JP3892670B2 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
JP3892670B2
JP3892670B2 JP2001001525A JP2001001525A JP3892670B2 JP 3892670 B2 JP3892670 B2 JP 3892670B2 JP 2001001525 A JP2001001525 A JP 2001001525A JP 2001001525 A JP2001001525 A JP 2001001525A JP 3892670 B2 JP3892670 B2 JP 3892670B2
Authority
JP
Japan
Prior art keywords
liquid
processing
level
tank
mixing capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001001525A
Other languages
Japanese (ja)
Other versions
JP2002208576A (en
Inventor
大海 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001001525A priority Critical patent/JP3892670B2/en
Publication of JP2002208576A publication Critical patent/JP2002208576A/en
Application granted granted Critical
Publication of JP3892670B2 publication Critical patent/JP3892670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,例えば半導体ウェハやLCD基板用ガラス等の洗浄処理などを行う基板処理方法及び基板処理装置に関する。
【0002】
【従来の技術】
例えば半導体デバイスの製造プロセスにおいては,半導体ウェハ(以下,「ウェハ」という。)を所定の薬液や純水等の洗浄液によって洗浄し,ウェハに付着したパーティクル,有機汚染物,金属不純物のコンタミネーションを除去する洗浄装置が使用されている。その中でも,複数の洗浄液が充填されて混合された洗浄槽内にウェハを浸漬させて洗浄処理を行うウェット型の洗浄装置は,ウェハに付着したパーティクル等を効果的に除去できるため広く普及している。
【0003】
従来の洗浄装置では,各洗浄液毎にタンクが設けられ,これら各タンクから洗浄液がそれぞれ供給されて洗浄槽内で混合液が生成される。洗浄液には,例えばアンモニア水溶液(NHOH),塩酸(HCl),フッ酸(HF),過酸化水素水(H)等の薬液や純水(HO)等があり,混合液には,例えばAPM(NHOH/H/HOの混合液),HPM(HCl/H/HOの混合液),DHF(HF/HOの混合液)等がある。
【0004】
このような洗浄装置では,好適な洗浄処理が実施できるように所定の混合比率で混合液を生成する必要がある。このため,各タンクでは,洗浄液を混合容量だけ貯め,1回の供給毎に中をそれぞれ空にしていた。
【0005】
ところで従来,前述したようにタンクは各洗浄液毎に設けられ,さらに混合容量の洗浄液を貯留できるように相当の大きさを有する必要があったので,洗浄装置が大型化していた。そこで,例えば特開平5―299403号に開示された洗浄装置によれば,純水が貯留されるタンクを装置から外し,工場の純水供給源に接続された供給路から純水を洗浄槽に対して直接供給することにより,装置の小型化を図っていた。そして,充填の際には,先ず各タンク内から薬液をそれぞれ供給して各タンク内を空にした後,洗浄槽に設置された液面センサに液面が到達するまで,供給路から純水を供給することにより,純水を混合容量だけ供給して所定の混合比率の混合液を生成するように図っていた。
【0006】
【発明が解決しようとする課題】
しかしながら,この特開平5―299403号に開示された洗浄装置によれば,タンク内から薬液が供給されている間,純水供給源から純水を供給することができないので,供給に時間を要する。また,薬液が貯留されるタンクは,依存として相当の大きさを有しているので,洗浄装置の小型化に関して更に改善する余地がある。
【0007】
従って本発明の目的は,複数の洗浄液の供給時間を短縮し,装置の小型化を図ることができる,基板処理方法及び基板処理装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために,本発明は,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,処理槽内の液面が第1のレベルに到達するまで,前記複数の処理液を処理槽に同時に供給する工程と,液面が第1のレベルに到達した後,前記複数の処理液のうちで混合容量が最大の処理液の供給を停止し,混合容量が最大の処理液以外の処理液を混合容量まで供給する工程と,前記混合容量が最大の処理液以外の処理液を混合容量まで供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記複数の処理液のうちで混合容量が最大の処理液の供給を再開させ,前記処理槽内の液面が第2のレベルに到達するまで,前記混合容量が最大の処理液を供給する工程を有し,少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を満たす位置に前記第2のレベルは設定されることを特徴としている。
【0009】
基板とは,半導体ウェハやLCD基板用ガラス等の基板などが例示され,その他,CD基板,プリント基板,セラミック基板などでも良い。混合容量が最大の処理液には,例えば純水があり,混合容量が最大の処理液以外の処理液には,各種薬液がある。
【0010】
このような基板処理方法にあっては,処理槽内の液面が第1のレベルに到達するまで,複数の処理液を処理槽に供給するので,混合容量が最大の処理液以外の処理液を各々の混合容量だけ供給した後でなければ混合容量が最大の処理液を供給することができない場合と比べて,供給時間を短縮することができる。また,第1のレベルに到達した後は混合容量が最大の処理液の供給を一旦停止し,混合容量が最大の処理液以外の処理液を混合容量供給した後に,混合容量が最大の処理液の供給を再開させ,処理槽内の液面が第2のレベルに到達するまで,混合容量が最大の処理液を供給するので,混合容量が最大の処理液も混合容量だけ自動的に供給することが可能となる。
【0011】
また本発明は,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,前記複数の処理液のうちで混合容量が最大の処理液を第1の流量として,混合容量が最大の処理液以外の処理液を混合容量供給するまで,複数の処理液を処理槽に同時に供給する工程と,前記混合容量が最大の処理液以外の処理液を混合容量供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記混合容量が最大の処理液を第1の流量よりも大きい第2の流量で供給する工程を有し,前記第1の流量は,前記混合容量が最大の処理液以外の処理液を混合容量供給した後でも処理槽内に前記混合容量が最大の処理液を供給できるスペースを残せるような流量に設定されていることを特徴としている。
【0013】
この基板処理方法にあっては,混合容量が最大の処理液以外の処理液を混合容量供給した後でも処理槽内に前記混合容量が最大の処理液を供給できるスペースを残せるように,混合容量が最大の処理液を第1の流量で供給する一方で,混合容量が最大の処理液以外の処理液を混合容量供給するまで,複数の処理液を処理槽に供給するので,供給時間を短縮することができる。また,混合容量が最大の処理液以外の処理液を混合容量供給した後,混合容量が最大の処理液を第1の流量より大きい第2の流量で供給するので,この混合容量が最大の処理液を混合容量だけ自動的に短時間で供給することが可能となる。
【0014】
また本発明は,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,処理槽内の液面が第1のレベルに到達するまで,複数の処理液を同時に処理槽に供給する工程と,第1のレベルに到達した時点で,複数の処理液のうちで混合容量が最大の処理液以外の処理液を混合容量供給したか否かを判別する工程を有し,前記判別により,前記混合容量が最大の処理液以外の処理液を未だ混合容量供給していないと判別した場合は,混合容量が最大の処理液の供給を停止すると共に,前記混合容量が最大の処理液以外の処理液を混合容量まで供給する工程と,前記混合容量が最大の処理液以外の処理液を混合容量まで供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記複数の処理液のうちで混合容量が最大の処理液の供給を再開させ,前記処理槽内の液面が第2のレベルに到達するまで,前記混合容量が最大の処理液を供給する工程を有し,前記判別により,前記混合容量が最大の処理液以外の処理液全てを混合容量供給していると判別した場合は,前記混合容量が最大の処理液以外の処理液の供給を停止せずに,前記処理槽内の液面が第2のレベルに到達するまで,混合容量が最大の処理液を供給する工程を有し,少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を満たす位置に前記第2のレベルは設定されることを特徴としている。
【0016】
この基板処理方法にあっては,処理槽内の液面が第1のレベルに到達するまで,複数の処理液を処理槽に供給するので,同様に供給時間を短縮することができる。また,処理槽内の液面が第1のレベルに到達した時点で,混合容量が最大の処理液以外の処理液を混合容量供給したか否かを判別する。例えば混合容量が最大の処理液以外の処理液全てを未だ混合容量供給していないと判別した場合には,混合容量が最大の処理液の供給を一旦停止し,混合容量が最大の処理液以外の処理液全てを混合容量まで供給することを先に済ます。その後,処理槽内の液面が第2のレベルに到達するまで,混合容量が最大の処理液を供給するので,同様に混合容量が最大の処理液を混合容量だけ自動的に供給することが可能となる。また,混合容量が最大の処理液以外の処理液全てを混合容量まで供給した後でも,処理槽内に混合容量が最大の処理液を供給できるスペースを残せるように,第1のレベルは,処理槽における第1のレベルと第2のレベルの間の容量が混合容量が最大の処理液以外の処理液全ての混合容量よりも多くなるような位置に設定される。
【0017】
また,混合容量が最大の処理液以外の処理液の少なくとも1つの処理液を未だ混合容量供給していないと判別した場合,混合容量が最大の処理液の供給を一旦停止し,この未だ混合容量供給していない混合容量が最大の処理液以外の処理液を混合容量まで供給することを先に済ます。その後,混合容量が最大の処理液の供給を再開させて第2のレベルまで供給すると良い。また,第1のレベルは,処理槽における第1のレベルと第2のレベルの間の容量が未だ混合容量供給されていない混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に設定される。
【0018】
前記判別により,前記混合容量が最大の処理液以外の処理液全てを混合容量供給していると判別した場合,前記処理槽内の液面が第2のレベルに到達するまで,混合容量が最大の処理液を供給する工程を有する。また,少なくとも複数の処理液を処理槽に供給している間に混合容量が最大の処理液以外の処理液全てを混合容量供給した時点での処理槽内の液面よりも高い位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を満たす位置に前記第2のレベルは設定されることが好ましい。
【0019】
この基板処理方法にあっては,処理槽内の液面が第1のレベルに到達するまで,複数の処理液を処理槽に供給するので,同様に供給時間を短縮することができる。また,処理槽内の液面が第1のレベルに到達した時点で,混合容量が最大の処理液以外の処理液を混合容量供給したか否かを判別する。例えば混合容量が最大の処理液以外の処理液全てを既に混合容量供給していると判別した場合には,そのまま混合容量が最大の処理液を,処理槽内の液面が第2のレベルに到達するまで供給することにより,混合容量だけ自動的に供給する。この場合,既に混合容量が最大の処理液以外の処理液全てを混合容量供給しているので,第1のレベルと第2のレベルの間の容量が混合容量が最大の処理液以外の処理液全ての混合容量よりも多くなるような位置に第1のレベルは設定される必要は無くなり,第1のレベルと第2のレベルの間の容量が混合容量が最大の処理液以外の処理液全ての混合容量よりも少なくなるような位置に第1のレベルは設定されても良い。また,第1のレベルは,複数の処理液を処理槽に供給している間に混合容量が最大の処理液以外の処理液全てを混合容量供給した時点での処理槽内の液面よりも高い位置に設定される。
【0020】
また本発明は,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する装置であって,前記複数の処理液のうちで混合容量が最大の処理液と,混合容量が最大の処理液以外の処理液を供給する複数の供給路と,これら複数の供給路にそれぞれ設けられた弁と,前記処理槽内の液面の高さが第1のレベルに到達したことを検出するための第1のセンサと,前記処理槽内の液面の高さが第2のレベルに到達したことを検出するための第2のセンサと,前記第1のセンサから出力される検出信号と,前記第2のセンサから出力される検出信号に基づいて少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁の開閉を制御するコントローラを備え,少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を検出する位置に前記第2のレベルは設定され,前記第1のセンサの検出信号が前記コントローラに出力された時点で,前記混合容量が最大の処理液以外の処理液を未だ混合容量供給していない場合は,前記コントローラは少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁を閉じるように制御し,前記第1のセンサの検出信号が前記コントローラに出力された時点で,前記混合容量が最大の処理液以外の処理液全てを混合容量供給している場合は,前記コントローラは少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁を閉じないように制御することを特徴としている。
【0023】
前記混合容量が最大の処理液以外の処理液を供給する供給路は,前記混合容量が最大の処理液以外の処理液を貯留するタンクに接続されても良い。混合容量が最大の処理液は,例えば工場内の供給源から供給路を介して処理槽に直接供給され,混合容量が最大の処理液以外の処理液は,タンクに一旦貯留されてから処理槽に供給される。このように混合容量が最大の処理液を貯留するタンクを設ける必要がないので,装置を小型化することができる。なお,複数の処理液が例えば純水と各種薬液からなり,混合容量が最大の処理液が純水である場合には,純水は直接供給され,複数の処理液が例えば各種薬液のみからなる場合には,混合容量が最大の薬液は直接供給される。
【0024】
前記タンクの上部に,前記混合容量が最大の処理液以外の処理液が混合容量の1/N(N:自然数)の容量貯留されたことを検出する定量センサが設置され,前記タンクの下部に,前記混合容量が最大の処理液以外の処理液が混合容量の1/Nの容量供給されたことを検出する下限センサが設置されることが好ましい。この場合,前記コントローラは,前記定量センサから出力される検出信号と,前記下限センサから出力される検出信号に基づいて前記弁の開閉を制御することが好ましい。
【0025】
この基板処理装置にあっては,先ずタンク内の液面が定量センサの位置(高さ)に到達するまで,コントローラはタンクに接続された供給路の弁を閉じる。タンク内に,混合容量が最大の処理液以外の処理液は混合容量の1/Nの容量貯留される。タンク内の液面が定量センサの位置(高さ)に到達すると,これを定量センサが検出して検出信号をコントローラに出力する。この検出信号を受けたコントローラは,タンク内の液面が下限センサの位置(高さ)に下がるまで,前記弁を開く。これにより処理槽に,混合容量が最大の処理液以外の処理液は混合容量の1/Nの容量供給される。そして,タンク内の液面が下限センサの位置(高さ)に下がると,これを下限センサが検出して検出信号をコントローラに出力する。この検出信号を受けたコントローラは,前記弁を閉じる。先と同様にタンク内の液面が定量センサの位置(高さ)に到達するまでタンク内に混合容量が最大の処理液以外の処理液は貯留される。こうして,弁の開閉を数回繰り返して混合容量が最大の処理液以外の処理液の貯留と供給を交互に所定回数,すなわちN回行えば,混合容量が最大の処理液以外の処理液を混合容量供給することができる。このようにタンク内から数回に渡って混合容量が最大の処理液以外の処理液を供給するので,1回で混合容量が最大の処理液以外の処理液を供給できるようにタンクの容積を大きくとる場合に比べて,タンクを小型化することができる。
【0026】
また本発明は,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する装置であって,前記複数の処理液のうちで混合容量が最大の処理液と,混合容量が最大の処理液以外の処理液を供給する複数の供給路と,これら複数の供給路にそれぞれ設けられたフローメータと,前記混合容量が最大の処理液以外の処理液を供給する供給路に設けられた開閉弁と,前記混合容量が最大の処理液を供給する供給路に設けられた流量調整弁と,前記処理槽内の液面の高さを検出するために設けられた液面センサと,前記フローメータから出力される検出信号と,前記液面センサから出力される検出信号に基づいて前記開閉弁と前記流量調整弁を制御するコントローラを備え,前記コントローラは,混合容量が最大の処理液以外の処理液を混合容量供給するまでは,前記開閉弁を開き,前記混合容量が最大の処理液を第1の流量とさせるように前記流量調整弁を調整し,前記混合容量が最大の処理液以外の処理液を混合容量供給した後,前記開閉弁を閉じ,前記混合容量が最大の処理液を第1の流量よりも大きい第2の流量とさせるように前記流量調整弁を調整し,前記第1の流量は,前記混合容量が最大の処理液以外の処理液を混合容量供給した後でも処理槽内に前記混合容量が最大の処理液を供給できるスペースを残せるような流量に設定されることを特徴としている。
【0027】
前記液面センサは,前記処理槽内の液面の高さに基づいて処理に必要な混合液の総容量を検出することが好ましい。
【0028】
混合容量が最大の処理液と混合容量が最大の処理液以外の処理液は,例えば工場内の各々の供給源から供給路を介して処理槽にそれぞれ直接供給されるので,例えばタンクを全く設置する必要がなくなり,装置の小型化をより一層図ることができる。
【0029】
なお,複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する装置であって,少なくとも1つの処理液を一定容量貯留するためのタンクから処理槽に処理液を供給するための第1の供給路と,他の処理液の1つをその処理液の処理液供給源から処理槽に供給するための第2の供給路と,第2の供給路に設けられた弁と,処理槽内の液面の高さを検出するために設けられた液面センサと,液面センサから出力される検出信号に基づいて前記弁の開閉を制御するコントローラとを備えることを特徴としている。
【0030】
この基板処理装置において,前記液面センサの検出信号が前記コントローラに出力された時点で,前記タンクから供給される処理液を未だ混合容量供給していない場合,コントローラが前記弁を閉じるように制御し,更に,前記コントローラは,第1の供給路から処理液を混合容量まで供給した時点で,前記弁を再び開くように制御しても良い。また,前記タンクには薬液が貯留され,前記処理液供給源が純水供給源であることが好ましい。
【0031】
【発明の実施の形態】
以下,添付図面を参照しながら本発明の好ましい実施の形態を説明する。図1は,本発明の実施の形態にかかる基板処理装置としての洗浄装置12〜19を備えた洗浄システム1の斜視図である。この洗浄システム1は,搬入部2と,洗浄・乾燥処理部10と,搬出部50とを備え,キャリアC単位での基板としてウェハWの搬入,ウェハWの洗浄,乾燥処理,キャリアC単位でのウェハWの搬出までを一貫して行うように構成されている。
【0032】
搬入部2は,洗浄前のウェハWを25枚収納したキャリアCを搬入しウェハWを洗浄に移行させるまでの動作を行う。即ち,搬入ステージ5に載置されたキャリアCを移送装置6によってローダ7へ例えば2個ずつ搬送し,このローダ7でキャリアCからウェハWを取り出す構成になっている。
【0033】
洗浄・乾燥処理部10には,搬入部2側から順に,ウェハWを搬送する搬送装置30のウェハチャック30a,30aを洗浄および乾燥するためのウェハチャック洗浄・乾燥装置11,各種の薬液や純水等の洗浄液を用いてウェハWを洗浄する各洗浄装置12〜19,搬送装置33のウェハチャック33a,33aを洗浄および乾燥するためのウェハチャック洗浄・乾燥装置20,および洗浄装置12〜19で洗浄されたウェハWに対して,乾燥処理を行う乾燥装置21が配列されている。さらに洗浄・乾燥処理部10の前面側(図1における手前側)には,前述の搬送装置30,31,32,33が配列されている。一般的な洗浄プロセスに従い,薬液洗浄とリンス洗浄とが交互に行えるように例えば洗浄装置12,14,16,18は薬液洗浄(薬液処理)を行うように構成され,洗浄装置13,15,17,19はリンス洗浄(リンス処理)を行うように構成されている。洗浄装置12,14,16,18で行われる薬液洗浄は,それぞれ種類が異なっている。また,洗浄装置13,15,17,19では,純水を用いてリンス洗浄が行われる。
【0034】
なお,以上の配列や洗浄装置12〜19の組合わせは,ウェハWに対する洗浄処理の種類によって任意に組み合わせることができる。例えば,ある洗浄装置を減じたり,逆にさらに他の種類の薬液を用いてウェハWを薬液洗浄する洗浄装置を付加してもよい。
【0035】
搬出部50は,洗浄・乾燥処理部10で洗浄,乾燥されたウェハWをキャリアCに装填後にキャリアC単位で搬出する。即ち,アンローダ51によって,洗浄後のウェハWが収納されたキャリアCを,移送装置(図示せず)によって,搬出ステージ52にまで搬送する構成になっている。
【0036】
薬液洗浄が行われる洗浄装置12,14,16,18は何れも同様の構成を有するので,洗浄装置12を例にとって説明する。図2に示すように,洗浄装置12は,ウェハWの洗浄処理が行われる処理槽としての洗浄槽60を備えている。
【0037】
洗浄槽60は,複数の洗浄液を供給して生成された混合液にウェハWを浸漬させる内槽61と,該内槽61から溢れ出た混合液を受け止める外槽62とを備えている。内槽61は,ウェハWを収納するのに充分な大きさを有する箱形に形成され,外槽62は,内槽61の開口部を取り囲んで装着される。
【0038】
内槽61と外槽62との間には,洗浄中に混合液を循環させる循環回路63が接続されている。この循環回路63の入口は,外槽62の底面に接続されている。この循環回路63には,ポンプ65,フィルタ66が順に配列され,循環回路63の出口は,内槽61の底面に接続されている。洗浄中は,内槽61から外槽62にオーバーフローした混合液を循環回路63内で循環させ,浄化した後に再び内槽61内に供給するようになっている。また,内槽61,外槽62の各底面には,排液が行えるようにドレイン管(図示せず)が接続されている。
【0039】
内槽61には,純水と例えば2種類の薬液とが各々の混合容量だけ供給されて混合液が生成される。純水は,供給される洗浄液のうちで混合容量が最大である。薬液は,混合容量が最大の処理液以外の処理液としての役割を果たし,例えばアンモニア水溶液(NHOH),塩酸(HCl),フッ酸(HF),過酸化水素水(H)等がある。例えばアンモニア水溶液,過酸化水素水,純水が供給されると,APM(NHOH/H/HOの混合液)が生成され,例えば塩酸,過酸化水素水,純水が供給されると,HPM(HCl/H/HOの混合液)が生成される。
【0040】
洗浄装置12には,薬液が貯留されるタンク70,71が設けられ,純水を供給する供給路72(第2の供給路)が導入されている。タンク70に貯留されるものを薬液Aとし,タンク71に貯留されるものを薬液Bとする。
【0041】
タンク70には,混合容量が最大の処理液以外の処理液を供給する供給路としてのタンク供給路73(第1の供給路)と,タンク補充路74が接続され,タンク供給路73により洗浄槽60に薬液Aを供給し,タンク補充路74により薬液Aを洗浄槽60に適宜補充する。タンク供給路73には,開閉弁75が設けられ,タンク補充路74には流量調整弁76が設けられている。そして,工場内の薬液Aの薬液供給源に通じた薬液供給路77によりタンク70内には薬液Aが貯留され,この薬液供給路77には,開閉弁78が設けられている。同様にタンク71にも,タンク供給路80,タンク補充路81が接続されている。タンク供給路80には開閉弁82が設けられ,タンク補充路81には流量調整弁83が設けられている。そして,薬液供給路84によりタンク71内に薬液Bが貯留され,薬液供給路84には開閉弁85が設けられている。
【0042】
供給路72は,工場内の純水供給源(図示せず)に通じており,純水供給源から純水を内槽61に直接供給するようになっている。供給路72には,開閉弁86が設けられている。また,純水を補充する補充路87も導入され,この補充路87には,流量調整弁88が設けられている。この場合,薬液A,B,純水の混合比率は,例えば1:1:48となっている。混合容量が最大の純水を貯留するタンクを設けると,装置の大型化を招いてしまうが,このように純水を純水供給源から供給路72を通して洗浄槽60に対して直接供給することにより,この純水を貯留するタンクを不要にし,装置の小型化を図っている。また,タンク70,71を,洗浄槽60の上方に設置し,自重により液供給や液補充を行う。そうすれば,タンク供給路73,80に供給ポンプや,タンク補充路74,81に補充ポンプを設けなくて済む。これによっても,装置の小型化を図ることができる。
【0043】
次いで,洗浄装置12の制御系について説明する。タンク70では,上部に定量センサTS1が設けられ,下部に下限センサTS2が設けられている。同様にタンク71では,上部に定量センサTS3が設けられ,下部に下限センサTS4が設けられている。これら各センサの検出信号は,コントローラ90に対して出力される。また,内槽61には,第1のセンサとしてのセンサ管91が設けられ,外槽62には,第2のセンサとしてのセンサ管92が設けられている。これら各センサ管91,92は,管内の気体の圧力を検出し,その圧力検出信号をコントローラ90に対して出力して液面の位置(高さ)を検出するための液面センサとしての役割を果たす。一方,コントローラ90は,前記開閉弁75,78,82,85,86と,前記流量調整弁76,83,88に対して制御信号を出力する。
【0044】
コントローラ90による制御を,図3〜図7に基づいて説明する。先ずコントローラ90は,定量センサTS1と下限センサTS2から出力される検出信号と,定量センサTS3と下限センサTS4から出力される検出信号とに基づいて開閉弁75,78,82,85,86を制御する。タンク70,71では同様の制御が行われるので,タンク70を例にとって説明する。タンク70において,定量センサTS1は,薬液Aが混合容量の1/N(N:自然数)の容量貯留されたことを検出し,下限センサTS2は,薬液Aが混合容量の1/Nの容量供給されたことを検出する。例えば前述したように薬液A,B,純水の混合比率は1:1:48であって,洗浄処理に必要な混合液の総容量が20L(リットル)である場合,薬液A,Bの各混合容量は,0.4Lとなり,純水の混合容量は,19.2Lとなる。例えばN=4である場合には,1回の供給毎にタンク70には0.1Lの薬液Aが貯留される。このようにタンク70は,一定容量の薬液を貯留し,タンク70の大きさは,少なくともこの一定容量(この例では0.1L)を越えるように設計されていればよい。
【0045】
先ずコントローラ90は,開閉弁75を閉じると共に開閉弁78を開き,薬液供給路77から薬液Aをタンク70内に供給させる。図3に示すように,タンク70内に薬液Aを混合容量の1/Nの容量貯め,液面が定量センサTS1の位置(高さ)に到達すると,これを定量センサTS1が検出して検出信号をコントローラ90に出力する。この検出信号を受けたコントローラ90は,開閉弁78を閉じて薬液供給路77からの薬液Aの供給を停止させる。一方,開閉弁75を開き,タンク70から薬液Aを洗浄槽60に供給させる。その後,図4に示すように,薬液Aを混合容量の1/Nの容量供給して液面が下限センサTS2の位置(高さ)まで下がると,これを下限センサTS2は検出して検出信号をコントローラ90に出力する。この検出信号を受けたコントローラ90は,開閉弁75を閉じて薬液Aの供給を停止させる。一方,再び開閉弁78を開き,薬液供給路77から薬液Aを供給させてタンク70内に貯める。図3に示すように,タンク70内に薬液Aを再び貯留し,洗浄槽60に供給可能な状態になる。こうして開閉弁75,78の開閉を数回繰り返して薬液Aの供給を所定回数,すなわちN回行うと,洗浄槽60に対して混合容量の薬液Aを供給することができる。そして,混合容量の薬液Aを供給し,下限センサTS2から最後(N回目)の検出信号がコントローラ90に出力されると,コントローラ90は,開閉弁75を閉じて以後の薬液Aの供給を停止させる。このように,タンク70内から数回に渡って薬液Aを供給するので,従来のように1回で薬液Aを供給できるようにタンク70の容積を大きくとる必要がなくなり,タンク70を小型化することができる。同様にタンク71でも,定量センサTS3は,薬液Bが混合容量の1/N(N:自然数)の容量貯留されたことを検出し,下限センサTS4は,薬液Bが混合容量の1/Nの容量供給されたことを検出する。また,開閉弁82,85の開閉をN回繰り返して薬液Bの貯留と供給を交互に行うと,洗浄槽60に混合容量の薬液Bを供給することができる。そして,混合容量の薬液Bを供給し,下限センサTS4から最後(N回目)の検出信号がコントローラ90に出力されると,コントローラ90は,開閉弁82を閉じて以後の薬液Bの供給を停止させる。この場合も,タンク71を従来に比べて小型化することができる。一方,このように下限センサTS2,TS4から何れもN回目の検出信号がコントローラ90に出力されると,後述するようにコントローラ90は,開閉弁86を開いて純水を供給させるようになっている。なお,薬液A,Bの供給回数は,各薬液毎に個別に設定することができ,供給回数が互いに異なっていても良い。
【0046】
またコントローラ90は,センサ管91,92から出力される圧力検出信号に基づいて開閉弁75,82,86を制御する。センサ管91は,先端部が液中に沈められるように,内槽61の所定位置に先端口が開口し,図示しない気体供給手段により,液面上の気圧(例えば大気圧)よりも高い圧力を有する気体例えばNガス(不活性ガス)が一定流量で供給される。液面の高さが所定位置に到達して先端部が液中に沈められると,液体が管内に入り込まないように気体供給手段はNガスの供給圧を上げて供給するようになり,管の先端口からは例えば気泡が出る。一方,センサ管91内に供給される気体の圧力(管内の圧力),即ちNガスの供給圧は,センサ管91の先端口が内槽61内の液から受ける圧力に等しく,この先端口から液面までの距離に比例するという関係が成立する。そして,管の先端口の位置を所定位置(既知の値)に設定しておき,センサ管91によりNガスの供給圧を検出して圧力検出信号をコントローラ90に出力することにより,その圧力検出信号に基づいて管先端口から液面までの距離を検出し,ひいては内槽61内の液面の位置(高さ)を検出することができる。内槽61内の液面が上昇し,センサ管91から所定の信号レベルの圧力検出信号が出力されると,コントローラ90は,内槽61内の液面は内槽61に設定された第1のレベルS1に到達したことを認識する。また,センサ管92は,外槽62の所定位置に先端口が開口し,センサ管91と同様にNガス等は管内に液体が入り込まないように管の先端口まで充満するように供給される。そして,センサ管92により圧力検出信号をコントローラ90に出力することにより,その圧力検出信号に基づいて外槽62内の液面の位置(高さ)を検出することができる。外槽62内の液面が上昇し,センサ管92から所定の信号レベルの圧力検出信号が出力されると,コントローラ90は,外槽62内の液面は外槽62に設定された第2のレベルS2に到達したことを認識する。ここで,少なくとも洗浄槽60における第1のレベルS1と第2のレベルS2の間の容量が薬液A,Bの各混合容量の合計よりもよりも多くなるような位置(高さ)に第1のレベルS1は設定され,洗浄処理に必要な混合液の総容量を検出する位置(高さ)に第2のレベルS2は設定されている。
【0047】
コントローラ90は,内槽61内の液面が第1のレベルS1に到達した時点で,洗浄槽60内に薬液A,Bをそれぞれ混合容量供給したか否か判別する。即ち,コントローラ90は,前述したようにセンサ管91から所定の信号レベルの圧力検出信号が出力された時点で内槽61内の液面が第1のレベルS1に到達したことを認識すると共に,下限センサTS2,TS4から最後の検出信号が出力されているかどうか確認する。内槽61内の液面が第1のレベルS1に到達した時点で,下限センサTS2,TS4から最後の検出信号が出力されていなければ,薬液A,Bを未だ混合容量供給していないと判別し,そのような場合,コントローラ90は,弁86を閉じて純水の供給を一旦停止すると共に,弁75,82の開閉を繰り返して薬液A,Bを混合容量まで供給するように制御する。
【0048】
例えば洗浄槽60内に混合液を充填する場合,先ず開閉弁75,82,86の何れも開いて薬液A,B,純水を同時に内槽61に供給する。この場合,前述したようにタンク70,71から薬液A,Bを数回に渡って供給する。そして,図5に示すように内槽61内に液が貯まり内槽61の液面が,第1のレベルS1に到達すると,これをセンサ管91は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,この時点で,下限センサTS2,TS4から最後の検出信号が出力されておらず,薬液A,Bを未だ混合容量供給していないと判別している場合,開閉弁86を閉じて純水の供給を停止させる。一方,薬液A,Bの供給はそのまま続けさせる。例えば図6に示すように内槽61内が充填されて外槽62に液が溢れ出る。そして,前述したように下限センサTS2,TS4から最後の検出信号が出力されて混合容量の薬液A,Bをそれぞれ供給すると,コントローラ90は,開閉弁75,82を閉じると共に,開閉弁86を開いて純水の供給を再開する。このように薬液A,B全てを未だ混合容量供給していないと判別した場合には,純水の供給を一旦停止し,薬液A,B全てを混合容量まで供給することを先に済ますようになっている。
【0049】
また純水の供給を再開させた場合,先ず外槽62内に液が貯まり,図7に示すように,外槽62の液面が第2のレベルS2に到達する。そうなると,これをセンサ管92は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止させる。こうして,洗浄槽60に混合液が充填される。ここで,薬液A,B,純水の各混合容量の合計は,洗浄処理に必要な混合液の総容量に等しいので,このように薬液A,Bを各々の混合容量だけ供給した後に純水を供給した場合,純水を第2のレベルS2にまで供給することにより,混合容量の純水を洗浄槽60に自動的に供給することが可能となる。また,このように洗浄槽60内に,薬液A,B,純水を各々の混合容量だけ供給するので,洗浄槽60内に,所定の混合比率の混合液を生成することができる。なお,純水の供給を再開させるにあたっては,外槽62に純水を供給できるスペースを残しておけるように,前述したように少なくとも洗浄槽60における第1のレベルS1と第2のレベルS2の間の容量が薬液A,Bの各混合容量の合計よりも多くなるような位置に第1のセンサS1は設定されると良い。また,内槽61内の液容量と外槽62内の液容量の合計が洗浄処理に必要な混合液の総容量に等しくなるように,第2のレベルS2を設定しても良いし,循環回路63で循環が行われて混合液が流通すると,外槽62内の液面が下がるので,この循環回路63で流通する液容量を考慮に入れて,内槽61内の液容量と外槽62内の液容量と循環回路63で流通する液容量の合計が,洗浄処理に必要な混合液の総容量に等しくなるように,第2のレベルS2を設定しても良い。例えば純水を第2のレベルS2にまで一旦供給してから,循環回路63で循環を行わせる。循環回路63内に液が流れ込んで外槽62内の液面が下がると,これを見計らって再び純水を第2のレベルS2にまで供給する。ちょうど2回に渡って純水を第2のレベルS2に供給することにより,混合容量の純水を供給する。
【0050】
またコントローラ90は,ウェハWの洗浄回数や洗浄時間等に応じて流量調整弁76,83,88を制御する。例えば洗浄中に薬液成分が蒸発し,混合液中の薬液濃度が徐々に低下することがある。また,洗浄処理の進行に従って,洗浄槽60内の混合液の液量が徐々に減少することがある。そこで,コントローラ90は,例えば所定の洗浄回数毎又は洗浄時間毎に,流量調整弁76,83,88の流量を調整し,薬液A,B,純水を適宜補充する。なお,補充レシピは,M/C画面(図示せず)にて,薬液A,B,純水の補充量や,回数や時間等を入力することにより設定される。
【0051】
なお,代表して洗浄装置12について説明したが,他の薬液洗浄が行われる洗浄装置14,16,18も同様の構成を有しており,所定の混合比率の混合液を生成するようになっている。
【0052】
さて,洗浄システム1において図示しない搬送ロボットが未だ洗浄されていないウェハWを例えば25枚ずつ収納したキャリアCを搬入部2の搬入ステージ5に複数載置する。そして,この搬入部2によって,例えばキャリアC2個分の50枚のウェハWをキャリアCから取り出し,搬送装置30が,ウェハWを50枚単位で一括して把持する。そして,それらウェハWを搬送装置31,32,33に引きつきながら,各洗浄装置12〜19に順次搬送する。こうして,ウェハWの表面に付着しているパーティクル等の不純物質を除去する洗浄を行う。最後に,乾燥装置21において乾燥処理を行い,搬出部50を介してキャリアC単位で装置外に搬出する。
【0053】
ここで,代表して洗浄装置12における薬液A,B,純水の供給を,先の図3〜図7及び図8中のフローチャートに基づいて説明する。まず薬液Aは,図3に示したように薬液供給路77から供給されてタンク70に混合容量の1/Nの容量貯留される。そうなると,これを定量センサTS1は検出して検出信号をコントローラ90に出力する。この検出信号を受けたコントローラ90は,開閉弁78を閉じて薬液Aの供給を停止させる。同様に薬液Bも,薬液供給路84から供給されてタンク71に混合容量の1/Nの容量貯留されると,薬液供給路84からの供給が停止させられる。そして,コントローラ90は,開閉弁75,82,86を開き,タンク供給路73から薬液Aを,タンク供給路80から薬液Bを,純水供給源から純水を供給路72を通して内槽61にそれぞれ供給する(図8中のS1)。このように薬液A,B,純水を同時に供給するので,複数の洗浄液の供給が効率的に行われる。この場合,薬液A,B,純水の混合比率は,例えば1:1:48となっており,純水の混合容量が最大である。このように混合容量が最大の純水は,タンクに貯められずに純水供給源から直接供給される。
【0054】
また,薬液Aは混合容量の1/Nの容量供給されると,図4に示したように,タンク70内の液面が下限センサTS2の位置(高さ)まで下がる。そうなると,これを下限センサTS2は検出して検出信号をコントローラ90に出力する。この検出信号を受けたコントローラ90は,開閉弁75を閉じて薬液Aの供給を停止させる。一方,開閉弁78を開き,薬液供給路77から薬液Aを供給させてタンク70内に貯留させる。図3に示したようにタンク70内の液面が定量センサTS1の位置(高さ)まで上がると,定量センサTS1は検出信号をコントローラ90に出力する。この検出信号を受けたコントローラ90は,開閉弁78を閉じると共に,開閉弁75を開いて薬液Aの供給を再開する。同様にタンク71内でも,薬液Bの貯留と供給を繰り返す。
【0055】
純水を供給すると共に,薬液A,Bの供給を数回繰り返すと,図5に示したように,内槽61内に液が貯まって液面が第1のレベルS1まで上昇する。このように液面が第1のレベルS1に到達すると(図8中のS2),これをセンサ管91は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,この時点では,下限センサTS2,TS4から最後の検出信号が出力されておらず,薬液A,Bを未だ混合容量供給していないと判別しているので,開閉弁86を閉じて純水の供給を停止させる(図8中のS3)。一方,薬液A,Bの供給は,そのまま続けられて図6に示したように,例えば内槽61内を充填して外槽62に液を溢れ出させる。
【0056】
タンク70からN回に渡って薬液Aを供給することにより,混合容量の薬液Aを洗浄槽60に供給する。下限センサTS2から最後(N回目)の検出信号がコントローラ90に出力されると,コントローラ90は,開閉弁75を閉じ,以後,薬液Aの供給を停止させる。同様にタンク71からN回に渡って薬液Bを供給することにより,混合容量の薬液Bを洗浄槽60に供給する。下限センサTS4から最後(N回目)の検出信号がコントローラ90に出力されると,コントローラ90は,開閉弁82を閉じ,以後,薬液Bの供給を停止させる。こうして薬液A,Bは各々の混合容量だけ供給される。
【0057】
また,このように混合容量の薬液A,Bが供給されると(図8中のS4),コントローラ90は,開閉弁86を開いて純水の供給を再開させる(図8中のS5)。純水が供給され,図7に示したように,外槽62内の液面は上昇して第2のレベルS2に到達する。このように液面が第2のレベルS2に到達すると(図8中のS6),これをセンサ管92は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止させる(図8中のS7)。このように第1のレベルS1に到達した後は純水の供給を一旦停止し,薬液A,Bを混合容量供給した後に,純水の供給を再開させ,洗浄槽60内の液面が第2のレベルS2に到達するまで,純水を供給するので,混合容量が最大の処理液である純水を混合容量だけ自動的に供給することが可能となる。また,このように薬液A,B,純水を各々の混合容量だけ供給するので,所定の混合比率の混合液を生成することが可能となる。
【0058】
循環回路63で洗浄槽60内の混合液は循環され,薬液A,B,純水は適切に混ぜ合わせられる。また,洗浄槽60内にウェハWを浸漬させて洗浄処理を施す。洗浄処理が進みにつれて,混合液中の薬液濃度が徐々に低下したり,混合液の容量自体も徐々に低下することがあるので,所定の洗浄能力を維持するために,例えば所定時間毎に,コントローラ90は,流量調整弁76,83,88を調整して薬液A,B,純水を適宜補充する。こうして,洗浄槽60内では,混合液の洗浄能力が安定し,好適な洗浄処理が行われる。
【0059】
かかる洗浄装置12によれば,内槽61内の液面が第1のレベルS1に到達するまで,純水,薬液A,Bを洗浄槽60に供給するので,薬液A,Bを各々の混合容量だけ供給した後でなければ純水を供給することができない場合と比べて,供給時間を短縮することができる。また,混合容量が最大の純水を貯留するタンクを設ける必要がないので,装置を小型化することができる。さらにタンク70内から数回に渡って薬液Aを供給するようにしたので,タンク70の大きさを従来に比べて数分の一に抑えることができる。同様にタンク71の大きさも従来に比べて数分の一に抑えることができる。このため,装置の小型化を更に図ることができる。
【0060】
以上,本発明の好適な実施の形態の一例を示したが,本発明はここで説明した形態に限定されない。例えば先に説明した実施の形態では,内槽61内の液面が第1のレベルS1に到達した時点で,薬液A,B全てを未だ混合容量供給していない場合について説明したが,内槽61内の液面が第1のレベルS1に到達する前に,薬液A,B全てを既に混合容量供給している場合もある。このような場合の薬液A,B,純水の供給を,図9〜図11及び図12中のフローチャートに基づいて説明する。
【0061】
まず薬液A,B,純水を内槽61にそれぞれ供給する(図12中のS1)。タンク70では薬液Aの貯留と供給が数回繰り返され,同様にタンク71でも薬液Bの貯留と供給が数回繰り返される。そして図9に示すように,内槽61内の液面が第1のレベルS1に到達する前に,タンク70,71からN回に渡って薬液A,Bを供給して混合容量の薬液A,Bを内槽61にそれぞれ供給する(図12中のS2)。下限センサTS2,TS4から最後(N回目)の検出信号がコントローラ90に出力され,この検出信号からコントローラ90は薬液A,Bを各々の混合容量だけ供給したことを認識し,開閉弁75,82を閉じて薬液A,Bの供給を停止させる。
【0062】
図10に示すように,純水が供給されて内槽61内の液面が第1のレベルS1に到達すると(図12中のS3),これをセンサ管91は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,既に下限センサTS2,TS4から最後(N回目)の検出信号を受けていることから,薬液A,B全てを混合容量供給していると判別する。そうなると,純水の供給を一旦停止する必要がなくなり,コントローラ90は,開閉弁86を閉じることなく純水の供給をそのまま続行させる(図12中のS4)。
【0063】
図11に示したように,外槽62内の液面は上昇して第2のレベルS2に到達すると(図12中のS5),これをセンサ管92は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止させる(図12中のS6)。こうして,薬液A,B,純水を各々の混合容量だけ供給して所定の混合比率の混合液を生成する。また,液面が第1のレベルS1に到達する前に薬液A,B全てを混合容量供給するので,第1のレベルS1と第2のレベルS2の間の容量が薬液A,Bの各混合容量の合計よりも多くなるような位置に第1のレベルS1は設定される必要は無くなり,第1のレベルS1と第2のレベルS2の間の容量が薬液A,Bの各混合容量の合計よりも少なくなるような位置に第1のレベルS1は設定されても良い。また,第1のレベルS1は,少なくとも薬液A,B,純水を洗浄槽60に供給している間に薬液A,Bをそれぞれ混合容量供給した時点での液面よりも高い位置に設定される。
【0064】
また,内槽61内の液面が第1のレベルS1に到達する前に,薬液A,Bのどちらか一方の薬液のみを混合容量だけ供給する場合もあり,このような場合についての薬液A,B,純水の供給を,図13〜図16及び図17中のフローチャートに基づいて説明する。例えば薬液Aのみを先に混合容量だけ供給し,薬液Bを未だ混合容量供給していない場合を例にとって説明する。
【0065】
まず薬液A,B,純水を内槽61にそれぞれ供給する(図17中のS1)。タンク70では薬液Aの貯留と供給が数回繰り返され,同様にタンク71でも薬液Bの貯留と供給が数回繰り返される。そして図13に示すように,内槽61内の液面が第1のレベルS1に到達する前に,タンク70からN回に渡って薬液Aを供給して混合容量の薬液Aを内槽61に供給する(図17中のS2)。下限センサTS2から最後(N回目)の検出信号がコントローラ90に出力され,この検出信号からコントローラ90は薬液Aを混合容量だけ供給したことを認識し,開閉弁75を閉じて薬液Aの供給を停止させる。
【0066】
純水を供給すると共に,薬液Bの供給を数回繰り返すと,図14に示したように,内槽61内に液が貯まって液面が第1のレベルS1まで上昇する。このように液面が第1のレベルS1まで上昇すると(図17中のS3),これをセンサ管91は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,この時点では下限センサTS4からの最後(N回目)の検出信号を受けておらず,薬液Bを未だ混合容量供給していないと判別するので,開閉弁86を閉じて純水の供給を停止させる(図17中のS4)一方で,開閉弁82を開閉を繰り返して薬液Bの供給をそのまま続けさせる。
【0067】
図15に示すように,タンク71からN回に渡って薬液Bを供給することにより,混合容量の薬液Bを洗浄槽60に供給する。下限センサTS4からの最後の検出信号が出力され,この検出信号を受けたコントローラ90は,開閉弁82を閉じ,以後,薬液Bの供給を停止させる。このように混合容量の薬液Bが供給されて薬液A,Bの両方が各々の混合容量だけ供給されると(図17中のS5),コントローラ90は,開閉弁86を開いて純水の供給を再開させる(図17中のS6)。
【0068】
図16に示すように,外槽62内の液面は上昇して第2のレベルS2に到達すると(図17中のS7),これをセンサ管92は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止させる(図17中のS8)。こうして,薬液A,B,純水を各々の混合容量だけ供給して所定の混合比率の混合液を生成する。
【0069】
また,図18に基づいて本発明の別の実施の形態にかかる洗浄装置100について説明する。この洗浄装置100は,内槽101のみからなる洗浄槽102を備えている。なお,洗浄槽102を設けた点を除けば,この洗浄装置100は先に説明した洗浄装置12と概ね同一の構成を有するため,図18において,先に説明した図2と共通の構成要素については同じ符号を付することにより,重複説明を省略する。
【0070】
内槽101には,前記センサ管91が設けられている。このセンサ管91からは,内槽101における第1,第2のレベルS2にそれぞれ対応した第1,第2の信号レベルの圧力検出信号がコントローラ90に出力され,これらの圧力検出信号によりコントローラ90は,内槽101内の液面の位置(高さ)が第1,第2のレベルS2にそれぞれ到達したことを認識する。
【0071】
このような洗浄装置100にあっては,先ず開閉弁75,82,86を開いて薬液A,B,純水を内槽101に供給する。次いで,内槽101内の液面が第1のレベルS1に到達すると,これをセンサ管91は検出して第1の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止する一方で,薬液A,Bを供給し続ける。タンク70から薬液Aを,タンク71から薬液Bをそれぞれ数回に渡って供給して各々の混合容量だけ薬液A,Bを供給すると,コントローラ90は,開閉弁75,82を閉じる。一方,開閉弁86を開いて純水の供給を再開させる。純水が供給されて内槽101内の液面が上昇して第2のレベルS2に到達すると,これをセンサ管91は検出して第2の信号レベルの圧力検出信号をコントローラ90に出力する。この圧力検出信号を受けたコントローラ90は,開閉弁86を閉じて純水の供給を停止させる。このような洗浄装置100によっても,洗浄装置12と同様に,所定の混合比率の混合液を生成することができると共に,供給時間の短縮化,装置の小型化を図ることができる。また洗浄装置100に,前述したような第1のレベルS1に到達する前に,薬液A,Bの両方を混合容量供給している場合や薬液A,Bのどちらか一方の薬液のみを混合容量だけ供給する場合の供給方法を適用することができる。
【0072】
また図19は,本発明の更に別の実施の形態にかかる洗浄装置110の説明図である。この洗浄装置110は,タンク70,71を取り外し,薬液Aの薬液供給源から薬液Aを供給する薬液供給路111と,同じく薬液Aの薬液供給源から薬液Aを補充する薬液補充路112と,薬液Bの薬液供給源から薬液Bを供給する薬液供給路113と,同じく薬液Bの薬液供給源から薬液Bを補充する薬液補充路114とを備えている。薬液供給路111にフローメータ115と前記開閉弁75を,薬液補充路112に流量調整弁116を,薬液供給路113にフローメータ117と前記開閉弁82を,薬液補充路114に流量調整弁118を,供給路72に流量調整弁119をそれぞれ設けている。また,コントローラ90は,フローメータ115,117からの出力に基づいて開閉弁75,82の開閉,流量調整弁119を制御する。さらに洗浄槽60では,液面センサとしてのセンサ管92が外槽62に設置されており,このセンサ管92により処理に必要な混合液の総容量を検出する。タンク70,71を取り外して薬液A,Bを各々の薬液供給源から直接供給するように構成した点を除けば,この洗浄装置110は先に説明した洗浄装置12と概ね同一の構成を有するため,図19において,先に説明した図2と共通の構成要素については同じ符号を付することにより,重複説明を省略する。
【0073】
このような洗浄装置110における薬液A,B,純水の供給を図20のフローチャートに基づいて説明する。先ずコントローラ90は,開閉弁75,82を開いて薬液A,Bを洗浄槽60に供給し,かつ流量調整弁119を調整して純水を第1の流量で洗浄槽60に供給する(図20中のS1)。この第1の流量は,薬液A,Bを各々の混合容量で供給した後にも洗浄槽60に純水の供給スペースが残せるような流量に設定されている。この場合,薬液Aでは,フローメータ115から薬液Aの流量はコントローラ90に出力される。コントローラ90では,積算が行われて混合容量の薬液Aが供給されたと判明すると,開閉弁75を閉じて薬液Aの供給を停止する。同様に薬液Bでも,フローメータ117から薬液Bの流量はコントローラ90に出力されて,混合容量の薬液Bが供給されたと判明すると,コントローラ90は,開閉弁82を閉じて薬液Bの供給を停止する。薬液A,Bの供給がそれぞれ終わると(図20中のS2),コントローラ90は,流量調整弁119を調整して純水を第1の流量より大きい第2の流量で供給する(図20中のS3)。外槽62内の液面が上昇して第2のレベルS2に到達すると(図20中のS4),これをセンサ管92は検出して所定の信号レベルの圧力検出信号をコントローラ90に出力する。コントローラ90は,流量調整弁119を閉じて純水の供給を停止させる(図20中のS5)。洗浄槽60内にウェハWが浸漬されて洗浄処理が施される。
【0074】
このように薬液A,Bを各々の混合容量だけ供給した後でも洗浄槽60内に供給スペースを残せるように,純水を第1の流量で供給する一方で,薬液A,Bを各々の混合容量だけ供給するまで,薬液A,B,純水を洗浄槽60に同時に供給するので,供給時間を短縮することができる。また,薬液A,Bを各々の混合容量だけ供給した後,純水を第1の流量よりも大きい第2の流量で供給するので,純水を混合容量だけ自動的に短時間で供給することが可能となる。また,タンク70,71を設ける必要がなくなるので,装置をより一層小型化することができる。なお,このようにタンクを一切設けずに,各薬液A,Bをそれぞれの薬液供給源から直接供給するような構成は,前記洗浄槽102に対しても適用可能である。
【0075】
その他,例えば本実施の形態では,複数の洗浄液が,純水と2種類の薬液である場合について説明されたが,これに限定されずに,より多数の薬液と純水を組み合わせる場合等にも適用される。さらに複数の洗浄液が各種薬液のみからなる場合には,混合容量が最大の薬液を貯留するタンクを装置から外す。また,基板はウェハに限られず,LCD基板,CD基板,プリント基板,セラミック基板等であってもよい。
【0076】
【発明の効果】
本発明に記載の基板処理方法によれば,複数の洗浄液の供給時間を短縮することができる。また,本発明の記載の基板処理装置によれば,混合容量が最大の処理液を貯留するタンクを設ける必要がないので,装置を小型化することができる。また,混合容量が最大の処理液以外の処理液を貯留するタンクのサイズを小さく抑えることができる。さらにタンクを全く設けずに,装置の小型化をより一層図ることもできる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる洗浄装置を備えた洗浄システムの斜視図である。
【図2】本発明の実施の形態にかかる洗浄装置の説明図である。
【図3】タンク内に薬液を貯めて液面が定量センサの位置(高さ)に上昇した様子を示す説明図である。
【図4】タンク内に薬液を供給させて液面が下限センサの位置(高さ)に下降した様子を示す説明図である。
【図5】各薬液,純水を同時に供給し,液面が第1のレベルに上昇した様子を示す説明図である。
【図6】各薬液を各々の混合容量だけ供給した様子を示す説明図である。
【図7】純水を供給し,液面が第2のレベルに上昇した様子を示す説明図である。
【図8】液面が第1のレベルに到達した時点で,各薬液を未だ混合容量供給していない場合における各薬液,純水の供給を説明するためのフローチャートである。
【図9】各薬液,純水を同時に供給し,液面が第1のレベルに到達する前に,各薬液を混合容量だけ供給した様子を示す説明図である。
【図10】純水を供給し,液面が第1のレベルに上昇した様子を示す説明図である。
【図11】純水を供給し,液面が第2のレベルに上昇した様子を示す説明図である。
【図12】液面が第1のレベルに到達する前に,各薬液を各々の混合容量だけ供給する場合における各薬液,純水の供給を説明するためのフローチャートである。
【図13】各薬液,純水を同時に供給し,液面が第1のレベルに到達する前に,一方の薬液を混合容量だけ供給した様子を示す説明図である。
【図14】他方の薬液と純水を同時に供給し,液面が第1のレベルに上昇した様子を示す説明図である。
【図15】他方の薬液と純水を同時に供給し,液面が第1のレベルに到達した後に,他方の薬液を混合容量だけ供給した様子を示す説明図である。
【図16】純水を供給し,液面が第2のレベルに上昇した様子を示す説明図である。
【図17】液面が第1のレベルに到達する前に,一方の薬液を混合容量だけ供給する場合における各薬液,純水の供給を説明するためのフローチャートである。
【図18】本発明の別の実施の形態にかかる洗浄装置の説明図である。
【図19】本発明の更に別の実施の形態にかかる洗浄装置の説明図である。
【図20】図19の洗浄装置における各薬液,純水の供給を説明するためのフローチャートである。
【符号の説明】
A,B 薬液
C キャリア
W ウェハ
S1 第1のレベル
S2 第2のレベル
TS1,TS3 定量センサ
TS2,TS4 下限センサ
1 洗浄システム
12,14,16,18 洗浄装置
60 洗浄槽
72 供給路
73,80 タンク供給路
70,71 タンク
75,78,82,85,86 開閉弁
90 コントローラ
91,92 センサ管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate processing method and a substrate processing apparatus for performing a cleaning process on, for example, a semiconductor wafer or LCD substrate glass.
[0002]
[Prior art]
For example, in a semiconductor device manufacturing process, a semiconductor wafer (hereinafter referred to as “wafer”) is cleaned with a cleaning solution such as a predetermined chemical solution or pure water, and contamination of particles, organic contaminants, and metal impurities adhering to the wafer is removed. A cleaning device is used to remove. Among them, a wet type cleaning apparatus that performs a cleaning process by immersing a wafer in a cleaning tank filled and mixed with a plurality of cleaning liquids is widely used because particles attached to the wafer can be effectively removed. Yes.
[0003]
In the conventional cleaning apparatus, a tank is provided for each cleaning liquid, and the cleaning liquid is supplied from each tank to generate a mixed liquid in the cleaning tank. Examples of the cleaning liquid include an aqueous ammonia solution (NH4OH), hydrochloric acid (HCl), hydrofluoric acid (HF), hydrogen peroxide (H2O2) And other chemicals and pure water (H2O) and the like, for example, APM (NH4OH / H2O2/ H2O mixture), HPM (HCl / H2O2/ H2O mixture), DHF (HF / H2O liquid mixture).
[0004]
In such a cleaning apparatus, it is necessary to generate a liquid mixture at a predetermined mixing ratio so that a suitable cleaning process can be performed. For this reason, in each tank, the cleaning liquid is stored in a mixed volume, and the inside is emptied for each supply.
[0005]
Conventionally, as described above, a tank is provided for each cleaning liquid, and it has been necessary to have a considerable size so that a mixed volume of cleaning liquid can be stored. Thus, for example, according to the cleaning apparatus disclosed in Japanese Patent Application Laid-Open No. 5-299403, the tank for storing the pure water is removed from the apparatus, and the pure water is supplied to the cleaning tank from the supply path connected to the pure water supply source of the factory. On the other hand, the device was reduced in size by supplying it directly. When filling, the chemical solution is first supplied from each tank to empty each tank, and then the pure water is supplied from the supply path until the liquid level reaches the liquid level sensor installed in the cleaning tank. In other words, pure water is supplied in a mixed volume to produce a liquid mixture having a predetermined mixing ratio.
[0006]
[Problems to be solved by the invention]
However, according to the cleaning device disclosed in Japanese Patent Laid-Open No. 5-299403, since pure water cannot be supplied from the pure water supply source while the chemical solution is being supplied from the tank, it takes time to supply. . Further, since the tank in which the chemical solution is stored has a considerable size as a dependency, there is room for further improvement in terms of downsizing the cleaning device.
[0007]
Accordingly, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing the supply time of a plurality of cleaning liquids and reducing the size of the apparatus.
[0008]
[Means for Solving the Problems]
  To solve the above problems,The present inventionIs a method of immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tanks in the respective mixing volumes, and the liquid level in the processing tank reaches the first level. Until the plurality of treatment liquids are treated in the treatment tankat the same timeAfter the supplying step and the liquid level reaches the first level, the supply of the processing liquid having the maximum mixing capacity among the plurality of processing liquids is stopped, and the processing liquids other than the processing liquid having the maximum mixing capacity are stopped. A process of supplying up to the mixing volume, and after supplying a processing liquid other than the processing liquid having the maximum mixing capacity up to the mixing volume,Stopping the supply of the treatment liquid other than the treatment liquid having the maximum mixed volume, and restarting the supply of the treatment liquid having the largest mixed volume among the plurality of treatment liquids;A step of supplying the treatment liquid having the maximum mixing capacity until the liquid level in the treatment tank reaches the second level;The first level is at a position where at least the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid having the maximum mixing capacity. The second level is set at a position that is set and satisfies the total volume of the liquid mixture required for processing.
[0009]
  What is a substrate?A substrate such as a semiconductor wafer or a glass for an LCD substrate is exemplified, and a CD substrate, a printed substrate, a ceramic substrate, or the like may be used. The treatment liquid with the largest mixing capacity is, for example, pure water, and various treatment liquids are used for treatment liquids other than the treatment liquid with the largest mixing volume.is there.
[0010]
  like thisIn the substrate processing method, a plurality of processing liquids are supplied to the processing tank until the liquid level in the processing tank reaches the first level. The supply time can be shortened as compared to the case where the treatment liquid having the maximum mixing volume cannot be supplied unless the mixing volume is supplied. Also, after reaching the first level, the supply of the processing liquid having the maximum mixing capacity is temporarily stopped, and after the processing liquid other than the processing liquid having the maximum mixing capacity is supplied, the processing liquid having the maximum mixing capacity is supplied. The processing solution with the maximum mixing capacity is supplied until the liquid level in the processing tank reaches the second level, so that the processing liquid with the maximum mixing capacity is automatically supplied by the mixing volume. It becomes possible.
[0011]
  Also bookThe present invention is a method of processing a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tank by each mixing volume, wherein the mixing volume is the largest among the plurality of processing liquids. A plurality of treatment liquids are supplied to the treatment tank until a treatment liquid other than the treatment liquid having the largest mixing capacity is supplied at a first flow rate.at the same timeAnd supplying a mixed volume of a process liquid other than the process liquid having the maximum mixed volume,Stop the supply of processing liquids other than the processing liquid with the maximum mixing volume,A step of supplying the treatment liquid having the maximum mixing capacity at a second flow rate larger than the first flow rate.The first flow rate is such that a space can be left in the treatment tank in which the treatment liquid having the maximum mixing capacity can be supplied even after the treatment liquid other than the treatment liquid having the maximum mixing capacity is supplied. It is characterized by being set.
[0013]
  thisIn the substrate processing method, the mixing capacity is set so that a space for supplying the processing liquid having the maximum mixing capacity can be left in the processing tank even after the processing liquid other than the processing liquid having the maximum mixing capacity is supplied. While supplying the maximum processing liquid at the first flow rate, a plurality of processing liquids are supplied to the processing tank until a processing volume other than the processing liquid having the maximum mixing capacity is supplied, thereby reducing the supply time. be able to. In addition, after supplying a processing volume other than the processing liquid having the maximum mixing capacity, the processing liquid having the maximum mixing capacity is supplied at a second flow rate higher than the first flow rate. The liquid can be automatically supplied in a short time by the mixing volume.
[0014]
  The present inventionIs a method of immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tanks in the respective mixing volumes, and the liquid level in the processing tank reaches the first level. Up to several treatment solutionsat the same timeA step of supplying to the processing tank and a step of determining whether or not a processing volume other than the processing liquid having the maximum mixing capacity among the plurality of processing liquids has been supplied when the first level is reached.And when it is determined by the determination that the processing liquid other than the processing liquid having the maximum mixing capacity has not been supplied yet, the supply of the processing liquid having the maximum mixing capacity is stopped and the mixing liquid is stopped. A step of supplying a treatment liquid other than the treatment liquid having the maximum capacity to a mixing volume, and a treatment liquid other than the treatment liquid having the maximum mixing capacity after supplying a treatment liquid other than the treatment liquid having the maximum mixing capacity to the mixing volume. The supply of the liquid is stopped, the supply of the treatment liquid having the maximum mixing volume among the plurality of treatment liquids is resumed, and the mixing volume is maximized until the liquid level in the treatment tank reaches the second level. And when it is determined by the determination that all the processing liquids other than the processing liquid with the maximum mixing capacity are supplied in a mixed volume, the processing liquid other than the processing liquid with the maximum mixing capacity is supplied. Without stopping the supply of the treatment liquid Until the liquid level reaches the second level, a process liquid having a maximum mixing capacity is supplied, and at least the volume between the first level and the second level in the processing tank is the mixing capacity. The first level is set at a position where the volume exceeds the mixing volume of the processing liquid other than the maximum processing liquid, and the second level is set at a position satisfying the total volume of the liquid mixture necessary for processing. It is characterized by that.
[0016]
  thisIn the substrate processing method, a plurality of processing liquids are supplied to the processing tank until the liquid level in the processing tank reaches the first level.As wellSupply time can be shortened. Further, when the liquid level in the processing tank reaches the first level, it is determined whether or not a processing volume other than the processing liquid having the maximum mixing capacity has been supplied. For example, if it is determined that all processing liquids other than the processing liquid with the largest mixing volume have not been supplied yet, the supply of the processing liquid with the largest mixing capacity is temporarily stopped and the processing liquid other than the processing liquid with the largest mixing capacity is temporarily stopped. First, supply all of the processing solution up to the mixing volume. After that, the treatment liquid with the maximum mixing capacity is supplied until the liquid level in the treatment tank reaches the second level.As wellIt becomes possible to automatically supply the processing liquid having the maximum mixing volume by the mixing volume. In addition, even after all processing liquids other than the processing liquid with the maximum mixing capacity are supplied up to the mixing capacity, the first level is the processing level so that a space can be left in the processing tank where the processing liquid with the maximum mixing capacity can be supplied. The volume between the first level and the second level in the tank is set to a position where the volume is larger than the mixed volume of all the processing liquids other than the processing liquid having the maximum mixing capacity.
[0017]
If it is determined that at least one treatment liquid other than the treatment liquid with the largest mixing capacity has not been supplied yet, the supply of the treatment liquid with the largest mixing capacity is temporarily stopped, It is necessary to first supply the processing liquid other than the processing liquid with the largest mixing volume not supplied up to the mixing volume. Thereafter, the supply of the treatment liquid having the maximum mixing volume may be restarted and supplied to the second level. In the first level, the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid whose maximum mixing volume is not yet supplied. It is set to such a position.
[0018]
  AboveIf it is determined by the determination that all the processing liquids other than the processing liquid with the maximum mixing capacity are supplied in the mixing volume, the mixing capacity is maximum until the liquid level in the processing tank reaches the second level. Has a process to supply treatment liquidTo do. Also,While supplying at least a plurality of treatment liquids to the treatment tank, the first volume is higher than the liquid level in the treatment tank at the time when all the treatment liquids other than the treatment liquid having the largest mixing volume are supplied. The level is set, and the second level is preferably set at a position that satisfies the total volume of the liquid mixture required for processing.
[0019]
  thisIn the substrate processing method, a plurality of processing liquids are supplied to the processing tank until the liquid level in the processing tank reaches the first level.As wellSupply time can be shortened. Further, when the liquid level in the processing tank reaches the first level, it is determined whether or not a processing volume other than the processing liquid having the maximum mixing capacity has been supplied. For example, if it is determined that all the processing liquids other than the processing liquid with the largest mixing volume have already been supplied, the processing liquid with the largest mixing capacity is left as it is, and the liquid level in the processing tank is brought to the second level. By supplying until it reaches, it automatically supplies only the mixed volume. In this case, since all the processing liquids other than the processing liquid with the maximum mixing capacity have already been supplied in the mixing capacity, the processing liquid other than the processing liquid with the maximum mixing capacity between the first level and the second level. It is not necessary to set the first level at a position where it exceeds the total mixing volume, and all the processing liquids other than the processing liquid having the maximum mixing capacity between the first level and the second level The first level may be set at a position where the mixing volume is less than the first volume. The first level is higher than the liquid level in the processing tank at the time when all the processing liquids other than the processing liquid having the maximum mixing capacity are supplied to the processing tank while the plurality of processing liquids are supplied to the processing tank. Set to a high position.
[0020]
  Also bookThe present invention is an apparatus for processing a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tank by each mixing volume, and has the largest mixing capacity among the plurality of processing liquids. The plurality of supply paths for supplying the processing liquid, the processing liquid other than the processing liquid having the maximum mixing capacity, the valves respectively provided in the plurality of supply paths, and the height of the liquid level in the processing tank are the first. A first sensor for detecting that the liquid level has reached the second level, a second sensor for detecting that the liquid level in the processing tank has reached the second level, and the first sensor A controller for controlling opening and closing of a valve provided in a supply path for supplying at least the processing liquid having the maximum mixing capacity based on a detection signal output from the sensor and a detection signal output from the second sensorThe first level is at a position where at least the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid having the maximum mixing capacity. The second level is set at a position where the total volume of the liquid mixture required for processing is detected, and when the detection signal of the first sensor is output to the controller, the mixing volume is maximized. If a processing volume other than the processing liquid has not been supplied yet, the controller performs control so as to close at least a valve provided in a supply path for supplying the processing liquid having the maximum mixing capacity. At the time when the detection signal of the sensor is output to the controller, if all the processing liquids other than the processing liquid with the maximum mixing capacity are supplied in the mixing capacity, the controller has at least the mixing capacity. It is characterized by controlling so as not to close the valve provided in the supply path for supplying a large processing liquid.
[0023]
  AboveThe supply path for supplying the processing liquid other than the processing liquid having the maximum mixing capacity may be connected to a tank for storing the processing liquid other than the processing liquid having the maximum mixing capacity.Mixed volumeHowever, the treatment liquid with the largest mixing capacity is supplied directly from the supply source in the factory to the treatment tank via the supply path, and treatment liquids other than the treatment liquid with the largest mixing capacity are temporarily stored in the tank and then supplied to the treatment tank. Is done. Thus, since it is not necessary to provide a tank for storing the processing liquid having the largest mixing capacity, the apparatus can be miniaturized. In addition, when a plurality of treatment liquids consist of pure water and various chemical liquids and the treatment liquid with the largest mixing capacity is pure water, the pure water is supplied directly, and the plurality of treatment liquids consist only of various chemical liquids, for example. In some cases, the chemical with the largest mixing volume is supplied directly.
[0024]
  AboveA quantitative sensor is installed at the upper part of the tank to detect that a processing liquid other than the processing liquid with the largest mixing capacity is stored at a volume of 1 / N (N: natural number) of the mixing capacity, and at the lower part of the tank, It is preferable that a lower limit sensor for detecting that a processing liquid other than the processing liquid having the maximum mixing capacity is supplied at a volume of 1 / N of the mixing capacity.in this case,The controller preferably controls opening and closing of the valve based on a detection signal output from the quantitative sensor and a detection signal output from the lower limit sensor.
[0025]
  thisIn the substrate processing apparatus, the controller first closes the valve of the supply path connected to the tank until the liquid level in the tank reaches the position (height) of the quantitative sensor. In the tank, processing liquids other than the processing liquid with the largest mixing capacity are stored at a volume of 1 / N of the mixing capacity. When the liquid level in the tank reaches the position (height) of the quantitative sensor, the quantitative sensor detects this and outputs a detection signal to the controller. Upon receiving this detection signal, the controller opens the valve until the liquid level in the tank is lowered to the position (height) of the lower limit sensor. As a result, processing liquids other than the processing liquid having the maximum mixing capacity are supplied to the processing tank at a volume of 1 / N of the mixing capacity. When the liquid level in the tank falls to the position (height) of the lower limit sensor, the lower limit sensor detects this and outputs a detection signal to the controller. Upon receiving this detection signal, the controller closes the valve. As before, the processing liquid other than the processing liquid with the maximum mixing capacity is stored in the tank until the liquid level in the tank reaches the position (height) of the quantitative sensor. In this way, by repeatedly opening and closing the valve several times and alternately storing and supplying the processing liquid other than the processing liquid with the maximum mixing capacity a predetermined number of times, that is, N times, the processing liquid other than the processing liquid with the maximum mixing capacity is mixed. Capacity can be supplied. In this way, since the processing liquid other than the processing liquid having the maximum mixing capacity is supplied several times from the inside of the tank, the tank capacity is set so that the processing liquid other than the processing liquid having the maximum mixing capacity can be supplied at one time. The tank can be reduced in size compared to the case where it is large.
[0026]
  Also bookThe present invention is an apparatus for processing a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tank by each mixing volume, and has the largest mixing capacity among the plurality of processing liquids. A plurality of supply passages for supplying a treatment liquid and a treatment liquid other than the treatment liquid having the maximum mixing capacity, and a plurality of supply paths provided respectively.A flow meter; an on-off valve provided in a supply path for supplying a processing liquid other than the processing liquid having the maximum mixing capacity; and a flow rate adjusting valve provided in a supply path for supplying the processing liquid having the maximum mixing capacity; The liquid level sensor provided for detecting the level of the liquid level in the processing tank, the detection signal output from the flow meter, and the opening / closing based on the detection signal output from the liquid level sensor A controller for controlling the valve and the flow rate adjusting valve, and the controller opens the on-off valve until the processing volume other than the processing liquid having the maximum mixing capacity is supplied, and the processing liquid having the maximum mixing capacity. The flow rate adjustment valve is adjusted so as to have a first flow rate, and after supplying a treatment volume other than the treatment liquid having the maximum mixing capacity, the on-off valve is closed, and the treatment liquid having the maximum mixing capacity. Greater than the first flow rate The flow rate adjusting valve is adjusted so that the second flow rate is the second flow rate, and the first flow rate is adjusted even if the processing volume other than the processing liquid having the maximum mixing capacity is supplied. Is characterized in that the flow rate is set so as to leave a space for supplying the maximum treatment liquid.
[0027]
  AboveThe liquid level sensor preferably detects the total volume of the liquid mixture required for processing based on the height of the liquid level in the processing tank.
[0028]
  Mixed volumeHowever, since the processing liquid other than the processing liquid with the largest mixing capacity and the processing liquid with the largest mixing capacity are directly supplied to the processing tank from the respective supply sources in the factory via the supply path, for example, it is necessary to install a tank at all. The device can be further miniaturized.
[0029]
  In addition, it is an apparatus for processing a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing liquids to the processing tanks in respective mixed volumes, from a tank for storing at least one processing liquid at a constant volume. A first supply path for supplying a processing liquid to the processing tank, a second supply path for supplying one of the other processing liquids from a processing liquid supply source of the processing liquid to the processing tank, and a second A valve provided in the supply path, a liquid level sensor provided to detect the height of the liquid level in the treatment tank, and opening and closing of the valve based on a detection signal output from the liquid level sensor It is characterized by comprising a controller to perform.
[0030]
  thisIn substrate processing equipment,AboveAt the time when the detection signal of the liquid level sensor is output to the controller, if the processing liquid supplied from the tank has not been supplied yet, the controller controls the valve to close.In addition,The controller may control to open the valve again when the processing liquid is supplied from the first supply path to the mixed volume.Also,It is preferable that a chemical liquid is stored in the tank, and the treatment liquid supply source is a pure water supply source.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view of a cleaning system 1 including cleaning apparatuses 12 to 19 as substrate processing apparatuses according to an embodiment of the present invention. This cleaning system 1 includes a carry-in unit 2, a cleaning / drying processing unit 10, and a carry-out unit 50, and loads a wafer W as a substrate in units of carriers C, cleans and drys wafers W, and performs processing in units of carriers C. Up to the unloading of the wafer W.
[0032]
The carry-in unit 2 carries out an operation from carrying in the carrier C storing 25 wafers W before cleaning to shifting the wafer W to cleaning. That is, the carrier C placed on the carry-in stage 5 is transported, for example, two by two to the loader 7 by the transfer device 6, and the wafer W is taken out from the carrier C by the loader 7.
[0033]
The cleaning / drying processing unit 10 includes, in order from the carry-in unit 2 side, a wafer chuck cleaning / drying device 11 for cleaning and drying the wafer chucks 30a, 30a of the transfer device 30 that transfers the wafer W, various chemical solutions and pure water. In each of the cleaning devices 12 to 19 for cleaning the wafer W using a cleaning liquid such as water, the wafer chuck cleaning / drying device 20 for cleaning and drying the wafer chucks 33a and 33a of the transfer device 33, and the cleaning devices 12 to 19 A drying device 21 that performs a drying process on the cleaned wafer W is arranged. Further, on the front side (front side in FIG. 1) of the cleaning / drying processing unit 10, the above-described transfer devices 30, 31, 32, and 33 are arranged. In accordance with a general cleaning process, for example, the cleaning devices 12, 14, 16, and 18 are configured to perform chemical cleaning (chemical processing) so that the chemical cleaning and the rinsing cleaning can be performed alternately, and the cleaning devices 13, 15, and 17 are performed. , 19 are configured to perform rinsing (rinsing). The types of chemical cleaning performed by the cleaning devices 12, 14, 16, and 18 are different. In the cleaning devices 13, 15, 17, and 19, rinsing is performed using pure water.
[0034]
The above arrangement and the combination of the cleaning apparatuses 12 to 19 can be arbitrarily combined depending on the type of the cleaning process for the wafer W. For example, a certain cleaning apparatus may be reduced, or conversely, a cleaning apparatus for cleaning the wafer W with a chemical solution using another type of chemical solution may be added.
[0035]
The unloading unit 50 loads the wafer W, which has been cleaned and dried by the cleaning / drying processing unit 10, into the carrier C and then unloads it in units of carrier C. That is, the unloader 51 is configured to transport the carrier C, in which the cleaned wafer W is stored, to the unloading stage 52 by a transfer device (not shown).
[0036]
Since the cleaning devices 12, 14, 16, and 18 that perform chemical cleaning have the same configuration, the cleaning device 12 will be described as an example. As shown in FIG. 2, the cleaning device 12 includes a cleaning tank 60 as a processing tank in which the wafer W is cleaned.
[0037]
The cleaning tank 60 includes an inner tank 61 in which the wafer W is immersed in a mixed liquid generated by supplying a plurality of cleaning liquids, and an outer tank 62 that receives the mixed liquid overflowing from the inner tank 61. The inner tank 61 is formed in a box shape having a size sufficient to accommodate the wafer W, and the outer tank 62 is mounted so as to surround the opening of the inner tank 61.
[0038]
A circulation circuit 63 that circulates the mixed liquid during cleaning is connected between the inner tank 61 and the outer tank 62. The inlet of the circulation circuit 63 is connected to the bottom surface of the outer tub 62. In this circulation circuit 63, a pump 65 and a filter 66 are arranged in this order, and the outlet of the circulation circuit 63 is connected to the bottom surface of the inner tank 61. During the cleaning, the mixed liquid overflowed from the inner tank 61 to the outer tank 62 is circulated in the circulation circuit 63, purified, and then supplied again into the inner tank 61. In addition, drain pipes (not shown) are connected to the bottom surfaces of the inner tank 61 and the outer tank 62 so that the liquid can be drained.
[0039]
The inner tank 61 is supplied with pure water and, for example, two kinds of chemical solutions in respective mixed volumes to generate a mixed solution. Pure water has the largest mixing capacity among the supplied cleaning liquids. The chemical liquid plays a role as a processing liquid other than the processing liquid with the largest mixing capacity. For example, an aqueous ammonia solution (NH4OH), hydrochloric acid (HCl), hydrofluoric acid (HF), hydrogen peroxide (H2O2) Etc. For example, when an aqueous ammonia solution, hydrogen peroxide solution, or pure water is supplied, APM (NH4OH / H2O2/ H2When a mixture of O) is generated, for example, hydrochloric acid, hydrogen peroxide solution, or pure water is supplied, HPM (HCl / H2O2/ H2O mixture) is produced.
[0040]
The cleaning device 12 is provided with tanks 70 and 71 for storing a chemical solution, and a supply path 72 (second supply path) for supplying pure water is introduced. The liquid stored in the tank 70 is referred to as a chemical liquid A, and the liquid stored in the tank 71 is referred to as a chemical liquid B.
[0041]
The tank 70 is connected to a tank supply path 73 (first supply path) as a supply path for supplying a processing liquid other than the processing liquid having the maximum mixing capacity, and a tank replenishment path 74. The chemical solution A is supplied to the tank 60, and the chemical solution A is appropriately replenished to the cleaning tank 60 through the tank replenishment path 74. The tank supply path 73 is provided with an on-off valve 75, and the tank replenishment path 74 is provided with a flow rate adjusting valve 76. And the chemical | medical solution A is stored in the tank 70 by the chemical | medical solution supply path 77 which led to the chemical | medical solution supply source of the chemical | medical solution A in a factory, and the on-off valve 78 is provided in this chemical | medical solution supply path 77. Similarly, a tank supply path 80 and a tank replenishment path 81 are also connected to the tank 71. The tank supply path 80 is provided with an on-off valve 82, and the tank replenishment path 81 is provided with a flow rate adjusting valve 83. And the chemical | medical solution B is stored in the tank 71 by the chemical | medical solution supply path 84, and the on-off valve 85 is provided in the chemical | medical solution supply path 84. FIG.
[0042]
The supply path 72 communicates with a pure water supply source (not shown) in the factory, and supplies pure water directly from the pure water supply source to the inner tank 61. An opening / closing valve 86 is provided in the supply path 72. A replenishment path 87 for replenishing pure water is also introduced, and a flow rate adjusting valve 88 is provided in the replenishment path 87. In this case, the mixing ratio of the chemicals A and B and pure water is, for example, 1: 1: 48. Providing a tank for storing pure water having the maximum mixing capacity leads to an increase in the size of the apparatus. In this way, pure water is directly supplied from the pure water supply source to the cleaning tank 60 through the supply path 72. This eliminates the need for a tank for storing the pure water, thereby reducing the size of the apparatus. Further, the tanks 70 and 71 are installed above the washing tank 60, and liquid supply and liquid replenishment are performed by their own weight. By doing so, it is not necessary to provide a supply pump in the tank supply paths 73 and 80 and a replenishment pump in the tank replenishment paths 74 and 81. This also makes it possible to reduce the size of the apparatus.
[0043]
Next, the control system of the cleaning device 12 will be described. In the tank 70, the quantitative sensor TS1 is provided in the upper part, and the lower limit sensor TS2 is provided in the lower part. Similarly, in the tank 71, the quantitative sensor TS3 is provided in the upper part, and the lower limit sensor TS4 is provided in the lower part. The detection signals of these sensors are output to the controller 90. The inner tank 61 is provided with a sensor pipe 91 as a first sensor, and the outer tank 62 is provided with a sensor pipe 92 as a second sensor. Each of these sensor pipes 91 and 92 functions as a liquid level sensor for detecting the pressure of the gas in the pipe and outputting the pressure detection signal to the controller 90 to detect the position (height) of the liquid level. Fulfill. On the other hand, the controller 90 outputs control signals to the on-off valves 75, 78, 82, 85, 86 and the flow rate adjusting valves 76, 83, 88.
[0044]
Control by the controller 90 will be described with reference to FIGS. First, the controller 90 controls the on-off valves 75, 78, 82, 85, 86 based on the detection signals output from the quantitative sensor TS1 and the lower limit sensor TS2 and the detection signals output from the quantitative sensor TS3 and the lower limit sensor TS4. To do. Since the tanks 70 and 71 perform the same control, the tank 70 will be described as an example. In the tank 70, the quantitative sensor TS1 detects that the chemical solution A has been stored in a volume of 1 / N (N: natural number) of the mixing capacity, and the lower limit sensor TS2 supplies a volume of 1 / N of the mixing capacity of the chemical solution A. It is detected that For example, as described above, when the mixing ratio of the chemical liquids A and B and pure water is 1: 1: 48, and the total volume of the liquid mixture required for the cleaning process is 20 L (liter), each of the chemical liquids A and B The mixing capacity is 0.4L, and the mixing capacity of pure water is 19.2L. For example, when N = 4, 0.1 L of the chemical solution A is stored in the tank 70 for each supply. Thus, the tank 70 stores a certain volume of chemical solution, and the size of the tank 70 only needs to be designed to exceed at least this certain volume (0.1 L in this example).
[0045]
First, the controller 90 closes the on-off valve 75 and opens the on-off valve 78 to supply the chemical liquid A into the tank 70 from the chemical liquid supply path 77. As shown in FIG. 3, the chemical solution A is stored in the tank 70 at a volume of 1 / N of the mixing volume, and when the liquid level reaches the position (height) of the quantitative sensor TS1, this is detected and detected by the quantitative sensor TS1. A signal is output to the controller 90. Upon receiving this detection signal, the controller 90 closes the on-off valve 78 and stops the supply of the chemical solution A from the chemical solution supply path 77. On the other hand, the on-off valve 75 is opened, and the chemical solution A is supplied from the tank 70 to the cleaning tank 60. Thereafter, as shown in FIG. 4, when the liquid level is supplied to the position (height) of the lower limit sensor TS2 by supplying 1 / N of the chemical solution A to the lower limit sensor TS2, the lower limit sensor TS2 detects this and detects the signal. Is output to the controller 90. Upon receiving this detection signal, the controller 90 closes the on-off valve 75 and stops the supply of the chemical solution A. On the other hand, the on-off valve 78 is opened again, and the chemical solution A is supplied from the chemical solution supply passage 77 and stored in the tank 70. As shown in FIG. 3, the chemical solution A is stored again in the tank 70 and can be supplied to the cleaning tank 60. Thus, when the opening and closing of the on-off valves 75 and 78 is repeated several times to supply the chemical solution A a predetermined number of times, that is, N times, the mixed solution of the chemical solution A can be supplied to the cleaning tank 60. Then, when the mixed volume of the chemical solution A is supplied and the last (Nth) detection signal is output from the lower limit sensor TS2 to the controller 90, the controller 90 closes the on-off valve 75 and stops the subsequent supply of the chemical solution A. Let Thus, since the chemical solution A is supplied from the inside of the tank 70 several times, it is not necessary to increase the volume of the tank 70 so that the chemical solution A can be supplied once as in the conventional case, and the tank 70 is downsized. can do. Similarly, in the tank 71, the quantitative sensor TS3 detects that the chemical solution B is stored in a volume of 1 / N (N: natural number) of the mixing capacity, and the lower limit sensor TS4 detects that the chemical liquid B is 1 / N of the mixing capacity. Detects that the capacity has been supplied. Further, when the on-off valves 82 and 85 are repeatedly opened and closed N times to alternately store and supply the chemical solution B, the mixed solution of the chemical solution B can be supplied to the cleaning tank 60. Then, when the mixed volume of the chemical solution B is supplied and the last (Nth) detection signal is output from the lower limit sensor TS4 to the controller 90, the controller 90 closes the on-off valve 82 and stops the supply of the chemical solution B thereafter. Let Also in this case, the tank 71 can be downsized compared to the conventional case. On the other hand, when the Nth detection signal is output from the lower limit sensors TS2 and TS4 to the controller 90 as described above, the controller 90 opens the on-off valve 86 to supply pure water as will be described later. Yes. In addition, the supply frequency of the chemicals A and B can be individually set for each chemical solution, and the supply frequency may be different from each other.
[0046]
The controller 90 controls the on-off valves 75, 82, 86 based on the pressure detection signals output from the sensor pipes 91, 92. The sensor tube 91 has a distal end opening at a predetermined position of the inner tank 61 so that the distal end is submerged in the liquid, and a pressure higher than the atmospheric pressure (for example, atmospheric pressure) on the liquid surface by a gas supply unit (not shown). For example, N2Gas (inert gas) is supplied at a constant flow rate. When the liquid level reaches a predetermined position and the tip is submerged in the liquid, the gas supply means is N so that the liquid does not enter the pipe.2The gas supply pressure is increased and the gas is supplied, and for example, bubbles are generated from the end of the tube. On the other hand, the pressure of gas supplied into the sensor tube 91 (pressure in the tube), that is, N2The gas supply pressure is equal to the pressure that the tip end of the sensor tube 91 receives from the liquid in the inner tank 61 and is proportional to the distance from the tip end to the liquid level. Then, the position of the distal end of the tube is set to a predetermined position (known value), and N is detected by the sensor tube 91.2By detecting the gas supply pressure and outputting a pressure detection signal to the controller 90, the distance from the tube tip to the liquid level is detected based on the pressure detection signal, and the position of the liquid level in the inner tank 61 is eventually detected. (Height) can be detected. When the liquid level in the inner tank 61 rises and a pressure detection signal having a predetermined signal level is output from the sensor tube 91, the controller 90 sets the first liquid level in the inner tank 61 to the first level. It is recognized that the level S1 has been reached. Further, the sensor tube 92 has a front end opening at a predetermined position of the outer tub 62, and N is the same as the sensor tube 91.2Gas or the like is supplied so as to fill up the tip of the tube so that liquid does not enter the tube. Then, by outputting a pressure detection signal to the controller 90 by the sensor tube 92, the position (height) of the liquid level in the outer tub 62 can be detected based on the pressure detection signal. When the liquid level in the outer tank 62 rises and a pressure detection signal of a predetermined signal level is output from the sensor tube 92, the controller 90 sets the second liquid level in the outer tank 62 so that the liquid level in the outer tank 62 is set. It is recognized that the level S2 has been reached. Here, at the first position (height) at least the volume between the first level S1 and the second level S2 in the cleaning tank 60 is larger than the total of the respective mixing volumes of the chemicals A and B. Level S1 is set, and the second level S2 is set at a position (height) for detecting the total volume of the liquid mixture necessary for the cleaning process.
[0047]
When the liquid level in the inner tank 61 reaches the first level S1, the controller 90 determines whether or not the chemical liquids A and B are supplied to the cleaning tank 60 in mixed volumes. That is, the controller 90 recognizes that the liquid level in the inner tank 61 has reached the first level S1 when the pressure detection signal of a predetermined signal level is output from the sensor tube 91 as described above, It is confirmed whether or not the last detection signal is output from the lower limit sensors TS2, TS4. If the last detection signal is not output from the lower limit sensors TS2 and TS4 when the liquid level in the inner tank 61 reaches the first level S1, it is determined that the chemical liquids A and B are not yet supplied in a mixed volume. In such a case, the controller 90 closes the valve 86 to temporarily stop the supply of pure water, and repeatedly opens and closes the valves 75 and 82 so as to supply the chemicals A and B to the mixing capacity.
[0048]
For example, when filling the cleaning tank 60 with the liquid mixture, first, the open / close valves 75, 82, 86 are all opened to supply the chemical liquids A, B, and pure water to the inner tank 61 simultaneously. In this case, as described above, the chemicals A and B are supplied from the tanks 70 and 71 several times. Then, as shown in FIG. 5, when the liquid is stored in the inner tank 61 and the liquid level of the inner tank 61 reaches the first level S1, the sensor tube 91 detects this, and a pressure detection signal of a predetermined signal level. Is output to the controller 90. When the controller 90 that has received this pressure detection signal determines that the last detection signal has not been output from the lower limit sensors TS2 and TS4 at this point in time, and has not yet supplied the chemicals A and B in mixed volume. , The on-off valve 86 is closed to stop the supply of pure water. On the other hand, the supply of the chemicals A and B is continued as it is. For example, as shown in FIG. 6, the inside of the inner tank 61 is filled and the liquid overflows into the outer tank 62. As described above, when the last detection signals are output from the lower limit sensors TS2 and TS4 and the mixed liquid chemicals A and B are supplied, the controller 90 closes the on-off valves 75 and 82 and opens the on-off valve 86. To resume the supply of pure water. If it is determined that all of the chemicals A and B have not yet been supplied in the mixed volume, the supply of pure water is temporarily stopped and all the chemicals A and B must be supplied up to the mixed volume first. It has become.
[0049]
When the supply of pure water is resumed, the liquid is first stored in the outer tank 62, and the liquid level of the outer tank 62 reaches the second level S2 as shown in FIG. When this happens, the sensor tube 92 detects this and outputs a pressure detection signal of a predetermined signal level to the controller 90. Upon receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water. Thus, the cleaning tank 60 is filled with the mixed solution. Here, since the total of the mixing volumes of the chemicals A, B and pure water is equal to the total volume of the mixed liquid necessary for the cleaning process, the pure water is supplied after the chemical liquids A and B are supplied in this way. When pure water is supplied up to the second level S2, it is possible to automatically supply pure water of mixed volume to the cleaning tank 60. Further, since the chemical liquids A, B, and pure water are supplied to the cleaning tank 60 by the respective mixing volumes, a mixed liquid having a predetermined mixing ratio can be generated in the cleaning tank 60. When resuming the supply of pure water, at least the first level S1 and the second level S2 in the cleaning tank 60 as described above so as to leave a space in the outer tank 62 where pure water can be supplied. It is preferable that the first sensor S1 is set at a position where the volume between them is larger than the total of the mixed volumes of the chemicals A and B. In addition, the second level S2 may be set so that the total of the liquid volume in the inner tank 61 and the liquid volume in the outer tank 62 is equal to the total volume of the liquid mixture required for the cleaning process. When the mixture is circulated in the circuit 63 and the mixed liquid is circulated, the liquid level in the outer tub 62 is lowered. Therefore, the liquid volume in the inner tub 61 and the outer tub are taken into consideration in consideration of the liquid volume circulated in the circulation circuit 63. The second level S2 may be set so that the sum of the liquid volume in 62 and the liquid volume flowing in the circulation circuit 63 is equal to the total volume of the liquid mixture required for the cleaning process. For example, pure water is once supplied to the second level S <b> 2 and then circulated in the circulation circuit 63. When the liquid flows into the circulation circuit 63 and the liquid level in the outer tank 62 falls, pure water is again supplied to the second level S2 in anticipation of this. By supplying pure water to the second level S2 just twice, mixed volume of pure water is supplied.
[0050]
Further, the controller 90 controls the flow rate adjusting valves 76, 83, 88 according to the number of times of cleaning the wafer W, the cleaning time, and the like. For example, chemical components may evaporate during cleaning, and the chemical concentration in the mixed solution may gradually decrease. Further, the amount of the mixed liquid in the cleaning tank 60 may gradually decrease as the cleaning process proceeds. Therefore, the controller 90 adjusts the flow rate of the flow rate adjusting valves 76, 83, and 88, for example, every predetermined number of times of cleaning or every cleaning time, and appropriately replenishes the chemicals A, B, and pure water. The replenishment recipe is set by inputting the replenishment amount, number of times, time, etc. of the chemicals A and B and pure water on the M / C screen (not shown).
[0051]
Although the cleaning device 12 has been described as a representative, the cleaning devices 14, 16, and 18 that perform other chemical cleaning also have the same configuration, and generate a mixed liquid having a predetermined mixing ratio. ing.
[0052]
In the cleaning system 1, a plurality of carriers C storing, for example, 25 wafers W each not yet cleaned by a transfer robot (not shown) are placed on the loading stage 5 of the loading unit 2. Then, for example, 50 wafers W corresponding to 2 carriers C are taken out from the carrier C by the carry-in unit 2, and the transfer device 30 grips the wafers W in units of 50 sheets. Then, the wafers W are sequentially transferred to the cleaning devices 12 to 19 while being attracted to the transfer devices 31, 32, and 33. In this way, cleaning for removing impurities such as particles adhering to the surface of the wafer W is performed. Finally, a drying process is performed in the drying device 21, and the carrier C is carried out of the device via the carry-out unit 50.
[0053]
Here, representatively, supply of the chemicals A and B and pure water in the cleaning device 12 will be described based on the flowcharts in FIGS. 3 to 7 and FIG. First, the chemical solution A is supplied from the chemical solution supply path 77 as shown in FIG. 3 and is stored in the tank 70 at a volume of 1 / N of the mixing capacity. When this happens, the quantitative sensor TS1 detects this and outputs a detection signal to the controller 90. Upon receiving this detection signal, the controller 90 closes the on-off valve 78 and stops the supply of the chemical solution A. Similarly, when the chemical solution B is also supplied from the chemical solution supply path 84 and stored in the tank 71 at a volume of 1 / N of the mixing capacity, the supply from the chemical solution supply path 84 is stopped. Then, the controller 90 opens the on-off valves 75, 82, 86, the chemical liquid A from the tank supply path 73, the chemical liquid B from the tank supply path 80, and the pure water from the pure water supply source to the inner tank 61 through the supply path 72. Each is supplied (S1 in FIG. 8). As described above, since the chemical liquids A and B and the pure water are simultaneously supplied, a plurality of cleaning liquids are efficiently supplied. In this case, the mixing ratio of the chemicals A and B and pure water is, for example, 1: 1: 48, and the mixing capacity of pure water is maximum. Thus, the pure water having the maximum mixing capacity is supplied directly from the pure water supply source without being stored in the tank.
[0054]
Further, when the chemical solution A is supplied at a volume of 1 / N of the mixing volume, the liquid level in the tank 70 is lowered to the position (height) of the lower limit sensor TS2, as shown in FIG. When this happens, the lower limit sensor TS2 detects this and outputs a detection signal to the controller 90. Upon receiving this detection signal, the controller 90 closes the on-off valve 75 and stops the supply of the chemical solution A. On the other hand, the on-off valve 78 is opened, and the chemical solution A is supplied from the chemical solution supply path 77 and stored in the tank 70. As shown in FIG. 3, when the liquid level in the tank 70 rises to the position (height) of the quantitative sensor TS1, the quantitative sensor TS1 outputs a detection signal to the controller 90. Upon receiving this detection signal, the controller 90 closes the on-off valve 78 and opens the on-off valve 75 to resume the supply of the chemical solution A. Similarly, the storage and supply of the chemical solution B are repeated in the tank 71.
[0055]
When the pure water is supplied and the supply of the chemicals A and B is repeated several times, the liquid is stored in the inner tank 61 and the liquid level rises to the first level S1 as shown in FIG. When the liquid level reaches the first level S1 in this way (S2 in FIG. 8), the sensor tube 91 detects this and outputs a pressure detection signal of a predetermined signal level to the controller 90. The controller 90 that has received this pressure detection signal determines that the last detection signal has not been output from the lower limit sensors TS2 and TS4 at this point in time, and has not yet supplied the chemical solutions A and B. The on-off valve 86 is closed to stop the supply of pure water (S3 in FIG. 8). On the other hand, the supply of the chemicals A and B is continued as it is, as shown in FIG. 6, for example, the inside of the inner tank 61 is filled and the liquid overflows into the outer tank 62.
[0056]
By supplying the chemical solution A from the tank 70 N times, the mixed volume of the chemical solution A is supplied to the cleaning tank 60. When the last (Nth) detection signal is output from the lower limit sensor TS2 to the controller 90, the controller 90 closes the on-off valve 75 and thereafter stops the supply of the chemical solution A. Similarly, by supplying the chemical solution B from the tank 71 N times, a mixed volume of the chemical solution B is supplied to the cleaning tank 60. When the last (Nth) detection signal is output from the lower limit sensor TS4 to the controller 90, the controller 90 closes the on-off valve 82 and thereafter stops the supply of the chemical solution B. In this way, the chemical liquids A and B are supplied by their mixed volumes.
[0057]
When the mixed liquid chemicals A and B are supplied in this way (S4 in FIG. 8), the controller 90 opens the on-off valve 86 and resumes the supply of pure water (S5 in FIG. 8). Pure water is supplied, and as shown in FIG. 7, the liquid level in the outer tub 62 rises to reach the second level S2. When the liquid level reaches the second level S2 in this way (S6 in FIG. 8), the sensor tube 92 detects this and outputs a pressure detection signal of a predetermined signal level to the controller 90. Receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water (S7 in FIG. 8). Thus, after reaching the first level S1, the supply of pure water is temporarily stopped, the chemical solutions A and B are supplied in a mixed volume, and then the supply of pure water is restarted. Since pure water is supplied until the level S2 of 2 is reached, it is possible to automatically supply pure water, which is the processing liquid having the maximum mixing capacity, by the mixing volume. In addition, since the chemical liquids A and B and pure water are supplied only in their respective mixed volumes in this way, it is possible to generate a liquid mixture having a predetermined mixing ratio.
[0058]
In the circulation circuit 63, the liquid mixture in the cleaning tank 60 is circulated, and the chemical liquids A, B and pure water are mixed appropriately. Further, the wafer W is immersed in the cleaning tank 60 to perform a cleaning process. As the cleaning process progresses, the chemical concentration in the mixed solution may gradually decrease, or the volume of the mixed solution itself may gradually decrease. For example, in order to maintain a predetermined cleaning ability, The controller 90 adjusts the flow rate adjusting valves 76, 83, and 88 to appropriately replenish the chemical solutions A and B and pure water. Thus, in the cleaning tank 60, the cleaning ability of the mixed solution is stabilized, and a suitable cleaning process is performed.
[0059]
According to the cleaning device 12, since the pure water and the chemicals A and B are supplied to the cleaning tank 60 until the liquid level in the inner tank 61 reaches the first level S1, the chemicals A and B are mixed with each other. Compared to the case where pure water can only be supplied after supplying only the capacity, the supply time can be shortened. Further, since it is not necessary to provide a tank for storing pure water having the maximum mixing capacity, the apparatus can be miniaturized. Furthermore, since the chemical solution A is supplied from the inside of the tank 70 several times, the size of the tank 70 can be reduced to a fraction of that of the conventional art. Similarly, the size of the tank 71 can be suppressed to a fraction of that of the conventional one. For this reason, the size of the apparatus can be further reduced.
[0060]
Although an example of a preferred embodiment of the present invention has been described above, the present invention is not limited to the embodiment described here. For example, in the above-described embodiment, the case has been described in which the chemical liquids A and B are not yet supplied in the mixed volume when the liquid level in the inner tank 61 reaches the first level S1. Before the liquid level in 61 reaches the first level S1, all of the chemicals A and B may already be supplied in a mixed volume. The supply of the chemicals A and B and pure water in such a case will be described based on the flowcharts in FIGS. 9 to 11 and FIG.
[0061]
First, chemicals A and B and pure water are respectively supplied to the inner tank 61 (S1 in FIG. 12). In the tank 70, the storage and supply of the chemical solution A are repeated several times. Similarly, in the tank 71, the storage and supply of the chemical solution B are repeated several times. Then, as shown in FIG. 9, before the liquid level in the inner tank 61 reaches the first level S1, the chemicals A and B are supplied N times from the tanks 70 and 71 to mix the chemicals A having a mixed capacity. , B are respectively supplied to the inner tank 61 (S2 in FIG. 12). The last (Nth) detection signal is output from the lower limit sensors TS2 and TS4 to the controller 90. From this detection signal, the controller 90 recognizes that the chemical solutions A and B have been supplied by the respective mixed volumes, and the on-off valves 75 and 82 Is closed to stop the supply of the chemicals A and B.
[0062]
As shown in FIG. 10, when pure water is supplied and the liquid level in the inner tank 61 reaches the first level S1 (S3 in FIG. 12), the sensor tube 91 detects this and a predetermined signal level is detected. Is output to the controller 90. The controller 90 that has received this pressure detection signal has already received the last (Nth) detection signal from the lower limit sensors TS2 and TS4, and therefore determines that all of the chemicals A and B are being supplied in a mixed volume. When this happens, there is no need to temporarily stop the supply of pure water, and the controller 90 continues the supply of pure water without closing the on-off valve 86 (S4 in FIG. 12).
[0063]
As shown in FIG. 11, when the liquid level in the outer tub 62 rises and reaches the second level S2 (S5 in FIG. 12), the sensor tube 92 detects this and the pressure at a predetermined signal level is detected. A detection signal is output to the controller 90. Upon receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water (S6 in FIG. 12). Thus, the chemical liquids A, B, and pure water are supplied in the respective mixed volumes to generate a mixed liquid having a predetermined mixing ratio. In addition, since all the chemicals A and B are supplied in a mixed volume before the liquid level reaches the first level S1, the volume between the first level S1 and the second level S2 is mixed with each of the chemicals A and B. The first level S1 does not need to be set at a position where it exceeds the total volume, and the volume between the first level S1 and the second level S2 is the total of the mixed volumes of the chemicals A and B. The first level S <b> 1 may be set at a position where the number is less. The first level S1 is set at a position higher than the liquid level at the time when the chemical liquids A and B are supplied in mixed volumes while at least the chemical liquids A and B and pure water are supplied to the cleaning tank 60. The
[0064]
Further, there is a case where only one of the chemical liquids A and B is supplied in a mixed volume before the liquid level in the inner tank 61 reaches the first level S1, and the chemical liquid A in such a case is supplied. , B, and the supply of pure water will be described based on the flowcharts in FIGS. For example, the case where only the chemical solution A is supplied in the mixed volume first and the chemical solution B is not supplied in the mixed volume will be described as an example.
[0065]
First, chemicals A and B and pure water are respectively supplied to the inner tank 61 (S1 in FIG. 17). In the tank 70, the storage and supply of the chemical solution A are repeated several times. Similarly, in the tank 71, the storage and supply of the chemical solution B are repeated several times. As shown in FIG. 13, before the liquid level in the inner tank 61 reaches the first level S <b> 1, the chemical liquid A is supplied N times from the tank 70 so that the mixed volume of the chemical liquid A is supplied to the inner tank 61. (S2 in FIG. 17). The last (Nth) detection signal is output from the lower limit sensor TS2 to the controller 90. From this detection signal, the controller 90 recognizes that the chemical solution A has been supplied by the mixed volume, and closes the on-off valve 75 to supply the chemical solution A. Stop.
[0066]
If pure water is supplied and the supply of the chemical solution B is repeated several times, as shown in FIG. 14, the liquid is stored in the inner tank 61 and the liquid level rises to the first level S1. Thus, when the liquid level rises to the first level S1 (S3 in FIG. 17), the sensor tube 91 detects this and outputs a pressure detection signal of a predetermined signal level to the controller 90. The controller 90 that has received this pressure detection signal determines that it has not received the last (Nth) detection signal from the lower limit sensor TS4 at this time, and has not yet supplied the chemical solution B. 86 is closed to stop the supply of pure water (S4 in FIG. 17), while the on-off valve 82 is repeatedly opened and closed to continue the supply of the chemical B.
[0067]
As shown in FIG. 15, the chemical solution B having a mixed volume is supplied to the cleaning tank 60 by supplying the chemical solution B from the tank 71 N times. The last detection signal from the lower limit sensor TS4 is output, and the controller 90 that has received this detection signal closes the on-off valve 82 and thereafter stops the supply of the chemical solution B. When the mixed volume of the chemical solution B is supplied in this way and both of the chemical solutions A and B are supplied in the respective mixed volumes (S5 in FIG. 17), the controller 90 opens the on-off valve 86 and supplies pure water. Is resumed (S6 in FIG. 17).
[0068]
As shown in FIG. 16, when the liquid level in the outer tub 62 rises to reach the second level S2 (S7 in FIG. 17), the sensor tube 92 detects this and detects the pressure at a predetermined signal level. A signal is output to the controller 90. Upon receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water (S8 in FIG. 17). Thus, the chemical liquids A, B, and pure water are supplied in the respective mixed volumes to generate a mixed liquid having a predetermined mixing ratio.
[0069]
Moreover, based on FIG. 18, the washing | cleaning apparatus 100 concerning another embodiment of this invention is demonstrated. The cleaning apparatus 100 includes a cleaning tank 102 including only an inner tank 101. Except for the point that the cleaning tank 102 is provided, the cleaning device 100 has substantially the same configuration as the cleaning device 12 described above. Therefore, in FIG. Are denoted by the same reference numerals, and redundant description is omitted.
[0070]
The inner tank 101 is provided with the sensor tube 91. From the sensor tube 91, pressure detection signals having first and second signal levels corresponding to the first and second levels S2 in the inner tank 101 are output to the controller 90, and the controller 90 uses these pressure detection signals. Recognizes that the position (height) of the liquid level in the inner tank 101 has reached the first and second levels S2, respectively.
[0071]
In such a cleaning apparatus 100, first, the on-off valves 75, 82, and 86 are opened to supply the chemicals A, B, and pure water to the inner tank 101. Next, when the liquid level in the inner tank 101 reaches the first level S <b> 1, the sensor tube 91 detects this and outputs a pressure detection signal of the first signal level to the controller 90. Upon receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water, while continuing to supply the chemicals A and B. When the chemical solution A is supplied from the tank 70 and the chemical solution B is supplied from the tank 71 several times, and the chemical solutions A and B are supplied in the respective mixed volumes, the controller 90 closes the on-off valves 75 and 82. On the other hand, the on-off valve 86 is opened to resume the supply of pure water. When pure water is supplied and the liquid level in the inner tank 101 rises to reach the second level S2, the sensor tube 91 detects this and outputs a pressure detection signal of the second signal level to the controller 90. . Upon receiving this pressure detection signal, the controller 90 closes the on-off valve 86 and stops the supply of pure water. Also with such a cleaning apparatus 100, a mixed liquid having a predetermined mixing ratio can be generated, and the supply time can be shortened and the apparatus can be miniaturized, similarly to the cleaning apparatus 12. In addition, when the cleaning device 100 is supplied with a mixed volume of both the chemicals A and B before reaching the first level S1 as described above, only one of the chemicals A and B is mixed. The supply method in the case of supplying only can be applied.
[0072]
Moreover, FIG. 19 is explanatory drawing of the washing | cleaning apparatus 110 concerning another embodiment of this invention. The cleaning device 110 has tanks 70 and 71 removed, a chemical solution supply path 111 for supplying the chemical solution A from the chemical solution supply source of the chemical solution A, a chemical solution replenishment path 112 for replenishing the chemical solution A from the chemical solution supply source of the chemical solution A, A chemical solution supply passage 113 for supplying the chemical solution B from the chemical solution supply source of the chemical solution B and a chemical solution replenishment passage 114 for replenishing the chemical solution B from the chemical solution supply source of the chemical solution B are provided. A flow meter 115 and the on-off valve 75 are connected to the chemical solution supply path 111, a flow rate adjusting valve 116 is connected to the chemical solution replenishment route 112, a flow meter 117 and the on-off valve 82 are connected to the chemical solution supply passage 113, and a flow rate adjusting valve 118 is connected to the chemical solution supply passage 114. The flow rate adjusting valve 119 is provided in the supply path 72. Further, the controller 90 controls the opening and closing of the on-off valves 75 and 82 and the flow rate adjusting valve 119 based on the outputs from the flow meters 115 and 117. Further, in the cleaning tank 60, a sensor pipe 92 as a liquid level sensor is installed in the outer tank 62, and the total capacity of the mixed liquid necessary for processing is detected by the sensor pipe 92. The cleaning device 110 has substantially the same configuration as the cleaning device 12 described above except that the tanks 70 and 71 are removed and the chemical solutions A and B are directly supplied from the respective chemical solution supply sources. In FIG. 19, the same components as those in FIG. 2 described above are denoted by the same reference numerals, and redundant description is omitted.
[0073]
The supply of the chemicals A and B and pure water in the cleaning apparatus 110 will be described based on the flowchart of FIG. First, the controller 90 opens the on-off valves 75 and 82 to supply the chemicals A and B to the cleaning tank 60, and adjusts the flow rate adjusting valve 119 to supply pure water to the cleaning tank 60 at the first flow rate (see FIG. S1 in 20). The first flow rate is set to such a flow rate that a pure water supply space can be left in the cleaning tank 60 even after the chemical liquids A and B are supplied in their respective mixed volumes. In this case, for the chemical solution A, the flow rate of the chemical solution A is output from the flow meter 115 to the controller 90. When the controller 90 performs integration and finds that the mixed volume of the chemical solution A has been supplied, the controller 90 closes the on-off valve 75 and stops the supply of the chemical solution A. Similarly, in the case of the chemical solution B, the flow rate of the chemical solution B is output from the flow meter 117 to the controller 90, and when it is determined that the mixed volume of the chemical solution B is supplied, the controller 90 closes the on-off valve 82 and stops the supply of the chemical solution B. To do. When the supply of the chemicals A and B ends (S2 in FIG. 20), the controller 90 adjusts the flow rate adjustment valve 119 to supply pure water at a second flow rate that is higher than the first flow rate (in FIG. 20). S3). When the liquid level in the outer tub 62 rises and reaches the second level S2 (S4 in FIG. 20), the sensor tube 92 detects this and outputs a pressure detection signal of a predetermined signal level to the controller 90. . The controller 90 closes the flow rate adjustment valve 119 and stops the supply of pure water (S5 in FIG. 20). The wafer W is immersed in the cleaning tank 60 and subjected to a cleaning process.
[0074]
In this way, pure water is supplied at the first flow rate so that the supply space can be left in the cleaning tank 60 even after the chemical liquids A and B are supplied only in their respective mixing volumes, while the chemical liquids A and B are mixed with each other. Since the chemicals A, B and pure water are simultaneously supplied to the cleaning tank 60 until the volume is supplied, the supply time can be shortened. In addition, since the pure water is supplied at a second flow rate greater than the first flow rate after the chemical solutions A and B are supplied by the respective mixing volumes, the pure water is automatically supplied by the mixing volume in a short time. Is possible. Moreover, since it is not necessary to provide the tanks 70 and 71, the apparatus can be further reduced in size. Such a configuration in which the chemical liquids A and B are directly supplied from the respective chemical liquid supply sources without providing any tank is also applicable to the cleaning tank 102.
[0075]
In addition, for example, in the present embodiment, the case where the plurality of cleaning liquids are pure water and two types of chemical liquids has been described. However, the present invention is not limited to this, and the present invention is also applicable to a case where a larger number of chemical liquids and pure water are combined. Applied. Further, when the plurality of cleaning liquids consist only of various chemical liquids, the tank for storing the chemical liquid having the maximum mixing capacity is removed from the apparatus. The substrate is not limited to a wafer, and may be an LCD substrate, a CD substrate, a printed substrate, a ceramic substrate, or the like.
[0076]
【The invention's effect】
According to the substrate processing method of the present invention, it is possible to shorten the supply time of a plurality of cleaning liquids. Further, according to the substrate processing apparatus described in the present invention, it is not necessary to provide a tank for storing the processing liquid having the maximum mixing capacity, so that the apparatus can be miniaturized. In addition, the size of the tank for storing processing liquids other than the processing liquid having the maximum mixing capacity can be reduced. Furthermore, the apparatus can be further reduced in size without providing any tank.
[Brief description of the drawings]
FIG. 1 is a perspective view of a cleaning system including a cleaning device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a cleaning apparatus according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a state in which a chemical solution is stored in a tank and the liquid level rises to the position (height) of the quantitative sensor.
FIG. 4 is an explanatory diagram showing a state in which a chemical liquid is supplied into the tank and the liquid level is lowered to the position (height) of the lower limit sensor.
FIG. 5 is an explanatory diagram showing a state in which each chemical solution and pure water are simultaneously supplied and the liquid level rises to the first level.
FIG. 6 is an explanatory diagram showing a state in which each chemical solution is supplied in a mixed volume.
FIG. 7 is an explanatory diagram showing a state in which pure water is supplied and the liquid level rises to the second level.
FIG. 8 is a flowchart for explaining the supply of each chemical solution and pure water when each chemical solution has not yet been supplied in a mixed volume when the liquid level reaches the first level.
FIG. 9 is an explanatory view showing a state in which each chemical solution and pure water are supplied simultaneously, and each chemical solution is supplied in a mixed volume before the liquid level reaches the first level.
FIG. 10 is an explanatory diagram showing a state in which pure water is supplied and the liquid level rises to the first level.
FIG. 11 is an explanatory diagram showing a state in which pure water is supplied and the liquid level rises to the second level.
FIG. 12 is a flowchart for explaining supply of each chemical solution and pure water when each chemical solution is supplied in a mixed volume before the liquid level reaches the first level.
FIG. 13 is an explanatory diagram showing a state in which each chemical solution and pure water are supplied simultaneously, and one chemical solution is supplied in a mixed volume before the liquid level reaches the first level.
FIG. 14 is an explanatory view showing a state in which the other chemical solution and pure water are simultaneously supplied and the liquid level rises to the first level.
FIG. 15 is an explanatory diagram showing a state where the other chemical solution and pure water are supplied simultaneously, and the other chemical solution is supplied in a mixed volume after the liquid level reaches the first level.
FIG. 16 is an explanatory diagram showing a state in which pure water is supplied and the liquid level rises to the second level.
FIG. 17 is a flowchart for explaining supply of each chemical solution and pure water when one chemical solution is supplied in a mixed volume before the liquid level reaches the first level.
FIG. 18 is an explanatory diagram of a cleaning apparatus according to another embodiment of the present invention.
FIG. 19 is an explanatory diagram of a cleaning apparatus according to still another embodiment of the present invention.
20 is a flowchart for explaining the supply of each chemical solution and pure water in the cleaning apparatus of FIG.
[Explanation of symbols]
A, B chemicals
C career
W wafer
S1 first level
S2 Second level
TS1, TS3 quantitative sensor
TS2, TS4 Lower limit sensor
1 Cleaning system
12, 14, 16, 18 Cleaning device
60 Washing tank
72 Supply path
73,80 Tank supply path
70, 71 tanks
75, 78, 82, 85, 86 On-off valve
90 controller
91,92 Sensor tube

Claims (10)

複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,
処理槽内の液面が第1のレベルに到達するまで,前記複数の処理液を処理槽に同時に供給する工程と,
液面が第1のレベルに到達した後,前記複数の処理液のうちで混合容量が最大の処理液の供給を停止し,混合容量が最大の処理液以外の処理液を混合容量まで供給する工程と,
前記混合容量が最大の処理液以外の処理液を混合容量まで供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記複数の処理液のうちで混合容量が最大の処理液の供給を再開させ,前記処理槽内の液面が第2のレベルに到達するまで,前記混合容量が最大の処理液を供給する工程を有し,
少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を満たす位置に前記第2のレベルは設定されることを特徴とする,基板処理方法。
A method of treating a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing solutions to a processing tank in a mixed volume,
Supplying the plurality of treatment liquids simultaneously to the treatment tank until the liquid level in the treatment tank reaches the first level;
After the liquid level reaches the first level, the supply of the treatment liquid having the largest mixing volume among the plurality of treatment liquids is stopped, and the treatment liquid other than the treatment liquid having the largest mixing volume is supplied to the mixing volume. Process,
After supplying the processing liquid other than the processing liquid having the maximum mixing capacity to the mixing capacity, the supply of the processing liquid other than the processing liquid having the maximum mixing capacity is stopped, and the mixing capacity is the maximum among the plurality of processing liquids. It restarts the supply of the treatment liquid, to the liquid surface of the processing bath reaches the second level, the mixing capacity have a step of supplying a maximum processing liquid,
The first level is set at a position where at least the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid having the maximum mixing capacity. The substrate processing method is characterized in that the second level is set at a position satisfying the total volume of the liquid mixture required for processing.
複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,A method of treating a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing solutions to a processing tank in a mixed volume,
前記複数の処理液のうちで混合容量が最大の処理液を第1の流量として,混合容量が最大の処理液以外の処理液を混合容量供給するまで,複数の処理液を処理槽に同時に供給する工程と,  A plurality of treatment liquids are simultaneously supplied to the treatment tank until a treatment liquid other than the treatment liquid having the largest mixing capacity is supplied as a first flow rate with the treatment liquid having the largest mixing capacity among the plurality of treatment liquids as a first flow rate. A process of
前記混合容量が最大の処理液以外の処理液を混合容量供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記混合容量が最大の処理液を第1の流量よりも大きい第2の流量で供給する工程を有し,  After supplying a processing volume other than the processing liquid having the maximum mixing capacity, supply of the processing liquid other than the processing liquid having the maximum mixing capacity is stopped, and the processing liquid having the maximum mixing capacity is supplied to the first flow rate. Supplying at a second flow rate greater than
前記第1の流量は,前記混合容量が最大の処理液以外の処理液を混合容量供給した後でも処理槽内に前記混合容量が最大の処理液を供給できるスペースを残せるような流量に設定されていることを特徴とする,基板処理方法。  The first flow rate is set to a flow rate that can leave a space in the treatment tank in which the treatment liquid having the maximum mixing capacity can be supplied even after the treatment liquid other than the treatment liquid having the maximum mixing capacity is supplied. The substrate processing method characterized by the above-mentioned.
複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する方法であって,A method of treating a substrate by immersing a substrate in a mixed solution generated by supplying a plurality of processing solutions to a processing tank in a mixed volume,
処理槽内の液面が第1のレベルに到達するまで,複数の処理液を処理槽に同時に供給する工程と,  Supplying a plurality of treatment liquids simultaneously to the treatment tank until the liquid level in the treatment tank reaches the first level;
第1のレベルに到達した時点で,複数の処理液のうちで混合容量が最大の処理液以外の処理液を混合容量供給したか否かを判別する工程を有し,  A step of determining whether or not a processing volume other than the processing liquid having the maximum mixing volume among the plurality of processing liquids has been supplied when the first level is reached;
前記判別により,前記混合容量が最大の処理液以外の処理液を未だ混合容量供給していないと判別した場合は,混合容量が最大の処理液の供給を停止すると共に,前記混合容量が最大の処理液以外の処理液を混合容量まで供給する工程と,前記混合容量が最大の処理液以外の処理液を混合容量まで供給した後,前記混合容量が最大の処理液以外の処理液の供給を停止し,前記複数の処理液のうちで混合容量が最大の処理液の供給を再開させ,前記処理槽内の液面が第2のレベルに到達するまで,前記混合容量が最大の処理液を供給する工程を有し,  If it is determined by the determination that the processing liquid other than the processing liquid having the maximum mixing capacity has not been supplied yet, the supply of the processing liquid having the maximum mixing capacity is stopped and the mixing capacity is maximized. Supplying a treatment liquid other than the treatment liquid up to the mixing volume; and supplying a treatment liquid other than the treatment liquid having the maximum mixing capacity up to the mixing volume; The supply of the treatment liquid having the maximum mixing capacity among the plurality of treatment liquids is resumed, and the treatment liquid having the maximum mixing capacity is added until the liquid level in the treatment tank reaches the second level. A process of supplying,
前記判別により,前記混合容量が最大の処理液以外の処理液全てを混合容量供給していると判別した場合は,前記混合容量が最大の処理液以外の処理液の供給を停止せずに,前記処理槽内の液面が第2のレベルに到達するまで,混合容量が最大の処理液を供給する工程を有し,  If it is determined by the determination that all the processing liquids other than the processing liquid with the maximum mixing capacity are supplied in a mixed volume, the supply of the processing liquid other than the processing liquid with the maximum mixing capacity is not stopped. Supplying a treatment liquid having a maximum mixing capacity until the liquid level in the treatment tank reaches a second level;
少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を満たす位置に前記第2のレベルは設定されることを特徴とする,基板処理方法。  The first level is set at a position where at least the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid having the maximum mixing capacity. The substrate processing method is characterized in that the second level is set at a position satisfying the total volume of the liquid mixture required for processing.
前記混合容量が最大の処理液以外の処理液が薬液であり,前記混合容量が最大の処理液が純水であることを特徴とする,請求項1〜3のいずれかに記載の基板処理方法。4. The substrate processing method according to claim 1, wherein the processing liquid other than the processing liquid having the maximum mixing capacity is a chemical liquid, and the processing liquid having the maximum mixing capacity is pure water. . 複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する装置であって,An apparatus for processing a substrate by immersing a substrate in a mixed liquid generated by supplying a plurality of processing liquids to a processing tank by a mixed volume,
前記複数の処理液のうちで混合容量が最大の処理液と,混合容量が最大の処理液以外の処理液を供給する複数の供給路と,  Among the plurality of treatment liquids, a treatment liquid having a maximum mixing capacity, a plurality of supply paths for supplying treatment liquids other than the treatment liquid having the largest mixing capacity,
これら複数の供給路にそれぞれ設けられた弁と,  A valve provided in each of the plurality of supply paths;
前記処理槽内の液面の高さが第1のレベルに到達したことを検出するための第1のセンサと,  A first sensor for detecting that the liquid level in the treatment tank has reached a first level;
前記処理槽内の液面の高さが第2のレベルに到達したことを検出するための第2のセンサと,  A second sensor for detecting that the liquid level in the processing tank has reached a second level;
前記第1のセンサから出力される検出信号と,前記第2のセンサから出力される検出信号に基づいて少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁の開閉を制御するコントローラを備え,  Based on the detection signal output from the first sensor and the detection signal output from the second sensor, the opening and closing of a valve provided in the supply path for supplying at least the processing liquid having the maximum mixing capacity is controlled. Equipped with a controller
少なくとも前記処理槽における第1のレベルと第2のレベルの間の容量が前記混合容量が最大の処理液以外の処理液の混合容量よりも多くなるような位置に前記第1のレベルは設定され,処理に必要な混合液の総容量を検出する位置に前記第2のレベルは設定され,  The first level is set at a position where at least the volume between the first level and the second level in the processing tank is larger than the mixing volume of the processing liquid other than the processing liquid having the maximum mixing capacity. , The second level is set at a position where the total volume of the liquid mixture required for processing is detected,
前記第1のセンサの検出信号が前記コントローラに出力された時点で,前記混合容量が最大の処理液以外の処理液を未だ混合容量供給していない場合は,前記コントローラは少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁を閉じるように制御し,  At the time when the detection signal of the first sensor is output to the controller, if the processing liquid other than the processing liquid with the maximum mixing capacity has not been supplied yet, the controller has at least the maximum mixing capacity. Control to close the valve provided in the supply path for supplying the treatment liquid of
前記第1のセンサの検出信号が前記コントローラに出力された時点で,前記混合容量が最大の処理液以外の処理液全てを混合容量供給している場合は,前記コントローラは少なくとも前記混合容量が最大の処理液を供給する供給路に設けられた弁を閉じないように制御することを特徴とする,基板処理装置。  At the time when the detection signal of the first sensor is output to the controller, if all the processing liquids other than the processing liquid with the maximum mixing capacity are supplied in a mixing capacity, the controller has at least the mixing capacity at the maximum. A substrate processing apparatus, characterized in that control is performed so that a valve provided in a supply path for supplying the processing liquid is not closed.
前記混合容量が最大の処理液以外の処理液を供給する供給路は,前記混合容量が最大の処理液以外の処理液を貯留するタンクに接続されることを特徴とする,請求項5に記載の基板処理装置。The supply path for supplying a processing liquid other than the processing liquid having the maximum mixing capacity is connected to a tank for storing a processing liquid other than the processing liquid having the maximum mixing capacity. Substrate processing equipment. 前記タンクの上部に,前記混合容量が最大の処理液以外の処理液が混合容量の1/N(N:自然数)の容量貯留されたことを検出する定量センサが設置され,前記タンクの下部に,前記混合容量が最大の処理液以外の処理液が混合容量の1/Nの容量供給されたことを検出する下限センサが設置されることを特徴とする,請求項6に記載の基板処理装置。A quantitative sensor is installed at the top of the tank to detect that a processing liquid other than the processing liquid having the maximum mixing capacity is stored at a volume of 1 / N (N: natural number) of the mixing capacity. The substrate processing apparatus according to claim 6, further comprising a lower limit sensor that detects that a processing liquid other than the processing liquid having the maximum mixing capacity is supplied at a volume of 1 / N of the mixing capacity. . 前記コントローラは,前記定量センサから出力される検出信号と,前記下限センサから出力される検出信号に基づいて前記弁の開閉を制御することを特徴とする,請求項7に記載の基板処理装置。The substrate processing apparatus according to claim 7, wherein the controller controls opening and closing of the valve based on a detection signal output from the quantitative sensor and a detection signal output from the lower limit sensor. 複数の処理液を各々の混合容量だけ処理槽に供給して生成された混合液に基板を浸漬させて処理する装置であって,An apparatus for processing a substrate by immersing a substrate in a mixed liquid generated by supplying a plurality of processing liquids to a processing tank by a mixed volume,
前記複数の処理液のうちで混合容量が最大の処理液と,混合容量が最大の処理液以外の処理液を供給する複数の供給路と,  Among the plurality of treatment liquids, a treatment liquid having a maximum mixing capacity, a plurality of supply paths for supplying treatment liquids other than the treatment liquid having the largest mixing capacity,
これら複数の供給路にそれぞれ設けられたフローメータと,  A flow meter provided in each of the plurality of supply paths;
前記混合容量が最大の処理液以外の処理液を供給する供給路に設けられた開閉弁と,  An on-off valve provided in a supply path for supplying a treatment liquid other than the treatment liquid having the maximum mixing capacity;
前記混合容量が最大の処理液を供給する供給路に設けられた流量調整弁と,  A flow rate adjusting valve provided in a supply path for supplying the treatment liquid having the maximum mixing capacity;
前記処理槽内の液面の高さを検出するために設けられた液面センサと,  A liquid level sensor provided to detect the height of the liquid level in the treatment tank;
前記フローメータから出力される検出信号と,前記液面センサから出力される検出信号に基づいて前記開閉弁と前記流量調整弁を制御するコントローラを備え,  A controller for controlling the on-off valve and the flow rate adjusting valve based on a detection signal output from the flow meter and a detection signal output from the liquid level sensor;
前記コントローラは,混合容量が最大の処理液以外の処理液を混合容量供給するまでは,前記開閉弁を開き,前記混合容量が最大の処理液を第1の流量とさせるように前記流量調整弁を調整し,前記混合容量が最大の処理液以外の処理液を混合容量供給した後,前記開閉弁を閉じ,前記混合容量が最大の処理液を第1の流量よりも大きい第2の流量とさせるように前記流量調整弁を調整し,  The controller opens the on-off valve until a processing volume other than the processing liquid having the maximum mixing capacity is supplied, and the flow rate adjusting valve is configured to set the processing liquid having the maximum mixing capacity to the first flow rate. And after supplying a processing volume other than the processing liquid having the maximum mixing capacity, the on-off valve is closed and the processing liquid having the maximum mixing capacity is set to a second flow rate larger than the first flow rate. Adjusting the flow rate regulating valve to
前記第1の流量は,前記混合容量が最大の処理液以外の処理液を混合容量供給した後で  The first flow rate is obtained after supplying a processing volume other than the processing liquid having the maximum mixing capacity to a mixed volume. も処理槽内に前記混合容量が最大の処理液を供給できるスペースを残せるような流量に設定されることを特徴とする,基板処理装置。The substrate processing apparatus is characterized in that the flow rate is set so as to leave a space in the processing tank where the processing liquid having the maximum mixing capacity can be supplied.
前記混合容量が最大の処理液以外の処理液が薬液であり,前記混合容量が最大の処理液が純水であることを特徴とする,請求項5〜9のいずれかに記載の基板処理装置。The substrate processing apparatus according to claim 5, wherein the processing liquid other than the processing liquid having the maximum mixing capacity is a chemical liquid, and the processing liquid having the maximum mixing capacity is pure water. .
JP2001001525A 2001-01-09 2001-01-09 Substrate processing method and substrate processing apparatus Expired - Lifetime JP3892670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001525A JP3892670B2 (en) 2001-01-09 2001-01-09 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001525A JP3892670B2 (en) 2001-01-09 2001-01-09 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2002208576A JP2002208576A (en) 2002-07-26
JP3892670B2 true JP3892670B2 (en) 2007-03-14

Family

ID=18870157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001525A Expired - Lifetime JP3892670B2 (en) 2001-01-09 2001-01-09 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP3892670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210687A (en) * 2005-01-28 2006-08-10 Dainippon Screen Mfg Co Ltd Substrate processing device
JP4515269B2 (en) * 2005-01-18 2010-07-28 大日本スクリーン製造株式会社 Substrate processing equipment
JP6367069B2 (en) * 2013-11-25 2018-08-01 東京エレクトロン株式会社 Mixing apparatus, substrate processing apparatus, and mixing method

Also Published As

Publication number Publication date
JP2002208576A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR100390545B1 (en) Substrate Cleaning Dryer, Substrate Cleaning Method and Substrate Cleaning Device
JP3074366B2 (en) Processing equipment
US6592678B1 (en) Cleaning method and cleaning equipment
US5826601A (en) Treating liquid replacing method, substrate treating method and substrate treating apparatus
TWI690979B (en) Substrate processing device and cleaning method of substrate processing device
JP2018082099A (en) Substrate processing apparatus, substrate processing method and storage medium
JPH1197403A (en) Processing device
JP2007123393A (en) Substrate-treating device
KR102611293B1 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
JP7224117B2 (en) SUBSTRATE PROCESSING APPARATUS AND PROCESSING LIQUID REUSE METHOD
JP3892670B2 (en) Substrate processing method and substrate processing apparatus
US20040035449A1 (en) Wet cleaning facility having bubble-detecting device
JPH09199468A (en) Processing method and device
JP7264729B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP6840001B2 (en) Substrate processing equipment and substrate processing method
JP3254519B2 (en) Cleaning treatment method and cleaning treatment system
JP3451567B2 (en) Cleaning equipment
KR20070030542A (en) Apparatus bubble removing for treatment bath
JP3648096B2 (en) Processing equipment
JP2003086561A (en) Substrate treatment apparatus
JP3123986B2 (en) Jet type wet etching method and apparatus
JPH11342356A (en) Substrate treating device and substrate treatment
JP3341206B2 (en) Cleaning treatment apparatus and cleaning treatment method
JP2000124179A (en) Substrate treating method
JPH11176793A (en) Cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Ref document number: 3892670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term