WO2004113703A1 - 排気ガス浄化方法及び排気ガス浄化システム - Google Patents

排気ガス浄化方法及び排気ガス浄化システム Download PDF

Info

Publication number
WO2004113703A1
WO2004113703A1 PCT/JP2004/008734 JP2004008734W WO2004113703A1 WO 2004113703 A1 WO2004113703 A1 WO 2004113703A1 JP 2004008734 W JP2004008734 W JP 2004008734W WO 2004113703 A1 WO2004113703 A1 WO 2004113703A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
dpf
differential pressure
nox
catalyst
Prior art date
Application number
PCT/JP2004/008734
Other languages
English (en)
French (fr)
Inventor
Daiji Nagaoka
Masashi Gabe
Takayuki Sakamoto
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to US10/554,931 priority Critical patent/US7451593B2/en
Priority to EP04746203.1A priority patent/EP1637717B1/en
Publication of WO2004113703A1 publication Critical patent/WO2004113703A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Definitions

  • the present invention relates to an exhaust gas purification method and an exhaust gas purification method for purifying NOx from an exhaust gas of an internal combustion engine such as a diesel engine using a NOx storage reduction catalyst and purifying PM using a continuous regeneration DPF. It is about the system.
  • Diesel engines emit NOx (nitrogen oxides) and particulate matter (PM: particulate matter: PM) from CO (carbon oxide), HC (hydrocarbon), etc.
  • NOx nitrogen oxides
  • PM particulate matter: PM
  • CO carbon oxide
  • HC hydrocarbon
  • DPF Diesel Particulate Filter
  • One of the NOx purification catalysts is a NOx storage reduction catalyst.
  • This N ⁇ x storage reduction catalyst is formed by supporting a catalyst metal and an N ⁇ x storage material having a NOx storage function on a porous catalyst coat layer such as alumina (Al 2 O 3).
  • This catalytic metal is, for example, platinum (Pt) which has an oxidation function for NOx.
  • NOx storage materials include alkali metals such as sodium (Na), potassium) and cesium (Cs), alkaline earth metals such as calcium (Ca) and norium (Ba), yttrium (Y), and lanthanum (La). One or several combinations of rare earths, etc.
  • the NOx storage-reduction catalyst exhibits two functions of N ⁇ x storage and NOx release 'purification depending on the ⁇ (oxygen) concentration in the exhaust gas.
  • the NOx storage material such as barium changes to nitrate, gradually saturates, and loses the function of storing NO. Therefore, rich combustion is performed by changing the operating conditions of the engine to generate rich spike gas and supply it to the catalyst.
  • This rich spike gas is an exhaust gas with low concentration and high C concentration and high exhaust temperature.
  • the NOx storage material that has stored NO and converted to nitrate releases the stored NO and returns to the original barium or the like. Since there is no ⁇ in the exhaust gas, the released N ⁇ is reduced on the catalytic metal using CO, HC, and H in the exhaust gas as a reducing agent, and is converted to N, H 2 O, and CO. Therefore, the exhaust gas is purified
  • Japanese Patent Application Laid-Open No. 06-159037 discloses a method for reducing energy supplied from the outside for regeneration of DPF and facilitating ignition of trapped PM.
  • an exhaust gas purifying apparatus for an internal combustion engine aimed at the following.
  • the DPF and the NOx absorbent are arranged at positions where heat can be transferred to each other. More specifically, the DPF carries a NOx absorbent.
  • N ⁇ x is released and reduced. It is only necessary to increase the frequency of rich combustion. However, since this operation region is a region where the combustion temperature is high, a large amount of PM is generated during this rich combustion.
  • the self-ignition exhaust temperature is generally 300 ° C or more and 400 ° C or more depending on the catalyst supported on the DPF.
  • FIG. 7 shows the relationship between the NOx purification rate and the amount of accumulated PM (differential pressure increase rate).
  • the catalyst regeneration control to recover the NOx purification rate of the NOx storage reduction type catalyst when the richness is reduced, the amount of PM generated becomes smaller than the PM combustion amount (the differential pressure increase rate is minus). The rate also drops.
  • the N ⁇ x purification rate is increased by increasing the richness, the NOx purification rate increases. The amount of generated PM becomes larger than the PM combustion amount (the differential pressure increase rate is positive).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust gas that combines a NOx purification function using a NOx storage reduction catalyst with a PM purification function using a continuous regeneration DPF.
  • An object of the present invention is to provide an exhaust gas purification method and an exhaust gas purification system capable of maintaining an optimum NOx purification rate within a range in which a DPF can be continuously regenerated in a gas purification system.
  • the exhaust gas purifying method for achieving the above object is to purify the exhaust gas of the internal combustion engine with NOx using an N ⁇ x storage reduction catalyst and PM purification using a continuous regeneration type DPF.
  • a temperature sensor for detecting a temperature of exhaust gas flowing into the DPF a differential pressure sensor for detecting a differential pressure before and after the DPF, and a control device for calculating a rate of increase in the differential pressure per unit time of the DPF.
  • the temperature of the exhaust gas detected by the temperature sensor is equal to or higher than the self-combustion temperature of PM
  • the differential pressure increase rate is equal to or higher than a predetermined differential pressure increase rate determination value.
  • the richness is reduced in the rich control performed in the catalyst regeneration control for regenerating the NOx storage reduction catalyst.
  • a temperature sensor that performs NOx purification by a NOx storage reduction catalyst and PM purification by a continuously regenerating DPF on exhaust gas of an internal combustion engine, and detects a temperature of exhaust gas flowing into the DPF
  • a differential pressure sensor for detecting the differential pressure across the DPF
  • an INOx concentration sensor for detecting the NOx concentration before and after the NOx storage reduction catalyst
  • a second NOx concentration An exhaust gas purification system comprising: a sensor and a control device that calculates a differential pressure increase rate per unit time of the DPF and that calculates a NOx purification rate from NOx concentrations before and after the NOx storage reduction catalyst.
  • the NOx purification rate is determined to be a predetermined NOx purification rate determination.
  • the richness is increased in accordance with the rich control performed in the catalyst regeneration control for regenerating the NOx storage reduction catalyst.
  • the temperature of the exhaust gas detected by the temperature sensor is equal to or higher than the self-combustion temperature of PM, and the differential pressure increase rate is a predetermined differential pressure increase rate determination value.
  • the richness is reduced in the rich control performed in the catalyst regeneration control for regenerating the N ⁇ x storage reduction catalyst.
  • the reduction of the richness is performed by making the interval for performing the rich control longer and reducing the rich frequency as compared with the standard rich control.
  • this richness can be reduced by setting the target oxygen concentration lower when performing the rich control, thereby reducing the supply of the reducing agent and increasing the air-fuel ratio (A / F) of the exhaust gas. This is done by lowering the excess ratio ( ⁇ ) and reducing the rich depth.
  • the reduction of the richness is performed in both of them.
  • the increase of the richness is performed by shortening the interval for performing the rich control and increasing the rich frequency as compared with the standard rich control.
  • this richness can be increased by increasing the amount of reducing agent supplied by setting the target oxygen concentration higher when performing rich control, and increasing the excess air ratio that reduces the air-fuel ratio of the exhaust gas. This is done by increasing the rich depth.
  • the increase of the richness is performed in both of them.
  • the exhaust gas purification system of the present invention is an exhaust gas purification system that performs NOx purification on an exhaust gas of an internal combustion engine by a NOx storage reduction catalyst and PM purification by a continuous regeneration DPF.
  • a temperature sensor for detecting a temperature of exhaust gas flowing into the DPF; a differential pressure sensor for detecting a differential pressure across the DPF; and a differential pressure per unit time of the DPF.
  • a control device for calculating an increase rate wherein the control device detects that the temperature of the exhaust gas detected by the temperature sensor is equal to or higher than the self-combustion temperature of PM and the differential pressure increase rate is a predetermined differential pressure increase When the ratio is equal to or greater than the rate determination value, the richness of the exhaust gas is reduced in accordance with the rich control performed in the catalyst regeneration control for regenerating the NOx storage reduction catalyst.
  • a control device for calculating a differential pressure increase rate per unit time of the DPF and calculating a NOx purification rate from N ⁇ x concentrations before and after the NOx storage reduction catalyst wherein the control device includes the temperature sensor
  • the temperature of the exhaust gas detected in the above is equal to or higher than the self-combustion temperature of PM
  • the differential pressure increase rate is equal to or lower than a predetermined differential pressure increase rate determination value
  • the NOx purification rate is a predetermined NOx purification rate determination value.
  • control device may be configured so that the temperature of the exhaust gas detected by the temperature sensor is equal to or higher than the self-combustion temperature of PM and the differential pressure increase rate is a predetermined value.
  • the pressure difference is equal to or greater than the differential pressure increase rate determination value, the richness is reduced by the rich control performed in the catalyst regeneration control for regenerating the NOx storage reduction catalyst.
  • the continuous regeneration DPF includes a continuous regeneration DPF including an oxidation catalyst on the upstream side and a DPF on the downstream side, and a continuous regeneration DPF including a DPF with a catalyst carrying an oxidation catalyst. It is configured to be a continuous regeneration type DPF consisting of a DPF with a catalyst that carries both an oxidation catalyst and a PM oxidation catalyst.
  • the continuous regeneration DPF comprising the upstream oxidation catalyst and the downstream DPF is a CRT.
  • Continuous Regenerating Trap type DPF is a continuous regeneration type DPF.
  • This upstream oxidation catalyst oxidizes NO in exhaust gas to NO, and NO has a smaller energy barrier than O, so it has a lower temperature. Can oxidize and remove PM trapped in the DPF.
  • the continuous regeneration type DPF comprising a DPF supporting an oxidation catalyst oxidizes PM accumulated in the DPF with NO generated by oxidation of NO.
  • the continuous regeneration type DPF which consists of an oxidation catalyst and a DPF carrying a PM oxidation catalyst, is a system in which an oxidation catalyst and a PM oxidation catalyst are carried on a DPF, and the PM accumulated in the DPF is directly catalyzed at a low temperature to perform continuous regeneration at a low temperature. is there.
  • the exhaust gas purification system may include an N ⁇ x reduction type catalytic converter and a continuous regeneration type DPF in an exhaust passage of an internal combustion engine, or an NOx reduction system. It is configured to be an exhaust gas purification system equipped with a continuous regeneration type DPF that has a DPF carrying a type catalyst.
  • the exhaust gas purification method and the exhaust gas purification system of the present invention the following effects can be obtained.
  • the rate of increase of the differential pressure and the N ⁇ x purification rate are monitored, and this monitor also monitors the PM self-ignition region. Regardless, when it is detected that the differential pressure is on the rise and the amount of accumulated PM increases, the richness is reduced. This prevents PM from accumulating Can be Also, when the differential pressure increase rate and the NOx purification rate are monitored, and the monitor detects that the pressure N ⁇ x purification rate is decreasing, the richness is increased and the NOx purification rate is increased. Can be increased.
  • FIG. 1 is a diagram showing a configuration of an exhaust gas purification system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of an exhaust gas purifying apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a view showing a configuration of an exhaust gas purifying apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a view showing a configuration of an exhaust gas purifying apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a richness change control flow of the exhaust gas purifying method according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an operating range of an engine in which PM self-ignites.
  • FIG. 7 is a graph showing the relationship between the NOx purification rate and the amount of accumulated PM in a region where PM self-ignites.
  • FIG. 1 shows a configuration of an exhaust gas purification system 1 according to the embodiment.
  • the exhaust gas purification system 1 includes an exhaust gas purification device 40A in which an oxidation catalyst (DOC) 41a, a DPF 41b, and a NOx occlusion reduction type catalytic converter 42 are arranged in the exhaust passage 20 of an engine (internal combustion engine) E in order from the upstream. It comprises.
  • the upstream oxidation catalyst 41a and the downstream DPF 41b constitute a continuous regeneration type DPF 41.
  • the oxidation catalyst 41a is formed of a monolith catalyst having a large number of polygonal cells.
  • the monolith catalyst is a structural material made of cordierite, SiC, or stainless steel. And, on the inner wall of this cell, there is a catalyst coat layer that is gaining surface area.
  • a catalytic metal such as platinum or vanadium is carried on a large surface of the catalyst coat layer. This catalytic metal
  • the oxidation catalyst 41a By carrying, the oxidation catalyst 41a generates a catalytic function. With this catalytic function, NO in the exhaust gas can be converted to NO by an oxidation reaction (N ⁇ + 0 ⁇ N ⁇ ).
  • the DPF41b is a monolith honeycomb-type wall flow type filter in which the inlet and outlet of a porous ceramic honeycomb channel are alternately sealed, or a felt-like filter in which inorganic fibers such as alumina are laminated at random. It can be formed by a filter or the like. These filters collect PM in exhaust gas. By the combination of the DPF 41b and the upstream pre-stage oxidation catalyst 41a, the trapped PM is burned and removed by N ⁇ having a high oxidizing power.
  • the NOx occlusion reduction type catalytic converter 42 is formed of a monolithic catalyst similarly to the oxidation catalyst 41a. Further, in the catalytic converter 42, a catalyst coat layer is provided on a carrier such as aluminum oxide and titanium oxide. On this catalyst coat layer, a noble metal oxidation catalyst such as platinum and an N ⁇ x storage material (N ⁇ x storage material) such as barium are supported.
  • NOx in the exhaust gas is stored by storing NOx in the exhaust gas state with a high oxygen concentration (a lean air-fuel ratio state), thereby reducing NOx in the exhaust gas. Purify. In addition, when the oxygen concentration is low or zero, the exhausted NOx (rich air-fuel ratio state) releases the stored NOx and reduces the released NOx. These actions prevent NOx from escaping into the atmosphere.
  • the temperature sensor 51 is provided on the upstream side of the DPF 41b. Then, the INOx concentration sensor 52 and the second N ⁇ x concentration sensor 53 are provided before and after the NOx storage reduction catalytic converter 42. In FIG. 1, these sensors 51 and 53 are provided near the inlet and the outlet of the exhaust gas purifying device 40A, respectively. Further, in order to estimate the amount of deposited PM, a differential pressure sensor that detects a difference ⁇ in exhaust pressure before and after the DPF is connected to a conduit connected before and after 4 lb of the DPF (or before and after the exhaust gas purifier 40A). Is provided.
  • the NOx concentration sensors 52 and 53 are usually replaced by an exhaust concentration sensor that is a sensor in which a ⁇ (excess air ratio) sensor, a NOx concentration sensor, and a ⁇ concentration sensor are integrated.
  • the output values of these sensors are input to a control device (ECU: engine control unit) 50.
  • This control device 50 controls the regeneration of the continuous regeneration type DPF 41 and the NOx of the NOx storage reduction type catalytic converter 42 while controlling the overall operation of the engine E. xRecovery control of purification capacity is also performed.
  • the control signal output from the control device 50 controls the common rail electronically controlled fuel injection device for fuel injection of the engine E, the throttle valve 15, the EGR valve 32, and the like.
  • the air A passes through the air cleaner 11 in the intake passage 10, the mass air flow (MAF) sensor 12, the compressor 13a of the turbocharger 13, the intercooler 14, and the intake throttle valve 15. Then, enter the cylinder from the intake manifold 16. The amount of air A is adjusted by the intake throttle valve 15.
  • MAF mass air flow
  • the exhaust gas G generated in the cylinder drives the turbine 13 b of the turbocharger 13 in the exhaust passage 20 from the exhaust manifold 21. Thereafter, the exhaust gas G passes through the exhaust gas purifying device 40A, becomes purified exhaust gas Gc, and is discharged into the atmosphere through a silencer (not shown). Further, a part of the exhaust gas G passes through the EGR cooler 31 and the EGR valve 32 in the EGR passage 30 as the EGR gas, and is recirculated to the intake manifold 16. The amount of EGR gas is adjusted by the EGR valve 32.
  • FIG. 2 shows the configuration of the exhaust gas purifying apparatus 40A.
  • 3 and 4 show configurations of exhaust gas purifying apparatuses 40B and 40C according to other embodiments.
  • the exhaust gas purifying device 40B shown in FIG. 3 includes an oxidation catalyst 41a and a DPF 43 supporting a NOx reduction catalyst.
  • the exhaust gas purifier 40C shown in FIG. 4 is composed of a catalytic DPF 44 supporting a NOx reduction catalyst.
  • These catalytic DPFs include a DPF supporting an oxidation catalyst, a DPF supporting an oxidation catalyst and a PM oxidation catalyst, and a power S.
  • the PM oxidation catalyst is an oxide of cerium (Ce) or the like.
  • Ce cerium
  • the reaction using O in the exhaust gas of the catalyst-carrying filter (4Ce + C ⁇ 2Ce O + CO
  • an exhaust gas purifying device including a DPF with a catalyst carrying an oxidation catalyst and a NOx storage reduction catalytic converter, and an oxidation catalyst
  • an exhaust gas purification device consisting of a catalytic DPF carrying both PM oxidation catalysts and a NOx storage-reduction catalytic converter.
  • the exhaust gas purifying apparatus of the present invention only needs to perform NOx purification by an N ⁇ x storage reduction catalyst and PM purification by a continuous regeneration DPF for exhaust gas of an internal combustion engine.
  • FIG. 1 An exhaust gas purification method for performing NOx regeneration control for restoring the NOx storage capacity of the NOx storage reduction catalyst is illustrated in FIG. This is performed with a change degree control flow.
  • the control flow in Fig. 5 is a richness change control flow relating to the regeneration of the N ⁇ x storage reduction catalyst. This control flow is repeatedly called from the control flow of the entire exhaust gas purification system when the catalyst regeneration control becomes necessary. If necessary, the richness (rich frequency, rich depth, etc.) in the catalyst regeneration control is determined. ) Is indicated as making a setting change.
  • step S11 it is determined in step S11 whether or not a change in richness is necessary.
  • the DPF inlet exhaust gas temperature Tent detected by the temperature sensor 51 is equal to or less than the predetermined determination value TentO, it is determined that the richness need not be changed, and the process returns to the return. If the DPF inlet exhaust gas temperature Tent force is larger than the predetermined determination value TentO, it is determined that the richness needs to be changed, and the process proceeds to step S12.
  • the predetermined determination value TentO is a temperature for determining whether the exhaust gas temperature is in a region where PM self-ignites, that is, the self-combustion temperature of PM. This predetermined determination value TentO is usually set between 300 ° C and 400 ° C.
  • a differential pressure increase rate dP is calculated.
  • the differential pressure increase rate dP is an increase rate per hour of the differential pressure ⁇ ⁇ before and after the DPF detected by the differential pressure sensor 54.
  • the predetermined differential pressure increase rate determination value dPO is a value for determining whether the PM accumulation amount is increasing or not. This value dPO is the standard differential pressure corresponding to the temperature rise. Read from table.
  • the richness is set at the time of rich control so as to reduce the richness in step S 14. Change the conditions and return. This decrease in richness can be achieved by increasing the interval to reduce the frequency of richness compared to the previous rich control, or by setting the target oxygen concentration at the time of performing rich control to a higher value, and increasing the air-fuel ratio of the exhaust gas. It is done by making it large and making the rich depth shallow. Alternatively, the degree of richness is reduced by both reducing the frequency of richness and reducing the rich depth.
  • the N ⁇ x concentration CNOxl is detected by the INOx concentration sensor 52, and the N ⁇ x concentration CNOx2 is detected by the second NOx concentration sensor 53.
  • this NOx purification rate RNOx is larger than a predetermined NOx purification rate determination value RNOxO.
  • the predetermined NOx purification rate determination value RNOxO is a value for determining whether the predetermined NOx purification capability is maintained. This value RNOxO is set to the value at point A, which indicates the optimum NOx purification rate without PM accumulation in Fig. 7, and the target value obtained by conducting a test in advance.
  • step S16 the NOx purification rate RNOx is equal to the predetermined NOx purification rate determination value R.
  • step S17 the setting of the rich condition at the time of the rich control is changed in step S17 so as to increase the richness, and the routine returns.
  • This increase in the degree of richness can be achieved by shortening the interval to increase the frequency of richness compared to the previous rich control, or by setting the target oxygen concentration at the time of performing rich control to a lower value to reduce the air-fuel ratio of the exhaust gas. It is done by making it smaller and making it richer. Alternatively, the richness is increased by increasing both the rich frequency and the rich depth.
  • the routine returns without changing the richness, that is, while maintaining the standard richness. I do.
  • the following control is performed when the gas enters the region where the DPF inlet exhaust gas temperature Tent force SPM is equal to or higher than the self-combustion temperature TentO, that is, the PM self-ignition region.
  • the differential pressure increase rate dP and the N Ox purification rate RNox are monitored, and when it is determined that the differential pressure ⁇ ⁇ is increasing and the amount of accumulated PM is increasing despite the PM self-ignition region, the richness is determined. And PM can be prevented from accumulating. This improves the situation where the richness is excessive and the amount of PM generated is large.
  • HC (fuel, etc.) reducing agent is supplied into exhaust gas by post injection, exhaust pipe injection, etc., and the exhaust gas is brought into a rich air-fuel ratio state, that is, a state with low ⁇ concentration, high CO concentration, and high temperature. I do.
  • the present invention relates to an exhaust gas purification system that combines an N ⁇ x purification function using a NOx storage reduction catalyst and a PM purification function using a continuous regeneration DPF, and provides an optimal NOx purification rate within a range where DPF can be continuously regenerated. It is an object of the present invention to provide an exhaust gas purification method and an exhaust gas purification system capable of maintaining the same.
  • the present invention can be used for an exhaust gas purification system that combines a NOx purification function using an N ⁇ x storage reduction catalyst with a PM purification function using a continuous regeneration type DPF. Efficiently purifies exhaust gas from vehicles equipped with, and prevents air pollution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 NOx浄化機能とPM浄化機能とを組み合わせた排気ガス浄化システム(1)において、DPFの連続再生可能な範囲で最適なNOx浄化率を維持することができる排気ガス浄化方法及び排気ガス浄化システム(1)を提供するために、内燃機関の排気ガスに対してNOx吸蔵還元型触媒(42)によるNOx浄化と連続再生式DPF(41)によるPM浄化を行う排気ガス浄化システム(1)において、DPF(41b)に流入する排気ガスの温度(Tent)がPMの自己燃焼温度(Tent0)以上であって、かつ、DPF(41b)の前後差圧の差圧増加率(dP)が所定の判定値(dP0)以上の時に、前記NOx吸蔵還元型触媒(42)を再生するための触媒再生制御において、排気ガスをリッチにする頻度を少なくする制御又はリッチを浅くする制御の少なくとも一方を行うように構成する。

Description

明 細 書
排気ガス浄化方法及び排気ガス浄化システム
技術分野
[0001] 本発明は、ディーゼルエンジン等の内燃機関の排気ガスに対して、 N〇x吸蔵還元 型触媒による NOxの浄化と連続再生式 DPFによる PMの浄化を行う排気ガス浄化 方法及び排気ガス浄化システムに関するものである。
背景技術
[0002] ディーゼルエンジンから排出される NOx (窒素酸化物)と粒子状物質(PM:パティ キュレートマター:以下 PMとする)の排出量は、 CO (—酸化炭素)そして HC (炭化水 素)等と共に年々規制が強化されてきている。この規制の強化に伴いエンジンの改良 のみでは規制値に対応できなくなっている。そのため、排気ガス処理システムを着装 して、エンジンから排出されるこれらの物質を低減する技術が採用されてきている。
[0003] そして、 NOxに対しては多くの NOx浄化触媒が開発されている。また、 PMに対し てはディーゼルパティキュレートフィルタ (Diesel Particulate Filter:以下 DPFとする) と呼ばれるフィルタが開発されている。
[0004] この NOx浄化触媒の一つに NOx吸蔵還元型触媒がある。この N〇x吸蔵還元型 触媒は、アルミナ (Al O )等の多孔質の触媒コート層に、触媒金属と、 NOx吸蔵機 能を持つ N〇x吸蔵材が担持されて形成される。この触媒金属は、 NOxに対して酸 化機能を持つ白金 (Pt)等である。また、 NOx吸蔵材は、ナトリウム(Na) ,カリウム ) ,セシウム(Cs)等のアルカリ金属、カルシウム(Ca),ノ リウム(Ba)等のアルカリ土 類金属、イットリウム (Y),ランタン (La)等の希土類等の中の一つ又は幾つかの組合 せである。そして、この NOx吸蔵還元型触媒は、排気ガス中の〇(酸素)濃度によつ て N〇x吸蔵と NOx放出 '浄化の二つの機能を発揮する。
[0005] まず、ディーゼルエンジンや希薄燃焼ガソリンエンジン等の通常の運転状態のよう に、排気ガス中の O濃度が高い排気ガス条件 (リーン空燃比状態)では、触媒金属 の酸化機能により、排出される NO (—酸化窒素)が排気ガス中に含まれる Oで酸化 されて NO (二酸化窒素)となる。この NOは、 NOx吸蔵材で塩化物のかたちで吸蔵 される。従って、排気ガスは浄化される。
[0006] しかし、この NOxの吸蔵が継続すると、バリウム等の NOx吸蔵材は、硝酸塩に変化 し、次第に飽和して NO を吸蔵する機能を失ってしまう。そこで、エンジンの運転条 件を変えて過濃燃焼を行って、リッチスパイクガスを発生させて触媒に供給する。この リッチスパイクガスは、低 Ο濃度、高 C〇濃度で排気温度の高い排気ガスである。
[0007] この排気ガスのリッチ空燃比状態では、 NO を吸蔵し硝酸塩に変化した N〇x吸蔵 材は、吸蔵していた NO を放出し、元のバリウム等に戻る。排気ガス中に〇が存在し ないので、この放出された N〇は、排気ガス中の CO, HC, Hを還元剤として触媒 金属上で還元され、 N及び H O, COに変換される。従って、排気ガスは浄化される
[0008] しかし、 NOx吸蔵還元型触媒を使用する場合に、単独では PM中の SOOT成分を 燃焼できない。そのため、 DPFとの組合せ、又は、 NOx吸蔵還元型触媒の N〇x浄 化機能と DPFの PM浄化機能の一体ィヒが必要となる。
[0009] この一体化の一つとして、 日本特開平 06—159037号公報に、 DPFの再生のため に外部から供給するエネルギーを低減し、捕集された PMの着火を容易にする手段 の提供を目的にした内燃機関の排気ガス浄化装置が提案されている。この装置は、 DPFと NOx吸収剤(NOx吸蔵還元型触媒)とを相互に熱伝達可能な位置に配置し ている。より、具体的には、 DPFに NOx吸収剤を担持している。
[0010] し力しながら、この NOx吸蔵還元型触媒の NOx浄化機能と DPFの PM浄化機能を 備えた排気ガス浄化システムにおいては、 NOx浄化率と PM蓄積量とのバランスが 問題となる。
[0011] つまり、図 6に示すような PMが自己着火するような排気温度の高負荷域のエンジン の運転領域で、 N〇x浄化率を高めるためには、 N〇xを放出及び還元するリッチ燃 焼の頻度を増加すればよい。しかし、この運転領域は燃焼温度の高い領域であるの で、このリッチ燃焼時に大量の PMが発生する。なお、この自己着火の排気温度は、 DPFに担持される触媒により左右される力 概ね 300°C 400°C以上である。
[0012] この場合、 PMの発生量が自己着火して燃焼する速度よりも少なければ、 DPFに P Mは蓄積されていなレ、が、 NOx浄化率は減少する。一方、 N〇x浄化率を高めるた めにリッチ度(頻度、リッチ深さ、還元剤供給量等)を増して PMの発生量が多くなつ た場合には、 DPFにおける PMの蓄積量が徐々に増加して行く。この PM蓄積量が 限界を超えた場合には異常燃焼やこれに起因する溶損の危険性が生じる。そのため 、エンジンの運転領域が高負荷域であっても、 PMの強制燃焼による DPFを再生す ること力 S必要となる。
[0013] この NOx浄化率と PM蓄積量 (差圧増加率)と関係を、図 7に示す。 NOx吸蔵還元 型触媒の NOx浄化率回復のための触媒再生制御で、リッチ度を減少させると、 PM の発生量が PMの燃焼量より小さくなる(差圧増加率がマイナス)力 N〇x浄化率も 低下する。一方、リッチ度を増加させて N〇x浄化率を上げると、 NOx浄化率は増加 する力 PMの発生量が、 PMの燃焼量より大きくなる(差圧増加率がプラス)。
発明の開示
[0014] 本発明は、上述の問題を解決するためになされたものであり、その目的は、 NOx吸 蔵還元型触媒による NOx浄化機能と連続再生式 DPFによる PM浄化機能とを組み 合わせた排気ガス浄化システムにおいて、 DPFの連続再生可能な範囲で最適な N Ox浄化率を維持することができる排気ガス浄化方法及び排気ガス浄化システムを提 供することにある。
[0015] 以上のような目的を達成するための排気ガス浄化方法は、内燃機関の排気ガスに 対して N〇x吸蔵還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行 レ、、前記 DPFに流入する排気ガスの温度を検出する温度センサと、前記 DPFの前 後差圧を検知する差圧センサと、前記 DPFの単位時間当たりの差圧増加率を算出 する制御装置を備えた排気ガス浄化システムにおレ、て、前記温度センサで検出した 排気ガスの温度が PMの自己燃焼温度以上であって、かつ、前記差圧増加率が所 定の差圧増加率判定値以上の時に、前記 NOx吸蔵還元型触媒を再生するための 触媒再生制御で行うリッチ制御において、リッチ度を減少するように構成される。
[0016] あるいは、内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連 続再生式 DPFによる PM浄化を行い、前記 DPFに流入する排気ガスの温度を検出 する温度センサと、前記 DPFの前後差圧を検知する差圧センサと、前記 NOx吸蔵 還元型触媒の前後の NOx濃度を検出する第 INOx濃度センサ及び第 2NOx濃度 センサと、前記 DPFの単位時間当たりの差圧増加率を算出し、かつ、前記 NOx吸蔵 還元型触媒前後の NOx濃度から NOx浄化率を算出する制御装置を備えた排気ガ ス浄化システムにおいて、前記温度センサで検出した排気ガスの温度が PMの自己 燃焼温度以上で、かつ、前記差圧増加率が所定の差圧増加率判定値以下であって 、前記 NOx浄化率が所定の NOx浄化率判定値以上の時に、前記 NOx吸蔵還元型 触媒を再生するための触媒再生制御で行うリッチ制御にぉレ、て、リッチ度を増加する ように構成される。
[0017] そして、上記の排気ガス浄化方法において、前記温度センサで検出した排気ガス の温度が PMの自己燃焼温度以上であって、かつ、前記差圧増加率が所定の差圧 増加率判定値以上の時に、前記 N〇x吸蔵還元型触媒を再生するための触媒再生 制御で行うリッチ制御において、リッチ度を減少するように構成される。
[0018] このリッチ度の減少は、標準のリッチ制御よりも、リッチ制御を行うインターバルを長 くしてリッチ頻度を減少させることで行われる。あるいは、このリッチ度の減少は、リツ チ制御を行う際に目標酸素濃度を低めに設定することにより、還元剤供給量を少なく して、排気ガスの空燃比 (A/F)を大きぐ空気過剰率(λ )を低くして、リッチ深さを 浅くすることで行われる。あるいは、このリッチ度の減少は、この両方で行われる。
[0019] また、このリッチ度の増加は、標準のリッチ制御よりも、リッチ制御を行うインターバル を短くしてリッチ頻度を増加させることで行われる。あるいは、このリッチ度の増加は、 リッチ制御を行う際に目標酸素濃度を高めに設定することにより還元剤供給量を多く して、排気ガスの空燃比を小さぐ空気過剰率を高くして、リッチ深さを深くすることで 行われる。あるいは、このリッチ度の増加は、この両方で行われる。
[0020] そして、これらの構成の排気ガス浄化方法によれば、 ΡΜが自己着火するような高 負荷域のエンジンの運転状態において、最適な Ν〇χ浄化率を維持しながら、 ΡΜの 蓄積を抑えることができる最適なリッチ制御を行うことができる。
[0021] また、本発明の排気ガス浄化システムは、内燃機関の排気ガスに対して NOx吸蔵 還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行う排気ガス浄化 システムにおレ、て、前記 DPFに流入する排気ガスの温度を検出する温度センサと、 前記 DPFの前後差圧を検知する差圧センサと、前記 DPFの単位時間当たりの差圧 増加率を算出する制御装置を備え、前記制御装置が、前記温度センサで検出した 排気ガスの温度が PMの自己燃焼温度以上であって、かつ、前記差圧増加率が所 定の差圧増加率判定値以上の時に、前記 NOx吸蔵還元型触媒を再生するための 触媒再生制御で行うリッチ制御にぉレ、て、排気ガスのリッチ度を減少するように構成 される。
[0022] あるいは、内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連 続再生式 DPFによる PM浄化を行う排気ガス浄化システムにおレ、て、前記 DPFに流 入する排気ガスの温度を検出する温度センサと、前記 DPFの前後差圧を検知する 差圧センサと、前記 NOx吸蔵還元型触媒の前後の NOx濃度を検出する第 1Ν〇χ 濃度センサ及び第 2NOx濃度センサと、前記 DPFの単位時間当たりの差圧増加率 を算出し、かつ、前記 NOx吸蔵還元型触媒前後の N〇x濃度から NOx浄化率を算 出する制御装置を備え、前記制御装置が、前記温度センサで検出した排気ガスの温 度が PMの自己燃焼温度以上で、かつ、前記差圧増加率が所定の差圧増加率判定 値以下であって、前記 NOx浄化率が所定の NOx浄化率判定値以上の時に、前記 NOx吸蔵還元型触媒を再生するための触媒再生制御で行うリッチ制御において、 排気ガスのリッチ度を増加するように構成される。
[0023] そして、上記の排気ガス浄化システムにおいて、前記制御装置が、前記温度センサ で検出した排気ガスの温度が PMの自己燃焼温度以上であって、かつ、前記差圧増 加率が所定の差圧増加率判定値以上の時に、前記 NOx吸蔵還元型触媒を再生す るための触媒再生制御で行うリッチ制御にぉレ、て、リッチ度を減少するように構成さ れる。
[0024] これらの構成の排気ガス浄化方法及び排気ガス浄化システムによれば、 PMが自 己着火するような高負荷域において、最適な NOx浄化率を維持しながら、 PMの蓄 積を抑えることができる最適なリッチ制御を行うことができる。
[0025] そして、排気ガス浄化システムにおいて、前記連続再生式 DPFが、上流側の酸化 触媒と下流側の DPFからなる連続再生式 DPF、酸化触媒を担持した触媒付き DPF からなる連続再生式 DPF、酸化触媒と PM酸化触媒の両方を担持した触媒付き DP Fからなる連続再生式 DPFのレ、ずれかであるように構成される。 [0026] この上流側の酸化触媒と下流側の DPFからなる連続再生式 DPFは、 CRT
(Continuously Regenerating Trap)型 DPFと呼ばれる連続再生式 DPFであり、この上 流側の酸化触媒で、排気ガス中の NOを NOに酸化し、この NOは Oよりエネルギ 一障壁が小さいため、低い温度で DPFに捕集された PMを酸化除去できる。
[0027] また、酸化触媒を担持した DPFからなる連続再生式 DPFは、 NOの酸化で発生し た NO で DPFに蓄積した PMを酸化させるものである。酸化触媒と PM酸化触媒を 担持した DPFからなる連続再生式 DPFは、酸化触媒と PM酸化触媒を DPFに担持 させて、 DPFに蓄積した PMを低温から〇で直接触媒燃焼し連続再生するものであ る。
[0028] 更に、上記の排気ガス浄化システムにおいて、前記排気ガス浄化システムが、内燃 機関の排気通路に N〇x還元型触媒コンバータと連続再生式 DPFを備えた排気ガス 浄化システム、又は、 NOx還元型触媒を担持した DPFを有する連続再生式 DPFを 備えた排気ガス浄化システムのレ、ずれかであるように構成される。
[0029] 特に、触媒付き DPFに NOx還元型触媒を担持させて一体化すると、 PMと NOxを 同時に浄化することができる。つまり、希薄燃焼で排気ガス力 Sリーン空燃比状態にあ る時には、触媒の NOx吸蔵材で NOxを吸蔵する。そして、この NOx吸蔵の際に発 生する活性酸素 (〇*)及び排気ガス中の〇によって PMを酸化する。また、 NOx吸蔵 能力の再生のために理論空燃比燃焼又は過濃空燃比燃焼を行っていて排気ガスが リッチ空燃比状態にある時には、 NOx吸蔵材から NOxが放出され還元される。それ と共に、排ガス中の〇が少ない状態であっても、 NOxの還元の際に発生する活性酸 素(〇*)により、触媒内で PMが酸化される。この構成によれば、 NOx吸蔵還元型触 媒と触媒担持 DPFが一体化されてレ、るので、システムの小型化及び簡素化を図るこ とができる。
[0030] 従って、本発明の排気ガス浄化方法及び排気ガス浄化システムによれば、次のよう な効果を奏することができる。 DPFに流入する排気ガスの温度が PMの自己燃焼温 度以上となった場合に、差圧増加率と N〇x浄化率をモニターして、このモニターによ り、 PMの自己着火領域にもかかわらず、差圧が上昇傾向で PM蓄積量が増加して レ、ることを検知した時には、リッチ度を減少させる。これにより、 PMが蓄積しないよう にすることができる。また、差圧増加率と NOx浄化率をモニターして、このモニターに より、差圧は低下傾向にある力 N〇x浄化率が低いことを検知した時には、リッチ度 を増加して NOx浄化率を増加することができる。
[0031] 従って、 PMが自己着火するような高負荷域のエンジン運転状態において、最適な N〇x浄化率を維持しつつ、 PM蓄積を抑えた最適なリッチ制御を行うことができる。こ れにより、排気ガス中の N〇xと PMをバランスよく浄化できる。
図面の簡単な説明
[0032] [図 1]本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。
[図 2]本発明に係る第 1実施の形態の排気ガス浄化装置の構成を示す図である。
[図 3]本発明に係る第 2実施の形態の排気ガス浄化装置の構成を示す図である。
[図 4]本発明に係る第 3実施の形態の排気ガス浄化装置の構成を示す図である。
[図 5]本発明に係る実施の形態の排気ガス浄化方法のリッチ度変更制御フローの一 例を示す図である。
[図 6]PMが自己着火するエンジンの運転領域を示す図である。
[図 7]PMが自己着火する領域における NOx浄化率と PM蓄積量の関係を示す図で ある。
発明を実施するための最良の形態
[0033] 以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムに ついて、図面を参照しながら説明する。
[0034] 図 1に、実施の形態の排気ガス浄化システム 1の構成を示す。この排気ガス浄化シ ステム 1は、エンジン(内燃機関) Eの排気通路 20において、上流から順に、酸化触 媒(DOC) 41aと DPF41bと NOx吸蔵還元型触媒コンバータ 42を配置した排気ガス 浄化装置 40Aを備えて構成される。この上流側の酸化触媒 41aと下流側の DPF41 bとで連続再生式 DPF41が構成されている。
[0035] この酸化触媒 41aは、多数の多角形セルを有するモノリス触媒で形成される。この モノリス触媒はコージエライト、 SiC、又はステンレスで形成された構造材である。そし て、このセルの内壁には表面積を稼いでいる触媒コート層がある。この触媒コート層 の大きい表面に、白金やバナジウム等の触媒金属が担持されている。この触媒金属 の担持により、酸化触媒 41aは触媒機能を発生させている。この触媒機能により、排 気ガス中の NOを、酸化反応(N〇 + 0→N〇)で NOにすることができる。
[0036] また、 DPF41bは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交 互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタや、アルミナ等の 無機繊維をランダムに積層したフェルト状のフィルタ等で形成することができる。そし て、これらのフィルタにより、排気ガス中の PMを捕集する。 DPF41bと、上流の前段 酸化触媒 41aとの組合せにより、この捕集した PMは、酸化力の高い N〇によって燃 焼除去される。
[0037] そして、 NOx吸蔵還元型触媒コンバータ 42は、酸化触媒 41aと同様にモノリス触媒 で形成される。また、この触媒コンバータ 42に、酸化アルミニウム、酸化チタン等の担 持体に触媒コート層が設けられる。この触媒コート層に、白金等の貴金属酸化触媒と バリウム等の N〇x吸蔵材 (N〇x吸蔵物質)が担持される。
[0038] この NOx吸蔵還元型触媒コンバータ 42では、酸素濃度が高い排気ガスの状態(リ 一ン空燃比状態)の時に、排気ガス中の NOxを吸蔵することにより、排気ガス中の N Oxを浄化する。また、酸素濃度が低いかゼロの排気ガス状態(リッチ空燃比状態)の 時に、吸蔵した NOxを放出すると共に、この放出された NOxを還元する。これらの作 用により、大気中への NOxの流出が防止される。
[0039] また、温度センサ 51が、 DPF41bの上流側に設けられる。そして、第 INOx濃度セ ンサ 52と第 2N〇x濃度センサ 53が、 NOx吸蔵還元型触媒コンバータ 42の前後に 設けられる。図 1では、これらのセンサ 51, 53は、排気ガス浄化装置 40Aの入口近 傍と出口近傍にそれぞれ設けられる。更に、 PMの堆積量を推定するために、 DPF4 lbの前後(又は排気ガス浄化装置 40Aの前後)に接続された導通管に、 DPF前後 の排気圧の差 Δ Ρを検出する差圧センサ 54が設けられる。なお、この NOx濃度セン サ 52, 53は、通常は、 λ (空気過剰率)センサと NOx濃度センサと Ο濃度センサと が一体化したセンサである排気濃度センサで代用される。
[0040] そして、これらのセンサの出力値は、制御装置(ECU :エンジンコントロールユニット ) 50に入力される。この制御装置 50は、エンジン Eの運転の全般的な制御を行うと共 に、連続再生式 DPF41の再生制御及び N〇x吸蔵還元型触媒コンバータ 42の NO x浄化能力の回復制御も行う。また、この制御装置 50から出力される制御信号により 、エンジン Eの燃料噴射用のコモンレール電子制御燃料噴射装置や絞り弁 15や EG R弁 32等が制御される。
[0041] また、この制御装置 50では、第 1及び第 2N〇x濃度センサ 52, 53の検出値
CNOxl , CNOx2より、 N〇x浄化率 RNOx ( = 1. 0_CNOx2ZCNOxl)が算出される 。また、差圧センサ 54より検出された差圧 Δ Ρより、差圧増加率 dP (= A PZdt)が算 出され、そして、 DPF41bの PM蓄積量の増減が推定される。
[0042] この排気ガス浄化システム 1においては、空気 Aは、吸気通路 10のエアクリーナ 11 、マスエアフロー(MAF)センサ 12、ターボチヤジャー 13のコンプレッサー 13a、イン タークーラー 14、吸気絞り弁 15を通過して、吸気マ二ホールド 16よりシリンダ内に入 る。また、吸気絞り弁 15により、空気 Aの量が調整される。
[0043] そして、シリンダ内で発生した排気ガス Gは、排気マ二ホールド 21から排気通路 20 のターボチヤジャー 13のタービン 13bを駆動する。その後、排気ガス Gは、排気ガス 浄化装置 40Aを通過して浄化された排気ガス Gcとなって、図示しない消音器を通つ て大気中に排出される。また、排気ガス Gの一部は、 EGRガスとして、 EGR通路 30 の EGRクーラー 31、 EGR弁 32を通過し、吸気マ二ホールド 16に再循環される。 EG Rガスの量は EGR弁 32で調整される。
[0044] 図 2に排気ガス浄化装置 40Aの構成を示す。また、図 3及び図 4に他の実施の形 態の排気ガス浄化装置 40B, 40Cの構成を示す。図 3の排気ガス浄化装置 40Bは、 酸化触媒 41aと、 NOx還元型触媒を担持した DPF43とからなる。図 4の排気ガス浄 化装置 40Cは、 NOx還元型触媒を担持した触媒付き DPF44からなる。これらの触 媒付き DPFには、酸化触媒を担持した DPFと酸化触媒と PM酸化触媒を担持した D PFと力 Sある。
[0045] この PM酸化触媒は、セリウム(Ce)の酸化物等である。この PM酸化触媒と酸化触 媒を担持した触媒担持フィルタの場合は、低温域(300°C 600°C程度)では、触媒 担持フィルタにおける排気ガス中の Oを使用した反応(4Ce〇 + C→2Ce O + CO
, 2Ce Ο +0→4CeO等)により PMを酸化する。また、 PMが排気ガス中の〇で燃 焼する温度より高い高温域(600°C程度以上)では、排気ガス中の Oにより PMを酸 化する。
[0046] なお、この他にも、最上流側の酸化触媒を無くした排気ガス浄化装置として、酸化 触媒を担持した触媒付き DPFと NOx吸蔵還元型触媒コンバータからなる排気ガス 浄化装置、酸化触媒と PM酸化触媒の両方を担持した触媒付き DPFと NOx吸蔵還 元型触媒コンバータからなる排気ガス浄化装置等もある。
[0047] 要するに、本発明の排気ガス浄化装置は、内燃機関の排気ガスに対して N〇x吸蔵 還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行うものであればよ レ、。
[0048] これらの排気ガス浄化システム 1におレ、ては、 NOx吸蔵還元型触媒の NOx吸蔵能 力の回復のための NOx再生制御を行う排気ガス浄化方法は、図 5に示すようなリツ チ度変更制御フローを伴って行われる。
[0049] この図 5の制御フローは、 N〇x吸蔵還元型触媒の再生に関するリッチ度変更制御 フローである。この制御フローは、排気ガス浄化システム全体の制御フローから、触 媒再生制御が必要になった時に繰り返し呼ばれて、必要であれば、触媒再生制御に おけるリッチ度(リッチ頻度、リッチ深さ等)の設定変更を行うものとして示されてレ、る。
[0050] この制御フローがスタートすると、ステップ S11で、リッチ度の変更が必要か否かを 判定する。そして、温度センサ 51で検出された DPF入口排気温度 Tent力 所定の 判定値 TentO以下の時は、リッチ度の変更は必要なしと判断して、リターンに戻る。ま た、 DPF入口排気温度 Tent力 所定の判定値 TentOより大きい時は、リッチ度の変更 が必要であると判断して、ステップ S12に行く。この所定の判定値 TentOは、排気ガス 温度が PMが自己着火する領域にあるか否かを判定するための温度、即ち、 PMの 自己燃焼温度である。この所定の判定値 TentOは、通常は、 300°C 400°Cの間に 設定される。
[0051] このステップ S 12では、差圧増加率 dPを算出する。この差圧増加率 dPは、差圧セ ンサ 54で検出された DPFの前後差圧 Δ Ρの時間当たりの増加率である。次のステツ プ S13で、この差圧増加率 dPが、所定の差圧増加率判定値 dPOよりも大きいか否か を判定する。この所定の差圧増加率判定値 dPOは、 PM蓄積量が増加しているか、 否力、を判定するための値である。そして、この値 dPOは、温度上昇に応じた標準差圧 テーブルから読み込む。
[0052] このステップ SI 3の判定で差圧増加率 dPが所定の差圧増加率判定値 dPOよりも 大きい時には、ステップ S 14でリッチ度を減少するようにリッチ制御時のリッチ度の設 定条件を変更し、リターンする。このリッチ度の減少は、前回のリッチ制御よりも、イン ターバルを長くしてリッチ頻度を減少させたり、リッチ制御を行う際の目標酸素濃度を 高目に設定して、排気ガスの空燃比を大きくしてリッチ深さを浅くして行う。あるいは、 リツチ頻度の減少とリッチ深さの減少の両方でリツチ度を減少させる。
[0053] このステップ S 13の判定で差圧増加率 dPが所定の差圧増加率判定値 dPO以下の 時には、ステップ S15に行く。ステップ S15では、 NOx濃度 CNOxlと、 N〇x濃度 C N〇x2とから、排気ガス浄化装置 40A, 40B, 40Cにおける NOx浄化率 RNOx ( = 1. 0_CN〇x2ZCNOxl)を算出する。この N〇x濃度 CNOxlは、第 INOx濃度セ ンサ 52で検出され、 N〇x濃度 CNOx2は、第 2NOx濃度センサ 53で検出される。
[0054] そして、次のステップ S 16で、この NOx浄化率 RNOxが所定の NOx浄化率判定値 RNOxOよりも大きいか否かを判定する。この所定の NOx浄化率判定値 RNOxOは、所 定の NOx浄化能力を維持しているか否かを判定するための値である。この値 RNOxO は、図 7の PM蓄積が無い最適な NOx浄化率を示す A点の値や、事前に試験を行い 求めた目標値に設定される。
[0055] このステップ S16の判定で NOx浄化率 RNOxが所定の NOx浄化率判定値 R
NOxOよりも小さい時には、ステップ S 17でリッチ度を増加するようにリッチ制御時のリ ツチ条件の設定を変更し、リターンする。このリッチ度の増加は、前回のリッチ制御より も、インターバルを短くしてリッチ頻度を増加したり、リッチ制御を行う際の目標酸素濃 度を低目に設定して、排気ガスの空燃比を小さくしてリッチ深さを深くしたりして行う。 あるいは、リッチ頻度の増加とリッチ深さの増加の両方でリッチ度を増加する。
[0056] また、このステップ S16の判定で N〇x浄化率 RNOxが所定の NOx浄化率判定値 RNOxOよりも以上の時には、リッチ度の変更無しのまま、即ち、標準のリッチ度のまま でリターンする。
[0057] このリッチ度変更制御により、 DPF入口排気温度 Tentが所定の判定値 (PMの自 己燃焼温度) TentOが大きい場合においては、次のような制御が行われる。差圧増加 率 dPが所定の差圧増加率判定値 dPOより大きい時には、リッチ度を減少する変更を 行う。また、差圧増加率 dPが所定の差圧増加率判定値 dPOより小さぐかつ、 NOx浄 化率 RNOxが所定の NOx浄化率判定値 RNOxOよりも小さい時には、リッチ度を増加 する変更を行う。その他の場合には、リッチ度を変更することなぐ標準のリッチ度の ままリターンする。
[0058] 従って、 DPF入口排気温度 Tent力 SPMの自己燃焼温度 TentO以上、即ち、 PMの 自己着火する領域に入った場合に、次のような制御が行われる。差圧増加率 dPと N Ox浄化率 RNoxをモニターし、 PMの自己着火領域にもかかわらず、差圧 Δ Ρが上昇 傾向にあり、 PM蓄積量が増加していると判断した時には、リッチ度を減少させ、 PM が蓄積しないようにすることができる。これにより、リッチ度が過多で PMの発生量が多 い状態を改善する。また、逆に差圧 Δ Ρは低下傾向にある力 NOx浄化率 RN〇xが 低い場合には、リッチ度を増加して N〇x浄化率 RNOxを上昇させることができる。こ れにより、リッチ度が過少で NOx吸蔵還元型触媒の再生が不充分であるという状態 を改善する。
[0059] なお、 DPF入口排気温度 Tent力 SPMの自己燃焼温度 TentO未満の場合や、 DPF 入口排気温度 Tentが PMの自己着火する領域内であって差圧 Δ Ρが低下傾向にあ つても、 NOx浄化率 RNoxが高い場合には、リッチ度を変更せずに、標準のリッチ度 で NOx吸蔵還元型触媒の再生のためのリッチ制御運転が行われる。
[0060] そして、これらのリッチ制御運転は、それぞれのリッチ頻度や目標酸素濃度に基づ いて、エンジン Eの燃焼状態を一時的に変更する。つまり、 HC (燃料等)還元剤をポ スト噴射や排気管内噴射等により排気ガス中に供給し、排気ガスをリッチ空燃比の状 態、即ち、低〇濃度、高 CO濃度、高温の状態にする。これにより、 N〇x吸蔵還元型 触媒の NOx吸蔵材から吸蔵した NOxを放出させて吸蔵能力を回復させると共に、 放出された NOxを酸化触媒の触媒作用により排気ガス中の HCや C〇等の還元剤で Nと H Oに還元する。
[0061] これらのエンジンの各運転状態に対応したリッチ度で、 N〇x吸蔵還元型触媒の再 生制御であるリッチ制御を行うことができるので、排気ガス中の NOxと PMをバランス よく浄化できる。 産業上の利用可能性
[0062] 本発明は、 NOx吸蔵還元型触媒による N〇x浄化機能と連続再生式 DPFによる PM 浄化機能とを組み合わせた排気ガス浄化システムにおいて、 DPFの連続再生可能 な範囲で最適な NOx浄化率を維持することができる排気ガス浄化方法及び排気ガ ス浄化システムを提供するものである。
[0063] 従って、本発明は、 N〇x吸蔵還元型触媒による NOx浄化機能と連続再生式 DPF による PM浄化機能とを組み合わせた排気ガス浄化システムに利用することができ、 これらの排気ガス浄化システムを搭載した車両等からの排気ガスを効率よく浄化し、 大気汚染を防止できる。

Claims

請求の範囲
[1] 内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行レ、、前記 DPFに流入する排気ガスの温度を検出する温度 センサと、前記 DPFの前後差圧を検知する差圧センサと、前記 DPFの単位時間当 たりの差圧増加率を算出する制御装置を備えた排気ガス浄化システムにおいて、 前記温度センサで検出した排気ガスの温度が PMの自己燃焼温度以上であって、 かつ、前記差圧増加率が所定の差圧増加率判定値以上の時に、前記 NOx吸蔵還 元型触媒を再生するための触媒再生制御で行うリッチ制御にぉレ、て、リッチ度を減少 することを特徴とする排気ガス浄化方法。
[2] 内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行い、前記 DPFに流入する排気ガスの温度を検出する温度 センサと、前記 DPFの前後差圧を検知する差圧センサと、前記 NOx吸蔵還元型触 媒の前後の NOx濃度を検出する第 INOx濃度センサ及び第 2N〇x濃度センサと、 前記 DPFの単位時間当たりの差圧増加率を算出し、かつ、前記 NOx吸蔵還元型触 媒前後の NOx濃度から NOx浄化率を算出する制御装置を備えた排気ガス浄化シス テムにおいて、
前記温度センサで検出した排気ガスの温度が PMの自己燃焼温度以上で、かつ、 前記差圧増加率が所定の差圧増加率判定値以下であって、前記 N〇x浄化率が所 定の NOx浄化率判定値以上の時に、前記 NOx吸蔵還元型触媒を再生するための 触媒再生制御で行うリッチ制御にぉレ、て、リッチ度を増加することを特徴とする排気 ガス浄化方法。
[3] 前記温度センサで検出した排気ガスの温度が PMの自己燃焼温度以上であって、 かつ、前記差圧増加率が所定の差圧増加率判定値以上の時に、前記 NOx吸蔵還 元型触媒を再生するための触媒再生制御で行うリッチ制御にぉレ、て、リッチ度を減少 することを特徴とする請求項 2記載の排気ガス浄化方法。
[4] 内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行う排気ガス浄化システムにおいて、
前記 DPFに流入する排気ガスの温度を検出する温度センサと、前記 DPFの前後 差圧を検知する差圧センサと、前記 DPFの単位時間当たりの差圧増加率を算出す る制御装置を備え、
前記制御装置が、前記温度センサで検出した排気ガスの温度が PMの自己燃焼温 度以上であって、かつ、前記差圧増加率が所定の差圧増加率判定値以上の時に、 前記 N〇x吸蔵還元型触媒を再生するための触媒再生制御で行うリッチ制御におい て、排気ガスのリッチ度を減少することを特徴とする排気ガス浄化システム。
[5] 内燃機関の排気ガスに対して NOx吸蔵還元型触媒による NOx浄化と連続再生式 DPFによる PM浄化を行う排気ガス浄化システムにおいて、
前記 DPFに流入する排気ガスの温度を検出する温度センサと、前記 DPFの前後 差圧を検知する差圧センサと、前記 N〇x吸蔵還元型触媒の前後の N〇x濃度を検 出する第 1Ν〇χ濃度センサ及び第 2N〇x濃度センサと、前記 DPFの単位時間当た りの差圧増加率を算出し、かつ、前記 N〇x吸蔵還元型触媒前後の NOx濃度から N Ox浄化率を算出する制御装置を備え、
前記制御装置が、前記温度センサで検出した排気ガスの温度が PMの自己燃焼温 度以上で、かつ、前記差圧増加率が所定の差圧増加率判定値以下であって、前記 NOx浄化率が所定の NOx浄化率判定値以上の時に、前記 NOx吸蔵還元型触媒 を再生するための触媒再生制御で行うリッチ制御にぉレ、て、排気ガスのリッチ度を増 加することを特徴とする排気ガス浄化システム。
[6] 前記制御装置が、前記温度センサで検出した排気ガスの温度が PMの自己燃焼温 度以上であって、かつ、前記差圧増加率が所定の差圧増加率判定値以上の時に、 前記 NOx吸蔵還元型触媒を再生するための触媒再生制御で行うリッチ制御におい て、リッチ度を減少することを特徴とする請求項 5記載の排気ガス浄化方法。
[7] 前記連続再生式 DPFが、上流側の酸化触媒と下流側の DPFからなる連続再生式 DPF、酸化触媒を担持した触媒付き DPFからなる連続再生式 DPF、酸化触媒と P M酸化触媒の両方を担持した触媒付き DPFからなる連続再生式 DPFのいずれかで あることを特徴とする請求項 4一 6のいずかに記載の排気ガス浄化システム。
[8] 前記排気ガス浄化システムが、内燃機関の排気通路に N〇x還元型触媒コンバータ と連続再生式 DPFを備えた排気ガス浄化システム、又は、 NOx還元型触媒を担持し た DPFを有する連続再生式 DPFを備えた排気ガス浄化システムのいずれかである ことを特徴とする請求項 4一 7のいずれかに記載の排気ガス浄化システム。
PCT/JP2004/008734 2003-06-23 2004-06-22 排気ガス浄化方法及び排気ガス浄化システム WO2004113703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/554,931 US7451593B2 (en) 2003-06-23 2004-06-22 Exhaust gas cleaning method and exhaust gas cleaning system
EP04746203.1A EP1637717B1 (en) 2003-06-23 2004-06-22 Exhaust gas cleaning method and exhaust gas cleaning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003178079A JP3948437B2 (ja) 2003-06-23 2003-06-23 排気ガス浄化方法及び排気ガス浄化システム
JP2003-178079 2003-06-23

Publications (1)

Publication Number Publication Date
WO2004113703A1 true WO2004113703A1 (ja) 2004-12-29

Family

ID=33534972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008734 WO2004113703A1 (ja) 2003-06-23 2004-06-22 排気ガス浄化方法及び排気ガス浄化システム

Country Status (5)

Country Link
US (1) US7451593B2 (ja)
EP (1) EP1637717B1 (ja)
JP (1) JP3948437B2 (ja)
CN (1) CN100414083C (ja)
WO (1) WO2004113703A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049655A1 (de) * 2005-10-18 2007-04-19 Man Nutzfahrzeuge Ag Verfahren zur Vermeidung von unerwünschten NO2-Emissionen bei Brennkraftmaschinen
JP4605101B2 (ja) * 2006-06-14 2011-01-05 株式会社デンソー 内燃機関用排出ガス浄化装置
KR100836336B1 (ko) * 2006-11-22 2008-06-09 기아자동차주식회사 매연 여과 장치 및 이를 이용한 매연 여과 방법
US7788910B2 (en) 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
JP4941111B2 (ja) * 2007-06-01 2012-05-30 マツダ株式会社 排ガス浄化装置
US8096111B2 (en) 2007-06-22 2012-01-17 Ford Global Technologies, Llc Reduction of NOx trap at engine shutoff
WO2009123633A1 (en) * 2008-04-02 2009-10-08 Mack Trucks, Inc. System and method for treating diesel exhaust gases
JP5195287B2 (ja) * 2008-10-30 2013-05-08 日産自動車株式会社 内燃機関の排気浄化装置
JP5332664B2 (ja) * 2009-02-03 2013-11-06 日産自動車株式会社 エンジンの排気浄化装置
CN102356218A (zh) * 2009-03-16 2012-02-15 丰田自动车株式会社 废气净化系统
KR20110024598A (ko) * 2009-09-02 2011-03-09 현대자동차주식회사 디젤 자동차의 질소산화물 저감 장치
GB2496876B (en) * 2011-11-24 2017-12-06 Ford Global Tech Llc Detection of soot burn in a vehicle
JP2013113217A (ja) * 2011-11-29 2013-06-10 Suzuki Motor Corp 車両のegr流路未燃堆積物除去装置
US8966880B2 (en) 2013-03-15 2015-03-03 Paccar Inc Systems and methods for determining the quantity of a combustion product in a vehicle exhaust
US20140352279A1 (en) * 2013-05-31 2014-12-04 GM Global Technology Operations LLC Exhaust gas treatment system with emission control during filter regeneration
JP6213260B2 (ja) * 2014-01-24 2017-10-18 いすゞ自動車株式会社 排ガス浄化システム及びその制御方法
JP6455237B2 (ja) * 2015-03-04 2019-01-23 いすゞ自動車株式会社 排気浄化システム
JP6773422B2 (ja) * 2016-02-15 2020-10-21 本田技研工業株式会社 内燃機関の排気浄化システム
DE102017218307B4 (de) 2017-10-13 2019-10-10 Continental Automotive Gmbh Verfahren zum Betreiben eines Dieselmotors mit Dieselpartikelfilter
CN114183222B (zh) * 2021-10-29 2023-05-12 东风商用车有限公司 一种强化dpf被动再生能力的发动机控制方法及系统
US11725601B1 (en) * 2022-10-04 2023-08-15 GM Global Technology Operations LLC Systems and methods for recirculation of engine exhaust gas within an exhaust system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) * 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2002295244A (ja) * 2001-03-28 2002-10-09 Hino Motors Ltd 排ガス浄化装置
JP2003065117A (ja) * 2001-08-22 2003-03-05 Mazda Motor Corp ディーゼルエンジン、及びそのコンピュータ・プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
JP3645704B2 (ja) * 1997-03-04 2005-05-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19923299A1 (de) * 1999-05-21 2000-11-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3904768B2 (ja) * 1999-09-06 2007-04-11 日野自動車株式会社 ディーゼルエンジン排気ガス用パティキュレートフィルタのクリーニング及び再生装置
US6304815B1 (en) * 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
EP1167707B1 (en) * 2000-06-29 2004-12-15 Toyota Jidosha Kabushiki Kaisha A device for purifying the exhaust gas of an internal combustion engine
JP2002235533A (ja) * 2001-02-07 2002-08-23 Komatsu Ltd 内燃機関の排気ガス浄化装置
DE60221913T2 (de) * 2001-02-20 2008-05-08 Isuzu Motors Ltd. Kraftstoffinjektionssteuerverfahren für einen Dieselmotor und regeneratives Steuerverfahren für Abgasnach behandlungseinrichtung
US6915629B2 (en) * 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust
US7137246B2 (en) * 2002-04-24 2006-11-21 Ford Global Technologies, Llc Control for diesel engine with particulate filter
JP4052178B2 (ja) * 2003-05-15 2008-02-27 日産自動車株式会社 内燃機関の排気浄化装置
JP4466008B2 (ja) * 2003-07-31 2010-05-26 日産自動車株式会社 エンジンの燃料噴射制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) * 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2002295244A (ja) * 2001-03-28 2002-10-09 Hino Motors Ltd 排ガス浄化装置
JP2003065117A (ja) * 2001-08-22 2003-03-05 Mazda Motor Corp ディーゼルエンジン、及びそのコンピュータ・プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1637717A4 *

Also Published As

Publication number Publication date
US20070022742A1 (en) 2007-02-01
EP1637717A4 (en) 2011-07-20
CN100414083C (zh) 2008-08-27
EP1637717A1 (en) 2006-03-22
JP2005016317A (ja) 2005-01-20
US7451593B2 (en) 2008-11-18
EP1637717B1 (en) 2013-08-21
CN1806110A (zh) 2006-07-19
JP3948437B2 (ja) 2007-07-25

Similar Documents

Publication Publication Date Title
JP4304447B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP5087836B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4417878B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2005155374A (ja) 排気浄化方法及び排気浄化システム
WO2004113703A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP5266865B2 (ja) 排気ガス浄化システム及びその制御方法
WO2006027903A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
WO2006080187A1 (ja) 排気ガス浄化装置の昇温方法及び排気ガス浄化システム
WO2007060785A1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
US8051642B2 (en) Method of controlling NOx purification system and NOx purification system
WO2007123011A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2004218475A (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2004108320A (ja) 排気ガス浄化方法及びそのシステム
JP3797125B2 (ja) 排気ガス浄化装置及びその再生制御方法
JP2004108207A (ja) 内燃機関の排気ガス浄化システム
JP4561467B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4567968B2 (ja) 排ガス浄化装置及び排ガス浄化方法
JP2002295298A (ja) 排気ガス浄化システム及びその再生制御方法
JP3876905B2 (ja) 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004746203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007022742

Country of ref document: US

Ref document number: 10554931

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048164523

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004746203

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10554931

Country of ref document: US