WO2005004326A1 - Mems型振動子とその製造方法、フィルタ、並びに通信装置 - Google Patents

Mems型振動子とその製造方法、フィルタ、並びに通信装置 Download PDF

Info

Publication number
WO2005004326A1
WO2005004326A1 PCT/JP2004/009758 JP2004009758W WO2005004326A1 WO 2005004326 A1 WO2005004326 A1 WO 2005004326A1 JP 2004009758 W JP2004009758 W JP 2004009758W WO 2005004326 A1 WO2005004326 A1 WO 2005004326A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
electrode
input
output electrode
vibrator
Prior art date
Application number
PCT/JP2004/009758
Other languages
English (en)
French (fr)
Inventor
Masahiro Tada
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP04747226A priority Critical patent/EP1650868A1/en
Priority to JP2005511419A priority patent/JP4501860B2/ja
Priority to US10/561,715 priority patent/US7504909B2/en
Publication of WO2005004326A1 publication Critical patent/WO2005004326A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2457Clamped-free beam resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2463Clamped-clamped beam resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a MEMs-type vibrator, a method for manufacturing the same, and a filter configured using the MEMs-type vibrator.
  • the present invention also relates to a communication device provided with such a filter.
  • MEMS Microelectectromega1Systems, ultra-small electrical / mechanical complex
  • small devices incorporating MEMS elements have attracted attention.
  • the basic feature of the MEMS element is that a driver configured as a mechanical structure is incorporated in a part of the element, and the driver is driven by Coulomb force between electrodes, etc. It is performed electrically by applying
  • micro-vibration elements formed using micro-machining technology based on semiconductor processes have a small device occupation area, can achieve a high Q value, and can be integrated with other semiconductor devices.
  • Non-Patent Document 1 proposes the use of wireless communication devices as high-frequency filters.
  • FIG. 10 schematically shows a vibrator constituting a high-frequency filter described in Non-Patent Document 1, that is, a MEMS vibrator.
  • the vibrator 1 has a fixed output electrode 4 formed on a semiconductor substrate 2 with an insulating film 3 interposed therebetween.
  • a vibrating beam 6 on the input side is formed opposite the output electrode 4 with a gap 5 therebetween.
  • Beam 6 is conductive and has The output electrode 4 is arranged so as to straddle the output electrode 4 so as to be supported by the anchor part (support portion) 8 [8A, 8B].
  • an input terminal t l is derived from an input electrode 7 connected to an extension of the beam 6 from the anchor portion 8 A, and an output terminal t 2 is derived from an output electrode 4.
  • a high-frequency signal S 1 is supplied to the beam 6 through the input terminal t 1 while the DC bias voltage V 1 is applied between the output electrode 4 and the beam 6.
  • Beam 6 vibrates due to the electrostatic force generated between the six.
  • the product of the time change of the capacitance between the output electrode 4 and the beam 6 due to this vibration and the DC voltage is output from the output electrode 4 through the output terminal t 2.
  • the high-frequency filter outputs a signal corresponding to the natural frequency (resonance frequency) of the beam.
  • FIG. 11 is a simulation of the beam structure of the above-described MEMS type vibrator 1. Parts corresponding to those in FIG. 10 are denoted by the same reference numerals.
  • the resonance frequency f R of the beam 6 is expressed by Equation 1. To increase the frequency in the vibrator 1, the beam length L must be reduced.
  • Non-patent document 1 C. T. — C. N guyen, "Micromechanica 1 comppnentsforminiatur izedlow— powerco mm unication (invitedplenary) roceedings, 1 9 9 9 IEEE MT T— SI nternational
  • FIG. 12 shows an equivalent circuit of the above-mentioned MEMs type oscillator 1.
  • this MEMS type transducer has a cantilever beam.
  • the MEMS resonator 1 a series circuit of a resistance R x, an inductance L x, and a capacitance C x constituting a resonance system, a beam 6 serving as an input electrode, and an output electrode Parasitic capacitance C 0 due to gap 5 between 4 is inserted in parallel.
  • the impedance of the resonance system is Z′x and the impedance of the parasitic capacitance C 0 is Z 0
  • the S ZN ratio of the output signal corresponds to Z O / Z x.
  • the high-frequency signal passes through the impedance Z0 of the parasitic capacitance C0, and the S / N ratio of the output signal decreases.
  • the capacitance C 0 between the beam 6 and the output electrode 4 before bias application is large, and the S / N ratio cannot be obtained.
  • Fig. 7 is a graph based on a simulation showing the relationship between the frequency of the vibrator and Z0ZZx.
  • the straight line a on which Hataji is plotted is the characteristic of the vibrator 1 described above.
  • Z0 / Zx increases.
  • Z0 / ZX becomes smaller than 1.0, it does not function as a vibrator.
  • FIG. 9 shows the MEMs type oscillator.
  • This MEMS type resonator 11 is composed of an input electrode 14 for inputting high-frequency signals S 2 arranged at a required interval from each other via an insulating film 13 on a semiconductor substrate 12, and a high-frequency signal. It comprises an output electrode 15 for outputting, and a vibrable beam (so-called vibrating electrode) 17 arranged with an air gap 16 interposed between the input / output electrodes 14 and 15. Both ends of the beam 17 are supported by anchor portions (supporting portions) 18 (18A, 18B), and have a doubly supported structure.
  • a high-frequency signal S2 is input to an input electrode 14 via an input terminal t1, and a DC pass voltage V2 required for a beam 17 is applied.
  • a high-frequency signal of a target frequency is output from the output terminal t 2 derived to the output electrode 15.
  • the input / output The parasitic capacitance C 0 between the electrodes 14 and 15 decreases.
  • the gap 16 between the beam 17 and the input / output electrodes 14 and 15 can be reduced to obtain a large output signal. Therefore, the SZN ratio of the output signal can be improved as compared with the conventional MEMs type vibrator 1 shown in FIG.
  • the vibration of the second mode or higher is used. For this reason, when measuring the characteristics of the vibrator 11, that is, when measuring the characteristics from a low frequency to a high frequency, the oscillator 17 vibrates in the first mode at a low frequency, and the beam 17 is lower. There is a risk of contact with the electrodes (input electrode 14 and output electrode 15). That is, since the amplitude of the beam 6 is larger in the vibration in the primary mode than in the vibration in the secondary mode, the beam 17 may be in contact with the lower electrode. When the beam 17 comes into contact with the lower electrode, a spike current flows through the input electrode 14, and there is a possibility that peripheral devices may be damaged. Disclosure of the invention
  • the present invention provides a MEMS resonator, a method of manufacturing the same, and a filter that can use the primary vibration mode and improve the SZN ratio of an output signal. To provide.
  • the present invention provides a communication device provided with such a filter.
  • a first MEMs-type vibrator has an output electrode, an input-side oscillatable beam arranged opposite to the output electrode, and an input electrode. Is separated from the beam by DC.
  • the first MEMs-type vibrator according to the present invention has a configuration in which a vibrating beam on the input side is arranged to face the output electrode, and thus can be used in the primary vibration mode. Since the amplitude of the vibration in the higher-order vibration mode is smaller than that in the first-order vibration mode, the beam does not contact the output electrode. Since the output electrode and the input electrode are separated from the beam in a DC manner, the parasitic capacitance between the input and output electrodes is the sum of the capacitance C 01 between the input electrode and the beam and the capacitance C 02 between the beam and the output electrode. It becomes smaller.
  • the anti-resonance peak of the oscillator can be changed.
  • a second MEMs-type vibrator has an output electrode, an input-side oscillatable beam arranged opposite to the output electrode, and an input electrode, wherein the input electrode is a dielectric material. It is connected to the beam through the membrane, and the required DC voltage is applied to the beam.
  • the beam and the extension extending from the beam can be integrally formed in a flat plate shape, and the extension can support the beam.
  • the second MEMs type vibrator faces the output electrode. Because the input side vibrating beam is arranged, it can be used in the primary vibration mode. The vibration in the higher vibration mode than in the first vibration mode has a smaller amplitude, so that the beam does not contact the output electrode. Since the input electrode is connected to the beam via the dielectric film, the input electrode and the output electrode are separated from the beam in a DC manner, and the parasitic capacitance between the input and output electrodes is connected to the input electrode via the dielectric film. The sum of the capacitance C 01 between the beam and the capacitance C 02 between the beam and the output electrode is small.
  • the anti-resonance peak of the vibrator can be changed. In particular, since the film thickness can be changed in the process, the anti-resonance peak can be easily adjusted by changing the film thickness.
  • a first filter according to the present invention has an output electrode, an input-side oscillatable beam arranged opposite to the output electrode, and an input electrode, wherein the output electrode and the input electrode are DC-connected to the beam.
  • the MEMS type vibrator to be used has a configuration in which a vibrating beam on the input side is arranged opposite to the output electrode, so that it can be used in the primary vibration mode.
  • the vibration in the higher vibration mode than in the first vibration mode has a smaller amplitude, so that the beam does not touch the output electrode. Since the output electrode and the input electrode are separated from the beam in a DC manner, the parasitic capacitance between the input and output electrodes is the sum of the capacitance C 01 between the input electrode and the beam and the capacitance C 02 between the beam and the output electrode. , Will be smaller.
  • the anti-resonance peak of the resonator can be changed. Also in this case, the anti-resonance peak can be easily adjusted by changing the film thickness on the process.
  • a second filter according to the present invention comprises: an output electrode; MEMS-type vibration having an input-side oscillatable beam and an input electrode, which are connected to the beam via a dielectric film, and applying a required DC voltage to the beam
  • the beam and an extension extending from the beam can be integrally formed in a plate shape, and the beam can be supported by the extension.
  • the MEMS type vibrator to be used since the MEMS type vibrator to be used has a configuration in which a vibrating beam on the input side is arranged so as to face the output electrode, 1. ! ] Mode.
  • the vibration in the higher vibration mode than in the first vibration mode has a smaller amplitude, so that the beam does not touch the output electrode.
  • the input electrode Since the input electrode is connected to the beam via the dielectric film, the input electrode and output electrode are separated from the beam in a DC manner, and the parasitic capacitance between the input and output electrodes is between the input electrode and the beam via the dielectric film. And the capacitance C 02 between the beam and the output electrode, and becomes smaller.
  • the anti-resonance peak of the vibrator can be changed. Also in this case, the anti-resonance peak can be easily adjusted by changing the film thickness in the process.
  • the method for manufacturing a MEMS vibrator according to the present invention includes forming a vibrating beam on the input side via a sacrificial layer on an output electrode formed on a substrate, and forming a dielectric on one of the fixed ends of the beam. Forming a film; selectively removing the sacrificial layer; and forming an A 1 -based input electrode on the dielectric film.
  • the A1 system input electrode is formed after the sacrificial layer is removed, when integrated into an integrated circuit having another semiconductor element, the A The input electrode of the oscillator can be formed simultaneously with the formation of one electrode. Since an input electrode is formed on one fixed end of the beam via a dielectric film, the output signal A MEMS type vibrator that has a large SZN ratio and can be used in the primary vibration mode can be formed.
  • a first communication device is a communication device including a filter for limiting a band of a transmission signal and / or a reception signal, wherein the output electrode is disposed as a filter, and the filter is disposed in correspondence with the output electrode.
  • the filter constituted by the MEMS vibrator since the filter constituted by the MEMS vibrator is used as the filter, the first communication device can be used in the primary vibration mode, and the primary vibration mode is higher than the higher vibration mode.
  • the amplitude of the vibration at the gate is small and the beam does not contact the output electrode.
  • the parasitic capacitance between the input and output electrodes is the capacitance C 01 between the input electrode and the beam and the capacitance C 02 between the beam and the output electrode. It becomes a sum and becomes smaller.
  • a second communication device is a communication device provided with a filter that limits a band of a transmission signal and / or a reception signal.
  • an output electrode is disposed as a filter, and the output electrode is disposed in correspondence with the output electrode. It has a MEMS vibrator that has an oscillating beam on the input side and an input electrode, the input electrode is connected to the beam via a dielectric film, and a required DC voltage is applied to the beam. It consists of using a filter.
  • the beam and the extension extending from the beam are integrally formed in a flat plate shape as a filter, and the beam is supported at the extension. Can be.
  • the second communication device since the filter constituted by the MEMS vibrator is used as the filter, the second communication device operates in the primary vibration mode. It can be used, and the vibration in the higher vibration mode than the first vibration mode has small amplitude and the beam does not contact the output electrode.
  • the filter since the input electrode is connected to the beam via the dielectric film, the input electrode and the output electrode are separated from the beam in a DC manner, and the parasitic capacitance between the input and output electrodes is the capacitance between the input electrode and the beam. The sum of C 01 and the capacitance C 02 between the beam and the output electrode is smaller.
  • the first MEMS type vibrator according to the present invention can be used in the primary vibration mode.
  • the beam amplitude is smaller than in the first-order vibration mode, so that the beam does not come into contact with the output electrode when measuring the characteristics of the vibrator. Therefore, peripheral devices are not damaged. Since the input and output electrodes are separated from the beam in a DC manner and the parasitic capacitance between the input and output electrodes is reduced, the ratio of the parasitic capacitance impedance Z0 to the resonance system impedance Zx Z0ZZx And the SZN ratio of the output signal can be improved.
  • the anti-resonance peak of the resonator can be changed by the thickness and / or area of the insulating film (dielectric film) interposed between the input electrode and the beam. Design is easy. In particular, when the film thickness is changed, it can be changed on a process, so that the anti-resonance peak can be easily adjusted.
  • the second MEMS vibrator of the present invention can be used in the primary vibration mode.
  • the beam amplitude is smaller than in the first-order vibration mode, so that the beam does not come into contact with the output electrode when measuring the characteristics of the vibrator. Therefore, peripheral devices are not damaged. Since the input electrode is connected to the beam via the dielectric, the parasitic capacitance between the input and output electrodes is reduced, and the parasitic capacitance The ratio Z0 / ZX between the impedance Z0 and the impedance Zx of the resonance system increases, and the S / N ratio of the output signal can be improved.
  • the filter can be easily designed when used in a filter.
  • the film thickness is changed, it can be changed in the process, so that the anti-resonance peak can be easily adjusted.
  • the beam and the extension extending from the beam are integrally formed in a flat plate shape, and the beam is supported at the extension, compared to a configuration in which the beam is supported in a prism shape, Higher vibration frequency can be achieved.
  • the first MEMS type vibrator since the first MEMS type vibrator is used, it can be used in the primary vibration mode. In the higher-order vibration mode, the beam amplitude is smaller than in the first-order vibration mode, so that the beam does not come into contact with the output electrode in the filter characteristic measurement. Therefore, peripheral devices are not damaged. Since the input and output electrodes are separated from the beam in a DC manner, the parasitic capacitance between the input and output electrodes is reduced, and the ratio Z 0 ZZX between the impedance Z0 of the parasitic capacitance and the impedance Z x of the resonance system is reduced. As a result, the S / N ratio of the output signal can be improved.
  • the insulating film (dielectric film) interposed between the input electrode and the beam makes it possible to change the anti-resonance peak of the vibrator depending on the film thickness and / or the area, thus facilitating filter design.
  • the film thickness it can be changed on the process, so that the anti-resonance peak can be easily adjusted.
  • the second MEMS type vibrator since the second MEMS type vibrator is used, it can be used in the primary vibration mode. In the higher vibration mode, the beam amplitude becomes smaller than in the first vibration mode, so that the beam touches the output electrode when measuring the characteristics of the filter. I can't. Therefore, the peripheral device is not damaged. Since the input electrode is connected to the beam via the dielectric and the parasitic capacitance between the input and output electrodes is reduced, the ratio Z 0 / Z x of the impedance Z 0 of the parasitic capacitance to the impedance Z x of the resonant system is As a result, the S / N ratio of the output signal can be improved.
  • the filter can be easily designed.
  • the film thickness is changed, it can be changed on the process, so that the anti-resonance peak can be easily adjusted.
  • the beam and the extension extending from the beam are integrally formed in a flat plate shape, and the beam is supported at the extension, the vibration can be reduced as compared with the configuration in which the beam is supported in a bridge shape. Higher frequencies can be achieved.
  • a MEMS resonator According to the method for manufacturing a MEMS resonator according to the present invention, it is possible to use a primary vibration mode and to manufacture a MEMS resonator having an improved S / N ratio of an output signal. In addition, it enables the manufacture of an integrated circuit in which the MEMS resonator and another semiconductor element are integrated.
  • the beam can come into contact with the output electrode serving as the lower electrode during operation.
  • the output electrode serving as the lower electrode during operation.
  • no spike current flows through the input electrode. Therefore, there is no risk of peripheral devices being damaged by the spike current, and a highly reliable communication device can be provided.
  • FIG. 1 is a configuration diagram showing one embodiment of a MEMS type vibrator according to the present invention.
  • FIG. 2 is a configuration diagram showing another embodiment of the MEMS vibrator according to the present invention.
  • FIG. 3 is a plan view showing an example of the structure of the MEMS resonator of FIG. 2 as viewed from above.
  • FIG. 4 is a plan view showing another example of the structure of the MEMs-type vibrator of FIG. 2 as viewed from above.
  • 5A to 5D are manufacturing process diagrams (part 1) illustrating one embodiment of a method for manufacturing a MEMs-type vibrator according to the present invention.
  • 6A to 6D are manufacturing process diagrams (part 2) illustrating one embodiment of a method for manufacturing a MEMS resonator according to the present invention.
  • FIG. 7 is a simulation graph comparing the Z0./ZX ratio of the conventional example and the MEMS type resonator of the present invention.
  • FIG. 8 is a circuit diagram showing one embodiment of the communication device according to the present invention. .
  • FIG. 9 is a configuration diagram of an MEMS type vibrator according to a comparative example.
  • FIG. 10 is a configuration diagram showing an example of a conventional MEMS type vibrator.
  • FIG. 11 is a simulation diagram of the beam structure of the MEMS type transducer shown in FIG.
  • Fig. 12 is an explanatory diagram showing an equivalent circuit of a conventional MEMS oscillator.
  • FIG. 1 shows an embodiment of a MEMs type vibrator according to the present invention.
  • the MEMS vibrator 21 according to the present embodiment has an output serving as a lower electrode that outputs a high-frequency signal formed on one main surface of the substrate 22, that is, on at least one main surface having insulating properties.
  • Beam 25 bridges output electrode 23 Both ends are anchored (so-called support) so that they are connected to the conductive layer 28 [28A, 28B] disposed outside the output electrode 23. 9 A, 29 B].
  • the input electrode 27 is arranged on the one conductive layer 28 A via a dielectric film 26.
  • An input terminal t 1 is led out to the input electrode 27, and a high-frequency signal S 3 is input to the input electrode 27 through the input terminal t 1.
  • An output terminal t 2 is led to the output electrode 23, and a high-frequency signal of a target frequency is output from the output terminal t 2.
  • R0 is the load resistance.
  • a required direct current (DC) bias voltage V3 is applied to the beam 25 through the wiring layer 30 on the anchor portion 29B and the conductive layer 28B. That is, the beam 25 is formed so as to be separated from the input electrode 27 and the output electrode 23 in a direct current (DC) manner.
  • the substrate 22 is, for example, a substrate in which an insulating film is formed on a semiconductor substrate such as silicon (Si) or gallium arsenide (GaAs), or an insulating substrate such as a quartz substrate or a glass substrate. Is used.
  • a substrate 22 is used in which an insulating film 33 formed by stacking a silicon oxide film 31 and a silicon nitride film 32 on a silicon substrate 34 is used.
  • the output electrode 23, the beam 25 including the anchor portion 29, and the conductive layer 28 are formed of a conductive material, for example, a metal film such as a polycrystalline silicon film or aluminum (A1). It is possible.
  • the input electrode 27 and the wiring layer 30 are formed of a conductive material, and can be formed of, for example, a polycrystalline silicon film or a metal film such as aluminum (A1).
  • a polycrystalline silicon film or a metal film such as aluminum (A1).
  • aluminum (A 1) is used in the final process of the IC, so that the manufacturing process described later will not be performed.
  • the input electrode 27 and the wiring layer 30 are formed of an aluminum (A1) film, and the other output electrode 23 and the beam 25 including the anchor part 29 are formed.
  • the conductive layer 28 is preferably formed of a polycrystalline silicon film doped with impurities.
  • the dielectric film 26 for example, a silicon nitride film (SiN film) can be used.
  • the operation of the MEMs type vibrator 21 according to the present embodiment is as follows.
  • the required DC bias voltage V3 is applied to beam 25. ⁇
  • the frequency signal S 3 is input to the input electrode 27 through the input terminal t l, and is further input to the beam 25 through the capacitance C 01 of the dielectric film 26.
  • the beam 25 oscillates due to the electrostatic force generated between the output electrode 23 and the beam 25, and the time change of the capacitance between the output electrode 23 and the beam 25 due to the vibration and the DC A signal corresponding to the voltage is output from the output electrode 23 through the output terminal t2.
  • the high-frequency filter outputs a signal corresponding to the natural frequency (resonance frequency) of beam 25.
  • the primary mode can be used as the vibration mode.
  • the vibrator 21 has a configuration in which the beam 25 does not come into contact with the output electrode 23 in the primary vibration mode having a large amplitude.
  • the beam 15 does not come into contact with the output electrode 23. Therefore, at the time of measuring the characteristics of the vibrator 21, no spike current flows through the input electrode 27, and the possibility of damaging peripheral devices is avoided.
  • the input electrode 27 is connected to the beam 25 through the dielectric film 26, and the capacitance obtained by adding the capacitance C01 of the dielectric film 26, the capacitance C02 between the beam 15 and the output electrode 23, and the like.
  • C1 (C01XC02) / (C01 + C02) is smaller than the capacitance CO between the input and output electrodes of the conventional vibrator 1 shown in FIG. 10 (C1 ⁇ CO). Therefore, the ratio of the impedance Z 0 of the parasitic capacitance to the impedance Z x of the resonance system (1Z C 1) Z Zx becomes large, and an SZN ratio of the output signal equivalent to that of the oscillator 11 in FIG. 9 can be obtained.
  • the capacitance C01 can be changed by changing the film thickness and / or the area of the dielectric film 26. This makes it possible to change the anti-resonance peak position of the beam 25, which facilitates filter design using the resonator 21. That is, the bandwidth of the filter can be controlled. If the capacity C01 is large, the bandwidth can be large.
  • 5 and 6 show an embodiment of a method of manufacturing the MEMS vibrator 21 according to the present embodiment described above.
  • a substrate 22 is prepared as shown in FIG. 5A.
  • sheet re co the down board 3 4 one principal plane is an insulating film 3 3 Li co phosphorylated film (S i 0 2 film) 3 1 and shea Li co down nitride film (S i N film)
  • substrate 22 on which 32 was deposited by low pressure CVD is prepared.
  • a conductive material layer in this example, a polycrystalline silicon film 36 containing phosphorus (P) having a required thickness is formed.
  • This polycrystalline silicon film 36 is patterned using lithography technology and dry etching technology, and an output electrode 23 as a lower electrode and a conductive layer 28 at a required distance on both sides of the output electrode 23. [28 A, 28 B].
  • substrate 2 2 the entire surface of the insulating film, after forming Ri by the sheet re co phosphorylated film (S i ⁇ 2 film) 3 7 low pressure CVD in this embodiment
  • the surface of the silicon oxide film 37 is planarized using a planarization technique so as to be flush with the output electrode 23 and the conductive layer 28.
  • the silicon oxide film 37 is connected to the output electrode 23 and the conductive layer 28 [28 A, 2 8 B].
  • a part of the silicon oxide film 37 in contact with the conductive layer 28 A on the input electrode side is selectively removed so that the end face of the conductive layer 28 A is exposed.
  • an opening 38 through which the underlying silicon nitride film 32 is exposed is formed.
  • a dielectric film 26, in this example, a silicon nitride film is formed on the entire surface including the opening 38 by a low-pressure CVD method.
  • the dielectric film 26 is patterned into a required pattern using lithography technology and dry etching technology, and the dielectric film 26 covering a part of the side surface and the upper surface facing the opening 38 of the conductive layer 28 A is formed.
  • a sacrificial layer 39 is formed on the entire surface including the output electrode 23.
  • an oxide-based sacrifice layer is preferable as the sacrifice layer 39.
  • a silicon oxide film SiO 2 film
  • the sacrifice layer 39 is patterned using lithography technology and dry etching technology, and the opening 41 is formed so that a part of the conductive layers 28A and 28B is exposed. 4 1 A. 4 1 B].
  • a conductive material layer for forming a beam and an anchor portion on the entire surface including the insides of the openings 41A and 41B in this example, a polycrystalline silicon containing impurities.
  • the film is formed by low-pressure CVD, and then the polycrystalline silicon film is patterned using lithography and dry etching techniques.
  • An integral anchor portion 29A.29B is formed.
  • the anchor portions 29 A and 29 B are respectively connected to the conductive layers 28 A and 28 B of the polycrystalline silicon film through the openings 41 A and 41 B of the sacrificial layer 39. Connected.
  • the sacrificial layer 39 is removed.
  • a sacrificial layer silicon oxide film 3 9 for example, DHF solution (dilute hydrofluoric acid: HF + H 2 0) can be selectively removed silicon oxide film such as
  • the silicon oxide film 39 of the sacrificial layer is removed with a solution.
  • a gap 24 is formed between the output electrode 23 and the beam 25.
  • the dielectric film 26 as the underlying silicon nitride film and the silicon nitride film 32 on the surface of the substrate 22 are exposed.
  • a conductive material layer 42 serving as an input electrode and a wiring layer is formed on the entire surface including the dielectric film 26.
  • a sputtered film of an aluminum (A 1) -based metal film, for example, A 1 -Cu or Al—S i is formed as the conductive material layer 42.
  • the conductive material layer 42 is patterned using lithography technology and dry etching technology to form an input electrode 27 of an A1-based film on the dielectric film 26, and the beam 25 is simultaneously formed.
  • a wiring layer 30 connected to the other conductive layer 28 B that is electrically connected to is formed.
  • the desired MEMs type oscillator 21 is obtained.
  • the target MEMS resonator 21 can be manufactured with high accuracy.
  • an A1-based metal film for the input electrode 27 using an oxide film for the sacrificial layer 39, and forming the input electrode 27 after removing the sacrificial layer 39, for example,
  • the silicon oxide film and the A 1 film are materials used in the CMO S-IC, and the formation of the A 1 electrode and the like is usually the final step in the CMO S-IC. Therefore, the input electrode 27 of A 1 can be formed simultaneously with the A 1 electrode of the CMOS without losing the input electrode 27, and each layer of the vibrator 21 can be formed simultaneously in the process of the CMOS. To facilitate.
  • FIG. 2 shows another embodiment of the MEMS vibrator according to the present invention.
  • a substrate 22 having an insulating film 33 formed on one main surface of a silicon substrate 34 is formed as described above.
  • the input electrode 27 is formed.
  • an output electrode 23 made of, for example, a polycrystalline silicon film is formed on the substrate 22.
  • an insulating film having a required thickness, for example, a silicon nitride film 53 is formed so as to extend on the silicon oxide film 52 and partially on the output electrode 23.
  • the beam 25 and the extension 55 are formed in an integral flat plate, and are formed on an insulating film 53 for regulating the gap 24.
  • the input electrode 27 is formed on the end of one extension 55A via the dielectric film 53, and the wiring layer 30 is formed on the end of the other extension 55B.
  • FIG. 3 is an example of a configuration of the MEMS type vibrator 51 of the present embodiment viewed from above.
  • a substantial beam 25 is a region surrounded by a broken line, and a void 24 is surrounded by a silicon nitride film 53.
  • the beam 25 has an opening 56 for removing the sacrificial layer at the time of manufacturing.
  • FIG. 4 is another example of the configuration of the MEMS type vibrator 51 of the present embodiment viewed from above.
  • the gap 24 below the beam 25 is formed wider than the substantial area of the beam 25.
  • the removal of the sacrificial layer is performed from the side opening 57 of the void 24.
  • the MEMS vibrator 51 it can be used in the primary vibration mode similarly to the vibrator 21 described above.
  • the beam 15 does not come into contact with the output electrode 23. Therefore, when measuring the characteristics of the vibrator 21, no spike current flows through the input electrode 27, and the possibility of damaging peripheral devices is avoided.
  • the input electrode 27 is connected to the beam 25 via the capacitance C 01 of the dielectric film 53, the capacitance C 01 of the dielectric film 53 is not connected to the beam 25 and the output electrode 23.
  • the capacitance C01 can be changed by changing the film thickness and / or area of the dielectric film 53. This makes it possible to change the anti-resonance peak position of the beam 25 in the same manner as described above, thereby facilitating filter design using the oscillator 51.
  • the beam 25 does not have a bridge-like side portion (corresponding to an anchor portion) as shown in FIG. 1 and is supported in a flat plate state. For this reason, since no vibration is generated on the side, the frequency can be easily increased as compared with the vibrator 21 in FIG.
  • a filter can be configured using the MEMs-type vibrator of each embodiment.
  • the filter using the MEMS type resonator can be used as a high frequency (RF) filter, an intermediate frequency (IF) filter, or the like.
  • the present invention provides a communication device that communicates by using electromagnetic waves, such as a mobile phone, a wireless LAN device, a wireless transceiver, a television tuner, and a radio tuner configured using the filter according to the above-described embodiment.
  • a communication device that communicates by using electromagnetic waves, such as a mobile phone, a wireless LAN device, a wireless transceiver, a television tuner, and a radio tuner configured using the filter according to the above-described embodiment.
  • a communication device that communicates by using electromagnetic waves, such as a mobile phone, a wireless LAN device, a wireless transceiver, a television tuner, and a radio tuner configured using the filter according to the above-described embodiment.
  • the transmission data of the I channel and the transmission data of the Q channel are supplied to digital / analog converters (DACs) 201 I and 201 Q, respectively, and analog signals are sent. Convert to a signal.
  • the converted signals of each channel are supplied to band-pass filters 202 I and 202 Q to remove signal components other than the band of the transmission signal, and to produce a noise filter.
  • the output of 202 I and 202 Q is supplied to modulator 210.
  • the signal is supplied to the mixers 212 I and 212Q via the buffer amplifiers 211I and 211Q for each channel, and the transmission PLL (phase-locked loop) is supplied.
  • the frequency signal corresponding to the transmission frequency supplied from the circuit 203 is mixed and modulated, and both mixed signals are added by the adder 214 to form one transmission signal.
  • the frequency phase of the frequency signal to be supplied to the mixer 2 12 I is 90 by the phase shifter 2 13. It is shifted so that the I channel signal and the Q channel signal are quadrature modulated.
  • the output of the adder 214 is supplied to the power amplifier 204 via the buffer amplifier 215, and is amplified so as to have a predetermined transmission power.
  • the signal amplified by the power amplifier 204 is supplied to the antenna 207 via the transmission / reception switch 205 and the high frequency filter 206, and is transmitted by radio from the antenna 207.
  • the high-frequency filter 206 is a band-nos finoleta that removes signal components other than the frequency band transmitted and received by the communication device.
  • a signal received by the antenna 207 is supplied to the high frequency unit 220 via the high frequency filter 206 and the transmission / reception switch 205.
  • the received signal is After being amplified by the filter (LNA) 222, it is supplied to a band-pass filter 222 to remove signal components outside the reception frequency band, and the removed signal is passed through a buffer amplifier 222.
  • the frequency signals supplied from the channel selection PLL circuit 25 1 are mixed to make the signal of a predetermined transmission channel an intermediate frequency signal, and the intermediate frequency signal is passed through the buffer amplifier 2 25 to the intermediate frequency signal.
  • Supply to circuit 230 supplied to circuit 230.
  • the intermediate frequency circuit 230 supplies the supplied intermediate frequency signal to the band 'pass' filter 232 via the buffer amplifier 231 to remove signal components outside the band of the intermediate frequency signal.
  • the removed signal is supplied to an automatic gain adjustment circuit (AGC circuit) 233 to obtain a signal having a substantially constant gain.
  • AGC circuit automatic gain adjustment circuit
  • the intermediate frequency signal gain-adjusted by the automatic gain adjustment circuit 233 is supplied to the demodulator 240 through the buffer amplifier 234.
  • the supplied intermediate frequency signal is supplied to the mixers 242I and 242Q via the buffer amplifier 241 and supplied from the intermediate frequency PLL circuit 252. And demodulate the received I-channel and Q-channel signal components.
  • the I signal mixer 2 4 2 I is supplied with a frequency signal whose signal phase is shifted by 90 ° by the phase shifter 2 4 3, and is quadrature modulated. Demodulates I-channel and Q-channel signal components.
  • the demodulated I-channel and Q-channel signals are supplied to band-nos filters 2531 and 253Q via buffer amplifiers 2444I and 2444Q, respectively.
  • the signal components other than the channel and Q channel signals are removed, and the removed signal is supplied to the analog-to-digital converter (ADC) 254 I and 254 Q.
  • ADC analog-to-digital converter

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本発明は、1次振動モードを使用できると共に、出力信号のS/N比を向上することができる、MEMS型振動子とその製法、及びフィルタを提供するものである。また、本発明は、このフィルタを用いて信頼性の高い通信装置を提供するものである。本発明のMEMS型振動子は、出力電極と、この出力電極に対向して配置された入力側の振動可能なビームと、入力電極とを有し、出力電極及び入力電極27がビームと直流的に分離されて成る。本発明のフィルタは、上記MEMS型振動子を用いて成る。本発明の通信装置は、送信信号及び/又は受信信号の帯域制限を行うフィルタを備え、フィルタとして、上述した本発明に係るフィルタを用いて成る。

Description

明 細 書
ME M S型振動子とその製造方法、 フィルタ、 並びに通信装置 技術分野
本発明は、 MEM S型振動子とその製造方法、 及びこの MEM S型振動子を用いて構成したフィルタに関する。
また、 本発明は、 このよ うなフィルタを備えた通信装置に関す る。 背景技術
近年、 マイ ク ロマシン (MEM S : M i c r o E l e c t r o M e c h i c a 1 S y s t e m s 、 超小型電気的 · 機械的 複合体) 素子、 及び M E M S素子を組み込んだ小型機器が、 注目 されている。 MEM S素子の基本的な特徴は、 機械的構造と して 構成されている駆動体が素子の一部に組み込まれているこ とであ つて、 駆動体の駆動は、 電極間のクーロン力などを応用して電気 的に行われる。
一方、 半導体プロセスによるマイクロマシニング技術を用いて 形成された微小振動素子は、 デバイ スの占有面積が小さいこと、 高い Q値を実現できるこ と、 他の半導体デバイスとの集積が可能 ノ
なこ と、 という特長によ り、 無線通信デバイスの中でも高周波フ ィルタと しての利用がミ シガン大学を始めとする研究機関から提 案されている (非特許文献 1参照)。
図 1 0は、 非特許文献 1 に記載された高周波フィルタを構成す る振動子、即ち MEM S型振動子の概略を示す。この振動子 1 は、 半導体基板 2上に絶縁膜 3 を介して固定の出力電極 4が形成され この出力電極 4に対向して空隙 5 を挾んで入力側の振動可能なビ ーム 6が形成されて成る。 ビーム 6 は、 導電性を有し、 両端のァ ンカ一部 (支持部) 8 〔 8 A, 8 B〕 にて支持されるよ う に、 出 力電極 4をプリ ッジ状に跨いで配置される。
こ の振動子 1 は、 例えばビーム 6 のアンカー部 8 Aからの延長 部に接続された入力電極 7 よ り入力端子 t l が、 出力電極 4 よ り 出力端子 t 2 が夫々導出される。
この振動子 1 は、 出力電極 4 と ビーム 6 との間に D Cバイ アス 電圧 V 1 が印加された状態で、 入力端子 t 1 を通じてビーム 6 に 高周波信号 S 1 が供給され, 出力電極 4 と ビーム 6 間に生じる静 電力でビーム 6が振動する。 この振動による出力電極 4 と ビーム 6 との間の'容量の時間変化と D C電圧の積が出力電極 4から出力 端子 t 2 を通じて出力される。 高周波フィルタではビームの固有 振動数 (共振周波数) に対応した信号が出力される。
図 1 1 は、 上述の ME M S型振動子 1 のビーム構造のシミ ュ レ ーシヨ ンである。 図 1 0 と対応する部分には同一符号を付して示 す。 ビーム 6の共振周波数 f Rは数 1 で表される。 振動子 1 にお いて高周波化するには、 ビームの長さ Lを縮小する必要がある。
数 1
Figure imgf000004_0001
L:ビーム (振動子構造)の長さ
h:ビーム (振動子構造)の厚さ
E:ヤング率
K:電磁カップリング係数
P:膜密度
〔非特許文献 1〕 C . T . — C . N g u y e n , "M i c r o m e c h a n i c a 1 c o m p p n e n t s f o r m i n i a t u r i z e d l o w— p o w e r c o mm u n i c a t i o n ( i n v i t e d p l e n a r y ) r o c e e d i n g s , 1 9 9 9 I E E E MT T— S I n t e r n a t i o n a l
M i c r o w a v e S y m p o s i u m R F MEM S W o r k s h o p , J u n e , 1 8, 1 9 9 9, p p , 4 8 — 7 7 .
図 1 2 は、上述の M EM S型振動子 1 の等価回路を示す。但し、 この M EM S型振動子はビームが片持ち梁式である。 この ME M S型振動子 1では、 入力端子 t l と出力端子 t 2 間に、 共振系を 構成する抵抗 R x とイ ンダクタンス L x と容量 C x の直列回路と 入力電極となる ビーム 6 と出力電極 4間の空隙 5 による寄生容量 C 0 が並列に挿入される。 共振系のイ ンピーダンスを Z 'x、 寄生 容量 C 0 のイ ンピーダンスを Z 0 とする と、 出力信号の S ZN比 は、 Z O / Z xに相当する。 Z O Z Z xの値が 1 . 0 よ り も小さ く なる と、 高周波信号が寄生容量 C 0 のイ ンピーダンス Z 0 を透 過してしまい、 出力信号の S /N比が小さ く なってしま う。 上述 の M E M S型振動子 1 では、 バイアス印加前のビーム 6及ぴ出力 電極 4間の容量 C 0 が大き く 、 S /N比が取れない。
図 7 は振動子における周波数と Z 0 ZZ xの関係を示すシ ミ ユレーショ ンによるグラフである。 秦印をプロ ッ ト した直線 a は 上述の振動子 1 の特性である。 低周波数になる程 Z 0 / Z xの値 が大き く なり、 高周波数になり Z 0 / Z Xが 1 . 0 よ り小さ く な る と振動子と して機能しない。
一方、 本出願人は、 先にビーム及び出力間の容量 C 0 をコ ン ト ロールするこ とで、 出力信号の S /N比を大き くするよ う にした M EM S型振動子を提案した。 図 9 は、 こ の M EM S型振動子の —例を示す。 こ の MEM S型振動子 1 1 は、 半導体基板 1 2上に 絶縁膜 1 3 を介して互いに所要の間隔を置いて配置された高周波 信号 S 2 を入力する入力電極 1 4 と、 高周波信号を出力する出力 電極 1 5 と、 これら入出力電極 1 4、 1 5 に対して空隙 1 6 を挟 んで配置された振動可能なビーム (いわゆる振動電極) 1 7 とを 有して構成される。 ビーム 1 7は、 両端がアンカー部 (支持部) 1 8 ( 1 8 A, 1 8 B ) で支持され両持ち梁構造と される。
この ME M S型振動子 1 1 では、 入力端子 t 1 を通じて入力電 極 1 4に高周波信号 S 2 が入力さ.れ.、 ビーム 1 7に所要.の D Cパ ィ ァス電圧 V2 が印加され、 出力電極 1 5 に導出された出力端子 t 2 から 目的周波数の高周波信号が出力されるよ う になされる。 この MEM S型振動子 1 1 によれば、 入出力電極 1 4及び 1 5の 対向面積が小さ く且つ入出力電極 1 4及び 1 5間の間隔を大き く とるこ とができるので、 入出力電極 1 4及ぴ 1 5間の寄生容量 C 0 が小さ く なる。 また、 大きな出力信号を得るためにビーム 1 7 と入出力電極 1 4、 1 5 との空隙 1 6 を小さ くするこ とができる。 このため、 図 1 0 の従来の MEM S型振動子 1 に比べて出力信号 の S ZN比を向上するこ とができる。
と ころで、 この MEM S型振動子 1 1 では、 2次モー ド以上の 振動を用いている。 このため、振動子 1 1 の特性測定の際、即ち、 低い周波数から高い周波数までの特性を測定しょ う とする と、 低 い周波数では 1次モー ドで振動していまい、 ビーム 1 7が下部電 極 (入力電極 1 4、 出力電極 1 5 ) に接触する虞れがある。 即ち、 1次モー ドの振動は 2次モー ドの振動よ り ビーム 6 の振幅が大き く なるので、 ビーム 1 7が下部電極に接触する虞れが生じる。 ビ ーム 1 7が下部電極に接触したときには、 入力電極 1 4にスパイ ク電流が流れてしまい、 周辺機器を破損する虞れがある。 発明の開示
本発明は、 上述の点に鑑み、 1次振動モー ドを使用できる と共 に、 出力信号の S ZN比を向上するこ とができる、 MEM S型振 動子及びその製造方法、 及びフィルタを提供するものである。
また、 本発明は、 このよ うなフィルタを備えた通信装置を提供 するものである。
本発明に係る第 1 の MEM S型振動子は、 出力電極と、 この出 力電極に対向して配置された入力側の振動可能なビームと、 入力 電極とを有し、 出力電極及び入力電極が、 ビームと直流的に分離 されて成る。
本発明に係る第 1 の MEM S型振動子では、 出力電極に対向し て入力側の振動可能なビームが配置された構成であるので、 1次 振動モー ドで使用できる。 1次振動モー ドょ り も高次の振動モー ドの振動は振幅が小さいので、 ビームが出力電極に接触するこ と がない。 出力電極及び入力電極がビームと直流的に分離されてい るので、 入出力電極間の寄生容量は、 入力電極と ビーム間の容量 C 01 と、 ビームと出力電極間の容量 C 02 の和となり、 小さ く な る。 入力電極と ビーム間に介在する絶縁膜 (誘電体膜) の膜厚又 は/及び面積を変えることによ り、 振動子の反共振ピークを変え るこ とが可能になる。
本発明に係る第 2の MEM S型振動子は、 出力電極と、 この出 力電極に対向して配置された入力側の振動可能なビームと、 入力 電極とを有し、 入力電極が誘電体膜を介してビームに接続され、 ビームに所要の直流電圧が印加されて成る。
この第 2の MEM S型振動子においては、 ビームと ビームから 延長する延長部と を一体に平板状に形成し、 延長部においてビー ムを支持するよ う に構成するこ とができる。
本発明に係る第 2の MEM S型振動子では、 出力電極に対向し て入力側の振動可能なビームが配置された構成であるので、 1次 振動モー ドで使用できる。 1次振動モー ドよ り も高次の振動モー ドの振動は振幅が小さいので、 ビームが出力電極に接触するこ と がない。 入力電極が誘電体膜を介してビームに接続されているの で、 入力電極及び出力電極がビ ム と直流的に分離され、 入出力 電極間の寄生容量が誘電体膜を介した入力電極と ビーム間の容量 C 01 と、 ビームと出力電極間の容量 C 02 との和になり、 小さ く なる。 誘電体膜の膜厚又は/及び面積を変えるこ とによ り、 振動子 の反共振ピークを変えるこ とが可能になる。 特に、 膜厚はプロセ ス上で変更できるので、 膜厚を変えるこ とで反共振ピークの調整 を容易に行う ことができる。
本発明に係る第 1 のフィルタは、 出力電極と、 この出力電極に 対向して配置された入力側の振動可能なビームと、 入力電極とを 有し、 出力電極及び入力電極がビーム と直流的に分離されてなる M E M S型振動子を用いて成る。
本発明に係る第 1 のフィルタでは、 使用する M E M S型振動子 が出力電極に対向して入力側の振動可能なビームを配置した構成 であるので、 1次振動モー ドで使用できる。 1次振動モー ドよ り も高次の振動モー ドの振動は振幅が小さいので、 ビームが出力電 極に接触するこ とがない。 出力電極及ぴ入力電極がビームと直流 的に分離されているので、 入出力電極間の寄生容量は、 入力電極 と ビーム間の容量 C 01 と、 ビームと出力電極間の容量 C 02 の和 となり、 小さ く なる。 入力電極と ビーム間に介在する絶縁膜 (誘 電体膜) の膜厚又は/及び面積を変えるこ とによ り 、 振動子の反共 振ピークを変えるこ とが可能になる。 この場合も、 膜厚をプロセ ス上で変えるこ とによ り、 反共振ピークの調整を容易に行う こ と ができる。
本発明に係る第 2 のフィルタは、 出力電極と、 この出力電極に 対向して配置された入力側の振動可能なビームと、 入力電極とを 有し、 入力電極が誘電体膜を介してビームに接続され、 ビームに 所要の直流電圧が印加されてなる M E M S型振動子を用いて成る, この第 2のフィルタにおいては、 ビームと ビームから延長する 延長部とを一体に平板状に形成し、 延長部においてビームを支持 するよ うに構成するこ とができる。
本発明に係る第 2のフィルタでは、 使用する M E M S型振動子 が出力電極に対向して入力側の振動可能なビームを配置した構成 であるので、 1 .次振!!]モー ドで使用できる。 1次振動モー ドよ り も高次の振動モー ドの振動は振幅が小さいので、 ビームが出力電 極に接触するこ とがない。 入力電極が誘電体膜を介してビームに 接続されているので、 入力電極及び出力電極がビームと直流的に 分離され、 入出力電極間の寄生容量が誘電体膜を介した入力電極 と ビーム間の容量 C 01 と、 ビームと出力電極間の容量 C 02 との 和になり、 小さ く なる。 誘電体膜の膜厚又は面積を変えるこ とに よ り、 振動子の反共振ピークを変えるこ とが可能になる。 この場 合も、 膜厚をプロセス上で変えるこ とによ り 、 反共振ピークの調 整を容易に行う こ とができる。
本発明に係る M E M S型振動子の製造方法は、 基板上に形成し た出力電極上に犠牲層を介して入力側の振動し得る ビームを形成 する と共に、 ビームの一方の固定端上に誘電体膜を形成する工程 と、 犠牲層を選択的に除去する工程と、 誘電体膜上に A 1 系の入 力電極を形成する工程を有する。
本発明に係る M E M S型振動子の製造方法では、 犠牲層を除去 した後に、 A 1 系の入力電極を形成するので、 他の半導体素子を 有する集積回路に一体に組み込む場合に、 最終工程の A 1 電極の 形成と同時に振動子の入力電極を形成できる。 ビームの一方の固 定端上に誘電体膜を介して入力電極を形成するので、 出力信号の S Z N比が大きく且つ 1次振動モー ドで使用できる M E M S型振 動子の形成ができる。
本発明に係る第 1 の通信装置は、 送信信号及び/又は受信信号 の帯域制限を行う フィルタを備えた通信装置において、 フィルタ と して、 出力電極と、 この出力電極に対応して配置された入力側 の振動可能なビームと、 入力電極とを有し、 出力電極及ぴ入力電 極がビームと直流的に分離されてなる M E M S型振動子で構成さ れたフィルタを用いて成る。
本発明に係る第 1 の通信装置では、 フィルタ と して上記 M E M S型振動子で構成したフィルタを用いるので、 1次振動モー ドで 使用でき、 1次振動モー ドょ り も高次の振動モー ドにおける振動 は振幅が小さ く ビームが出力電極に接触するこ とがない。 フィル タにおける入力電極及ぴ出力電極がビーム と直流的に分離されて いるので、 入出力電極間の寄生容量は入力電極と ビーム間の容量 C 01 と、 ビームと出力電極間の容量 C 02の和となり、 小さ く な る。
本発明に係る第 2 の通信装置は、 送信信号及び/又は受信信号 の帯域制限を行う フィルタを備えた通信装置において、 フィルタ と して、 出力電極と、 この出力電極に対応して配置された入力側 の振動可能なビーム と、 入力電極とを有し、 入力 '電極が誘電体膜 を介してビームに接続され、 ビームに所要の直流電圧が印加され てなる M E M S型振動子で構成されたフィルタを用いて成る。
この第 2 の通信装置においては、 フィルタ と して、 ビームと ビ ームから延長する延長部とを一体に平板状に形成し、 延長部にお いてビームを支持するよ う に構成するこ とができる。
本発明に係る第 2 の通信装置では、 フィルタ と して上記 M E M S型振動子で構成したフィルタを用いるので、 1次振動モー ドで 使用でき、 1次振動モー ドよ り も高次の振動モー ドにおける振動 は振幅が小さ く ビームが出力電極に接触することがない。 フィル タにおいて、 入力電極が誘電体膜を介してビームに接続されるの で、 入力電極及び出力電極がビーム と直流的に分離され、 入出力 電極間の寄生容量は入力電極と ビーム間の容量 C 01 と、 ビームと 出力電極間の容量 C 02の和となり、 小さ く なる。 フィルタにおい て誘電体膜の膜厚又は/及ぴ面積を変えるこ とで、 振動子の反共 振ピークを変えるこ とが可能になる。
上述したよ .う に、 本発明に係る第 1 の M E M S型振動子によれ ば、 1次振動モー ドで使用するこ とができる。 高次の振動モー ド ではビームの振幅が 1次振動モー ドょ り小さ く なるので、 振動子 の特性測定においてビームが出力電極に接触するこ とがない。 こ のため周辺機器を破損するこ とがない。 入力電極及ぴ出力電極が ビームと直流的に分離され、 入出力電極間の寄生容量が小さ く な るので、 寄生容量のイ ンピーダンス Z0 と共振系のインピーダン ス Z x との比 Z 0 Z Z xが大き く なり、 出力信号の S Z N比を向 上するこ とができる。 入力電極と ビーム間に介在する絶縁膜 (誘 電体膜) の膜厚又は/及び面積によって振動子の反共振ピークを 変えるこ とが可能になるので、 フィルタに使用したときに、 フィ ルタの設計が容易にできる。 特に、 膜厚を変える ときには、 プロ セス上で変更できるので、 反共振ピークの調整が容易になる。
本発明に係る第 2の M E M S型振動子によれば、 1次振動モー ドで使用することができる。 高次の振動モー ドではビームの振幅 が 1次振動モー ドよ り小さ く なるので、 振動子の特性測定におい てビームが出力電極に接触するこ とがない。 このため周辺機器を 破損することがない。 入力電極が誘電体を介してビームに接続さ れ、 入出力電極間の寄生容量が小さ く なるので、 寄生容量のイ ン ピーダンス Z0 と共振系のイ ンピーダンス Z x との比 Z 0 / Z X が大きく なり、 出力信号の S / N比を向上するこ とができる。 入 力電極における誘電体膜の膜厚又は/及び面積によって振動子の 反共振ピークを変えるこ とが可能になるので、 フィルタに使用し たときに、 フィルタの設計が容易にできる。 膜厚を変える ときに は、 プロセス上で変更できるので、 反共振ピークの調整が容易に なる。 ビームと該ビームから延長する延長部とを一体に平板状に 形成し、 延長部においてビームを支持した構成とする ときは、 ビ ームがプリ ッジ状に支持された構成に比較して、 振動の高周波化 を図るこ とができる。
本発明に係る第 1 のフィルタによれば、 上記第 1 の M E M S型 振動子を使用するので、 1次振動モー ドで使用するこ とができ る。 高次の振動モー ドではビームの振幅が 1次振動モー ドょ り小さ く なるので、 フィルタの特性測定においてビームが出力電極に接触 するこ とがない。 このため周辺機器を破損するこ とがない。 入力 電極及ぴ出力電極がビームと直流的に分離され、 入出力電極間の 寄生容量が小さ く なるので、 寄生容量のイ ンピーダンス Z0 と共 振系のイ ンピーダンス Z x との比 Z 0 Z Z Xが大き く なり 、 出力 信号の S N比を向上する とができる。 入力電極と ビーム間に 介在する絶縁膜 (誘 '電体膜) め膜厚又は/及び面積によって振動子 の反共振ピークを変えることが可能になるので、 フィルタの設計 が容易にできる。 膜厚を変える ときには、 プロセス上で変更でき るので、 反共振ピークの調整が容易になる。
本発明に係る第 2 のフィルタによれば、 上記第 2 の M E M S型 振動子を使用するので、 1次振動モー ドで使用するこ とができる。 高次の振動モー ドではビームの振幅が 1次振動モー ドょ り小さ く なるので、 フィルタの特性測定においてビームが出力電極に接触 することがない。 このため周辺機器を破損することがない。 入力 電極が誘電体を介してビームに接続され、 入出力電極間の寄生容 量が、 小さ く なるので、 寄生容量のインピーダンス Z0 と共振系 のイ ンピーダンス Z x と の比 Z 0 / Z x が大き く なり 、 出力信号 の S /N比を向上するこ とができる。 入力電極における誘電体膜 の膜厚又は/及ぴ面積によって振動子の反共振ピークを変えるこ とが可能になるので、 フ ィルタ の設計が容易にできる。 膜厚を変 える ときには、 プロセス上で変更できるので、 反共振ピークの調 整が容易になる。 ビームと該ビームから延長する延長部とを一体 に平板状に形成し、 延長部においてビームを支持した構成とする ときは、 ビームがブリ ッジ状に支持された構成に比較して、 振動 の高周波化を図るこ とができる。
本発明に係る M E M S型振動子の製造方法によれば、 1次振動 モー ドを使用でき、 且つ出力信号の S /N比を向上した MEM S 型振動子を製造するこ とができる。 また、 ME M S型振動子と他 の半導体素子を一体にした集積回路の製造を可能にする。
本発明に係る第 1 、 第 2の通信装置によれば、 また上記第 1 、 第 2のフィルタを備えることによ り、 フィルタにおいて、 動作時 にビームが下部電極である出力電極に接触するこ とはなく 、 入力 電極にスパイ ク電流が流れることがない。 従って、 スパイ ク電流 によ り周辺機器を破損する虞れはなく 、 信頼性の高い通信装置を 提供するこ とができる。 図面の簡単な説明
図 1 は本発明に係る M E M S型振動子の一実施の形態を示す 構成図である。
図 2は本発明に係る M E M S型振動子の他の実施の形態を示 す構成図である。 図 3は図 2の ME M S型振動子の上面から見た構造の一例を 示す平面図である。
図 4は図 2の ME M S型振動子の上面から見た構造の他の例 を示す平面図である。
図 5 A〜Dは本発明に係る ME M S型振動子の製造方法の一 実施の形態を示す製造工程図 (その 1 ) である。
図 6 A〜Dは本発明に係る MEM S型振動子の製造方法の一 実施の形態を示す製造工程図 (その 2 ) である。
図 7は従来例と本発明の M E M S型振動子の Z 0. / Z X比を 比較したシミ ュ レーシ ョ ンによるグラフである。
図 8 は本発明に係る通信装置の一実施の形態を示す回路図で ある。 .
図 9は比較例に係る M E M S型振動子の構成図である。
図 1 0は従来の M E M S型振動子の例を示す構成図である。 図 1 1 は図 1 0の ME M S型振動子のビーム構造のシミ ュレ ーショ ン図である。
図 1 2は従来の M E M S型振動子の等価回路を示す説明図で
¾) 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
図 1 は、本発明に係る M EM S型振動子の一実施の形態を示す。 本実施の形態に係る ME M S型振動子 2 1 は、 基板 2 2の一主面 上、 即ち少なく と も絶縁性を有する一主面上に形成した高周波信 号を出力する下部電極となる出力電極 2 3 と、 この出力電極 2 3 に対向して空隙 2 4 を挟んで入力側のビーム(いわゆる振動電極) 2 5 と、 ビーム 2 5 に対して誘電体膜 2 6 を介して接続した入力 電極 2 7 とを有して成る。 ビーム 2 5 は、 出力電極 2 3 をブリ ツ ジ状に跨ぎ、出力電極 2 3 の外側に配置した導電層 2 8〔 2 8 A, 2 8 B ] に接続されるよ う に、 両端部をアンカー部 (いわゆる支 持部) 2 9 [ 2 9 A , 2 9 B ] に一体に支持される。 入力電極 2 7は、 この一方の導電層 2 8 A上に誘電体膜 2 6 を介して配置さ れる。
入力電極 2 7には入力端子 t 1 が導出され、 入力端子 t 1 を通 じて入力電極 2 7 に高周波信号 S 3 が入力されるよ う になす。 出 力電極 2 3 には出力端子 t 2 が導出され、 出力端子 t 2 から 目的 周波数の高周波信号が出力されるよ う になす。. R0 は負荷抵抗で ある。 ビーム 2 5 には、 アンカー部 2 9 B及ぴ導電層 2 8 B上の 配線層 3 0 を通じて所要の直流 (D C) バイアス電圧 V3 が印加 されるよ う になす。 即ち、 ビーム 2 5 は、 入力電極 2 7及ぴ出力 電極 2 3 と直流 (D C) 的に分離されるよ う に形成される。
基板 2 2は、 例えばシ リ コ ン ( S i ) やガリ ウム砒素 ( G a A s ) などの半導体基板上に絶縁膜を形成した基板、 石英基板ゃガ ラス基板のよ うな絶縁性基板等が用いられる。 本例では、 シリ コ ン基板 3 4上にシリ コン酸化膜 3 1及ぴシリ コン窒化膜 3 2 を積 層した絶縁膜 3 3 を形成した基板 2 2が用いられる。 出力電極 2 3、 アンカー部 2 9 を含むビーム 2 5及び導電層 2 8 は、 導電材 料で形成し、 例えば多結晶シ リ コ ン膜、 アルミ ニウム ( A 1 ) な どの金属膜にて形成するこ とが可能である。 入力電極 2 7及び配 線層 3 0は、 導電材料で形成され、 例えば多結晶シ リ コ ン膜、 ァ ルミニゥム( A 1 )などの金属膜にて形成するこ とが可能である。 なお、 本 MEM S型振動子 2 1 を例えば CMO S— I Cに一緒に 作り込むデバイスに搭載するよ うな場合には、 I Cの最終工程で アルミニウム (A 1 ) を使う ので、 後述する製造時の犠牲層との 関係で、 入力電極 2 7及ぴ配線層 3 0 をアルミ ニ ウム ( A 1 ) 膜 で形成し、 他の出力電極 2 3、 アンカー部 2 9 を含むビーム 2 5 及び導電層 2 8 は、 不純物を ドーピングした多結晶シ リ コ ン膜で 形成するこ とが好ましい。 誘電体膜 2 6 と しては、 例えばシリ コ ン窒化膜 ( S i N膜) を用いるこ とができる。
本実施の形態に係る ME M S型振動子 2 1 の動作は次の通りで ある。
ビーム 2 5には所要の D Cバイ アス電圧 V3 が印加される。 髙 周波信号 S 3 が、 入力端子 t l を通して入力電極 2 7 に入力され る と共に、 さ らに誘電体膜 2 6 による容量 C 01 を通じてビーム 2 5入力される。 前述と同様に、 出力 ·電極 2 3 と ビーム 2 5間に生 じる静電力でビーム 2 5が振動し、 この振動による出力電極 2 3 と ビーム 2 5 との間の容量の時間変化と D C電圧に応じた信号が 出力電極 2 3から出力端子 t 2 を通じて出力される。 高周波フィ ルタではビーム 2 5 の固有振動数 (共振周波数) に対応した信号 が出力される。
本実施の形態に係る ME M S型振動子 2 1 によれば、 振動モー ドと しては 1次モー ドを使う こ とができる。この振動子 2 1 では、 ビーム 2 5が振幅の大きい 1次振動モー ドで出力電極 2 3 に接触 しない構成とするこ とから、 1次振動モー ドょ り振幅の小さい高 次の振動モー ドでビーム 1 5が出力電極 2 3に接触するこ とがな い。 従って、 振動子 2 1 の特性測定に際して、 入力電極 2 7 にス パイ ク電流が流れるこ とはなく 、 周辺機器を破損する虞れが回避 される。
入力電極 2 7が誘電体膜 2 6 を介してビーム 2 5 に接続されて おり 、誘電体膜 2 6 における容量 C 01 と ビーム 1 5 と出力電極 2 3間の容量 C 02 とを加算した容量 C 1= ( C 01XC 02) / ( C 01 + C 02) は、 前述の図 1 0の従来の振動子 1 の入出力電極間の容量 C O よ り小さく なる ( C 1く C O )。 このため、 寄生容量のインピ 一ダンス Z 0 と共振系のインピーダンス Z x との比 (1Z C 1) Z Z xが大き く なり、 図 9 の振動子 1 1 と同等の出力信号の S ZN 比を得るこ とができる。 図 7の口印のプロ ッ ト bで示すよ う に、 本実施の形態の振動子 2 1 では、 従来の Ζ 0 / Ζ χ = 1 . 0の周 波数において、 Z 0 / Z X = 6 0〜 1 0 0 に向上することが認め られる。
この振動子 2 1 では、 誘電体膜 2 6 の膜厚又は/及び面積を変 えるこ とによ り、容量 C01 を変えるこ とができる。これによつて、 ビーム 2 5の反共振ピーク位置を変えるこ とが可能になり、 振動 子 2 1 を用いたフ ィルタ設計が容易になる。 即ち、 フ ィ ルタ の帯 域幅をコン トロールするこ とができる。容量 C01を大き く取れば 帯域幅も大き く取れる。
図 5及ぴ図 6 は、 上述の本実施の形態に係る MEM S型振動子 2 1 の製造方法の実施の形態を示す。
先ず、 図 5 Aに示すよ う に基板 2 2 を用意する。 本例では、 シ リ コ ン基板 3 4 の一主面上に絶縁膜 3 3 であるシ リ コ ン酸化膜 ( S i 02 膜) 3 1及びシ リ コ ン窒化膜 ( S i N膜) 3 2 を減圧 C V D法によ り堆積した基板 2 2 を用意する。
次に、 図 5 Bに示すよ う に、 導電材料層、 本例では所要の厚さ の リ ン ( P ) を含有した多結晶シ リ コ ン膜 3 6 を形成する。 こ の 多結晶シリ コン膜 3 6 をリ ソグラフィ技術及び ドライエッチング 技術を用いてパターユングし、 下部電極である出力電極 2 3 と、 出力電極 2 3の両側に所要間隔だけ離れた導電層 2 8 〔 2 8 A、 2 8 B〕 とを形成する。
次に、 図 5 Cに示すよ う に、 基板 2 2の全面に絶縁膜、 本例で はシ リ コ ン酸化膜 ( S i 〇2 膜) 3 7 を減圧 C V D法によ り形成 した後、 平坦化技術を用いて、 シ リ コ ン酸化膜 3 7の表面を出力 電極 2 3及び導電層 2 8 と面一となるよ う に平坦化する。 これに よ り 、シ リ コ ン酸化膜 3 7は出力電極 2 3 と導電層 2 8〔 2 8 A , 2 8 B〕 との間を埋め込むよ う に形成される。
次に、 図 5 Dに示すよ うに、 入力電極側の導電層 2 8 Aに接す るシリ コン酸化膜 3 7の一部を導電層 2 8 Aの端面が露出するよ うに選択的に除去し、 下地のシリ コン窒化膜 3 2が露出する開口 3 8 を形成する。 次いで、 開口 3 8 を含む全面に誘電体膜 2 6、 本例ではシリ コン窒化膜を減圧 C V D法によ り形成する。 その後 リ ソグラフィ技術及びドライエッチング技術を用いて誘電体膜 2 6 を所要のパターンにパターユングし、 導電層 2 8 Aの開口 3 8 に臨む側面と上面の一部を被覆した誘電体膜 2 6 を形成する。
次に、 図 6 Aに示すよ う に、 出力電極 2 3上を含む全面に犠牲 層 3 9 を形成する。 本例では犠牲層 3 9 と して酸化膜系の犠牲層 が好ま しく 、 例えばシリ コン酸化膜 ( S i 02 膜) を減圧 C V D 法によ り形成する。 犠牲層 3 9 の形成後、 リ ソグラフィ技術及び ドライエッチング技術を用いて犠牲層 3 9 をパターユングし、 導 電層 2 8 A及び 2 8 Bの一部が露出するよ う に開口 4 1〔 4 1 A . 4 1 B〕 を形成する。
次に、 図 6 Bに示すよ うに、 開口 4 1 A, 4 1 B内を含む全面 にビームとアンカー部を形成するための導電材料層、 本例では不 純物を含有した多結晶シリ コン膜を減圧 C V D法によ り形成する, その後、 多結晶シリ コン膜をリ ソグラフィ技術及びドライエッチ ング技術を用いてパターニングし、 多結晶シリ コン膜による振動 電極となる ビーム 2 5 とその両端に一体のアンカー部 2 9 A . 2 9 Bを形成する。 このと き、 夫々のアンカー部 2 9 A及び 2 9 B は、 犠牲層 3 9の開口 4 1 A , 4 1 Bを介して多結晶シリ コン膜 による導電層 2 8 A及ぴ 2 8 Bに接続される。
次に、 図 6 Cに示すよ うに、 犠牲層 3 9 を除去する。 本例では 犠牲層であるシリ コン酸化膜 3 9 を例えば D H F溶液 (希フッ化 水素酸: H F + H20) などのシリ コン酸化膜を選択的に除去でき る溶液によ り、 犠牲層のシリ コン酸化膜 3 9 を除去する。 この犠 牲層 3 9の除去によ り、 出力電極 2 3 と ビーム 2 5 との間に空隙 2 4を形成する。犠牲層であるシリ コン酸化膜 3 9の除去によ り、 下地のシリ コン窒化膜である誘電体膜 2 6及び基板 2 2表面のシ リ コン窒化膜 3 2が露出する。
次に、 図 6 Dに示すよ うに、 誘電体膜 2 6上を含む全面に入力 電極及び配線層となる導電材料層 4 2 を形成する。 導電材料層 4 2 と して本例ではアルミニウム (A 1 ) 系の金属膜、 例えば A 1 - C u , あるいは A l — S i のスパッタ膜を形成する。 その後、 リ ソグラフィ技術及びドライエッチング技術を用いて導電材料層 4 2 をパターユングし、 誘電体膜 2 6上に A 1 系膜によ'る入力電 極 2 7 を形成し、 同時にビーム 2 5 に導通した他方の導電層 2 8 Bに接続する配線層 3 0 を形成する。 このよ う にして、 目的の M EM S型振動子 2 1 を得る。
本実施の形態に係る製造方法によれば、 目的の MEM S型振動 子 2 1 を精度良く製造することができる。 特に、 入力電極 2 7に A 1 系の金属膜を用い、 犠牲層 3 9 に酸化膜系を用い、 犠牲層 3 9を除去した後入力電極 2 7を形成するこ とによ り、 例えば共通 基板 2 2上に CMO S— I Cを形成する場合に良好に製造するこ とができる。 即ち、 シリ コン酸化膜、 A 1 膜は CMO S— I Cで 使われる材料であり、 且つ、 通常 CMO S— I Cでは A 1 電極な どの形成が最終工程となる。 従って、 A 1 の入力電極 2 7 を欠損 することなく CMO Sの A 1 電極などと同時に形成き、 また振動 子 2 1 の各層を CMO Sの工程で同時に形成することが可能にな り、 製造を容易にする。
図 2は、 本発明に係る MEM S型振動子の他の実施の形態を示 す。 本実施の形態に係る MEM S型振動子 5 1 では、 前述と同様 にシリ コン基板 3 4の一主面に絶縁膜 3 3 を形成した基板 2 2が 用いられ、 この基板 2 2上に出力電極 2 3 と、 出力電極 2 3 に対 して空隙を挟んで配置されたビーム 2 5 と、 ビーム 2 5に対して 誘電体膜を介して接続された入力電極 2 7 とが形成されて成る。
即ち、 基板 2 2上に例えば多結晶シ リ コ ン膜による出力電極 2 3が形成される。 基板 2 2上には出力電極 2 3 と面一となるよ う に平坦化された絶縁膜、例えばシリ コ ン酸化膜 5 2が形成される。 この面上にシリ コ ン酸化膜 5 2上と一部出力電極 2 3上に延びる よ う に所要の膜厚の絶縁膜、 例えばシ リ コ ン窒化膜 5 3が形成さ る。 このシリ コン窒化膜 5 3の導厚.に規制された空隙 2 4を挟ん で出力電極 2 3 と対向し両端が平坦化されたシリ コン窒化膜 5 3 上に接触して延長するビーム 2 5が形成される。 ビーム 2 5の両 側に延長する延長部 5 5 〔 5 5 A, 5 5 B がアンカー部を兼ね る導電層となる。 こ の ビーム 2 5 と延長部 5 5 は一体の平板状に 形成され、空隙 2 4 を規制するための絶縁膜 5 3上に形成される。 一方の延長部 5 5 Aの端部上に誘電体膜 5 3 を介して入力電極 2 7が形成され、 他方の延長部 5 5 Bの端部上に配線層 3 0が形成 される。
図 3 は、 本実施の形態の M E M S型振動子 5 1 を上面から見た 構成の一例である。 この構成では、 実質的なビーム 2 5が破線で 囲まれた領域であり 、 空隙 2 4が周囲をシリ コン窒化膜 5 3で囲 われている。 そして、 ビーム 2 5 には製造時に犠牲層を除去する ための開口 5 6が形成さる。
図 4は、 本実施の形態の M E M S型振動子 5 1 を上面から見た 構成の他の例である。 こ の構成では、 ビーム 2 5下の空隙 2 4が 実質的なビーム 2 5 の領域よ り広く形成される。犠牲層の除去は、 空隙 2 4の側開口 5 7から行われる。
本実施の形態に係る M E M S型振動子 5 1 によれば、 前述の振 動子 2 1 と同様に 1次振動モー ドで使用するこ とができ、 高次の 振動モー ドでは当然ビーム 1 5が出力電極 2 3 に接触しない。 従 つて、 振動子 2 1 の特性測定に際して、 入力電極 2 7 にスパイ ク 電流が流れることはなく 、周辺機器を破損する虞れが回避される。 また、入力電極 2 7が誘電体膜 5 3 による容量 C 01 を介してビー ム 2 5に接続されているので、誘電膜 5 3における容量 C01 と ビ ーム 2 5 と出力電極 2 3間の容量 C02 とを加算した容量 C l== ( C OlxC 02) / ( C 01+ C 02) は、 前述の図 1 0の従来の振動子 1 の入出力電極間の容量 CO よ り小さ く なる ( C 1 < C0 )。 こ のため、 寄生容量のイ ンピーダンス Z 0 と共振系のイ ンピーダン ス Z x との比 ( 1 /C 1) Z Z xが大き く なり 、 図 9 の振動子 1 1 と同等の出力信号の S ZN比が得られる。
誘電体膜 5 3の膜厚又は/及び面積を変えるこ とによ り、 容量 C01 を変えるこ とができる。 これによつて前述と同様に、 ビーム 2 5の反共振ピーク位置を変えるこ とが可能になり、 振動子 5 1 を用いたフィルタ設計が容易になる。
さ らに、 ビーム 2 5 は、 図 1 のよ うなブリ ッジ状の側部 (アン カー部に相当) がなく 、 平板状態で支持されている。 このため、 側部の振動が発生しないこ とから、 図 1 の振動子 2 1 に比べて高 周波化がし易く なる。
本発明は、 上述したよ う に各実施の形態の ME M S型振動子を 用いてフィルタを構成するこ とができる。 この MEM S型振動子 によるフィルタは、 高周波 (R F ) フィルタ、 中間周波 ( I F ) フィルタ等と して用いるこ とができる。
本発明は、 上述した実施の形態のフィルタを用いて構成される 携帯電話機、 無線 L AN機器、 無線トランシーバ、 テレビチュー ナ、 ラジオチューナ等の、 電磁波を利用して通信する通信装置を 提供することができる。 次に、 上述した本発明の実施の形態のフィルタを適用した通信 装置の構成例を、 図 8 を参照して説明する。
まず送信系の構成について説明する と、 I チャンネルの送信デ ータ と Qチャンネルの送信データを、 それぞれデジタル/アナ口 グ変換器 (D A C ) 2 0 1 I及び 2 0 1 Qに供給してアナログ信 号に変換する。 変換された各チャンネルの信号は、 バン ド ·パス ' フィルタ 2 0 2 I 及ぴ 2 0 2 Qに供給して、 送信信号の帯域以外 の信号成分を除去し、 ノ ン ド · ノ ス · フィルタ 2 0 2 I及ぴ 2 0 2 Qの出力を、 変調器 2 1 0に供給する。
変調器 2 1 0では、 各チャンネルごとにバッファアンプ 2 1 1 I 及び 2 1 1 Qを介してミキサ 2 1 2 I及ぴ 2 1 2 Qに供給して 送信用の P L L ( phase-locked loop) 回路 2 0 3から供給される 送信周波数に対応した周波数信号を混合して変調し、 両混合信号 を加算器 2 1 4で加算して 1系統の送信信号とする。 この場合、 ミキサ 2 1 2 I に供給する周波数信号は、 移相器 2 1 3で信号位 相を 9 0。 シフ ト させてあり、 I チャンネルの信号と Qチャンネ ルの信号とが直交変調されるよ う にしてある。
加算器 2 1 4 の出力は、 バッファアンプ 2 1 5 を介して電力増 幅器 2 0 4に供給し、 所定の送信電力となるよ う に増幅する。 電 力増幅器 2 0 4で増幅された信号は、 送受信切換器 2 0 5 と高周 波フィルタ 2 0 6 を介してアンテナ 2 0 7に供給し、 アンテナ 2 0 7から無線送信させる。 高周波フィルタ 2 0 6 は、 この通信装 置で送信及び受信する周波数帯域以外の信号成分を除去するパン ド · ノ ス ' フィノレタである。
受信系の構成と しては、 アンテナ 2 0 7で受信した信号を、 高 周波フィルタ 2 0 6及び送受信切換器 2 0 5 を介して高周波部 2 2 0に供給する。 高周波部 2 2 0 では、 受信信号を低ノイズアン プ ( L N A ) 2 2 1で増幅した後、 パン ド ' パス ' フィルタ 2 2 2 に供給して、 受信周波数帯域以外の信号成分を除去し、 除去さ れた信号をバッファアンプ 2 2 3 を介してミキサ 2 2 4に供給す る。 そして、 チャンネル選択用 P L L回路 2 5 1 から供給される 周波数信号を混合して、 所定の送信チャンネルの信号を中間周波 信号と し、 その中間周波信号をバッファアンプ 2 2 5 を介して中 間周波回路 2 3 0に供給する。
中間周波回路 2 3 0では、 供給される中間周波信号をバッファ アンプ 2 3 1 を介してバン ド 'パス 'フィルタ 2 3 2に供給して、 中間周波信号の帯域以外の信号成分を除去し、 除去された信号を 自動ゲイ ン調整回路 (A G C回路) 2 3 3 に供給して、 ほぼ一定 のゲインの信号とする。 自動ゲイン調整回路 2 3 3でゲイ ン調整 された中間周波信号は、 バッファアンプ 2 3 4 を介して復調器 2 4 0 に供給する。
復調器 2 4 0では、 供給される中間周波信号をバッファアンプ 2 4 1 を介してミキサ 2 4 2 I及ぴ 2 4 2 Qに供給して、 中間周 波用 P L L回路 2 5 2から供給される周波数信号を混合して、 受 信した I チャンネルの信号成分と Qチャンネルの信号成分を復調 する。 この場合、 I信号用のミキサ 2 4 2 I には、'移相器.2 4 3 で信号位相を 9 0 ° シフ ト させた周波数信号を供給するよ う にし てあ り 、 直交変調された I チャンネルの信号成分と Qチャンネル の信号成分を復調する。
復調された I チャンネルと Qチャンネルの信号は、 それぞれバ ッファアンプ 2 4 4 I及び 2 4 4 Qを介してパン ド · ノ ス · フィ ルタ 2 5 3 1及び 2 5 3 Qに供給して、 I チャンネル及ぴ Qチヤ ンネルの信号以外の信号成分を除去し、 除去された信号をアナ口 グ Zデジタル変換器 (AD C) 2 5 4 I及び 2 5 4 Qに供給して

Claims

サンプリ ングしてデジタルデータ化し、 I チャ ンネルの受信デー タ及ぴ Qチャ ンネルの受信データを得る。 ここまで説明した構成において、 各パンド · パス · フィルタ 2 0 2 1 , 2 0 2 Q , 2 0 6 , 2 2 2 , 2 3 2 , 2 5 3 1 , 2 5 3 Qの一部又は全てと して、 上述した実施の形態の構成のフィルタ を適用して帯域制限するこ とが可能である。 本実施の形態の通信装置によれば、 フ ィルタ と して上述した本 発明の実施の形態の M E M S型振動子からなるフ ィ ルタを用いる こ とによ り、 動作時にフィルタにおいてビームが下部電極の出力 電極に接触するこ とはなく 、 フ ィルタを通じてスパイ ク電流が流 れ周辺機器を破損するという よ うな不具合は発生しない。 従って 信頼性の高い通信装置を提供するこ とができる。 図 8の例では、 各フィルタをノ ン ド、 ノ ス · フィルタ と して構 成したが、 所定の周波数よ り も下の周波数帯域だけを通過させる ロ ー · パス · フィルタや、 所定の周波数よ り も上の周波数帯域だ けを通過させるハイ ' パス · フィルタ と して構成して、 それらの フ ィ ルタ に上述した各実施の形態の構成のフ ィ ルタを適用しても よい。 また、 図 8 の例では、 無線送信及ぴ無線受信を行う通信装 置と したが、 有線の.伝送.路を介して送信及び受信を行う通信装置 が備えるフ ィルタ に適用してもよく 、 さ らに送信処理だけを行う 通信装置や受信処理だけを行う通信装置が備えるフィルタに、 上 述した実施の形態の構成のフィルタを適用してもよい。 求 の 範 囲
1 . 出力電極と、 該出力電極に対向して配置された入力側の振動 可能なビームと、 入力電極とを有し、 前記出力電極及び入力電極 が、 前記ビームと直流的に分離されて成るこ とを特徴とする ME M S型振動子。
2. 出力電極と、 該出力電極に対向して配置された入力側の振動 言胄
可能なビーム と、 入力電極とを有し、 前記入力電極が誘電体膜を 介して前記ビームに接続され、 前記ビームに所要の直流電圧が印 加されて成るこ とを特徴とする MEM S型振動子。
3. 前記ビームと該ビームから延長する延長部とが一体に平板状 に形成され、 前記延長部において前記ビームが支持されて成るこ とを特徴とする請求の範囲第 2項記載の MEM S型振動子。
4. 出力電極と、 該出力電極に対向して配置された入力側の振動 可能なビームと、 入力電極とを有し、 前記出力電極及び入力電極 が前記ビーム と直流的に分離されてなる MEM S型振動子を用い て成るこ とを特徴とするフィルタ。
5. 出力電極と、 該出力電極に対向して配置された入力側の振動 可能なビームと、 入力電極とを有し、 前記入力電極が誘電体膜を 介して前記ビームに接続され、 前記ビームに所要の直流電圧が印 加されてなる MEM S型振動子を用いて成ることを特徴とするフ ィルタ。
6. 前記ビームと該ビームから延長する延長部とがー体に平板状 に形成され、 前記延長部において前記ビームが支持されて成るこ とを特徴とする請求の範囲第 5項記載のフィルタ。
7. 基板上に形成した出力電極上に犠牲層を介して入力側の振動 し得る ビームを形成する と共に、 前記ビームの一方の固定端上に 誘電体膜を形成する工程と、 前記犠牲層を選択的に除去する工程 と、 前記誘電体膜上に A 1 系の入力電極を形成する工程を有する こ とを特徴とする M E M S型振動子の製造方法。
8 . 送信信号及び/又は受信信号の帯域制限を行う フィルタを備 えた通信装置において、 前記フィルタ と して、 出力電極と、 該出 力電極に対応して配置された入力側の振動可能なビームと、 入力 電極とを有し、 前記出力電極及び入力電極が前記ビームと直流的 に分離されてなる M E M S型振動子で構成されたフィルタが用い られて成るこ とを特徴とする通信装置。
9 . 送信信号及び/又は受信信号の帯域制限を行う フィルタを備 えた通信装置にお .、て、 前記フィルタ と して、 出力電極と、 該出 力電極に対応して配置された入力側の振動可能なビームと、 入力 電極とを有し、 前記入力電挥が誘電体膜を介して前記ビームに接 続され、 前記ビームに所要の直流電圧が印加されてなる M E M S 型振動子で構成されたフィルタが用いられて成るこ とを特徴とす る通信装置。
1 0 . 前記フィルタにおいて、 前記ビームと該ビームから延長す る延長部とがー体に平板状に形成され、 前記延長部において前記 ビームが支持されて成るこ とを特徴とする請求の範囲第 9項記載 の通信装置。
PCT/JP2004/009758 2003-07-02 2004-07-02 Mems型振動子とその製造方法、フィルタ、並びに通信装置 WO2005004326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04747226A EP1650868A1 (en) 2003-07-02 2004-07-02 Mems type oscillator, process for fabricating the same, filter, and communication unit
JP2005511419A JP4501860B2 (ja) 2003-07-02 2004-07-02 Mems型振動子とその製造方法、フィルタ、並びに通信装置
US10/561,715 US7504909B2 (en) 2003-07-02 2004-07-02 MEMS type oscillator, process for fabricating the same, filter, and communication unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003190642 2003-07-02
JP2003-190642 2003-07-02

Publications (1)

Publication Number Publication Date
WO2005004326A1 true WO2005004326A1 (ja) 2005-01-13

Family

ID=33562338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009758 WO2005004326A1 (ja) 2003-07-02 2004-07-02 Mems型振動子とその製造方法、フィルタ、並びに通信装置

Country Status (7)

Country Link
US (1) US7504909B2 (ja)
EP (1) EP1650868A1 (ja)
JP (1) JP4501860B2 (ja)
KR (1) KR20060026905A (ja)
CN (1) CN1836371A (ja)
TW (1) TWI255580B (ja)
WO (1) WO2005004326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147953A (ja) * 2009-01-09 2009-07-02 Seiko Epson Corp Memsレゾネータ及びmemsレゾネータの製造方法
JP2010028792A (ja) * 2008-06-18 2010-02-04 Seiko Epson Corp 共振回路、発振回路、フィルタ回路及び電子装置

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
CN101103515B (zh) * 2005-01-07 2010-10-13 波士顿大学托管委员会 纳米机械振荡器
JP4617904B2 (ja) * 2005-02-01 2011-01-26 ソニー株式会社 微小振動子、半導体装置及び通信装置
CA2595473A1 (en) * 2005-02-03 2006-08-10 University Of Manitoba Micro heat engine and method of manufacturing
JP2006222562A (ja) * 2005-02-08 2006-08-24 Sony Corp 微小共振器、バンドパスフィルタ、半導体装置、及び通信装置
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
JP2009542359A (ja) 2006-06-29 2009-12-03 ボストン サイエンティフィック リミテッド 選択的被覆部を備えた医療装置
CA2659761A1 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
EP2068757B1 (en) 2006-09-14 2011-05-11 Boston Scientific Limited Medical devices with drug-eluting coating
JP2010503485A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 医療用デバイスおよび同デバイスの製造方法
DE602007011114D1 (de) 2006-09-15 2011-01-20 Boston Scient Scimed Inc Biologisch erodierbare endoprothese mit biostabilen anorganischen schichten
JP2010503494A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生分解性内部人工器官およびその製造方法
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
WO2008036830A2 (en) * 2006-09-20 2008-03-27 Trustees Of Boston University Nano electromechanical integrated-circuit filter
WO2008036845A2 (en) * 2006-09-20 2008-03-27 Trustees Of Boston University Nano electromechanical integrated-circuit bank and switch
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
CA2674195A1 (en) 2006-12-28 2008-07-10 Boston Scientific Limited Bioerodible endoprostheses and methods of making same
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
EP2187988B1 (en) 2007-07-19 2013-08-21 Boston Scientific Limited Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
WO2009048468A1 (en) 2007-10-11 2009-04-16 Sand 9, Inc. Signal amplification by hierarchal resonating structures
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7990229B2 (en) 2008-04-01 2011-08-02 Sand9, Inc. Methods and devices for compensating a signal using resonators
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US8044736B2 (en) * 2008-04-29 2011-10-25 Sand9, Inc. Timing oscillators and related methods
US8476809B2 (en) 2008-04-29 2013-07-02 Sand 9, Inc. Microelectromechanical systems (MEMS) resonators and related apparatus and methods
US8044737B2 (en) * 2008-04-29 2011-10-25 Sand9, Inc. Timing oscillators and related methods
US8410868B2 (en) 2009-06-04 2013-04-02 Sand 9, Inc. Methods and apparatus for temperature control of devices and mechanical resonating structures
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8111108B2 (en) * 2008-07-29 2012-02-07 Sand9, Inc. Micromechanical resonating devices and related methods
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US20100155883A1 (en) * 2008-10-31 2010-06-24 Trustees Of Boston University Integrated mems and ic systems and related methods
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8689426B2 (en) 2008-12-17 2014-04-08 Sand 9, Inc. Method of manufacturing a resonating structure
WO2010077311A1 (en) * 2008-12-17 2010-07-08 Sand9, Inc. Multi-port mechanical resonating devices and related methods
JP5848131B2 (ja) 2008-12-17 2016-01-27 アナログ デバイシス, インコーポレイテッド 機械共振構造体を備える機器
WO2010090731A2 (en) * 2009-02-04 2010-08-12 Sand9, Inc. Methods and apparatus for tuning devices having mechanical resonators
US8395456B2 (en) * 2009-02-04 2013-03-12 Sand 9, Inc. Variable phase amplifier circuit and method of use
US8456250B2 (en) * 2009-02-04 2013-06-04 Sand 9, Inc. Methods and apparatus for tuning devices having resonators
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
WO2010110918A1 (en) 2009-03-26 2010-09-30 Sand9, Inc. Mechanical resonating structures and methods
US9048811B2 (en) 2009-03-31 2015-06-02 Sand 9, Inc. Integration of piezoelectric materials with substrates
WO2010114602A1 (en) * 2009-03-31 2010-10-07 Sand9, Inc. Integration of piezoelectric materials with substrates
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8174170B1 (en) 2009-05-13 2012-05-08 Sand 9, Inc. Methods and apparatus for mechanical resonating structures
US8664836B1 (en) 2009-09-18 2014-03-04 Sand 9, Inc. Passivated micromechanical resonators and related methods
US8604888B2 (en) * 2009-12-23 2013-12-10 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
US8704604B2 (en) 2009-12-23 2014-04-22 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
US8228127B2 (en) * 2009-12-23 2012-07-24 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
US8661899B2 (en) 2010-03-01 2014-03-04 Sand9, Inc. Microelectromechanical gyroscopes and related apparatus and methods
WO2011119573A1 (en) 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
KR101117279B1 (ko) * 2010-04-12 2012-03-20 연세대학교 산학협력단 나노공진기
WO2011133682A1 (en) 2010-04-20 2011-10-27 Guiti Zolfagharkhani Microelectromechanical gyroscopes and related apparatus and methods
US9075077B2 (en) 2010-09-20 2015-07-07 Analog Devices, Inc. Resonant sensing using extensional modes of a plate
US9383208B2 (en) 2011-10-13 2016-07-05 Analog Devices, Inc. Electromechanical magnetometer and applications thereof
US9299910B1 (en) 2012-05-17 2016-03-29 Analog Devices, Inc. Resonator anchors and related apparatus and methods
US9954513B1 (en) 2012-12-21 2018-04-24 Analog Devices, Inc. Methods and apparatus for anchoring resonators
JP2014170997A (ja) * 2013-03-01 2014-09-18 Seiko Epson Corp Mems振動子、mems振動子の製造方法、電子機器、及び移動体
US9634227B1 (en) 2013-03-06 2017-04-25 Analog Devices, Inc. Suppression of spurious modes of vibration for resonators and related apparatus and methods
US9209778B2 (en) 2013-03-15 2015-12-08 Infineon Technologies Dresden Gmbh Microelectromechanical resonators
US9786994B1 (en) * 2014-03-20 2017-10-10 Amazon Technologies, Inc. Co-located, multi-element antenna structure
US10800649B2 (en) 2016-11-28 2020-10-13 Analog Devices International Unlimited Company Planar processing of suspended microelectromechanical systems (MEMS) devices
US10843920B2 (en) 2019-03-08 2020-11-24 Analog Devices International Unlimited Company Suspended microelectromechanical system (MEMS) devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468114A (en) * 1987-09-09 1989-03-14 Hiroshi Shimizu Structure for idt exciting type piezoelectric resonator
JP2001308677A (ja) * 2000-03-17 2001-11-02 Robert Bosch Gmbh 電気信号用フィルタ
JP2002535865A (ja) * 1999-01-14 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 動作周波数を有するマイクロメカニカル共振器を含むデバイス及び動作周波数を拡張する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634787A (en) * 1968-01-23 1972-01-11 Westinghouse Electric Corp Electromechanical tuning apparatus particularly for microelectronic components
US6275122B1 (en) * 1999-08-17 2001-08-14 International Business Machines Corporation Encapsulated MEMS band-pass filter for integrated circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468114A (en) * 1987-09-09 1989-03-14 Hiroshi Shimizu Structure for idt exciting type piezoelectric resonator
JP2002535865A (ja) * 1999-01-14 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 動作周波数を有するマイクロメカニカル共振器を含むデバイス及び動作周波数を拡張する方法
JP2001308677A (ja) * 2000-03-17 2001-11-02 Robert Bosch Gmbh 電気信号用フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NGUYEN C.T.& HOWE R.T.: "Design and performance of CMOS micromechanical resonator oscillators", PROCEEDINGS OF THE 1994 IEEE, vol. 48, 1994, pages 127 - 134, XP010137882 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028792A (ja) * 2008-06-18 2010-02-04 Seiko Epson Corp 共振回路、発振回路、フィルタ回路及び電子装置
US8106723B2 (en) 2008-06-18 2012-01-31 Seiko Epson Corporation Resonant circuit, oscillation circuit, filter circuit, and electronic device
JP2009147953A (ja) * 2009-01-09 2009-07-02 Seiko Epson Corp Memsレゾネータ及びmemsレゾネータの製造方法

Also Published As

Publication number Publication date
EP1650868A1 (en) 2006-04-26
US7504909B2 (en) 2009-03-17
CN1836371A (zh) 2006-09-20
JPWO2005004326A1 (ja) 2006-08-17
KR20060026905A (ko) 2006-03-24
TWI255580B (en) 2006-05-21
JP4501860B2 (ja) 2010-07-14
US20070052497A1 (en) 2007-03-08
TW200514299A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
WO2005004326A1 (ja) Mems型振動子とその製造方法、フィルタ、並びに通信装置
KR101103132B1 (ko) Mems형 공진기 및 그 제조 방법 및 통신 장치
US8264291B2 (en) Resonator and a method of manufacturing the same, and oscillator and electronic apparatus including the same
US7463116B2 (en) Micro-resonator, frequency filter and communication apparatus
JP4735032B2 (ja) 微小共振器、バンドパスフィルタ、半導体装置、及び通信装置
US7420439B2 (en) Micro-resonator, band-pass filter, semiconductor device and communication apparatus
KR101136922B1 (ko) 미소 공진기 및 통신장치
JP2008177933A (ja) 電気機械素子、並びに信号処理デバイス、通信装置
JP2004328076A (ja) Mems型共振器及びその製造方法、並びにフィルタ
JP4736735B2 (ja) 静電容量型共振素子、静電容量型共振素子の製造方法および通信装置
JP2007142533A (ja) 静電容量型共振素子、静電容量型共振素子の製造方法および通信装置
JP4635619B2 (ja) 微小共振器及び通信装置
JP2006108378A (ja) 共振トランジスタ及び通信装置
JP2009117903A (ja) フィルタ素子、半導体デバイスおよび電子機器
JP2008012631A (ja) 電気機械素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023407.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007052497

Country of ref document: US

Ref document number: 10561715

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005511419

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057025358

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004747226

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057025358

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747226

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10561715

Country of ref document: US