WO2004104535A1 - Temperature measuring system and temperature measuring method - Google Patents

Temperature measuring system and temperature measuring method Download PDF

Info

Publication number
WO2004104535A1
WO2004104535A1 PCT/JP2004/007096 JP2004007096W WO2004104535A1 WO 2004104535 A1 WO2004104535 A1 WO 2004104535A1 JP 2004007096 W JP2004007096 W JP 2004007096W WO 2004104535 A1 WO2004104535 A1 WO 2004104535A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measuring element
measured
temperature measuring
cleaning
Prior art date
Application number
PCT/JP2004/007096
Other languages
French (fr)
Japanese (ja)
Inventor
Isamu Nakatou
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2004104535A1 publication Critical patent/WO2004104535A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers

Definitions

  • the present invention relates to a system for measuring the temperature of a liquid, a gas, or the like for processing a substrate such as a semiconductor wafer or glass for an LCD substrate.
  • a semiconductor wafer (hereinafter, referred to as a "wafer") is washed with a processing solution such as a predetermined chemical solution or pure water to remove particles, organic contaminants, and organic contaminants attached to the wafer surface.
  • a cleaning device for removing contamination such as metal impurities is used.
  • wet type cleaning equipment which sequentially immerses wafers in a processing tank filled with a processing liquid to perform cleaning processing, is widely used.
  • the processing liquid in the processing tank has a predetermined temperature in order to perform a preferable cleaning process. Therefore, during the processing, the processing liquid adjusted to the predetermined temperature is continuously supplied into the processing tank, and the used and used processing liquid overflows from the processing tank to adjust the processing tank to the predetermined temperature. It has been replaced with the treated solution.
  • a RTD for measuring temperature is placed in the processing solution in the processing bath, and a temperature measurement system equipped with a controller that monitors the temperature measured by the RTD is installed. The temperature of the liquid is controlled based on the temperature measured by the temperature resistor to prevent the temperature of the liquid from dropping or overheating (see, for example, JP-A-2001-296186).
  • a resistance temperature detector is made of a metal material such as platinum (Pt) whose electrical resistance changes with temperature, and the temperature of the processing solution can be detected from the resistance of the resistance temperature detector.
  • the failure of the resistance thermometer sometimes could not be determined.
  • failures such as a break in the RTD or a break in the electrical cord that connects the RTD to the controller become evident through monitoring of the controller because it is impossible to detect the temperature.
  • the temperature of the processing liquid is controlled, and the processing is performed with a processing liquid at a temperature higher or lower than a desired temperature, which has a problem that the processing accuracy of the wafer is adversely affected.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a temperature measurement system capable of determining a malfunction of a temperature measuring body.
  • the invention described in claim 1 is a system for measuring temperature, comprising: a first temperature measuring element for measuring the temperature of an object to be measured; A second temperature measuring element for measuring the temperature of the object to be measured; and a monitoring section for monitoring each temperature measured by the first temperature measuring element and the second temperature measuring element.
  • the unit monitors the difference between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor, thereby detecting the first temperature sensor or the second temperature sensor. It is characterized by detecting that there is a defect in the warm body.
  • “thermometer” is a resistance thermometer or a thermocouple. According to this temperature measurement system, it is possible to detect that the error in the measured temperature of either V or deviation has increased. That is, a defect in which the resistance value of one of the resistance temperature detectors has changed can be detected.
  • the invention set forth in claim 2 is the output or output of the first temperature measuring element between the first temperature measuring element and the second temperature measuring element and the monitoring unit.
  • An arithmetic unit for calculating a temperature from an output of the second temperature measuring element is provided.
  • the invention according to claim 3 is characterized in that the arithmetic unit includes a first arithmetic unit provided between the first temperature measuring element and the monitoring unit, and the second temperature measuring unit.
  • a second calculation unit provided between the body and the monitoring unit. In this way, if the error in the measured temperature increases due to an error in one of the arithmetic units, the difference between the two measured temperatures is monitored, and there is an error in one of the arithmetic units. The possibility can be determined.
  • the invention described in claim 4 is characterized in that the measurement object of the first temperature measuring element and the measurement object of the second temperature measuring element are the same. Further, in the invention set forth in claim 5, the object to be measured is a processing liquid stored in a processing tank for processing a substrate, and is based on a temperature measured by the first temperature measuring element. Temperature control mechanism to adjust the temperature of the processing solution. Features. In this case, by controlling the liquid temperature, it is possible to perform suitable processing with high processing accuracy.
  • the monitoring unit sets a difference between the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element. If the allowable value exceeds the allowable value, it is determined that there is a defect in the first temperature measuring element or the second temperature measuring element.
  • the monitoring unit recognizes a temperature instability time of the object to be measured, and in the instability time, the temperature is measured by the first temperature measuring element. Even if the difference between the measured temperature and the temperature measured by the second temperature measuring element exceeds a set allowable value, the temperature of the first temperature measuring element or the second temperature measuring element may be reduced. It does not judge that there is a problem.
  • the invention described in claim 8 provides a third temperature measuring element for measuring the temperature of the second object to be measured, and a third temperature measuring element for measuring the temperature of the second object to be measured.
  • a fourth temperature measuring element is further provided, the third temperature measuring element is connected to the second calculating section, and the fourth temperature measuring element is connected to another calculating section other than the second calculating section.
  • To the third temperature measuring element or the fourth temperature measuring element by monitoring the difference between the temperature measured by the third temperature measuring element and the temperature measured by the fourth temperature measuring element. It is characterized by detecting that there is a defect in the warm body.
  • the invention described in claim 9 is a step of measuring the temperature of the same object to be measured with different temperature measuring bodies, and calculating a difference between respective temperature data measured by the different temperature measuring bodies.
  • the comparing step is characterized in that, if the difference between the respective temperature data exceeds a preset allowable value, it is determined that a malfunction has occurred in any of the different temperature measuring bodies and an alarm is issued.
  • the invention according to claim 10 further comprises a step of recognizing a temperature instability time during which the temperature of the object to be measured is unstable. Even if the difference exceeds the allowable value, any of the temperature measuring couples is judged to be defective and no alarm is issued and an alarm is not issued.
  • the invention according to claim 11 is characterized in that the object to be measured is a processing liquid for processing an object to be processed in a processing tank.
  • FIG. 1 is a perspective view showing an outline of a cleaning system to which the present invention is applied.
  • FIG. 2 is an explanatory view showing an outline of a wafer cleaning apparatus to which the present invention is applied.
  • FIG. 3 is an explanatory diagram showing an outline of a temperature measurement system according to the present invention applied to a wafer cleaning apparatus.
  • FIG. 4 is an explanatory diagram showing an outline of a temperature measurement system according to another embodiment.
  • FIG. 1 is a perspective view of a cleaning system 1 including a temperature measuring system according to the present embodiment.
  • This cleaning system 1 is configured to carry out loading of wafers W as substrates in units of carrier C, cleaning of wafers W, drying of wafers W, and unloading of wafers W in units of carriers C. Have been.
  • the loading / unloading section 2 carries out operations from loading the carrier C containing 25 wafers W before cleaning to transferring the wafers W to cleaning. That is, the carrier C mounted on the loading stage 5 is transported, for example, two by two to the loader 7 by the transfer device 6, and the loader 7 takes out the wafer W from the carrier C.
  • the cleaning / drying processing section 10 includes a wafer chuck cleaning / drying apparatus 11 for cleaning and drying the wafer chucks 30a, 30a of the transfer apparatus 30 for transferring the wafer W in order from the loading / unloading section 2 side.
  • Wafer cleaning equipment for cleaning wafer W using various chemicals and cleaning liquids such as pure water 12-19
  • a drying device 21 for drying the wafer W cleaned by the wafer cleaning device 12-19 using, for example, isopropyl alcohol (IPA) vapor.
  • transport devices 30, 31, 32, and 33 are provided on the front side of the washing / drying processing section 10 (on the front side in FIG. 1).
  • the wafer cleaning devices 12, 14, 16, and 18 are configured to perform the chemical cleaning so that the chemical cleaning and the rinsing cleaning can be performed alternately.
  • , 19 are configured to perform rinsing.
  • an SPM a mixture of H 2 SO / HO
  • PM cleaning is performed to remove impurities such as organic contaminants adhering to the surface of the wafer W.
  • the wafer cleaning apparatus 14 performs SCI cleaning using APM (a mixed solution of NH OH / HO / HO), which is a cleaning liquid mainly containing an ammonia component, for example.
  • HPM HC1 / H O / H
  • the wafer cleaning unit 18 performs DHF cleaning using DHF (a mixture of HFZH ⁇ ), which is a cleaning liquid mainly composed of hydrofluoric acid, to form a wafer on the surface of the wafer W.
  • DHF a mixture of HFZH ⁇
  • wafer cleaning units 13, 15, 17, and 19 The removed oxide film and the like are removed.
  • wafer cleaning units 13, 15, 17, and 19 rinsing of wafer W is performed using pure water.
  • the configuration of the wafer cleaning device 1219 will be described later in detail.
  • the number of cleaning devices may be reduced, or conversely, a wafer cleaning device may be provided for cleaning the wafer W with another type of chemical.
  • the loading / unloading unit 40 loads 25 wafers W cleaned and dried in the cleaning / drying processing unit 10 into the carrier C, and then unloads them in the carrier C unit. That is, the carrier C in which the washed wafer W is stored by the unloader 41 is transported to the unloading section 42 by the transfer device (not shown).
  • the wafer cleaning apparatus 14 includes a cleaning tank 45 for storing APM adjusted to a predetermined temperature (for example, 80 ° C.) as a cleaning liquid.
  • the washing tank 45 is composed of a box-shaped inner tank 46 having a size large enough to store the W, and an outer tank 47 formed so as to surround the upper opening of the inner tank 46. .
  • a wafer guide 63 for holding the wafer W is provided in the inner tank 46.
  • Three parallel holding members 63a, 63b, 63c are mounted on the wafer guide 63 in a horizontal posture.
  • the holding members 63a, 63b, and 63c hold 50 wafers W arranged at equal intervals.
  • a circulation circuit 65 for circulating APM during cleaning is connected between the inner tank 46 and the outer tank 47.
  • the inlet of the circulation circuit 65 is connected to the bottom of the outer tub 47.
  • a pump 67, a damper 68, a heater 69, and a filter 70 are sequentially arranged.
  • the outlet of the circulation circuit 65 is connected to a jet nozzle (not shown) arranged in a pair below the inner tank 46.
  • the cleaning liquid overflowing from the inner tank 46 to the outer tank 47 flows into the circulation circuit 65, and is operated by the pump 67 to flow in the order of the damper 68, the heater 69, and the filter 70, thereby adjusting the temperature and cleaning. After that, it is supplied again into the inner tank 46 through the jet nozzle, and the flow is returned. In this way, APM is reused to reduce its consumption.
  • a drain pipe 72 is connected to the circulation circuit 65 via an on-off valve 71 so that the cleaning liquid in the outer tank 47 is drained.
  • a drain pipe 74 is connected to the bottom of the inner tank 46 via an on-off valve 73 so that the cleaning liquid in the inner tank 46 is drained.
  • the wafer cleaning apparatus 14 is provided with a replenishing mechanism 80 for replenishing the cleaning liquid to the cleaning tank 45.
  • the replenishing mechanism 80 is configured, for example, to first fill the empty cleaning tank 45 with the cleaning liquid, or to appropriately replenish the cleaning tank 45 that has become insufficient.
  • the replenishment mechanism 80 includes an ammonia replenishment system 81, a hydrogen peroxide water replenishment system 82, a pure water replenishment system 83, and a controller 84.
  • the ammonia replenishment system 81 is provided with a tank 85 that stores an aqueous ammonia solution (NHOH) adjusted to a predetermined concentration, and a pump 86.
  • NHOH aqueous ammonia solution
  • Hydrogen peroxide water replenishment system 82 stores hydrogen peroxide solution (H 2 O) adjusted to a predetermined concentration.
  • a storage tank 87 and a pump 88 are provided.
  • the pure water replenishment system 83 is provided with a tank 89 for storing pure water (DIW), a tank heater 90 for heating the pure water in the tank 89, and a valve 91.
  • the controller 84 is configured to control the operation rates of the pumps 86 and 88 and the opening of the valve 91. Under the control of the controller 84, a predetermined amount of each of the aqueous ammonia solution, hydrogen peroxide solution, and pure water is supplied, and APM having a predetermined component ratio is supplied to the cleaning tank 45 as a cleaning liquid.
  • the temperature measuring system 100 includes a first temperature measuring resistor 101 and a second temperature measuring resistor 102 for measuring the temperature of the cleaning liquid stored in the cleaning tank 45 to be measured. Have.
  • the first resistance temperature detector 101 and the second resistance temperature sensor 102 are provided in the inner tank 46.
  • the first resistance temperature detector 101 and the second resistance temperature sensor 102 are formed in a very fine line shape from a metal material such as, for example, platinum (Pt), and have a temperature of APM.
  • the electrical resistance changes with the change.
  • the first and second resistance temperature detectors 101 and 102 are covered with a coating member that protects the first or second resistance temperature detector 101 or 102 from physical impact. Further, they are installed in the inner tank 46 while being inserted into quartz glass tubes (not shown).
  • the gas in the quartz glass tube (not shown) immersed in the cleaning liquid has the same temperature as the APM, and depending on the temperature of this gas, the first resistance temperature sensor 101 or the second temperature measurement element The electric resistance value (output) of the resistor 102 changes. Therefore, electricity is passed through the first resistance thermometer 101 or the second resistance thermometer 102, and the electrical resistance value of the first resistance thermometer 101 or the second resistance thermometer 102 is detected. As a result, the temperature of the gas in the quartz glass tube, that is, the temperature of the cleaning liquid, can be measured.
  • an electric cord 103 for passing electricity through the first resistance bulb 101 is connected to a temperature controller 105 that performs calculation and control for adjusting the temperature of the cleaning liquid in the cleaning tank 45.
  • an electric cord 106 for passing electricity through the second resistance bulb 102 is connected to the second resistance bulb 102.
  • the electric cord 106 is connected to a temperature calculator 108 as a second calculator provided in the wafer cleaning device 15 adjacent to the wafer cleaning device 14. The temperature calculator 108 will be described later.
  • the temperature controller 105 includes a calculation unit (first calculation unit) 111 for calculating the temperature of the cleaning liquid from the electric resistance value as the output of the first resistance temperature detector 101, A heater power adjusting unit 112 for adjusting the output of the heater 69 is provided.
  • the relation between the electric resistance value and the temperature is stored in advance in the computing unit 111, and the electric resistance value of the first resistance temperature detector 101 is detected via the electric cord 103, and the electric resistance value and the temperature are detected. Calculation to calculate the temperature based on the relationship Do.
  • the heater power adjustment unit 112 adjusts the power of the heaters 69 based on the temperature calculated by the calculation unit 111 so that the temperature of the cleaning liquid is maintained at a predetermined value, and controls the heating amount of the heater 69. Is to be controlled.
  • the first resistance temperature sensor 101, the temperature controller 105, and the heater 69 constitute the temperature adjustment mechanism 113 for adjusting the temperature of the cleaning liquid. The temperature of the cleaning solution is adjusted based on the temperature.
  • the calculation unit 111 of the temperature controller 105 monitors each measured temperature measured by the first resistance temperature detector 101 and the second resistance temperature detector 102. It is connected to a block controller 120 as a monitoring unit. That is, the calculation unit 111 is connected between the first resistance temperature detector 101 and the block controller 120. Then, the temperature calculated by the arithmetic unit 111 is input to the block controller 120 and monitored.
  • the wafer cleaning apparatus 14 includes a temperature measuring device for measuring the temperature at various places in addition to the first resistance temperature detector 101 and the second resistance temperature detector 102.
  • a resistor or thermocouple is provided.
  • a temperature measuring resistor or thermocouple for measuring the temperature of the drainage is provided in the drain pipe 72 or the drain pipe 74, and the drainage temperature from the inner tank 46 and the drainage from the outer tank 47 are provided. The liquid temperature is measured.
  • a temperature measuring resistor (not shown) for measuring the drainage temperature is supplied to a temperature calculator 125 that calculates the temperature from the electric resistance value as the output of the temperature measuring resistor or the thermoelectromotive force as the output of the thermocouple. It is connected.
  • the temperature computing unit 125 is provided with, for example, four connection sections 130 for connecting an electric cord.
  • the electric cord connected to the resistance temperature detector or the like is connected to one of the connection sections 130.
  • the output of the resistance temperature detector or the like can be input to the temperature calculator 125. That is, it is possible to input the outputs of one to four resistance temperature detectors to the temperature calculator 125, and to calculate the temperature from each output.
  • the temperature calculator 125 is connected to a converter 131 that enables the temperature calculator 125 to communicate with other devices.
  • the converter 131 is connected to a controller 133 that monitors each temperature measured by a resistance temperature detector or the like (not shown) for measuring the drainage temperature, and calculates the temperature calculated by the temperature calculator 125. Is input to the controller 133 via the converter 131 and is monitored.
  • the tank heater 90 is connected to a temperature monitor 135 connected to the block controller 120.
  • the temperature monitor 135 displays the temperature of the tank heater 90 and sends the temperature data to the block controller 120.
  • the heating amount of the tank heater 90 is controlled in accordance with a control signal input from the temperature monitor 135 to the block controller 120.
  • the block controller 120 switches off the power of the tank heater 90 to lower the temperature to the set temperature. Conversely, if the current temperature is lower than the set temperature, the block controller 120 switches the power supply of the tank heater 90 to ⁇ N to increase the temperature to the set temperature. That is, the heating amount is adjusted and controlled by the control signal (ON / OFF signal) from the block controller 120 so that the temperature becomes constant.
  • the wafer cleaning apparatus 15 provided adjacent to the wafer cleaning apparatus 14 and performing rinsing cleaning of the wafer W using pure water has a cleaning tank 145 having substantially the same configuration as the cleaning tank 45, and the cleaning tank 145 described above.
  • a temperature calculator 108 is provided as a second calculation unit.
  • the temperature calculator 108 has almost the same function as the temperature calculator 125. That is, the temperature calculator 108 calculates the temperature of the cleaning liquid from the electric resistance value (output) of the second resistance temperature detector 102, and further calculates the electric resistance value of two or more resistance temperature It is possible to calculate the temperature from the pair of thermoelectromotive forces.
  • the temperature calculator 108 is provided with, for example, four connection portions 150 that are substantially the same as the connection portion 130.
  • the electric cord 106 of the above-mentioned wafer cleaning device 14 is connected to one of the connection parts 150.
  • the temperature calculator 108 is connected to the converter 131. That is, the temperature calculated by the temperature calculator 108 is input to the controller 133 via the converter 131 and is monitored.
  • Two or more temperature calculators 108 and 125 are connected to the converter 131, and the temperature is calculated from the outputs of eight or more resistance temperature detectors provided in the wafer cleaning devices 14 and 15, respectively. In this way, eight or more temperatures may be monitored by the controller 133.
  • controller 133 and the block controller 120 are connected by an interface circuit 155, so that data can be transmitted from the controller 133 to the block controller 120. That is, between the second resistance bulb 102 and the block controller 120 Are connected to a temperature calculator 108 and a converter 131. Each temperature calculated by the temperature calculator 108 is input to the block controller 120 and monitored.
  • the block controller 120 measures the temperature measured by the first resistance temperature detector 101, the temperature measured by the second resistance temperature sensor 102, and the temperature measured by the first resistance temperature sensor 101. The difference between the temperature and the temperature measured by the second resistance bulb 102 is monitored.
  • the tolerance between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 can be stored in the block controller 120 in advance.
  • the block controller 120 measures the temperature of the cleaning liquid with the first resistance temperature detector 101 when it is necessary to maintain the temperature of the cleaning liquid at a predetermined value before or during immersion of the wafer W in the cleaning tank 45.
  • the difference between the measured temperature and the temperature measured by the second resistance bulb 102 is compared with the set tolerance. Then, when the difference between the measured temperatures becomes larger than the tolerance, one of the first resistance temperature detector 101, the second resistance temperature detector 102, the calculation unit 111, and the temperature calculation unit 108
  • the system determines that there is a problem and generates an alarm. This prevents the temperature of the cleaning liquid from being controlled based on an incorrect measurement temperature.
  • the resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 when the resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is normal, the temperature measured by the first resistance temperature sensor 101 and the second resistance temperature The temperature measured by the resistance temperature detector 102 is substantially the same. However, the resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 changes, and the temperature measured by the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is changed. When the error increases, the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 increases.
  • the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is monitored by the block controller 120, so that the first resistance temperature detector 101 or A failure in which the resistance value of the second resistance bulb 102 has changed can be detected.
  • the operation unit An error in the calculation function of the temperature calculator 111 or the temperature calculator 108 may cause a large error in the calculated temperature.
  • the temperature measured by the first resistance temperature detector 101 and calculated by the calculation unit 111 and the temperature measured by the second resistance temperature sensor 102 and calculated by the temperature calculator 108 are also used. By comparison, the difference between the two measured temperatures is larger. Therefore, by monitoring the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 by the block controller 120, the calculation unit 111 or the temperature calculation unit 108 It is possible to determine the possibility that there is an abnormality.
  • the first resistance temperature detector 101 when the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 becomes large, the first resistance temperature detector 101 and the second resistance temperature detector It is considered that any one of the resistance temperature detector 102, the operation unit 111, and the temperature operation unit 108 has an abnormality.
  • the temperature measurement system 100 includes a first resistance temperature detector 101, an electric code 103, a temperature controller 105, a block controller 120, a second resistance temperature sensor 102, an electric code 106, a temperature calculator 108, a converter 131, a controller 133, and an interface circuit 155.
  • the configuration of the wafer cleaning devices 12, 16, and 18 for performing chemical cleaning has almost the same configuration as the wafer cleaning device 14, except that the type of liquid supplied in the replenishment mechanism 80 is different.
  • the configuration of the wafer cleaning devices 13, 17, and 19 for rinsing the wafer W using pure water has almost the same configuration as the wafer cleaning device 15.
  • the wafer cleaning devices 12 and 13, the wafer cleaning devices 16 and 17, and the wafer cleaning devices 18 and 19 are each provided with a temperature measurement system 100 as appropriate.
  • the block controllers 120 provided in the wafer cleaning devices 12 and 13, the wafer cleaning devices 16 and 17, and the wafer cleaning devices 18 and 19 are connected to the main controller 160.
  • the main controller 160 transmits data relating to the process of processing to each block controller 120.
  • each of the wafer cleaning apparatuses 12 to 19 is filled with the cleaning liquid. Since the filling of the cleaning solution in each of the wafer cleaning apparatuses 12, 14, 16, and 18 is performed in substantially the same procedure, the filling of the wafer cleaning apparatus 14 is typically performed. Will be described.
  • the tolerance of the measured temperature is input to the block controller 120 and stored in advance.
  • a predetermined amount of an aqueous ammonia solution, hydrogen peroxide solution, and pure water are supplied to the outer tank 47 of the empty cleaning tank 45 under the control of the controller 84, and a predetermined component ratio is obtained.
  • the cleaning liquid supplied to the outer tank 47 passes through the circulation circuit 65 and is discharged into the inner tank 46 from a jet nozzle (not shown) disposed below the inner tank 46.
  • the washing tank 45 overflows the upper part of the inner tank 46, is received by the outer tank 47, and flows from the outer tank 47 into the circulation circuit 65 again.
  • the cleaning liquid is circulated in the order of the outer tank 47, the circulation circuit 65, and the inner tank 46, and the cleaning tank 45 is filled with the cleaning liquid.
  • the first resistance temperature detector 101 and the second resistance temperature detector 102 are immersed in the cleaning liquid, and the temperature of the cleaning liquid can be measured.
  • the heater 69 is heated while the cleaning liquid is circulated in the order of the outer tank 47, the circulation circuit 65, and the inner tank 46, and the cleaning liquid passing through the circulation circuit 65 is heated.
  • the electric resistance value of the first resistance temperature sensor 101 and the second resistance temperature sensor 102 changes according to the temperature of the cleaning liquid.
  • the magnitude of the current flowing through the electric cords 103 and 106 and the voltage are the temperature of the cleaning liquid.
  • the temperature controller 105 adjusts the heating amount of the heater 69 while calculating the temperature from the electric resistance value of the first resistance temperature detector 101, and controls the temperature to rise to a predetermined value. In this way, a predetermined amount of the cleaning liquid at a predetermined temperature is filled in the cleaning tank 45. After the cleaning bath 45 is filled with a predetermined amount and a predetermined temperature of the cleaning liquid, the temperature controller 105 calculates the temperature from the electric resistance value of the first temperature-measuring resistor 101 while controlling the heating amount of the heater 69. Adjust the temperature so that the temperature is maintained at the specified value.
  • the temperature controller 105 transmits the calculated temperature to the block controller 120 while controlling the temperature of the cleaning liquid.
  • the temperature transmitted to the block controller 120 is monitored by the block controller 120.
  • the temperature calculator 108 of the wafer cleaning apparatus 15 calculates the temperature from the electric resistance value of the second resistance temperature detector 102, and the calculated temperature is transmitted to the controller 133 via the converter 131. , Transmitted from the controller 133 to the block controller 120 and monitored by the block controller 120.
  • the block controller 120 After raising the temperature of the cleaning liquid in the cleaning tank 45 to a predetermined temperature based on the temperature measured by the first resistance temperature detector 101, the block controller 120 receives the input from the temperature controller 105.
  • the temperature measured by the first resistance temperature detector 101 is compared with the temperature measured by the second resistance temperature sensor 102 input from the controller 133, and the difference between the measured temperatures is calculated according to the set tolerance. If it gets bigger, an alarm should be generated.
  • the first temperature measuring resistor 101 and the second temperature measuring resistor 102 are not uniform. Even if the calculation unit 111 and the temperature calculator 108 are normal, the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 is set. May be larger than the tolerance. On the other hand, if the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 increases while maintaining the cleaning solution at a predetermined temperature, There is a possibility that the electric resistance value of the first resistance bulb 101 or the second resistance bulb 102 has changed.
  • the arithmetic unit 111 or the temperature calculator 108 has an abnormal force S.
  • the temperature controller 105 adjusts the heating amount of the heater 69 based on the measured temperature having a large error, and the actual temperature of the cleaning liquid also becomes a predetermined value. Value power will be greatly shifted. If the wafer W is immersed in the cleaning liquid in this state, the processing accuracy will be adversely affected, such as a decrease in processing accuracy. To prevent such adverse effects, an alarm is generated when the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 becomes larger than the tolerance. Therefore, the processing of the wafer W is not started.
  • the worker checks the first resistance temperature sensor 101 and the second resistance temperature sensor 102 and checks the first resistance temperature sensor 101 or the second resistance temperature sensor 102. Try to replace body 102 with a new one.
  • the arithmetic unit 111 and the temperature arithmetic unit 108 are checked, and if there is any abnormality, the arithmetic unit 111 or the temperature arithmetic unit 108 is repaired.
  • the cleaning liquid is filled into the cleaning tank 45, the temperature of the cleaning liquid is adjusted, and the processing of the wafer W is started. This makes it possible to obtain a highly reliable measurement temperature with little error.
  • the temperature of the cleaning solution can be accurately controlled based on the measurement temperature with little error, and the processing accuracy can be improved. And a suitable process can be performed.
  • the filling of pure water in each of the wafer cleaning apparatuses 13, 15, 17, and 19 is almost the same as the filling of the wafer cleaning apparatus 14, except that the pure water does not need to be heated to a predetermined temperature.
  • the transfer robot is still cleaned, the wafer is not cleaned, and the wafer W is not cleaned.
  • a plurality of carriers C each containing 25 pieces are loaded on the loading stage 5 of the loading / unloading section 2.
  • the loading / unloading unit 2 takes out, for example, 50 wafers W for two carriers C from the carrier C, and the transfer device 30 collectively holds the wafers W in units of 50 wafers.
  • the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 12 by the transfer device 30, and SPM cleaning is performed for a predetermined time.
  • the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning device 12 by the transfer device 30 and is immersed in the cleaning tank 145 of the wafer cleaning device 13 for rinsing.
  • the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 13 by the transfer device 31, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 14 by the transfer device 31, and APM cleaning for a predetermined time is performed. Do.
  • the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning apparatus 14 by the transfer apparatus 31 and is immersed in the cleaning tank 145 of the wafer cleaning apparatus 15 for rinsing.
  • the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 15 by the transfer device 32, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 16 by the transfer device 32, and SC2 cleaning is performed for a predetermined time.
  • the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning device 16 by the transfer device 32, and is immersed in the cleaning tank 145 of the wafer cleaning device 17 for rinsing.
  • the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 17 by the transfer device 33, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 18 by the transfer device 33, and DHF cleaning for a predetermined time is performed.
  • the wafer W is lifted from the cleaning tank 45 of the wafer cleaning device 18 by the transfer device 33, and is immersed in the cleaning tank 145 of the wafer cleaning device 19 for rinsing.
  • cleaning is performed to remove impurities such as particles adhering to the surface of W.
  • the wafer W is lowered into 45, and the wafer W is transferred from the transfer device 31 to the wafer guide 48.
  • the temperature of the cleaning solution is likely to be unstable.
  • the temperature measured by the first RTD 101 and the second The temperature difference measured by the resistance temperature detector 102 may change. Therefore, even if the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is larger than the set tolerance, an alarm is not generated. I do.
  • the temperature of the cleaning liquid is adjusted and purified by circulating the cleaning liquid in the cleaning tank 45 by the circulation circuit 65, and the cleaning liquid is always adjusted to a predetermined temperature in the cleaning tank 45 by the cleaned cleaning liquid. Fill.
  • the block controller 120 controls the temperature measured by the first resistance temperature detector 101 and input from the temperature controller 105, and the temperature measured by the second resistance temperature detector 102 and the controller.
  • the temperature input from 133 is compared, and if the measured temperature difference exceeds the set tolerance, an alarm is generated.
  • the first resistance thermometer 101 when the difference between the temperature measured by the first resistance thermometer 101 and the temperature measured by the second resistance thermometer 102 increases, the first resistance thermometer 101 Alternatively, the electric resistance value of the second resistance temperature detector 102 may have changed. Although the electrical resistance of the first resistance temperature detector 101 and the electrical resistance of the second resistance temperature detector 102 are normal, there is a possibility that the arithmetic unit 111 or the temperature arithmetic unit 108 is abnormal. . If the error of the measurement temperature by the first resistance temperature detector 101 becomes large, the temperature controller 105 adjusts the heating amount of the heater 69 based on the measurement temperature with a large error, and the actual temperature of the cleaning liquid is adjusted. Also greatly deviates from the predetermined value.
  • the processing accuracy will be adversely affected, such as a decrease in processing accuracy.
  • an alarm is issued. Generate and stop processing.
  • the wafer W is pulled up from the cleaning tank 45.
  • the worker should check the first and second RTDs 101 and 102 and replace the first or second RTD 102 or 102 with a new one.
  • the arithmetic unit 111 and the temperature arithmetic unit 108 are checked, and if there is any abnormality, the arithmetic unit 111 or the temperature arithmetic unit 108 is repaired. After the inspection, replacement, repair, etc. are performed in this manner, the processing of the wafer W is restarted. This As a result, it is possible to obtain a highly reliable measurement temperature with few errors. Furthermore, the temperature of the cleaning solution can be accurately controlled based on the measurement temperature with few errors, and high processing accuracy and suitable processing can be performed.
  • the wafer W is lifted by the transfer device 31 inside the cleaning tank 45. Then, the wafer W subjected to the APM processing in the wafer cleaning device 14 is transferred to the wafer cleaning device 15.
  • the temperature of the cleaning solution is likely to be unstable, so that the first RTD 101, the second RTD 102, the operation unit 111, and the temperature calculator 108 are normal.
  • the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 changes, there is a force S. Therefore, even if the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is larger than the set tolerance, an alarm is not generated. I do.
  • the cleaning liquid in the cleaning tank 45 gradually decreases because the cleaning liquid adheres to the wafer W.
  • the cleaning liquid is replenished from the replenishing mechanism 80 into the cleaning tank 45 while the replenishing mechanism 80 is controlled by the controller 84.
  • the cleaning liquid supplied from the replenishing mechanism 80 is supplied in a state where the temperature is controlled by the tank heater 90.
  • the first temperature measuring resistance is used. The temperature measured by the first resistance temperature detector 101 and the second resistance temperature detector 102 are maintained even when the body 101, the second resistance temperature detector 102, the calculation unit 111, and the temperature calculator 108 are normal. Therefore, the difference between the measured temperatures may change. Therefore, even if the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 becomes larger than the set tolerance, an alarm is not generated. Is preferable.
  • the wafer W from which impurities have been removed by the wafer cleaning device 12-19 is transferred to the drying device 21 by the transfer device 33 and subjected to a drying process. Thereafter, the wafer W is transferred to the loading / unloading section 40, the wafer W is stored in the carrier C, and is unloaded from the cleaning system 1.
  • the temperature was measured by the first resistance temperature detector 101.
  • the electric resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is monitored. Can be detected at an early stage when there is a change in the electrical resistance value of the device, or at an early stage when there is an abnormality in the function of the arithmetic unit 111 or the temperature arithmetic unit 108. This can prevent the temperature of the cleaning liquid from deviating from a predetermined value and prevent the processing accuracy of the wafer W from deteriorating. Therefore, it is possible to improve the reliability of temperature measurement and perform suitable processing with high processing accuracy.
  • the measurement object is a cleaning liquid for processing a substrate, but is not limited to such a liquid.
  • a liquid or gas other than the cleaning liquid for processing a substrate may be used.
  • the first and second resistance temperature detectors 101 and 102 are resistance temperature detectors, they may be thermocouples.
  • the substrate is not limited to a semiconductor wafer, but may be other glass for LCD substrates, a CD substrate, a printed substrate, a ceramic substrate, or the like.
  • wafer cleaning apparatuses 12, 14, 16, and 18 have been described as including cleaning tanks for performing chemical solution treatment. More than one type of chemicals and pure water are alternately supplied and drained into one washing tank for each treatment, and multiple washing treatments are performed in a single tank. You may use a washing tank of the type.
  • the wafer cleaning units 13, 15, 17, and 19 have been described as including cleaning tanks that perform rinsing using pure water. However, the wafer cleaning units 13, 15, 17, and 19 perform cleaning that performs chemical treatment. Tank I or a POU washing tank may be used.
  • the temperature measured by first resistance temperature detector 101 is calculated by operation unit 111 built in temperature controller 105, and is measured by second resistance temperature sensor 102.
  • the temperature is calculated by the temperature calculator 108, but is not limited to the force and the form.
  • the liquid temperature of the cleaning liquid may not be controlled, and only the liquid temperature may be monitored.
  • the temperature measured by the second resistance temperature detector 102 may be calculated by the temperature calculator 125. good.
  • the temperature measured by the second resistance bulb 102 is measured by a temperature calculator provided in the wafer cleaning devices 12, 13, 16-19 other than the wafer cleaning device 15.
  • the configuration may be such that the calculation is performed by 108 or the temperature calculator 125.
  • the electric cord 103 is connected to the temperature calculator 108 or the temperature calculator 125, and the temperature calculator 108 or the temperature calculator 125 or the like is connected to the temperature controller 105 and to the first resistance temperature detector 101. Therefore, the liquid temperature may be controlled by transmitting the measured temperature or the temperature measured by the second resistance bulb 102.
  • the temperature is not adjusted by the temperature controller 105, so the temperature controller 105 is not provided, and the electric code 103 is connected to the temperature calculator 125.
  • the temperature is measured by the first RTD 101 and the temperature calculator 125 is used to calculate the temperature. That is, the temperature measured by the first resistance temperature detector 101 and calculated by the temperature calculator 125 is input from the controller 133 to the block controller 120 and monitored.
  • the first RTD 101 and the second RTD 102 are both connected to a temperature calculator 125, and the temperature measured by the first RTD 101 and the second RTD are measured.
  • the temperature measured by the body 102 may be calculated by the temperature calculator 125, and the block controller 120 may monitor the difference between the measured temperatures. In the case of a POU cleaning tank, monitoring and alarm generation by the block controller 120 may be performed only when water is supplied.
  • a third resistance temperature detector 161 having pure water in the cleaning tank 145 as a second measurement target, and a fourth temperature measuring element A resistor 162 may be provided in the cleaning tank 145 of the wafer cleaning apparatus 15. Further, the difference between the temperature measured by the third resistance temperature detector 161 and the temperature measured by the fourth resistance temperature detector 162 may be monitored. In this case, it is possible to detect that there is a defect in the third resistance bulb 161 or the fourth resistance bulb 162. For example, an electric cord 163 is connected to the third resistance bulb 161, and the electric cord 163 is connected to one of the connection parts 150 of the temperature calculator 108.
  • the electric cord 164 is connected to the fourth resistance temperature detector 162, and the electric cord 164 is connected to one of the connection parts 130 of the temperature calculator 125.
  • the third resistance temperature detector 161 is connected to the temperature calculator 108
  • the fourth resistance temperature detector 162 is connected to a calculation unit other than the temperature calculator 108 (temperature calculator 125).
  • the third resistance temperature sensor 161 and the fourth resistance temperature sensor 162 have substantially the same configuration as the first resistance temperature sensor 101 and the second resistance temperature sensor 102.
  • the temperature measured by the third resistance thermometer 161 The temperature calculated by the degree calculator 108 is input from the controller 133 to the block controller 120 via the converter 131 and monitored.
  • the temperature measured by the fourth resistance temperature detector 162 and calculated by the temperature calculator 125 is input from the controller 133 to the block controller 120 via the converter 131 and monitored. Then, the difference between the temperature measured by the third resistance temperature detector 161 and the temperature measured by the fourth resistance temperature detector 162 is monitored by the block controller 120. In this case, it is possible to detect that there is a failure in the third resistance temperature detector 161, the fourth resistance temperature detector 162, the temperature calculator 108, or the temperature calculator 125.
  • the temperature calculators 108 and 125 are configured to be able to calculate each temperature from the electric resistance values of a plurality of resistance temperature detectors and the thermoelectromotive force of a thermocouple.
  • the invention is not limited to the equipment, and may be one that calculates only the temperature measured by the second resistance bulb 102.
  • the first temperature measuring element or the second temperature measuring element can be monitored. It can detect that there is a failure in the temperature measuring element 2 or that there is an abnormality in the function of the calculation unit that calculates the temperature from the output of the temperature measuring element. Therefore, the reliability of the temperature measurement can be improved. Also, when controlling the temperature of the measurement target, it is possible to prevent the temperature of the measurement target from deviating from a predetermined value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A temperature measuring system (100) comprises a first temperature measuring body (101) for measuring the temperature of an object to be measured (APM), a second temperature measuring body (102) for measuring the temperature of the object to be measured (APM), and a monitor unit (120) for monitoring respective temperatures measured by the first temperature measuring body (101) and the second temperature measuring body (102). By monitoring the difference between the temperature measured by the first temperature measuring body (101) and the temperature measured by the second temperature measuring body (102) using the monitor unit (120), it can be detected if there is a problem with the first temperature measuring body (101) or the second temperature measuring body (102).

Description

明 細 書  Specification
温度測定システム及び温度測定方法  Temperature measurement system and temperature measurement method
技術分野  Technical field
[0001] 本発明は,例えば半導体ウェハや LCD基板用ガラス等の基板を処理する液体、気 体等の温度を測定するシステムに関するものである。  The present invention relates to a system for measuring the temperature of a liquid, a gas, or the like for processing a substrate such as a semiconductor wafer or glass for an LCD substrate.
背景技術  Background art
[0002] 例えば半導体デバイスの製造工程では,半導体ウェハ(以下, 「ウェハ」という。)を 所定の薬液や純水等の処理液によって洗浄し,ウェハの表面に付着したパーテイク ル,有機汚染物,金属不純物等のコンタミネーシヨンを除去する洗浄装置が使用され ている。その中でも処理液が充填された処理槽内に,ウェハを順次浸漬させて洗浄 処理を行うウエット型の洗浄装置は広く普及している。  [0002] For example, in a semiconductor device manufacturing process, a semiconductor wafer (hereinafter, referred to as a "wafer") is washed with a processing solution such as a predetermined chemical solution or pure water to remove particles, organic contaminants, and organic contaminants attached to the wafer surface. A cleaning device for removing contamination such as metal impurities is used. Among them, wet type cleaning equipment, which sequentially immerses wafers in a processing tank filled with a processing liquid to perform cleaning processing, is widely used.
[0003] 力かる洗浄装置において,好適な洗浄処理を実施するためには処理槽内の処理 液が所定温度であることが好ましい。そこで,処理中においては,所定温度に調整さ れた処理液を処理槽内に供給し続けると共に,使レ、古された処理液を処理槽内から オーバーフローさせ,処理槽内を所定温度に調整された処理液に置換している。さ らに,温度を測定するための測温抵抗体を処理槽内の処理液中に入れ,測温抵抗 体によって測定された温度を監視するコントローラを備えた温度測定システムを設置 して,測温抵抗体によって測定された温度に基づレ、て液温の制御を行レ、,液温の低 下や過熱を未然に防ぐようにしている(例えば,特開 2001—296186号公報参照)。 かかる測温抵抗体は,温度変化に伴い電気抵抗値が変化する白金 (Pt)等の金属 材料からなり,測温抵抗体の電気抵抗値から処理液の温度を検出できるようになって いる。  [0003] In a powerful cleaning apparatus, it is preferable that the processing liquid in the processing tank has a predetermined temperature in order to perform a preferable cleaning process. Therefore, during the processing, the processing liquid adjusted to the predetermined temperature is continuously supplied into the processing tank, and the used and used processing liquid overflows from the processing tank to adjust the processing tank to the predetermined temperature. It has been replaced with the treated solution. In addition, a RTD for measuring temperature is placed in the processing solution in the processing bath, and a temperature measurement system equipped with a controller that monitors the temperature measured by the RTD is installed. The temperature of the liquid is controlled based on the temperature measured by the temperature resistor to prevent the temperature of the liquid from dropping or overheating (see, for example, JP-A-2001-296186). . Such a resistance temperature detector is made of a metal material such as platinum (Pt) whose electrical resistance changes with temperature, and the temperature of the processing solution can be detected from the resistance of the resistance temperature detector.
[0004] し力 ながら,従来の温度測定システムにおいては,測温抵抗体の不具合が判別 できない場合があった。例えば,測温抵抗体の断線や,測温抵抗体とコントローラと を接続する電気コードの断線等の故障は,温度検出が不可能となるため,コントロー ラの監視によって明らかとなるが,測温抵抗体の抵抗値のずれ等は,判別することが 困難であった。この場合,実際の温度に対して誤差が大きくなつた測定温度に基づ き処理液の温度制御が行われ,所望の温度より高温あるいは低温の処理液で処理 が行われることとなり,ウェハの処理精度に悪影響を与える問題があった。また,測温 抵抗体の抵抗値のずれの不具合を早期に検出することができなかった。 [0004] However, in the conventional temperature measurement system, the failure of the resistance thermometer sometimes could not be determined. For example, failures such as a break in the RTD or a break in the electrical cord that connects the RTD to the controller become evident through monitoring of the controller because it is impossible to detect the temperature. It was difficult to determine the deviation of the resistance value of the resistor. In this case, based on the measured temperature at which the error becomes larger than the actual temperature, The temperature of the processing liquid is controlled, and the processing is performed with a processing liquid at a temperature higher or lower than a desired temperature, which has a problem that the processing accuracy of the wafer is adversely affected. In addition, it was not possible to detect early a defect in the resistance value of the RTD.
[0005] この発明は、上記事情に鑑みてなされたもので、その目的は,測温体の不具合を 判別できる温度測定システムを提供することにある。  [0005] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a temperature measurement system capable of determining a malfunction of a temperature measuring body.
発明の開示  Disclosure of the invention
[0006] 上記目的を達成するために、請求の範囲第 1項に記載の発明は、温度を測定する システムであって,測定対象物の温度を測定するための第 1の測温体と,測定対象 物の温度を測定するための第 2の測温体と,前記第 1の測温体と前記第 2の測温体 により測定された各温度を監視する監視部とを備え,前記監視部が,前記第 1の測 温体により測定された温度と前記第 2の測温体により測定された温度との差を監視す ることにより,前記第 1の測温体又は第 2の測温体において不具合があることを検知 することを特徴とする。ここで, 「測温体」とは,測温抵抗体又は熱電対である。この温 度測定システムによれば, V、ずれか一方の測定温度の誤差が大きくなつたことが検 知できる。即ち,いずれか一方の測温抵抗体の抵抗値が変化した不具合を検知でき る。  [0006] In order to achieve the above object, the invention described in claim 1 is a system for measuring temperature, comprising: a first temperature measuring element for measuring the temperature of an object to be measured; A second temperature measuring element for measuring the temperature of the object to be measured; and a monitoring section for monitoring each temperature measured by the first temperature measuring element and the second temperature measuring element. The unit monitors the difference between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor, thereby detecting the first temperature sensor or the second temperature sensor. It is characterized by detecting that there is a defect in the warm body. Here, “thermometer” is a resistance thermometer or a thermocouple. According to this temperature measurement system, it is possible to detect that the error in the measured temperature of either V or deviation has increased. That is, a defect in which the resistance value of one of the resistance temperature detectors has changed can be detected.
[0007] 請求の範囲第 2項に記載の発明は、前記第 1の測温体及び前記第 2の測温体と前 記監視部との間に,前記第 1の測温体の出力又は前記第 2の測温体の出力から温 度を演算する演算部を設けたことを特徴とする。また、請求の範囲第 3項に記載の発 明は、前記演算部は、前記第 1の測温体と前記監視部の間に設けられた第 1の演算 部と、前記第 2の測温体と前記監視部の間に設けられた第 2の演算部とを有している ことを特徴とする。このようにすると,いずれか一方の演算部に異常があることで測定 温度の誤差が大きくなつた場合, 2個の測定温度の差を監視することにより,いずれ か一方の演算部に異常がある可能性を判別できる。  [0007] The invention set forth in claim 2 is the output or output of the first temperature measuring element between the first temperature measuring element and the second temperature measuring element and the monitoring unit. An arithmetic unit for calculating a temperature from an output of the second temperature measuring element is provided. The invention according to claim 3 is characterized in that the arithmetic unit includes a first arithmetic unit provided between the first temperature measuring element and the monitoring unit, and the second temperature measuring unit. A second calculation unit provided between the body and the monitoring unit. In this way, if the error in the measured temperature increases due to an error in one of the arithmetic units, the difference between the two measured temperatures is monitored, and there is an error in one of the arithmetic units. The possibility can be determined.
[0008] 請求の範囲第 4項に記載の発明は、前記第 1の測温体と第 2の測温体の測定対象 物が同一であることを特徴とする。また、請求の範囲第 5項に記載の発明は、前記測 定対象物は,基板を処理する処理槽に貯留された処理液であり,前記第 1の測温体 により測定された温度を基に処理液の温度を調整する温度調整機構を備えることを 特徴とする。この場合,液温の制御を行うことにより,処理精度の高い好適な処理を 行うことができる。 [0008] The invention described in claim 4 is characterized in that the measurement object of the first temperature measuring element and the measurement object of the second temperature measuring element are the same. Further, in the invention set forth in claim 5, the object to be measured is a processing liquid stored in a processing tank for processing a substrate, and is based on a temperature measured by the first temperature measuring element. Temperature control mechanism to adjust the temperature of the processing solution. Features. In this case, by controlling the liquid temperature, it is possible to perform suitable processing with high processing accuracy.
[0009] 請求の範囲第 6項に記載の発明は、前記監視部は,前記第 1の測温体により測定 された温度と前記第 2の測温体により測定された温度との差が設定される許容値を超 えた場合,前記第 1の測温体又は第 2の測温体において不具合があると判断すること を特徴とする。  [0009] The invention according to claim 6, wherein the monitoring unit sets a difference between the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element. If the allowable value exceeds the allowable value, it is determined that there is a defect in the first temperature measuring element or the second temperature measuring element.
[0010] 請求の範囲第 7項に記載の発明は、前記監視部は,前記測定対象物の温度不安 定時間を認識し、この不安定時間においは、前記第 1の測温体により測定された温 度と前記第 2の測温体により測定された温度との差が設定される許容値を超えた場 合であっても、前記第 1の測温体又は第 2の測温体において不具合があると判断しな レ、ことを特徴とする。  [0010] In the invention according to claim 7, the monitoring unit recognizes a temperature instability time of the object to be measured, and in the instability time, the temperature is measured by the first temperature measuring element. Even if the difference between the measured temperature and the temperature measured by the second temperature measuring element exceeds a set allowable value, the temperature of the first temperature measuring element or the second temperature measuring element may be reduced. It does not judge that there is a problem.
[0011] 請求の範囲第 8項に記載の発明は、第 2の測定対象物の温度を測定するための第 3の測温体と,前記第 2の測定対象物の温度を測定するための第 4の測温体とをさら に備え,前記第 3の測温体を前記第 2の演算部に接続し,前記第 4の測温体を前記 第 2の演算部以外の他の演算部に接続し,前記第 3の測温体により測定された温度 と前記第 4の測温体により測定された温度との差を監視することにより,前記第 3の測 温体又は第 4の測温体において不具合があることを検知することを特徴とする。  [0011] The invention described in claim 8 provides a third temperature measuring element for measuring the temperature of the second object to be measured, and a third temperature measuring element for measuring the temperature of the second object to be measured. A fourth temperature measuring element is further provided, the third temperature measuring element is connected to the second calculating section, and the fourth temperature measuring element is connected to another calculating section other than the second calculating section. To the third temperature measuring element or the fourth temperature measuring element by monitoring the difference between the temperature measured by the third temperature measuring element and the temperature measured by the fourth temperature measuring element. It is characterized by detecting that there is a defect in the warm body.
[0012] 請求の範囲第 9項に記載の発明は、同一の測定対象物の温度を異なる測温体で それぞれ測定する工程と、前記異なる測温体で測定されたそれぞれの温度データの 差を比較する工程と、前記それぞれの温度データの差が、予め設定された許容値を 超えた場合、前記異なる測温体のいずれかに不具合が生じたと判断し警報を発する ことを特徴とする。  [0012] The invention described in claim 9 is a step of measuring the temperature of the same object to be measured with different temperature measuring bodies, and calculating a difference between respective temperature data measured by the different temperature measuring bodies. The comparing step is characterized in that, if the difference between the respective temperature data exceeds a preset allowable value, it is determined that a malfunction has occurred in any of the different temperature measuring bodies and an alarm is issued.
[0013] 請求の範囲第 10項に記載の発明は、前記測定対象物の温度が不安定である温度 不安定時間を認識する工程をさらに備え、この温度不安定時間においては、前記温 度データの差が前記許容値を超えた場合であっても、前記測温対のいずれにも不具 合が生じてレ、なレ、と判断し警報を発しなレ、ことを特徴とする。  [0013] The invention according to claim 10 further comprises a step of recognizing a temperature instability time during which the temperature of the object to be measured is unstable. Even if the difference exceeds the allowable value, any of the temperature measuring couples is judged to be defective and no alarm is issued and an alarm is not issued.
[0014] 請求の範囲第 11項に記載の発明は、前記測定対象物は、処理槽内で被処理物を 処理する処理液であることを特徴とする。 図面の簡単な説明 [0014] The invention according to claim 11 is characterized in that the object to be measured is a processing liquid for processing an object to be processed in a processing tank. BRIEF DESCRIPTION OF THE FIGURES
[0015] [図 1]は、本発明を適用した洗浄システムの概要を示す斜視図である。  FIG. 1 is a perspective view showing an outline of a cleaning system to which the present invention is applied.
[図 2]は、本発明を適用したウェハ洗浄装置の概要を示す説明図である。  FIG. 2 is an explanatory view showing an outline of a wafer cleaning apparatus to which the present invention is applied.
[図 3]は、ウェハ洗浄装置に適用された本発明に係る温度測定システムの概要を示 す説明図である。  FIG. 3 is an explanatory diagram showing an outline of a temperature measurement system according to the present invention applied to a wafer cleaning apparatus.
[図 4]は、他の実施の形態に力、かる温度測定システムの概要を示す説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory diagram showing an outline of a temperature measurement system according to another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下,本発明の好ましい実施の形態について図 1ないし図 4を参照して説明する。  Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. 1 to 4.
[0017] 図 1は,本実施の形態に力かる温度測定システムを備えた洗浄システム 1の斜視図 である。この洗浄システム 1は,キャリア C単位での基板としてのウェハ Wの搬入,ゥヱ ハ Wの洗浄,ウェハ Wの乾燥,キャリア C単位でのウェハ Wの搬出までを一貫して行 うように構成されている。  FIG. 1 is a perspective view of a cleaning system 1 including a temperature measuring system according to the present embodiment. This cleaning system 1 is configured to carry out loading of wafers W as substrates in units of carrier C, cleaning of wafers W, drying of wafers W, and unloading of wafers W in units of carriers C. Have been.
[0018] この洗浄システム 1において,搬入'取出部 2は,洗浄前のウェハ Wを 25枚収納し たキャリア Cを搬入しウェハ Wを洗浄に移行させるまでの動作を行う。即ち,搬入ステ ージ 5に載置されたキャリア Cを移送装置 6によってローダ 7へ例えば 2個ずつ搬送し ,このローダ 7でキャリア Cからウェハ Wを取り出す構成になっている。  In the cleaning system 1, the loading / unloading section 2 carries out operations from loading the carrier C containing 25 wafers W before cleaning to transferring the wafers W to cleaning. That is, the carrier C mounted on the loading stage 5 is transported, for example, two by two to the loader 7 by the transfer device 6, and the loader 7 takes out the wafer W from the carrier C.
[0019] 洗浄乾燥処理部 10には,搬入 ·取出部 2側から順に,ウェハ Wを搬送する搬送装 置 30のウェハチャック 30a, 30aを洗浄および乾燥するためのウェハチャック洗浄'乾 燥装置 11 ,各種の薬液や純水等の洗浄液を用いてウェハ Wを洗浄する各ウェハ洗 浄装置 12— 19,搬送装置 33のウェハチャック 33a, 33aを洗浄および乾燥するため のウェハチャック洗浄 ·乾燥装置 20,および,ウェハ洗浄装置 12— 19で洗浄された ウェハ Wを,例えばイソプロピルアルコール (IPA)蒸気を用いて乾燥させる乾燥装置 21が配列されている。さらに洗浄乾燥処理部 10の前面側(図 1における手前側)に は,搬送装置 30, 31 , 32, 33力 S酉己歹 IJされてレヽる。  The cleaning / drying processing section 10 includes a wafer chuck cleaning / drying apparatus 11 for cleaning and drying the wafer chucks 30a, 30a of the transfer apparatus 30 for transferring the wafer W in order from the loading / unloading section 2 side. Wafer cleaning equipment for cleaning wafer W using various chemicals and cleaning liquids such as pure water 12-19, Wafer chuck cleaning / drying equipment for cleaning and drying wafer chucks 33a and 33a of transfer device 33 20 And a drying device 21 for drying the wafer W cleaned by the wafer cleaning device 12-19 using, for example, isopropyl alcohol (IPA) vapor. Further, on the front side of the washing / drying processing section 10 (on the front side in FIG. 1), transport devices 30, 31, 32, and 33 are provided.
[0020] 一般的な洗浄プロセスに従い,薬液洗浄とリンス洗浄とが交互に行えるようにウェハ 洗浄装置 12, 14, 16, 18は薬液洗浄を行うように構成され,ウェハ洗浄装置 13, 15 , 17, 19はリンス洗浄を行うように構成されている。一例として,ウェハ洗浄装置 12で は,硫酸成分を主体とした洗浄液である SPM (H SO /H Oの混合液)を用いた S PM洗浄を行って,ウェハ Wの表面に付着している有機汚染物等の不純物質を除去 する。また,ウェハ洗浄装置 14では,例えばアンモニア成分を主体とした洗浄液であ る APM (NH OH/H O /H Oの混合液)を用いた SCI洗浄を行って,ウェハ W In accordance with a general cleaning process, the wafer cleaning devices 12, 14, 16, and 18 are configured to perform the chemical cleaning so that the chemical cleaning and the rinsing cleaning can be performed alternately. , 19 are configured to perform rinsing. As an example, in the wafer cleaning apparatus 12, an SPM (a mixture of H 2 SO / HO), which is a cleaning liquid mainly containing a sulfuric acid component, is used. PM cleaning is performed to remove impurities such as organic contaminants adhering to the surface of the wafer W. In addition, the wafer cleaning apparatus 14 performs SCI cleaning using APM (a mixed solution of NH OH / HO / HO), which is a cleaning liquid mainly containing an ammonia component, for example.
4 2 2 2  4 2 2 2
の表面に付着している有機汚染物,パーティクル等の不純物質を除去する。また,ゥ ェハ洗浄装置 16では,塩酸成分を主体とした洗浄液である HPM (HC1/H O /H  To remove impurities such as organic contaminants and particles adhering to the surface of the substrate. In the wafer cleaning device 16, HPM (HC1 / H O / H
2 2 twenty two
Oの混合液)を用いた SC2洗浄を行って,ウェハ Wの表面に付着している金属ィォSC2 cleaning using a mixture of O and O.
2 Two
ン等を除去する。また,ウェハ洗浄装置 18では,フッ酸成分を主体とした洗浄液であ る DHF(HFZH〇の混合液)を用いた DHF洗浄を行って,ウェハ Wの表面に形成  And remove other parts. In addition, the wafer cleaning unit 18 performs DHF cleaning using DHF (a mixture of HFZH〇), which is a cleaning liquid mainly composed of hydrofluoric acid, to form a wafer on the surface of the wafer W.
2  Two
された酸化膜等を除去する。また,ウェハ洗浄装置 13, 15, 17, 19では,純水を用 いてウェハ Wのリンス洗浄を行う。ウェハ洗浄装置 12 19の構成については,後に 詳細に説明する。  The removed oxide film and the like are removed. In wafer cleaning units 13, 15, 17, and 19, rinsing of wafer W is performed using pure water. The configuration of the wafer cleaning device 1219 will be described later in detail.
[0021] なお,以上の配列や各ウェハ洗浄装置 12— 19の組合わせは,ウェハ Wに対  [0021] The above arrangement and the combination of the respective wafer cleaning devices 12-19 are applied to the wafer W.
する洗浄処理の種類によって任意に組み合わせることができる。例えば,ある洗 浄装置を減じたり,逆にさらに他の種類の薬液を用いてウェハ Wを薬液洗浄する ウェハ洗浄装置を付カ卩してもょレ、。  It can be arbitrarily combined depending on the type of cleaning process to be performed. For example, the number of cleaning devices may be reduced, or conversely, a wafer cleaning device may be provided for cleaning the wafer W with another type of chemical.
[0022] 装填 ·搬出部 40は,洗浄乾燥処理部 10で洗浄,乾燥された 25枚のウェハ Wをキヤ リア Cに装填後キャリア C単位で搬出する。即ち,アンローダ 41によって,洗浄後のゥ ェハ Wが収納されたキャリア Cを,移送装置(図示せず)によって,搬出部 42にまで搬 送する構成になっている。  The loading / unloading unit 40 loads 25 wafers W cleaned and dried in the cleaning / drying processing unit 10 into the carrier C, and then unloads them in the carrier C unit. That is, the carrier C in which the washed wafer W is stored by the unloader 41 is transported to the unloading section 42 by the transfer device (not shown).
[0023] 薬液洗浄を行うウェハ洗浄装置 12, 14, 16, 18の構成は,洗浄液が異なる点を除 けば,互いにほぼ同様である。そこで,以下, SC1洗浄を行うウェハ洗浄装置 14を代 表として説明する。  [0023] The configurations of the wafer cleaning apparatuses 12, 14, 16, and 18 for performing chemical cleaning are almost the same as each other except that the cleaning liquid is different. Therefore, a description will be given below using the wafer cleaning apparatus 14 that performs SC1 cleaning as a representative.
[0024] 図 2に示すように,ウェハ洗浄装置 14は,洗浄液として所定温度(例えば 80°C)に 調整された APMを貯留する洗浄槽 45を備えている。この洗浄槽 45は,ゥヱハ Wを 収納するのに充分な大きさを有する箱形の内槽 46と,内槽 46の上部の開口を囲む ように形成された外槽 47から構成されてレヽる。  As shown in FIG. 2, the wafer cleaning apparatus 14 includes a cleaning tank 45 for storing APM adjusted to a predetermined temperature (for example, 80 ° C.) as a cleaning liquid. The washing tank 45 is composed of a box-shaped inner tank 46 having a size large enough to store the W, and an outer tank 47 formed so as to surround the upper opening of the inner tank 46. .
[0025] 内槽 46内には,ウェハ Wを保持するためのウェハガイド 63が設置されている。ゥェ ハガイド 63には, 3本の平行な保持部材 63a, 63b, 63cが水平姿勢で装着され,こ れら保持部材 63a, 63b, 63cにより 50枚のウェハ Wを等間隔で配列させた状態で保 持するようになっている。 [0025] In the inner tank 46, a wafer guide 63 for holding the wafer W is provided. Three parallel holding members 63a, 63b, 63c are mounted on the wafer guide 63 in a horizontal posture. The holding members 63a, 63b, and 63c hold 50 wafers W arranged at equal intervals.
[0026] 内槽 46と外槽 47との間には,洗浄中に APMを循環させる循環回路 65が接続され ている。この循環回路 65の入口は外槽 47の底面に接続されている。循環回路 65に は,ポンプ 67,ダンバ 68,ヒータ 69,フィルタ 70が順に配列されている。循環回路 6 5の出口は,内槽 46の下方に対をなして配置されたジェットノズル(図示せず)に接 続されている。 [0026] A circulation circuit 65 for circulating APM during cleaning is connected between the inner tank 46 and the outer tank 47. The inlet of the circulation circuit 65 is connected to the bottom of the outer tub 47. In the circulation circuit 65, a pump 67, a damper 68, a heater 69, and a filter 70 are sequentially arranged. The outlet of the circulation circuit 65 is connected to a jet nozzle (not shown) arranged in a pair below the inner tank 46.
[0027] 即ち, 内槽 46から外槽 47にオーバーフローした洗浄液を,循環回路 65に流入さ せ,ポンプ 67の稼働によって,ダンパ 68,ヒータ 69,フィルタ 70の順に流し,温度調 整及び清浄化した後,ジェットノズルを経て再び内槽 46内に供給するようになってレヽ る。このように, APMの再利用を図り,その消費量を節約している。なお,循環回路 6 5には,開閉弁 71を介してドレイン管 72が接続されており,外槽 47内の洗浄液を排 液するようになっている。内槽 46の底部には,開閉弁 73を介してドレイン管 74が接 続されており,内槽 46内の洗浄液を排液するようになっている。  [0027] That is, the cleaning liquid overflowing from the inner tank 46 to the outer tank 47 flows into the circulation circuit 65, and is operated by the pump 67 to flow in the order of the damper 68, the heater 69, and the filter 70, thereby adjusting the temperature and cleaning. After that, it is supplied again into the inner tank 46 through the jet nozzle, and the flow is returned. In this way, APM is reused to reduce its consumption. A drain pipe 72 is connected to the circulation circuit 65 via an on-off valve 71 so that the cleaning liquid in the outer tank 47 is drained. A drain pipe 74 is connected to the bottom of the inner tank 46 via an on-off valve 73 so that the cleaning liquid in the inner tank 46 is drained.
[0028] また,ウェハ洗浄装置 14には,洗浄液を洗浄槽 45に補充する補充機構 80が設け られている。補充機構 80は,例えば空の洗浄槽 45内に洗浄液を最初に充填したり, 足りなくなった洗浄液を洗浄槽 45内に適宜補充するように構成されている。  Further, the wafer cleaning apparatus 14 is provided with a replenishing mechanism 80 for replenishing the cleaning liquid to the cleaning tank 45. The replenishing mechanism 80 is configured, for example, to first fill the empty cleaning tank 45 with the cleaning liquid, or to appropriately replenish the cleaning tank 45 that has become insufficient.
[0029] 補充機構 80は,アンモニア補充系 81と,過酸化水素水補充系 82と,純水補充系 8 3と,コントローラ 84とを備えている。アンモニア補充系 81には,所定濃度に調整され たアンモニア水溶液(NH OH)を貯蔵したタンク 85と,ポンプ 86とが設けられている  [0029] The replenishment mechanism 80 includes an ammonia replenishment system 81, a hydrogen peroxide water replenishment system 82, a pure water replenishment system 83, and a controller 84. The ammonia replenishment system 81 is provided with a tank 85 that stores an aqueous ammonia solution (NHOH) adjusted to a predetermined concentration, and a pump 86.
4  Four
。過酸化水素水補充系 82には,所定濃度に調整された過酸化水素水 (H O )を貯  . Hydrogen peroxide water replenishment system 82 stores hydrogen peroxide solution (H 2 O) adjusted to a predetermined concentration.
2 2 蔵したタンク 87と,ポンプ 88が設けられている。純水補充系 83には,純水(DIW)を 貯留したタンク 89と,タンク 89内の純水を加熱するタンクヒータ 90と,弁 91とが設けら れている。コントローラ 84は,ポンプ 86, 88の稼働率,弁 91の開度を制御するように 構成されている。コントローラ 84の制御により,アンモニア水溶液,過酸化水素水,純 水をそれぞれ所定の液量ずつ供給し,所定の成分比率の APMを洗浄液として洗浄 槽 45に補充するようになっている。  A storage tank 87 and a pump 88 are provided. The pure water replenishment system 83 is provided with a tank 89 for storing pure water (DIW), a tank heater 90 for heating the pure water in the tank 89, and a valve 91. The controller 84 is configured to control the operation rates of the pumps 86 and 88 and the opening of the valve 91. Under the control of the controller 84, a predetermined amount of each of the aqueous ammonia solution, hydrogen peroxide solution, and pure water is supplied, and APM having a predetermined component ratio is supplied to the cleaning tank 45 as a cleaning liquid.
[0030] 次に,洗浄槽 45内の温度を測定する本実施の形態に力かる温度測定システム 10 0について説明する。温度測定システム 100は,測定対象である洗浄槽 45内に貯留 された洗浄液の温度を測定するための,測温体としての第 1の測温抵抗体 101及び 第 2の測温抵抗体 102を備えている。第 1の測温抵抗体 101及び第 2の測温抵抗体 102は,内槽 46内に備えられている。 Next, a temperature measuring system 10 according to the present embodiment for measuring the temperature in the cleaning tank 45 is described. 0 will be described. The temperature measuring system 100 includes a first temperature measuring resistor 101 and a second temperature measuring resistor 102 for measuring the temperature of the cleaning liquid stored in the cleaning tank 45 to be measured. Have. The first resistance temperature detector 101 and the second resistance temperature sensor 102 are provided in the inner tank 46.
[0031] 第 1の測温抵抗体 101及び第 2の測温抵抗体 102は,図示はしないが,例えば白 金 (Pt)等の金属材料によって極細線状に形成されており, APMの温度変化に伴い 電気抵抗値が変化するようになっている。また,第 1の測温抵抗体 101 ,第 2の測温 抵抗体 102は,第 1の測温抵抗体 101又は第 2の測温抵抗体 102を物理的衝撃から 保護するコーティング部材によって被覆されており,さらに,図示しない石英ガラス管 内に各々揷入された状態で,内槽 46内に取り付けられている。  [0031] Although not shown, the first resistance temperature detector 101 and the second resistance temperature sensor 102 are formed in a very fine line shape from a metal material such as, for example, platinum (Pt), and have a temperature of APM. The electrical resistance changes with the change. The first and second resistance temperature detectors 101 and 102 are covered with a coating member that protects the first or second resistance temperature detector 101 or 102 from physical impact. Further, they are installed in the inner tank 46 while being inserted into quartz glass tubes (not shown).
[0032] 洗浄液に浸漬された石英ガラス管(図示せず)内の気体は, APMと同じ温度になり ,この気体の温度に応じて,第 1の測温抵抗体 101又は第 2の測温抵抗体 102の電 気抵抗値(出力)が変化する。従って,第 1の測温抵抗体 101又は第 2の測温抵抗体 102に電気を通流させ,第 1の測温抵抗体 101又は第 2の測温抵抗体 102の電気抵 抗値を検出することにより,石英ガラス管内の気体の温度,即ち洗浄液の温度を測定 できるようになつている。  [0032] The gas in the quartz glass tube (not shown) immersed in the cleaning liquid has the same temperature as the APM, and depending on the temperature of this gas, the first resistance temperature sensor 101 or the second temperature measurement element The electric resistance value (output) of the resistor 102 changes. Therefore, electricity is passed through the first resistance thermometer 101 or the second resistance thermometer 102, and the electrical resistance value of the first resistance thermometer 101 or the second resistance thermometer 102 is detected. As a result, the temperature of the gas in the quartz glass tube, that is, the temperature of the cleaning liquid, can be measured.
[0033] 第 1の測温抵抗体 101には,第 1の測温抵抗体 101に電気を通流させるための電 気コード 103が接続されている。電気コード 103は,洗浄槽 45内の洗浄液の温度を 調節するための演算と制御を行う温度調節器 105に接続されている。一方,第 2の測 温抵抗体 102には,第 2の測温抵抗体 102に電気を通流させるための電気コード 10 6が接続されている。図 3に示すように,電気コード 106は,ウェハ洗浄装置 14に隣 接するウェハ洗浄装置 15に設けられた第 2の演算部としての温度演算器 108に接続 されている。温度演算器 108については後述する。  [0033] To the first resistance bulb 101, an electric cord 103 for passing electricity through the first resistance bulb 101 is connected. The electric cord 103 is connected to a temperature controller 105 that performs calculation and control for adjusting the temperature of the cleaning liquid in the cleaning tank 45. On the other hand, an electric cord 106 for passing electricity through the second resistance bulb 102 is connected to the second resistance bulb 102. As shown in FIG. 3, the electric cord 106 is connected to a temperature calculator 108 as a second calculator provided in the wafer cleaning device 15 adjacent to the wafer cleaning device 14. The temperature calculator 108 will be described later.
[0034] 図 2に示すように,温度調節器 105は,第 1の測温抵抗体 101の出力としての電気 抵抗値から洗浄液の温度を演算する演算部(第 1の演算部) 111と,ヒータ 69の出力 を調整するヒータ電力調整部 112を備えている。演算部 111には,電気抵抗値と温 度との関係が予め記憶されており,電気コード 103を介して第 1の測温抵抗体 101の 電気抵抗値を検知して,電気抵抗値と温度との関係に基づき温度を算出する演算を 行う。ヒータ電力調整部 112は,演算部 111によって算出された温度に基づいて,洗 浄液の温度が所定の値に維持されるように,ヒータ 69の電力をそれぞれ調整し,ヒー タ 69の加熱量を制御するようになっている。このように,第 1の測温抵抗体 101,温度 調節器 105,ヒータ 69によって,洗浄液の温度を調整する温度調整機構 113が構成 されており,第 1の測温抵抗体 101により測定された温度を基に洗浄液の温度を調 整するようになっている。 As shown in FIG. 2, the temperature controller 105 includes a calculation unit (first calculation unit) 111 for calculating the temperature of the cleaning liquid from the electric resistance value as the output of the first resistance temperature detector 101, A heater power adjusting unit 112 for adjusting the output of the heater 69 is provided. The relation between the electric resistance value and the temperature is stored in advance in the computing unit 111, and the electric resistance value of the first resistance temperature detector 101 is detected via the electric cord 103, and the electric resistance value and the temperature are detected. Calculation to calculate the temperature based on the relationship Do. The heater power adjustment unit 112 adjusts the power of the heaters 69 based on the temperature calculated by the calculation unit 111 so that the temperature of the cleaning liquid is maintained at a predetermined value, and controls the heating amount of the heater 69. Is to be controlled. As described above, the first resistance temperature sensor 101, the temperature controller 105, and the heater 69 constitute the temperature adjustment mechanism 113 for adjusting the temperature of the cleaning liquid. The temperature of the cleaning solution is adjusted based on the temperature.
[0035] さらに,温度調節器 105の演算部 111は,図 3に示すように,第 1の測温抵抗体 10 1及び第 2の測温抵抗体 102によって測定された各測定温度を監視する監視部とし てのブロックコントローラ 120に接続されている。即ち,第 1の測温抵抗体 101とブロッ クコントローラ 120の間に演算部 111が接続されている。そして,演算部 111によって 算出された温度がブロックコントローラ 120に入力され,監視されるようになっている。  Further, as shown in FIG. 3, the calculation unit 111 of the temperature controller 105 monitors each measured temperature measured by the first resistance temperature detector 101 and the second resistance temperature detector 102. It is connected to a block controller 120 as a monitoring unit. That is, the calculation unit 111 is connected between the first resistance temperature detector 101 and the block controller 120. Then, the temperature calculated by the arithmetic unit 111 is input to the block controller 120 and monitored.
[0036] また,図示はしないが,ウェハ洗浄装置 14には,第 1の測温抵抗体 101及び第 2の 測温抵抗体 102の他,様々な箇所に,温度を測定するための測温抵抗体又は熱電 対が設けられている。例えば,ドレイン管 72やドレイン管 74に,排液の温度を測定す るための測温抵抗体又は熱電対が設けられており,内槽 46からの排液温度と外槽 4 7からの排液温度を測定するようにしている。排液温度測定用の測温抵抗体等(図示 せず)は,測温抵抗体の出力としての電気抵抗値又は熱電対の出力としての熱起電 力から温度を演算する温度演算器 125に接続されている。  Although not shown, the wafer cleaning apparatus 14 includes a temperature measuring device for measuring the temperature at various places in addition to the first resistance temperature detector 101 and the second resistance temperature detector 102. A resistor or thermocouple is provided. For example, a temperature measuring resistor or thermocouple for measuring the temperature of the drainage is provided in the drain pipe 72 or the drain pipe 74, and the drainage temperature from the inner tank 46 and the drainage from the outer tank 47 are provided. The liquid temperature is measured. A temperature measuring resistor (not shown) for measuring the drainage temperature is supplied to a temperature calculator 125 that calculates the temperature from the electric resistance value as the output of the temperature measuring resistor or the thermoelectromotive force as the output of the thermocouple. It is connected.
[0037] 温度演算器 125には,電気コードを接続する接続部 130が,例えば 4個設けられて おり,測温抵抗体等に接続された電気コードを接続部 130のいずれかに接続するこ とにより,測温抵抗体等の出力を温度演算器 125に対して入力できるようになつてい る。即ち,温度演算器 125に 1一 4個の測温抵抗体等の出力を入力することができ, 各出力から温度をそれぞれ算出することができる。  [0037] The temperature computing unit 125 is provided with, for example, four connection sections 130 for connecting an electric cord. The electric cord connected to the resistance temperature detector or the like is connected to one of the connection sections 130. Thus, the output of the resistance temperature detector or the like can be input to the temperature calculator 125. That is, it is possible to input the outputs of one to four resistance temperature detectors to the temperature calculator 125, and to calculate the temperature from each output.
[0038] 温度演算器 125は,温度演算器 125を他の機器と通信可能にする変換器 131に 接続されている。変換器 131は,排液温度測定用の測温抵抗体等(図示せず)によ つて測定された各温度を監視するコントローラ 133に接続されており,温度演算器 12 5によって算出された温度が変換器 131を介してコントローラ 133に入力され,監視さ れるようになっている。 [0039] なお,タンクヒータ 90は,ブロックコントローラ 120に接続された温度モニター 135に 接続されている。温度モニター 135は,タンクヒータ 90の温度を表示しブロックコント ローラ 120に温度データを送るようになっている。タンクヒータ 90の加熱量は,温度モ 二ター 135からブロックコントローラ 120に入力された制御信号に従って制御されるよ うになつている。温度モニター 135によって検出された現在の温度が,設定された温 度に対して高い場合は,ブロックコントローラ 120がタンクヒータ 90の電源を OFFに 切り替えて,設定温度まで下げるようにする。逆に,設定された温度に対して現在の 温度が低い場合は,ブロックコントローラ 120がタンクヒータ 90の電源を〇Nに切り替 えて,設定温度まで上げるようにする。つまり,ブロックコントローラ 120からの制御信 号 (ON/OFF信号)で,温度が一定になるように加熱量が調節制御される。 [0038] The temperature calculator 125 is connected to a converter 131 that enables the temperature calculator 125 to communicate with other devices. The converter 131 is connected to a controller 133 that monitors each temperature measured by a resistance temperature detector or the like (not shown) for measuring the drainage temperature, and calculates the temperature calculated by the temperature calculator 125. Is input to the controller 133 via the converter 131 and is monitored. The tank heater 90 is connected to a temperature monitor 135 connected to the block controller 120. The temperature monitor 135 displays the temperature of the tank heater 90 and sends the temperature data to the block controller 120. The heating amount of the tank heater 90 is controlled in accordance with a control signal input from the temperature monitor 135 to the block controller 120. If the current temperature detected by the temperature monitor 135 is higher than the set temperature, the block controller 120 switches off the power of the tank heater 90 to lower the temperature to the set temperature. Conversely, if the current temperature is lower than the set temperature, the block controller 120 switches the power supply of the tank heater 90 to 〇N to increase the temperature to the set temperature. That is, the heating amount is adjusted and controlled by the control signal (ON / OFF signal) from the block controller 120 so that the temperature becomes constant.
[0040] ウェハ洗浄装置 14と隣接して設けられ,純水を用いてウェハ Wのリンス洗浄を行う ウェハ洗浄装置 15は,洗浄槽 45とほぼ同様の構成を有する洗浄槽 145と,前述の 第 2の演算部としての温度演算器 108を備えている。温度演算器 108は,温度演算 器 125とほぼ同様の機能を有する。即ち,温度演算器 108は,第 2の測温抵抗体 10 2の電気抵抗値(出力)から洗浄液の温度を算出し,さらに, 2個以上の測温抵抗体 の電気抵抗値,或いは,熱電対の熱起電力から,温度をそれぞれ算出することが可 能である。  [0040] The wafer cleaning apparatus 15 provided adjacent to the wafer cleaning apparatus 14 and performing rinsing cleaning of the wafer W using pure water has a cleaning tank 145 having substantially the same configuration as the cleaning tank 45, and the cleaning tank 145 described above. A temperature calculator 108 is provided as a second calculation unit. The temperature calculator 108 has almost the same function as the temperature calculator 125. That is, the temperature calculator 108 calculates the temperature of the cleaning liquid from the electric resistance value (output) of the second resistance temperature detector 102, and further calculates the electric resistance value of two or more resistance temperature It is possible to calculate the temperature from the pair of thermoelectromotive forces.
[0041] 温度演算器 108には,接続部 130とほぼ同様の接続部 150が例えば 4個設けられ ている。前述のウェハ洗浄装置 14の電気コード 106は,接続部 150の一つに接続さ れている。温度演算器 108は,変換器 131に接続されている。即ち,温度演算器 10 8によって算出された温度が変換器 131を介してコントローラ 133に入力され,監視さ れるようになっている。  The temperature calculator 108 is provided with, for example, four connection portions 150 that are substantially the same as the connection portion 130. The electric cord 106 of the above-mentioned wafer cleaning device 14 is connected to one of the connection parts 150. The temperature calculator 108 is connected to the converter 131. That is, the temperature calculated by the temperature calculator 108 is input to the controller 133 via the converter 131 and is monitored.
[0042] なお,変換器 131に 2個以上の温度演算器 108, 125を接続し,ウェハ洗浄装置 1 4, 15に設けた 8個以上の測温抵抗体等の出力から温度をそれぞれ演算するように して, 8箇所以上の温度をコントローラ 133によって監視するようにしても良い。  [0042] Two or more temperature calculators 108 and 125 are connected to the converter 131, and the temperature is calculated from the outputs of eight or more resistance temperature detectors provided in the wafer cleaning devices 14 and 15, respectively. In this way, eight or more temperatures may be monitored by the controller 133.
[0043] さらに,コントローラ 133とブロックコントローラ 120は,インターフェース回路 155に よって接続されており,コントローラ 133からブロックコントローラ 120にデータを送信 できる構成となっている。即ち,第 2の測温抵抗体 102とブロックコントローラ 120の間 に温度演算器 108,変換器 131が接続されている。そして,温度演算器 108によって 算出された各温度がブロックコントローラ 120に入力され,監視されるようになってい る。 [0043] Further, the controller 133 and the block controller 120 are connected by an interface circuit 155, so that data can be transmitted from the controller 133 to the block controller 120. That is, between the second resistance bulb 102 and the block controller 120 Are connected to a temperature calculator 108 and a converter 131. Each temperature calculated by the temperature calculator 108 is input to the block controller 120 and monitored.
[0044] ブロックコントローラ 120は,第 1の測温抵抗体 101によって測定された温度,第 2 の測温抵抗体 102によって測定された温度,及び,第 1の測温抵抗体 101によって 測定された温度と第 2の測温抵抗体 102によって測定された温度との差を監視する ようになつている。  [0044] The block controller 120 measures the temperature measured by the first resistance temperature detector 101, the temperature measured by the second resistance temperature sensor 102, and the temperature measured by the first resistance temperature sensor 101. The difference between the temperature and the temperature measured by the second resistance bulb 102 is monitored.
[0045] ブロックコントローラ 120には,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗体 102によって測定された温度の許容差を予め記憶させることができる 。ブロックコントローラ 120は,洗浄槽 45にウェハ Wを浸漬させる前や,浸漬させてい る間など,洗浄液の温度を所定の値に維持する必要があるときに,第 1の測温抵抗 体 101によって測定された温度と第 2の測温抵抗体 102によって測定された温度の 差と,設定された許容差とを比較する。そして,測定された温度の差が許容差より大 きくなつた場合,第 1の測温抵抗体 101,第 2の測温抵抗体 102,演算部 111 ,温度 演算器 108のうち,いずれかにおいて不具合があると判断し,警報を発生させるよう になっている。これにより,洗浄液の温度が誤った測定温度に基づいて制御されるこ とを防止できる。  The tolerance between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 can be stored in the block controller 120 in advance. The block controller 120 measures the temperature of the cleaning liquid with the first resistance temperature detector 101 when it is necessary to maintain the temperature of the cleaning liquid at a predetermined value before or during immersion of the wafer W in the cleaning tank 45. The difference between the measured temperature and the temperature measured by the second resistance bulb 102 is compared with the set tolerance. Then, when the difference between the measured temperatures becomes larger than the tolerance, one of the first resistance temperature detector 101, the second resistance temperature detector 102, the calculation unit 111, and the temperature calculation unit 108 The system determines that there is a problem and generates an alarm. This prevents the temperature of the cleaning liquid from being controlled based on an incorrect measurement temperature.
[0046] 即ち,第 1の測温抵抗体 101又は第 2の測温抵抗体 102の抵抗値が正常な状態で は,第 1の測温抵抗体 101によって測定された温度と,第 2の測温抵抗体 102によつ て測定された温度は,ほぼ同じ温度となる。しかし,第 1の測温抵抗体 101又は第 2 の測温抵抗体 102の抵抗値が変化して,第 1の測温抵抗体 101又は第 2の測温抵 抗体 102によって測定された温度の誤差が大きくなつた場合,第 1の測温抵抗体 10 1によって測定された温度と第 2の測温抵抗体 102によって測定された温度との差が 大きくなる。即ち,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗 体 102によって測定された温度の差をブロックコントローラ 120によって監視すること により,第 1の測温抵抗体 101又は第 2の測温抵抗体 102の抵抗値が変化した不具 合を検知できる。  That is, when the resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is normal, the temperature measured by the first resistance temperature sensor 101 and the second resistance temperature The temperature measured by the resistance temperature detector 102 is substantially the same. However, the resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 changes, and the temperature measured by the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is changed. When the error increases, the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 increases. That is, the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is monitored by the block controller 120, so that the first resistance temperature detector 101 or A failure in which the resistance value of the second resistance bulb 102 has changed can be detected.
[0047] また,第 1の測温抵抗体 101又は第 2の測温抵抗体 102は正常であっても,演算部 111又は温度演算器 108の演算機能等に異常があることで,算出された温度の誤差 が大きくなることがある。そのような場合も,第 1の測温抵抗体 101によって測定され 演算部 111によって算出された温度と,第 2の測温抵抗体 102によって測定され温 度演算器 108によって算出された温度とを比較すると, 2個の測定温度の差が大きく なる。従って,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗体 10 2によって測定された温度の差をブロックコントローラ 120によって監視することにより ,演算部 111又は温度演算器 108に異常がある可能性も判別できる。即ち,第 1の 測温抵抗体 101によって測定された温度と第 2の測温抵抗体 102によって測定され た温度の差が大きくなつた場合は,第 1の測温抵抗体 101 ,第 2の測温抵抗体 102, 演算部 111 ,温度演算器 108のうち,いずれかに異常があると考えられる。 [0047] Even if the first resistance temperature detector 101 or the second resistance temperature detector 102 is normal, the operation unit An error in the calculation function of the temperature calculator 111 or the temperature calculator 108 may cause a large error in the calculated temperature. In such a case, the temperature measured by the first resistance temperature detector 101 and calculated by the calculation unit 111 and the temperature measured by the second resistance temperature sensor 102 and calculated by the temperature calculator 108 are also used. By comparison, the difference between the two measured temperatures is larger. Therefore, by monitoring the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 by the block controller 120, the calculation unit 111 or the temperature calculation unit 108 It is possible to determine the possibility that there is an abnormality. That is, when the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 becomes large, the first resistance temperature detector 101 and the second resistance temperature detector It is considered that any one of the resistance temperature detector 102, the operation unit 111, and the temperature operation unit 108 has an abnormality.
[0048] 本実施の形態において,温度測定システム 100は,第 1の測温抵抗体 101,電気コ ード 103,温度調節器 105,ブロックコントローラ 120,第 2の測温抵抗体 102,電気 コード 106,温度演算器 108,変換器 131,コントローラ 133,インターフェース回路 1 55によって構成されている。  [0048] In the present embodiment, the temperature measurement system 100 includes a first resistance temperature detector 101, an electric code 103, a temperature controller 105, a block controller 120, a second resistance temperature sensor 102, an electric code 106, a temperature calculator 108, a converter 131, a controller 133, and an interface circuit 155.
[0049] 薬液洗浄を行うウェハ洗浄装置 12, 16, 18の構成は,補充機構 80において供給 される液体の種類が異なる点を除けば,ウェハ洗浄装置 14とほぼ同様の構成を有す る。純水を用いてウェハ Wのリンス洗浄を行うウェハ洗浄装置 13, 17, 19の構成は, ウェハ洗浄装置 15とほぼ同様の構成を有する。また,ウェハ洗浄装置 12, 13と,ゥェ ハ洗浄装置 16, 17と,ウェハ洗浄装置 18, 19に,それぞれ温度測定システム 100 が適宜備えられている。  [0049] The configuration of the wafer cleaning devices 12, 16, and 18 for performing chemical cleaning has almost the same configuration as the wafer cleaning device 14, except that the type of liquid supplied in the replenishment mechanism 80 is different. The configuration of the wafer cleaning devices 13, 17, and 19 for rinsing the wafer W using pure water has almost the same configuration as the wafer cleaning device 15. In addition, the wafer cleaning devices 12 and 13, the wafer cleaning devices 16 and 17, and the wafer cleaning devices 18 and 19 are each provided with a temperature measurement system 100 as appropriate.
[0050] ウェハ洗浄装置 12, 13と,ウェハ洗浄装置 16, 17と,ウェハ洗浄装置 18, 19にそ れぞれ備えたブロックコントローラ 120は,メインコントローラ 160に接続されている。メ インコントローラ 160は,処理のプロセスに関するデータを各ブロックコントローラ 120 に対して送信するようになっている。  The block controllers 120 provided in the wafer cleaning devices 12 and 13, the wafer cleaning devices 16 and 17, and the wafer cleaning devices 18 and 19 are connected to the main controller 160. The main controller 160 transmits data relating to the process of processing to each block controller 120.
[0051] 次に,以上のように構成された洗浄システム 1を用いた処理について説明する。ま ず,洗浄システム 1においてウェハ Wの処理を開始する前に,各ウェハ洗浄装置 12 一 19にそれぞれ洗浄液を充填する。各ウェハ洗浄装置 12, 14, 16, 18における洗 浄液の充填は,ほぼ同様の手順で行うため,代表してウェハ洗浄装置 14の充填につ いて説明する。 Next, processing using the cleaning system 1 configured as described above will be described. First, before the processing of the wafer W in the cleaning system 1 is started, each of the wafer cleaning apparatuses 12 to 19 is filled with the cleaning liquid. Since the filling of the cleaning solution in each of the wafer cleaning apparatuses 12, 14, 16, and 18 is performed in substantially the same procedure, the filling of the wafer cleaning apparatus 14 is typically performed. Will be described.
[0052] 洗浄槽 45に洗浄液を供給する前に,予め,ブロックコントローラ 120に測定温度の 許容差を入力して,記憶させておく。このウェハ洗浄装置 14において,空の洗浄槽 4 5の外槽 47に,コントローラ 84の制御により,アンモニア水溶液,過酸化水素水,純 水をそれぞれ所定の液量ずつ供給し,所定の成分比率の洗浄液を供給する。外槽 4 7に供給された洗浄液は,循環回路 65内を通過して,内槽 46の下方に配置された ジェットノズル(図示せず)から内槽 46内に吐出される。洗浄槽 45は,内槽 46の上部 力 オーバーフローして外槽 47に受け止められ,外槽 47から再び循環回路 65内に 流れる。こうして,外槽 47,循環回路 65,内槽 46の順に洗浄液が循環して,洗浄槽 45に洗浄液が充填される。  Before supplying the cleaning liquid to the cleaning tank 45, the tolerance of the measured temperature is input to the block controller 120 and stored in advance. In the wafer cleaning apparatus 14, a predetermined amount of an aqueous ammonia solution, hydrogen peroxide solution, and pure water are supplied to the outer tank 47 of the empty cleaning tank 45 under the control of the controller 84, and a predetermined component ratio is obtained. Supply cleaning solution. The cleaning liquid supplied to the outer tank 47 passes through the circulation circuit 65 and is discharged into the inner tank 46 from a jet nozzle (not shown) disposed below the inner tank 46. The washing tank 45 overflows the upper part of the inner tank 46, is received by the outer tank 47, and flows from the outer tank 47 into the circulation circuit 65 again. Thus, the cleaning liquid is circulated in the order of the outer tank 47, the circulation circuit 65, and the inner tank 46, and the cleaning tank 45 is filled with the cleaning liquid.
[0053] 内槽 46に洗浄液が貯留されると,第 1の測温抵抗体 101及び第 2の測温抵抗体 10 2が洗浄液中に浸漬され,洗浄液の温度を測定可能な状態になる。洗浄槽 45に洗 浄液が充填されたら,洗浄液を外槽 47,循環回路 65,内槽 46の順に循環させなが ら,ヒータ 69を発熱させ,循環回路 65を通過する洗浄液を加熱する。第 1の測温抵 抗体 101及び第 2の測温抵抗体 102の電気抵抗値は,洗浄液の温度に応じて変化 し,電気コード 103, 106内を流れる電流の大きさ,電圧が洗浄液の温度に応じて変 化する。温度調節器 105は,第 1の測温抵抗体 101の電気抵抗値から温度を算出し ながら,ヒータ 69の加熱量を調整して,温度が所定の値に昇温されるように制御する 。こうして,所定量,所定温度の洗浄液が洗浄槽 45内に充填される。所定量,所定 温度の洗浄液が洗浄槽 45内に充填された後は,温度調節器 105は,第 1の測温抵 抗体 101の電気抵抗値から温度を算出しながら,ヒータ 69の加熱量を調整して,温 度が所定の値に維持されるように制御する。  When the cleaning liquid is stored in the inner tank 46, the first resistance temperature detector 101 and the second resistance temperature detector 102 are immersed in the cleaning liquid, and the temperature of the cleaning liquid can be measured. When the cleaning liquid is filled in the cleaning tank 45, the heater 69 is heated while the cleaning liquid is circulated in the order of the outer tank 47, the circulation circuit 65, and the inner tank 46, and the cleaning liquid passing through the circulation circuit 65 is heated. The electric resistance value of the first resistance temperature sensor 101 and the second resistance temperature sensor 102 changes according to the temperature of the cleaning liquid. The magnitude of the current flowing through the electric cords 103 and 106 and the voltage are the temperature of the cleaning liquid. Varies according to The temperature controller 105 adjusts the heating amount of the heater 69 while calculating the temperature from the electric resistance value of the first resistance temperature detector 101, and controls the temperature to rise to a predetermined value. In this way, a predetermined amount of the cleaning liquid at a predetermined temperature is filled in the cleaning tank 45. After the cleaning bath 45 is filled with a predetermined amount and a predetermined temperature of the cleaning liquid, the temperature controller 105 calculates the temperature from the electric resistance value of the first temperature-measuring resistor 101 while controlling the heating amount of the heater 69. Adjust the temperature so that the temperature is maintained at the specified value.
[0054] 温度調節器 105は,洗浄液の温度を制御する一方で,算出した温度をブロックコン トローラ 120に送信する。ブロックコントローラ 120に送信された温度は,ブロックコント ローラ 120によって監視される。また,ウェハ洗浄装置 15の温度演算器 108は,第 2 の測温抵抗体 102の電気抵抗値から温度を演算し,算出された温度は,変換器 131 を介してコントローラ 133に送信され,さらに,コントローラ 133からブロックコントロー ラ 120に送信され,ブロックコントローラ 120によって監視される。 [0055] 第 1の測温抵抗体 101によって測定された温度に基づいて洗浄槽 45内の洗浄液 を所定温度に昇温させた後は,ブロックコントローラ 120は,温度調節器 105から入 力された第 1の測温抵抗体 101によって測定された温度と,コントローラ 133から入力 された第 2の測温抵抗体 102によって測定された温度を比較して,測定温度の差が 設定された許容差より大きくなつた場合,警報を発生させるようにする。 The temperature controller 105 transmits the calculated temperature to the block controller 120 while controlling the temperature of the cleaning liquid. The temperature transmitted to the block controller 120 is monitored by the block controller 120. Further, the temperature calculator 108 of the wafer cleaning apparatus 15 calculates the temperature from the electric resistance value of the second resistance temperature detector 102, and the calculated temperature is transmitted to the controller 133 via the converter 131. , Transmitted from the controller 133 to the block controller 120 and monitored by the block controller 120. After raising the temperature of the cleaning liquid in the cleaning tank 45 to a predetermined temperature based on the temperature measured by the first resistance temperature detector 101, the block controller 120 receives the input from the temperature controller 105. The temperature measured by the first resistance temperature detector 101 is compared with the temperature measured by the second resistance temperature sensor 102 input from the controller 133, and the difference between the measured temperatures is calculated according to the set tolerance. If it gets bigger, an alarm should be generated.
[0056] 即ち,洗浄液を洗浄槽 45内に充填し,あるいは,温調する間は,洗浄液の温度が 不均一であるため,第 1の測温抵抗体 101,第 2の測温抵抗体 102,演算部 111,温 度演算器 108が正常であっても,第 1の測温抵抗体 101によって測定された温度と 第 2の測温抵抗体 102によって測定された温度の差が,設定された許容差より大きく なる場合がある。これに対し,洗浄液を所定温度に維持する間,第 1の測温抵抗体 1 01によって測定された温度と第 2の測温抵抗体 102によって測定された温度の差が 大きくなるときは,第 1の測温抵抗体 101又は第 2の測温抵抗体 102の電気抵抗値 が変化した可能性がある。また,第 1の測温抵抗体 101の電気抵抗値と第 2の測温 抵抗体 102の電気抵抗値は正常であるが,演算部 111又は温度演算器 108に異常 力 Sある可能性もある。演算部 111によって算出された温度の誤差が大きくなつた場合 ,温度調節器 105は,誤差の大きい測定温度に基づいてヒータ 69の加熱量を調整 することとなり,洗浄液の実際の温度も,所定の値力 大きくずれることとなる。この状 態でウェハ Wを洗浄液中に浸漬させると,処理精度が低下するなど,処理に悪影響 が発生する。このような悪影響を防止するため,第 1の測温抵抗体 101によって測定 された温度と第 2の測温抵抗体 102によって測定された温度の差が許容差より大きく なったら,警報を発生させ,ウェハ Wの処理を開始させないようにする。  That is, while the cleaning liquid is filled in the cleaning tank 45 or the temperature of the cleaning liquid is not uniform, the first temperature measuring resistor 101 and the second temperature measuring resistor 102 are not uniform. Even if the calculation unit 111 and the temperature calculator 108 are normal, the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 is set. May be larger than the tolerance. On the other hand, if the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 increases while maintaining the cleaning solution at a predetermined temperature, There is a possibility that the electric resistance value of the first resistance bulb 101 or the second resistance bulb 102 has changed. Although the electrical resistance of the first resistance temperature detector 101 and the electrical resistance of the second resistance temperature detector 102 are normal, there is a possibility that the arithmetic unit 111 or the temperature calculator 108 has an abnormal force S. . When the error in the temperature calculated by the arithmetic unit 111 becomes large, the temperature controller 105 adjusts the heating amount of the heater 69 based on the measured temperature having a large error, and the actual temperature of the cleaning liquid also becomes a predetermined value. Value power will be greatly shifted. If the wafer W is immersed in the cleaning liquid in this state, the processing accuracy will be adversely affected, such as a decrease in processing accuracy. To prevent such adverse effects, an alarm is generated when the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 becomes larger than the tolerance. Therefore, the processing of the wafer W is not started.
[0057] 警報が発生したら,作業員は,第 1の測温抵抗体 101と第 2の測温抵抗体 102を点 検して,第 1の測温抵抗体 101又は第 2の測温抵抗体 102を新しいものに交換する ようにする。また,演算部 111と温度演算器 108を点検して,異常がある場合は,演 算部 111又は温度演算器 108の修復を行うようにする。こうして,点検,交換,修復な どを行った後,洗浄液を洗浄槽 45内に充填し,洗浄液を温調し,ウェハ Wの処理を 開始させる。これにより,誤差が少なく信頼性が高い測定温度を得ることができる。さ らに,誤差の少ない測定温度に基づき洗浄液の液温を正確に制御でき,処理精度 の高レ、好適な処理を行うことができる。 [0057] When the alarm is generated, the worker checks the first resistance temperature sensor 101 and the second resistance temperature sensor 102 and checks the first resistance temperature sensor 101 or the second resistance temperature sensor 102. Try to replace body 102 with a new one. In addition, the arithmetic unit 111 and the temperature arithmetic unit 108 are checked, and if there is any abnormality, the arithmetic unit 111 or the temperature arithmetic unit 108 is repaired. After inspection, replacement, restoration, etc., the cleaning liquid is filled into the cleaning tank 45, the temperature of the cleaning liquid is adjusted, and the processing of the wafer W is started. This makes it possible to obtain a highly reliable measurement temperature with little error. Furthermore, the temperature of the cleaning solution can be accurately controlled based on the measurement temperature with little error, and the processing accuracy can be improved. And a suitable process can be performed.
[0058] 各ウェハ洗浄装置 13, 15, 17, 19における純水の充填は,純水を所定温度に昇 温させる必要がない点を除けば,ウェハ洗浄装置 14の充填とほぼ同様である。  The filling of pure water in each of the wafer cleaning apparatuses 13, 15, 17, and 19 is almost the same as the filling of the wafer cleaning apparatus 14, except that the pure water does not need to be heated to a predetermined temperature.
[0059] このように,各ウェハ洗浄装置 12— 19にそれぞれ洗浄液が充填された洗浄システ ム 1におレ、て,図示しなレ、搬送ロボットが未だ洗浄されてレ、なレ、ウェハ Wを例えば 25 枚ずつ収納したキャリア Cを搬入'取出部 2の搬入ステージ 5に複数載置する。そして ,この搬入'取出部 2によって,例えばキャリア C2個分の 50枚のウェハ Wをキャリア C から取り出し,搬送装置 30が,ウェハ Wを 50枚単位で一括して把持する。そして,搬 送装置 30によってウェハ Wをウェハ洗浄装置 12の洗浄槽 45内に浸漬させ,所定時 間の SPM洗浄を行う。その後,搬送装置 30によってウェハ Wをウェハ洗浄装置 12の 洗净槽 45内から引き上げ,ウェハ洗浄装置 13の洗浄槽 145内に浸漬させてリンス処 理する。次に,搬送装置 31によってウェハ Wをウェハ洗浄装置 13の洗浄槽 145内か ら引き上げ,搬送装置 31によってウェハ Wをウェハ洗浄装置 14の洗浄槽 45内に浸 漬させ,所定時間の APM洗浄を行う。その後,搬送装置 31によってウェハ Wをゥェ ハ洗浄装置 14の洗浄槽 45内から引き上げ,ウェハ洗浄装置 15の洗浄槽 145内に 浸漬させてリンス処理する。次に,搬送装置 32によってウェハ Wをウェハ洗浄装置 1 5の洗浄槽 145内から引き上げ,搬送装置 32によってウェハ Wをウェハ洗浄装置 16 の洗浄槽 45内に浸漬させ,所定時間の SC2洗浄を行う。その後,搬送装置 32によ つてウェハ Wをウェハ洗浄装置 16の洗浄槽 45内から引き上げ,ウェハ洗浄装置 17 の洗浄槽 145内に浸漬させてリンス処理する。次に,搬送装置 33によってウェハ Wを ウェハ洗浄装置 17の洗浄槽 145内から引き上げ,搬送装置 33によってウェハ Wをゥ ェハ洗浄装置 18の洗浄槽 45内に浸漬させ,所定時間の DHF洗浄を行う。その後, 搬送装置 33によってウェハ Wをウェハ洗浄装置 18の洗浄槽 45内から引き上げ,ゥェ ハ洗浄装置 19の洗浄槽 145内に浸漬させてリンス処理する。こうして,ゥヱハ Wの表 面に付着しているパーティクル等の不純物質を除去する洗浄を行う。  [0059] As described above, in the cleaning system 1 in which the cleaning liquid is filled in each of the wafer cleaning apparatuses 12 to 19, the transfer robot is still cleaned, the wafer is not cleaned, and the wafer W is not cleaned. For example, a plurality of carriers C each containing 25 pieces are loaded on the loading stage 5 of the loading / unloading section 2. Then, the loading / unloading unit 2 takes out, for example, 50 wafers W for two carriers C from the carrier C, and the transfer device 30 collectively holds the wafers W in units of 50 wafers. Then, the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 12 by the transfer device 30, and SPM cleaning is performed for a predetermined time. After that, the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning device 12 by the transfer device 30 and is immersed in the cleaning tank 145 of the wafer cleaning device 13 for rinsing. Next, the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 13 by the transfer device 31, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 14 by the transfer device 31, and APM cleaning for a predetermined time is performed. Do. After that, the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning apparatus 14 by the transfer apparatus 31 and is immersed in the cleaning tank 145 of the wafer cleaning apparatus 15 for rinsing. Next, the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 15 by the transfer device 32, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 16 by the transfer device 32, and SC2 cleaning is performed for a predetermined time. . After that, the wafer W is pulled up from the cleaning tank 45 of the wafer cleaning device 16 by the transfer device 32, and is immersed in the cleaning tank 145 of the wafer cleaning device 17 for rinsing. Next, the wafer W is lifted from the cleaning tank 145 of the wafer cleaning device 17 by the transfer device 33, and the wafer W is immersed in the cleaning tank 45 of the wafer cleaning device 18 by the transfer device 33, and DHF cleaning for a predetermined time is performed. Do. After that, the wafer W is lifted from the cleaning tank 45 of the wafer cleaning device 18 by the transfer device 33, and is immersed in the cleaning tank 145 of the wafer cleaning device 19 for rinsing. Thus, cleaning is performed to remove impurities such as particles adhering to the surface of W.
[0060] ここで,ウェハ洗浄装置 14の処理について説明する。搬送装置 31によって洗浄槽  Here, the processing of the wafer cleaning apparatus 14 will be described. Cleaning tank by transfer device 31
45内にウェハ Wを下降させ,ウェハ Wを搬送装置 31からウェハガイド 48に受け渡す 。ウェハ Wを洗浄液中に下降させる際は,洗浄液の温度が不安定になりやすいため ,第 1の測温抵抗体 101,第 2の測温抵抗体 102,演算部 111 ,温度演算器 108が 正常であっても,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗体 102によって測定された温度の差が変化する場合がある。そのため,第 1の測温抵抗 体 101によって測定された温度と第 2の測温抵抗体 102によって測定された温度の 差が,設定された許容差より大きくなつても,警報を発生させないようにする。 The wafer W is lowered into 45, and the wafer W is transferred from the transfer device 31 to the wafer guide 48. When lowering the wafer W into the cleaning solution, the temperature of the cleaning solution is likely to be unstable. , Even if the first RTD 101, the second RTD 102, the operation unit 111, and the temperature calculator 108 are normal, the temperature measured by the first RTD 101 and the second The temperature difference measured by the resistance temperature detector 102 may change. Therefore, even if the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is larger than the set tolerance, an alarm is not generated. I do.
[0061] 洗浄中は,循環回路 65により洗浄槽 45内の洗浄液を循環させて洗浄液の温調及 び浄化を行い,洗浄槽 45内を,常に所定温度に調整され,かつ清められた洗浄液 により充填する。 [0061] During the cleaning, the temperature of the cleaning liquid is adjusted and purified by circulating the cleaning liquid in the cleaning tank 45 by the circulation circuit 65, and the cleaning liquid is always adjusted to a predetermined temperature in the cleaning tank 45 by the cleaned cleaning liquid. Fill.
[0062] ウェハ Wの洗浄中は,ブロックコントローラ 120は,第 1の測温抵抗体 101によって 測定され温度調節器 105から入力された温度と,第 2の測温抵抗体 102によって測 定されコントローラ 133から入力された温度を比較して,測定温度の差が設定された 許容差より大きくなつた場合,警報を発生させるようにする。  [0062] During the cleaning of the wafer W, the block controller 120 controls the temperature measured by the first resistance temperature detector 101 and input from the temperature controller 105, and the temperature measured by the second resistance temperature detector 102 and the controller. The temperature input from 133 is compared, and if the measured temperature difference exceeds the set tolerance, an alarm is generated.
[0063] 即ち,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗体 102によ つて測定された温度の差が大きくなるときは,第 1の測温抵抗体 101又は第 2の測温 抵抗体 102の電気抵抗値が変化した可能性がある。また,第 1の測温抵抗体 101の 電気抵抗値と第 2の測温抵抗体 102の電気抵抗値は正常であるが,演算部 111又 は温度演算器 108に異常がある可能性もある。第 1の測温抵抗体 101による測定温 度の誤差が大きくなつた場合,温度調節器 105は,誤差の大きい測定温度に基づい てヒータ 69の加熱量を調整することとなり,洗浄液の実際の温度も,所定の値から大 きくずれることとなる。この状態でウェハ Wを処理すると,処理精度が低下するなど, 処理に悪影響が発生する。このような悪影響を防止するため,第 1の測温抵抗体 10 1によって測定された温度と第 2の測温抵抗体 102によって測定された温度の差が許 容差より大きくなつたら,警報を発生させ,処理を中止させる。  That is, when the difference between the temperature measured by the first resistance thermometer 101 and the temperature measured by the second resistance thermometer 102 increases, the first resistance thermometer 101 Alternatively, the electric resistance value of the second resistance temperature detector 102 may have changed. Although the electrical resistance of the first resistance temperature detector 101 and the electrical resistance of the second resistance temperature detector 102 are normal, there is a possibility that the arithmetic unit 111 or the temperature arithmetic unit 108 is abnormal. . If the error of the measurement temperature by the first resistance temperature detector 101 becomes large, the temperature controller 105 adjusts the heating amount of the heater 69 based on the measurement temperature with a large error, and the actual temperature of the cleaning liquid is adjusted. Also greatly deviates from the predetermined value. If the wafer W is processed in this state, the processing accuracy will be adversely affected, such as a decrease in processing accuracy. To prevent such adverse effects, if the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 becomes larger than the tolerance, an alarm is issued. Generate and stop processing.
[0064] 警報が発生したら,ウェハ Wを洗浄槽 45内から引き上げる。作業員は,第 1の測温 抵抗体 101と第 2の測温抵抗体 102を点検して,第 1の測温抵抗体 101又は第 2の 測温抵抗体 102を新しいものに交換するようにする。また,演算部 111と温度演算器 108を点検して,異常がある場合は,演算部 111又は温度演算器 108の修復を行う 。こうして,点検,交換,修復などを行った後,ウェハ Wの処理を再開させる。これによ り,誤差が少なく信頼性が高い測定温度を得ることができる。さらに,誤差の少ない測 定温度に基づき洗浄液の液温を正確に制御でき,処理精度の高レ、好適な処理を行 うことができる。 When an alarm occurs, the wafer W is pulled up from the cleaning tank 45. The worker should check the first and second RTDs 101 and 102 and replace the first or second RTD 102 or 102 with a new one. To In addition, the arithmetic unit 111 and the temperature arithmetic unit 108 are checked, and if there is any abnormality, the arithmetic unit 111 or the temperature arithmetic unit 108 is repaired. After the inspection, replacement, repair, etc. are performed in this manner, the processing of the wafer W is restarted. This As a result, it is possible to obtain a highly reliable measurement temperature with few errors. Furthermore, the temperature of the cleaning solution can be accurately controlled based on the measurement temperature with few errors, and high processing accuracy and suitable processing can be performed.
[0065] 警報が発生することなく所定時間が経過したら,ウェハ Wを洗浄槽 45内力 搬送装 置 31によって引き上げる。そして,ウェハ洗浄装置 14にて APM処理したウェハ Wを ,ウェハ洗浄装置 15に搬送する。ウェハ Wを洗浄液中から上昇させる際は,洗浄液 の温度が不安定になりやすいため,第 1の測温抵抗体 101,第 2の測温抵抗体 102 ,演算部 111 ,温度演算器 108が正常であっても,第 1の測温抵抗体 101によって測 定された温度と第 2の測温抵抗体 102によって測定された温度の差が変化する場合 力 Sある。そのため,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗 体 102によって測定された温度の差が,設定された許容差より大きくなつても,警報 を発生させないようにする。  When a predetermined time has elapsed without generating an alarm, the wafer W is lifted by the transfer device 31 inside the cleaning tank 45. Then, the wafer W subjected to the APM processing in the wafer cleaning device 14 is transferred to the wafer cleaning device 15. When raising the wafer W from the cleaning solution, the temperature of the cleaning solution is likely to be unstable, so that the first RTD 101, the second RTD 102, the operation unit 111, and the temperature calculator 108 are normal. However, if the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 changes, there is a force S. Therefore, even if the difference between the temperature measured by the first resistance temperature detector 101 and the temperature measured by the second resistance temperature detector 102 is larger than the set tolerance, an alarm is not generated. I do.
[0066] ウェハ Wを洗浄槽 45内から引き上げるとき,ウェハ Wに洗浄液が付着するので,洗 浄槽 45内の洗浄液が次第に減少する。洗浄液が減少したら,コントローラ 84によつ て補充機構 80を制御しながら,補充機構 80から洗浄槽 45内に洗浄液を補充する。 このとき,補充機構 80から供給される洗浄液は,タンクヒータ 90によって温調された 状態で供給されるが,洗浄槽 45内の洗浄液の温度は不安定になりやすいため,第 1 の測温抵抗体 101,第 2の測温抵抗体 102,演算部 111,温度演算器 108が正常で あっても,第 1の測温抵抗体 101によって測定された温度と第 2の測温抵抗体 102に よって測定された温度の差が変化する場合がある。そのため,第 1の測温抵抗体 10 1によって測定された温度と第 2の測温抵抗体 102によって測定された温度の差が, 設定された許容差より大きくなつても,警報を発生させないようにすることが好ましい。  When the wafer W is pulled up from the cleaning tank 45, the cleaning liquid in the cleaning tank 45 gradually decreases because the cleaning liquid adheres to the wafer W. When the cleaning liquid decreases, the cleaning liquid is replenished from the replenishing mechanism 80 into the cleaning tank 45 while the replenishing mechanism 80 is controlled by the controller 84. At this time, the cleaning liquid supplied from the replenishing mechanism 80 is supplied in a state where the temperature is controlled by the tank heater 90. However, since the temperature of the cleaning liquid in the cleaning tank 45 tends to be unstable, the first temperature measuring resistance is used. The temperature measured by the first resistance temperature detector 101 and the second resistance temperature detector 102 are maintained even when the body 101, the second resistance temperature detector 102, the calculation unit 111, and the temperature calculator 108 are normal. Therefore, the difference between the measured temperatures may change. Therefore, even if the difference between the temperature measured by the first RTD 101 and the temperature measured by the second RTD 102 becomes larger than the set tolerance, an alarm is not generated. Is preferable.
[0067] 各ウェハ洗浄装置 12, 14, 16, 18における処理は,洗浄液,処理時間  [0067] The processing in each of the wafer cleaning apparatuses 12, 14, 16, and 18 is performed by using a cleaning liquid and processing time.
,処理温度が異なる点を除けば,ほぼ同様の手順で行う。  , Except that the processing temperature is different.
[0068] ウェハ洗浄装置 12— 19によって不純物質が除去されたウェハ Wは,搬送装置 33 によって乾燥装置 21に搬送され,乾燥処理が施される。その後,装填'搬出部 40に 搬送され,ウェハ Wがキャリア Cに収納され,洗浄システム 1から搬出される。  [0068] The wafer W from which impurities have been removed by the wafer cleaning device 12-19 is transferred to the drying device 21 by the transfer device 33 and subjected to a drying process. Thereafter, the wafer W is transferred to the loading / unloading section 40, the wafer W is stored in the carrier C, and is unloaded from the cleaning system 1.
[0069] 力、かる温度測定システム 100によれば,第 1の測温抵抗体 101によって測定された 温度と第 2の測温抵抗体 102によって測定された温度との差を,ブロックコントローラ 120によって監視することにより,第 1の測温抵抗体 101の電気抵抗値又は第 2の測 温抵抗体 102の電気抵抗値が変化した不具合があることを早期に検知し,或いは, 演算部 111又は温度演算器 108の機能に異常があることを早期に検知できる。これ により,洗浄液の温度が所定の値よりずれることを防止でき,ウェハ Wの処理精度が 悪化することを防止できる。従って,温度測定の信頼性を高め,処理精度の高い好 適な処理を行うことができる。 [0069] According to the force and Karuru temperature measurement system 100, the temperature was measured by the first resistance temperature detector 101. By monitoring the difference between the temperature and the temperature measured by the second resistance temperature detector 102 by the block controller 120, the electric resistance value of the first resistance temperature sensor 101 or the second resistance temperature sensor 102 is monitored. Can be detected at an early stage when there is a change in the electrical resistance value of the device, or at an early stage when there is an abnormality in the function of the arithmetic unit 111 or the temperature arithmetic unit 108. This can prevent the temperature of the cleaning liquid from deviating from a predetermined value and prevent the processing accuracy of the wafer W from deteriorating. Therefore, it is possible to improve the reliability of temperature measurement and perform suitable processing with high processing accuracy.
[0070] 以上,本発明の好適な実施の形態の一例を示したが,本発明はここで説明した形 態に限定されない。例えば,測定対象は基板を処理する洗浄液としたが,かかるもの に限定されず,例えば基板処理用の洗浄液以外の液体,気体等であっても良い。第 1の測温抵抗体 101と第 2の測温抵抗体 102は,測温抵抗体としたが,熱電対であつ ても良い。また,基板は半導体ウェハに限らず,その他の LCD基板用ガラスや CD基 板,プリント基板,セラミック基板などであっても良い。  [0070] Although an example of the preferred embodiment of the present invention has been described above, the present invention is not limited to the mode described here. For example, the measurement object is a cleaning liquid for processing a substrate, but is not limited to such a liquid. For example, a liquid or gas other than the cleaning liquid for processing a substrate may be used. Although the first and second resistance temperature detectors 101 and 102 are resistance temperature detectors, they may be thermocouples. The substrate is not limited to a semiconductor wafer, but may be other glass for LCD substrates, a CD substrate, a printed substrate, a ceramic substrate, or the like.
[0071] 本実施の形態では,ウェハ洗浄装置 12, 14, 16, 18は薬液処理を行う洗浄槽を 備えるものとして説明したが,ウェハ洗浄装置 12, 14, 16, 18は, 1種類又は 2種類 以上の薬液と純水を一つの洗浄槽内に各処理毎に交互に供給,排液し,複数の洗 浄処理を単一の槽で行う,レ、わゆる POU (ポイント'ォブ ·ユース)方式の洗浄槽とし ても良い。また,ウェハ洗浄装置 13, 15, 17, 19は純水を用いたリンス処理を行う洗 浄槽を備えるものとして説明したが,ウェハ洗浄装置 13, 15, 17, 19は,薬液処理を 行う洗浄槽ゃ, POU洗浄槽であっても良い。  [0071] In the present embodiment, wafer cleaning apparatuses 12, 14, 16, and 18 have been described as including cleaning tanks for performing chemical solution treatment. More than one type of chemicals and pure water are alternately supplied and drained into one washing tank for each treatment, and multiple washing treatments are performed in a single tank. You may use a washing tank of the type. The wafer cleaning units 13, 15, 17, and 19 have been described as including cleaning tanks that perform rinsing using pure water. However, the wafer cleaning units 13, 15, 17, and 19 perform cleaning that performs chemical treatment. Tank I or a POU washing tank may be used.
[0072] 本実施の形態では,第 1の測温抵抗体 101によって測定される温度は,温度調節 器 105に内蔵された演算部 111によって算出され,第 2の測温抵抗体 102によって 測定される温度は,温度演算器 108によって算出されることとしたが,力、かる形態に 限定されない。また,洗浄液の液温の制御を行わず,液温の監視のみを行う形態で あっても良い。例えば,電気コード 106をウェハ洗浄装置 14に備えた温度演算器 12 5に接続して,第 2の測温抵抗体 102によって測定される温度を温度演算器 125によ つて演算するようにしても良い。また,第 2の測温抵抗体 102によって測定される温度 を,ウェハ洗浄装置 15以外のウェハ洗浄装置 12, 13, 16— 19に備えた温度演算器 108又は温度演算器 125によって演算する構成としても良い。 In the present embodiment, the temperature measured by first resistance temperature detector 101 is calculated by operation unit 111 built in temperature controller 105, and is measured by second resistance temperature sensor 102. The temperature is calculated by the temperature calculator 108, but is not limited to the force and the form. Further, the liquid temperature of the cleaning liquid may not be controlled, and only the liquid temperature may be monitored. For example, by connecting the electric cord 106 to a temperature calculator 125 provided in the wafer cleaning apparatus 14, the temperature measured by the second resistance temperature detector 102 may be calculated by the temperature calculator 125. good. In addition, the temperature measured by the second resistance bulb 102 is measured by a temperature calculator provided in the wafer cleaning devices 12, 13, 16-19 other than the wafer cleaning device 15. The configuration may be such that the calculation is performed by 108 or the temperature calculator 125.
[0073] また,電気コード 103を温度演算器 108又は温度演算器 125に接続して,温度演 算器 108又は温度演算器 125等から温度調節器 105に,第 1の測温抵抗体 101に よって測定された温度又は第 2の測温抵抗体 102によって測定された温度を送信す るようにして,液温の制御を行っても良い。 [0073] Also, the electric cord 103 is connected to the temperature calculator 108 or the temperature calculator 125, and the temperature calculator 108 or the temperature calculator 125 or the like is connected to the temperature controller 105 and to the first resistance temperature detector 101. Therefore, the liquid temperature may be controlled by transmitting the measured temperature or the temperature measured by the second resistance bulb 102.
[0074] また,例えば,洗浄槽 45が P〇U洗浄槽の場合は,温度調節器 105による温度調 整を行わないので,温度調節器 105を設けず,電気コード 103を温度演算器 125に 接続して,第 1の測温抵抗体 101によって測定される温度を温度演算器 125によつ て算出する形態にすると良い。即ち,第 1の測温抵抗体 101によって測定され温度 演算器 125によって算出された温度がコントローラ 133からブロックコントローラ 120 に入力され,監視されるようにしても良レ、。また,第 1の測温抵抗体 101と第 2の測温 抵抗体 102を共に温度演算器 125に接続して,第 1の測温抵抗体 101によって測定 される温度と第 2の測温抵抗体 102によって測定される温度を,温度演算器 125によ つてそれぞれ算出し,ブロックコントローラ 120において測定温度の差を監視するよう にしても良い。なお, POU洗浄槽の場合は,節水供給時のみ,ブロックコントローラ 1 20による監視,警報発生を行うようにしても良い。 [0074] Further, for example, when the cleaning tank 45 is a P 槽 U cleaning tank, the temperature is not adjusted by the temperature controller 105, so the temperature controller 105 is not provided, and the electric code 103 is connected to the temperature calculator 125. It is preferable that the temperature is measured by the first RTD 101 and the temperature calculator 125 is used to calculate the temperature. That is, the temperature measured by the first resistance temperature detector 101 and calculated by the temperature calculator 125 is input from the controller 133 to the block controller 120 and monitored. In addition, the first RTD 101 and the second RTD 102 are both connected to a temperature calculator 125, and the temperature measured by the first RTD 101 and the second RTD are measured. The temperature measured by the body 102 may be calculated by the temperature calculator 125, and the block controller 120 may monitor the difference between the measured temperatures. In the case of a POU cleaning tank, monitoring and alarm generation by the block controller 120 may be performed only when water is supplied.
[0075] 図 4に示すように,ウェハ洗浄装置 15の洗浄槽 145内に,洗浄槽 145内の純水を 第 2の測定対象とする第 3の測温抵抗体 161,第 4の測温抵抗体 162を備えても良い 。さらに,第 3の測温抵抗体 161により測定された温度と第 4の測温抵抗体 162により 測定された温度との差を監視するようにしても良い。この場合,第 3の測温抵抗体 16 1又は第 4の測温抵抗体 162において不具合があることを検知することができる。例 えば,第 3の測温抵抗体 161に電気コード 163を接続し,電気コード 163を温度演算 器 108の接続部 150の一つに接続する。第 4の測温抵抗体 162に電気コード 164を 接続し,電気コード 164を温度演算器 125の接続部 130の一つに接続する。こうして ,第 3の測温抵抗体 161を温度演算器 108に接続し,第 4の測温抵抗体 162を温度 演算器 108以外の他の演算部(温度演算器 125)に接続する。なお,第 3の測温抵 抗体 161 ,第 4の測温抵抗体 162は,第 1の測温抵抗体 101 ,第 2の測温抵抗体 10 2とほぼ同様の構成を有するものとする。第 3の測温抵抗体 161によって測定され温 度演算器 108によって算出された温度は,変換器 131を介して,コントローラ 133か らブロックコントローラ 120に入力され,監視される。また,第 4の測温抵抗体 162によ つて測定され温度演算器 125によって算出された温度は,変換器 131を介して,コン トローラ 133からブロックコントローラ 120に入力され,監視される。そして,ブロックコ ントローラ 120によって,第 3の測温抵抗体 161によって測定された温度と第 4の測温 抵抗体 162によって測定された温度との差が監視されるようにする。この場合,第 3の 測温抵抗体 161 ,第 4の測温抵抗体 162,温度演算器 108,又は温度演算器 125に 不具合があることを検知することができる。 As shown in FIG. 4, in the cleaning tank 145 of the wafer cleaning apparatus 15, a third resistance temperature detector 161 having pure water in the cleaning tank 145 as a second measurement target, and a fourth temperature measuring element A resistor 162 may be provided. Further, the difference between the temperature measured by the third resistance temperature detector 161 and the temperature measured by the fourth resistance temperature detector 162 may be monitored. In this case, it is possible to detect that there is a defect in the third resistance bulb 161 or the fourth resistance bulb 162. For example, an electric cord 163 is connected to the third resistance bulb 161, and the electric cord 163 is connected to one of the connection parts 150 of the temperature calculator 108. The electric cord 164 is connected to the fourth resistance temperature detector 162, and the electric cord 164 is connected to one of the connection parts 130 of the temperature calculator 125. Thus, the third resistance temperature detector 161 is connected to the temperature calculator 108, and the fourth resistance temperature detector 162 is connected to a calculation unit other than the temperature calculator 108 (temperature calculator 125). Note that the third resistance temperature sensor 161 and the fourth resistance temperature sensor 162 have substantially the same configuration as the first resistance temperature sensor 101 and the second resistance temperature sensor 102. The temperature measured by the third resistance thermometer 161 The temperature calculated by the degree calculator 108 is input from the controller 133 to the block controller 120 via the converter 131 and monitored. The temperature measured by the fourth resistance temperature detector 162 and calculated by the temperature calculator 125 is input from the controller 133 to the block controller 120 via the converter 131 and monitored. Then, the difference between the temperature measured by the third resistance temperature detector 161 and the temperature measured by the fourth resistance temperature detector 162 is monitored by the block controller 120. In this case, it is possible to detect that there is a failure in the third resistance temperature detector 161, the fourth resistance temperature detector 162, the temperature calculator 108, or the temperature calculator 125.
[0076] 本実施の形態では,温度演算器 108, 125は,複数の測温抵抗体の電気抵抗値 や熱電対の熱起電力から各温度を演算することが可能な構成としたが,かかる機器 に限定されず,第 2の測温抵抗体 102によって測定される温度のみを演算するもの であっても良い。  In the present embodiment, the temperature calculators 108 and 125 are configured to be able to calculate each temperature from the electric resistance values of a plurality of resistance temperature detectors and the thermoelectromotive force of a thermocouple. The invention is not limited to the equipment, and may be one that calculates only the temperature measured by the second resistance bulb 102.
[0077] 本発明によれば,第 1の測温体によって測定された温度と第 2の測温体によって測 定された温度との差を監視することにより,第 1の測温体又は第 2の測温体において 不具合があることを検知し,或いは,測温体の出力から温度を演算する演算部の機 能に異常があることを検知できる。従って,温度測定の信頼性を高めることができる。 また,測定対象の温度を制御する場合,測定対象の温度が所定の値よりずれること を防止できる。  According to the present invention, by monitoring the difference between the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element, the first temperature measuring element or the second temperature measuring element can be monitored. It can detect that there is a failure in the temperature measuring element 2 or that there is an abnormality in the function of the calculation unit that calculates the temperature from the output of the temperature measuring element. Therefore, the reliability of the temperature measurement can be improved. Also, when controlling the temperature of the measurement target, it is possible to prevent the temperature of the measurement target from deviating from a predetermined value.

Claims

請求の範囲 The scope of the claims
[1] 温度を測定するシステムであって, [1] A temperature measuring system,
測定対象物の温度を測定するための第 1の測温体と,  A first temperature measuring element for measuring the temperature of the measuring object;
測定対象物の温度を測定するための第 2の測温体と,  A second temperature measuring element for measuring the temperature of the measuring object;
前記第 1の測温体と前記第 2の測温体により測定された各温度を監視する監視部と を備え,  A monitoring unit that monitors each temperature measured by the first temperature measuring element and the second temperature measuring element;
前記監視部が,前記第 1の測温体により測定された温度と前記第 2の測温体により 測定された温度との差を監視することにより,前記第 1の測温体又は第 2の測温体に おいて不具合があることを検知することを特徴とする,温度測定システム。  The monitoring section monitors the difference between the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element, thereby detecting the first temperature measuring element or the second temperature measuring element. A temperature measurement system that detects a defect in a temperature measuring element.
[2] 前記第 1の測温体及び前記第 2の測温体と前記監視部との間に,前記第 1の測温 体の出力又は前記第 2の測温体の出力から温度を演算する演算部を設けたことを特 徴とする,請求の範囲第 1項に記載の温度測定システム。  [2] A temperature is calculated between the output of the first temperature measuring element or the output of the second temperature measuring element between the first temperature measuring element, the second temperature measuring element, and the monitoring unit. 2. The temperature measurement system according to claim 1, wherein a calculation unit for performing the measurement is provided.
[3] 前記演算部は、前記第 1の測温体と前記監視部の間に設けられた第 1の演算部と 、前記第 2の測温体と前記監視部の間に設けられた第 2の演算部とを有していること を特徴とする,請求の範囲第 2項に記載の温度測定システム。  [3] The arithmetic unit includes a first arithmetic unit provided between the first temperature measuring element and the monitoring unit, and a first arithmetic unit provided between the second temperature measuring element and the monitoring unit. 3. The temperature measurement system according to claim 2, wherein the temperature measurement system has two operation units.
[4] 前記第 1の測温体と第 2の測温体の測定対象物が同一であることを特徴とする,請 求の範囲第 1項ないし第 3項のいずれ力 4項に記載の温度測定システム。  [4] The method according to any one of claims 1 to 3, wherein the measurement object of the first temperature measuring element and the measurement object of the second temperature measuring element are the same. Temperature measurement system.
[5] 前記測定対象物は,基板を処理する処理槽に貯留された処理液であり,  [5] The object to be measured is a processing liquid stored in a processing tank for processing a substrate,
前記第 1の測温体により測定された温度を基に処理液の温度を調整する温度調整 機構を備えることを特徴とする,請求の範囲第 1項ないし第 4項のいずれ力、 1項に記 載の温度測定システム。  The power supply according to any one of claims 1 to 4, further comprising a temperature adjusting mechanism for adjusting the temperature of the processing liquid based on the temperature measured by the first temperature measuring element. The indicated temperature measurement system.
[6] 前記監視部は,前記第 1の測温体により測定された温度と前記第 2の測温体により 測定された温度との差が設定される許容値を超えた場合,前記第 1の測温体又は第 2の測温体において不具合があると判断することを特徴とする,請求の範囲第 1項な レ、し第 5項のいずれか 1項に記載の温度測定システム。  [6] The monitoring unit, when the difference between the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element exceeds a set allowable value, The temperature measuring system according to any one of claims 1 to 5, wherein it is determined that there is a defect in the temperature measuring element or the second temperature measuring element.
[7] 前記監視部は,前記測定対象物の温度不安定時間を認識し、この不安定時間に おいは、前記第 1の測温体により測定された温度と前記第 2の測温体により測定され た温度との差が設定される許容値を超えた場合であっても、前記第 1の測温体又は 第 2の測温体において不具合があると判断しないことを特徴とする,請求の範囲第 6 項に記載の温度測定システム。 [7] The monitoring unit recognizes the temperature instability time of the object to be measured, and at this instability time, the temperature measured by the first temperature measuring element and the temperature measured by the second temperature measuring element. Even if the difference from the measured temperature exceeds the set tolerance, the first temperature sensor or 7. The temperature measuring system according to claim 6, wherein it is not determined that there is a defect in the second temperature measuring body.
[8] 第 2の測定対象物の温度を測定するための第 3の測温体と, [8] a third temperature measuring element for measuring the temperature of the second measuring object;
前記第 2の測定対象物の温度を測定するための第 4の測温体とをさらに備え, 前記第 3の測温体を前記第 2の演算部に接続し,  A fourth temperature measuring element for measuring the temperature of the second object to be measured, wherein the third temperature measuring element is connected to the second calculating section;
前記第 4の測温体を前記第 2の演算部以外の他の演算部に接続し,  Connecting the fourth temperature measuring element to another operation unit other than the second operation unit,
前記第 3の測温体により測定された温度と前記第 4の測温体により測定された温度 との差を監視することにより,前記第 3の測温体又は第 4の測温体において不具合が あることを検知することを特徴とする,請求の範囲第 1項ないし第 7項のいずれ力 4項 に記載の温度測定システム。  By monitoring the difference between the temperature measured by the third temperature measuring element and the temperature measured by the fourth temperature measuring element, a fault in the third temperature measuring element or the fourth temperature measuring element is detected. The temperature measurement system according to any one of claims 1 to 7, wherein the temperature measurement system detects the presence of a temperature.
[9] 同一の測定対象物の温度を異なる測温体でそれぞれ測定する工程と、 [9] a step of measuring the temperature of the same object with different temperature measuring elements,
前記異なる測温体で測定されたそれぞれの温度データの差を比較する工程と、 前記それぞれの温度データの差が、予め設定された許容値を超えた場合、前記異 なる測温体のいずれかに不具合が生じたと判断し警報を発することを特徴とする温 度測定方法。  Comparing the difference between the respective temperature data measured by the different temperature sensors; and if the difference between the respective temperature data exceeds a preset allowable value, one of the different temperature sensors. A temperature measurement method characterized by determining that a failure has occurred in a vehicle and issuing an alarm.
[10] 前記測定対象物の温度が不安定である温度不安定時間を認識する工程をさらに 備え、この温度不安定時間においては、前記温度データの差が前記許容値を超え た場合であっても、前記測温体のいずれにも不具合が生じていないと判断し警報を 発しないことを特徴とする請求の範囲第 9項に記載の温度測定方法。  [10] The method further includes a step of recognizing a temperature instability time during which the temperature of the measurement object is unstable, wherein the temperature data difference exceeds the allowable value during the temperature instability time. 10. The temperature measuring method according to claim 9, wherein it is determined that no malfunction has occurred in any of the temperature measuring bodies and no alarm is issued.
[11] 前記測定対象物は、処理槽内で被処理物を処理する処理液であることを特徴とす る請求の範囲第 9項又は第 10項に記載の温度測定方法。  11. The temperature measuring method according to claim 9, wherein the object to be measured is a processing liquid for processing an object to be processed in a processing tank.
PCT/JP2004/007096 2003-05-26 2004-05-25 Temperature measuring system and temperature measuring method WO2004104535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-147212 2003-05-26
JP2003147212A JP2006234382A (en) 2003-05-26 2003-05-26 Temperature measurement system

Publications (1)

Publication Number Publication Date
WO2004104535A1 true WO2004104535A1 (en) 2004-12-02

Family

ID=33475360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007096 WO2004104535A1 (en) 2003-05-26 2004-05-25 Temperature measuring system and temperature measuring method

Country Status (3)

Country Link
JP (1) JP2006234382A (en)
TW (1) TW200507142A (en)
WO (1) WO2004104535A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636296B1 (en) * 2016-10-26 2024-02-14 세메스 주식회사 Method and Method for Controlling Chemical temperature
KR101967053B1 (en) 2017-07-26 2019-04-08 에스케이실트론 주식회사 Temperature control apparatus for wafer cleaning equipment and temperature control method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968477U (en) * 1972-09-26 1974-06-14
JPH02254330A (en) * 1989-03-28 1990-10-15 Nec Corp Protective mechanism of electronic component
JPH06120203A (en) * 1992-10-06 1994-04-28 Hitachi Ltd Temperature control method for liquid and temperature controller for liquid
JPH11118620A (en) * 1997-10-16 1999-04-30 Koito Ind Ltd Thermistor failure detecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968477U (en) * 1972-09-26 1974-06-14
JPH02254330A (en) * 1989-03-28 1990-10-15 Nec Corp Protective mechanism of electronic component
JPH06120203A (en) * 1992-10-06 1994-04-28 Hitachi Ltd Temperature control method for liquid and temperature controller for liquid
JPH11118620A (en) * 1997-10-16 1999-04-30 Koito Ind Ltd Thermistor failure detecting method

Also Published As

Publication number Publication date
TW200507142A (en) 2005-02-16
JP2006234382A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP3074366B2 (en) Processing equipment
EP0793259B1 (en) A method for drying substrates
KR102450184B1 (en) Substrate liquid processing apparatus
JP6472726B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR20220068923A (en) Substrate processing apparatus and substrate processing method
JP4055839B2 (en) Liquid level detection apparatus and method
JP6681439B2 (en) Wafer cleaning equipment temperature control device and temperature control method using the same
KR20100048403A (en) Apparatus for sensing flowmeter, and substrate treating apparatus with it and method for controlling alarm
WO2004104535A1 (en) Temperature measuring system and temperature measuring method
KR101792935B1 (en) Heater abnormality detecting apparatus, processing liquid supplying apparatus, and substrate processing system
US20090088909A1 (en) Batch processing apparatus for processing work pieces
JP7019430B2 (en) Substrate liquid processing equipment
JP4987793B2 (en) Substrate processing apparatus, substrate processing method, program, and recording medium
TWI391592B (en) Valve with sensor for process solution, and apparatus and method for treating substrate using the same
TWI525688B (en) A cleaning liquid generation device, a cleaning liquid generation method, a substrate cleaning device, and a substrate cleaning method
US20230307263A1 (en) Processing liquid supply device, substrate processing apparatus, and method for inspecting processing liquid supply device
JP4412540B2 (en) Substrate processing equipment
WO2018180054A1 (en) Substrate processing method and substrate processing device
JP4014573B2 (en) Cleaning processing equipment
JP3892670B2 (en) Substrate processing method and substrate processing apparatus
KR100659842B1 (en) An apparatus for boat
JP2014120644A (en) Substrate processing apparatus and self diagnostic method thereof
WO2007077992A1 (en) Method for cleaning/drying apparatus for transferring subject to be processed, cleaning/drying apparatus and storing medium
JP3626360B2 (en) Substrate processing apparatus and method
KR20070041135A (en) An ipa vapor dryer comprising a pressure gage and method of operation the ipa vapor dryer using the pressure gage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP