる。
mC(.)=i . (a . pm(.-b) … (5)
Tm(i) ここで、 T m( はス ロ ッ トル弁下流側の吸気温度 ( K) であり 2004/009580
、 a及び bは一次関数を特定するためのパラメータである。 bは気 筒内の残留既燃ガス量に相当する値であり、 パルブォーパーラップ がある場合には、 吸気管へ既燃ガスが逆流するために、 bの値は無 視できないほど増加する。 また、 パルプオーバーラップがある場合 において、 吸気管圧力 P mが所定圧力以上である時には、 吸気管圧 力が高いほど既燃ガスの逆流が顕著に減少するために、 所定値以下 である時に比較して、 aの値は大きく されると共に bの値は小さく される。
このように、 吸入空気量 m c を算出するために使用される一次関 数は、 内燃機関毎に異なるものであると共に機関運転状態によって も変化するものである。 それによ り、 内燃機関毎及び機関運転状態 毎にパラメータ a, bをマップ化しておく ことが好ましい。
次いで、 吸気管をモデル化する。 吸気管内に存在する吸気の質量 保存則、 エネルギ保存則、 及び、 状態方程式を使用して、 吸気管圧 力 P mとスロ ッ トル弁下流側の吸気温度 T mとの比における時間変 化率は次式(6)によって表され、 また、 吸気管圧力 P mの時間変化 率は次式(7)によって表される。 ここで、 Vは吸気管の容積 (m3) 、 すなわち、 機関吸気系におけるスロッ トル弁下流側の容積であり 、 具体的には、 吸気通路 4の一部とサージタンク 2 と吸気枝管 3 と の合計容積である。
Figure imgf000012_0001
dPm R , ^ T
•(7) 式(6)及び式(7)は離散化され、 それぞれ、 次式(8)及び(9)が得ら れ、 式(9)によって今回の吸気管圧力 P m( が得られれば、 式(8) によつて今回の吸気管内の吸気温度 T m( を得ることができる。 式(8)及び(9)において、 離散時間 A t は、 吸入空気量 m c ( i)を算 出するためのフローチャー ト (図 5 ) における実行間隔とされ、 例 免ば、 8 m s である。
¾i)=^(i-l) + At · · (mt(i— "ic(iυ) -(8)
Pm(i)=Pm(i_1)+At . κ '-' (mt(i_1)- Ta(i_1)-mc(i_1) . Tm(iυ) -"(9) 次に、 図 5に示すフローチャー トを説明する。 本フローチャー ト は、 機関始動完了と同時に実行される。 先ず、 ステップ 1 0 1 にお いて、 式(9)を使用して下流側吸気圧 (吸気管圧力) P m( が算出 される。 式(9)において、 前回の吸気管圧力 P mい—n (初期値は大 気圧 P a ) と、 前回のス ロ ッ トル弁通過空気量 m t い— Dと、 前回 のス ロ ッ トル弁より上流側の吸気温度 T aい )と、 前回の吸入空 気量 m c (い uと、 前回の吸気管内の吸気温度 T m^-D (初期値は 上流側の吸気温度) とを使用して、 今回の吸気管圧力 P mい )を算 出する。 スロッ トル弁通過空気量 m t い )の初期値は、 他の初期 値を使用して式(1)' ' 'によ り算出され、 吸入空気量 m cい- uの初 期値は、 他の初期値を使用して式(5)によ り算出される。
次いで、 ステップ 1 0 2において、 式(8)を使用して今回の吸気 管内の吸気温度 T m ( uが算出される。 次いで、 ステップ 1 0 3 に おいて、 式(4),を使用して、 前回のスロ ッ トル弁通過空気量 m t ( i uに基づき上流側吸気圧 P a cい )が算出される。 こ う して、 ス テツプ 1 0 1 において下流側吸気圧 P m ( )が算出され、 ステップ
1 0 3において上流側吸気圧 P a cい)が算出されれば、 式(1)' ' ' を使用して現在のス ロ ッ トル弁開度 T A(uに基づき現在のス口 ッ トル弁通過空気量 m t )を算出することができる。 . しかしながら、 ステップ 1 0 3において算出された今回の上流側 吸気圧 P a cい)は、 前回のスロ ッ トル弁通過空気量 m tい— Dに基 づく ものであるために、 実際的には、 前回の上流側吸気圧に近い値 である。 それにより、 今回の下流側吸気圧 P m( と今回の上流側 吸気圧 P a c ( i )とは時間的に一致しておらず、 これらの比に基づ き関数 φを算出しても、 正確なス口ッ トル弁通過空気量 m tい)を 算出することはできない。
本フローチヤ一トでは、 正確なスロ ッ トル弁通過空気量 m t ( i ) を算出するために以下の処理を実施する。 まず、 ステップ 1 0 4で は、 次式(10)によ り前回の仮のスロ ッ トル弁通過空気量 m t 1 ( )を算出する。 式(10)は、 式(1)' ' 'において、 前回値に近い上流側 吸気圧 P a c ( をそのままと して、 ス ロ ッ トル弁開度、 第 1補正 係数、 第 2補正係数、 及び下流側吸気圧を前回値と したものである 。 こ う して、 式(10)により算出される前回の仮のス ロ ッ トル弁通過 空気量 m t Dは、 前回のス ロ ッ トル弁通過空気量の真値に近 い値となる。
Figure imgf000014_0001
· ktha · kpac · Φ (Pm(i_1)/Pac(i)) ·'·(10) 前回の仮のス ロ ッ トル弁通過空気量 m t の算出には、 前 回の下流側吸気圧 P m ( i _ uが使用されているが、 この下流側吸気 圧 P m( i-uを算出するのに使用された前前回のス口 ッ トル弁通過 空気量 m t ( i_2)の信頼性は高くなく、 それによ り、 前回の仮のス 口ッ トル弁通過空気量 m t 1 ( i1 に基づき、 前回の下流側吸気圧 P m^ - Dを算出し直すことが好ましい。 それによ り、 ステップ 1 0 5では、 次式(11)を使用して、 前回の仮のス ロ ッ トル弁通過空気 量 m t 1い— Dに基づき前回の下流側吸気圧 P m( i を算出する。 式(11)は、 前述の式(9)とは異なり、 ス ロ ッ トル弁通過空気量と、 算出される下流側吸気圧とは同じ時刻と している。 Pm(i-l)=Pm(i-2)+ At * K 'マ (mtl(i- 1)· Ta(i-l-mC(i- 1)· Tm(i- 1)) •(ID こ う して、 前回の下流側吸気圧 P mt i ^ )が算出し直されれば、 ステップ 1 0 6では、 式(8)を使用して前回の下流側吸気温度 Tm( i _nを算出し直し、 ステップ 1 0 7では、 式(5)を使用して前回の 吸入空気量 m cい- Dを算出し直す。
次いで、 ステップ 1 0 8において、 式(10)と同じ式を使用して、 ステップ 1 0 5において算出し直された前回の下流側吸気圧 P m( i— Dに基づき新たな前回の仮のス ロ ッ トル弁通過空気量 m t 2 )を算出する。 この m t 2 — Dの算出に際して、 使用する上流側吸 気圧 P a c )を m t I ^ Dを使用して算出し直しても良い。 こ う して算出された前回の仮のス ロ ッ トル弁通過空気量 m t 2 (い は 、 さ らに真値に近いものとなっている。
次いで、 ステップ 1 0 9では、 新たな前回の仮のスロ ッ トル弁通 過空気量 m t 2 ^)と古い前回の仮のス ロ ッ トル弁通過空気量 m t 1 ( Dとの差が設定値 dよ り小さくなつたか否かが判断され、 すなわち、 新たに算出される前回の仮のス ロ ッ トル弁通過空気量 m t 2 ( i_ が十分に真値に収束したか否かが判断される。 ステップ 1 0 9における判断が否定される時には、 ステ ップ 1 1 0において , 新たな前回の仮のスロ ッ トル弁通過空気量 m t S ^-Dは、 古い 前回の仮のスロ ッ トル弁通過空気量 m t l ^ i - Dとされ、 ステップ 1 0 5以降の処理が繰り返される。 この時、 ステップ 1 0 5におい て、 前回の仮のス ロ ッ トル弁通過空気量 m t 1い— Dだけでなく、 前回の下流側吸気温度 Tm - D及び前回の吸入空気量 m c )も 真値に近づけられているために、 算出される前回の下流側吸気圧 P m( i )もさらに真値に近づけられる。
ステップ 1 0 9における判断が肯定されれば、 この時の前回の仮 のス ロ ッ トル弁通過空気量 m t 2 (i )は、 殆ど真値となっている 。 それにより、 この前回の仮のス ロ ッ トル弁通過空気量 m t 2 ( i一ェ )と式(1)'''を使用して算出された前回のス ロ ッ トル弁通過空気量 m t ( との差は、 式(1)'''を使用した場合の計算誤差を比較的 正確に表すものとなる。 従って、 ステップ 1 1 1において、 式(1)' ''を使用して算出した今回のス ロ ッ トル弁通過空気量 m t ( i)は前 述の差により補正され、 それによ り、 正確な今回のス ロ ッ トル弁通 過空気量 m tい)を算出することができる。
この今回のスロ ッ トル弁通過空気量 m の算出に使用する今 回のス ロ ッ トル弁開度 TA( は、 現在のアクセルペダルの踏み込 み量に対してスロ ッ トル弁の駆動装置 (ステップモータ) の応答遅 れ等が考慮されて推定される。
次いで、 ステップ 1 1 2では、 ステップ 1 0 1及び 1 0 2によ り 算出された今回の下流側吸気圧 P m( 及び今回の下流側吸気温度 Tm( に基づき式(5)を使用して今回の吸入空気量 m cい)を算出 する。 前述したようにして正確なス ロ ッ トル弁通過空気量が算出さ れるために、 これに基づき算出される下流側吸気圧が正確なものと なり、 さらに、 この下流側吸気圧に基づき算出される吸入空気量も 正確なものとなる。 次いで、 フローチャートには示していないが、 今回の下流側吸気圧 P m( i 今回の下流側吸気温度 T m 今回 のス ロ ッ トル弁通過空気量 m t )、 今回の吸入空気量 m c ( i )、 及 び今回の上流側吸気温度 T a ( i )は、 それぞれ前回値と して記憶さ れ、 次回のフローチャー トの実施に備えられる。
図 5に示すフローチヤ一トでは、 前回の仮のスロ ッ トル弁通過空 気量 m t 2 ( i. を真値にかなり近づけるまで (ステップ 1 0 9に おける判断が肯定されるまで) 、 前回の下流側吸気圧 P mい- D及 び前回の仮のス ロ ッ トル弁通過空気量 m t 2い )の算出を繰り返 すようにしたが、 この繰り返し回数を予め設定するようにしても良 い。 また、 ステップ 1 0 5から 1 1 0の処理を省略して、 ステップ 1 0 4において前回の仮のス ロ ッ トル弁通過空気量 m t 1い — が 算出された後、 直ぐにステップ 1 1 1において今回のス ロ ッ トル弁 通過空気量 m t ( を算出するよ うにしても良い。 この場合におい て、 ステップ 1 1 1の式の m t 2 ^^)は m t 1 ^— )に置き換えて 考えれば良い。
ところで、 燃焼空燃比を正確に制御するためには、 燃料噴射を開 始する以前に気筒内への正確な吸入空気量を推定して、 燃料噴射量 を決定しなければならない。 しかしながら、 正確な吸入空気量を推 定するためには、 厳密には、 吸気弁閉弁時における吸入空気流量を 算出しなければならない。 すなわち、 燃料噴射量を決定する時にお いて、 現在の吸入空気量 m c ( i)ではなく、 吸気弁閉弁時における 吸入空気量 m c (i + n)を算出しなければならない。 これは、 図 1 に 示すような吸気枝管 3に燃料を噴射する内燃機関だけでなく、 吸気 行程において筒内へ直接燃料を噴射する内燃機関においても同様で あ 。
そのためには、 現在において、 現在のス ロ ッ トル弁開度 T A ( だけでなく、 吸気弁閉弁時までの時間厶 t毎のスロ ッ トル弁開度 T A( i + 1 ), TA(i + 2 ), - - ' T A( i + n )に基づき、 式(1)',,におい て T Aを変化させ、 各時間のスロ ッ トル弁通過空気量 m t を算出す ることが必要となる。
各時間のスロ ッ トル弁開度 T Aは、 現在の時間に対するァクセル ペダルの踏み込み変化量に基づき、 この踏み込み変化量が吸気弁閉 弁時まで持続すると して、 各時間のアクセルペダルの踏み込み量を 推定し、 それぞれの推定踏み込み量に対して、 スロ ッ トル弁ァクチ ユエータの応答遅れを考慮して決定することが考えられる。 この方 法は、 スロ ッ トル弁がアクセルペダルと機械的に連結されている場 合にも適用することができる。
しかしながら、 こ う して推定される吸気弁閉弁時におけるス口ッ トル弁開度 T A ( i + n )は、 あく までも予測であり、 実際と一致して いる保証はない。 吸気弁閉弁時におけるスロ ッ トル弁開度 T A ( i + n )を実際と一致させるために、 スロ ッ トル弁を遅れ制御するように しても良い。 アクセルペダルの踏み込み量が変化した時に、 ァクチ ユエータの応答遅れによって、 スロ ッ トル弁開度は遅れて変化する が、 この遅れ制御は、 このスロ ッ トル弁の応答遅れを意図的に増大 させるものである。
例えば、 機関過渡時において、 燃料噴射量を決定する時における 現在のアクセルペダルの踏み込み量に対応するスロ ッ トル弁開度が 、 吸気弁閉弁時に実現されるように、 実際の応答遅れ (無駄時間) を考慮してスロ ッ トル弁のァクチユエータを制御すれば、 現在から 吸気弁閉弁時までの時間毎のスロ ッ トル弁開度 T A ( iい T A ( i + 1 ) , · · · T A ( i + n )を正確に把握することができる。 さ らに具体的 に言えば、 アクセルペダルの踏み込み量が変化する時には、 直ぐに ァクチユエータへ作動信号を発するのではなく、 燃料噴射量を決定 する時から吸気弁閉弁時までの時間から無駄時間を差し引いた時間 だけ経過した時にァクチユエ一タへの作動信号を発するようにする のである。 もちろん、 現在のァクセルペダルの踏み込み量に対応す るスロ ッ トル弁開度を、 吸気弁閉弁時以降に実現するようにスロッ トル弁の遅れ制御を実施しても良い。
こう して、 本発明による内燃機関の吸入空気量推定装置によれば 、 スロ ッ トル弁通過空気量を算出するのに使用される上流側吸気圧 は、 少なく とも大気圧に対するエアタ リ一ナの圧損が考慮されて吸 気通路のスロ ッ トル弁上流側に配置された圧力センサにより測定さ れ、 又は、 少なく とも大気圧に対するエアク リーナの圧損が考慮さ れて算出されるようにしているために、 上流側吸気圧として大気圧 を使用する場合に比較して、 算出されるス ロ ッ トル弁通過空気量が 正確なものとなり、 このス ロ ッ トル弁通過空気量を使用して算出さ れる吸入空気量を正確なものとすることができる。

Claims

請 求 の 範 囲
1 . ス ロ ッ トル弁よ り上流側の上流側吸気圧とス ロ ッ トル弁より 下流側の下流側吸気圧とを使用してス口 ッ トル弁通過空気量を算出 し、 前記ス ロ ッ トル弁通過空気量に基づき吸入空気量を推定する内 燃機関の吸入空気量推定装置において、 前記ス口 ッ トル弁通過空気 量の算出に使用される前記上流側吸気圧は、 少なく とも大気圧に対 するエアク リーナの圧損が考慮されて測定又は算出されることを特 徴とする内燃機関の吸入空気量推定装置。
2 . 今回の前記ス ロ ッ トル弁通過空気量を算出するために使用す る今回の前記上流側吸気圧は、 大気圧からエアク リーナの前記圧損 を減算して算出され、 前記圧損は、 前記エアク リーナを通過する空 気流量と して、 エアフ ローメータによ り検出される吸入空気量又は 前回算出されたス ロ ッ トル弁通過空気量を使用して算出されること を特徴とする請求項 1に記載の内燃機関の吸入空気量推定装置。
3 . 前記圧損を前回算出されたス口 ッ トル弁通過空気量を使用し て算出することによ り今回の前記上流側吸気圧を算出し、 算出され た前記今回の上流側吸気圧と今回の前記下流側吸気圧とを使用して 今回の前記ス ロ ッ トル弁通過空気量が算出され、 算出された前記今 回のス ロ ッ トル弁通過空気量は、 前記今回の上流側吸気圧と前回の 下流側吸気圧とを使用して算出される前回の仮のス ロ ッ トル弁通過 空気量と、 前回の上流側吸気圧と前回の下流側吸気圧とを使用して 算出される前回のス ロ ッ トル弁通過空気量との差により補正される ことを特徴とする請求項 2に記載の内燃機関の吸入空気量推定装置
4 . 前記前回の仮のス ロ ッ トル弁通過空気量が算出された時には 、 前記仮のス口 ッ トル弁通過空気量に基づき前回の下流側吸気圧を 算出し直すことを特徴とする請求項 3に記載の内燃機関の吸入空気 量推定装置。
5 . 前記ス ロ ッ トル弁通過空気量は、 前記下流側吸気圧と前記上 流側吸気圧との比と、 スロ ッ トル弁の開口面積又は開度とに基づき 算出されることを特徴とする請求項 1から 4のいずれかに記載の内 燃機関の吸入空気量推定装置。
6 . 前記ス ロ ッ トル弁通過空気量は、 前記開口面積又は前記開度 だけを変数とする第一関数と、 前記比を変数とする第二関数と、 前 記第一関数をス ロ ッ トル弁より上流側の現在の吸気温度に基づき補 正する第一補正項と、 前記第一関数を現在の前記上流側吸気圧とに 基づき補正する第二補正項との積によって算出されることを特徴と する請求項 5に記載の内燃機関の吸入空気量推定装置。
PCT/JP2004/009580 2003-07-10 2004-06-30 内燃機関の吸入空気量推定装置 WO2005005812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511515A JP4148263B2 (ja) 2003-07-10 2004-06-30 内燃機関の吸入空気量推定装置
EP04747049.7A EP1645743B1 (en) 2003-07-10 2004-06-30 Method for estimating an amount of intake air supplied into a cylinder of an internal combustion engine
US10/529,942 US7085643B2 (en) 2003-07-10 2004-06-30 Device for estimating an amount of intake air of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-195233 2003-07-10
JP2003195233 2003-07-10

Publications (1)

Publication Number Publication Date
WO2005005812A1 true WO2005005812A1 (ja) 2005-01-20

Family

ID=34055717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009580 WO2005005812A1 (ja) 2003-07-10 2004-06-30 内燃機関の吸入空気量推定装置

Country Status (6)

Country Link
US (1) US7085643B2 (ja)
EP (1) EP1645743B1 (ja)
JP (2) JP4148263B2 (ja)
KR (1) KR100699732B1 (ja)
CN (1) CN100532809C (ja)
WO (1) WO2005005812A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273046B2 (en) * 2004-07-09 2007-09-25 Denso Corporation Air-fuel ratio controller for internal combustion engine and diagnosis apparatus for intake sensors
DE102005046504A1 (de) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Vorrichtung zur druckbasierten Lasterfassung
US7546200B2 (en) * 2007-10-31 2009-06-09 Roy Dwayne Justice Systems and methods for determining and displaying volumetric efficiency
US7891236B2 (en) * 2008-08-14 2011-02-22 Richard Lucian Touchette Non obstructive pressure differential valve
JP5031720B2 (ja) * 2008-12-17 2012-09-26 日立オートモティブシステムズ株式会社 内燃機関のスロットル開口面積学習装置および方法および燃料制御装置
JP5277349B2 (ja) * 2010-04-23 2013-08-28 本田技研工業株式会社 内燃機関の吸気パラメータ算出装置および吸気パラメータ算出方法
CN102062005B (zh) * 2010-12-30 2014-04-02 天津锐意泰克汽车电子有限公司 一种计算发动机进气量及进气压力的方法
JP6004077B2 (ja) * 2013-02-12 2016-10-05 日産自動車株式会社 吸入空気量推定装置及び吸入空気量推定方法
DE102014003276A1 (de) * 2014-03-12 2015-09-17 Man Truck & Bus Ag Brennkraftmaschine,insbesondere Gasmotor,für ein Kraftfahrzeug
JP6389791B2 (ja) * 2014-04-10 2018-09-12 愛三工業株式会社 エンジンの燃料噴射量制御装置
DE102014226769A1 (de) * 2014-12-22 2016-06-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Massenstroms durch eine Drossel bei pulsierenden Drücken
CN107288768B (zh) * 2016-03-31 2019-08-23 广州汽车集团股份有限公司 内燃机阿特金森循环进气量的计算方法以及系统
US20180058350A1 (en) * 2016-08-31 2018-03-01 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine
DE102017218109A1 (de) * 2017-10-11 2019-04-11 Robert Bosch Gmbh Verfahren zur Ermittlung eines Luftmassenstroms einer Verbrennungskraftmaschine
CN111664016B (zh) * 2020-06-22 2023-01-06 潍柴动力股份有限公司 发动机的控制方法及系统、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144635U (ja) * 1989-05-11 1990-12-07
JPH0544564A (ja) * 1991-08-08 1993-02-23 Nippondenso Co Ltd エンジン制御用大気圧検出装置
JPH0968092A (ja) * 1995-08-30 1997-03-11 Hitachi Ltd 内燃機関のスロットル開度判定装置
JP2002070633A (ja) * 2000-08-31 2002-03-08 Denso Corp 内燃機関の筒内充填空気量推定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422184C2 (de) * 1994-06-24 2003-01-30 Bayerische Motoren Werke Ag Steuergerät für Kraftfahrzeuge mit einer Recheneinheit zur Berechnung der in einen Zylinder der Brennkraftmaschine strömenden Luftmasse
US5653212A (en) * 1994-11-24 1997-08-05 Nippondenso Co., Ltd. Exhaust gas recirculation system
US5597951A (en) * 1995-02-27 1997-01-28 Honda Giken Kogyo Kabushiki Kaisha Intake air amount-estimating apparatus for internal combustion engines
US6012431A (en) * 1996-06-03 2000-01-11 Nissan Motor Co., Ltd. Control apparatus for internal combustion engine and estimation apparatus for estimating pressure in intake and discharge system of internal combustion engine
JP3551024B2 (ja) * 1998-06-12 2004-08-04 トヨタ自動車株式会社 内燃機関の排気ガス還流制御装置
DE19853817C2 (de) * 1998-11-21 2002-01-10 Porsche Ag Verfahren zur Steuerung einer Brennkraftmaschine
DE19958499C1 (de) * 1999-12-04 2001-08-23 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP2002070663A (ja) 2000-08-28 2002-03-08 Toyota Motor Corp 燃焼式ヒータを有する内燃機関
JP2002130042A (ja) * 2000-10-19 2002-05-09 Denso Corp 内燃機関の筒内充填空気量検出装置
JP4017336B2 (ja) 2000-10-25 2007-12-05 トヨタ自動車株式会社 流量算出装置
JP2002201998A (ja) 2000-11-06 2002-07-19 Denso Corp 内燃機関の制御装置
CN100343499C (zh) * 2001-10-15 2007-10-17 丰田自动车株式会社 内燃机的进气量估算装置
JP3900064B2 (ja) * 2002-10-30 2007-04-04 トヨタ自動車株式会社 内燃機関の吸入空気量推定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144635U (ja) * 1989-05-11 1990-12-07
JPH0544564A (ja) * 1991-08-08 1993-02-23 Nippondenso Co Ltd エンジン制御用大気圧検出装置
JPH0968092A (ja) * 1995-08-30 1997-03-11 Hitachi Ltd 内燃機関のスロットル開度判定装置
JP2002070633A (ja) * 2000-08-31 2002-03-08 Denso Corp 内燃機関の筒内充填空気量推定装置

Also Published As

Publication number Publication date
CN1701173A (zh) 2005-11-23
KR100699732B1 (ko) 2007-03-28
JP4577380B2 (ja) 2010-11-10
KR20050047121A (ko) 2005-05-19
JP4148263B2 (ja) 2008-09-10
US20060100770A1 (en) 2006-05-11
EP1645743A1 (en) 2006-04-12
EP1645743B1 (en) 2019-05-08
CN100532809C (zh) 2009-08-26
EP1645743A4 (en) 2011-12-28
JP2008151145A (ja) 2008-07-03
JPWO2005005812A1 (ja) 2006-08-24
US7085643B2 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
JP4577380B2 (ja) 内燃機関の吸入空気量推定装置
US6877369B2 (en) EGR-gas flow rate estimation apparatus for internal combustion engine
EP2055918B1 (en) Method and device for estimating the intake air flow rate in an internal combustion engine
JP3900080B2 (ja) 内燃機関の吸入空気量推定装置
JP2004143994A (ja) 内燃機関の吸気量推定装置
JP3900064B2 (ja) 内燃機関の吸入空気量推定装置
JP2004211590A (ja) 内燃機関の吸入空気量推定装置
JP4033065B2 (ja) 内燃機関の吸入空気量推定装置
JP4063164B2 (ja) 内燃機関の制御装置
JP4232546B2 (ja) 内燃機関の吸入空気量推定装置
JP2005083345A (ja) 内燃機関の制御装置
JP4049000B2 (ja) 内燃機関の制御装置
JP5772575B2 (ja) スロットル弁開度推定方法
JP5169854B2 (ja) 内燃機関の吸入空気量推定装置
JP4211380B2 (ja) 内燃機関の制御装置
JP4305552B2 (ja) 内燃機関の吸入空気量推定装置
JP4397158B2 (ja) 内燃機関の吸入空気量推定装置
JP4376563B2 (ja) 内燃機関の制御装置
JP2004197618A (ja) 内燃機関の点火時期制御装置
JPH05141299A (ja) 内燃機関の空燃比制御方法
JP2006022762A (ja) 内燃機関の制御装置
JP2005083240A (ja) 内燃機関の吸入空気量推定装置
JPH0510170A (ja) エンジンの燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511515

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20048008239

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747049

Country of ref document: EP

Ref document number: 1020057004825

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006100770

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529942

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057004825

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747049

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529942

Country of ref document: US