WO2004102697A1 - 電池用パッケージおよびその製造方法 - Google Patents

電池用パッケージおよびその製造方法 Download PDF

Info

Publication number
WO2004102697A1
WO2004102697A1 PCT/JP2004/006719 JP2004006719W WO2004102697A1 WO 2004102697 A1 WO2004102697 A1 WO 2004102697A1 JP 2004006719 W JP2004006719 W JP 2004006719W WO 2004102697 A1 WO2004102697 A1 WO 2004102697A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
battery package
aliphatic polyester
stretched sheet
base material
Prior art date
Application number
PCT/JP2004/006719
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Kumakura
Tozo Umeda
Kinji Uemura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP04732497A priority Critical patent/EP1635410A4/en
Priority to US10/555,172 priority patent/US20060108978A1/en
Publication of WO2004102697A1 publication Critical patent/WO2004102697A1/ja
Priority to US11/907,739 priority patent/US20080048354A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D71/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
    • B65D71/06Packaging elements holding or encircling completely or almost completely the bundle of articles, e.g. wrappers
    • B65D71/08Wrappers shrunk by heat or under tension, e.g. stretch films or films tensioned by compressed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • B65D75/32Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
    • B65D75/36Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents one sheet or blank being recessed and the other formed of relatively stiff flat sheet material, e.g. blister packages, the recess or recesses being preformed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a battery package and a method for manufacturing the same.
  • thermoplastic resins such as polyethylene, polyvinyl chloride, polystyrene, and polyethylene terephthalate (PET) have been used as materials for product packaging.
  • PET polyethylene terephthalate
  • biodegradable resins that can degrade and disappear over time in the natural environment have been developed as environmentally friendly resins, and they have been applied to plastic bags and some containers.
  • biodegradable resins include aliphatic polyesters, modified polyvinyl alcohol (PVA), cellulose ester compounds, and modified starches.
  • PVA polyvinyl alcohol
  • cellulose ester compounds cellulose ester compounds
  • biodegradable resins are disclosed, for example, in films disclosed in Japanese Patent Application Laid-Open No. 10-103533 and Japanese Patent Application Laid-Open No. 2001-133183. Although it has been applied to relatively large molded articles such as document holders and other food trays, it has been difficult to form and process finely like a battery package because of its brittleness. In addition, since a relatively heavy battery is stored in a battery package, sufficient strength, impact resistance, and transparency are required, but it is difficult to obtain a molded product that satisfies all of these requirements. there were.
  • an object of the present invention is to provide a battery package having excellent strength, impact resistance and transparency even when a biodegradable resin is used.
  • Another object of the present invention is to provide, as an environmentally friendly battery package, a battery package in which all main components are made of biodegradable resin.
  • the present invention relates to a battery package comprising a base material and a container, wherein the container is formed of a stretched sheet of a biodegradable aliphatic polyester.
  • the substrate is composed of a biodegradable aliphatic polyester.
  • the battery package preferably has a laminate layer composed of biodegradable aliphatic polyester between the base material and the container.
  • the biodegradable aliphatic polyester is a polylactic acid-based polymer.
  • the tensile strength of the stretched sheet is 40 to 90 MPa.
  • the stretched sheet preferably has a tensile modulus of 1 to 7 GPa. Further, the haze of the stretched sheet is preferably less than 10%.
  • the container holds a shrink pack including a plurality of batteries.
  • the shrink pack is also made of a biodegradable aliphatic polyester.
  • the biodegradable aliphatic polyester is preferably a polylactic acid-based polymer.
  • the shrink pack is composed of a stretched sheet of a biodegradable aliphatic polyester.
  • the present invention provides a step of pressure-forming a stretched sheet of a biodegradable aliphatic polyester to obtain a container having a housing portion, and integrating the container with a base material comprising a stretched sheet of a biodegradable aliphatic polyester. And obtaining a battery package by using the method described above.
  • a laminate layer made of a stretched sheet of a biodegradable aliphatic polyester is adhered to the base material to obtain an adhesive, and the laminate layer and the container are thermally fused. It is preferable that the base material and the container are integrated by attaching.
  • a bent portion is provided by bending an end portion of the container toward a surface opposite to the housing portion, and the container is inserted into the bent portion to insert the container. It is preferable to integrate with the base material.
  • FIG. 1 is an exploded perspective view schematically showing an embodiment of a battery package according to the present invention.
  • FIG. 2 is an exploded perspective view schematically showing another embodiment of the battery package according to the present invention.
  • FIG. 3 is a schematic view showing main steps of a first embodiment of a method for manufacturing a battery package according to the present invention.
  • FIG. 4 is a schematic view showing main steps of a second embodiment of the method for manufacturing a battery package according to the present invention.
  • FIG. 5 is a process diagram of a method for manufacturing a battery package according to the first embodiment of the present invention.
  • FIG. 6 is a process diagram of a method for manufacturing a battery package according to the second embodiment of the present invention.
  • the present invention relates to a battery package comprising a base material and a container, wherein the container is constituted by a stretched sheet of a biodegradable aliphatic polyester.
  • the present inventors have conducted intensive experiments and studies on the molding and processing of biodegradable resins, and as a result of using the biodegradable resins. It has been found that a battery package can be manufactured.
  • FIG. 1 is an exploded perspective view schematically showing an embodiment of a battery package according to the present invention.
  • a battery package 1 shown in FIG. 1 is composed of a base material 2 and a transparent container 3, and a battery pack 4 is stored in a storage portion 3 a of the container 3.
  • a predetermined printing is performed on the surface of the substrate 2 facing the container 3, and a laminate layer (not shown) is provided.
  • the flange 3b of the container 3 and the laminating layer are connected by, for example, heat fusion. Then, the base material 2 and the container 3 are integrated. Further, the base material 2 may be provided with a hanging hole 2a so that the battery package 1 can be hung and displayed on a sales shelf or the like. In a conventional battery package, a backing sheet is used instead of the base material 2.
  • FIG. 2 is an exploded perspective view schematically showing another embodiment of the battery package according to the present invention.
  • the battery package 11 shown in FIG. 2 includes a base material 12 and a transparent container 13, and a battery pack 14 is stored in a storage portion 13 a of the container 13 (the second embodiment).
  • predetermined printing is performed on the surface of the substrate 12 facing the container 13, but the laminate layer may not be provided.
  • a portion corresponding to the flange portion 3b in Fig. 1 is bent, and bent portions 13b, 13c, and 13d are provided on the opposite side to the housing portion 13a. That is, the peripheral portion of the container 13 is bent 180 degrees toward the base material 12 to form the bent portion.
  • the fixing means is not particularly limited, and examples thereof include heat fusion, an adhesive, and a stapler.
  • the base material 12 may be provided with a hanging hole 12 a so that the battery package 11 can be hung on a sales shelf or the like for display. Good.
  • At least the containers 3 and 13 need only be transparent so that consumers can see the design printed on the battery outer seal inside the battery packs 4 and 14.
  • the surfaces of the substrates 2 and 12 on the sides of the containers 3 and 13 are printed, but the substrates 2 and 12 may also be transparent.
  • biodegradable resin examples include aliphatic polyester, modified polyvinyl alcohol (PVA), a cellulose ester compound, and a modified starch.
  • PVA modified polyvinyl alcohol
  • a cellulose ester compound examples include a modified starch.
  • aliphatic polyesters are formed during decomposition. It is environmentally friendly because it produces very low levels of alcohol and carboxylic acid toxicants.
  • aliphatic polyester examples include a microorganism-producing polymer such as hydroxybutyric acid-valeric acid polymer, a synthetic polymer such as polycaprolactone and an aliphatic dicarboxylic acid-aliphatic polyol condensate, and A polylactic acid-based polymer, which is a semi-synthetic polymer, is exemplified.
  • polylactic acid-based polymer it is preferable to use a polylactic acid-based polymer because of its excellent transparency, rigidity, heat resistance, and workability.
  • the polylactic acid-based polymer may be a homopolymer of L-lactic acid and / or D-lactic acid, but may be copolymerized with another hydroxycarboxylic acid as long as the effect of biodegradability is not impaired. It may be a union or a mixture (or polymer alloy).
  • Other hydroxycarboxylic acids include, for example, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid and 6-hydroxycabronic acid.
  • the preferred weight average molecular weight of the polylactic acid-based polymer which is a preferred biodegradable resin is in the range of 50,000 to 100,000. When the weight average molecular weight is less than 50,000, practical physical properties are hardly exhibited. Conversely, if the weight average molecular weight exceeds 100,000, the melt viscosity becomes too high and molding workability is poor.
  • the polylactic acid-based polymer has a high glass transition point and crystallinity, and has properties similar to PET. More preferably, the film made of polylactic acid can be uniaxially or biaxially stretched. In the obtained stretched sheet, molecules are oriented, low in brittleness, hard to crack, and extremely excellent in strength. Sheet can be obtained. In addition, extrusion casting is possible and transparency can be ensured. As will be described later, in the present invention, it is preferable to use a stretched sheet as a material, particularly when a container is produced by air pressure molding.
  • Corn can be used as a raw material for the polylactic acid-based polymer. After separating and saccharifying starch from corn, lactic acid is obtained by lactic acid fermentation and polylactic acid is obtained by polymerization through lactide. Thus, since the polylactic acid-based polymer can be obtained from sources other than petroleum-based materials, it can be said that the present invention is environmentally friendly not only in the final battery package itself but also in the material generation process.
  • the biodegradable resin may be used as a resin composition.
  • other polymer materials may be mixed as long as the effects of the present invention are not impaired, and a plasticizer, a lubricant, an inorganic filler, an ultraviolet absorber may be used for the purpose of adjusting physical properties and workability.
  • a heat stabilizer, a light stabilizer, a light absorber, a coloring agent, a pigment and a modifier may be mixed.
  • the container portion of the battery package it is necessary to form a relatively fine shape containing portion having a corner portion according to the shape of the battery, and the moldability as well as the transparency are required. Since biodegradable resin is brittle, there is a problem that cracking may occur if the biodegradable resin is molded under conventional conditions.
  • a stretched sheet of a biodegradable resin particularly for obtaining the container.
  • a biaxially stretched sheet has higher strength than a uniaxially stretched sheet and is preferred.
  • the stretched sheet has the disadvantage that while having higher strength than the unstretched sheet, it is slightly inferior in workability. Therefore, it is difficult to form a stretched sheet of the biodegradable resin into the container by a vacuum forming method or the like under the same conditions as the thermoplastic resin used for the conventional package. Therefore, in the present invention, the container is formed from a stretched sheet by a pressure forming method.
  • a vacuum forming method is used to manufacture a conventional battery package made of PET.
  • a resin sheet is sandwiched between clamp dies, heated and softened by a heater, and then evacuated. By suction, the resin sheet is brought into close contact with the mold at atmospheric pressure and molded.
  • the stretched sheet of the biodegradable resin has high strength, it cannot be brought into close contact with a mold at a pressure of about atmospheric pressure, and cannot be formed into a desired shape.
  • a pressure forming method in this pressure forming method, high-pressure air is supplied from a pressurized box into the mold, and a large forming pressure is applied to the resin sheet in accordance with the atmospheric pressure. As a result, even a high-strength resin sheet can be securely adhered to the mold.
  • the stretched sheet preferably has a tensile property (tensile breaking strength) of 40 to 90 MPa.
  • the tensile strength of the stretched sheet is less than 4 OMPa, the strength to withstand the battery will not be obtained. If it exceeds 9 OMPa, the sheet strength will be too strong, and the moldability will be reduced and Transparency is reduced. Further, it is particularly preferred that the pressure be 60 to 80 MPa.
  • the tensile properties in the present invention are based on JISK-7 127 ⁇
  • the tensile modulus of the stretched sheet is preferably 1 to 7 GPa. If the tensile modulus of the stretched sheet is less than l GPa, the sheet becomes too hard. However, if it exceeds 7 GPa, the sheet may become too soft and it may be difficult to hold the battery. Further, it is particularly preferably 2 to 6 GPa. This tensile modulus can be measured according to JIS K 712.
  • haze which is a guide to the transparency of the stretched sheet, is less than 10%. If the haze is more than 10%, the transparency of the sheet decreases, and the package does not fulfill its original function of storing products so that customers can easily see it. Furthermore, it is particularly preferred that it is 2 to 8%. This haze is measured according to JIS K-7105.
  • the present invention is characterized in that it comprises at least a substrate and a container, and the container is made of a stretched sheet of a biodegradable aliphatic polyester.
  • the base material is also made of a biodegradable aliphatic polyester.
  • the base material and the container can be integrated by heat fusion, as described later. Is possible.
  • a shrink pack including a plurality of batteries is provided in the container of the container. Battery pack can be accommodated.
  • This shrink pack is also preferably made of biodegradable aliphatic polyester.
  • the biodegradable aliphatic polyester is preferably a polylactic acid-based polymer, and the shrink pack is preferably made of a stretched sheet of the biodegradable aliphatic polyester.
  • the thickness of the substrate is preferably 50 to 200; m. If the thickness of the substrate is less than 50 m, it may be too thin to hold the battery.If it is more than 200 m, the container and the laminate layer may be thermally fused through the substrate. In addition, the thermal conductivity is reduced, and the bonding strength varies, and the quality of the package is reduced. Also, it is difficult to manage the heat during heat fusion.
  • the thickness of the laminate layer is preferably from 20 to 80 / im. If the thickness of the laminate layer is less than 20 / x m, the cushioning properties of the laminate layer itself will decrease, and the adhesive pressure and adhesive strength during heat fusion will vary. On the other hand, if it is less than 20 / im, the laminate layer becomes too stretched or easily torn. On the other hand, if the thickness is more than 80 111, it takes too much time at the time of heat fusion, and excessive application of heat may adversely affect the base material such as deformation. More preferably, it is 40 to 60 m.
  • the thickness of the stretched sheet used to obtain the container by the pressure forming method is preferably from 200 to 600 m. If the thickness of the sheet of the container is less than 200 / m, the allowable range of heat during molding is narrow, and the sheet is too thin, which may cause excessive deformation or deformation. In addition, thermal management in terms of productivity becomes difficult. Further, even if it exceeds 600 zm, no further improvement effect can be expected.
  • the printing on the substrate may be performed by a conventional method, and the bonding of the laminate layer to the substrate can be performed using a conventional adhesive.
  • adhesives include vinyl, acrylic, polyamide, polyester, Examples include rubber-based and urethane-based adhesives.
  • polysaccharides such as starch, amylose, and amyctic pectin
  • proteins and polypeptides such as glue, gelatin, casein, zein, and collagen, unvulcanized natural rubber, and fatty acids
  • a biodegradable adhesive using a ester or the like.
  • the battery package according to the present invention comprises: a step of pressure-forming a stretched sheet of a biodegradable aliphatic polyester to obtain a container having an accommodating portion; and a method of forming the container with a stretched sheet of a biodegradable aliphatic polyester. And a step of obtaining a battery package integrated with the battery.
  • FIG. 3 is a schematic view showing main steps of a first embodiment of a method for manufacturing a battery package according to the present invention.
  • FIG. 4 is a schematic view showing main steps of a second embodiment of the method for manufacturing a battery package according to the present invention.
  • a stretched sheet of a biodegradable aliphatic polyester is pressure-formed to obtain a container having an accommodation portion.
  • a base material bonding step (1-2) a laminating layer made of a stretched material of a biodegradable aliphatic polyester is bonded to a base material made of a stretched sheet of a biodegradable aliphatic polyester to form an adhesive.
  • the container forming step (1-1) and the base material bonding step (1-2) may be performed at the same time, or may be performed before the other.
  • the base material and the container are integrated by thermally fusing the laminate layer in the adhesive to the container, and the battery package according to the present invention is provided.
  • the step of housing the battery pack is omitted.
  • the container forming step (2-1) as in the container forming step (1-1) in the first embodiment, A stretched sheet of the biodegradable aliphatic polyester is pressure-formed to obtain a container having a housing portion.
  • the bent part forming step (2-2) a bent part is provided by bending the end of the container to the side opposite to the housing part.
  • the base material and the container are integrated, and the battery pack is stored in the storage portion.
  • the battery pack is stored in the storage portion.
  • it may be formed by bending the peripheral portion of the container to the side opposite to the storage portion.
  • a base material composed of a stretched sheet of a biodegradable aliphatic polyester is inserted into the bent portion, and the container is integrated with the base material.
  • a battery package prestar pack according to the present invention is obtained.
  • the step of housing the battery pack is omitted.
  • FIGS. 3 and 4 show only the main steps of the method for manufacturing a battery package according to the present invention. The detailed conditions of each step and the steps for accommodating the battery pack in the integration step are shown. Additional steps are described in the examples below.
  • Example 1 Example 1
  • a battery package 1 according to the present invention having the structure shown in FIG. 1 was manufactured in accordance with the process according to the first embodiment shown in FIG. Was.
  • ⁇ pLAJ 250-m-thick polylactic acid
  • a predetermined mark was printed by a rotary printing method using a UV ink on a portion corresponding to the side opposite to the base material 2 of the container 3a of the container 3 (step (1-1)).
  • the predetermined mark is a mark indicating that the battery package 1 according to the present invention uses a biodegradable resin and is environmentally friendly.
  • the stretched sheet was pressure-formed using a pressure-forming machine to obtain a container 3 having a shape shown in FIG. 1 (b) in step (1-1).
  • a semi-transparent PLA sheet of lOO ⁇ m thickness (tensile properties (tensile breaking strength): 110 MPa in length, 11 OMPa in width, tensile Elastic modulus: length 4 ⁇ OGPa, width 4.4 GPa) were prepared.
  • the heat shrinkage rate was 1.7% in length and 0.5% in width as a result of measuring the test piece by heating it at 120 ° C for 5 minutes in accordance with JIS Z1712.
  • a predetermined printing was performed on the surface of the substrate 2 on the side of the container 3 by a rotary printing method using a UV ink (a in step (1-2)).
  • a transparent stretch sheet made of PLA with a thickness of 50 m as a laminate layer (tensile properties (tensile breaking strength): ll OMPa in length, 110 MPa in width, tensile modulus: 3.8 in length) GP a, horizontal 4.3 GP a, haze: 2%) did.
  • the heat shrinkage rate was 2.7% in height and 0.3% in width as a result of measuring the test piece by heating it at 120 ° C for 5 minutes in accordance with JISZ1172.
  • the laminated layer was adhered to the printed surface of the base material 2 with an adhesive (polyamide) to obtain an adhered body (step (b) b).
  • a battery pack (shrink pack) 4 containing four AA cylindrical batteries was prepared and stored in the storage part 3a of the container 3 (a in step (1-3)). Finally, the flange 3b of the container 3 and the laminate layer (not shown) of the base material 2 are bonded by heat-sealing the laminate layer at a heating temperature of 100 ° C.
  • the battery package 1 according to the invention was obtained (b) of the step (1-3) Comparative Example 1
  • a comparative battery package having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1 except that PET was used instead of PLA.
  • a transparent sheet made of PET with a thickness of 250 / xm tensile properties (tensile breaking strength): 68 MPa in length, 68 MPa in width, tensile modulus: 2.1 GPa in length). (2.2 GPa width, haze: less than 1%), and using a UV-ink in the battery package 1 at the part corresponding to the side opposite to the base material 2 of the storage part 3a of the container 3 in the battery package 1.
  • a predetermined mark was printed by a rotary printing method. This predetermined mark was a mark indicating that PET was used.
  • the sheet was vacuum-formed using a vacuum forming machine to obtain a container 3 having a shape shown in FIG.
  • Substrate bonding process Separately from the container molding process described above, a 100-mm-thick PET-made translucent sheet as the base material 2 (tensile properties (tensile breaking strength): length 1 1 2 MPa width 1 1 2 MPa , Tensile modulus: 4.5 l GPa in length and 4.5 GPa in width, and the specified printing is performed on the surface of the substrate 2 on the container 3 side by the rotary printing method using UV ink. went.
  • a transparent sheet made of PET having a thickness of 20 xm was prepared as a laminating layer, and was adhered to the printing surface of the base material 2 with an adhesive to obtain an adhered body.
  • a battery pack (shrink pack) 4 containing four AA cylindrical batteries was prepared and stored in the storage part 3 a of the container 3.
  • the battery package 11 according to the present invention having the structure shown in FIG. 2 was manufactured in accordance with the steps of the method for manufacturing the battery package according to the second embodiment shown in FIG. did.
  • a transparent stretched sheet made of 250-m-thick polylactic acid (hereinafter referred to as “PLA”) (Tensile properties (tensile breaking strength): 70 MPa long, 70 MPa wide, tensile elasticity) Rate: 3.4 GPa length, 4.4 GPa width, Haze: 6%) were prepared.
  • the heat shrinkage rate of the stretched sheet was 3.3% in length and 1.7% in width, as measured according to JISZ 1712 by heating the test specimen at 120 ° C for 5 minutes.
  • the container 13 of the container 13 A predetermined mark was printed on a portion corresponding to the opposite side by a rotary printing method using a UV ink (a) of the process (2-1).
  • This predetermined mark is a mark indicating that the battery package 11 according to the present invention uses a biodegradable resin and is environmentally friendly.
  • the stretched sheet was pressure-formed using a pressure-forming machine to obtain a container 13 having a shape shown in FIG. 2 (b) in step (2-1).
  • step (2-2) the flange-shaped end around the storage portion 13a of the container 13 is bent to the opposite side to the storage portion 13a, that is, the base material 12 side, and the bent portions 13b, 13f And 13d were formed (step (2-2)).
  • the end indicated by Y was cut at an acute angle so that the bent portions 13b, 13c, and 13d shown in FIG. 2 did not overlap each other.
  • a translucent stretched sheet made of PLA having a thickness of 100 m as the base material 12 (tensile properties (tensile breaking strength): 110 MPa in length) , Horizontal 110 MPa, tensile elastic modulus: vertical 4.0 GPa, horizontal 4.4 GPa) were prepared.
  • the heat shrinkage rate was 1.7% in length and 0.5% in width as a result of measuring the test piece by heating it at 120 ° C for 5 minutes in accordance with JIS Z1712.
  • a predetermined printing was performed on the surface of the base material 12 on the container 13 side by a rotary printing method using UV ink (step (2-4)).
  • a battery pack (shrink pack) 4 containing four AA cylindrical batteries was prepared and stored in the storage part 13a of the container 13 (a in step (2-3)). Then, the base material 12 and the container 1 are inserted by sliding the base material 12 into the bent portions 13 b, 13 c and 13 d of the container 13 by sliding the base material 12 in the direction of the arrow X. 3 and were integrated. Then, the base material 12 and the container 13 are bonded with an adhesive Thus, the battery package 2 according to the present invention was obtained (step (2-3) b)).
  • the battery packages 1 and 2 produced as described above and the comparative battery package were individually dropped naturally from the position of 50 cm in height toward the concrete surface.
  • the container of the comparative battery package as a conventional example turned yellow, but the containers of the battery packages 1 and 2 according to the present invention did not turn yellow.
  • the present invention it is possible to provide a battery package in which all of the main members are made of a biodegradable resin and have excellent strength, impact resistance, and transparency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Packages (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Wrappers (AREA)
  • Battery Mounting, Suspending (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)
  • Basic Packing Technique (AREA)
  • Laminated Bodies (AREA)

Abstract

 主要部材をすべて生分解性樹脂で構成され、強度、耐衝撃性および透明性に優れる電池パッケージを提供する。生分解性脂肪族ポリエステルの延伸材からなるシートからなる収容部を有する容器を得、前記容器を生分解性脂肪族ポリエステルの延伸材からなる基材と一体化して電池用パッケージを得る。

Description

9
1 明 細 書 電池用パッケージおよびその製造方法 技術分野
本発明は、 電池用パッケージおよびその製造方法に関する。 背景技術
従来から、 商品のパッケージの材料としては、 ポリエチレン、 ポリ塩 化ビニル、 ポリスチレン、 ポリエチレンテレフ夕レート (P E T ) など の熱可塑性樹脂が使用されている。 しかし、 これらの樹脂は化学的に安 定であるため、 自然環境下においても分解することはなく、 物理的にも 化学的にもその形状をほぼ保持したまま残留する。
そのため、 このような材料の利用は、 自然環境の汚染や埋め立て地の 増加などにつながるという問題がある。 特に、 電池用パッケージの多く には P E Tが使用されており、 電池は回収されるものの、 パッケージそ のものは他のゴミと同様に扱われて廃棄されているのが現状である。 以上のような問題を解決すべく、 環境に優しい樹脂として、 自然環境 中で経時的に分解 · 消失し得る生分解性樹脂が開発されており、 ポリ袋 や容器の一部に適用されている。 このような生分解性樹脂としては、 脂 肪族ポリエステル、 変性ポリビニルアルコール ( P V A ) 、 セルロース エステル化合物およびデンプン変性体などが挙げられ、 なかでも、 脂肪 族ポリエステルは、 分解時に生成するアルコールおよびカルボン酸の毒 素が極めて低いことから、 環境に対して好ましい。
しかし、 生分解性樹脂は、 例えば特開平 1 0— 1 0 0 3 5 3号公報に 開示されているフィルム、 特開 2 0 0 1— 1 3 0 1 8 3号公報に開示さ れている書類ホルダー、 その他食品用トレイなどの比較的大きな成形品 には適用されているものの、 脆性を有することから、 電池パッケージの ように微細な成形および加工をすることは困難であった。 また、 電池用 パッケージには比較的重い電池を収納することから、 充分な強度、 耐衝 擊性および透明性も必要であるが、 これらすベてを満足する成形品を得 ることは困難であった。
そこで、 本発明は、 生分解性樹脂を用いても、 強度、 耐衝撃性および 透明性に優れる電池パッケージを提供することを目的とする。 さらに、 本発明は、 環境に優しい電池パッケージとして、 主要部材をすべて生分 解性樹脂で構成してなる電池用パッケージを提供することを目的とする, 発明の開示
本発明は、 基材および容器を具備し、 前記容器が生分解性脂肪族ポリ エステルの延伸シ一トで構成されていることを特徴とする電池用パッケ —ジに関する。
前記基材が生分解性脂肪族ポリエステルで構成されていることが好ま しい。
また、 前記電池用パッケージは、 前記基材と前記容器との間に、 生分 解性脂肪族ポリエステルで構成されたラミネート層を有することが好ま しい。
また、 前記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体である ことが好ましい。
前記延伸シ一トの引張破断強度が、 4 0〜 9 0 M P aであることが好 ましい。
また、 前記延伸シートの引張弾性率が、 1〜 7 G P aであることが好 ましい。 さらに、 前記延伸シートのヘーズが、 1 0 %未満であることが好まし い。
また、 前記容器に、 電池複数個を含むシュリンクパックを保持するこ とが好ましい。
前記シユリンクパックも、 生分解性脂肪族ポリエステルで構成されて いることが好ましい。
この場合も、 前記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体 であることが好ましい。
また、 前記シュリンクパックが生分解性脂肪族ポリエステルの延伸シ 一卜で構成されていることが好ましい。
さらに本発明は、 生分解性脂肪族ポリエステルの延伸シートを圧空成 形し、 収容部を有する容器を得る工程と、 前記容器を生分解性脂肪族ポ リエステルの延伸シートからなる基材と一体化して電池用パッケージを 得る工程とを含むことを特徴とする電池用パッケージの製造方法に関す る。
前記一体化工程の前において、 前記基材に、 生分解性脂肪族ポリエス テルの延伸シートからなるラミネ一ト層を接着して接着体を得、 前記ラ ミネ一ト層と前記容器を熱融着することによって、 前記基材および前記 容器を一体化することが好ましい。
また、 前記一体化工程の前において、 前記容器の端部を前記収容部と は反対の面側に折り曲げて折曲部を設け、 前記折曲部に前記基材を揷入 して前記容器を前記基材と一体化することが好ましい。 図面の簡単な説明
図 1は、 本発明に係る電池用パッケージの一実施の形態を概略的に示 す分解斜視図である。 図 2は、 本発明に係る電池用パッケージの別の実施の形態を概略的に 示す分解斜視図である。
図 3は、 本発明に係る電池用パッケージの製造方法の第一の実施の形 態の主要な工程を示す概略図である。
図 4は、 本発明に係る電池用パッケージの製造方法の第二の実施の形 態の主要な工程を示す概略図である。
図 5は、 本発明の実施例 1における電池用パッケージの製造方法のェ 程図である。
図 6は、 本発明の実施例 2における電池用パッケージの製造方法のェ 程図である。 発明を実施するための最良の形態
( 1 ) 電池用パッケージ
本発明は、 基材および容器を具備し、 前記容器が生分解性脂肪族ポリ エステルの延伸シートで構成されていることを特徴とする電池用パッケ —ジに関する。 本発明者らは、 上述のような従来の問題点に鑑み、 生分 解性樹脂の成形 ·加工、 および得られた成形物について鋭意実験および 検討を行った結果、 生分解性樹脂を用いて電池用パッケージを製造し得 ることを見出した。
図 1は、 本発明に係る電池用パッケージの一実施の形態を概略的に示 す分解斜視図である。
図 1に示す電池用パッケージ 1は、 基材 2および透明な容器 3で構成 され、 容器 3の収容部 3 aには電池パック 4が収容される。 基材 2の容 器 3に面する表面には、 所定の印刷がなされ、 さらにラミネート層 (図 示せず) が設けられる。
そして、 例えば熱融着により、 容器 3の鍔部 3 bとラミネ一卜層を接 着し、 基材 2と容器 3とを一体化する。 また、 基材 2には、 電池用パッ ケージ 1を販売棚などにつり下げて陳列することができるように、 つり 下げ穴 2 aを設けてもよい。 従来の電池用パッケージでは、 基材 2の代 わりに台紙が用いられている。
つぎに、 図 2は、 本発明に係る電池用パッケージの他の実施の形態を 概略的に示す分解斜視図である。
図 2に示す電池用パッケージ 1 1は、 基材 1 2および透明な容器 1 3 で構成され、 容器 1 3の収容部 1 3 aには電池パック 1 4が収容される ( 第二の実施の形態においては、 基材 1 2の容器 1 3に面する表面には、 所定の印刷がなされるが、 ラミネート層は設けなくてもよい。
ラミネート層を設けない代わりに、 図 1の鍔部 3 bに相当する部分を, 収容部 1 3 aとは反対側に折り曲げ折曲部 1 3 b、 1 3 cおよび 1 3 d を設ける。 すなわち、 容器 1 3の周辺部を、 基材 1 2の側に 1 8 0度折 り曲げて、 前記折曲部を形成する。 一点鎖線の方向に、 折曲部 1 3 bお よび 1 3 dの端部から基材 1 2を矢印 Xの方向にスライ ドさせて挿入し、 折曲部 1 3 cまで到達させることによって、 基材 1 2と容器 1 3を一体 化することができる。
なお、 基材 1 2は容器 1 3の折曲部 1 3 b、 1 3 cおよび 1 3 dに挟 まれているだけであることから、 基材 1 2と折曲部 1 3 b、 1 3 cおよ び 1 3 dとを固定しておくのが好ましい。 固定する手段としては特に制 限されるものではなく、 例えば熱融着、 接着剤およびホッチキスなどが 挙げられる。
また、 第一の実施の形態と同様に、 基材 1 2には、 電池用パッケージ 1 1を販売棚などにつり下げて陳列することができるように、 つり下げ 穴 1 2 aを設けてもよい。
なお、 図 1および 2に示す電池用パッケージ 1および 1 1においては 電池パック 4および 1 4内の電池の外装シールに印刷されたデザィンが 消費者に見えるように、 少なくとも容器 3および 1 3が透明であればよ い。 基材 2および 1 2の、 容器 3および 1 3側の面には印刷がなされる が、 基材 2および 1 2も透明であってもよい。
本発明において用いることのできる生分解性樹脂としては、 例えば脂 肪族ポリエステル、 変性ポリビニルアルコール ( P V A ) 、 セルロース エステル化合物およびデンプン変性体などが挙げられ、 なかでも、 脂肪 族ボリエステルは、 分解時に生成するアルコールおよびカルボン酸の毒 素が極めて低いことから、 環境に対して好ましい。
そして、 脂肪族ポリエステルとしては、 微生物産出系重合体であるヒ ドロキシ酪酸一吉草酸重合体、 合成系重合体であるポリ力プロラク トン および脂肪族ジカルボン酸一脂肪族ジォ一ル縮合体、 ならびに半合成系 重合体であるポリ乳酸系重合体などが挙げられる。
透明性、 剛性、 耐熱性および加工性に優れるという理由から、 ポリ乳 酸系重合体を用いるのが好ましい。 また、 ポリ乳酸系重合体は L一乳酸 および または D—乳酸の単独重合体であつてもよいが、 生分解性とい う効果を損なわない範囲であれば、 他のヒドロキシカルボン酸との共重 合体または混合物 (もしくはポリマーァロイ) であっても構わない。 なお、 他のヒドロキシカルボン酸としては例えばグリコール酸、 3— ヒドロキシ酪酸、 4—ヒドロキシ酪酸、 3—ヒドロキシ吉草酸、 4ーヒ ドロキシ吉草酸および 6—ヒドロキシカブロン酸などが挙げられる。 好ましい生分解性樹脂であるポリ乳酸系重合体の好ましい重量平均分 子量は、 50, 000〜100, 000の範囲である。 重量平均分子量が 50, 000未満の 場合には、 実用的な物性がほとんど発現しない。 逆に重量平均分子量が 100, 000を超える場合には、 溶融粘度が高くなり過ぎて成形加工性に劣る からである。 また、 ポリ乳酸系重合体は高いガラス転移点と結晶性を有し、 P E T と類似する性質を有する。 さらに好ましいことに、 ポリ乳酸からなるフ ィルムは一軸延伸または二軸延伸することができ、 得られる延伸シ一ト においては分子が配向しており、 脆性が低く、 割れにくく、 さらに強度 に極めて優れたシートを得ることができる。 また、 押出しキャストが可 能であり、 透明性も確保できる。 後述するように、 本発明においては、 特に圧空成形により容器を作製する際に、 材料として延伸シートを用い るのが好ましい。
ポリ乳酸系重合体の原材料としてはトウモロコシを用いることができ る。 トウモロコシからデンプンを分離し、 糖化した後、 乳酸発酵により 乳酸を得、 ラクチドを経て重合によりポリ乳酸が得られる。 このように. ポリ乳酸系重合体は石油系原料以外から得ることができることから、 本 発明は、 最終的な電池用パッケージそのものはもとより、 原料生成過程 に関しても環境に優しいものと言える。
さらに、 前記生分解性樹脂は樹脂組成物として用いてもよい。 この場 合は、 本発明の効果を損なわない範囲で、 他の高分子材料を混合しても よく、 また、 物性および加工性を調整する目的で、 可塑剤、 滑剤、 無機 フィラー、 紫外線吸収剤、 熱安定剤、 光安定剤、 光吸収剤、 着色剤、 顔 料および改質剤などを混合してもよい。
ここで、 特に、 電池用パッケージの容器部分については、 電池の形状 に応じて角部を有する比較的細かい形状の収容部を成形することが必要 であり、 透明性とともに成形性が求められる。 生分解性樹脂は脆性を有 するため、 従来の条件で生分解性樹脂を成形しょうとすると、 割れを生 じたりしてしまうという問題がある。
この問題を解消するため、 本発明においては、 特に前記容器を得るた めに生分解性樹脂の延伸シートを用いるのが好ましい。 この延伸によつ て、 得られるシートの脆性および強度を改良することができ、 割れに対 して強い容器を作製することができる。 一軸延伸シートよりも二軸延伸 シートのほうがより高い強度を有し、 好ましい。
ただし、 延伸シートは、 未延伸シートに比べて強度が高くなる一方で、 若干加工性に劣るという欠点を有する。 したがって、 従来のパッケージ に用いられた熱可塑性樹脂と同様の条件で、 真空成形法などによって生 分解性樹脂の延伸シ一トを前記容器に成形することは困難である。 そこ で、 本発明においては、 圧空成形法によって延伸シートから前記容器を 成形する。
従来の P E Tからなる電池用パッケージを製造する際には一般的に真 空成形法が用いられるが、 この真空成形法では、 樹脂シートをクランプ 金型に挟んでヒーターで加熱軟化させた後、 真空吸引することによって 大気圧で樹脂シートを型に密着させて成形する。 しかし、 前記生分解性 樹脂の延伸シートは強度が高くなつているため、 大気圧程度の圧力では 型に密着させることができず、 所望の形状に成形できない。
これに対し、 本発明に係る電池用パッケージを製造する際には圧空成 形法を用いることが好ましい。 この圧空成形法においては、 上記真空成 形法において、 圧空箱から金型内に高圧の空気を供給し、 大気圧にかわ つて大きな成形圧力を樹脂シートに当てる。 これによつて、 強度の高い 榭脂シ一トであっても型に確実に密着させることができるのである。 前記延伸シートの引張特性 (引張破断強度) は、 4 0〜9 0 M P aで あることが好ましい。 延伸シートの引張破断強度が 4 O M P aを下回る と、 電池保持に耐える強度が得られず、 また、 9 O M P aを上回るとシ ート強度が強くなり過ぎ、 成形性が低下するとともに、 シートの透明性 が低下してしまう。 さらには、 6 0〜 8 0 M P aであるのが特に好まし い。 本発明における引張特性は、 J I S K— 7 1 2 7に準じ、 タイプ ―
9
2の試験片を用い、 試験速度 2 0 0 m m /m i nで測定されるものであ る。
また、 延伸シートの引張弾性率は、 1〜 7 G P aであるのが好ましい, 延伸シートの引張弾性率が、 l G P aを下回るとシートが硬くなり過ぎ. 成型の面で賦型性が低下し、 7 G P aを上回るとシ一卜が柔らかくなり 過ぎて電池保持が難しい場合が生じる。 さらには、 2〜 6 G P aである のが特に好ましい。 この引張弾性率は、 J I S K 7 1 2 7に準拠し て測定することができる。
さらに、 前記延伸シートの透明度を示す指針となるヘーズは、 1 0 % 未満であることが好ましい。 ヘーズが 1 0 %以上になると、 シ一卜の透 明性が低下し、 顧客に見え易いように商品を収納するパッケージ本来の 機能を果たさないことになる。 さらには、 2〜 8 %であることが特に好 ましい。 このヘーズは、 J I S K— 7 1 0 5に準じて測定されるもの である。
上記をまとめると、 本発明は、 少なくとも基材および容器を具備し、 前記容器が生分解性脂肪族ポリエステルの延伸シートで構成されている ことを特徴とする。
そして、 前記基材も生分解性脂肪族ポリエステルで構成されているこ とが好ましい。
また、 前記基材と前記容器との間に、 生分解性脂肪族ポリエステルで 構成されたラミネート層を設ければ、 後述するように、 熱融着によって 前記基材と前記容器を一体化することが可能である。
ラミネート層を設けなくても、 容器の端部を折り曲げて折曲部を設け れぱ、 その溝に基材を揷入して、 前記容器と前記基材とを一体化させる ことが可能である。
なお、 前記容器の収容部には、 電池複数個を含むシュリンクパックに よる電池パックを収容することができる。 このシュリンクパックも生分 解性脂肪族ポリエステルで構成されていることが好ましい。 そして、 前 記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体であることが好ま しく、 前記シュリンクパックが生分解性脂肪族ポリエステルの延伸シー トで構成されているのが好ましい。
基材の厚さは、 5 0〜 2 0 0 ; mであるのが好ましい。 基材の厚さが 5 0 mを下回ると、 薄くなり過ぎて電池の保持ができない場合があり . 2 0 0 mを上回ると、 基材を介して容器とラミネート層を熱融着させ る場合に、 熱伝導性が低下して接着強度がばらつき、 パッケージの品質 が低下する。 また、 熱融着時の熱管理が困難である。
ラミネート層の厚さは、 2 0〜 8 0 /i mであるのが好ましい。 ラミネ —ト層の厚さが 2 0 /x mを下回ると、 ラミネート層自体のクッション性 が低下し、 熱融着時の接着圧力および接着強度がばらつく。 また、 2 0 /i mを下回ると、 ラミネート層が伸び過ぎたり、 裂け易くなる。 また、 8 0 111より厚くなると、 熱融着時に時間がかかり過ぎ、 熱のかけ過ぎ によって基材に変形などの悪影響を及ぼし得る。 さらには、 4 0〜 6 0 mであるのが特に好ましい。
圧空成形法により容器を得るべく用いる延伸シートの厚さは、 2 0 0 〜 6 0 0 mであるのが好ましい。 容器のシー卜の厚さが 2 0 0 / mを 下回ると、 成形時の熱の許容範囲が狭く、 シートが薄いために伸び過ぎ たり、 しなったりする変形が生じ得る。 さらに、 生産性上の熱管理が難 しくなる。 また、 6 0 0 z mを上回っても、 改善効果がそれ以上期待で きない。
また、 基材への印刷は常法により行えばよく、 基材へのラミネート層 の接着も、 従来からの接着剤を用いて行うことができる。 接着剤として は、 例えば、 ビニル系、 アクリル系、 ポリアミ ド系、 ポリエステル系、 ゴム系およびウレタン系の接着剤が挙げられる。
しかし、 本発明においては、 デンプン、 アミロース、 アミ口べクチン などの多糖類、 膠、 ゼラチン、 カゼイン、 ゼイン、 コラーゲンなどの夕 ンパク質類およびポリペプチド類、 未加硫天然ゴム、 ならびに脂肪族ポ リエステルなどを用いた生分解性接着剤を用いるのが好ましい。
( 2 ) 電池用パッケージの製造方法
つぎに、 本発明に係る電池用パッケージの製造方法について説明する。 本発明に係る電池用パッケージは、 生分解性脂肪族ポリエステルの延 伸シートを圧空成形し、 収容部を有する容器を得る工程と、 前記容器を 生分解性脂肪族ポリエステルの延伸シートからなる基材と一体化して電 池用パッケージを得る工程とによって製造することができる。
まず、 本発明に係る電池用パッケージの製造方法を簡単に説明する。 図 3は、 本発明に係る電池用パッケージの製造方法の第一の実施の形 態の主要な工程を示す概略図である。 また、 図 4は、 本発明に係る電池 用パッケージの製造方法の第二の実施の形態の主要な工程を示す概略図 である。
第一の実施の形態においては、 図 3に示すように、 まず、 容器成形ェ 程(1 - 1 )において、 生分解性脂肪族ポリエステルの延伸シートを圧空成形 し、 収容部を有する容器を得る。 そして、 基材接着工程(1 -2)において、 生分解性脂肪族ポリエステルの延伸シートからなる基材に、 生分解性脂 肪族ポリエステルの延伸材からなるラミネ一ト層を接着して接着体を得 る。 なお、 この容器成形工程(1 - 1 )と基材接着工程(1 -2)とは同時に行つ てもよく、 また、 —方を他方より先に行ってもよい。
最後に、 一体化工程(1 -3)において、 前記接着体中の前記ラミネート層 と前記容器を熱融着させることによって、 前記基材および前記容器を一 体化し、 本発明に係る電池用パッケージ (ブリスターパック) を得る。 なお、 図 1においては、 電池パックを収容する工程を省略している。 また、 '第二の実施の形態においてほ、 図 4に示すように、 まず容器成 形工程 (2- 1 )において、 第一の実施の形態における容器成形工程(1 - 1 )と 同様に、 生分解性脂肪族ボリエステルの延伸シートを圧空成形し、 収容 部を有する容器を得る。 そして、 折曲部形成工程(2- 2)において、 容器の 端部を前記収容部とは反対の面側に折り曲げて折曲部を設ける。
なお、 前記折曲部の形状や寸法は、 後述する実施例において詳細に説 明するが、 一体化工程(2- 3)において前記基材と前記容器を一体化し、 電 池パックを収容部に保持し得ることができれば、 特に制限はない。 例え ば、 容器の周縁部を、 収容部と反対の側に折り曲げることによって形成 すればよい。
そして、 最後に、 一体化工程(2- 3)において、 生分解性脂肪族ポリエス テルの延伸シートからなる基材を前記折曲部に挿入し、 前記容器を前記 基材と一体化することによって、 本発明に係る電池用パッケージ (プリ スターパック) を得る。 なお、 図 2においても、 電池パックを収容する 工程を省略している。
図 3および 4 ,には、 本発明に係る電池用パッケージの製造方法の主要 な工程のみを示したが、 各工程の詳細な条件、 および一体化工程の際に 電池パックを収容する工程などの付加的な工程については、 以下の実施 例において説明する。
以下に、 実施例を参照しながら本発明をより詳細に説明するが、 本発 明はこれらのみに限定されるものではない。 実施例 1
本実施例においては、 図 5に示す第一の実施の形態に係る工程に沿つ て、 図 1に示す構造を有する本発明に係る電池用パッケージ 1を製造し た。
容器成形工程 :
まず厚さ 2 5 0 mのポリ乳酸 (以下 Γ p L AJ という) 製の透明の 延伸シ一ト (引張特性 (引張破断強度) : 縦 7 O M P a、 横 7 O MP a、 引張弾性率 : 縦 3. 4 G P a、 横 4. 4 G P a、 ヘーズ: 6 %) を準備 した。 延伸シートの加熱収縮率は、 J I S Z 1 7 1 2に準拠し、 試 験片を 1 2 0 °Cで 5分間加熱して測定した結果、 縦 3. 3 %、 横 1 . 7 %であった。
電池用パッケージ 1において、 容器 3の収容部 3 aの基材 2とは反対 側に相当する部分に、 UVィンクを用いて所定のマークを輪転印刷法に より印刷した (工程(1-1)の a) 。 この所定のマークは、 本発明に係る電 池用パッケージ 1が、 生分解性樹脂を用いており、 環境に優しいことを 示すマークとした。
ついで、 圧空成形機を用い、 前記延伸シートを圧空成形し、 図 1に示 す形状を有する容器 3を得た (工程(1-1)の b) 。
基材接着工程:
また上記容器成形工程と別に、 基材 2として厚さ l O O ^ mの P L A 製の半透明の延伸シート (引張特性 (引張破断強度) : 縦 1 1 0 MP a、 横 1 1 O M P a、 引張弾性率:縦 4 · O G P a、 横 4. 4 G P a ) を用 意した。 加熱収縮率は J I S Z 1 7 1 2に準拠し試験片を 1 2 0 °C で 5分間加熱して測定した結果、 縦 1 . 7 %、 横 0. 5 %であった。 こ の基材 2の容器 3側の面に、 U Vィンクを用いて輪転印刷法により所定 の印刷を行った (工程(1-2)の a ) 。
ついで、 ラミネート層として厚さ 5 0 mの P L A製の透明の延伸シ ート (引張特性 (引張破断強度) : 縦 l l O MP a、 横 1 1 0 M P a、 引張弾性率 : 縦 3. 8 G P a、 横 4. 3 G P a、 へ一ズ: 2 %) を用意 した。 また、 加熱収縮率は、 J I S Z 1 7 1 2に準拠し、 試験片を 1 2 0 °Cで 5分間加熱して測定した結果、 縦 2. 7 %、 横 0. 3 %であ つた。
基材 2の印刷面に、 ラミネート層を接着剤 (ポリアミ ド系) により接 着し、 接着体を得た (工程(卜 2)の b) 。
一体化工程 :
つぎに、 単三型の円筒型電池 4個を含む電池パック (シュリンクパッ ク) 4を用意し、 容器 3の収容部 3 aに収容した (工程(1-3)の a) 。 そして、 最後に、 容器 3の鍔部 3 bと基材 2のラミネート層 (図示せ ず) とを、 加熱温度 1 0 0 °Cで前記ラミネート層を熱融着させることに より接着し、 本発明に係る電池用パッケージ 1を得た (工程(1-3)の b) 比較例 1
本比較例においては、 P L Aの代わりに P ETを用いた以外は、 実施 例 1 と同様にして図 1に示す構造を有する比較電池用パッケージを製造 した。
容器成形工程 :
まず、 厚さ 2 5 0 /xmの P ET製の透明のシート (引張特性 (引張破 断強度) : 縦 6 8 MP a、 横 6 8 MP a、 引張弾性率 :縦 2. 1 GP a. 横 2. 2 G P a、 ヘーズ: 1 %未満) を準備し、 電池用パッケージ 1に おいて、 容器 3の収容部 3 aの基材 2とは反対側に相当する部分に UV ィンクを用いて所定のマークを輪転印刷法により印刷した。 この所定の マークは、 P ETを用いていることを示すマークとした。
ついで、 真空成形機を用い、 前記シ一トを真空成形し、 図 1に示す形 状を有する容器 3を得た。
基材接着工程: また、 上記の容器成形工程とは別に、 基材 2として厚さ 1 0 0 xmの P ET製の半透明シート (引張特性 (引張破断強度) : 縦 1 1 2 MP a 横 1 1 2 MP a、 引張弾性率: 縦 4. l G P a、 横 4. 5 G P a) を用 意し、 この基材 2の容器 3側の面に、 UVインクを用いて輪転印刷法に より所定の印刷を行った。
ついで、 ラミネート層として厚さ 2 0 xmの P ETからなる透明のシ —トを用意し、 基材 2の印刷面に、 接着剤により接着し、 接着体を得た 一体化工程 :
つぎに、 単三型の円筒型電池 4個を含む電池パック (シュリンクパッ ク) 4を用意し、 容器 3の収容部 3 aに収容した。
最後に、 容器 3の鍔部 3 bと基材 2のラミネート層 (図示せず) とを 前記ラミネート層を熱融着させることにより接着し、 比較電池用パッケ —ジを得た。 実施例 2
本実施例においては、 図 6に示す第二の実施の形態に係る電池用パッ ケージの製造方法の工程に沿って、 図 2に示す構造を有する本発明に係 る電池用パッケージ 1 1を製造した。
容器成形工程 :
まず最初に、 厚さ 2 5 0 mのポリ乳酸 (以下 「P L A」 という) か らなる透明の延伸シート (引張特性 (引張破断強度) : 縦 7 0 MP a、 横 7 0 MP a、 引張弾性率: 縦 3. 4 GP a、 横 4. 4 GP a、 ヘーズ : 6 %) を準備した。 また、 延伸シートの加熱収縮率は、 J I S Z 1 7 1 2に準拠し、 試験片を 1 2 0°Cで 5分間加熱して測定した結果、 縦 3. 3 %、 横 1. 7 %であった。
電池用パッケージ 1 1において、 容器 1 3の収容部 1 3 aの基材 1 2 とは反対側に相当する部分に、 U Vィンクを用いて所定のマークを輪転 印刷法により印刷した (工程(2-1)の a) 。 この所定のマークは、 本発明 に係る電池用パッケージ 1 1が、 生分解性樹脂を用いており、 環境に優 しいことを示すマークとした。
ついで、 圧空成形機を用い、 前記延伸シートを圧空成形し、 図 2に示 す形状を有する容器 1 3を得た (工程(2-1)の b) 。
折曲部形成工程 :
つぎに、 容器 1 3の収容部 1 3 aの周辺の鍔状の端部を収容部 1 3 a とは反対側、 すなわち基材 1 2側に折り曲げ、 折曲部 1 3 b、 1 3 じお よび 1 3 dを形成した (工程(2-2)) 。 なお、 図 2に示す折曲部 1 3 b、 1 3 cおよび 1 3 dが互いに重ならないように、 Yで示される端部は鋭 角に切断した。
基材接着工程:
上記容器成形工程および折曲部形成工程とは別に、 基材 1 2として厚 さ 1 0 0 mの P L A製の半透明の延伸シート (引張特性 (引張破断強 度) : 縦 1 1 0 M P a、 横 1 1 0 M P a、 引張弾性率 : 縦 4. 0 G P a、 横 4. 4 G P a) を用意した。 加熱収縮率は、 J I S Z 1 7 1 2に 準拠し、 試験片を 1 2 0°Cで 5分間加熱して測定した結果、 縦 1. 7 %、 横 0. 5 %であった。 この基材 1 2の容器 1 3側の面に、 UVインクを 用いて輪転印刷法により所定の印刷を行った (工程(2-4)) 。
一体化工程 :
つぎに、 単三型の円筒型電池 4個を含む電池パック (シュリンクパッ ク) 4を用意し、 容器 1 3の収容部 1 3 aに収容した (工程(2-3)の a) , 最後に、 容器 1 3の折曲部 1 3 b、 1 3 cおよび 1 3 dに、 基材 1 2 を矢印 Xの方向にスライ ドさせて揷入することによって、 基材 1 2と容 器 1 3 とを一体化した。 そして、 基材 1 2と容器 1 3を接着剤 (ァクリ ル系) により固定することによって、 本発明に係る電池用パッケージ 2 を得た (工程(2-3)の b ) 。
[評価]
上述のようにして作製した電池用パッケージ 1および 2ならびに比較 電池用パッケージについて、 以下の評価試験を行った。
①落下試験
上記のようにして作製した電池用パッケージ 1および 2ならびに比較 電池用パッケージを、 それぞれ個別に、 高さ 5 0 c mの位置からコンク リ一ト面に向けて自然に落下させた。
その結果、 いずれの電池用パッケージも、 微かにキズが生じただけで めった。
②振動試験
電池用パッケージ 1 もしくは 2または比較電池用パッケージを用い、 それぞれを 1 0個ずつ含む個包装箱を常法により作製し、 ついで個包装 箱を 5個含む包装箱を作製した。 ついで、 この包装箱を用い、 約 1 0〜 3 0分間および振動数 5〜 5 0 H zの条件で振動試験を行った。
その結果、 いずれの電池用パッケージにも、 キズ、 割れおよび変形は 生じていなかった。
③保存試験
電池用パッケージ 1および 2ならびに比較電池用パッケージを 5個ず つ準備し、 4 0 °C、 9 0 % R Hおよび 1 6 8時間の条件で、 恒温高湿下 で保存した後、 その外観を調べた。
その結果、 いずれの電池用パッケージにも、 割れおよび変形は生じて いなかつた。
④耐天候性試験
電池用パッケージ 1および 2ならびに比較電池用パッケージに、 温度 6 3 °Cおよび 2 4 0時間の条件で、 サンシャインウエザーメーターによ り太陽光を照射する試験を行った。
従来例である比較電池用パッケージの容器は黄変したが、 本発明に係 る電池用パッケージ 1および 2の容器は黄変しなかった。 産業上の利用の可能性
以上のように、 本発明によれば、 主要部材をすべて生分解性樹脂で構 成され、 強度、 耐衝撃性および透明性に優れる電池パッケージを提供す ることができる。

Claims

請 求 の 範 囲
I . 基材および容器を具備し、 前記容器が生分解性脂肪族ポリエステ ルの延伸シートで構成されていることを特徴とする電池用パッケージ。
2 . 前記基材が生分解性脂肪族ポリエステルで構成されていることを 特徴とする請求の範囲第 1項記載の電池用パッケージ。
3 . 前記基材と前記容器との間に、 生分解性脂肪族ポリエステルで構 成されたラミネート層を有することを特徴とする請求の範囲第 1項また は第 2項記載の電池用パッケージ。
4 . 前記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体であるこ とを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の電池用パ ッケ一ン。
5 . 前記延伸シートの引張破断強度が、 4 0〜 9 0 M P aであること を特徴とする請求の範囲第 1項記載の電池用パッケージ。
6 . 前記延伸シートの引張弾性率が、 1〜 7 G P aであることを特徴 とする請求の範囲第 1項記載の電池用パッケージ。
7 . 前記延伸シートのヘーズが、 1 0 %未満であることを特徵とする 請求の範囲第 1項記載の電池用パッケージ。
8 . 前記容器に、 電池複数個を含むシュリンクパックを有することを 特徴とする請求の範囲第 1項記載の電池用パッケージ。
9 . 前記シユリンクパックが生分解性脂肪族ポリエステルで構成され ていることを特徴とする請求の範囲第 8項記載の電池用パッケージ。
1 0 . 前記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体である ことを特徴とする請求の範囲第 9項記載の電池用パッケージ。
I I . 前記シュリンクパックが生分解性脂肪族ポリエステルの延伸シ 一トで構成されていることを特徴とする請求の範囲第 9項記載の電池用 ノ ッケージ。
1 2. 生分解性脂肪族ポリエステルの延伸シ一トを圧空成形し、 収容 部を有する容器を得る工程と、 前記容器を生分解性脂肪族ポリエステル の延伸シートからなる基材と一体化して電池用パッケージを得る工程と を含むことを特徴とする電池用パッケージの製造方法。
1 3. 前記基材に、 生分解性脂肪族ポリエステルの延伸シートからな るラミネ一ト層を接着して接着体を得、 前記ラミネート層と前記容器を 熱融着することによって、 前記基材および前記容器を一体化することを 特徴とする請求の範囲第 1 2項記載の電池用パッケージの製造方法。
1 4. 前記容器の端部を前記収容部とは反対の面側に折り曲げて折曲 部を設け、 前記折曲部に前記基材を揷入して前記容器を前記基材と一体 化することを特徴とする請求の範囲第 1 2項記載の電池用パッケージの 製造方法。
1 5. 前記生分解性脂肪族ポリエステルが、 ポリ乳酸系重合体である ことを特徴とする請求の範囲第 1 2項記載の電池用パッケージの製造方 法。
1 6. 前記延伸シートの引張破断強度が、 4 0〜9 0 MP aであるこ とを特徴とする請求の範囲第 1 2項記載の電池用パッケージ。
1 7. 前記延伸シートの引張弾性率が、 l〜7 GP aであることを特 徵とする請求の範囲第 1 2項記載の電池用パッケージの製造方法。
1 8. 前記延伸シートのヘーズが、 1 0 %未満であることを特徴とす る請求の範囲第 1 2項記載の電池用パッケージの製造方法。
PCT/JP2004/006719 2003-05-16 2004-05-12 電池用パッケージおよびその製造方法 WO2004102697A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04732497A EP1635410A4 (en) 2003-05-16 2004-05-12 BATTERY ASSEMBLY AND METHOD FOR MANUFACTURING THE SAME
US10/555,172 US20060108978A1 (en) 2003-05-16 2004-05-12 Battery package and process for producing the same
US11/907,739 US20080048354A1 (en) 2003-05-16 2007-10-17 Battery package and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003139093A JP3889376B2 (ja) 2003-05-16 2003-05-16 電池用パッケージおよびその製造方法
JP2003-139093 2003-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/907,739 Division US20080048354A1 (en) 2003-05-16 2007-10-17 Battery package and process for producing the same

Publications (1)

Publication Number Publication Date
WO2004102697A1 true WO2004102697A1 (ja) 2004-11-25

Family

ID=33447321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006719 WO2004102697A1 (ja) 2003-05-16 2004-05-12 電池用パッケージおよびその製造方法

Country Status (7)

Country Link
US (2) US20060108978A1 (ja)
EP (1) EP1635410A4 (ja)
JP (1) JP3889376B2 (ja)
KR (1) KR20060012616A (ja)
CN (1) CN100426559C (ja)
TW (1) TW200505759A (ja)
WO (1) WO2004102697A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348977A (ja) * 2003-05-16 2004-12-09 Matsushita Electric Ind Co Ltd 電池用パッケージ
JP2006001574A (ja) * 2004-06-16 2006-01-05 Matsushita Electric Ind Co Ltd 電池用パッケージおよびその製造方法
DE102011090003A1 (de) * 2011-12-28 2013-07-04 Continental Automotive Gmbh Gehäuse für eine Batterie
CN108025821A (zh) * 2015-07-23 2018-05-11 罗伯特·博世有限公司 包装系统及其制造
ES2903380T3 (es) * 2016-10-03 2022-04-01 Huhtamaki Molded Fiber Tech Bv Unidad biodegradable y compostable para envasado de alimentos a partir de un material de pulpa moldeada y método para la fabricación de dicha unidad para envasado de alimentos
CN111326780B (zh) * 2018-12-14 2021-07-06 中国科学院大连化学物理研究所 金属海水燃料电池
CN114824653A (zh) * 2022-03-09 2022-07-29 哈尔滨工业大学 一种可降解复合隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221170A (ja) * 1995-05-11 1997-08-26 Matsushita Electric Ind Co Ltd 商品パッケージ、及びその製造方法
JP2003128901A (ja) * 2001-08-10 2003-05-08 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2003147177A (ja) * 2001-11-16 2003-05-21 Mitsubishi Plastics Ind Ltd 生分解性シート及びこのシートを用いた成形体とその成形方法
JP2004058586A (ja) * 2002-07-31 2004-02-26 Mitsubishi Plastics Ind Ltd ポリ乳酸系熱収縮性フィルム
JP2004067894A (ja) * 2002-08-07 2004-03-04 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157280A (en) * 1963-10-21 1964-11-17 Perdue Co Inc Display container
CA2068368A1 (en) * 1991-05-13 1992-11-14 Masanobu Ajioka Degradable laminate composition
EP0569145B1 (en) * 1992-05-08 1999-03-24 Showa Highpolymer Co., Ltd. Polyester fibers
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
US5735404A (en) * 1995-05-11 1998-04-07 Matsushita Electric Industrial Co., Ltd. Merchandise package and method of manufacturing the same
JP4154794B2 (ja) * 1999-03-29 2008-09-24 ソニー株式会社 電池パッケージ
US6372844B1 (en) * 1999-03-31 2002-04-16 Mitsui Chemicals, Inc. Resin composition
JP4660035B2 (ja) * 2000-09-28 2011-03-30 三井化学東セロ株式会社 脂肪族ポリエステル組成物、それからなるフィルム及びその積層体
ITTO20010061A1 (it) * 2001-01-25 2002-07-25 Novamont Spa Miscele binarie di poliesteri alifatici biodegradabili e prodotti da queste ottenuti.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221170A (ja) * 1995-05-11 1997-08-26 Matsushita Electric Ind Co Ltd 商品パッケージ、及びその製造方法
JP2003128901A (ja) * 2001-08-10 2003-05-08 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2003147177A (ja) * 2001-11-16 2003-05-21 Mitsubishi Plastics Ind Ltd 生分解性シート及びこのシートを用いた成形体とその成形方法
JP2004058586A (ja) * 2002-07-31 2004-02-26 Mitsubishi Plastics Ind Ltd ポリ乳酸系熱収縮性フィルム
JP2004067894A (ja) * 2002-08-07 2004-03-04 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Sekai hatsu, shokubutsukei 'seibun kaisei plastic' o zenmen teki ni shiyo shita kandenchi no blister pack o kaihatsu", HOMEPAGE NAI, 28 January 2003 (2003-01-28), XP002982795, Retrieved from the Internet <URL:http://matsushita.co.jp/corp/news/official.data/data.dir/jn030128-2/jn030128-2.html> [retrieved on 20040604] *
See also references of EP1635410A4 *

Also Published As

Publication number Publication date
EP1635410A1 (en) 2006-03-15
EP1635410A4 (en) 2010-01-13
TW200505759A (en) 2005-02-16
CN100426559C (zh) 2008-10-15
US20080048354A1 (en) 2008-02-28
CN1791991A (zh) 2006-06-21
JP2004348976A (ja) 2004-12-09
US20060108978A1 (en) 2006-05-25
KR20060012616A (ko) 2006-02-08
JP3889376B2 (ja) 2007-03-07

Similar Documents

Publication Publication Date Title
US20060207909A1 (en) Package and process for producing same
US20050281967A1 (en) Battery package and method for producing the same
JP4405120B2 (ja) ヒートシール性を有するポリ乳酸系二軸延伸積層フィルム
US20080048354A1 (en) Battery package and process for producing the same
JP2009013406A (ja) ポリ乳酸系樹脂組成物、ポリ乳酸系フィルム、並びに該フィルムを用いた成形品、延伸フィルム、熱収縮性ラベル、及び該ラベルを装着した容器
JP6759828B2 (ja) ポリ乳酸系フィルム、該フィルムを用いた熱収縮性フィルム、該熱収縮性フィルムを用いた成形品または熱収縮性ラベル、及び、該成形品を用いたまたは該ラベルを装着した容器
JP5301783B2 (ja) 熱収縮性フィルム、並びにこの熱収縮性フィルムを用いた成形品、熱収縮性ラベル、及びこの成形品を用いた、又はこのラベルを装着した容器
JPWO2003099558A1 (ja) 生分解性耐熱性硬質樹脂成形容器
JPH08252895A (ja) 分解性ラミネート材料
US20050262809A1 (en) Method for producing package
WO2004102698A1 (ja) 電池用パッケージ
JP2009012481A (ja) 熱折り曲げ成形用ポリ乳酸系積層シート
US20230139647A1 (en) Resin film, laminate, and packaging body
JP2005330332A (ja) 脂肪族ポリエステル組成物、それからなるフィルム及び積層フィルム。
JP3563436B2 (ja) ポリ乳酸系重合体の熱成形加工品
JP3662197B2 (ja) ポリ乳酸系熱成形加工品
JP4080953B2 (ja) ポリ乳酸系熱折り曲げ成形体及びその製造方法
JP2020066230A (ja) 包装材料
US20240359385A1 (en) Resin film, laminate, and packaging body
JP7554387B2 (ja) 包装用二軸配向ポリエステルフィルム
JP4206302B2 (ja) 熱折り曲げ成形用ポリ乳酸系積層シート
JP2009179400A (ja) 生分解性ブリスターパック
WO2022075233A1 (ja) 多層フィルム、および包材
JP4987110B2 (ja) 脂肪族ポリエステル組成物、それからなるフィルム及び積層フィルム
JP2023039268A (ja) 包装袋

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004732497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006108978

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10555172

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057021748

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048134797

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057021748

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004732497

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10555172

Country of ref document: US