WO2005000440A1 - トラップ装置、処理システム及び不純物除去方法 - Google Patents

トラップ装置、処理システム及び不純物除去方法 Download PDF

Info

Publication number
WO2005000440A1
WO2005000440A1 PCT/JP2004/008759 JP2004008759W WO2005000440A1 WO 2005000440 A1 WO2005000440 A1 WO 2005000440A1 JP 2004008759 W JP2004008759 W JP 2004008759W WO 2005000440 A1 WO2005000440 A1 WO 2005000440A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
working fluid
impurity
trap device
Prior art date
Application number
PCT/JP2004/008759
Other languages
English (en)
French (fr)
Inventor
Tomohito Komatsu
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/562,127 priority Critical patent/US7488374B2/en
Publication of WO2005000440A1 publication Critical patent/WO2005000440A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/15Cold traps

Definitions

  • the present invention relates to a trap device for removing gaseous impurities in exhaust gas discharged from a processing device such as a film forming device, a processing system, and an impurity removing method.
  • a silicon thin film and a silicon oxide are formed by reacting a predetermined processing gas (raw material gas) in a processing vessel.
  • a predetermined processing gas raw material gas
  • a thin film of a nitride, a thin film of a metal, a thin film of a metal oxide or a nitride is formed on the surface of the object to be processed, and at the same time as this film forming reaction, extra reaction by-products are generated. Will be discharged along with the heat. Unreacted processing gas is also discharged.
  • reaction by-products and unreacted processing gas if released into the atmosphere as they are, cause environmental pollution and the like. Therefore, in order to prevent this, generally the exhaust of the processing vessel is extended.
  • a trap device is interposed in the gas system to capture and remove reaction by-products, unreacted processing gas, and the like contained in the exhaust gas.
  • the trap device is constituted by providing a large number of fins in a casing having an exhaust gas inlet and an outlet as an example.
  • the fins are sequentially arranged in the direction in which the exhaust gas flows, and when the exhaust gas passes between the fins, reaction by-products and the like in the exhaust gas adhere to and capture the fin surface. It has become.
  • the fins are cooled by a cooling fluid or the like to increase the capture efficiency.
  • TiCl tetrachloride titanium
  • a high melting point metal halide compound was used as a source gas.
  • TiClx (X 4) is generated as a reaction by-product, and unreacted TiCl gas is also present. These TiClx and TiCl are exhausted.
  • impurities such as the above-mentioned unreacted gas TiCl and reaction by-product TiClx are used.
  • TiCl titanium tetrachloride
  • a refractory metal halide compound a refractory metal halide compound
  • the raw material gas is NH3 in addition to TiCl.
  • a TiN film is deposited on the surface of the semiconductor wafer.
  • Unreacted TiCl gas is also present, and these gas components are contained in the exhaust gas and flow out.
  • an object of the present invention is to provide a trap device, a processing system, and an impurity removing method which have a simple structure for removing gaseous impurities from exhaust gas and which can always maintain a high collection efficiency. Is to provide.
  • the present inventor has conducted intensive studies on a method for trapping gaseous impurities in exhaust gas. As a result, the working fluid in a supersonic state due to adiabatic expansion was blown into the exhaust gas using a Laval nozzle. , Efficiently cools exhaust gas and condenses gaseous impurities The present invention has been made based on the finding that the substance can be collected by coagulation.
  • the invention according to claim 1 is provided in a vacuum exhaust system having a vacuum pump for evacuating the inside of a processing apparatus for performing a predetermined process on the object to be processed.
  • a trap device for removing gaseous impurities contained in exhaust gas flowing through the air an impurity trapping container provided in an exhaust passage of the vacuum exhaust system, and an operation in which a supersonic state is established by adiabatic expansion.
  • Nozzle means for blowing a fluid to mix with the exhaust gas and lowering the temperature of the exhaust gas to below the critical point of the impurity in the impurity collection container. is there.
  • a plurality of the nozzle means are provided in parallel with the impurity collecting container.
  • the nozzle means is configured such that its flow passage area is gradually narrowed along the flow direction of the working fluid, and is gradually expanded after passing through the throat. It has a nose stick body.
  • the nozzle body has a working fluid ejection port having a substantially circular cross section, and the exhaust gas is formed so as to surround the working fluid ejection port.
  • a ring-shaped exhaust gas inlet for introducing the gas toward the impurity collecting container is formed.
  • the nozzle main body has a working fluid injection port having a substantially ring-shaped cross section, and the exhaust gas is trapped in the center at the center thereof.
  • a substantially circular exhaust gas inlet for introducing the gas toward the collection container is formed.
  • a pre-stage retention chamber for temporarily retaining exhaust gas directed to the exhaust gas inlet is provided.
  • a supersonic working fluid injected from the working fluid injection port and an exhaust gas taken in from the exhaust gas introduction port are provided on the tip end side of the nozzle means.
  • the mixing tube and the diffusion tube are provided with an adhesion preventing heating means for preventing the impurities from condensing, solidifying and adhering.
  • nucleus introducing means for introducing a substance serving as a nucleus when the gaseous impurity in the mixed gas condenses and solidifies is provided.
  • the nucleus serving as a starting point of condensation and solidification is introduced into the exhaust gas, so that the gaseous impurities are prevented from being supercooled and the condensation and solidification are promoted. Therefore, the efficiency of collecting impurities can be further improved.
  • the impurity collecting container is provided with an impurity attaching plate for attaching the condensed and solidified impurities in a detachable manner.
  • the nozzle means is a laval nozzle.
  • the working fluid is one of N, H, Ar, and He,
  • the processing apparatus is a film forming apparatus for performing a film forming process on an object to be processed.
  • the invention according to claim 14 is a processing system using the trap device, that is, a processing device for performing a predetermined process on an object to be processed, and a vacuum for evacuating the inside of the processing device.
  • a vacuum pump system in which a vacuum pump is provided And a trap device according to any one of claims 1 to 13.
  • the invention according to claim 15 defines a trapping method performed by using the trapping device, that is, the trapping method includes a method of performing a predetermined process on an object to be processed in an exhaust gas discharged from a processing device.
  • the impurity is condensed and solidified by lowering the impurity to a critical point or lower.
  • the mixing of the working fluid and the exhaust gas is performed by injecting the exhaust gas so as to surround a periphery of the working fluid to be injected.
  • the mixing of the working fluid and the exhaust gas is performed by injecting the working fluid so as to surround a periphery of the exhaust gas to be injected. Done.
  • FIG. 1 is a schematic configuration diagram showing an example of a processing system provided with a trap device according to the present invention.
  • FIG. 2 is a sectional view showing a first embodiment of the trap device of the present invention.
  • FIG. 3 is a sectional view showing a second embodiment of the trap device of the present invention.
  • FIG. 4 is an enlarged cross-sectional view showing one nozzle means in FIG.
  • FIG. 5 is a sectional view taken along line AA in FIG.
  • FIG. 6 is a sectional view showing a third embodiment of the trap device of the present invention.
  • FIG. 7 is an enlarged sectional view showing one nozzle means in FIG.
  • FIG. 8 is a sectional view taken along line BB in FIG. 7.
  • FIG. 1 is a schematic configuration diagram showing an example of a processing system provided with a trap device according to the present invention
  • FIG. 2 is a cross-sectional view showing a first embodiment of the trap device of the present invention.
  • plasma CVD is performed on the surface of a semiconductor wafer as an object to be processed by using TiCl gas, which is a high melting metal halide gas as a high melting metal compound gas.
  • the processing system 2 includes a processing apparatus (film forming apparatus) 4 for actually forming a Ti film on a semiconductor wafer W, and an atmosphere in the processing apparatus 4. It is mainly composed of a vacuum exhaust system 6 for evacuating and exhausting, and a trap device 8 of the present invention interposed in the vacuum exhaust system 6.
  • the processing device 4 has a cylindrical processing container 10 made of, for example, aluminum, and the processing container 10 is grounded.
  • a mounting table 14 is provided in the processing container 10 via a conductive column 12 from the bottom, and a semiconductor wafer W as an object to be processed is mounted and held on the upper surface. ing.
  • the mounting table 14 is made of a conductive material such as Ni and also serves as a lower electrode, and has a resistance heater 16 for heating the semiconductor wafer W embedded therein.
  • a shower head 18 for introducing a necessary gas such as a raw material gas into the processing container 10 is provided on the ceiling of the processing container 10 via an insulating material 20. Is connected to a gas supply passage 24 provided with a supply-side on-off valve 22 on the way, so that necessary gases such as TiCl gas, H gas, Ar gas, etc., whose flow rates are controlled, can be supplied.
  • each gas may be supplied from an independent supply passage.
  • the shower head 18 also serves as an upper electrode.
  • a high-frequency power supply 28 of, for example, 450 kHz is connected via a matching circuit 26 so that the mounting table 14 and the small head 18 are connected to each other.
  • a high-frequency plasma is generated in between.
  • the frequency of the high-frequency power supply 28 is not limited to 450 kHz, and other frequencies may be used, such as 13.56 MHz.
  • a gate vanoleb 30 for carrying in / out the wafer W is provided on a side wall of the processing container 10, and an exhaust port 32 is provided in a peripheral portion of the bottom.
  • the vacuum exhaust system 6 connected to the processing apparatus 4 formed as described above has an exhaust passage 34 made of, for example, a stainless steel having an inner diameter of about 10 cm connected to the exhaust port 32. I have.
  • the trap device 8 for removing gaseous impurities in the exhaust gas, a vacuum pump 36 for evacuating the atmosphere in the processing vessel 10, and an impurity gas remaining in the exhaust gas are completely removed.
  • the abatement device 38 is installed in order in this order toward the downstream side.
  • a pressure control valve 40 that controls the pressure in the processing vessel 10 by changing the flow area of the exhaust passage 34 is provided on the most upstream side of the exhaust passage 34.
  • An ammonia gas nozzle 42 for injecting ammonia (NH 3) gas whose flow rate is controlled into the exhaust passage 34 is provided in the exhaust passage 34 immediately downstream of the pressure control valve 40.
  • Ammonia gas is injected into the exhaust gas to react hydrogen chloride or chlorine gas contained in the exhaust gas with the ammonia gas to form ammonium chloride or the like.
  • the trap device 8 has an impurity collecting container 50 formed in, for example, a box shape made of aluminum.
  • a gas inlet 52 is formed in the ceiling of the impurity collecting container 50, and an exhaust passage 34 extending from the upstream side is connected to the gas inlet 52 to introduce exhaust gas.
  • a gas outlet 54 is formed on one side wall of the impurity trapping container 50, and an exhaust passage 34 extending downstream is connected to the gas outlet 54 so that the exhaust gas from which gaseous impurities have been removed is supplied. It is discharged to the downstream side.
  • the installation positions of the gas inlet 52 and the gas outlet 54 are not particularly limited.
  • the other side wall of the impurity collecting container 50 has, for example, an openable / closable
  • the door 56 is provided so that the door 56 can be opened and closed when necessary for maintenance or the like.
  • the opening / closing door 56 is hermetically closed via a sealing member 58 such as an O-ring.
  • a detachable impurity adhering plate 60 is attached, which is condensed and solidified on the upper surface, for example, a liquid having a high viscosity to form a liquid.
  • condensed and solidified impurities M are attached.
  • a knurling means 64 At the ceiling 62 of the impurity collecting container 50 opposed to the impurity adhering plate 60, a knurling means 64, which is a feature of the present invention, is provided.
  • a working gas source 68 for storing, for example, N gas as a working fluid is connected to the nozzle means 64 via a working gas passage 66.
  • N gas at a predetermined pressure can be supplied to the nozzling means 64.
  • an on-off valve 70 for controlling the supply of N gas is provided in the middle of the working gas passage 66.
  • a nucleus introduction means 72 for introducing a substance which becomes a nucleus when gaseous impurities condense and solidify in the working fluid. I have.
  • the nucleus introduction means 72 for introducing the nucleus serving as a starting point of the condensation and solidification includes a gas nozzle 72A attached to the working gas passage 66, and the flow rate as a nucleus from the gas nozzle 72A is Controlled steam can be introduced.
  • the working fluid N gas
  • the working fluid can be injected from the above-mentioned nozzle means 64 in a supersonic state.
  • the flow passage area is gradually narrowed in the center thereof along the flow direction of the working fluid, and the flow passage area is most reduced.
  • the working fluid injection port 74C has a shape such that it gradually expands after passing through the narrow throat 74A, and thus has a substantially circular cross section at its lowermost end.
  • a nozzle means 64 for example, a laval nozore can be used.
  • the semiconductor wafer W is mounted on the mounting table 14 in the processing vessel 10 of the processing apparatus 4, and the semiconductor wafer W is heated to a predetermined temperature and maintained.
  • a high-frequency voltage is applied between the mounting table 14 as the lower electrode and the shower head 18 as the upper electrode, and a predetermined gas such as TiCl gas, H gas, and Ar gas is applied to the shower head 14.
  • a predetermined gas such as TiCl gas, H gas, and Ar gas is applied to the shower head 14.
  • a Ti film is formed by flowing the plasma while controlling it and setting up a plasma in the processing space.
  • the evacuation system 6 is also driven to evacuate the atmosphere in the processing vessel 10 to maintain the inside at a predetermined pressure.
  • the exhaust gas flows into the exhaust passage 34 of the vacuum exhaust system 6 from the exhaust port 32 together with the exhaust gas and flows down.
  • the exhaust gas further flows in the order of the trap device 8, the vacuum pump 36, and the abatement device 38 in this order.
  • the unreacted gas and the reaction by-products particularly TiCl gas is relatively vaporized.
  • NH gas is introduced from the ammonia gas nozzle 42 as a reaction gas into the exhaust passage 34, thereby reacting NH gas and mainly TiCl gas.
  • TiCl gas whose vapor pressure is much lower than 4 3 4, is 1300 Pa at 21
  • the complex is about 1 X 10- 4 Pa at 21, 3 ° C. Also, HC1 gas is opposite to NH gas.
  • the gaseous impurities consisting of the above complex ⁇ NH C1 etc. are contained in the exhaust gas and
  • the liquid is introduced into the impurity collecting container 50 through the port 52.
  • the inside of the impurity collecting container 50 is formed by a sloshing means 64 provided on the ceiling.
  • N gas is blown at a supersonic speed by adiabatic expansion as a moving fluid. This N gas
  • the impurities M are cooled and condensed or solidified and precipitated, and the impurities M are collected by being attached to and deposited on the impurity attachment plate 60 provided at the bottom in the impurity collection container 50.
  • the exhaust gas from which the gaseous impurities have been removed in this way is discharged from the gas outlet 54 and flows toward the vacuum pump 36 on the downstream side.
  • a nozzle capable of realizing a supersonic state for example, using a Laval nozzle, adiabatic expansion of N gas,
  • the gaseous impurities are cooled and condensed and solidified by the cold heat of self-cooling in the supersonic state, the gaseous impurities can be efficiently removed from the exhaust gas.
  • the cooling efficiency can be constantly maintained at a high level, and even if the amount of trapped impurities increases, the exhaust conductance is adversely affected. I will not give it.
  • the overall configuration of the trap device 8 can be simplified. The flow rate of the working fluid at this time is set so as not to adversely affect the pressure control in the processing vessel 10 on the upstream side.
  • the N fluid which is the working fluid, contains water vapor introduced from the nucleus introduction means 72.
  • the impurity collecting container 50 This is cooled in the impurity collecting container 50 to form fine ice particles and function as nuclei, and the gaseous impurities are condensed using the ice particles as nuclei without being supercooled. As a result, the solidification precipitates, and as a result, it becomes possible to further increase the impurity collection efficiency.
  • the nucleus introducing means 72 may be provided in the impurity collecting container 50 so that steam is directly introduced into the impurity collecting container 50. This is the same in other embodiments described later.
  • the detachable impurity attaching plate 60 is taken out from the impurity collecting container 50, and attached to the upper surface of the impurity attaching plate 60. Since it is only necessary to clean and remove impurities M, maintenance workability can be greatly improved. [0063]
  • a case where only one nozzle means 64 is provided has been described as an example. However, a plurality of nozzle means 64 are arranged in parallel. Alternatively, the working fluid mixed with water vapor may be injected and blown into each of the impurity collecting containers 50 from each of the nozzle means 64.
  • the structure of the nozzle means 64 of the first embodiment is slightly changed, and a plurality of nozzle means 64 are provided in parallel.
  • FIG. 3 is a cross-sectional view showing a second embodiment of such a trap device of the present invention
  • FIG. 4 is an enlarged cross-sectional view showing one nozzle means in FIG. 3
  • FIG. FIG. 3 is a sectional view taken along line A of FIG.
  • the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted.
  • a pre-stage retention chamber 80 made of, for example, stainless steel for temporarily retaining or storing the exhaust gas flowing from the processing vessel 10 side is provided in the upstream side of the impurity collecting vessel 50 here. ing.
  • a gas inlet 82 is provided in a part of the side wall of the pre-residence chamber 80, and an exhaust passage 34 on the upstream side is connected to the gas inlet 82 so that exhaust gas flows therein.
  • the pre-stage storage room 80 and the inside of the impurity collection container 50 are communicated.
  • a plurality of, in the illustrated example, nine communication passages 84 are provided in parallel, and the exhaust gas in the upstream storage chamber 80 flows through the communication passages 84 into the impurity collection container 50.
  • the communication passage 84 has a conical inlet pipe 86 whose inner diameter is sequentially reduced along the exhaust gas flow direction, and a cylindrical body following the inlet pipe 86.
  • the mixing pipe 88 is mainly constituted by a mixing pipe 88 and a diffusion pipe 90 whose inner diameter is sequentially increased along the flow direction of the exhaust gas, following the mixing pipe 88.
  • a working gas header 92 of a predetermined size connected to the working gas passage 66 is provided in the front-stage stagnation chamber 80, and the working gas header 92 serves as a starting point of condensation and solidification.
  • a working gas containing steam is introduced.
  • the nozzle means 64 having such a structure is provided to extend. As shown in FIG. 4, the tip of the nozzle body 74 of the nozzle means 64 is located substantially at the junction between the introduction pipe 86 and the mixing pipe 88, and is in a non-contact state.
  • a working fluid injection port 74C having a substantially circular cross section is formed at the center, and the cross section is substantially ring-shaped so as to surround the periphery of the working fluid injection port 74C.
  • the exhaust gas introduction port 94 is formed, and the exhaust gas is introduced from the exhaust gas introduction port 94 into the impurity collecting container 50.
  • the nozzle body 74 gradually narrows down at its center along the flow direction of the working fluid, and gradually expands after passing through the throat 74A having the smallest flow passage area.
  • the working fluid ejection port 74C has a substantially circular cross section at its lowermost end.
  • a Laval nose can be used as the nose stop 64.
  • the working fluid in a supersonic state is ejected from the nozzle means 64.
  • the nozzle means 64 has a pump function like an ejector pump.
  • the exhaust gas from 94 is pushed by the working gas jet and flows toward the exhaust side.
  • a heating means 96 for preventing adhesion such as a tape heater is provided, and this is heated to a temperature higher than the critical temperature of gaseous impurities. This prevents the impurities from condensing, solidifying and adhering to the inner wall surface.
  • the exhaust gas flowing from the processing vessel 10 is diffused entirely in the pre-stage retention chamber 80, and is introduced into the impurity collecting vessel 50 in parallel through the respective communication paths 84.
  • N gas as a working fluid for example, is injected in a supersonic state by adiabatic expansion from the working fluid outlet 74C of each of the nozzles 64 via the working gas header 92.
  • This supersonic N gas is discharged from the ring-shaped exhaust gas inlet 94.
  • the gas While being mixed with the gas and gas in the mixing tube 88, the gas is diffused in the diffusion tube 90 and reaches the impurity collection container 50, where the gaseous impurities are cooled, condensed and solidified, and the impurities are deposited on the impurity attachment plate 60.
  • the object M will adhere. This makes it possible to efficiently remove impurities from the exhaust gas, as in the case of the first embodiment. In particular, since a plurality of nozzle means 64 are provided in parallel, the efficiency of removing impurities can be increased accordingly.
  • the knurling means 64 performs a pump function to provide a ring provided around the working fluid injection port 74C. Since the exhaust gas from the exhaust gas inlet port 94 is drawn in and acts to flow to the exhaust side, the exhaust conductance can be increased and the exhaust system is not adversely affected.
  • the mixing tube 88 and the diffusion tube 90 are provided with the heating means 96 for preventing adhesion and are heated, it is possible to prevent impurities from adhering to the inner wall surface side.
  • the temperature of the mixed gas can be extremely low until the working fluid is injected at the supersonic speed from the nozzle outlet and reaches the inside of the impurity collection vessel 50 through the mixing pipe 88 and the diffusion pipe 90. Was confirmed.
  • FIG. 6 is a sectional view showing a third embodiment of such a trap device of the present invention
  • FIG. 7 is an enlarged sectional view showing one nozzle means in FIG. 6,
  • FIG. FIG. 3 is a cross-sectional view taken along line B.
  • the same components as those shown in FIGS. 3 to 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • a stainless steel for temporarily retaining or storing the exhaust gas flowing from the processing container 10 side in the former stage of the impurity collecting container 50 is used. It has a pre-stage retention chamber 80 made of steel. A gas inlet 82 is provided in a part of the side wall of the pre-residence chamber 80, and an exhaust passage 34 on the upstream side is connected to the gas inlet 82 so that the exhaust gas flows.
  • a plurality of substantially cylindrical, in the illustrated example, six nosore bodies 100 are provided extending from the longitudinal side wall of the pre-stage stagnation chamber 80 toward the impurity collecting container 50. .
  • a working gas header 92 of a predetermined size connected to the working gas passage 66 is provided between the former residence chamber 80 and the impurity collecting container 50. Further, between the side wall in the longitudinal direction of the working gas header 92 and the ceiling 62 of the impurity collecting container 50, a plurality of working gas headers 92 and the inside of the impurity collecting container 50 are communicated with each other.
  • the communication passage 102 has a conical introduction pipe 104 whose inner diameter is sequentially reduced along the flow direction of the working fluid, and a cylindrical body following the introduction pipe 104.
  • the mixing pipe 106 is mainly constituted by a mixing pipe 106 having a shape like a pipe, and a diffusion pipe 108 whose inner diameter is sequentially increased along the flow direction of the exhaust gas (working fluid).
  • the introduction pipe 104 and the mixing pipe 106 constitute a nozzle outer cylinder 110, and the nozzle outer cylinder 110 and the nozzle body 100 form a nozzle means 112. More specifically, the nozzle main body 100 is inserted into the header by airtightly penetrating one side wall of the working gas header 92, and the tip of the nozzle main body 100 extends halfway of the mixing pipe 106. And is in a non-contact state.
  • the outer periphery of the tip of the nozzle body 100 has a shape such that the flow path area is gradually narrowed along the flow direction of the working fluid, and the flow path area gradually increases after passing through the narrowest throat 100A. Is formed in a ring shape, and when the working fluid passes through this flow path, the differential pressure between the X and Y parts (see Fig. 7) is effectively converted to speed. It is now possible to achieve supersonic conditions at low temperatures.
  • an exhaust gas inlet 114 having a substantially circular cross section is formed at the center, and the working flow having a substantially ring-shaped cross section is formed so as to surround the exhaust gas inlet 114.
  • the body injection port 100C is formed, and the exhaust gas is introduced from the exhaust gas introduction port 114 into the impurity collecting container 50.
  • the working fluid is ejected from the working fluid ejection port 100C.
  • the restricting portion 112 having a convex cross section may be provided on the inner surface side of the mixing pipe 106, not on the nozzle body 100 side, or may be provided on both sides. Any shape can be used as long as a so-called Laval nose can be formed that can be injected in a supersonic state.
  • the same operation and effect as those of the first and second embodiments can be exhibited. That is, the exhaust gas passes through the center of the nozzle body 100 and the exhaust gas inlet 114
  • the N2 gas which is discharged and is a working fluid, is ejected from the working gas header 92 through the ring-shaped working fluid ejection port 100C through the introduction pipe 104 and the throat 100A. At this time, the N gas is self-cooled as a result of adiabatic expansion and is injected in a state of supersonic at a low temperature.
  • the gaseous impurities are condensed and solidified while involving the exhaust gas.
  • the knurling means 112 exhibits a pump function, so that it is possible to prevent the exhaust conductance from being adversely affected.
  • N gas which is a working fluid, flows around the exhaust gas, so that the exhaust gas flows through the inner wall surface of the mixing pipe 106 and the diffusion pipe 108.
  • the heating means 96 for preventing adhesion may be provided as in the second embodiment in order to completely prevent the adhesion of the impurities.
  • the force S for introducing water vapor and freezing it to form a nucleus serving as a starting point of condensation and solidification is not limited to this, and is not limited to this.
  • Powder such as quartz or quartz may be used.
  • the working fluid is not limited to N gas,
  • An inert gas such as an Ar gas or a He gas, an H gas, or the like may be used.
  • the type of film to be formed is not limited to the Ti film, and the present invention is applied to all film forming apparatuses or processing apparatuses that need to remove reaction by-products and unreacted substances from exhaust gas. Can be applied force S.
  • a semiconductor wafer has been described as an example of an object to be processed.
  • the present invention is not limited to this, and it is needless to say that the present invention can be applied to a glass substrate, an LCD substrate, and the like.
  • the exhaust fluid is blown into the exhaust gas by the adiabatic expansion of the nozzle means, and the supersonic working fluid is blown into the exhaust gas. Since the gas is cooled and the gaseous impurities are condensed, solidified and collected, the cooling efficiency can be always kept high, and therefore the collection efficiency can be kept always high. In addition, since complicated structures such as cooling fins used in the conventional trap device can be eliminated, maintenance that removes viscous collected substances, for example, condensed and solidified in the impurity collecting container, can be performed. When performing the work, Work can be done quickly and easily.
  • the mixing tube and the diffusion tube are heated by the heating means for preventing adhesion, impurities can be prevented from adhering to the inner wall surface in the form of, for example, a viscous solid. Furthermore, since nuclei are introduced into the exhaust gas, it is possible to prevent the gaseous impurities from being supercooled and promote their condensation and solidification, further improving the efficiency of collecting impurities. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 このトラップ装置は、半導体ウエハに対して所定の処理を施す処理装置10内を真空排気するための真空ポンプ36を有する真空排気系6に介設されて、真空排気系6内を流れる排気ガス中に含まれるガス状の不純物を除去するためのトラップ装置において、真空排気系6の排気通路に介設された不純物捕集容器50と、断熱膨張により超音速状態となった作動流体を吹き込んで前記排気ガスと混合させると共に前記不純物捕集容器50内で前記不純物の臨界点以下に前記排気ガスの温度を低下させるノズル手段64とを備えている。

Description

明 細 書
トラップ装置、処理システム及び不純物除去方法
技術分野
[0001] この発明は、成膜装置等の処理装置より排出される排気ガス中のガス状の不純物 を除去するトラップ装置、処理システム及び不純物除去方法に関する。
背景技術
[0002] 一般に、 ICなどの集積回路や論理素子を形成するためには、半導体ウェハ、ガラ ス基板、 LCD基板等の表面に、所望の薄い成膜を施す行程やこれを所望のパター ンにエッチングする行程が繰り返して行なわれる。
[0003] ところで、成膜工程を例にとれば、この工程にぉレ、ては、所定の処理ガス (原料ガス )を処理容器内にて反応させることによってシリコンの薄膜、シリコンの酸化物ゃ窒化 物の薄膜、或いは金属の薄膜、金属の酸化物や窒化物の薄膜等を被処理体の表面 に形成するが、この成膜反応と同時に余分な反応副生成物が発生し、これが排気ガ スと共に排出されてしまう。また、未反応の処理ガスも排出される。
[0004] この反応副生成物や未反応の処理ガスは、そのまま大気中に放出されると環境汚 染等の原因になることから、これを防止するために一般的には処理容器力 延びる 排気ガス系にトラップ装置を介設し、これにより排気ガス中に含まれている反応副生 成物や未反応の処理ガス等を捕獲して除去するようになってレ、る。
[0005] このトラップ装置の構成は、捕獲除去すべき反応副生成物等の特性に応じて種々 提案されているが、例えば常温で凝縮 (液化)、凝固(固化)する反応副生成物を除 去する場合には、このトラップ装置はその一例として排気ガスの導入口と排出口を有 する筐体内に多数のフィンを設けて構成されている。そして、このフィンは、排気ガス の流れる方向に対して、順次配歹してこれらのフィン間を排気ガスが通過する時に排 気ガス中の反応副生成物等をフィン表面に付着させて捕獲するようになっている。ま た、このフィンを冷却流体等により冷却して捕獲効率を上げることも行なわれている。
[0006] ここで、原料ガスとして高融点金属ハロゲン化合物の TiCl (四塩ィ匕チタン)を用い
4
て Ti金属膜を成膜する場合を例にとって説明すると、原料ガスとしては TiClの他に Hガスを用い、これを Arガスの存在下にてプラズマにより活性化して水素で還元し、
2
Ti膜を半導体ウェハ表面に堆積させている。この時、反応副生成物として TiClx (X く 4)が発生し、また、未反応の TiClガスも存在し、これらの TiClxや TiCl等が排気
4 4 ガスに含まれて流出する。これらの TiClxや TiCl等は大気汚染等の原因となる不純
4
物ガスであることから、上記したようなトラップ装置により捕獲されることになる。
[0007] ここで、上記した未反応ガスである TiClや反応副生成物である TiClx等の不純物
4
ガスは、比較的蒸気圧が高いため、上述したようにトラップ装置内を冷却していても、 このトラップ装置内で完全に捕獲して除去することがかなり困難であり、十分な回収 率が得られない場合があった。このため、トラップ機構よりも下流側に設けられている 除害装置で、上記トラップ機構を通り抜けた不純物ガスを完全に除去して無害化す るためにかなりの負担がかかり、この除害装置のランニングコストが高騰するのみなら ず、この除害装置自体の寿命も短くなる、といった問題があった。このような問題は、 TiClや WFや (Ta (OE) ) (ベントエトキシタンタル)などの高融点金属化合物ガス
4 6 5 2
を用いる成膜装置の共通の問題である。
[0008] また、 TiClを用いる他の成膜方法として、 TiN膜を成膜する方法が知られている。
4
すなわち、原料ガスとして高融点金属ハロゲン化合物の TiCl (四塩化チタン)を用い
4
て TiN膜を成膜する場合を例にとって説明すると、原料ガスとしては TiClの他に NH
4 ガスを用い、両ガスを反応させることによって TiN膜を半導体ウェハ表面に堆積させ
3
ている。この時、反応副生成物として NH C1や TiCl (NH ) n (nは正の整数)が発生
4 4 3
し、また、未反応の TiClガスも存在し、これらのガス成分は排気ガスに含まれて流出
4
し、上記したようなトラップ装置により捕獲されることになる。
[0009] そして、排気ガス中の含まれる不純物ガス、例えば塩素ガスをより完全に除くために この不純物ガスと反応する反応性ガス、例えばアンモニアガスを排気系の途中で排 気ガスに混合させて不純物ガスを凝縮し易い物質、例えば塩化アンモニゥムに変換 し、この塩化アンモニゥムもトラップ装置にて冷却凝縮させて捕集することにより、不 純物ガスを効率的に除去する方法も提案されている(特開 2001-214272号公報)
[0010] またその他に、特開昭 62— 4405号公報に開示されているように、粉末成形品を焼 結する焼結炉より排出されるワックス蒸気を含有する排気ガス中力 ワックスを液化さ せて回収する際に、ワックストラップ装置内に小孔を有するトラップ円板を多段に配置 し、上記小孔を通過する排気ガスを断熱膨張させつつ排気ガスを自冷してワックスを 液化させて回収するようにした技術も開示されている。
[0011] ところで、上述したような特開 2001—214272号公報に示すような従来のトラップ装 置にあっては、トラップ処理が進むにつれて捕集物が冷却フィンに付着すると、排気 ガスは捕集物層を介して冷却フィンと熱交換を行うことから、排気ガスに対する冷却 効率が次第に低下し、このため捕集効果も時間の経過と共に劣化して、不純物ガス を完全には除去できなくなるのみならず、メンテナンスの頻度が高くなる、といった問 題があった。この場合、捕集効率の経時的劣化を防止するためには、冷却フィンの 段数を多く設定することも考えられるが、この場合には装置が過度に大型化するため に現実的ではない。またメンテナンス時に捕集物を冷却フィンから洗浄により除去す る場合、冷却フィンが多段に形成されて全体構造が複雑なため、洗浄操作も行い難 レ、、といった問題もあった。
[0012] また特開昭 62-4405号公報に示すようなトラップ装置では、捕集物が粘性のある 固形物の場合には、捕集物がトラップ円板の小孔を次第に塞いでしまうのでメンテナ ンスの頻度が非常に高くなる、とレ、つた問題があった。
[0013] 更にこの特開昭 62— 4405号公報のトラップ装置では、単なる小孔を用いて排気ガ スを断熱膨張させているので、この冷却効率はそれ程高くはなぐ従って、排気ガス 中の不純物ガスを十分に捕集し切れずに、捕集効率が比較的低くなつてしまう、とい つた問題もあった。
[0014] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。すなわち、その発明の目的は、排気ガス中からガス状の不純物を除去するた めに構造が簡単で、且つ捕集効率も常時高く維持することが可能なトラップ装置、処 理システム及び不純物除去方法を提供することにある。
[0015] 本発明者は、排気ガス中におけるガス状の不純物のトラップ方法について鋭意研 究した結果、ラバルノズルを用いて断熱膨張により超音速状態となった作動流体を排 気ガス中に吹き込むことにより、排気ガスを効率的に冷却してガス状の不純物を凝縮 、凝固させて捕集することができる、という知見を得ることにより、本発明に至ったもの である。
発明の開示
[0016] 請求項 1に係る発明は、被処理体に対して所定の処理を施す処理装置内を真空排 気するための真空ポンプを有する真空排気系に介設されて、前記真空排気系内を 流れる排気ガス中に含まれるガス状の不純物を除去するためのトラップ装置におい て、前記真空排気系の排気通路に介設された不純物捕集容器と、断熱膨張により超 音速状態となった作動流体を吹き込んで前記排気ガスと混合させると共に前記不純 物捕集容器内で前記不純物の臨界点以下に前記排気ガスの温度を低下させるノズ ル手段と、を備えたことを特徴とするトラップ装置である。
[0017] このように、ノズノレ手段により断熱膨張して超音速状態となった作動流体を吹き込 むことにより、排気ガスを冷却してガス状の不純物を凝縮、凝固して捕集させるように したので、冷却効率を常に高く維持することができ、従って、捕集効率も常に高く維 持すること力 S可能となる。また、従来のトラップ装置で用いた冷却フィン等のような複 雑な構造物を不要にできるので、不純物捕集容器内に凝縮、凝固により付着した例 えば粘性のある捕集物を除去するメンテナンス作業を行う際に、このメンテナンス作 業を迅速に、且つ容易に行うことが可能となる。
[0018] この場合、例えば請求項 2に規定するように、前記ノズル手段は、前記不純物捕集 容器に対して複数個並列に設けられる。
[0019] また例えば請求項 3に規定するように、前記ノズル手段は、その流路面積が作動流 体の流れ方向に沿って次第に絞り込まれて喉部を通過した後に次第に拡大するよう になされたノズノレ本体を有する。
[0020] また例えば請求項 4に規定するように、前記ノズル本体は断面が略円形に成形され た作動流体噴射口を有しており、前記作動流体噴射口の周囲を囲むようにして前記 排気ガスを前記不純物捕集容器側に向けて導入するためのリング状の排気ガス導 入口が形成されている。
[0021] また例えば請求項 5に規定するように、前記ノズル本体は断面が略リング状に成形 された作動流体噴射口を有しており、その中心部には前記排気ガスを前記不純物捕 集容器側に向けて導入するための略円形の排気ガス導入口が形成されている。
[0022] また例えば請求項 6に規定するように、前記排気ガス導入口へ向力う排気ガスを一 時的に滞留させるための前段滞留室が設けられる。
[0023] また例えば請求項 7に規定するように、前記ノズル手段の先端部側には、前記作動 流体噴射口より噴射された超音速の作動流体と前記排気ガス導入口より取り込んだ 排気ガスとを混合させる混合管と、その流路面積を順次拡大させてポンプ機能を持 たせた拡散管とを順次連結させている。
[0024] また例えば請求項 8に規定するように、前記混合管と前記拡散管とには、前記不純 物が凝縮、凝固して付着することを防止するための付着防止用加熱手段が設けられ る。
[0025] これによれば、付着防止用加熱手段により混合管や拡散管が加熱されているので 、この内壁面に不純物が例えば粘性のある固形物状になって付着することを防止す ること力 Sできる。
[0026] また例えば請求項 9に規定するように、前記混合ガス中における前記ガス状の不純 物が凝縮、凝固する時に核となる物質を導入するための核導入手段が設けられる。
[0027] これによれば、排気ガス中に凝縮、凝固の起点となる核を導入するようにしたので、 ガス状の不純物が過冷却状態になることを防止してこの凝縮、凝固を促進することが できるので、不純物の捕集効率を一層向上させることが可能となる。
[0028] また例えば請求項 10に規定するように、前記不純物捕集容器には、前記凝縮、凝 固された不純物を付着させるための不純物付着板が着脱可能に設けられる。
[0029] また例えば請求項 11に規定するように、前記ノズル手段は、ラバルノズノレである。
[0030] また例えば請求項 12に規定するように、前記作動流体は、 N、 H、 Ar、 Heの内、
2 2
いずれか 1つのガスよりなる。
[0031] また例えば請求項 13に規定するように、前記処理装置は、被処理体に対して成膜 処理を施すための成膜装置である。
[0032] 請求項 14に係る発明は、上記トラップ装置を用いた処理システムであり、すなわち 被処理体に対して所定の処理を施すための処理装置と、前記処理装置内を真空引 きするために途中に真空ポンプが介設された真空排気系と、前記真空排気系に介 設された請求項 1乃至 13のいずれかに記載されたトラップ装置と、を備えたことを特 徴とする処理システムである。
[0033] 請求項 15に係る発明は、上記トラップ装置を用いて行われるトラップ方法を規定し たものであり、すなわち被処理体に対して所定の処理を施す処理装置から排出され る排気ガス中からガス状になっている不純物を除去する不純物除去方法において、 前記排気ガス中に断熱膨張により超音速状態となった作動流体を吹き込んで前記 排気ガスと混合させると共に前記排気ガスの温度を前記不純物の臨界点以下に低 下させることにより前記不純物を凝縮、凝固させるようにしたことを特徴とする不純物 除去方法である。
[0034] この場合、例えば請求項 16に規定するように、前記作動流体と前記排気ガスとの 混合は、噴射される前記作動流体の周囲を囲むように前記排気ガスを噴射すること によって行われる。
[0035] また、例えば請求項 17に規定するように、前記作動流体と前記排気ガスとの混合 は、噴射される前記排気ガスの周囲を囲むように前記作動流体を噴射することによつ て行われる。
図面の簡単な説明
[0036] [図 1]は、本発明に係るトラップ装置が設けられる処理システムの一例を示す概略構 成図である。
[図 2]は、本発明のトラップ装置の第 1実施例を示す断面図である。
[図 3]は、本発明のトラップ装置の第 2実施例を示す断面図である。
[図 4]は、図 3中の 1つのノズル手段を示す拡大断面図である。
[図 5]は、図 4中の A— A線矢視断面図である。
[図 6]は、本発明のトラップ装置の第 3実施例を示す断面図である。
[図 7]は、図 6中の 1つのノズル手段を示す拡大断面図である。
[図 8]は、図 7中の B-B線矢視断面図である。
発明を実施するための最良の形態
[0037] 以下に、この発明に係るトラップ装置、処理システム及び不純物除去方法の一実施 例を添付図面に基づいて詳述する。 [0038] <第 1実施例 >
図 1は本発明に係るトラップ装置が設けられる処理システムの一例を示す概略構成 図、図 2は本発明のトラップ装置の第 1実施例を示す断面図である。
[0039] 本実施例では、被処理体としての半導体ウェハの表面に高融点金属化合物ガスと して高融点金属ハロゲン化合物ガスである TiClガスを用いてプラズマ CVD (chemi
4
cal Vapor Deposition)により Ti膜を成膜処理する場合を例にとって説明する。
[0040] 図 1に示すように、この処理システム 2は、半導体ウェハ Wに対して Ti膜の成膜を実 際に施す処理装置 (成膜装置) 4と、この処理装置 4内の雰囲気を真空引きして排気 する真空排気系 6と、この真空排気系 6に介設された本発明のトラップ装置 8とにより 主に構成される。
[0041] まず、処理装置 4について説明すると、この処理装置 4は、例えばアルミニウム製の 筒体状の処理容器 10を有しており、この処理容器 10は接地されている。この処理容 器 10内には、底部より導電性の支柱 12を介して載置台 14が設けられており、この上 面に被処理体としての半導体ウェハ Wを載置して保持するようになっている。この載 置台 14は、例えば Ni等の導電性材料よりなって下部電極を兼用するものであり、内 部には、半導体ウェハ Wを加熱する抵抗加熱ヒータ 16が埋め込まれている。
[0042] また、処理容器 10の天井部には、原料ガス等の必要なガスを処理容器 10内へ導 入するシャワーヘッド 18が絶縁材 20を介して設けられており、このシャワーヘッド 18 には、途中に供給側開閉弁 22を介設したガス供給通路 24が接続されて、それぞれ 流量制御された TiClガス、 Hガス、 Arガス等の必要なガスを供給できるようになつ
4 2
ている。尚、各ガスをそれぞれ独立した供給通路から供給するようにしてもよい。
[0043] また、このシャワーヘッド 18は、上部電極を兼ねるものであり、これには、マッチング 回路 26を介して例えば 450kHzの高周波電源 28が接続されて、載置台 14とシャヮ 一ヘッド 18との間に高周波によるプラズマを発生させるようになつている。尚、この高 周波電源 28の周波数は 450kHzに限定されず、他の周波数を用いてもよぐ例えば 13. 56MHz等を用いてもよレヽ。
[0044] また、処理容器 10の側壁には、ウェハ Wの搬出入を行なうゲートバノレブ 30が設け られ、底部周辺部には排気口 32が設けられる。 [0045] 一方、上述のように形成された処理装置 4に接続される真空排気系 6は、上記排気 口 32に接続される、例えば内径が 10cm程度のステンレス製の排気通路 34を有して いる。この排気通路 34には、排気ガス中のガス状の不純物を除去するための上記ト ラップ装置 8、処理容器 10内の雰囲気を真空引きする真空ポンプ 36及び排気ガス 中に残留する不純物ガスを完全に除去する除害装置 38が、この順序で下流側に向 けて順次介設されている。
[0046] また、この排気通路 34の最上流側には、この排気通路 34の流路面積を変えて処 理容器 10内の圧力を制御する圧力制御弁 40が介設される。上記圧力制御弁 40の 直ぐ下流側の排気通路 34には、この排気通路 34内へ流量制御されたアンモニア( NH )ガスを注入するアンモニアガスノズル 42が設けられており、ここを流れる排気ガ
3
ス中にアンモニアガスを注入して排気ガス中に含まれる塩ィ匕水素や塩素ガスとこのァ ンモユアガスとを反応させて塩化アンモニゥム等を形成し得るようになってレ、る。
[0047] また上記トラップ装置 8の直ぐ上流側及び下流側の排気通路 34には、このトラップ 装置 8の着脱時等にこれを排気通路 34から隔離するための開閉弁 44が、それぞれ 介設されている。また上記ガス供給通路 24及び上記処理容器 10と上記トラップ装置 8との間の排気通路 34には、それぞれ図中点線で示すようにテープヒータ 46A、 46 Bが卷回されており、各通路 24、 34内を流れる不純物ガスの臨界温度ひ凝縮温度、 或いは凝固温度)以上の温度に加熱して通路 24、 34内で不純物ガスが液化したり、 固化したりすることを防止するようになっている。
[0048] そして本発明に係るトラップ装置 8は、図 2にも示すように、例えばアルミニウム製の 箱状に成形された不純物捕集容器 50を有している。この不純物捕集容器 50の天井 部にはガス入口 52が形成されており、このガス入口 52に上流側より延びてくる排気 通路 34を接続して排気ガスを導入するようになっている。またこの不純物捕集容器 5 0の一側壁には、ガス出口 54が形成されており、このガス出口 54に下流側に延びる 排気通路 34を接続してガス状の不純物が除去された排気ガスを下流側へ排出する ようになつている。尚、上記ガス入口 52及びガス出口 54の設置位置は特に限定され ない。
[0049] また上記不純物捕集容器 50の他の一側壁には、例えば開閉可能になされた開閉 ドア 56となっており、メンテナンス時等の必要時にこの開閉ドア 56を開閉し得るように なっている。この開閉ドア 56は、 Oリング等のシール部材 58を介して気密に閉塞され る。またこの不純物捕集容器 50内の底部の略全面には、着脱可能になされた不純 物付着板 60が取り付けられており、この上面に凝縮、凝固させて例えば粘度の高い 液状になった不純物、或いは凝縮、凝固した不純物 M (図 2参照)を付着させるように なっている。
[0050] そして、この不純物付着板 60に対向する不純物捕集容器 50の天井部 62には、本 発明の特徴とするノズノレ手段 64が設けられている。このノズル手段 64には、作動ガ ス通路 66を介して作動流体として例えば Nガスを貯留する作動ガス源 68が接続さ
2
れており、所定の圧力の Nガスを上記ノズノレ手段 64に向けて供給できるようになつ
2
ている。またこの作動ガス通路 66の途中には、 Nガスの供給を制御する開閉弁 70
2
が介設されている。そして、上記ノズノレ手段 64の直ぐ上流側の作動ガス通路 66には 、この作動流体中にガス状の不純物が凝縮、凝固する時に核となる物質を導入する ための核導入手段 72が設けられている。
[0051] この凝縮、凝固の起点となる核を導入する核導入手段 72としては、ここでは上記作 動ガス通路 66に取り付けたガスノズノレ 72Aを有しており、このガスノズル 72Aより核と して流量制御された水蒸気を導入し得るようになつている。そして上記構成により、上 記ノズノレ手段 64からは、超音速状態で上記作動流体 (Nガス)を噴射し得るようにな
2
つている。この結果、断熱膨張により超音速状態となった作動流体は、不純物捕集容 器 50内に吹き込まれて排気ガスと混合しつつ排気ガスを冷却し、ガス状の不純物を この臨界点以下に冷却して凝縮、凝固し得るようになつている。
[0052] この場合、図 2に示すように上記ノズル手段 64を形成するノズノレ本体 74は、その中 心に流路面積が作動流体の流れ方向に沿って次第に絞り込まれて、最も流路面積 が狭い喉部 74Aを通過した後に次第に拡大するような形状となっており、従って、そ の最下端部の断面が略円形になされた作動流体噴射口 74Cとなっている。このよう なノズノレ手段 64としては、例えばラバルノズノレを用いることができる。
[0053] 次に、以上のように構成された処理システムを用いて行なわれる不純物除去方法 について説明する。 [0054] まず、 Ti膜の成膜時には、処理装置 4の処理容器 10内の載置台 14上に半導体ゥ ェハ Wを載置し、そして、これを所定の温度に昇温加熱維持する。これと同時に、下 部電極である載置台 14と上部電極であるシャワーヘッド 18との間に高周波電圧を印 加し、また、シャワーヘッド 14力 TiClガス、 Hガス、 Arガス等の所定のガスを流量
4 2
制御しつつ流し、処理空間にプラズマを立てて Ti膜の成膜を行なう。これと同時に、 真空排気系 6も駆動して処理容器 10内の雰囲気を真空引きして内部を所定の圧力 に維持する。
[0055] この時のプロセス条件に関しては、例えばウェハサイズが 8インチサイズと仮定する と、プロセス圧力は 665Pa ( 5Torr)、プロセス温度は 650。C程度、 TiClガスの流
4 量は 5sccm程度、 Hガスの流量は 2000sccm程度、 Arガス流量は 500sccm程度
2
である。
[0056] 上記 Ti膜の成膜反応により、 TiClガスは約 10%程度消費されるが、残りの約 90
4
%程度は未反応ガスとして、また、 TiClや TiClや HC1などの反応副生成物として
2 3
排気ガスと共に排気口 32より真空排気系 6の排気通路 34内へ流入してこれを流下し 、この排気ガスは更にトラップ装置 8、真空ポンプ 36及び除害装置 38の順に順次流 れて行く。ここで、上記未反応ガスや反応副生成物の内、特に TiClガスは比較的蒸
4
気圧が高いので、トラップされ難レ、が、アンモニアガスノズル 42から反応ガスとして N Hガスを排気通路 34中に導入しており、これにより、 NHガスと主に TiClガスとを反
3 3 4 応させて TiCl · 2ΝΗの錯体よりなる化合物を形成している。この錯体は、 TiClガス
4 3 4 よりもかなり蒸気圧が低ぐ例えば TiClガスは 21 · 3°Cにおいて 1300Paであるが、
4
上記錯体は 21 , 3°Cにおいて 1 X 10— 4Pa程度である。また、 HC1ガスも NHガスと反
3 応して NH C1ガスとなる力 これも蒸気圧が低い。
4
[0057] このように、主として未反応残留ガスを、 NHガスと反応させて蒸気圧の低レ、ィ匕合
3
物に変換され、また、反応副生成物である HC1を NHガスと反応させて蒸気圧の低
3
い化合物に変換され、トラップ装置 8内で比較的捕集し易くなつている。上記錯体ゃ NH C1等よりなるガス状の不純物は排気ガス中に含まれて、トラップ装置 8のガス入
4
口 52より不純物捕集容器 50内へ導入されることになる。
[0058] ここで、この不純物捕集容器 50内へは、この天井部に設けたノズノレ手段 64より作 動流体として Nガスが断熱膨張により超音速状態で吹き込まれている。この Nガス
2 2 は断熱膨張をすることにより自らは温度が低下し (これを自冷とも称す)つつ排気ガス と混合し、これによつて排気ガスを冷却するので上記ガス状の不純物は臨界点以下 に冷却されて凝縮し、或いは凝固して析出し、この不純物 Mは不純物捕集容器 50 内の底部に設けた不純物付着板 60に付着して堆積することによって捕集されること になる。このようにしてガス状の不純物が除去された排気ガスは、ガス出口 54より排 出されて下流側の真空ポンプ 36の方に流れて行く。
[0059] このように、圧力差を作動流体である Nガスの運動エネルギに効率的に変換して
2
超音速状態を実現できるノズル、例えばラバルノズノレを用レ、、 Nガスが断熱膨張し、
2
超音速状態となる時に自冷する冷熱によりガス状の不純物を冷却して凝縮、凝固さ せるようにしたので、ガス状の不純物を効率的に排ガス中から除去することができる。
[0060] また従来のトラップ装置で用いた冷却フィン等を使用していないので、冷却効率を 常時高く維持することができ、しかも、捕集された不純物が増加しても排気コンダクタ ンスに悪影響を与えることもない。し力も、上述したように冷却フィン等を用いていな いので、トラップ装置 8の全体構成も簡単化することができる。尚、この時の作動流体 の流量は、上流側の処理容器 10内の圧力制御に悪影響を与えないような流量とす る。
[0061] また上記作動流体である Nガス中には、核導入手段 72より導入された水蒸気が含
2
まれているので、これが不純物捕集容器 50内で冷却されて微細な氷粒となって核と して機能し、上記ガス状の不純物が過冷却されることなく上記氷粒を核として凝縮、 凝固して析出することになり、この結果、不純物の捕集効率を一層高めることが可能 となる。尚、上記核導入手段 72を不純物捕集容器 50に設けて、水蒸気をこの不純 物捕集容器 50内に直接的に導入するようにしてもよい。この点は後述する他の実施 例でも同様である。
[0062] またこのトラップ装置 8のメンテナンス時には、開閉ドア 56を取り外した後に、着脱 可能になされた不純物付着板 60を不純物捕集容器 50より取り出し、この不純物付 着板 60の上面に付着している不純物 Mを洗浄して除去するだけで済むので、メンテ ナンス作業性も大幅に向上させることができる。 [0063] 尚、この第 1実施例では、本発明の理解を容易にするために、ノズル手段 64を一基 のみ設けた場合を例にとって説明したが、このノズル手段 64を複数個並列させて設 けるようにし、各ノズノレ手段 64から不純物捕集容器 50内へ水蒸気が混入された作動 流体を噴射して吹き込むようにしてもよい。
[0064] ぐ第 2実施例 >
次に本発明の第 2実施例について説明する。この第 2実施例では先の第 1実施例 のノズル手段 64の構造を少し変更し、これを複数個並列に設けた構成となってレ、る。
[0065] 図 3はこのような本発明のトラップ装置の第 2実施例を示す断面図、図 4は図 3中の 1つのノズル手段を示す拡大断面図、図 5は図 4中の A— A線矢視断面図である。尚 、図 1及び図 2に示す部分と同一構成部分については同一符号を付してその説明を 省略する。
[0066] 図示するように、ここでは不純物捕集容器 50の前段側に処理容器 10側から流れて くる排気ガスを一時的に滞留乃至貯留するための例えばステンレス製の前段滞留室 80を有している。この前段滞留室 80の側壁の一部にガス入口 82が設けられており、 このガス入口 82に上流側の排気通路 34を接続して排気ガスを流入させるようになつ ている。
[0067] そして、上記前段滞留室 80の長手方向の側壁と前記不純物捕集容器 50の天井 部 62との間には、前段滞留室 80と不純物捕集容器 50内とを連通するようにして複 数、図示例では 9個の連通路 84が並列に設けられており、この連通路 84を介して前 段滞留室 80内の排気ガスを不純物捕集容器 50内の方へ流すようになっている。こ の連通路 84は、図 4にも示すように、排気ガスの流れ方向に沿ってその内径が順次 縮径されて円錐状になされた導入管 86と、この導入管 86に続く円筒体状の混合管 8 8と、この混合管 88に続いて排気ガスの流れ方向に沿ってその内径が順次拡径され た拡散管 90とにより主に構成されている。
[0068] 一方、上記前段滞留室 80内には、上記作動ガス通路 66に接続される所定の大き さの作動ガスヘッダ 92が設けられており、この作動ガスヘッダ 92内に凝縮、凝固の 起点となる水蒸気が含有された作動ガスを導入するようになっている。そして、上記 作動ガスヘッダ 92から、上記各連通路 84に向けて、図 2において説明したものと同 様な構造のノズル手段 64が延在させて設けられている。このノズル手段 64のノズノレ 本体 74の先端部は、図 4にも示すように、上記導入管 86と混合管 88との接合部に略 位置されており、非接触状態になされている。
[0069] 従って、この部分において図 5にも示すように、中心部では断面が略円形の作動流 体噴射口 74Cが形成され、この作動流体噴射口 74Cの周囲を囲むようにして断面が 略リング状の排気ガス導入口 94が形成されることになり、この排気ガス導入口 94から 排気ガスが不純物捕集容器 50内に向けて導入される。ここで上記ノズル本体 74は、 前述したように、その中心に流路面積が作動流体の流れ方向に沿って次第に絞り込 まれて、最も流路面積が狭い喉部 74Aを通過した後に次第に拡大するような形状と なっており、従って、その最下端部の断面が略円形になされた作動流体噴射口 74C となっている。このようなノズノレ手段 64としては、前述したように例えばラバルノズノレを 用いることができる。
[0070] このようにして、ノズル手段 64から超音速状態の作動流体を噴射するようにした結 果、このノズノレ手段 64はェジェクタ一ポンプのようなポンプ機能を有することになり、 排気ガス導入口 94からの排気ガスは作動ガスの噴流に押し流されて排気側に向か つて流れるようになつている。
[0071] また、この混合管 88と拡散管 90の外周壁には、例えばテープヒータのような付着防 止用加熱手段 96が設けられており、これをガス状の不純物の臨界温度以上に加熱 することにより、この内壁面に不純物が凝縮、凝固して付着することを防止するように なっている。
[0072] この第 2実施例の場合には、基本的には第 1実施例の場合と同様な作用効果を発 揮できる。例えば処理容器 10側から流れてくる排気ガスは前段滞留室 80内で全体 に拡散し、各連通路 84を介して並行して不純物捕集容器 50内側へ導入されること になる。これと同時に、作動ガスヘッダ 92を介して各ノズノレ手段 64の作動流体噴出 口 74Cからは、作動流体として例えば Nガスが断熱膨張により超音速状態で噴射さ
2
れる。この超音速状態の Nガスは、リング状の排気ガス導入口 94から導入される排
2
気ガスと混合管 88内にて混合されつつ拡散管 90内を拡散されて不純物捕集容器 5 0内に至り、ガス状の不純物を冷却して凝縮、凝固させ、不純物付着板 60上に不純 物 Mが付着することになる。これにより、第 1実施例の場合と同様に、排気ガス中から 不純物を効率的に除去することができる。特に複数個のノズル手段 64を並列に設け たので、その分、不純物の除去効率を高めることができる。
[0073] また作動流体中に例えば水蒸気のような核を混入させることにより、第 1実施例の場 合と同様に、ガス状の不純物の過冷却をなくして、この不純物の除去効率を一層高 めることができる。更には、従来のトラップ装置は排気コンダクタンスを低下させるよう に作用するのに対して、この第 2実施例では、ノズノレ手段 64はポンプ機能を発揮して 作動流体噴射口 74Cの周囲に設けたリング状の排気ガス導入口 94からの排気ガス を巻き込むようにして排気側へ押し流すように作用するので、排気コンダクタンスを高 めることができ、排気系に悪影響を与えることがない。また混合管 88や拡散管 90に は、付着防止用加熱手段 96を設けてこれを加熱するようにしているので、この内壁面 側に不純物が付着することを防止することができる。
[0074] ここで図 4に示す構成において、各部における温度、圧力、流速等の各パラメータ につレ、て検討した結果、次に示すような結果を得ることができた。
ノズノレ入口における作動流体圧力 Ρ1 : 1 · 33 X 104Pa ( = 0. latm)
作動ガス源 68内の作動流体のガス温度 T1: 293K (20°C)
ノズル入口における作動流体流速 U1: 0. Om/s (超音速に比べればゼロとみなせ る)
ガスの比熱比 κ : 1. 4
排気ガス導入口 94の排気ガスの圧力 Pe2 : 133Pa
排気ガス導入口 94の排気ガスの温度 Te2: 423K (150°C)
排気ガス導入口 94の排気ガスの速度 Ue2: 328. 2m/ s
排気ガス導入口 94の面積 Se : 808. 5mm2
作動流体噴射口 74Cの面積 Sn: 1155. 0mm2
混合管 88の直径 Dl : 50. Omm
拡散管 90の出口直径 D2 : 53. 9mm
[0075] 上記のように各パラメータを設定した時、以下に示すような結果を得た。
ノス、ノレ出口における圧力 Pn2 : 133Pa ( 0. 00 latm) ノズノレ出口における作動流体温度 Tn2 : 78· 6Κ (— 194. 4°C)
ノズノレ出口における作動流体速度 Un2: 656. 4m/s (超音速状態)
混合管 88の出口における圧力 P4 : 133Pa
混合管 88の出口における混合ガスの温度 T4 : 150. 8K (— 122. 2°C) 混合管 88の出口における混合ガスの速度 U4 : 413. 3m/s
拡散管 90の出口における圧力 P5 : 189. 9Pa
拡散管 90の出口における混合ガスの温度 T5 : 167. 0K (— 106. 0°C) 拡散管 90の出口における混合ガスの速度 U5: 372m/ s
以上に示したように、作動流体がノズルの出口から超音速状態で噴射された後に 混合管 88、拡散管 90を経て不純物捕集容器 50内に至るまで、混合ガスの温度は 非常に低くできることが確認できた。
[0076] ぐ第 3実施例 >
次に本発明の第 3実施例について説明する。この第 3実施例では先の第 2実施例 のノズル手段 64の構造に関して、中心側と外周側とを逆転させた構造とし、中心側よ り排気ガスを流し、外周側より作動流体を噴射させるようにしたものである。
[0077] 図 6はこのような本発明のトラップ装置の第 3実施例を示す断面図、図 7は図 6中の 1つのノズル手段を示す拡大断面図、図 8は図 7中の B— B線矢視断面図である。尚、 図 3乃至図 5に示す部分と同一構成部分については同一符号を付してその説明を省 略する。
[0078] 図示するように、ここでも第 2実施例と同様に、不純物捕集容器 50の前段側に処理 容器 10側から流れてくる排気ガスを一時的に滞留乃至貯留するための例えばステン レス製の前段滞留室 80を有している。この前段滞留室 80の側壁の一部にガス入口 8 2が設けられており、このガス入口 82に上流側の排気通路 34を接続して排気ガスを 流入させるようになつている。
[0079] そして、上記前段滞留室 80の長手方向の側壁からは略円筒状の複数の、図示例 では 6本のノズノレ本体 100が不純物捕集容器 50に向けて延在させて設けられている 。また前段滞留室 80と上記不純物捕集容器 50との間には、作動ガス通路 66に接続 された所定の大きさの作動ガスヘッダ 92が介在させて設けられている。 [0080] そして、上記作動ガスヘッダ 92の長手方向の側壁と前記不純物捕集容器 50の天 井部 62との間には、作動ガスヘッダ 92と不純物捕集容器 50内とを連通するようにし て複数、図示例では 6個の連通路 102が並列に設けられており、この連通路 102を 介して作動ガスヘッダ 92内の作動流体を不純物捕集容器 50内の方へ流すようにな つている。この連通路 102は、図 7にも示すように、作動流体の流れ方向に沿ってそ の内径が順次縮径されて円錐状になされた導入管 104と、この導入管 104に続く円 筒体状の混合管 106と、この混合管 106に続いて排気ガス(作動流体)の流れ方向 に沿ってその内径が順次拡径された拡散管 108とにより主に構成されている。
[0081] ここで上記導入管 104と混合管 106とで、ノズル外筒 110が構成されており、このノ ズノレ外筒 110と上記ノズル本体 100とで、ノズノレ手段 112を形成している。具体的に は、上記ノズル本体 100は、上記作動ガスヘッダ 92の一側壁を気密に貫通してへッ ダ内部へ揷入され、このノズル本体 100の先端部は、上記混合管 106の途中まで揷 通されて非接触状態になされている。そして、上記ノズル本体 100の先端部の外周 には、流路面積が作動流体の流れ方向に沿って次第に絞り込まれて流路面積が最 も狭い喉部 100Aを通過した後に次第に拡大するような形状となる断面凸状になされ た絞り部 112がリング状に形成されており、この流路を作動流体が通った時に、 X部と Y部(図 7参照)の差圧が有効に速度に変換されて低温で超音速の状態が実現でき るようになっている。
[0082] 従って、図 8にも示すように、中心部では断面が略円形の排気ガス導入口 114が形 成され、この排気ガス導入口 114の周囲を囲むようにして断面が略リング状の作動流 体噴射口 100Cが形成されることになり、上記排気ガス導入口 114から排気ガスが不 純物捕集容器 50内に向けて導入される。また、上記作動流体噴射口 100Cから作動 流体が噴射される。尚、上記断面凸状の絞り部 112は、ノズル本体 100側ではなぐ 混合管 106の内面側に設けるようにしてもよぐ或いは両者に設けるようにしてもよぐ いずれにしても、作動流体を超音速状態で噴射できる、いわゆるラバルノズノレを形成 できるならば、その形状は問わない。
[0083] この第 3実施例の場合にも、先の第 1実施例及び第 2実施例と同様な作用効果を発 揮できる。すなわち、排気ガスはノズノレ本体 100の中心を通って排気ガス導入口 114 より放出され、また作動流体である N2ガスは作動ガスヘッダ 92から導入管 104内及 び喉部 100Aを通ってリング状の作動流体噴射口 100Cより噴射される。この時この Nガスは断熱膨張の結果、自冷して低温で超音速の状態となって噴射されるので、
2
前述したように排気ガスを巻き込みつつガス状の不純物を凝縮、凝固することになる 。この場合、第 2実施例の場合と同様に、このノズノレ手段 112はポンプ機能を発揮す るので、排気コンダクタンスに悪影響を与えることを防止することができる。
[0084] 更には、この第 3実施例の場合には、排気ガスの周囲を囲むようにして作動流体で ある Nガスが流れることになるので、排気ガスが混合管 106の内壁面や拡散管 108
2
の内壁面に直接接触することを避けることができる。従って、上記凝縮、凝固した不 純物が、上記混合管 106や拡散管 108の内壁面に付着することを防止することがで きる。尚、この第 3実施例の場合でも、上記不純物の付着を完全に防止するために第 2実施例のように付着防止用加熱手段 96を設けるようにしてもよい。
[0085] 尚、上記各実施例においては、凝縮、凝固の起点となる核を形成するために、水蒸 気を導入してこれを氷結させるようにした力 S、これに限定されず、セラミックスや石英 等のパウダを用いるようにしてもよい。また作動流体に関しても Nガスに限定されず、
2
Arガスや Heガス等の不活性ガス、 Hガス等を用いてもよい。
2
[0086] また成膜する膜種に関しても Ti膜に限定されず、反応副生成物や未反応物質を排 気ガス中から除去する必要のある全ての成膜装置、或いは処理装置に本発明を適 用すること力 Sできる。
[0087] また、上記各実施例では、被処理体として半導体ウェハを例にとって説明したが、 これに限定されず、ガラス基板、 LCD基板等にも適用できるのは勿論である。
[0088] 以上説明したように、本発明のトラップ装置、処理システム及び不純物除去方法に よれば、ノズル手段により断熱膨張し、超音速状態となった作動流体を排気ガス中に 吹き込むことにより、排気ガスを冷却してガス状の不純物を凝縮、凝固して捕集させ るようにしたので、冷却効率を常に高く維持することができ、従って、捕集効率も常に 高く維持することができる。また、従来のトラップ装置で用いた冷却フィン等のような複 雑な構造物を不要にできるので、不純物捕集容器内に凝縮、凝固により付着した例 えば粘性のある捕集物を除去するメンテナンス作業を行う際に、このメンテナンス作 業を迅速に、且つ容易に行うことができる。また、付着防止用加熱手段により混合管 や拡散管が加熱されているので、この内壁面に不純物が例えば粘性のある固形物 状になって付着することを防止することができる。さらに、排気ガス中に核を導入する ようにしたので、ガス状の不純物が過冷却状態になることを防止してこの凝縮、凝固 を促進することができるので、不純物の捕集効率を一層向上させることができる。

Claims

請求の範囲
[1] 被処理体に対して所定の処理を施す処理装置内を真空排気するための真空ボン プを有する真空排気系に介設されて、前記真空排気系内を流れる排気ガス中に含 まれるガス状の不純物を除去するためのトラップ装置において、
前記真空排気系の排気通路に介設された不純物捕集容器と、
断熱膨張により超音速状態となった作動流体を吹き込んで前記排気ガスと混合さ せると共に前記不純物捕集容器内で前記不純物の臨界点以下に前記排気ガスの 温度を低下させるノズル手段と、
を備えたことを特徴とするトラップ装置。
[2] 前記ノズル手段は、前記不純物捕集容器に対して複数個並列に設けられることを 特徴とする請求項 1に記載のトラップ装置。
[3] 前記ノズル手段は、その流路面積が作動流体の流れ方向に沿って次第に絞り込ま れて喉部を通過した後に次第に拡大するようになされたノズル本体を有することを特 徴とする請求項 1に記載のトラップ装置。
[4] 前記ノズル本体は断面が略円形に形成された作動流体噴射口を有しており、前記 作動流体噴射口の周囲を囲むようにして前記排気ガスを前記不純物捕集容器側に 向けて導入するためのリング状の排気ガス導入口が形成されていることを特徴とする 請求項 1に記載のトラップ装置。
[5] 前記ノズル本体は断面が略リング状に形成された作動流体噴射口を有しており、そ の中心部には前記排気ガスを前記不純物捕集容器側に向けて導入するための略円 形の排気ガス導入口が形成されていることを特徴とする請求項 1に記載のトラップ装 置。
[6] 前記排気ガス導入口へ向力 排気ガスを一時的に滞留させるための前段滞留室が 設けられることを特徴とする請求項 4に記載のトラップ装置。
[7] 前記ノズル手段の先端部側には、前記作動流体噴射口より噴射された超音速の作 動流体と前記排気ガス導入口より取り込んだ排気ガスとを混合させる混合管と、その 流路面積を順次拡大させてポンプ機能を持たせた拡散管とを順次連結させて設けて レ、ることを特徴とする請求項 4に記載のトラップ装置。
[8] 前記混合管と前記拡散管とには、前記不純物が凝縮、凝固して付着することを防 止するための付着防止用加熱手段が設けられていることを特徴とする請求項 7に記 載のトラップ装置。
[9] 前記混合ガス中における前記ガス状の不純物が凝縮、凝固する時に核となる物質 を導入するための核導入手段が設けられていることを特徴とする請求項 1に記載のト ラップ装置。
[10] 前記不純物捕集容器には、前記凝縮、凝固された不純物を付着させるための不純 物付着板が着脱可能に設けられていることを特徴とする請求項 1に記載のトラップ装 置。
[11] 前記ノズノレ手段はラバルノズルであることを特徴とする請求項 1に記載のトラップ装 置。
[12] 前記作動流体は、 N、 H、 Ar、 Heの内いずれか 1つのガスよりなることを特徴とす
2 2
る請求項 1に記載のトラップ装置。
[13] 前記処理装置は、被処理体に対して成膜処理を施すための成膜装置であることを 特徴とする請求項 1に記載のトラップ装置。
[14] 被処理体に対して所定の処理を施すための処理装置と、
前記処理装置内を真空引きするために真空ポンプが設けられた真空排気系と、 前記真空排気系に介設された請求項 1に記載されたトラップ装置と、
を備えたことを特徴とする処理システム。
[15] 被処理体に対して所定の処理を施す処理装置から排出される排気ガス中からガス 状になってレ、る不純物を除去する不純物除去方法にぉレ、て、
前記排気ガス中に断熱膨張により超音速状態となった作動流体を吹き込んで前記 排気ガスと混合させると共に、前記排気ガスの温度を前記不純物の臨界点以下に低 下させることにより、前記不純物を凝縮、凝固させるようにしたことを特徴とする不純物 除去方法。
[16] 前記作動流体と前記排気ガスとの混合は、噴射される前記作動流体の周囲を囲む ように前記排気ガスを噴射することによって行われることを特徴とする請求項 15に記 載の不純物除去方法。 前記作動流体と前記排気ガスとの混合は、噴射される前記排気ガスの周囲を囲む ように前記作動流体を噴射することによって行われることを特徴とする請求項 15に記 載の不純物除去方法。
PCT/JP2004/008759 2003-06-25 2004-06-22 トラップ装置、処理システム及び不純物除去方法 WO2005000440A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/562,127 US7488374B2 (en) 2003-06-25 2004-06-22 Trapping device, processing system, and method removing impurities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003181846A JP4285108B2 (ja) 2003-06-25 2003-06-25 トラップ装置、処理システム及び不純物除去方法
JP2003-181846 2003-06-25

Publications (1)

Publication Number Publication Date
WO2005000440A1 true WO2005000440A1 (ja) 2005-01-06

Family

ID=33549537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008759 WO2005000440A1 (ja) 2003-06-25 2004-06-22 トラップ装置、処理システム及び不純物除去方法

Country Status (5)

Country Link
US (1) US7488374B2 (ja)
JP (1) JP4285108B2 (ja)
KR (1) KR100687942B1 (ja)
CN (1) CN100348288C (ja)
WO (1) WO2005000440A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276049A1 (en) * 2005-06-06 2006-12-07 Bailey Christopher M High efficiency trap for deposition process
JP4728748B2 (ja) * 2005-09-05 2011-07-20 株式会社東芝 半導体製造装置の清浄化方法
JP2007197302A (ja) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法および製造装置
CN101179005B (zh) * 2006-11-10 2010-10-27 Tes股份有限公司 排气系统及使用此系统制造薄膜的半导体制造装置与方法
US8048208B2 (en) * 2007-09-11 2011-11-01 Centrotherm Photovoltaics Ag Method and apparatus for depositing chalcogens
US20100112191A1 (en) * 2008-10-30 2010-05-06 Micron Technology, Inc. Systems and associated methods for depositing materials
KR101103630B1 (ko) 2009-12-21 2012-01-11 한국항공우주연구원 재연소를 통한 하이드라진 추력기 분해가스 처리 장치
JP6007715B2 (ja) * 2012-03-29 2016-10-12 東京エレクトロン株式会社 トラップ機構、排気系及び成膜装置
KR101635388B1 (ko) * 2013-09-23 2016-07-08 주식회사 지앤비에스엔지니어링 공정 폐가스 처리용 스크러버
US10066138B2 (en) 2013-12-27 2018-09-04 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, the use thereof, and method for repairing electronic device
KR102638572B1 (ko) * 2015-06-17 2024-02-21 어플라이드 머티어리얼스, 인코포레이티드 프로세스 챔버 내의 가스 제어
CN105442408A (zh) * 2015-12-03 2016-03-30 江西理工大学 一种降解机动车尾气的沥青混凝土道路系统
JP6628653B2 (ja) * 2016-03-17 2020-01-15 東京エレクトロン株式会社 トラップ装置及びこれを用いた排気系、並びに基板処理装置
JP2017183603A (ja) * 2016-03-31 2017-10-05 東芝メモリ株式会社 エピタキシャル成長装置
US10480065B2 (en) * 2017-09-19 2019-11-19 Goodrich Corporation Gas distribution for chemical vapor deposition/infiltration
US11583793B2 (en) * 2019-10-08 2023-02-21 Utica Leaseco, Llc Gas trap system having a conical inlet condensation region
CN111346486A (zh) * 2020-03-17 2020-06-30 浙江大学 一种氧碘化学激光器尾气处理方法和系统
KR20220091744A (ko) 2020-12-24 2022-07-01 삼성전자주식회사 파우더 부산물 억제를 위해 흡착제를 포함하는 배기 가스 처리 시스템
CN115433918B (zh) * 2022-08-26 2023-11-10 鑫德斯特电子设备(安徽)有限公司 一种高洁净度硅片成膜设备及其成膜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190227A (ja) * 1992-12-25 1994-07-12 Matsushita Electric Ind Co Ltd ミストあるいは蒸気凝縮回収装置
JPH07169663A (ja) * 1993-12-13 1995-07-04 Nec Corp 半導体処理装置
JP2001214272A (ja) * 1999-11-24 2001-08-07 Tokyo Electron Ltd 成膜装置の排気系構造及び不純物ガスの除去方法
JP2002503042A (ja) * 1998-02-03 2002-01-29 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 空冷方法および空冷装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624405A (ja) 1985-06-29 1987-01-10 Shimadzu Corp ワツクストラツプ装置
ZA985706B (en) * 1997-07-02 1999-01-27 Shell Int Research Removing a gaseous component from a fluid
US6238514B1 (en) * 1999-02-18 2001-05-29 Mks Instruments, Inc. Apparatus and method for removing condensable aluminum vapor from aluminum etch effluent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190227A (ja) * 1992-12-25 1994-07-12 Matsushita Electric Ind Co Ltd ミストあるいは蒸気凝縮回収装置
JPH07169663A (ja) * 1993-12-13 1995-07-04 Nec Corp 半導体処理装置
JP2002503042A (ja) * 1998-02-03 2002-01-29 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 空冷方法および空冷装置
JP2001214272A (ja) * 1999-11-24 2001-08-07 Tokyo Electron Ltd 成膜装置の排気系構造及び不純物ガスの除去方法

Also Published As

Publication number Publication date
US7488374B2 (en) 2009-02-10
US20060144234A1 (en) 2006-07-06
CN1723066A (zh) 2006-01-18
JP4285108B2 (ja) 2009-06-24
KR100687942B1 (ko) 2007-02-27
CN100348288C (zh) 2007-11-14
KR20060022277A (ko) 2006-03-09
JP2005013866A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
WO2005000440A1 (ja) トラップ装置、処理システム及び不純物除去方法
US6773687B1 (en) Exhaust apparatus for process apparatus and method of removing impurity gas
CN104246007B (zh) 捕集机构、排气系统和成膜装置
US8393599B2 (en) Apparatus for liquid precursor atomization
EP2013378B1 (en) Exhaust system
JP4599701B2 (ja) 成膜装置の排気系構造及び不純物ガスの除去方法
EP1716899B1 (en) Liquid cooled trap
US6159298A (en) Thermal processing system
WO2001059177A1 (fr) Tuyau d&#39;echappement equipe de moyens permettant de prevenir l&#39;agglutination de sous-produit reactif et procede permettant de prevenir l&#39;agglutination
WO1997028886A9 (en) Liquid cooled trap patent application
JP2000256856A (ja) 処理装置及び処理装置用真空排気システム及び減圧cvd装置及び減圧cvd装置用真空排気システム及びトラップ装置
CN108660436A (zh) 氮化硅反应炉的吹扫方法
JP3539446B2 (ja) 副生成物トラップ装置及びその洗浄方法
JP2004346378A (ja) 基板処理装置
JPH11233498A (ja) 排気装置
JP3877656B2 (ja) 半導体製造装置、及びそれを用いて処理する半導体素子の形成方法
JP4111269B2 (ja) 基板処理装置
JP4495271B2 (ja) トラップ装置
CN109930131A (zh) 一种化学气相沉积方法及系统
JP2000126546A (ja) 未反応ガス浄化装置におけるガス成分堆積電極構造
TWM557266U (zh) 氣體回收模組
JP2005324075A (ja) 排気捕集装置及びガス反応装置
JP2004022573A (ja) 半導体製造装置
KR20050109202A (ko) 파우더 집진기를 구비한 반도체 제조 장치
JP2000021779A (ja) 半導体素子の製造法およびそれを用いた半導体素子製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048017492

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057024219

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006144234

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10562127

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057024219

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10562127

Country of ref document: US

122 Ep: pct application non-entry in european phase