WO2004111208A1 - Celulas madres derivadas de cartilago y sus aplicaciones - Google Patents

Celulas madres derivadas de cartilago y sus aplicaciones Download PDF

Info

Publication number
WO2004111208A1
WO2004111208A1 PCT/ES2004/070041 ES2004070041W WO2004111208A1 WO 2004111208 A1 WO2004111208 A1 WO 2004111208A1 ES 2004070041 W ES2004070041 W ES 2004070041W WO 2004111208 A1 WO2004111208 A1 WO 2004111208A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
isolated
cell population
characteristic
stem cells
Prior art date
Application number
PCT/ES2004/070041
Other languages
English (en)
French (fr)
Inventor
Antonio Bernad Miana
Manuel Angel GONZALEZ DE LA PEÑA
Ricardo De La Fuente Gonzalez
Original Assignee
Consejo Superior De Investigaciones Científicas
Cellerix S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Cellerix S.L. filed Critical Consejo Superior De Investigaciones Científicas
Priority to US10/560,354 priority Critical patent/US20060239980A1/en
Priority to CA002528679A priority patent/CA2528679A1/en
Priority to EP04742080A priority patent/EP1632563A1/en
Publication of WO2004111208A1 publication Critical patent/WO2004111208A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells

Definitions

  • the present invention relates to methods for the isolation of adult stem cells, cells isolated by these methods and applications thereof. Specifically, the invention relates to isolated adult stem cells, derived from dedifferentiated chondrocytes, capable of differentiating and giving rise to a series of cell lineages, as well as specific markers present in these cells, such as surface antigens. mobile. Uses for such cells include their use in cell therapy as well as in the search and development of new drugs.
  • Organ and tissue transplantation provides a series of promising treatments for various pathologies, making regenerative therapies the central research objective of many biomedicine fields.
  • organ and tissue transplantation there are two important problems associated with organ and tissue transplantation. The first and greatest of them is the shortage of donors. Thus, for example, in the US, only 5% of the organs required for transplants are available (Evans et al, 1992).
  • stem cells can undergo cell divisions intended for self-maintenance for an unlimited time to originate phenotypic and genotypically identical cells. In addition, they have the ability to differentiate one or several specific cell types from certain signals or stimuli.
  • organs and tissues from the patient's own stem cells or from immunocompatible heterologous cells in such a way that the recipient's immune system does not recognize them as foreign, allows a series of associated advantages that solve the problem caused by the Donor shortage and rejection irrigation.
  • the use of stem cells for the regeneration of organs and tissues constitutes a promising alternative therapy for various human pathologies, including: concave, bone and muscle lesions, neurodegenerative diseases, immunological rejection, heart diseases and skin disorders (see US patents 5,811. 094, 5,958,767, 6,328,960, 6,379,953, 6,497,875).
  • stem cells have many other potential applications related to biomedical technologies that can help facilitate biopharmaceutical research and development activities.
  • One of these applications lies in the development of cellular models of human and animal diseases, which can help to substantially improve the speed and efficiency of the search and development processes of new drugs.
  • the commonly used way to measure the biological activity of a new compound before entering clinical trials is through incomplete biochemical techniques or expensive and inappropriate ariimal models.
  • Stem cells can be a potential source of virtually unlimited amounts of cells, both undifferentiated and differentiated, for in vitro tests aimed at the search and development of new therapeutic compounds (US Patent 6,294,346), as well as to determine their activity, metabolism and toxicity.
  • HTS high-throughput screening systems
  • Stem cells and their differentiated progeny also have great value in the process of searching and characterizing new genes involved in a wide variety of biological processes, including development, cell differentiation and neoplastic processes (Phillips et al, 2000; amalho - Santos et al, 2002; Ivanova et al, 2002).
  • Gene expression systems have already been described for use in combination with cell-based HTS systems (Jayawickreme and Kost, 1997).
  • ES cells embryonic stem cells
  • adult stem cells Depending on the origin of the stem cells, we can differentiate between embryonic stem cells (ES cells) and adult stem cells.
  • ES cells originate from the internal cell mass of the blastocysts and have as their main characteristic the fact of being pluripotential, which means that they can give rise to any adult tissue derived from the three embryonic layers (Evans and Kaufinan, 1981; Thomson et al , 1998; US Patent 6,200,806).
  • Adult stem cells are partially compromised cells present in adult tissues, which can remain decades in the human body, although over time they begin to be scarce (Fuchs and Segre, 2002).
  • ES cells Despite the high pluripotentiality of ES cells, therapies based on the use of adult stem cells have a number of advantages over those based on ES cells. First, it is difficult to control the culture conditions of ES cells without inducing their differentiation (Thomson et al. 1998), which raises the economic and labor costs necessary for the use of this type of cells. Moreover, ES cells must pass through several intermediate stages before becoming the specific cell type necessary to treat a particular pathology, a process controlled by chemically complex compounds. In addition, there is a strong controversy regarding ES cells due to the widespread belief that human life begins with fertilization, so that the informed consent signed by donors does not eliminate the ethical stigma that involves the use of embryos in research .
  • ES cells derived from ES cells are normally subject to rejection by the munologic system because the immunological profile of such cells differs from that corresponding to the recipient.
  • therapeutic cloning in which autologous ES cells can be obtained by transferring the nucleus of a patient's somatic cell to the oocyte of a donor woman, this technique has not been developed still in humans and presents serious ethical and legal problems (human cloning is illegal in many countries).
  • Another solution could be the generation of "universal" cell lines that have a generalized immune compatibility, but today there is no technology to obtain these cells.
  • MPC Multipotent Adult Progenitor Cell
  • Cartilage is a tissue composed of a single cellular element, chondrocytes, and an extracellular matrix (ECM) that surrounds chondrocytes. Thanks to this simple structure and cellular composition, cartilage could be a promising potential source of stem cells, in case these cells could be identified and characterized. In addition, the removal of cartilaginous tissue is performed using a non-invasive procedure compared to other procedures (eg bone marrow removal) and poorly contaminated compared to other procedures (eg adipose tissue removal) and without repercussions serious for the patient.
  • ECM extracellular matrix
  • the adult articular cartilage is avascular, alinfatic, aneural and is nourished from synovial fluid (ankin and Brandt, 1984).
  • the only cells present in the articular cartilage are the chondrocytes, responsible for their synthesis, maintenance and renewal of the NDE, which in turn is mainly composed of a network of highly hydrated collagen fibers inserted in a gel of loaded proteoglycans (Maroudas, 1979).
  • the digestion of the NDE using collagenase allows the isolation of chondrocytes that can subsequently be grown and expanded in vitro (Mitrovic t ⁇ /., 1979).
  • the present invention provides a population of adult multipotent stem cells from mammalian cartilage, preferably from human articular cartilage, isolated and characterized in detail further demonstrating their multipotentiality.
  • a first aspect of the invention is to provide an isolated population of multipotent stem cells derived from dedifferentiated chondrocytes, perfectly characterized and free from other cell types.
  • said chondrocytes are obtained from human articular cartilage by arthroscopy, which is a routine medical procedure that carries a minimal risk and degree of discomfort for the patient.
  • a second aspect of the present invention consists in obtaining in vitro, from said multipotent stem cells derived from dedifferentiated chondrocytes, from differentiated cell populations to various lineages, including but not limited to mesenchymal and neural lineages.
  • a third aspect of the invention consists in providing a transgenic cell population, derived from said previously mentioned isolated cells, by modification of their genome.
  • a fourth aspect of the invention consists in using the aforementioned isolated cells for the preparation of pharmaceutical compositions that can be used in tissue and organ repair. Said pharmaceutical compositions constitute a further aspect of the present invention.
  • a fifth aspect of the invention consists in using the aforementioned isolated cells for the evaluation of the biological activity of different agents in vitro and in vivo.
  • Figure 1 is a phase contrast photomicrograph of the stem cells of the present invention.
  • Figure 2A shows fluorescence immunocytometry histograms corresponding to positive surface markers in the stem cells of the present invention. Histograms filled in black correspond to the marking with the specific antibody, while the voids correspond to staining with the isotype control.
  • Figure 2B shows histograms of fluorescence immunocytometry corresponding to negative surface markers in the stem cells of the present invention. Histograms filled in black correspond to the marking with the specific antibody, while the voids correspond to staining with the isotype control.
  • Figure 3A is a phase contrast photomicrograph of the stem cells of the present invention differentiated in vitro to bone phenotype. Differentiated cells have been stained with Alizarin Red to detect the calcium phosphate matrix secreted by differentiated cells.
  • Figure 3B is a clear phase contrast photomicrograph of the stem cells of the present invention without differentiation, stained in the same manner as the differentiated cells of Figure 3A.
  • Figure 4 ⁇ is a phase contrast photomicrograph of the stem cells of the present invention differentiated in vitro to muscle phenotype. Differentiated cells have been stained with an antibody specific for the myosin heavy chain, a muscle specific antigen.
  • Figure 4B is a clear-field photomicrograph of the stem cells of the present invention without differentiation, stained in the same manner as the differentiated cells of Figure 4A.
  • Figure 5 A shows two immunofluorescence photomicrographs of the stem cells of the present invention differentiated in vitro towards neuronal phenotype. Differentiated cells have been stained with an antibody specific for NF200, a neuron specific antigen.
  • Figure 5B shows two immunofluorescence photomicrographs of the stem cells of the present invention differentiated in vitro towards neuronal phenotype. Differentiated cells have been stained with an antibody specific for TuJl, a neuron specific antigen.
  • Figure 7A is a fluorescence photomicrograph of the stem cells of the present invention transduced with a retroviral vector encoding the green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • Figure 7B shows a fluorescence cytometry histogram that quantifies the fluorescence of retrovirally transduced cells of Figure 7A.
  • the present invention provides an isolated population of multipotent stem cells, derived from dedifferentiated mammalian chondrocytes, characterized in detail and free from other cell types.
  • the isolated cell population object of the invention comes from the cartilaginous tissue of a primate, preferably from a human.
  • the cell object of the invention will come from human articular cartilage and, in particular, from cartilaginous tissue from the knee joint.
  • Stem cells and derivatives thereof in the present invention may be used for various applications, including: therapies based on autologous and allogeneic transplantation, development of models of disease, development of gene search trials and drug search and development.
  • the invention provides a multipotent adult stem cell, from mammalian dedifferentiated chondrocytes, characterized by being positive for the following surface antigens: CD9, CD13, CD29, CD44,
  • CD106 CD166, HLA-I and beta2-microglobulin.
  • an isolated multipotent adult stem cell derived from dedifferentiated mammalian chondrocytes is provided, characterized by the following phenotype: positive for markers CD9, CD13, CD29, CD44, CD49a, CD49b, CD49c, CD49e, CD54 , CD55, CD58, CD59, CD90, CD95, CD105, CD106, CD166, HLA-I and beta2-microglobulin; negative for CD10, CDllb, CD14, CD15, CD16, CD18, CD19, CD28, CD31, CD34, CD36, CD38, CD45, CD49d, CD50, CD51, CD56, CD61, CD62E, CD62L, CD62P, CD71, CD102, CD104, CD117, CD133, HLA-II.
  • Isolated cell populations constituted by, or comprising, said isolated multipotent adult stem cells from dedifferentiated mammalian chondrocytes, constitute particular embodiments of the present invention.
  • the isolated multipotent stem cell object of the present invention is obtained from dedifferentiated adult chondrocytes isolated from cartilage biopsies from living subjects.
  • the cartilaginous tissue is isolated from a human subject.
  • the preferred source of cartilaginous tissue lies in the knee joint, and the preferred method of collecting cartilage is taking biopsy by arthroscopy from the margins of the femoral condyle.
  • the cartilaginous tissue be isolated from that same subject in order to perform an autologous transplant.
  • Chondrocytes can be isolated from a cartilage biopsy using various methods known to those skilled in the art. Enzymatic digestion with collagenase is normally used (Mitrovic et al, 1979).
  • Example 1 of the present invention details the process of isolating multipotent stem cells from human dedifferentiated chondrocytes obtained from knee articular cartilage.
  • Multipotent cells derived from dedifferentiated chondrocytes can be characterized to identify intracellular and / or surface proteins, genes, and / or other markers indicating their undifferentiated state.
  • Methods used for characterization include, but are not limited to: immunocytometry (see Example 2), immunocytochemical analysis, northern hlot analysis, RT-PCR, gene expression analysis in microarrays, proteomic studies and differential display analysis.
  • the multipotent adult stem cells of the present invention are induced to differentiate in vitro to cells that express at least one characteristic of a specialized cell.
  • Such partially or totally differentiated cell types include, but are not limited to cell lines of the following tissues and organs: cartilage, bone, fat, muscle, nerve tissue, skin, liver and pancreas, for example, chondrocytes, osteocytes, adipocytes, myocytes, cardiomyocytes, neurons, astrocytes, oligodendrocytes, epithelial cells, hepatocytes, pancreatic cells, etc.
  • the methods that can be used to induce differentiation of the stem cells of the present invention to various specific cell types are known to those skilled in the art and some of them are explained in detail in the Patent Examples.
  • Totally or partially differentiated cells are characterized by the identification of surface and / or intracellular proteins, genes, and other markers indicative of differentiation of the stem cells of the present invention to various lineages. Methods used for characterization include, but are not limited to the following: immunocytometry, immunocytochemical analysis, northern blot analysis, RT-PCR, gene expression analysis in microchips, proteomic studies and differential display analysis.
  • the stem cells of the present invention, or cells derived therefrom are genetically modified in a stable or transient manner so that they express exogenous genes or repress the expression of endogenous genes.
  • the invention provides an isolated transgenic cell population, derived from multipotent adult stem cells from dedifferentiated mammalian chondrocytes provided by this invention, whose genome has been modified by inserting preselected isolated DNA, by replacing a segment of the cell genome. with pre-selected isolated DNA or by inactivation of at least a portion of the cellular genome.
  • the isolated cells are contacted with a gene transfer vector, which comprises a nucleic acid that includes a recombinant heterologous genetic sequence, such that the nucleic acid is introduced into the cell under the appropriate conditions for said sequence to be expressed inside the cell.
  • the gene transfer vector can be viral or non-viral.
  • Viral vectors suitable for practicing this embodiment of the invention include, but are not limited to the following: adenoviral vectors (Kozarsky and Wilson, 1993), adeno-associated vectors (Muzyczka, 1992), retroviral vectors (Tabin et al, 1982), lentiviral vectors (Naldini et al, 1996), alpha-viral vectors (Huang, 1996), herpesvrral vectors (Carpenter and Stevens, 1996) and coronavirus-derived vectors (Ortego et al, 2002).
  • Non-viral type vectors suitable for practicing this embodiment of the invention include, but are not limited to the following: naked DNA (Wolff et al, 1990), gene gun (Johnston et al, 1988), liposomes (Felgner et al , 1987), polyamines (Boussif et al, 1995), peptides (Wyman et al, 1997), dendrimers (Tang et al, 1996), canon glycopolymers (Roche et al, 2003), liposome-polycation complexes (Tsai et al, 1996), proteins (Fisher and Wilson, 1997) and receptor-mediated gene transfer systems (Cotten et al, 1990).
  • the recombinant heterologous genetic sequence is normally included in an expression cassette, which consists of a coding sequence operatively associated with a promoter or other cis sequences that allow its expression.
  • the coding sequence can encode a protein or it can encode biologically active RNA, such as antisense RNA (Spampinato et al, 1992), a ribozyme (Leavitt et al, 1994) or siRNA (Qin et al, 2003).
  • the stem cells of the present invention are genetically modified to express a potentially therapeutic gene.
  • the stem cells of the present invention can be used to prepare pharmaceutical compositions.
  • the cells of the present invention may be used alone or within biologically compatible compositions, which may include, but are not limited to: growth factors, cytokines, chemokines, extracellular matrix proteins, synthetic drugs and polymers. Therefore, in a particular embodiment of this invention, a pharmaceutical composition is provided which comprises a population of stem cells provided by the present invention, unmodified or genetically modified, or expressing at least one characteristic of a specialized, unmodified cell. or genetically modified, and a pharmaceutically acceptable vehicle.
  • said pharmaceutical composition may also contain growth factors, cytokines, chemokines, extracellular matrix proteins, drugs and / or synthetic polymers.
  • the pharmaceutical compositions prepared from the cells of the present invention have the form of a three-dimensional structure in which the cells and other possible components are included within a biocompatible three-dimensional synthetic matrix.
  • said pharmaceutical compositions are of the microparticle, microsphere, nanoparticle or nanosphere type.
  • the implants described above can be used in autologous and allogeneic transplant procedures. These transplant procedures can be carried out by administering the implants to a patient in various ways. Preferred forms of administration include but are not limited to: parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal, intraarticular, intrasynovial, intrathecal, intralesional, intraarterial, intracardiac, intramuscular, intranasal, intracranial, subcutaneous, intraorbital, intracapsular, topical, through transdermal patches, rectal, vaginal or urethral, through the administration of a suppository, percutanea, nasal spray, surgical implant, internal surgical paint, infusion pump or route catheter.
  • the place of transplantation is cartilage, and the desired characteristic or phenotype is the chondroblastic.
  • the site of transplantation is the bone, and the desired characteristic or phenotype is the osteoblastic.
  • the site of transplantation is the skeletal muscle, and the desired characteristic or phenotype is the myoblastic.
  • the place of transplantation is the cardiac muscle, and the desired characteristic or phenotype is the cardiomyoblastic.
  • the site of transplantation is the peripheral nervous system, and the desired characteristic or phenotype is the glial.
  • the place of transplantation is the central nervous system, and the desired characteristic or phenotype is the neuronal.
  • the site of transplantation is the skin, and the desired characteristic or phenotype is the epithelial.
  • the site of transplantation is the liver, and the desired characteristic or phenotype is the hepatocyte.
  • the site of transplantation is the liver, and the desired characteristic or phenotype is that of a pancreatic cell.
  • the place of transplantation is the pancreas, and the desired characteristic or phenotype is that of a pancreatic cell.
  • the preferred therapeutic use of the cells described in the present invention is intended to be the treatment of degenerative, traumatic, genetic, infectious or neoplastic diseases that result in damage or dysfunction of tissues or organs that include, but are not limited to: fistulas, ulcers, cartilage lesions, bone lesions, muscle injuries, muscle disorders (including, but not limited to muscular dystrophy), bone diseases (including, but not limited to osteogenesis imperfecta), myocardial lesions, neurodegenerative disorders (including, but not be limited to: Parson inson disease, Huntington's disease and Alzheimer's disease), spinal injuries, damage nervous, vascular lesions, skin lesions, liver damage and diabetes.
  • degenerative diseases that result in damage or dysfunction of tissues or organs that include, but are not limited to: fistulas, ulcers, cartilage lesions, bone lesions, muscle injuries, muscle disorders (including, but not limited to muscular dystrophy), bone diseases (including, but not limited to osteogenesis imperfecta), myocardial lesions, neurodegenerative disorders (including, but not be limited to
  • Preferred embodiments of the genetically modified cells of the invention include, but are not limited to: enzyme replacement therapy, replacement of damaged cells and tissues, correction of deleterious genetic mutations, antiangiogenic therapy, proangiogenic therapy, anti-inflammatory therapy, release of bioactive compounds and release of antitumor agents.
  • the invention relates to the use of a population of stem cells provided by the present invention, unmodified or genetically modified, or expressing at least one characteristic of a specialized, unmodified or genetically modified cell. modified, to prepare a pharmaceutical composition for the treatment of lesions, degenerative and genetic diseases of cartilage, bone, muscle, heart, central and peripheral nervous system, skin, liver and pancreas.
  • said isolated cell population provided by this invention can be used to prepare a pharmaceutical composition suitable for the treatment of cartilage lesions, or bone lesions, or muscle lesions, or cardiac lesions, or nervous system lesions.
  • the presence in the subject, to which the transplant has been performed, of differentiated cells from the multipotent isolated stem cells of the present invention could be detected by various techniques, including but not limited to: in vivo image , flow cytometric analysis, PCR analysis, southern blot analysis and immunohistochemical studies.
  • the stem cells of the present invention with or without genetic modifications, as well as cells derived from the above that express at least one characteristic of a specialized cell, with or without genetic modifications, can be applied.
  • in vitro and in vivo tests with the following industrial purposes: drug search, pharmacological studies, toxicological studies, pharmacogenomic studies and genetic studies.
  • assays can be used for the identification and / or characterization of a multitude of biological targets, bioactive compounds or pharmacological agents.
  • the stem cells of the present invention provide a unique system in which cells can be differentiated to give rise to specific lineages of the same individual.
  • the cells of the present invention provide a source of cells in culture from a potential variety of genetically diverse individuals that can respond differently to various biological and pharmacological agents. By comparing the responses of cells from a statistically significant population of individuals, the effects of the biological or pharmacological agents tested on the specific cell type can be determined.
  • the cells of the present invention can be maintained in culture and thus can be studied as time goes by. Therefore, multiple cell cultures of the same or different individuals can be treated with the agent of interest to determine if there are differences in the effect that said agent has on certain cell types with the same genetic profile or, alternatively, on similar cell types.
  • stem cells of the present invention in a high-throughput screening system makes it possible to analyze a wide range of biological and pharmacological agents, as well as combinatorial libraries thereof, in an effective way in terms of time and money, in this way elucidate its effects on human cells.
  • agents include, but are not limited to: peptides, antibodies, cytokines, chemokines, growth factors, hormones, viral particles, antibiotics, inhibitory compounds, chemotherapeutic agents, cytotoxic agents, mutagens, food additives, pharmaceutical compositions and vaccine preparations.
  • the stem cells of the present invention isolated from a statistically significant population of individuals can be used to provide an ideal system for identifying polymorphisms associated with positive or negative responses to a range of substances.
  • the information obtained from these studies can have wide repercussions in the treatment of infectious diseases, cancer and various metabolic diseases.
  • the in vitro method that allows the use of the stem cells of the present invention to evaluate the cellular response to biological or pharmacological agents, or to combinatorial libraries of said agents, comprises the following:
  • stem cells provided by the present invention optionally genetically modified, or cells expressing at least one characteristic of a specialized cell, optionally genetically modified, can be used.
  • the biological or pharmacological agents that can be evaluated include, but are not limited to, peptides, antibodies, cytokines, chemokines, growth factors, viral particles, hormones, drugs, for example, antibiotics, chemotherapeutic agents, cytotoxic agents, pharmaceutical compositions, vaccine preparations, extracellular matrix proteins, synthetic polymers, inhibitory compounds, mutagens, food additives, etc.
  • the in vivo method that allows the use of the stem cells of the present invention to evaluate the cellular response to biological or pharmacological agents, or to combinatorial libraries of said agents, comprises the following:
  • stem cells provided by the present invention optionally genetically modified, or cells expressing at least one characteristic of a specialized cell, optionally genetically modified, can be used.
  • the experimental animal may be, but is not limited to, an immunodeficient mouse strain.
  • biologically compatible compositions may include, but are not limited to, the following types of substances: peptides, antibodies, cytokines, chemokines, growth factors, viral particles, hormones, drugs, for example, antibiotics, chemotherapeutic agents, cytotoxic agents, pharmaceutical compositions, vaccine preparations, extracellular matrix proteins, synthetic polymers, inhibitory compounds, mutagens, food additives, etc.
  • the cells are implanted in the experimental animal included in a synthetic matrix. three-dimensional biocompatible.
  • the cells are introduced into the animal included in a structure of the microparticle, microsphere, nanoparticle or nanosphere type. Preferred forms of implantation of said cells, compositions and structures in the experimental animal include but are not limited to the following: parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal, intraarticular, intrasynovial, intrathecal, intralesional, intraarterial, intracardiac.
  • Example 1 Isolation of multipotent stem cells derived from dedifferentiated chondrocytes obtained from human articular cartilage. It begins by obtaining a cartilage biopsy of the external margins of the femoral condyle by arthroscopic procedure. The size of this biopsy can vary, depending on the structure of the joint, the age of the patient and the surgeon's criteria, but usually it is not less than 4 cm 2 . The biopsy is collected in a sterile saline solution and kept at 4 ° C until the moment of processing, which should not be later than 48 hours after taking the sample.
  • the cartilage biopsy is suspended in 1 milliliter of sterile basal culture medium (DMEM, Minimum essential medium modified by Dulbecco), containing 2 mM L-Glutamine, antibiotics and 1% bovine fetal serum (FBS).
  • the serum may also be of human origin, preferably of autologous origin.
  • the cartilage is crushed using surgical scissors under aseptic conditions.
  • the resulting cartilage fragments are added to a suspension containing 0.1% collagenase in the same medium that was used for crushing, and the resulting cell suspension is incubated for at least 4 hours at 37 ° C with gentle agitation.
  • the resulting cell suspension is filtered through a sterile 40 micrometer mesh and then the filtered suspension is centrifuged at 500 g for 5 minutes.
  • the resulting cell pellet is resuspended in culture medium and grown at an approximate density of 20,000 cells / cm 2 in tissue culture jars.
  • the culture medium is composed of a basal medium such as DMEM, 2 mM L-Glutamine, 10% FBS and antibiotics (Choi et al, 1980; Webber and Sokoloff, 1981).
  • DMEM basal medium
  • FBS FBS
  • antibiotics Choi et al, 1980; Webber and Sokoloff, 1981.
  • Another possibility is to use human serum from an autologous source, instead of bovine serum.
  • a defined culture medium which contains a basal medium such as DMEM, RPMI, F12 or a combination thereof, 2 mM L-Glutamine, antibiotics, and a supplementary medium that includes, but is not limited to, the following: insulin, transferrin, selenium, albumin and linoleic acid (Kato et al, 1980; Schwartz and Sugumaran, 1982; Jennings et al, 1983; Adolphe et al, 1984; Quarto et al, 1997; US Patent 6,150,163) .
  • a basal medium such as DMEM, RPMI, F12 or a combination thereof
  • 2 mM L-Glutamine antibiotics
  • a supplementary medium that includes, but is not limited to, the following: insulin, transferrin, selenium, albumin and linoleic acid (Kato et al, 1980; Schwartz and Sugumaran, 1982; Jennings et al, 1983; Adolphe et
  • the cells are grown in an incubator at 37 ° C with 5% CO 2 and 95% humidity. After four days in culture, the medium is removed, the non-adherent cells are removed by washing with phosphate buffered saline (PBS) and fresh medium is added. After another four days, the cells are washed again and detached by incubating them with a solution containing 0.25% trypsin and 0.02% EDTA (ethylenediaminetetraacetic acid). The detached cells are centrifuged to precipitate them and grown at a density of 5,000 cells / cm 2 in new culture jars.
  • PBS phosphate buffered saline
  • EDTA ethylenediaminetetraacetic acid
  • the cells in monolayer culture are maintained in a state of subconfluence by their detachment and reoccurrence at 5,000 cells / cm 2 .
  • the resulting adherent cells are multipotent isolated stem cells that can be maintained dedifferentiated under the culture conditions described above.
  • Figure 1 shows a photomicrograph of said cells, after 15 days in culture.
  • Example 2 Immunophenotypic characterization of multipotent stem cells derived from human dedifferentiated chondrocytes.
  • Stem cells derived from dedifferentiated chondrocytes are collected by gentle digestion with trypsin, washed with PBS and incubated for 30 minutes at 4 ° C with one of the following antibodies labeled with FITC or PE: CD9, CD10, CDllb, CD13, CD14, CD15 , CD16, CD18, CD19, CD28, CD29, CD31, CD34, CD36, CD38, CD44, CD45, CD49a, CD49b, CD49c, CD49d, CD49e, CD50, CD51, CD54, CD55, CD56, CD58, CD59, CD61, CD62E , CD62L, CD62P, CD71, CD90, CD95, CD102, CD104, CD105, CD106, CD117, CD133, CD166, HLA-I, HLA-II and beta2-microglobulin.
  • the labeled cells are washed and analyzed immediately using an Epics-XL cytometer (Coulter). As controls, cells stained with nonspecific antibodies of the corresponding fluorescein-labeled isotypes (FITC) or phycoerythrin (PE) were used.
  • Figure 2A shows the histograms that indicate a positive mareaje of the cells, while Figure 2B shows the histograms that indicate the absence of the corresponding antigen.
  • Example 3 In vitro differentiation of multipotent stem cells derived from human dedifferentiated chondrocytes to bone phenotype cells.
  • Stem cells derived from dedifferentiated chondrocytes are seeded at a density of 20,000 cells / cm 2 in standard culture medium (DMEM, 10% FBS, 2 mM L-Glutamine and antibiotic). At 12 hours the culture medium is replaced by means of osteogenesis inducer (Jaiswal et al, 1997) composed of:
  • Example 4 In vitro differentiation of multipotent stem cells derived from human dedifferentiated chondrocytes to muscle phenotype cells.
  • DMEM dedifferentiated chondrocytes
  • Example 5 In vitro differentiation of multipotent stem cells derived from human dedifferentiated chondrocytes to neuronal phenotype cells.
  • Stem cells derived from dedifferentiated chondrocytes are plated in 96-well plates at the rate of one cell per well, applying the limit dilution method, in standard culture medium (DMEM, 10% FBS, 2 mM L-Glutamine and antibiotic).
  • DMEM standard culture medium
  • FBS fetal bovine serum
  • 2 mM L-Glutamine antibiotic-free bovine serum
  • antibiotic antibiotic-free bovine serum
  • the cultures are allowed to evolve until a high cellular confluence is reached, making changes of culture medium twice a week.
  • the clones are subcultured on a larger surface as a high cellular confluence is reached. The cloning efficiency is between 50-60%. There are no morphological differences between the different clones obtained. Once the clones have been expanded, it is carried out with the same osteogenic, adipogenic and chondrogenic differentiation.
  • Adipogenic differentiation Stem cells derived from dedifferentiated chondrocytes are seeded at a density of 20,000 cells / cm 2 in standard culture medium (DMEM, 10% FBS, 2 mM L-Glutamine and antibiotic). At 12 hours the adipogenesis inducing medium is added (Pittenger et al, 1999) composed of:
  • the blocks with the included samples are cut to a thickness of 4 ⁇ m with a microtome.
  • staining with Alcian Blue (Lev et al, 1964) is performed as detailed below: the samples are dewaxed and hydrated and stained with an Alcian Blue solution prepared in 0.1 N hydrochloric acid for 30 minutes; then they are dehydrated again and mounted with a resinous medium.
  • Alcian Blue solution prepared in 0.1 N hydrochloric acid for 30 minutes
  • sulfated proteoglycans stained blue can be visualized.
  • immunofluorescence was performed against the type II collagen molecule, which is expressed by chondrocytic cells, being one of the main components of the extracellular matrix of cartilage.
  • Example 7 Expression by retroviral transduction of a heterologous gene in multipotent stem cells derived from human dedifferentiated chondrocytes.
  • GFP expression can be analyzed by fluorescence microscopy (see Figure 7A) or by flow cytometry (see Figure 7B).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere a métodos para el aislamiento de células madre adultas, células aisladas por éstos métodos y aplicaciones de éstas. En concreto, la invención se refiere a células madre adultas aisladas, derivadas de condrocitos desdiferenciados, con capacidad para diferenciarse y dar lugar a una serie de linajes celulares, así como a los marcadores específicos presentes en estas células, como pueden ser los antígenos de superficie celular. Los usos para dichas células incluyen su utilización en terapia celular así como en la búsqueda y desarrollo de nuevos fármacos.

Description

TÍTULO
CÉLULAS MADRE DERIVADAS DE CARTÍLAGO Y SUS APLICACIONES
La presente invención se refiere a métodos para el aislamiento de células madre adultas, células aisladas por éstos métodos y aplicaciones de éstas. En concreto, la invención se refiere a células madre adultas aisladas, derivadas de condrocitos desdiferenciados, con capacidad para diferenciarse y dar lugar a una serie de linajes celulares, así como a los marcadores específicos presentes en estas células, como pueden ser los antígenos de superficie celular. Los usos para dichas células incluyen su utilización en terapia celular así como en la búsqueda y desarrollo de nuevos fármacos.
ANTECEDENTES DE LA INVENCIÓN
El trasplante de órganos y tejidos proporciona una serie de tratamientos prometedores para diversas patologías, convirtiendo a las terapias regenerativas en el objetivo central de investigación de muchos campos de la biomedicina. No obstante, existen dos problemas importantes asociados al trasplante de órganos y tejidos. El primero y mayor de ellos es la escasez de donantes. Así, por ejemplo, en EE.UU, únicamente se dispone de un 5% de los órganos que se requieren para trasplantes (Evans et al, 1992).
En segundo lugar, existe el problema de la incompatibilidad potencial del tejido trasplantado con el sistema inmune del receptor. Dicha incompatibilidad hace que el órgano o tejido trasplantado sea reconocido como un elemento extraño por el sistema inmune del receptor lo que obliga a administrar al paciente trasplantado fármacos inmunosupresores durante el resto de su vida, implicando un coste elevado tanto físico como económico. Una posible solución a la escasez de donantes de órganos y tejidos podría ser el uso de órganos o tejidos animales, proceso denominado xenotrasplante. Sin embargo, este enfoque empeora el problema del rechazo y contribuye a que haya riesgos serios de transmisión de patógenos animales a humanos (Patience et al, 1997; Wilson etα ., 1998).
Actualmente, el desarrollo de la tecnología en el campo de las células madre ha hecho que éstas sean consideradas como una prometedora fuente de órganos y tejidos para aquellos tipos de patologías en las que sea necesario el trasplante de órganos o tejidos. Teóricamente, las células madre pueden sufrir divisiones celulares destinadas a su auto-mantenimiento durante un tiempo ilimitado para originar células fenotípica y genotípicamente idénticas. Además, tienen la capacidad de diferenciar a uno o varios tipos celulares concretos ante ciertas señales o estímulos.
La generación de órganos y tejidos a partir de las propias células madre de un paciente o a partir de células heterólogas inmunocompatibles de tal forma que el sistema inmune del receptor no las reconozca como extrañas, permite una serie de ventajas asociadas que solventan el problema que acarrean la escasez de donantes y el riego de rechazo. El uso de células madre para la regeneración de órganos y tejidos constituye una terapia alternativa prometedora para diversas patologías humanas, incluyendo: lesiones cónchales, óseas y musculares, enfermedades neurodegenerativas, rechazo inmunológico, enfermedades cardiacas y desórdenes de la piel (ver patentes US 5.811.094, 5.958.767, 6.328.960, 6.379.953, 6.497.875).
Aparte de las aplicaciones en terapia celular, las células madre presentan muchas otras potenciales aplicaciones relacionadas con las tecnologías biomédicas que pueden ayudar a facilitar actividades de investigación y desarrollo biofarmacéuticos. Una de estas aplicaciones radica en el desarrollo de modelos celulares de enfermedades humanas y animales, que pueden ayudar a mejorar sustancialmente la rapidez y eficacia de los procesos de búsqueda y desarrollo de nuevos fármacos. Actualmente, la forma comúnmente usada de medir la actividad biológica de un nuevo compuesto antes de entrar en ensayos clínicos es mediante incompletas técnicas bioquímicas o modelos ariimales costosos e inadecuados. Las células madre pueden ser una fuente potencial de cantidades virtualmente ilimitadas de células, tanto indiferenciadas como diferenciadas, para la realización de ensayos in vitro dirigidos a la búsqueda y desarrollo de nuevos compuestos terapéuticos (Patente US 6.294.346), así como a determinar su actividad, metabolismo y toxicidad. El desarrollo de tales ensayos, en especial de sistemas de escrutinio de alto rendimiento (high-throughput screening, HTS), ayudará a reducir tiempo y dinero a la hora de desarrollar compuestos con actividad terapéutica, permitirá prescindir en gran medida del uso de animales de experimentación y también contribuirá a que haya una menor exposición por parte de los pacientes a los efectos adversos de los compuestos durante los ensayos clínicos. Además, la disponibilidad de un surtido de diversos tipos celulares de varios individuos permitiría un mayor entendimiento de los efectos de un compuesto potenciahnente terapéutico sobre un individuo concreto, llegando a un desarrollo completo del campo de la farmacogenómica, donde la actividad de un compuesto se correlacionaría con la estructura genética de un individuo. Las células madre y su progenie diferenciada tienen también un gran valor en el proceso de búsqueda y caracterización de nuevos genes involucrados en una amplia variedad de procesos biológicos, incluyendo el desarrollo, la diferenciación celular y los procesos neoplásicos (Phillips et al, 2000; amalho- Santos et al, 2002; Ivanova et al, 2002).Ya han sido descritos sistemas de expresión de genes para su utilización en combinación con sistemas HTS basadas en células (Jayawickreme y Kost, 1997).
Según el origen de las células madre podemos diferenciar entre células madre embrionarias (células ES) y células madre adultas. Las células ES proceden de la masa celular interna de los blastocistos y tienen como característica principal el hecho de ser pluripotenciales, lo que significa que pueden dar lugar a cualquier tejido adulto derivado de las tres capas embrionarias (Evans y Kaufinan, 1981; Thomson et al, 1998; Patente US 6.200.806). Las células madre adultas son células parcialmente comprometidas presentes en tejidos adultos, las cuales pueden permanecer décadas en el cuerpo humano, aunque con el paso del tiempo comienzan a escasear (Fuchs y Segre, 2002).
A pesar de la alta pluripotencialidad de las células ES, las terapias basadas en el uso de células madre adultas presentan una serie de ventajas sobre aquellas basadas en células ES. En primer lugar, resulta complicado controlar las condiciones de cultivo de las células ES sin inducir su diferenciación (Thomson et al. 1998), lo que eleva el coste económico y el trabajo necesarios para el uso de este tipo de células. Es más, las células ES deben pasar a través de varios estadios intermedios antes de convertirse en el tipo celular concreto necesario para tratar una patología en particular, proceso controlado por compuestos químicamente complejos. Además, existe una fuerte controversia con relación a las células ES debido a la extendida creencia que la vida humana comienza con la fertilización, de tal forma que el consentimiento informado firmado por los donantes no elimina el estigma ético que implica la utilización de embriones en investigación. Aparte, hay que considerar una serie de problemas relacionados con la seguridad del uso terapéutico de las células ES, debido a que células madre indiferenciadas procedentes de tejido embrionario presentan altas probabilidades de producir un tipo de tumores denominados teratocarcinomas (Evans y Kaufinan, 1981).
Por último, las células derivadas de células ES son normalmente objeto de rechazo por parte del sistema i munológico debido a que el perfil inmunológico de tales células difiere del correspondiente al receptor. Aunque este problema podría ser abordado mediante la utilización de un proceso denominado "clonación terapéutica", en el cual se pueden obtener células ES autólogas transfiriendo el núcleo de una célula somática de un paciente al ovocito de una mujer donante, esta técnica no ha sido desarrollada todavía en humanos y presenta serios problemas éticos y legales (la clonación humana es ilegal en muchos países). Otra solución podría ser la generación de líneas celulares "universales" que posean una compatibilidad inmune generalizada, pero a día de hoy no existe ninguna tecnología que permita obtener dichas células.
Por el contrario, las células madre adultas no son rechazadas por el sistema inmune si han sido obtenidas por trasplante autólogo. Además el hecho de que estén parcialmente comprometidas reduce el número de etapas de diferenciación necesarias para generar células especializadas. Aparte, el uso de este tipo de células no está asociado a ningún tipo de controversia ética o legal. Además, aunque este tipo de células presente una menor potencialidad de diferenciación que las células ES, la mayoría de ellas son realmente multipotentes (Joshi y Enver, 2002) lo que significa que pueden diferenciarse a más de un tipo de tejido. Lo que esto sugiere es que, en caso de obtener una fuente conveniente de células madre adultas, podríamos llegar a proporcionar diferentes tipos celulares capaces de cubrir múltiples aplicaciones terapéuticas distintas.
Sin embargo, una desventaja importante del uso de las células madre adultas radica en su escasez, lo que hace que cualquier proceso para la obtención y aislamiento de este tipo de células sea difícil y costoso. Un problema añadido radica en que la mayoría de las actuales fuentes de obtención de células madre están contaminadas con otros tipos celulares, complicando esto el proceso de identificación, aislamiento y caracterización de las poblaciones de células madre pensadas para ser utilizadas con fines terapéuticos u otros usos.
Actualmente, las mejores fuentes de células madre adultas son: medula ósea (Spangrude et al, 1988; Osawa et al, 1996; Bhatia et al, 1997; Fridenshtein, 1982; Prockop, 1997; Pittenger et al, 1999; Patente US 5.486.359), sangre periférica (Barr y Mcbride, 1982; Russell y Hunter, 1994), cordón umbilical (Broxmeyer et al, 1989), tejido neural (McKay, 1997; Johansson et al, 1999; Doetsch et al, 1999; Gage, 2000), tejido adiposo (Zυk et al, 2001; Zuk et al, 2002; solicitud de patente WO 03/022988), córnea (Daniels, et al, 2001), piel (Watt, 2001; Toma et al, 2001), epitelio gastrointestinal (Marshman et al, 2002), músculo (Grounds et al, 1992), hígado (Forbes et al, 2003) y pulpa dental (Gronthos et al, 2000; Miura et al, 2003). Sin embargo, hasta la fecha de hoy ninguna de estas fuentes ha sido capaz de proporcionar células madre adultas que cumplan todos y cada uno de los siguientes requisitos: multipotencialidad, ensayos reproducibles, ausencia de contaminación y perfecta caracterización.
Recientemente, se ha aislado un nuevo tipo de célula madre de mamífero denominado "Multipotent Adult Progenitor Cell" (MAPC) a partir de medula ósea y otros tejidos (Reyes et al, 2001; Jiang et al, 2002a; Jiang et al, 2002b; solicitud de patente WO 01/11011). Este tipo de célula madre parece ser la progenitora de las llamadas células madre mesenquimales, y muestra una gran multipotencialidad. Sin embargo su aislamiento y cultivo conlleva un proceso largo y costoso en el que se han de incluir grandes cantidades de diversos factores de crecimiento.
Por lo tanto, existe la necesidad de conseguir una fuente fácilmente disponible de células madre adultas multipotentes. En particular, células que puedan ser fácilmente aisladas de un sujeto vivo sin que esto implique riesgos o molestias significativas, sin que el coste del aislamiento y cultivo sea elevado, y con una contaminación mínima por otros tipos celulares.
El cartílago es un tejido compuesto de un único elemento celular, condrocitos, y de una matriz extracelular (ECM) que rodea a los condrocitos. Gracias a esta simple estructura y composición celular, el cartílago podría ser una prometedora fuente potencial de células madre, en caso de que estas células pudiesen ser identificadas y caracterizadas. Además, la extracción de tejido cartilaginoso se realiza usando un procedimiento poco invasivo en comparación con otros procedimientos (p.ej. extracción de medula ósea) y poco contaminado en comparación con otros procedimientos (p.ej. extracción de tejido adiposo) y sin repercusiones serias para el paciente.
El cartílago articular adulto es avascular, alinfático, aneural y se nutre a partir del líquido sinovial ( ankin y Brandt, 1984). Las únicas células presentes en el cartílago articular son los condrocitos, responsables de su síntesis, mantenimiento y renovación de la ECM, que a su vez está fundamentalmente compuesta por una red de fibras de colágeno altamente hidratadas insertadas en un gel de proteoglicanos cargados (Maroudas, 1979). La digestión de la ECM usando colagenasa permite el aislamiento de los condrocitos que subsiguientemente pueden ser crecidos y expandidos in vitro (Mitrovic t α/., 1979).
Es conocido que el cultivo en monocapa de cartílago articular conduce de forma invariable a su desdiferenciación, proceso durante el cual las células recuperan su habilidad para dividirse, pierden su fenotipo redondeado y dejan de producir colágeno de los tipos II, IX y XI para producir los tipos I, III y V (Mayne et al, 1976; von der Mark et al, 1977; Benya et al, 1977; Benya et al, 1978; Benya y Miinni, 1979; Benya y Shafter, 1982; Finer et al, 1985; Elima et al, 1989). Algunos autores han demostrado que condrocitos desdiferenciados de origen embrionario (Hegert et al, 2002) o adulto (Tallheden et al, 2003) podrían diferenciarse in vitro a varios tipos celulares mesenquimales, pero todavía nadie ha aislado y caracterizado en detalle una población definida de células madre aisladas de cartílago articular ni demostrado su multipotencialidad.
La presente invención proporciona una población de células madre multipotentes adultas procedentes de cartílago de mamífero, preferiblemente de cartílago articular humano, aisladas y caracterizadas en detalle demostrando además su multipotencialidad. Esta y otras realizaciones de la invención se harán aparentes a través de la descripción, Figuras y Ejemplos que siguen. BREVE DESCRD7CIÓN DE LA INVENCIÓN
Un primer aspecto de la invención consiste en proporcionar una población aislada de células madre multipotentes derivadas de condrocitos desdiferenciados, perfectamente caracterizada y libre de otros tipos celulares. Preferiblemente, dichos condrocitos se obtienen de cartílago articular humano mediante artroscopia, la cual es un procedimiento médico rutinario que conlleva un riesgo y grado de incomodidad mínimos para el paciente.
Un segundo aspecto de la presente invención consiste en la obtención in vitro, a partir de dichas células madre multipotentes derivadas de condrocitos desdiferenciados, de poblaciones celulares diferenciadas a diversos linajes, incluyendo pero sin limitarse a los linajes mesenquimales y neurales.
Un tercer aspecto de la invención consiste en proporcionar una población celular transgénica, derivada de dichas células aisladas previamente mencionadas, por modificación de su genoma.
Un cuarto aspecto de la invención consiste en utilizar las células aisladas anteriormente mencionadas para la preparación de composiciones farmacéuticas que pueden emplearse en la reparación de tejidos y órganos. Dichas composiciones farmacéuticas constituyen un aspecto adicional de la presente invención.
Un quinto aspecto de la invención consiste en utilizar las células aisladas anteriormente mencionadas para la evaluación de la actividad biológica de distintos agentes in vitro e in vivo.
Otros aspectos de la presente invención resultarán evidentes para un experto en la materia a la vista de la descripción de la invención. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una fotomicrografía de contraste de fases de las células madre de la presente invención.
La Figura 2A muestra histogramas de inmunocitometría de fluorescencia correspondientes a marcadores de superficie positivos en las células madre de la presente invención. Los histogramas rellenos en negro corresponden al mareaje con el anticuerpo específico, mientras que los vacíos corresponden a la tinción con el control de isotipo.
La Figura 2B muestra histogramas de inmunocitometría de fluorescencia correspondientes a marcadores de superficie negativos en las células madre de la presente invención. Los histogramas rellenos en negro corresponden al mareaje con el anticuerpo específico, mientras que los vacíos corresponden a la tinción con el control de isotipo.
La Figura 3A es una fotomicrografía de contraste de fases de las células madre de la presente invención diferenciadas in vitro hacia fenotipo óseo. Las células diferenciadas se han teñido con Alizarin Red para detectar la matriz de fosfato calcico secretada por las células diferenciadas.
La Figura 3B es una fotomicrografía de contraste de fases claro de las células madre de la presente invención sin diferenciar, teñidas de la misma forma que las células diferenciadas de la Figura 3A.
La Figura 4Λ es una fotomicrografía de contraste de fases de las células madre de la presente invención diferenciadas in vitro hacia fenotipo muscular. Las células diferenciadas se han teñido con un anticuerpo específico para la cadena pesada de la miosina, un antígeno específico de músculo.
La Figura 4B es una fotomicrografía de campo claro de las células madre de la presente invención sin diferenciar, teñidas de la misma forma que las células diferenciadas de la Figura 4A. La Figura 5 A muestra dos fotomicrografías de inmunofluorescencia de las células madre de la presente invención diferenciadas in vitro hacia fenotipo neuronal. Las células diferenciadas se han teñido con un anticuerpo específico para NF200, un antígeno específico de neuronas.
La Figura 5B muestra dos fotomicrografías de inmunofluorescencia de las células madre de la presente invención diferenciadas in vitro hacia fenotipo neuronal. Las células diferenciadas se han teñido con un anticuerpo específico para TuJl, un antígeno específico de neuronas.
La Figura 6 es una representación gráfica del número de clones aislados de las células madre de la presente invención capaces de diferenciarse a tres tejidos mesodérmicos distintos (AOC; adiposo=A; óseo=O; cartílago=C), a dos de ellos (AO, AC, OC), sólo a uno (A, O, C), o a ninguno (-).
La Figura 7A es una fotomicrografía de fluorescencia de las células madre de la presente invención transducidas con un vector retroviral que codifica la proteína verde fluorescente (GFP).
La Figura 7B muestra un histograma de citometría de fluorescencia que cuantifica la fluorescencia de las células transducidas retroviralmente de la Figura 7A.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En un primer aspecto, la presente invención proporciona una población aislada de células madre multipotentes, derivada de condrocitos desdiferenciados de mamífero, caracterizada en detalle y libre de otros tipos celulares. Preferentemente, la población celular aislada objeto de la invención procede del tejido cartilaginoso de un primate, preferiblemente de un humano. Normalmente, la célula objeto de la invención procederá de cartílago articular humano y, en particular, de tejido cartilaginoso procedente de la articulación de la rodilla. Las células madre y derivados de éstas en la presente invención podrán ser usadas para diversas aplicaciones, entre las que se incluyen: terapias basadas en el trasplante autólogo y alogénico, desarrollo de modelos de enfermedad, desarrollo de ensayos de búsqueda de genes y en la búsqueda y desarrollo de fármacos.
En una realización particular, la invención proporciona una célula madre adulta multipotente, procedente de condrocitos desdiferenciados de mamífero, caracterizada por ser positiva para los siguientes antígenos de superficie: CD9, CD13, CD29, CD44,
CD49a, CD49b, CD49c, CD49e, CD54, CD55, CD58, CD59, CD90, CD95, CD105,
CD106, CD166, HLA-I y beta2-microglobulina.
En una realización preferida de la invención, se proporciona una célula madre adulta multipotente aislada derivada de condrocitos desdiferenciados de mamífero, caracterizada por el siguiente fenotipo: positiva para los marcadores CD9, CD13, CD29, CD44, CD49a, CD49b, CD49c, CD49e, CD54, CD55, CD58, CD59, CD90, CD95, CD105, CD106, CD166, HLA-I y beta2-microglobulina; negativa para los marcadores CD10, CDllb, CD14, CD15, CD16, CD18, CD19, CD28, CD31, CD34, CD36, CD38, CD45, CD49d, CD50, CD51, CD56, CD61, CD62E, CD62L, CD62P, CD71, CD102, CD104, CD117, CD133, HLA-II.
Poblaciones celulares aisladas constituidas por, o que comprenden, dichas células madre adultas multipotentes aisladas procedentes de condrocitos desdiferenciados de mamífero, constituyen realizaciones particulares de la presente invención.
La célula madre multipotente aislada objeto de la presente invención se obtiene a partir de condrocitos adultos desdiferenciados aislados de biopsias de cartílago procedentes de sujetos vivos. En una realización preferida de la invención, el tejido cartilaginoso se aisla de un sujeto humano. En humanos, la fuente preferida de tejido cartilaginoso radica en la articulación de la rodilla, siendo el método preferido de recolección de cartílago la toma de biopsia mediante artroscopia a partir de los márgenes del cóndilo femoral. Si las células de la presente invención van a ser trasplantadas en un sujeto humano, es preferible que el tejido cartilaginoso sea aislado de ese mismo sujeto para poder realizar un trasplante autólogo. Los condrocitos pueden ser aislados a partir de una biopsia de cartílago usando diversos métodos conocidos por los expertos en la materia. Normalmente se utiliza la digestión enzimática con colagenasa (Mitrovic et al, 1979). En el Ejemplo 1 de la presente invención se detalla el procedimiento de aislamiento de células madre multipotentes a partir de condrocitos desdiferenciados humanos obtenidos de cartílago articular de rodilla.
Las células multipotentes derivadas de condrocitos desdiferenciados pueden ser caracterizadas para identificar las proteínas intracelulares y/o de superficie, genes, y/o otros marcadores indicadores de su estado indiferenciado. Métodos utilizados para la caracterización incluyen, pero no se limitan a: inmunocitometría (ver Ejemplo 2), análisis inmunocitoquímico, análisis por northern hlot, RT-PCR, análisis de expresión génica en microarrays, estudios proteómicos y análisis por differential display.
En otra realización de la invención, las células madre adultas multipotentes de la presente invención son inducidas a diferenciarse in vitro a células que expresen al menos una característica propia de una célula especializada. Tales tipos celulares parcial o totalmente diferenciados incluyen, pero no se limitan a linajes celulares propios de los siguientes tejidos y órganos: cartílago, hueso, grasa, músculo, tejido nervioso, piel, hígado y páncreas, por ejemplo, condrocitos, osteocitos, adipocitos, miocitos, cardiomiocitos, neuronas, astrocitos, oligodendrocitos, células epiteliales, hepatocitos, células pancreáticas, etc. Los métodos que se pueden usar para inducir la diferenciación de las células madre de la presente invención a diversos tipos celulares concretos son conocidos por los expertos en la materia y algunos de ellos se explican en detalle en los Ejemplos de la patente.
Las células diferenciadas total o parcialmente son caracterizadas mediante la identificación de proteínas de superficie y/o intracelulares, genes, y otros marcadores indicativos de diferenciación de las células madre de la presente invención a diversos linajes. Métodos utilizados para la caracterización incluyen, pero no se limitan a los siguientes: inmunocitometría, análisis inmunocitoquímico, análisis por northern blot, RT-PCR, análisis de expresión génica en microchips, estudios proteómicos y análisis por differential display. En otro aspecto de la invención, las células madre de la presente invención, o células derivadas de las mismas, son modificadas genéticamente de forma estable o transitoria para que expresen genes exógenos o repriman la expresión de genes endógenos. Por tanto, la invención proporciona una población celular transgénica aislada, derivada de las células madre adultas multipotentes procedentes de condrocitos desdiferenciados de mamífero proporcionadas por esta invención, cuyo genoma ha sido modificado por inserción de DNA aislado preseleccionado, por sustitución de un segmento del genoma celular con DNA aislado preseleccionado o por inactivación de al menos una porción del genoma celular. De acuerdo con este aspecto de la invención, las células aisladas se ponen en contacto con un vector de transferencia génica, el cual comprende un ácido nucleico que incluye una secuencia genética heteróloga recombinante, de tal manera que el ácido nucleico es introducido en la célula bajo las condiciones apropiadas para que dicha secuencia sea expresada en el interior de la célula. El vector de transferencia génica puede ser viral o no viral. Existen numerosos vectores virales y no virales para introducir DNA exógeno dentro de las células madre que son bien conocidos para aquellos expertos en la materia (Mulligan, 1993; Robbins et al, 1997; Bierhuizen et al, 1997). Vectores virales apropiados para poner en práctica esta realización de la invención incluyen, pero no están limitados a los siguientes: vectores adenovirales (Kozarsky y Wilson, 1993), vectores adenoasociados (Muzyczka, 1992), vectores retrovirales (Tabin et al, 1982), vectores lentivirales (Naldini et al, 1996), vectores alfavirales (Huang, 1996), vectores herpesvrrales (Carpenter y Stevens, 1996) y vectores derivados de coronavirus (Ortego et al, 2002). Vectores de tipo no viral apropiados para poner en práctica esta realización de la invención incluyen, pero no están limitados a los siguientes: DNA desnudo (Wolff et al, 1990), gene gun (Johnston et al, 1988), lipósomas (Felgner et al, 1987), poliaminas (Boussif et al, 1995), péptidos (Wyman et al, 1997), dendrímeros (Tang et al, 1996), glicopolímeros canónicos (Roche et al, 2003), complejos liposoma-policatión (Tsai et al, 1996), proteínas (Fisher y Wilson, 1997) y sistemas de transferencia génica mediados por receptor (Cotten et al, 1990). La secuencia genética heteróloga recombinante está normalmente incluida en un cásete de expresión, que consta de una secuencia codificante asociada operativamente a un promotor u otras secuencias en cis que permitan su expresión. La secuencia codificante puede codificar una proteína o puede codificar RNA biológicamente activo, como puede ser RNA antisentido (Spampinato et al, 1992), una ribozima (Leavitt et al, 1994) o siRNA (Qin et al, 2003). En una realización preferida, las células madre de la presente invención son modificadas genéticamente para expresar un gen potencialmente terapéutico.
Las células madre de la presente invención, sin modificar o genéticamente modificadas, así como aquellas células derivadas de las anteriores que expresen al menos una característica propia de una célula especializada, estando éstas sin modificar o genéticamente modificadas, pueden ser utilizadas para preparar composiciones farmacéuticas. En la preparación de dichas composiciones farmacéuticas, las células de la presente invención se pueden utilizar solas o dentro de composiciones biológicamente compatibles, las cuales pueden incluir, pero no están limitadas a: factores de crecimiento, citoquinas, quimioquinas, proteínas de la matriz extracelular, fármacos y polímeros sintéticos. Por tanto, en una realización particular de esta invención, se proporciona una composición farmacéutica que comprende una población de células madre proporcionada por la presente invención, sin modificar o genéticamente modificadas, o que expresen al menos una característica propia de una célula especializada, sin modificar o genéticamente modificadas, y un vehículo farmacéuticamente aceptable. En una realización particular, dicha composición farmacéutica pude contener, además, factores de crecimiento, citoquinas, quimioquinas, proteínas de la matriz extracelular, fármacos y/o polímeros sintéticos. En una realización preferida de la invención, las composiciones farmacéuticas preparadas a partir de las células de la presente invención tienen la forma de una estructura tridimensional en la cual las células y otros posibles componentes se hallan incluidos dentro de una matriz sintética tridimensional biocompatible. Alternativamente, dichas composiciones farmacéuticas son del tipo micropartícula, microesfera, nanoparticula o nanoesfera.
Los implantes anteriormente descritos pueden ser utilizados en procedimientos de trasplante autólogo y alogénico. Estos procedimientos de trasplante pueden ser llevados a cabo administrando los implantes a un paciente de diversas formas. Las formas de administración preferidas incluyen pero no están limitadas a: parenteral, intraperitoneal, intravenosa, intradérmica, epidural, intraespinal, intraestromal, intraarticular, intrasinovial, intratecal, intralesional, intraarterial, intracardiaca, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular, tópica, mediante parches transdérmicos, vía rectal, vía vaginal o uretral, mediante la administración de un supositorio, percutanea, espray nasal, implante quirúrgico, pintura quirúrgica interna, bomba de infusión o vía catéter.
En una realización preferida de la invención, el lugar de trasplante es el cartílago, y la característica deseada o fenotipo es el condroblástico. En una segunda realización preferida de la invención, el lugar de trasplante es el hueso, y la característica deseada o fenotipo es el osteoblástico. En una tercera realización preferida de la invención, el lugar de trasplante es el músculo esquelético, y la característica deseada o fenotipo es el mioblástico. En una cuarta realización preferida de la invención, el lugar de trasplante es el músculo cardiaco, y la característica deseada o fenotipo es el cardiomioblástico. En una quinta realización preferida de la invención, el lugar de trasplante es el sistema nervioso periférico, y la característica deseada o fenotipo es el glial. En una sexta realización preferida de la invención, el lugar de trasplante es el sistema nervioso central, y la característica deseada o fenotipo es el neuronal. En una séptima realización preferida de la invención, el lugar de trasplante es la piel, y la característica deseada o fenotipo es el epitelial. En una octava realización preferida de la invención, el lugar de trasplante es el hígado, y la característica deseada o fenotipo es el hepatocítico. En una novena realización preferida de la invención, el lugar de trasplante es el hígado, y la característica deseada o fenotipo es el de célula pancreática. En una décima realización preferida de la invención, el lugar de trasplante es el páncreas, y la característica deseada o fenotipo es el de célula pancreática.
El uso terapéutico preferido de las células descritas en la presente invención pretende ser el tratamiento de enfermedades degenerativas, traumáticas, genéticas, infecciosas o neoplásicas humanas que resulten en un daño o disfunción de tejidos u órganos que incluyan, pero no estén limitados a: fístulas, úlceras, lesiones del cartílago, lesiones óseas, lesiones musculares, desórdenes musculares (incluyendo, pero sin estar limitados a distrofia muscular), enfermedades óseas (incluyendo, pero sin estar limitadas a osteogénesis imperfecta), lesiones miocárdicas, desórdenes neurodegenerativos (incluyendo, pero sin estar limitados a: enfermedad de Par inson, enfermedad de Huntington y enfermedad de Alzheimer), lesiones espinales, daño nervioso, lesiones vasculares, lesiones de la piel, daño hepático y diabetes. Realizaciones preferidas de las células modificadas genéticamente de la invención incluyen, pero no se limitan a: terapia de sustitución enzimática, sustitución de células y tejidos dañados, corrección de mutaciones genéticas deletéreas, terapia antiangiogénica, terapia proangiogénica, terapia antiinflamatoria, liberación de compuestos bioactivos y liberación de agentes antitumorales.
Por tanto, en una realización particular, la invención se relaciona con el uso de una población de células madre proporcionada por la presente invención, sin modificar o genéticamente modificadas, o que expresen al menos una característica propia de una célula especializada, sin modificar o genéticamente modificadas, para preparar una composición farmacéutica para el tratamiento de lesiones, enfermedades degenerativas y genéticas de cartílago, hueso, músculo, corazón, sistema nervioso central y periférico, piel, hígado y páncreas. A modo ilustrativo, dicha población celular aislada proporcionada por esta invención puede ser utilizada para preparar una composición farmacéutica adecuada para el tratamiento de lesiones del cartílago, o de lesiones óseas, o de lesiones musculares, o de lesiones cardíacas, o de lesiones del sistema nervioso periférico, o de lesiones del sistema nervioso central, o de lesiones de la piel, o de lesiones hepáticas, o de lesiones pancreáticas, así como para el tratamiento de enfermedades degenerativas del cartílago, o enfermedades degenerativas del tejido óseo, o enfermedades degenerativas del tejido muscular, o enfermedades degenerativas del corazón, o enfermedades degenerativas del sistema nervioso periférico, o enfermedades degenerativas del sistema nervioso central, o enfermedades degenerativas de la piel, o enfermedades degenerativas hepáticas, o enfermedades degenerativas del páncreas, o bien para el tratamiento de enfermedades genéticas del cartílago, o de enfermedades genéticas del tejido óseo, o de enfermedades genéticas del tejido muscular, o de enfermedades genéticas del corazón, o de enfermedades genéticas del sistema nervioso periférico, o de enfermedades genéticas del sistema nervioso central, o de enfermedades genéticas de la piel, o de enfermedades genéticas del hígado, o de enfermedades genéticas del páncreas. La presencia en el sujeto, al que se le ha realizado el trasplante, de células diferenciadas procedentes de las células madre aisladas multipotentes de la presente invención, podría ser detectada mediante diversas técnicas entre las que se incluyen pero no se limitan a: imagen in vivo, análisis por citometría de flujo, análisis por PCR, análisis por southern blot y estudios inmunohistoquímicos.
En otro aspecto de la invención, las células madre de la presente invención, con o sin modificaciones genéticas, así como las células derivadas de las anteriores que expresen al menos una característica propia de una célula especializada, con o sin modificaciones genéticas, pueden ser apKcadas al desarrollo de ensayos in vitro e in vivo con los siguientes propósitos industriales: búsqueda de fármacos, estudios farmacológicos, estudios toxicológicos, estudios farmacogenόmicos y estudios genéticos. Tales ensayos pueden ser utilizados para la identificación y/o caracterización de una multitud de dianas biológicas, compuestos bioactivos o agentes farmacológicos.
Las células madre de la presente invención proporcionan un sistema único en el cual las células pueden diferenciarse para dar lugar a linajes específicos del mismo individuo. Además, las células de la presente invención proporcionan una fuente de células en cultivo a partir de una potencial variedad de individuos genéticamente diversos que pueden responder de distinta manera a diversos agentes biológicos y farmacológicos. Al comparar las respuestas de las células procedentes de una población estadísticamente significativa de individuos se pueden determinar los efectos de los agentes biológicos o farmacológicos ensayados sobre el tipo celular concreto. A diferencia de la mayoría de los cultivos primarios, las células de la presente invención se pueden mantener en cultivo y de esta forma se pueden estudiar según vaya transcurriendo el tiempo. Por lo tanto, múltiples cultivos celulares del mismo o distintos individuos pueden ser tratados con el agente de interés para determinar si existen diferencias en el efecto que tiene dicho agente en ciertos tipos de células con el mismo perfil genético o, alternativamente, en tipos celulares similares procedentes de individuos genéticamente distintos. La utilización de las células madre de la presente invención en un sistema de escrutinio de alto rendimiento (high-throughput screening) permite analizar una amplia gama de agentes biológicos y farmacológicos, así como bibliotecas combinatoriales de los mismos, de una forma efectiva en cuanto a tiempo y dinero, para de esta forma elucidar sus efectos en las células humanas. Dichos agentes incluyen, pero no están limitados a: péptidos, anticuerpos, citoquinas, quimioquinas, factores de crecimiento, hormonas, partículas virales, antibióticos, compuestos inhibitorios, agentes quimoterapéuticos, agentes citotóxicos, mutágenos, aditivos alimentarios, composiciones farmacéuticas y preparados de vacunas.
En el campo de la farmacogenómica, se pueden usar las células madre de la presente invención aisladas de una población estadísticamente significativa de individuos para proporcionar un sistema ideal para identificar polimorfismos asociados con respuestas positivas o negativas a un abanico de sustancias. La información obtenida de estos estudios puede tener amplias repercusiones en el tratamiento de enfermedades infecciosas, cáncer y diversas enfermedades metabólicas.
El método in vitro que permite utilizar las células madre de la presente invención para evaluar la respuesta celular a agentes biológicos o farmacológicos, o a bibliotecas combinatoriales de dichos agentes, comprende lo siguiente:
a) aislar las células proporcionadas por la presente invención a partir de un individuo o de una población estadísticamente significativa de los mismos; b) diferenciar opcionalmente las células aisladas a un tipo celular concreto; c) expandir las células en cultivo; d) diferenciar opcionalmente las células expandidas a un tipo celular concreto; e) poner en contacto el cultivo con uno o más agentes biológicos o farmacológicos o con una biblioteca combinatorial de dichos agentes; y í) evaluar los posibles efectos biológicos de dichos agentes sobre las células del cultivo. Alternativamente, para la puesta en práctica de dicho método, pueden utilizarse células madre proporcionadas por la presente invención, opcionalmente modificadas genéticamente, o bien células que expresen al menos una característica propia de una célula especializada, opcionalmente modificadas genéticamente.
En el método anteriormente descrito, los agentes biológicos o farmacológicos que pueden evaluarse incluyen, aunque sin limitarse exclusivamente a ellos, péptidos, anticuerpos, citoquinas, quimioquinas, factores de crecimiento, partículas virales, hormonas, fármacos, por ejemplo, antibióticos, agentes quimioterapéuticos, agentes citotóxicos, composiciones farmacéuticas, preparados vacunales, proteínas de la matriz extracelular, polímeros sintéticos, compuestos inhibitorios, mutágenos, aditivos alimentarios, etc.
El método in vivo que permite utilizar las células madre de la presente invención para evaluar la respuesta celular a agentes biológicos o farmacológicos, o a bibliotecas combinatoriales de dichos agentes, comprende lo siguiente:
a) aislar las células de la presente invención a partir de un individuo o de una población estadísticamente significativa de los mismos; b) diferenciar opcionalmente las células aisladas a un tipo celular concreto; c) expandir las células en cultivo; d) diferenciar opcionalmente las células expandidas a un tipo celular concreto; e) implantar las células, solas o dentro de composiciones biológicamente compatibles, en un modelo de animal experimental; f) administrar a los animales injertados uno o más agentes biológicos o farmacológicos; y g) evaluar los posibles efectos biológicos de dichos agentes sobre las células implantadas.
Alternativamente, para la puesta en práctica de dicho método, pueden utilizarse células madre proporcionadas por la presente invención, opcionalmente modificadas genéticamente, o bien células que expresen al menos una característica propia de una célula especializada, opcionalmente modificadas genéticamente. En el método anteriormente descrito, el animal experimental puede ser, pero no está limitado a, una cepa de ratón inmunodeficiente. En el mismo método, las composiciones biológicamente compatibles pueden incluir, de forma no limitante, los siguientes tipos de sustancias: péptidos, anticuerpos, citoquinas, quimioquinas, factores de crecimiento, partículas virales, hormonas, fármacos, por ejemplo, antibióticos, agentes quimioterapéuticos, agentes citotóxicos, composiciones farmacéuticas, preparados vacunales, proteínas de la matriz extracelular, polímeros sintéticos, compuestos inhibitorios, mutágenos, aditivos alimentarios, etc.. En una realización preferida de la invención, las células son implantadas en el animal experimental incluidas en una matriz sintética tridimensional biocompatible. En otra realización de la invención, las células se introducen en el animal incluidas en una estructura del tipo micropartícula, microesfera, nanoparticula o nanoesfera. Las formas de implantación preferidas de dichas células, composiciones y estructuras en el animal experimental incluyen pero no están limitadas a las siguientes: parenteral, intraperitoneal, intravenosa, intradérmica, epidural, intraespinal, intraestromal, intraarticular, intrasinovial, intratecal, intralesional, intraarterial, intracardiaca, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular, tópica, mediante parches transdérmicos, vía rectal, vía vaginal o uretral, mediante la administración de un supositorio, percutanea, espray nasal, implante quirúrgico, pintura quirúrgica interna, bomba de infusión o vía catéter.
A continuación, los Ejemplos describen en un mayor detalle ciertas realizaciones de la presente invención.
EJEMPLOS
Los siguientes Ejemplos se presentan para ilustrar pero no limitan la presente invención.
Ejemplo 1: Aislamiento de células madre multipotentes derivadas de condrocitos desdiferenciados obtenidos a partir de cartílago articular humano. Se comienza obteniendo mediante procedimiento artroscópico una biopsia de cartílago de los márgenes extemos del cóndilo femoral. El tamaño de dicha biopsia puede ser variable, en función de la estructura de la articulación, la edad del paciente y el criterio del cirujano, pero normalmente no es inferior a 4 cm2. La biopsia se recoge en una solución salina estéril y se mantiene a 4°C hasta el momento del procesamiento, que no debe ser posterior a las 48 horas de la toma de la muestra.
La biopsia de cartílago se suspende en 1 mililitro de medio de cultivo basal estéril (DMEM, Medio esencial mínimo modificado por Dulbecco), conteniendo L- Glutamina 2 mM, antibióticos y un 1% de suero fetal bovino (FBS). El suero también puede ser de origen humano, preferiblemente de origen autólogo. A continuación, el cartílago se tritura utilizando unas tijeras quirúrgicas bajo condiciones asépticas. Los fragmentos de cartílago resultantes se adicionan a una suspensión conteniendo un 0,1% de colagenasa en el mismo medio que se utilizó para la trituración, y la suspensión celular resultante se incuba durante al menos 4 horas a 37°C con agitación suave. Después, se filtra la suspensión celular resultante a través de una malla estéril de 40 micrómetros y posteriormente se centrifuga la suspensión filtrada a 500 g durante 5 minutos. El sedimento celular resultante se resuspende en medio de cultivo y se cultiva a una densidad aproximada de 20.000 células/cm2 en frascos para el cultivo de tejidos. Normalmente, el medio de cultivo está compuesto de un medio basal como puede ser el DMEM, L-Glutamina 2 mM, 10% FBS y antibióticos (Choi et al, 1980; Webber y Sokoloff, 1981). Otra posibilidad es usar suero humano procedente de una fuente autóloga, en vez de suero bovino. Otra posibilidad radica en usar un medio de cultivo definido, que contenga un medio basal como DMEM, RPMI, F12o una combinación de los mismos, L-Glutamina 2 mM, antibióticos, y un medio suplementario que incluya, pero sin limitarse únicamente a esto, lo siguiente: insulina, transferrina, selenio, albúmina y ácido linoleico (Kato et al, 1980; Schwartz y Sugumaran, 1982; Jennings et al, 1983; Adolphe et al, 1984; Quarto et al, 1997; Patente US 6.150.163).
Posteriormente, las células se cultivan en un incubador a 37°C con un 5% de CO2 y un 95% de humedad. Después de cuatro días en cultivo, se retira el medio, se eliminan las células no adheridas mediante lavado con tampón fosfato salino (PBS) y se añade medio fresco. Después de otros cuatro días, se vuelven a lavar las células y se desprenden incubándolas con una solución que contenga un 0,25% de tripsina y un 0,02% de EDTA (ácido etilendiaminotetraacético). Se centrifugan las células despegadas para precipitarlas y se cultivan a una densidad de 5.000 células/cm2 en frascos de cultivo nuevos. Se mantienen las células en cultivo en monocapa en un estado de subconfluencia mediante su desprendimiento y recultivo a 5.000 células/cm2. Las células adheridas resultantes son células madre aisladas multipotentes que pueden mantenerse desdiferenciadas en las condiciones de cultivo descritas anteriormente. La Figura 1 muestra una fotomicrografía de dichas células, tras 15 días en cultivo.
Ejemplo 2: Caracterización inmunofenotípica de las células madre multipotentes derivadas de condrocitos desdiferenciados humanos.
Las células madre derivadas de condrocitos desdiferenciados son recogidas mediante digestión suave con tripsina, lavadas con PBS e incubadas durante 30 minutos a 4°C con uno de los siguientes anticuerpos marcados con FITC ó PE: CD9, CD10, CDllb, CD13, CD14, CD15, CD16, CD18, CD19, CD28, CD29, CD31, CD34, CD36, CD38, CD44, CD45, CD49a, CD49b, CD49c, CD49d, CD49e, CD50, CD51, CD54, CD55, CD56, CD58, CD59, CD61, CD62E, CD62L, CD62P, CD71, CD90, CD95, CD102, CD104, CD105, CD106, CD117, CD133, CD166, HLA-I, HLA-II y beta2- microglobulina.
Las células marcadas se lavan y se analizan inmediatamente usando un citómetro Epics-XL (Coulter). Como controles, se utilizaron células teñidas con anticuerpos inespecíficos de los correspondientes isotipos marcados con fluoresceína (FITC) o ficoeritrina (PE). La Figura 2A muestra los histogramas que indican un mareaje positivo de las células, mientras que la Figura 2B muestra los histogramas que indican la ausencia del antígeno correspondiente.
Ejemplo 3: Diferenciación in vitro de células madre multipotentes derivadas de condrocitos desdiferenciados humanos a células de fenotipo óseo.
Las células madre derivadas de condrocitos desdiferenciados se siembran a una densidad de 20.000 células/cm2 en medio de cultivo estándar (DMEM, 10% FBS, L- Glutamina 2 mM y antibiótico). A las 12 horas se reemplaza el medio de cultivo por medio inductor de osteogénesis (Jaiswal et al, 1997) compuesto por:
- α MEM - 20% FBS
- Penicilina/streptomicina
- L-Glutamina 2mM
- Dexametasona 0,01 μM - Acido ascórbico 0,2mM
- β-Glicerofosfato lOmM
A los 14 días se puede observar que hay depósitos mineralizados de fosfato calcico, lo que indica la presencia de nodulos óseos. Tales nodulos se detectan mediante una tinción con Alizarin Red (Standford et al., 1995) como se detalla a continuación: se elimina el medio y lavar con PBS; se fijan las muestras con Etanol 70% durante 1 hora a 4°C; se tifie la muestra con 1 mi de Alizarin Red 40 mM pH 4,1 y se elimina el colorante a los 5 minutos con abundante agua. La Figura 3A muestra el resultado obtenido tras la tinción de las células diferenciadas, mientras que la Figura 3B muestra el resultado de la tinción de las células sin diferenciar.
Ejemplo 4: Diferenciación in vitro de células madre multipotentes derivadas de condrocitos desdiferenciados humanos a células de fenotipo muscular.
Las células madre derivadas de condrocitos desdiferenciados se siembran a una densidad de 10.000 células/cm2 en medio de cultivo estándar (DMEM, 10% FBS, L- Glutamina 2 mM y antibiótico). Tras 12 horas, se reemplaza el medio de cultivo por medio inductor de miogénesis (Wakitani et al, 1995), compuesto por:
- DMEM
- 2% FBS - Penicilina/estreptomicina
- L-Glutamina 2 mM
- Ascorbato-2-fosfato 0,1 mM
- Dexametasona 0,01 μM
- ITS+1 (Sigma-Aldrich) - 5-Azacitidina 3 μM Tras 24 horas, se remplaza el medio por medio de cultivo estándar, y se mantienen las células en cultivo durante 2-3 semanas, cambiando el medio dos veces por semana. Tras ese tiempo, las células adquieren un fenotipo alargado, forman estructuras fibrilares y pueden observarse algunas fusiones celulares. Para detectar el fenotipo de mioblasto, las células obtenidas se fijan con paraformaldehído (PFA) al 4% y se incuban con un anticuerpo frente a la cadena pesada de la miosina, que es un antígeno específico de músculo. La Figura 4A muestra el resultado obtenido tras la tinción de las células diferenciadas, mientras que la Figura 4B muestra el resultado de la tinción de las células sin diferenciar.
Ejemplo 5: Diferenciación in vitro de células madre multipotentes derivadas de condrocitos desdiferenciados humanos a células de fenotipo neuronal.
Las células madre derivadas de condrocitos desdiferenciados se siembran a baja densidad en medio de cultivo estándar (DMEM, 10% FBS, L-Glutamina 2 mM y antibiótico) suplementado con 10 ng/ml bFGF y se incuba durante 24-36 horas de modo que se alcanza una alta confluencia celular. A continuación se lava y se añade medio neuroinductor (Black y Woodbury, 2001), compuesto por:
- α MEM
- BHA 200μM - Penicilina/streptomicina
- L-Glutamina 2 mM
- Foskolina 10 μM
- 2% DMSO
- Hidrocortisona 1 μM - Insulina 5 μg/ml
- ClK 25 mM
- Ácido Valproico 2 mM
A las pocas horas de la inducción se puede observar un cambio morfológico en el que las células adquieren un cuerpo celular redondeado y muy refringente, y unas prolongaciones que se asemejan a los axones y las dendritas de las células nerviosas. Tras 3 días, las células obtenidas se fijan con PFA al 4% y se incuban con anticuerpos frente a los antígenos específicos de neuronas NF-200 y TuJl. Mediante este procedimiento se observa un 30% de células positivas para NF-200 (Figura 5 A) y un 75% de células positivas para TuJl (Figura 5B). Ejemplo 6: Demostración de la multipotencialidad clonal de las células madre derivadas de condrocitos desdiferenciados humanos.
Las células madre derivadas de condrocitos desdiferenciados se siembran en placas de 96 pocilios a razón de una célula por pocilio, aplicando el método de dilución límite, en medio de cultivo estándar (DMEM, 10% FBS, L-Glutamina 2 mM y antibiótico). A las 2 horas se confirma mediante observación al microscopio la presencia de una sola célula en cada pocilio y se descartan aquellos pocilios en los que haya más de una o ninguna célula. Los cultivos se dejan evolucionar hasta que se alcanza una confluencia celular alta, realizando cambios de medio de cultivo 2 veces por semana. Los clones se van subcultivando en una superficie mayor a medida que se va alcanzando una confluencia celular alta. La eficiencia de clonaje está comprendida entre un 50-60%. No se aprecian diferencias morfológicas entre los diferentes clones obtenidos. Una vez expandidos los clones, se lleva a cabo con los mismos diferenciación osteogénica, adipogénica y condrogénica.
1. Diferenciación osteogénica. Se lleva a cabo como se describe en el Ejemplo 3.
2. Diferenciación adipogénica. Las células madre derivadas de condrocitos desdiferenciados se siembran a una densidad de 20.000 células/cm2 en medio de cultivo estándar (DMEM, 10% FBS, L-Glutamina 2 mM y antibiótico). A las 12 horas se añade el medio inductor de adipogénesis (Pittenger et al, 1999) compuesto por:
- α MEM
- 20% FBS
- Penicilina/streptomicina
- L-Glutamina 2 M - Hidrocortisona 0,5 μM
- IBMX 0,5 mM
- Indometacina 60 μM A los 14 días de la diferenciación se puede observar que hay vacuolas lipídicas citoplasmicas, características de células adiposas. Tales vacuolas se detectan mediante una tinción con Red Oil (Ramírez-Zacarías et al., 1992) como se detalla a continuación: tras eliminar el medio y lavar con PBS, se fijan las muestras con formalina de 30 a 60 minutos a temperatura ambiente; se lava con agua; se incuba con isopropanol al 60% durante 3 minutos; se elimina el isopropanol y se añade la solución Red Oil dejándola 5 minutos, tras los que se elimina lavando con abundante agua.
3. Diferenciación condrogénica. Se parte de 5 x 105 células, que se sedimentan mediante centrifugación a 400 g x 5 minutos en un tubo cónico de polipropileno. A continuación se incuban en 2 mi de medio de cultivo estándar (DMEM, 10% suero fetal bovino, L-Glutamina 2 mM y antibiótico) y a las 24 horas se puede ver como se ha formado una estructura a modo de esfera compacta que ya no está adherida a la base del tubo. Se mantiene así en cultivo, realizando una sustitución del medio 2 veces por semana. A las 2 semanas, tras realizar un lavado con PBS, se fijan los agregados celulares con una solución de paraformaldehido al 4% durante 90 minutos a temperatura ambiente. Después se procede a su inclusión en parafina. Los bloques con las muestras incluidas se cortan a un grosor de 4 μm con un microtomo. Para poner de manifiesto la presencia de proteoglicanos propios de este tipo de tejido se realiza una tinción con Alcian Blue (Lev et al, 1964) como se detalla a continuación: las muestras son desparafinadas e hidratadas y teñidas con una solución de Alcian Blue preparada en ácido clorhidrico 0,1 N durante 30 minutos; después se vuelven a deshidratar y se montan con un medio resinoso. Como resultado del proceso se pueden visualizar los proteoglicanos sulfatados teñidos de azul. Además se realizó inmunofluorescencia contra la molécula de colágeno tipo II, que es expresada por las células condrocíticas siendo uno de los principales componentes de la matriz extracelular del cartílago.
El resultado del experimento demuestra que un procentaje muy alto (33%) de los clones obtenidos son multipotentes (ver Figura 6). Ejemplo 7: Expresión mediante transducción retroviral de un gen heterólogo en células madre multipotentes derivadas de condrocitos desdiferenciados humanos.
Las células madre derivadas de condrocitos desdiferenciados se plaquean a 15.000 células/cm2 y se incuban a 37°C durante 6 h con una preparación de partículas retrovirales empaquetadas con envuelta anfotrópica codificando la proteína verde fluorescente (GFP). Después de la infección, las células son lavadas con tampón fosfato y mantenidas en el medio de cultivo habitual. Tras 48 h, la expresión de GFP puede ser analizada mediante microscopía de fluorescencia (ver Figura 7A) o mediante citometría de flujo (ver Figura 7B).
Referencias citadas
PATENTES US 6.150.163 McPherson et al. US 5.811.094 Binette et al. US 5.958.767 Ki et al. US 6.328.960 Klyushnenkova et al. US 6.379.953 Bruder et al. US 6.497.875 Sorrell et al. US 6.294.346 Reinolds et al. US 6.200.806 Thomson et al. US 5.486.359 Haynesworth et al WO 03/022988 Futiell et al. WO 01/11011 Reyes et al.
OTROS DOCUMENTOS
Adolphe, M. et al. (1984) Exp Cell Res 155: 527-536.
Barr, R.D. y McBride, J.A. (1982) Br JHaematol 51: 181-187.
Benya, P.D. y Nimni, M.E. (1979) Arch Biochem Biophys 192: 327-335.
Benya, P.D. etal. (1977) Biochemistry 16: 865-872.
Benya, P.D. et al (1978) Cell 15: 1313-1321. Benya, P.D. y Shaffer, J.D. (1982) Cell 30: 215-224.
Bhatia, M. et al. (1997) Proc Nati Acad Sci U S A 94: 5320-5325.
Bierhuizen, M.F. etal (1997) Biochem Biophys Res Commun 234: 371-375.
Black, I.B. y Woodbury, D. (2001) Blood Cells Mol Dis 27(3): 632-636.
Boussif, O. et al. (1995) Proc Nati Acad Sci U S A 92: 7297-7301. Broxmeyer, H.E. et al. (1989) Proc Nati Acad Sci U S A 86: 3828-3832.
Carpenter, D.E. y Stevens, J.G. (1996) Hum Gene Ther 7: 1447-1454.
Choi, Y.C. et al. (1980) Connect Tissue Res 7: 105-112.
Corten, M. et al (1990) Proc Nati Acad Sci U S A 87: 4033-4037.
Daniels, J.T. et al. (2001) Wound Repair Regen 9: 483-494. Doetsch, F. et al. (1999) Cell 97: 703-716.
Elima, K. y Vuorio, E. (1989) FEBS Lett 258: 195-198.
Evans, M.J. y Kaufinan, M.H. (1981) Nature 292: 154-156. Evans et al. (1992) J Am Med Assoc 267: 239-246
Felgner, P.L. et al. (1987) Proc Nati Acad Sci U S A 84: 7413-7417.
Finer, M.H. et al (1985) Mol Cell Biol 5: 1415-1424.
Fisher, K.J. y Wilson, J.M. (1997) Biochem J 321 ( Pt 1): 49-58. Forbes, S. et al. (2002) JPathol 197: 510-518.
Fridenshtein, A. (1982) Arkh Patol 44: 3-11.
Fuchs, E. y Segre, J.A. (2000) Cell 100: 143-155.
Gage, F.H. (2000) Science 287: 1433-1438.
Gronthos, S. et al. (2000) Proc Nati Acad Sci U S A 97: 13625-13630. Grounds, M.D. et al. (1992) Cell Tissue Res 267: 99-104.
Hegert, C. et al (2002) J Cell Sci 115: 4617-4628.
Huang, H.V. (1996) Curr Opin Biotechnol 7: 531-535.
Ivanova, N.B. et al. (2002) Science 298: 601-604.
Jaiswal, N., et al (1997) J Cell Biochem 64: 295-312. Jayawickreme, C.K. y Kost, T.A. (1997) Curr Opin Biotechnol 8: 629-634.
Jennings, S.D. y Ha , R.G. (1983) Cell Biol Int Rep 7: 149-159.
Jiang, Y. et al. (2002) Nature 418: 41-49.
Jiang, Y. et al. (2002) Exp Hematol 30: 896-904.
Johansson, C.B. et al (1999) Cell 96: 25-34. Johnston, S.A. et al. (1988) Science 240: 1538-1541.
Joshi, C.V. y Enver, T. (2002) Curr Opin Cell Biol 14: 749-755.
Kato, Y. et al. (1980) Exp Cell Res 125: 167-174.
Kozarsky, K.F. y Wilson, J.M. (1993) Curr Opin Genet Dev 3: 499-503.
Leavitt, M.C. et al (1994) Hum Gene Ther 5: 1115-1120. Lev, R., et al. (1964) J Histochem Cytochem 12:309.
Mankin, H.J. y Brandt, K.D. (1984) en "Osteoarthritis" ed. Moskowitz, et al, WB
Saunders, Filadelfia, pp. 43-79.
Maroudas, N.G. (1979) J Theor Biol 79: 101-116.
Marsh an, E. etal (2002) Bioessays 24: 91-98. Mayne, R. et al. (1976) Proc Nati Acad Sci U S A 73: 1674-1678.
McKay, R. (1997) Science 276: 66-71.
Mitrovic, D. et al. (1979) JRheumatol 6: 124-130.
Miura, M. et al. (2003) Proc Nati Acad Sci U S A 100: 5807-5812. Mulligan, R.C. (1993) Science 260: 926-932.
Muzyczka, N. (1992) Curr Top Microbiol Immunol 158: 97-129.
Naldini, L. et al. (1996) Science 272: 263-267.
Ortego, J. et al. (2002) J Virol 76: 11518-11529. Osawa, M. et al. (1996) Science 273: 242-245.
Patience, C. et al. (1997) Nat Med 3: 282-286.
Phillips, R.L. et l. (2000) Science 288: 1635-1640.
Pittenger, M.F. etal. (1999) Science 284: 143-147.
Prockop, D.J. (1997) Science 276: 71-74. Qin, X.F. et al. (2003) Proc Nati Acad Sci U S A 100: 183-188.
Quarto, R. et al. (1995) Calcif Tissue Int 56: 123-129.
Ramalho-Santos, M. et al. (2002) Science 298: 597-600.
Ramirez-Zacarias, J.L. et al (1992) Histochemistry 97: 493-497.
Reyes, M. y Verfaillie, C.M. (2001) Ann N Y Acad Sci 938: 231-233; discussion 233- 235.
Robbins, P.B. et al. (1997) J Virol 71: 9466-9474.
Roche, A.C. et al. (2003) Cell Mol Life Sci 60: 288-297.
Russell, N.H. y Hunter, A.E. (1994) Bone Marrow Transplant 13: 353-355.
Schwartz, E.R. y Sugumaran, G. (1982) In Vitro 18: 254-260. Spampinato, S. et al. (1992) Pharmacol Res 25 Suppl 1: 51-52.
Spangrude, G.J. et al. (1988) Science 241: 58-62.
Stanford, C.M. et al. (1995) JBiol Chem 270: 9420-9428.
Tabin, C.J. et al. (1982) Mol Cell Biol 2: 426-436.
Tallheden, T. et al. (2003) J Bone Joint Surg Am 85-A Suppl 2: 93-100. Tang, M.X. et al. (1996) Bioconjug Chem 7: 703-714.
Thomson, J.A. et al. (1998) Science 282: 1145-1147.
Toma, J.G. et al. (2001) Nat Cell Biol 3: 778-784.
Tsai, J.T. et al. (2002) Biotechnol Appl Biochem 36: 13-20. von der Mark, K. et al (1977) Nature 267: 531-532. Wakitani S. et al. (1995) Muscle Nerve 18: 1417-1426.
Watt, F.M. (2001) Curr Opin Genet Dev 11: 410-417.
Webber, R.J. y Sokoloff, L. (1981) Growth 45: 252-268.
Wilson, C.A. et al. (1998) J Virol 72: 3082-3087. Wolff. J.A. et a (1990) Science 247: 1465-1468. Wyman, T.B. et al. (1997) Biochemistry 36: 3008-3017. Zuk, P.A. et al (2002) Mol Biol Cell 13: 4279-4295. Zuk, P.A. et al. (2001) Tissue Eng 7: 211-228.

Claims

REIVINDICACIONES
1. Población aislada de células madre adultas multipotentes, procedentes de condrocitos desdiferenciados de cartílago articular de mamífero, caracterizada por ser positiva para los siguientes antígenos de superficie: CD9, CD13, CD29, CD44, CD49a, CD49b, CD49c, CD49e, CD54, CD55,
CD58, CD59, CD90, CD95, CD105, CD106, CD166, HLA-I y beta2- microglobulina.
2. Población aislada de células madre adultas multipotentes, según la reivindicación 1, caracterizada por ser negativa para los siguientes antígenos de superficie: CD10, CDllb, CD14, CD15, CD16, CD18, CD19, CD28,
CD31, CD34, CD36, CD38, CD45, CD49d, CD50, CD51, CD56, CD61, CD62E, CD62L, CD62P, CD71, CD102, CD104, CD117, CD133 y HLA-H.
3. Población aislada de células madre adultas multipotentes, según la reivindicación 1, caracterizada porque las células son de origen humano.
4. Población celular aislada, derivada de una población aislada de células madre adultas multipotentes según cualquiera de las reivindicaciones 1 a 3, caracterizada porque expresa, al menos, una característica propia de una célula especializada.
5. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un condrocito.
6. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un osteocito.
7. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un adipocito.
8. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un miocito.
9. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un cardiomiocito.
10. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de una neurona.
11. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un astrocito.
12. Población celular aislada, según la reivindicación 4, caracterizada porque ej resa, al menos, una característica propia de un oligodendrocito.
13. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de una célula epitelial.
14. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de un hepatocito.
15. Población celular aislada, según la reivindicación 4, caracterizada porque expresa, al menos, una característica propia de una célula pancreática.
16. Población celular transgénica aislada, derivada de la población celular aislada según cualquiera de las reivindicaciones 1 a 15, caracterizada porque su genoma ha sido modificado por inserción de DNA aislado preseleccionado, por sustitución de un segmento del genoma celular con DNA aislado preseleccionado o por inactivación de al menos una porción del genoma celular.
17. Población celular transgénica aislada, según la reivindicación 16, caracterizada porque su genoma ha sido modificado mediante transducción no viral.
18. Población celular transgénica aislada, según la reivindicación 16, caracterizada porque su genoma ha sido modificado mediante transducción viral.
19. Uso de una población celular aislada según cualquiera de las reivindicaciones 1 a 18 para preparar una composición farmacéutica para el tratamiento de lesiones, enfermedades degenerativas y genéticas de: cartílago, hueso, músculo, corazón, sistema nervioso central y periférico, piel, hígado y páncreas.
20. Una composición farmacéutica que comprende una población celular según cualquiera de las reivindicaciones 1 a 18 y un vehículo farmacéuticamente aceptable.
21. Composición farmacéutica según la reivindicación 20, que comprende, además, un componente adicional seleccionado entre factores de crecimiento, citoquinas, quimioquinas, proteínas de la matriz extracelular, fármacos, polímeros sintéticos y sus mezclas.
22. Composición farmacéutica según cualquiera de las reivindicaciones 20 ó 21, en la que dichas células y, opcionalmente, dicho componente adicional, están incluidas en una matriz sintética tridimensional biocompatible.
23. Composición farmacéutica según la reivindicación 22, en la que dicha estructura tridimensional biocompatible es del tipo micropartícula, microesfera, nanopartícula o nanoesfera.
24. Método para evaluar in vitro la respuesta celular a agentes biológicos o farmacológicos, o a bibliotecas combinatoriales de dichos agentes, que comprende: a) aislar una población celular según cualquiera de las reivindicaciones 1 a 18 a partir de un individuo o de una población estadísticamente significativa de los mismos; b) diferenciar opcionalmente las células aisladas a un tipo celular concreto; c) expandir las células en cultivo; d) diferenciar opcionalmente las células expandidas a un tipo celular concreto; e) poner en contacto el cultivo con uno o más agentes biológicos o farmacológicos o con una biblioteca combinatorial de dichos agentes; y f) evaluar los posibles efectos biológicos de dichos agentes sobre las células del cultivo.
25. Método según la reivindicación 24, en el que dichos agentes biológicos o farmacológicos a evaluar comprenden péptidos, anticuerpos, citoquinas, quimioquinas, factores de crecimiento, partículas virales, hormonas, antibióticos, compuestos inhibitorios, agentes quimoterapéuticos, agentes citotóxicos, mutágenos, aditivos alimentarios, composiciones farmacéuticas y preparados vacunales.
26. Método para evaluar in vivo la respuesta celular a agentes biológicos o farmacológicos, o a bibliotecas combinatoriales de dichos agentes, caracterizado porque comprende: a) aislar una población celular según cualquiera de las reivindicaciones 1 a 18 a partir de un individuo o de una población estadísticamente significativa de los mismos; b) diferenciar opcionalmente las células aisladas a un tipo celular concreto; c) expandir las células en cultivo; d) diferenciar opcionalmente las células expandidas a un tipo celular concreto; e) implantar las células, solas o dentro de composiciones biológicamente compatibles, en un modelo de animal experimental; f) administrar a los animales implantados uno o más agentes biológicos o farmacológicos; y g) evaluar los posibles efectos biológicos de dichos agentes sobre las células implantadas.
27. Método según la reivindicación 26, en el que el animal experimental utilizado es una cepa de ratón inmunodeficiente.
28. Método según la reivindicación 26, en el que las células se implantan en el animal experimental incluidas dentro de una matriz tridimensional biocompatible.
29. Método según la reivindicación 26, en el que las células se implantan en el animal experimental incluidas dentro de una estructura del tipo micropartícula, microesfera, nanopartícula o nanoesfera.
30. Método según la reivindicación 26, en el que los agentes biológicos o farmacológicos a evaluar comprenden péptidos, anticuerpos, citoquinas, quimioquinas, factores de crecimiento, partículas virales, hormonas, antibióticos, compuestos inhibitorios, agentes quimoterapéuticos, agentes citotóxicos, mutágenos, aditivos alimentarios, composiciones farmacéuticas y preparados de vacunas.
PCT/ES2004/070041 2003-06-12 2004-06-09 Celulas madres derivadas de cartilago y sus aplicaciones WO2004111208A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/560,354 US20060239980A1 (en) 2003-06-12 2004-06-09 Cartilage-derived stem cells and applications thereof
CA002528679A CA2528679A1 (en) 2003-06-12 2004-06-09 Cartilage-derived stem cells and applications thereof
EP04742080A EP1632563A1 (en) 2003-06-12 2004-06-09 Cartilage-derived stem cells and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200301386 2003-06-12
ES200301386A ES2265199B1 (es) 2003-06-12 2003-06-12 Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones.

Publications (1)

Publication Number Publication Date
WO2004111208A1 true WO2004111208A1 (es) 2004-12-23

Family

ID=33547858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070041 WO2004111208A1 (es) 2003-06-12 2004-06-09 Celulas madres derivadas de cartilago y sus aplicaciones

Country Status (5)

Country Link
US (1) US20060239980A1 (es)
EP (1) EP1632563A1 (es)
CA (1) CA2528679A1 (es)
ES (1) ES2265199B1 (es)
WO (1) WO2004111208A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039150A2 (en) * 2005-09-23 2007-04-12 Cellerix, S.L. Cell populations having immunoregulatory activity, method for isolation and uses
US10548924B2 (en) 2004-08-25 2020-02-04 Tigenix, S.A.U. Use of adipose tissue-derived stromal stem cells in treating fistula
US11273182B2 (en) 2016-03-14 2022-03-15 Takeda Pharmaceutical Company Limited Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US7833709B2 (en) 2004-05-28 2010-11-16 Wafergen, Inc. Thermo-controllable chips for multiplex analyses
ES2313805B1 (es) * 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
EP1764117A1 (en) 2005-09-20 2007-03-21 Zimmer GmbH Implant for the repair of a cartilage defect and method for manufacturing the implant
EP2087098A4 (en) * 2006-11-09 2010-03-31 Univ Johns Hopkins DEDIFFERENTIATION OF ADULT MAMMALIAN CARDIOMYCYTES INTO CARDIAC STEM CELLS
GB0702401D0 (en) 2007-02-08 2007-03-21 Univ Cardiff Connective tissue repair
US8563307B2 (en) 2009-02-24 2013-10-22 James Wang Treatment of immunosuppression-related disorders
US8323972B2 (en) 2009-09-30 2012-12-04 Advanced Technologies And Regenerative Medicine, Llc Mammary artery derived cells and methods of use in tissue repair and regeneration
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
US8679474B2 (en) 2010-08-04 2014-03-25 StemBios Technologies, Inc. Somatic stem cells
TWI571513B (zh) 2011-09-28 2017-02-21 幹細胞生物科技股份有限公司 體幹細胞及其製備方法
WO2013184527A1 (en) 2012-06-05 2013-12-12 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
JP6433896B2 (ja) 2012-08-13 2018-12-05 シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center 組織再生のためのエキソソームおよびマイクロリボ核酸
JP5856029B2 (ja) * 2012-08-31 2016-02-09 阿部 博幸 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
US10724005B2 (en) 2012-09-28 2020-07-28 Scripps Health Methods of differentiating stem cells into chondrocytes
JP6399558B2 (ja) * 2012-10-29 2018-10-03 スクリップス ヘルス 軟骨細胞から多能性幹細胞を製造する方法
US9974885B2 (en) 2012-10-29 2018-05-22 Scripps Health Methods of transplanting chondrocytes
JP6495174B2 (ja) 2012-12-06 2019-04-03 ステムバイオス テクノロジーズ,インコーポレイテッド Lgr5+体性幹細胞
EP2746770A1 (en) 2012-12-21 2014-06-25 Stembios Technologies, Inc. Method for evaluating effect of action on subject based on stem celldynamics
JP6878274B2 (ja) 2014-10-03 2021-05-26 シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム
CN106573018A (zh) * 2014-11-19 2017-04-19 干细胞生物科技公司 用于治疗骨骼缺损的体干细胞
WO2016134342A1 (en) * 2015-02-20 2016-08-25 Wafergen, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
EP3402543B1 (en) 2016-01-11 2021-09-08 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
WO2018017892A1 (en) 2016-07-21 2018-01-25 Takara Bio Usa, Inc. Multi-z imaging and dispensing with multi-well devices
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
EP3612191A4 (en) 2017-04-19 2020-12-30 Cedars-Sinai Medical Center METHODS AND COMPOSITIONS FOR TREATING SKELETAL MUSCLE DYSTROPHY
EP3727351A4 (en) 2017-12-20 2021-10-06 Cedars-Sinai Medical Center MODIFIED EXTRACELLULAR VESICLES FOR IMPROVED TISSUE DELIVERY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011011A2 (en) * 1999-08-05 2001-02-15 Mcl Llc Multipotent adult stem cells and methods for isolation
WO2002010348A2 (en) * 2000-07-29 2002-02-07 Smith & Nephew Plc Tissue implant for cartilage repair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011011A2 (en) * 1999-08-05 2001-02-15 Mcl Llc Multipotent adult stem cells and methods for isolation
WO2002010348A2 (en) * 2000-07-29 2002-02-07 Smith & Nephew Plc Tissue implant for cartilage repair

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARAI F. ET AL.: "Mesenchymal stem cells in perichodrium express activated leucocyte cell adhesion molecule and participate in bone marrow formation", J. EXP. MED., vol. 195, no. 12, 17 June 2002 (2002-06-17), pages 1549 - 1563, XP002982870 *
BARBERO A. ET AL.: "PLasticity of clonal populations of differentiated adult human articular chodrocytes", ARTHRITIS RHEUM., vol. 48, no. 5, May 2003 (2003-05-01), pages 1315 - 1325, XP008041995 *
DE BARI C. ET AL.: "Multipotent mesenchymal stem cells from adult human synovial membrane", ARTHRITIS RHEUM., vol. 44, no. 8, August 2001 (2001-08-01), pages 1928 - 1942, XP002266867 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10548924B2 (en) 2004-08-25 2020-02-04 Tigenix, S.A.U. Use of adipose tissue-derived stromal stem cells in treating fistula
US10780132B2 (en) 2004-08-25 2020-09-22 Tigenix, S.A.U. Use of adipose tissue-derived stromal stem cells in treating fistula
US10758575B2 (en) 2005-06-24 2020-09-01 Tigenix, S.A.U. Use of adipose tissue-derived stromal stem cells in treating fistula
US11660318B2 (en) 2005-06-24 2023-05-30 Takeda Pharmaceutical Company Limited Use of adipose tissue-derived stromal stem cells in treating fistula
US11672831B2 (en) 2005-06-24 2023-06-13 Takeda Pharmaceutical Company Limited Use of adipose tissue-derived stromal stem cells in treating fistula
WO2007039150A2 (en) * 2005-09-23 2007-04-12 Cellerix, S.L. Cell populations having immunoregulatory activity, method for isolation and uses
WO2007039150A3 (en) * 2005-09-23 2007-08-23 Cellerix Sl Cell populations having immunoregulatory activity, method for isolation and uses
EP2340847A3 (en) * 2005-09-23 2016-11-09 Cellerix, S.A. Cell populations having immunoregulatory activity, method for isolation and uses
US9943550B2 (en) 2005-09-23 2018-04-17 Tigenix, S.A.U. Cell populations having immunoregulatory activity, method for isolation and uses
US11273182B2 (en) 2016-03-14 2022-03-15 Takeda Pharmaceutical Company Limited Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease

Also Published As

Publication number Publication date
ES2265199A1 (es) 2007-02-01
CA2528679A1 (en) 2004-12-23
EP1632563A1 (en) 2006-03-08
ES2265199B1 (es) 2008-02-01
US20060239980A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
ES2265199B1 (es) Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones.
ES2535042T3 (es) Identificación y aislamiento de células multipotentes de tejido mesenquimal no osteocondral
US7534606B2 (en) Placental stem cell and methods thereof
ES2287447T3 (es) Metodos de aislamiento y expansion del cultivo de celulas troncales/madre mesenquimatosas a partir de sangre del cordon umbilical, y metodo de diferenciacion de celulas troncales/madre mesenquimatosas derivadas de sangre del cordon umbilical en diversos tejidos mesenquimatosos.
Nery et al. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications
EP2374871B1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
ES2870567T3 (es) Células madre procedentes de una capa trofoblástica coriónica pura y terapia celular que comprende las mismas
KR100871984B1 (ko) 태반 조직 유래 다능성 줄기세포 및 이를 함유하는세포치료제
Jackson et al. Mesenchymal progenitor cells derived from traumatized human muscle
KR101158473B1 (ko) 연골줄기세포를 유효성분으로 포함하는 골질환 치료용 또는 항염증용 약제학적 조성물
US7781211B2 (en) Isolation of multi-lineage stem cells
WO2007010858A1 (ja) 骨格筋組織由来の単一細胞よりクローン化した多能性幹細胞
US20190194611A1 (en) Method for culturing differentiation-promoting and -sustaining spheroid form of tonsil-derived stem cells
CN105814196A (zh) 终末分化的神经元谱系的获得方法及其用途
ES2360434B1 (es) Celulas madre pluripotenciales obtenidas a partir de la pulpa dental.
CN104946590A (zh) 成人骨髓中Muse细胞诱导为神经前体细胞的方法
WO2012133942A1 (ja) 生体の臍帯又は脂肪組織から単離できる多能性幹細胞
US8796020B2 (en) Manufacturing process for fresh and frozen stem cells
EP2615166B1 (en) Equine amniotic fluid derived multipotent stem cells and a production method therefor
KR20140016841A (ko) 태아연골조직유래 줄기세포원 및 이를 포함하는 세포치료제
US20080299656A1 (en) Isolation of multi-lineage stem cells
Yu Identification and characterization of cartilage progenitor cells by single cell sorting and cloning
ES2706376T3 (es) Procedimiento para obtener una población de células progenitoras estrómicas
WO2010112662A1 (es) Células madre multipotentes derivadas de estroma de mesenterio
Yameen et al. Multilineage differentiation potential of bone and cartilage cells derived from explant culture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004742080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2528679

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2004742080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006239980

Country of ref document: US

Ref document number: 10560354

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10560354

Country of ref document: US