WO2004112441A1 - 有機el素子および有機elパネル - Google Patents

有機el素子および有機elパネル Download PDF

Info

Publication number
WO2004112441A1
WO2004112441A1 PCT/JP2003/007565 JP0307565W WO2004112441A1 WO 2004112441 A1 WO2004112441 A1 WO 2004112441A1 JP 0307565 W JP0307565 W JP 0307565W WO 2004112441 A1 WO2004112441 A1 WO 2004112441A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
conductive film
transparent conductive
metal electrode
Prior art date
Application number
PCT/JP2003/007565
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kimura
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002074993A priority Critical patent/JP3783937B2/ja
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to PCT/JP2003/007565 priority patent/WO2004112441A1/ja
Priority to US10/520,005 priority patent/US7615921B2/en
Priority to CN03823511.0A priority patent/CN1685772B/zh
Priority to DE10393385T priority patent/DE10393385T5/de
Priority to AU2003241652A priority patent/AU2003241652A1/en
Priority to GB0428367A priority patent/GB2417827B/en
Publication of WO2004112441A1 publication Critical patent/WO2004112441A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to an organic electroluminescence (EL) device and an organic EL panel, and more particularly, to an organic EL device capable of improving external quantum efficiency without deteriorating luminance and improving contrast.
  • the present invention relates to an EL element and an organic EL panel using the same. Background technology
  • FIG. 4 is a diagram for explaining the structure of a conventional organic EL device.
  • a hole transport layer 42, a hole injection layer 43, a light emitting layer 44, and an electron transport layer A layer 45 and an electron injection layer 46 are sequentially laminated, and a metal electrode 47 serving as a cathode is provided on the electron injection layer 46 to constitute an element.
  • the quantum efficiency of the organic EL device with the configuration shown in Fig. 4 is considered as follows. First, holes and electrons arriving from the anode and the cathode form an electron-hole pair in the light-emitting layer and become luminescent excitons.The probability of generation of these luminescent excitons is about 25%. . On the other hand, the efficiency of extracting light generated in the light emitting layer to the outside of the device is given by the following equation, where n is the refractive index of the light emitting layer.
  • the external quantum efficiency of an actual organic EL device is as low as about 3%, which is about 60% of this theoretical value.Therefore, if the current flowing through the device to extract light with a certain brightness to the outside is increased, In addition to the deterioration of luminance, there is a problem that power consumption is increased.
  • the present invention has been made in view of this problem. It is an object of the present invention to provide an organic EL device capable of improving external quantum efficiency without deteriorating luminance and improving contrast. An object of the present invention is to provide an organic EL panel using this. Disclosure of the invention
  • the present invention has been made to solve this problem, and the invention described in claim 1 includes an organic EL light emitting unit including an organic light emitting layer between a metal electrode and a transparent electrode.
  • An organic EL element wherein a transparent conductive film is provided on a surface of the metal electrode on the side of the organic EL light-emitting portion, and the thickness of the transparent conductive film is L from the organic light-emitting layer to the metal electrode.
  • the optical distance is set so that the following formula is satisfied, where ⁇ is the emission wavelength of the organic light emitting layer.
  • the invention according to claim 2 is an organic EL device comprising an organic EL light emitting portion including an organic light emitting layer between a metal electrode and a transparent electrode, wherein the metal electrode No A transparent conductive film is provided on the surface on the side of the device EL light emitting portion, and light having a wavelength different from the emission wavelength of the organic EL light emitting layer is absorbed by at least one or both of the metal electrode and the transparent conductive film; Only light having a wavelength emitted from the organic EL light emitting layer is emitted from the transparent electrode.
  • the invention according to claim 3 is an organic EL device including an organic EL light emitting portion including an organic light emitting layer between a metal electrode and a transparent electrode, wherein the organic EL of the metal electrode is provided.
  • a transparent conductive film is provided on the surface on the light emitting portion side, and the film thickness of the transparent conductive film is represented by L as an optical distance from the organic light emitting layer to the metal electrode, and ⁇ as an emission wavelength of the organic light emitting layer. Is set to satisfy the following equation,
  • the invention according to claim 4 is the organic EL device according to any one of claims 1 to 3, wherein the material of the transparent conductive film is In 2 O 3
  • the invention according to claim 5 is the organic EL device according to claim 2 or 3, wherein the transparent conductive film is doped with an impurity, and emits light from the organic EL light emitting layer. It is characterized by being colored in the same color as the light to be emitted.
  • the invention according to claim 6 is the organic EL device according to claim 5, wherein the organic EL light emitting layer emits blue light, and the transparent conductive film includes CuO, Co, or contains less than 1% concentration either impurity T i, I n 2 O 3 - ZnO, I n 2 O 3 - SnO 2, ZnO, either in the material of S n O 2 And the transparent conductive film absorbs blue light.
  • the invention according to claim 7 is the organic EL device according to any one of claims 2, 3, and 6, wherein the organic EL light emitting layer emits blue light.
  • the metal electrode is made of Zn, Mo, Cr, or an alloy of these metals, and the metal electrode absorbs blue light.
  • the invention described in claim 8 is a monochrome panel or an area color panel, and includes the organic EL element according to any one of claims 1 to 5. .
  • a color conversion type color panel comprising the organic EL element according to the sixth aspect, a blue single color backlight, and a color conversion filter.
  • the transparent conductive film of the organic EL element absorbs light other than blue light, and the metal electrode reflects only blue monochromatic light from the backlight.
  • the invention described in claim 10 is a color conversion type color panel, comprising: the organic EL element described in claim 7, a blue single color backlight, and a color conversion filter.
  • the metal electrode absorbs light other than blue light, and reflects only blue monochromatic light from the backlight.
  • FIG. 1 is a diagram for explaining a configuration example of the organic EL device of the present invention.
  • FIG. 2 is a diagram for explaining a second configuration example of the organic EL device of the present invention.
  • FIG. 3 is a cross-sectional view of a color conversion type color panel formed using the organic EL device of the present invention.
  • FIG. 4 is a diagram for explaining the structure of a conventional organic EL device.
  • FIG. 1 is a diagram for explaining a configuration example of an organic EL device of the present invention formed on a substrate.
  • the organic EL device is composed of a plurality of organic layers including an organic light emitting layer. Specifically, on the anode transparent electrode 11, a hole transport layer 12, a hole injection layer 13, a light emitting layer 14, an electron transport layer 15, and an electron injection
  • the electron injection layer 16 is provided with a transparent conductive film 17, and a metal electrode 18 serving as a cathode metal layer is provided on the transparent conductive film 17. It is configured.
  • the glass substrate may be provided on the transparent electrode 11 of the anode or on the metal electrode 18 which is a metal layer of the cathode. .
  • the light emitted to the hole injection layer 13 side is a hole
  • the light transmitted through the injection layer 13 and the hole transport layer 12 and extracted from the transparent electrode 11 to the outside, and emitted to the electron transport layer 15 side are emitted by the electron transport layer 15 and the electron injection layer.
  • the light passes through the transparent conductive film 17 and is reflected by the metal electrode 18 and returns to the inside of the device. Therefore, if the reflected light can be extracted to the outside without being attenuated inside the device, the external quantum efficiency can be improved.
  • the metal electrode 18 is used as a cathode, and the electron transport layer 15, the electron injection layer 16, and the transparent conductive film 17 are interposed between the light emitting layer 14 and the optical distance of these layers. If the separation is designed to satisfy Eq. (5), the external quantum efficiency will be improved.
  • the thickness of the electron injection layer 16 needs to be as thin as about 0.5 to 1 nm, and in addition, when the thickness of the electron transport layer 15 is increased, the luminance degradation of the device becomes remarkable. Therefore, in the organic EL device of the present invention, a transparent conductive film 17 is provided between the electron injection layer 16 and the metal electrode 18 so that the light reflected by the metal electrode 18 The light intensity is attenuated inside the device by setting the thickness of the transparent conductive film 17 to satisfy the requirements. By extracting light to the outside without performing this, the external quantum efficiency is improved.
  • the method of setting the optical distance so as to maximize the external quantum efficiency by adjusting the film thickness of the transparent conductive film 17 is as follows: a monochromatic panel or an area color panel that emits light using a single color backlight is used. Of course, it is particularly useful for color panels that employ a color conversion method in which light emitted from a single-color backlight is received by a color conversion layer and converted into RGB light emission.
  • the organic EL device of the present invention also contributes to the improvement of the contrast of the organic EL panel.
  • a method of absorbing light having a wavelength that does not need to be extracted outside the transparent electrode by a laminated portion of the transparent conductive film and the metal layer and a method of absorbing the light by the metal layer material can be considered.
  • the backlight is blue, it is effective to use a metal having a larger blue reflection coefficient than red as the reflective metal.
  • Mo, Ci should be used.
  • the blue coloration of the transparent conductive film can be achieved by adding only 1% or less of CuO, Co, and Ti to the oxide layer constituting the transparent conductive film.
  • the configuration of the organic EL device of the present invention may be the configuration shown in FIG. 2 in addition to the configuration shown in FIG.
  • FIG. 2 is a diagram for explaining a structure in which the lower electrode of the organic EL element is used as an anode.
  • a metal electrode 28, a transparent conductive film 27 of the anode, a hole injection layer 23, and a hole transport layer are provided on a substrate 29.
  • the structure is such that a layer 22, a light emitting layer 24, an electron transport layer 25, an electron injection layer 26, and a transparent electrode 21 as a cathode are sequentially laminated.
  • the configuration of the electron injection layer 26 and the transparent electrode 21 of the cathode is such that the electron injection layer 26 is made of an ultrathin film of oxide, fluoride, boride, and chloride of alkaline earth metal.
  • I ZO I n 2 0 3 _Z ⁇ oxide layer
  • the present invention is not limited to the organic EL devices having the layer structure shown in FIGS. 1 and 2 and all organic EL devices proposed as conventional organic EL device configurations such as a configuration without a hole transport layer. It can be applied to devices.
  • FIG. 3 is a sectional view of a color conversion type color panel constituted by using the organic EL element of the present invention.
  • a metal electrode 303 As a reflective metal, and a transparent conductive film 304 serving as an anode is further formed thereon as In 2 O 3 —Z ⁇ oxide layer (I ZO: refractive index 2.2 nm) was deposited.
  • the metal electrode 303 as a reflective metal used here is not limited to a Cr or Pt laminate as long as the metal or alloy is a conductor having a roughness of 4 nm or less.
  • the IZO film is formed by sputtering, another film forming method such as electron beam evaporation or resistance heating evaporation may be used.
  • a hole injection layer 305, a hole transport layer 306, and a light emitting layer 307 are sequentially deposited by a resistance heating evaporation method, and further, as an electron transport layer 308, an A 1 complex of 8-hydroxyquinoline (A 1 ⁇ .) Is laminated to 20 nm.
  • an electron transport layer 308 an A 1 complex of 8-hydroxyquinoline (A 1 ⁇ .) Is laminated to 20 nm.
  • the laminated portion 309 of the electron injection layer and the upper transparent electrode after depositing 0.5 nm of LiF as an electron injection layer, 1 nm of Al and 220 nm of IZO were deposited on the upper transparent electrode.
  • 300 nm of SiON is deposited as a protective film.
  • the optical distance of the organic EL element having this configuration is determined by the IZO transparent conductive film 304, which is the lower electrode of the anode, the hole injection layer 305, the hole transport layer 306, and the Pt film forming the metal electrode 303. It was adjusted. The wavelength of the light of the color conversion packed light was 470 nm, the hole injection layer 305 was deposited to 80 nm, and the hole transport layer 306 was deposited to 20 nm, so that the refractive index of the organic matter was 1.85, and the formula (5 ), The IZO film thickness was set to 183 nm. Further, 0.6% CuO was added to the IO film, which is the transparent conductive film 304 constituting the lower electrode, and the film was colored blue.
  • a protective layer 3 16 is provided on the substrate 30 1 on which the elements are formed in this manner, and the substrate 3 10 on which the RGB color conversion filters 3 1 1, 3 1 2 and 3 13 have been manufactured is pressed against each other. At the same time, in a state where the gel body 314 was filled in the void, the outer peripheral portion of the element was sealed with an outer peripheral sealant 315 to complete the panel.
  • the color conversion filter is a filter provided with a color filter or a fluorescent filter.
  • the external extraction efficiency can be improved from 2.0% to 3.0%, and the current flowing at the same luminance can be reduced. It became possible to reduce to 2Z3.
  • the contrast ratio was 200: 1 under 100 cd dZm 2 under l OOO Lx.
  • I n 2 0 3 as a transparent conductive film film material - Z thickness 20 1 nm I n 2 0 3 -S nO 2 (I TO) ( refractive index 2.0) in place of nO Example 1 using Even when the same comparison was performed, the same effect as in Example 1 was obtained.
  • This ITO film can be formed by a method such as a sputtering method, an evaporation method, and a CVD method.
  • transparent conductive film material Fee Z n O or S n O 2 Similar results when combined optical distance as is obtained, et al. Industrial applicability
  • a transparent conductive film is provided on the surface of the metal electrode of the organic EL element on the light emitting layer side, and the thickness of the transparent conductive film is adjusted so that the light reflected by the metal electrode can emit light. It is possible to improve the external quantum efficiency without deteriorating the brightness, and to absorb light of a specific wavelength with the metal electrode and the transparent conductive film.
  • the present invention provides an organic EL device capable of improving external quantum efficiency without deteriorating luminance and improving contrast, and an organic EL panel using the same. It becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機EL素子の金属電極の発光層側の面に、In2O3−ZnO、In2O3−SnO2、ZnO、SnO2のいずれかからなる透明導電膜を設け、この透明導電膜の膜厚を、Lを有機発光層から前記金属電極までの光学的距離、λを発光波長として、次式を満足するように設定して金属電極で反射される光が素子内で干渉して強め合うようにすることにより、輝度の劣化を伴うことなく外部量子効率を向上させることが可能で、かつ、コントラスト改善可能な有機EL素子およびこれを用いた有機ELパネルを提供する。 L=(2n+1)λ/4 (n=0,1,2,...)

Description

明細書
有機 E L素子および有機 E Lパネノレ 技術分野
本発明は、 有機 EL (エレク ト口ルミネッセンス) 素子および有機 ELパネル に関し、 より詳細には、 輝度の劣化を伴うことなく外部量子効率を向上させるこ とが可能で、 かつ、 コントラスト改善可能な有機 EL素子およびこれを用いた有 機 ELパネルに関する。 背景の技術
1 98 7年に T a n gにより 2層積層構造のデバイスで高い効率の有機 E L素 子が発表されて以来 (C. W. T a n g e t a l . , Ap p l . Ph y s. L e t t. 5 1, 9 1 3 ( 1 98 7 ) ) 、 これまでに様々な有機 E L素子が開発 され、 その一部は既に実用化されるに至っている。
図 4は、 従来の有機 EL素子の構造を説明するための図で、 陽極の透明電極 4 1の上に、 正孔輸送層 42と、 正孔注入層 43と、 発光層 44と、 電子輸送層 4 5と、 電子注入層 46とが順次積層され、 電子注入層 46の上に陰極である金属 電極 4 7が設けられて素子を構成している。
図 4に示した構成の有機 E L素子の量子効率は以下のように考えられている。 先ず、 陽極と陰極から到達した正孔と電子とが発光層内で電子一正孔対を形成し て発光性の励起子となるが、 この発光性励起子の生成確率は約 25%である。 一 方、 発光層内で生成した光を素子の外部へ取り出す効率は、 nを発光層の屈折率 として、 次式で与えられる。
1
X =
2n2 (1) 一般的な発光層の屈折率は 1 . 6であるので、 この外部取出効率は約 2 0 %と なる。 従って、 理論的な外部量子効率の限界は、 発光性励起子の生成確率 (約 2 5 %) と外部取出効率 (約 2 0 %) との積で与えられ約 5 %となる。
しかしながら、 実際の有機 E L素子の外部量子効率はこの理論値の 6割程度で ある約 3 %と低く、 このため、 一定の輝度の光を外部に取り出すために素子に流 す電流を大きくすると、 輝度の劣化が進行してしまうことに加え、 消費電力を増 大させてしまうという問題が生じてしまう。
また、 実際のパネルでは、 外光により表示が見にくくなるコントラストの問題 が実用上問題になっている。 このようなコントラスト低下は、 金属電極が外光を 反射させることが一因に挙げられる。
本発明は、 この問題に鑑みてなされたもので、 その目的とするところは、 輝度 の劣化を伴うことなく外部量子効率を向上させることが可能で、 かつ、 コントラ スト改善可能な有機 E L素子およびこれを用いた有機 E Lパネルを提供すること にある。 発明の開示
本発明は、 この問題を解決するためになされたもので、 請求の範囲第 1項に記 載の発明は、 金属電極と透明電極との間に、 有機発光層を含む有機 E L発光部を 備えた有機 E L素子であって、 前記金属電極の有機 E L発光部側の面に透明導電 膜が設けられており、 該透明導電膜の膜厚が、 Lを前記有機発光層から前記金属 電極までの光学的距離、 λ を前記有機発光層の発光波長として、 次式を満足す るように設定されていることを特徴とする。 ι = ^η_]_ λ („ = 0,1,2,.. Λ
4 ( 2 ) また、 請求の範囲第 2項に記載の発明は、 金属電極と透明電極との間に、 有機 発光層を含む有機 E L発光部を備えた有機 E L素子であって、 前記金属電極の有 機 E L発光部側の面に透明導電膜が設けられており、 前記有機 E L発光層の発光 波長と異なる波長の光を、 前記金属電極及び前記透明導電膜の少なくとも一方又 は両方に吸収させ、 前記有機 E L発光層から発光される波長の光のみを前記透明 電極から射出させることを特徴とする。
また、 請求の範囲第 3項に記載の発明は、 金属電極と透明電極との間に、 有機 発光層を含む有機 E L発光部を備えた有機 E L素子であって、 前記金属電極の有 機 EL発光部側の面に透明導電膜が設けられており、 該透明導電膜の膜厚が、 L を前記有機発光層から前記金属電極までの光学的距離、 λを前記有機発光層の 発光波長として、 次式を満足するように設定されており、
L= 2^+1^ (W = 0,1,2,...)
4 (3) 前記有機 E L発光層の発光波長と異なる波長の光を、 前記金属電極、 又は Z及 び、 前記透明導電膜に吸収させ、 前記有機 EL発光層から発光される波長の光の みを前記透明電極から射出させることを特徴とする。
また、 請求の範囲第 4項に記載の発明は、 請求の範囲第 1項乃至第 3項のいず れか 1項に記載の有機 EL素子において、 前記透明導電膜の材質は、 I n2O3
— ZnO、 I n2O3— Sn〇2、 ZnO、 S n O 2のいずれかであることを特徴 とする。
また、 請求の範囲第 5項に記載の発明は、 請求の範囲第 2項または第 3項に記 載の有機 EL素子において、 前記透明導電膜は不純物添加され、 前記有機 EL発 光層から発光される光の色と同じ色に着色されたものであることを特徴とする。 また、 請求の範囲第 6項に記載の発明は、 請求の範囲第 5項に記載の有機 EL 素子において、 前記有機 EL発光層は青色の光を発光し、 前記透明導電膜は、 C uO、 Co、 または、 T iのいずれかの不純物を 1%以下の濃度で含有する、 I n2O3— ZnO、 I n2O3— SnO2、 ZnO、 S n O 2のいずれかの材質で構 成されており、 該透明導電膜が青色の光を吸収することを特徴とする。 また、 請求の範囲第 7項に記載の発明は、 請求の範囲第 2項、 第 3項、 第 6項 のいずれか 1項に記載の有機 E L素子において、 前記有機 E L発光層は青色の光 を発光し、 前記金属電極は、 Z n、 M o、 C r、 または、 これらの金属の合金か らなり、 該金属電極が青色の光を吸収することを特徴とする。
また、 請求の範囲第 8項に記載の発明は、 モノクロパネルまたはエリアカラー パネルであって、 第 1項乃至第 5項いずれか 1項に記載の有機 E L素子を備える ことを特 ί敫とする。
また、 請求の範囲第 9項に記載の発明は、 色変換方式カラーパネルであって、 請求の範囲第 6項に記載の有機 E L素子と、 青色単色のバックライトと、 色変換 フィルタとを備え、 前記有機 E L素子の前記透明導電膜に青色以外の光を吸収さ せ、 前記金属電極で前記バックライ卜からの青色単色光のみを反射させることを 特徴とする。
さらに、 請求の範囲第 1 0項に記載の発明は、 色変換方式カラーパネルであつ て、 請求の範囲第 7項に記載の有機 E L素子と、 青色単色のバックライトと、 色 変換フィルタとを備え、 前記金属電極に青色以外の光を吸収させ、 前記バックラ ィトからの青色単色光のみを反射させることを特徴とする。 図面の簡単な説明
図 1は、 本発明の有機 E L素子の構成例を説明するための図である。
図 2は、 本発明の有機 E L素子の第 2の構成例を説明するための図である。 図 3は、 本発明の有機 E L素子を用いて構成した色変換方式カラーパネルの断 面図である。
図 4は、 従来の有機 E L素子の構造を説明するための図である。
(符号の説明)
1 1、 2 1、 4 1 透明電極
1 2、 2 2、 4 2、 3 0 6 正孔輸送層 1 3、 23、 43、 305 正孔注入層
14, 24、 44、 307 発光層
1 5、 25、 45、 308 電子輸送層
1 6、 26, 46 電子注入層
1 Ί、 2 7、 304 透明導電膜
1 8、 28、 47、 303 金属電極
29、 30 1、 3 1 0 基板
302 TFT
309
3 1 1 、 3 1 2、 3 1 3 色変換フィルタ
3 1 4 ゲル体
3 1 5 外周封止剤 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施の形態について説明する。
図 1は、 基板上に形成される本発明の有機 E L素子の構成例を説明するための 図で、 この有機 EL素子は、 有機発光層を含む複数の有機層で構成される有機 Ε L発光部を備え、 具体的には、 陽極の透明電極 1 1の上に、 正孔輸送層 1 2と、 正孔注入層 1 3と、 発光層 1 4と、 電子輸送層 1 5と、 電子注入層 1 6とが順次 積層され、 電子注入層 1 6の上には透明導電膜 1 7が備えられており、 この透明 導電膜 1 7の上に陰極の金属層である金属電極 1 8が設けられて構成されている。 なお、 本発明の有機 EL素子を構成するにあたっては、 ガラス基板は、 陽極の透 明電極 1 1上、 または、 陰極の金属層である金属電極 1 8上の何れに設けること としてもよレ、。
発光層 14から射出された光のうち正孔注入層 1 3側に射出された光は、 正孔 注入層 1 3および正孔輸送層 1 2を透過して透明電極 1 1力ら外部に取り出され るとともに、 電子輸送層 1 5側に射出された光は、 電子輸送層 1 5、 電子注入層 1 6、 および、 透明導電膜 1 7を透過して金属電極 1 8で反射されて素子内部に 戻る。 従って、 この反射光を素子内部で減衰させることなく外部へと取り出すこ とができれば外部量子効率を向上させることが可能である。
すなわち、 素子を構成する電子輸送層 1 5、 電子注入層 1 6、 および、 透明導 電膜 1 7の各層の厚みを d i ( i = 1 , 2, 3 ) 、 屈折率を n ; ( i = 1 , 2 , 3 ) とすると、 発光層 1 4から金属電極 1 8までの光学的距離 Lは、 これらの各 層の光学的距離の和である次式で与えられる。 = '
'· ( 4 ) 金属電極 1 8と透明導電膜 1 7との界面で光が反射する際には光の位相が反転 するので、 光が素子内部で強め合うための条件は、 光の波長をえ として、
L = ^-^ (" = 0,1,2 ··)
4 ( 5 ) となる。
金属電極 1 8は陰極として用いられ、 発光層 1 4との間には電子輸送層 1 5と 電子注入層 1 6と透明導電膜 1 7とが介在するから、 これらの層が担う光学的距 離を式 (5 ) を満足するように設計すれば外部量子効率の向上が図られることと なる。
し力 し、 電子注入層 1 6の厚みは 0 . 5〜1 n m程度と薄くする必要があるこ とに加え、 電子輸送層 1 5の厚みを厚くすると素子の輝度劣化が顕著になるとい う問題があるために、 本発明の有機 E L素子では、 電子注入層 1 6と金属電極 1 8との間に透明導電膜 1 7を設け、 金属電極 1 8で反射された光が上記の千渉条 件を満足するように透明導電膜 1 7の膜厚を設定して素子内部で光の強度が減衰 することなく外部に光を取り出すことで外部量子効率を向上させることとしてい る。
このように透明導電膜 1 7の膜厚を調節することで光学的距離を外部量子効率 が最大となるように設定する方法は、 単色のバックライトを用いて発光させるモ ノクロパネルやエリアカラーパネルはもとより、 単色のバックライトから発せら れる光を色変換層で受光させて R G Bの発光に変換させる色変換法を採用する力 ラーパネルで特に有用である。
また、 有機 E Lパネルの実用上の問題の一つに、 外光によるコントラスト低下 があり、 この原因は、 外部光が直接金属層で反射されることにあることが判明し ている。 式 (5 ) によれば、 干渉により強められる波長の光は限定され、 特定波 長の光のみが反射されることとなるので、 式 (5 ) を満足しない波長の光の反射 強度は減少し、 本発明の有機 E L素子が有機 E Lパネルのコントラスト向上にも 寄与することがわかる。
更にコントラストを改善させるためには、 透明導電膜と金属層とを積層して反 射層を構成し、 この反射層のうちの透明導電膜を発光色に着色して発光色以外は 反射できない構造にすることや、 金属層の材料を発光色以外は吸収する特性を持 つ材料にすることが有効である。 このためには、 透明電極外に取り出すことが不 要な波長の光を、 透明導電膜と金属層との積層部で吸収させる方法と金属層材料 に吸収させる方法が考えられる。 なお、 この場合、 金属電極と発光層との間に介 在する層の光学的距離が式 (5 ) を満足するように各層を構成することが望まし レ、が、 これに限定されるものではない。
特に、 色変換方式カラーパネルでは、 バックライトが青色であるので、 反射金 属としては、 赤色に比べて青色の反射係数が大きい金属を用いることが有効であ り、 具体的には、 Z n、 M o、 C i:を用いるとよい。 また、 透明導電膜の青色化 法は、 透明導電膜を構成する酸化物層に、 C u O、 C o、 T iを 1 %以下の量だ け添加等することで達成できる。 本発明の有機 E L素子の構成は図 1に示した構成の他、 図 2に示す構成であつ てもよい。
図 2は、 有機 E L素子の下部電極を陽極とした場合の構造を説明するための図 で、 基板 29上に、 金属電極 28と陽極の透明導電膜 27と正孔注入層 23と正 孔輸送層 22と発光層 24と電子輸送層 25と電子注入層 26と陰極の透明電極 21とを順次積層した構成とされている。 ここで、 電子注入層 26と陰極の透明 電極 21部分の構成は、 電子注入層 26を、 アル力リ、 アル力リ土類金属の酸化 物、 フッ化物、 ホウ化物、 塩化物の極薄膜で形成し、 この上に、 A 1等の金属の 極薄膜を堆積させ、 更にその上に I n203_Z ηθ酸化層 (I ZO) を設ける 構造や、 あるいは、 電子注入層 26に直接 I ZOなどの透明酸ィ匕物からなる透明 電極 21を堆積させる構成が考えられる。
なお、 本発明は、 図 1及び図 2に示した層構造の有機 EL素子の他、 例えば、 正孔輸送層を備えない構成などの従来の有機 EL素子構成として提案されている すべての有機 E L素子に適用が可能である。
〔実施例 1〕
図 3は、 本発明の有機 E L素子を用いて構成した色変換方式カラーパネルの断 面図である。 TFT 302を備える基板 301上に、 反射金属としての金属電極 303として C r (5 nm) /P t (100 nm) を堆積させ、 更にその上に、 陽極である透明導電膜 304として I n203— Z ηθ酸化層 (I ZO:屈折率 2. 2 nm) を堆積させた。 ここで使用する反射金属としての金属電極 303は、 その凹凸が 4 nm以下の導電体である金属や合金であれば C r,P tの積層体に 限らない。 また、 I ZOの成膜はスパッタ法によったが、 電子ビーム蒸着法ゃ抵 抗加熱蒸着法等の他の成膜法であってもよい。
この透明導電膜 304の上に正孔注入層 305、 正孔輸送層 306、 発光層 3 07を抵抗加熱蒸着法により順次堆積させ、 さらに電子輸送層 308として 8— ヒドロキシキノリンの A 1錯体 (A 1 α。) を 20 nm積層している。 電子注入層と上部透明電極の積層部 309は、 電子注入層として L i Fを 0. 5 nm堆積させた後、 上部透明電極に 1 nmの A 1と 220 nmの I ZOを堆積 させ、 最後に、 保護膜として S i ONを 300 nm堆積させて構成されている。 この構成の有機 EL素子の光学距離は、 陽極の下部電極である I ZOの透明導 電膜 304と正孔注入層 305と正孔輸送層 306と金属電極 303を構成する P t膜の間で調整した。 色変換方式パックライトの光の波長は 470 nmで、 正 孔注入層 305を 80 n m、 正孔輸送層 306を 20 n m堆積させたので、 有機 物の屈折率を 1. 85とし、 式 (5) の干渉条件から I ZO膜厚を 1 83 nmと した。 さらに下部電極を構成する透明導電膜 304である I ∑0膜には0. 6% の CuOを添加して青色に着色した。
こうして素子形成した基板 30 1上に保護層 3 1 6を設け、 予め RGBの色変 換フィルタ 3 1 1、 3 1 2、 3 1 3を作製してある基板 3 1 0とを互いにむ力い 合わせて、 その空隙にゲル体 3 14を充填した状態で素子外周部に外周封止剤 3 1 5で封止してパネルを完成させた。 ここで、 色変換フィルタとは、 カラーフィ ノレタ又は 及び蛍光フィルタを設けたフィルタである。
本実施例に示した構成のパネルの特性を従来の構成のパネルの特性と比較した 結果、 外部取り出し効率を 2. 0%から 3. 0%に向上させることができ、 同輝度 で流す電流を 2Z 3に低減することが可能になった。 さらに、 コントラスト比は、 l O O O Lx下、 1 00 c dZm2で、 200 : 1を得た。
また、 同様の比較実験をモノクロパネルやエリアカラーで実行したところ同様 な結果が得られた。
〔実施例 2〕
透明導電膜膜材料として I n203— Z nOの代わりに膜厚 20 1 nmの I n2 03-S nO2 (I TO) (屈折率 2. 0) を用いて実施例 1と同様の比較を行 なった場合でも、 実施例 1と同様な効果が得られた。 この I TO膜は、 スパッタ 法、 蒸着法、 CVD法などの方法により成膜が可能である。 また、 透明導電膜材 料を Z n Oまたは S n O 2として光学距離を合わせた場合にも同様の結果が得ら れた。 産業上の利用可能性
以上説明したように、 本発明によれば、 有機 E L素子の金属電極の発光層側の 面に透明導電膜を設けこの透明導電膜の膜厚を調整して金属電極で反射される光 が素子内で干渉して強め合うこととしたので、 輝度の劣化を伴うことなく外部量 子効率を向上させることが可能となり、 更に、 金属電極と透明導電膜で特定の波 長の光を吸収させることとしたのでコントラストが改善され, これにより、 輝度 の劣化を伴うことなく外部量子効率を向上させることが可能で、 かつ、 コントラ スト改善可能な有機 E L素子およびこれを用いた有機 E Lパネルを提供すること が可能となる。

Claims

請求の範囲
1. 金属電極と透明電極との間に、 有機発光層を含む有機 EL発光部を備えた 有機 EL素子であって、
前記金属電極の有機 E L発光部側の面に透明導電膜が設けられており、 該透明導電膜の膜厚が、 Lを前記有機発光層から前記金属電極までの光学的距 離、 え を前記有機発光層の発光波長として、 次式を満足するように設定されて いることを特徴とする有機 E L素子。 ι == η^_λ („= 0,1,
2,.·.)
4 (6) 2. 金属電極と透明電極との間に、 有機発光層を含む有機 EL発光部を備えた 有機 EL素子であって、
前記金属電極の有機 E L発光部側の面に透明導電膜が設けられており、 前記有機 E L発光層の発光波長と異なる波長の光を、 前記金属電極及び前記透 明導電膜の少なくとも一方又は両方に吸収させ、 前記有機 EL発光層から発光さ れる波長の光のみを前記透明電極から射出させることを特徴とする有機 E L素子。
3. 金属電極と透明電極との間に、 有機発光層を含む有機 EL発光部を備えた 有機 EL素子であって、
前記金属電極の有機 E L発光部側の面に透明導電膜が設けられており、 該透明導電膜の膜厚が、 Lを前記有機発光層から前記金属電極までの光学的距 離、 え を前記有機発光層の発光波長として、 次式を満足するように設定されて おり、
L=2n+_ (n = 0,1,2,...)
4 (7) 前記有機 EL発光層の発光波長と異なる波長の光を、 前記金属電極、 又は Z及 び、 前記透明導電膜に吸収させ、 前記有機 EL発光層から発光される波長の光の みを前記透明電極から射出させることを特徴とする有機 EL素子。 4. 前記透明導電膜の材質は、 I n203— ZnO、 I n2O3— Sn02、 Z n 0、 S nO2のいずれかであることを特徴とする請求の範囲第 1項乃至第 3項の いずれか 1項に記載の有機 E L素子。
5. 前記透明導電膜は不純物添加され、 前記有機 EL発光層から発光される光 の色と同じ色に着色されたものであることを特^ [とする請求の範囲第 2項または 第 3項に記載の有機 E L素子。
6. 前記有機 E L発光層は青色の光を発光し、
前記透明導電膜は、 CuO、 Co、 または、 T iのいずれかの不純物を 1 %以 下の濃度で含有する、 l n 203— ZnO、 I n23— Sn〇2、 ZnO、 SnO 2のいずれかの材質で構成されており、
該透明導電膜が青色の光を吸収することを特徴とする請求の範囲第 5項に記載 の有機 EL素子。
7. 前記有機 EL発光層は青色の光を発光し、
前記金属電極は、 Zn、 Mo、 C r、 または、 これらの金属の合金からなり、 該金属電極が青色の光を吸収することを特徴とする請求の範囲第 2項、 第 3項、 第 6項のいずれか 1項に記載の有機 E L素子。
8. 請求の範囲第 1項乃至第 5項いずれか 1項に記載の有機 E L素子を備える ことを特徴とするモノク口パネルまたはェリァカラーパネル。
9 . 請求の範囲第 6項に記載の有機 E L素子と、 青色単色のバックライトと、 色変換フィルタとを備え、
前記有機 E L素子の前記透明導電膜に青色以外の光を吸収させ、
前記金属電極で前記バックライトからの青色単色光のみを反射させることを特 徴とする色変換方式力ラ一パネル。
1 0 . 請求の範囲第 7項に記載の有機 E L素子と、 青色単色のバックライトと、 色変換フィルタとを備え、
前記金属電極に青色以外の光を吸収させ、 前記バックライトからの青色単色光 のみを反射させることを特徴とする色変換方式力ラ一パネル。
PCT/JP2003/007565 2002-03-18 2003-06-13 有機el素子および有機elパネル WO2004112441A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002074993A JP3783937B2 (ja) 2002-03-18 2002-03-18 有機el素子
PCT/JP2003/007565 WO2004112441A1 (ja) 2002-03-18 2003-06-13 有機el素子および有機elパネル
US10/520,005 US7615921B2 (en) 2003-06-13 2003-06-13 Organic EL device and organic EL panel
CN03823511.0A CN1685772B (zh) 2003-06-13 2003-06-13 有机el元件及有机el面板
DE10393385T DE10393385T5 (de) 2003-06-13 2003-06-13 Organische EL-Vorrichtung und organische EL-Tafel
AU2003241652A AU2003241652A1 (en) 2003-06-13 2003-06-13 Organic el device and organic el panel
GB0428367A GB2417827B (en) 2002-03-18 2003-06-13 Organic el device and organic el panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002074993A JP3783937B2 (ja) 2002-03-18 2002-03-18 有機el素子
PCT/JP2003/007565 WO2004112441A1 (ja) 2002-03-18 2003-06-13 有機el素子および有機elパネル

Publications (1)

Publication Number Publication Date
WO2004112441A1 true WO2004112441A1 (ja) 2004-12-23

Family

ID=34219662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007565 WO2004112441A1 (ja) 2002-03-18 2003-06-13 有機el素子および有機elパネル

Country Status (3)

Country Link
JP (1) JP3783937B2 (ja)
GB (1) GB2417827B (ja)
WO (1) WO2004112441A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946035B1 (ko) 2009-07-29 2010-03-09 삼성전기주식회사 단일지향성 반사기의 제조방법
CN1848478B (zh) * 2005-02-28 2010-05-12 三洋电机株式会社 有机电致发光元件

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0401613D0 (en) * 2004-01-26 2004-02-25 Cambridge Display Tech Ltd Organic light emitting diode
CN100484356C (zh) * 2004-03-05 2009-04-29 出光兴产株式会社 有机电致发光显示装置
KR20070011301A (ko) * 2004-03-05 2007-01-24 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자 및 표시 장치
WO2005086539A1 (ja) * 2004-03-05 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
EP1722605A4 (en) * 2004-03-05 2008-08-20 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENCE ELEMENT AND DISPLAY
WO2005109964A1 (ja) * 2004-04-21 2005-11-17 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
DE102004022004B4 (de) * 2004-05-03 2007-07-05 Novaled Ag Schichtanordnung für eine organische lichtemittierende Diode
JP2006295104A (ja) 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd 発光素子およびそれを用いた発光装置
US8008651B2 (en) 2004-08-03 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
CN101027942B (zh) 2004-09-24 2010-06-16 株式会社半导体能源研究所 发光器件
US7964864B2 (en) 2004-09-30 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP4797361B2 (ja) * 2004-11-05 2011-10-19 富士電機株式会社 有機el素子
JP4939809B2 (ja) * 2005-01-21 2012-05-30 株式会社半導体エネルギー研究所 発光装置
US8269227B2 (en) 2005-06-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2007019487A (ja) * 2005-06-09 2007-01-25 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
JP4876453B2 (ja) * 2005-06-29 2012-02-15 ソニー株式会社 有機発光素子および有機発光装置
JP4378366B2 (ja) * 2005-08-04 2009-12-02 キヤノン株式会社 発光素子アレイ
JP4817789B2 (ja) * 2005-10-07 2011-11-16 東芝モバイルディスプレイ株式会社 有機el表示装置
GB2433833A (en) 2005-12-28 2007-07-04 Cdt Oxford Ltd Micro-cavity OLED layer structure with transparent electrode
JP4658877B2 (ja) * 2006-08-07 2011-03-23 株式会社 日立ディスプレイズ 有機発光表示装置
JP2010033973A (ja) * 2008-07-30 2010-02-12 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子
WO2010143360A1 (ja) 2009-06-11 2010-12-16 パナソニック株式会社 有機elディスプレイ
JP2011009017A (ja) 2009-06-24 2011-01-13 Panasonic Corp 有機elディスプレイパネル
US8729534B2 (en) 2009-06-29 2014-05-20 Panasonic Corporation Organic EL display panel
WO2012020452A1 (ja) 2010-08-10 2012-02-16 パナソニック株式会社 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
JP6855362B2 (ja) * 2017-10-27 2021-04-07 株式会社Joled 有機電界発光素子、有機電界発光装置および電子機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039393A1 (en) * 1998-02-02 1999-08-05 International Business Machines Corporation Anode modification for organic light emitting diodes
JP2002289358A (ja) * 2001-03-23 2002-10-04 Ricoh Co Ltd 有機エレクトロルミネッセンス素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039393A1 (en) * 1998-02-02 1999-08-05 International Business Machines Corporation Anode modification for organic light emitting diodes
JP2002289358A (ja) * 2001-03-23 2002-10-04 Ricoh Co Ltd 有機エレクトロルミネッセンス素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848478B (zh) * 2005-02-28 2010-05-12 三洋电机株式会社 有机电致发光元件
KR100946035B1 (ko) 2009-07-29 2010-03-09 삼성전기주식회사 단일지향성 반사기의 제조방법

Also Published As

Publication number Publication date
GB2417827B (en) 2007-01-10
JP2003272855A (ja) 2003-09-26
GB2417827A (en) 2006-03-08
GB0428367D0 (en) 2005-02-02
JP3783937B2 (ja) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2004112441A1 (ja) 有機el素子および有機elパネル
US7615921B2 (en) Organic EL device and organic EL panel
CN100355108C (zh) 有机电致发光器件
US7187121B2 (en) Organic luminescence device with anti-reflection layer and organic luminescence device package
KR100527191B1 (ko) 저저항 캐소드를 사용하는 유기 전계 발광 소자
US7432648B2 (en) Microcavity electroluminescent display with partially reflective electrodes
CN100482025C (zh) 有机电致发光显示器及其制造方法
JP4817789B2 (ja) 有機el表示装置
US7986093B2 (en) Organic electroluminescent diode and diode panel with anti-reflective coating conducive to the emission of light
US20100001301A1 (en) Organic light emitting device, method for producing thereof and array of organic light emitting devices
WO2000001204A9 (fr) Ecran electroluminescent
JP5279240B2 (ja) 多色表示装置
JPH088065A (ja) 薄膜型el素子
US20080084159A1 (en) Organic Double-Sided Light-Emitting Diode with a Light Extraction Dielectric Layer
CN101257035B (zh) 顶部发光有机电致发光显示器
JP4644938B2 (ja) 有機電界発光素子
US20060103321A1 (en) Electroluminescent device with a transparent cathode
JPH11345688A (ja) 有機elディスプレイ
KR100528916B1 (ko) 배면발광형 전계발광소자
JP2004079421A (ja) 有機el素子
JP2004103247A (ja) 有機el表示装置
JP2003303685A (ja) 有機発光素子
KR100915617B1 (ko) 유기 el 소자 및 유기 el 패널
KR100544120B1 (ko) 전계발광소자
TWI284010B (en) Organic electroluminescence device and organic electroluminescence panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020047019469

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 0428367

Country of ref document: GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038235110

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006124920

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10520005

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047019469

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10520005

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607